iVOD / 162784

Field Value
IVOD_ID 162784
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162784
日期 2025-06-23
會議資料.會議代碼 委員會-11-3-19-17
會議資料.會議代碼:str 第11屆第3會期經濟委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-06-23T11:37:55+08:00
結束時間 2025-06-23T11:50:42+08:00
影片長度 00:12:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b58c4cf52db2e91ab89330fb577eca0ab85017248ed72d8dda6ae3643212cc5f9307f5de316788b35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡易餘
委員發言時間 11:37:55 - 11:50:42
會議時間 2025-06-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第17次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員、交通部首長及國家科學及技術委員會首長就「因應高齡化社會,我國智慧公共運具發展及目標」進行報告,並備質詢。【6月23日及6月25日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 14.42534375
transcript.pyannote[0].end 18.08721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 18.27284375
transcript.pyannote[1].end 19.35284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 19.55534375
transcript.pyannote[2].end 20.07846875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.64784375
transcript.pyannote[3].end 23.16659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.34784375
transcript.pyannote[4].end 24.92159375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 25.56284375
transcript.pyannote[5].end 25.81596875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 26.11971875
transcript.pyannote[6].end 26.81159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 27.67221875
transcript.pyannote[7].end 27.92534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 29.03909375
transcript.pyannote[8].end 29.49471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 30.00096875
transcript.pyannote[9].end 37.57784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 38.13471875
transcript.pyannote[10].end 42.92721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 43.18034375
transcript.pyannote[11].end 44.07471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 44.61471875
transcript.pyannote[12].end 47.19659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 47.78721875
transcript.pyannote[13].end 48.74909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 49.15409375
transcript.pyannote[14].end 50.75721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 51.41534375
transcript.pyannote[15].end 63.88596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 64.10534375
transcript.pyannote[16].end 68.34096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 68.50971875
transcript.pyannote[17].end 81.04784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 81.36846875
transcript.pyannote[18].end 83.05596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 83.12346875
transcript.pyannote[19].end 91.27409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 91.78034375
transcript.pyannote[20].end 95.32409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 95.81346875
transcript.pyannote[21].end 97.78784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 98.20971875
transcript.pyannote[22].end 104.14971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 104.45346875
transcript.pyannote[23].end 108.67221875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 108.75659375
transcript.pyannote[24].end 125.56409375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 125.91846875
transcript.pyannote[25].end 131.03159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 125.96909375
transcript.pyannote[26].end 126.96471875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 131.33534375
transcript.pyannote[27].end 133.27596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 133.27596875
transcript.pyannote[28].end 133.71471875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 133.64721875
transcript.pyannote[29].end 144.26159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 137.56221875
transcript.pyannote[30].end 139.92471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 144.48096875
transcript.pyannote[31].end 149.49284375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 149.62784375
transcript.pyannote[32].end 151.82159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 152.10846875
transcript.pyannote[33].end 155.46659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 152.61471875
transcript.pyannote[34].end 153.12096875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 156.14159375
transcript.pyannote[35].end 157.18784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 156.19221875
transcript.pyannote[36].end 165.15284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 157.33971875
transcript.pyannote[37].end 158.99346875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 159.11159375
transcript.pyannote[38].end 159.12846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 159.28034375
transcript.pyannote[39].end 159.63471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 165.81096875
transcript.pyannote[40].end 168.07221875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 168.07221875
transcript.pyannote[41].end 168.46034375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 168.13971875
transcript.pyannote[42].end 173.05034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 173.43846875
transcript.pyannote[43].end 174.92346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 175.04159375
transcript.pyannote[44].end 178.80471875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 179.12534375
transcript.pyannote[45].end 183.34409375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 183.46221875
transcript.pyannote[46].end 184.76159375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 184.99784375
transcript.pyannote[47].end 193.65471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 194.24534375
transcript.pyannote[48].end 194.95409375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 195.40971875
transcript.pyannote[49].end 195.94971875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 196.35471875
transcript.pyannote[50].end 206.19284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 204.10034375
transcript.pyannote[51].end 209.50034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 209.63534375
transcript.pyannote[52].end 211.76159375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 212.23409375
transcript.pyannote[53].end 214.47846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 214.90034375
transcript.pyannote[54].end 218.76471875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 219.38909375
transcript.pyannote[55].end 222.32534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 222.35909375
transcript.pyannote[56].end 222.37596875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 222.37596875
transcript.pyannote[57].end 224.11409375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 223.03409375
transcript.pyannote[58].end 223.05096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 223.16909375
transcript.pyannote[59].end 225.80159375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 224.95784375
transcript.pyannote[60].end 235.11659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 228.31596875
transcript.pyannote[61].end 228.63659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 231.65721875
transcript.pyannote[62].end 232.21409375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 235.55534375
transcript.pyannote[63].end 245.86596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 245.98409375
transcript.pyannote[64].end 247.38471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 247.70534375
transcript.pyannote[65].end 251.68784375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 252.02534375
transcript.pyannote[66].end 256.95284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 256.95284375
transcript.pyannote[67].end 272.46096875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 260.56409375
transcript.pyannote[68].end 260.58096875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 260.93534375
transcript.pyannote[69].end 261.27284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 271.83659375
transcript.pyannote[70].end 271.87034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 272.73096875
transcript.pyannote[71].end 280.49346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 280.54409375
transcript.pyannote[72].end 280.88159375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 280.79721875
transcript.pyannote[73].end 286.28159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 282.60284375
transcript.pyannote[74].end 282.87284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 286.09596875
transcript.pyannote[75].end 286.43346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 286.41659375
transcript.pyannote[76].end 298.56659375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 291.19221875
transcript.pyannote[77].end 291.58034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 291.85034375
transcript.pyannote[78].end 292.64346875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 298.09409375
transcript.pyannote[79].end 305.68784375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 299.03909375
transcript.pyannote[80].end 299.61284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 303.86534375
transcript.pyannote[81].end 304.30409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 305.82284375
transcript.pyannote[82].end 320.53784375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 320.94284375
transcript.pyannote[83].end 321.66846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 321.78659375
transcript.pyannote[84].end 324.33471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 324.55409375
transcript.pyannote[85].end 326.73096875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 326.98409375
transcript.pyannote[86].end 328.55346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 328.90784375
transcript.pyannote[87].end 331.35471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 331.86096875
transcript.pyannote[88].end 336.14721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 335.50596875
transcript.pyannote[89].end 337.36221875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 336.78846875
transcript.pyannote[90].end 349.98471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 343.90971875
transcript.pyannote[91].end 343.94346875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 343.94346875
transcript.pyannote[92].end 344.02784375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 344.02784375
transcript.pyannote[93].end 344.06159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 344.06159375
transcript.pyannote[94].end 344.17971875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 348.49971875
transcript.pyannote[95].end 349.30971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 350.57534375
transcript.pyannote[96].end 354.16971875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 354.40596875
transcript.pyannote[97].end 354.42284375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 354.42284375
transcript.pyannote[98].end 354.43971875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 354.43971875
transcript.pyannote[99].end 354.45659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 354.45659375
transcript.pyannote[100].end 354.96284375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 354.96284375
transcript.pyannote[101].end 355.41846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 354.97971875
transcript.pyannote[102].end 356.14409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 356.14409375
transcript.pyannote[103].end 363.11346875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 356.86971875
transcript.pyannote[104].end 357.35909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 363.28221875
transcript.pyannote[105].end 371.41596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 372.25971875
transcript.pyannote[106].end 373.93034375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 374.43659375
transcript.pyannote[107].end 382.50284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 382.63784375
transcript.pyannote[108].end 387.51471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 385.28721875
transcript.pyannote[109].end 390.58596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 391.07534375
transcript.pyannote[110].end 398.44971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 398.60159375
transcript.pyannote[111].end 406.63409375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 406.17846875
transcript.pyannote[112].end 418.24409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 408.05159375
transcript.pyannote[113].end 408.54096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 410.71784375
transcript.pyannote[114].end 410.95409375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 412.62471875
transcript.pyannote[115].end 412.67534375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 418.24409375
transcript.pyannote[116].end 418.73346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 418.73346875
transcript.pyannote[117].end 420.69096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 418.75034375
transcript.pyannote[118].end 435.59159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 424.01534375
transcript.pyannote[119].end 425.02784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 432.31784375
transcript.pyannote[120].end 433.06034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 435.79409375
transcript.pyannote[121].end 435.81096875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 435.81096875
transcript.pyannote[122].end 439.52346875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 437.27909375
transcript.pyannote[123].end 437.97096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 438.54471875
transcript.pyannote[124].end 439.33784375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 439.77659375
transcript.pyannote[125].end 441.26159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 441.78471875
transcript.pyannote[126].end 442.20659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 449.80034375
transcript.pyannote[127].end 450.23909375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 450.45846875
transcript.pyannote[128].end 451.11659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 451.30221875
transcript.pyannote[129].end 453.25971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 453.74909375
transcript.pyannote[130].end 455.33534375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 455.99346875
transcript.pyannote[131].end 458.77784375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 459.08159375
transcript.pyannote[132].end 460.83659375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 461.52846875
transcript.pyannote[133].end 462.62534375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 463.28346875
transcript.pyannote[134].end 494.78909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 495.44721875
transcript.pyannote[135].end 497.77596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 498.21471875
transcript.pyannote[136].end 499.29471875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 499.91909375
transcript.pyannote[137].end 500.30721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 500.79659375
transcript.pyannote[138].end 503.26034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 503.90159375
transcript.pyannote[139].end 506.97284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 506.97284375
transcript.pyannote[140].end 507.14159375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 507.76596875
transcript.pyannote[141].end 531.74534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 511.74846875
transcript.pyannote[142].end 512.52471875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 531.89721875
transcript.pyannote[143].end 532.52159375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 532.94346875
transcript.pyannote[144].end 536.25096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 536.79096875
transcript.pyannote[145].end 538.00596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 538.73159375
transcript.pyannote[146].end 558.22221875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 555.70784375
transcript.pyannote[147].end 566.81159375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 561.64784375
transcript.pyannote[148].end 562.67721875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 567.19971875
transcript.pyannote[149].end 574.05096875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 574.15221875
transcript.pyannote[150].end 574.48971875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 574.43909375
transcript.pyannote[151].end 576.93659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 577.69596875
transcript.pyannote[152].end 579.46784375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 579.90659375
transcript.pyannote[153].end 580.24409375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 580.59846875
transcript.pyannote[154].end 595.12784375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 595.92096875
transcript.pyannote[155].end 598.72221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 599.29596875
transcript.pyannote[156].end 601.60784375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 601.99596875
transcript.pyannote[157].end 613.85909375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 614.28096875
transcript.pyannote[158].end 619.64721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 619.90034375
transcript.pyannote[159].end 631.84784375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 632.47221875
transcript.pyannote[160].end 637.41659375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 638.10846875
transcript.pyannote[161].end 640.03221875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 641.39909375
transcript.pyannote[162].end 641.97284375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 641.97284375
transcript.pyannote[163].end 665.44596875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 665.83409375
transcript.pyannote[164].end 677.51159375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 676.39784375
transcript.pyannote[165].end 676.80284375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 677.51159375
transcript.pyannote[166].end 698.06534375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 677.52846875
transcript.pyannote[167].end 678.11909375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 681.19034375
transcript.pyannote[168].end 682.96221875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 684.43034375
transcript.pyannote[169].end 684.81846875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 690.64034375
transcript.pyannote[170].end 690.97784375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 690.97784375
transcript.pyannote[171].end 691.01159375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 693.28971875
transcript.pyannote[172].end 693.96471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 693.96471875
transcript.pyannote[173].end 694.60596875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 698.53784375
transcript.pyannote[174].end 704.84909375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 705.30471875
transcript.pyannote[175].end 711.34596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 708.17346875
transcript.pyannote[176].end 709.01721875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 710.40096875
transcript.pyannote[177].end 733.75596875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 731.51159375
transcript.pyannote[178].end 740.01659375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 734.09346875
transcript.pyannote[179].end 735.10596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 735.39284375
transcript.pyannote[180].end 736.38846875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 740.40471875
transcript.pyannote[181].end 742.63221875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 743.50971875
transcript.pyannote[182].end 748.18409375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 747.67784375
transcript.pyannote[183].end 764.08034375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 751.87971875
transcript.pyannote[184].end 751.96409375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 764.08034375
transcript.pyannote[185].end 766.00409375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 764.62034375
transcript.pyannote[186].end 765.58221875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 766.29096875
transcript.pyannote[187].end 767.35409375
transcript.whisperx[0].start 14.448
transcript.whisperx[0].end 29.169
transcript.whisperx[0].text 好謝謝主席那我們是不是先請交通部次長林次長林次長和公路局副局長副局長蔡委員長好次長
transcript.whisperx[1].start 30.066
transcript.whisperx[1].end 50.437
transcript.whisperx[1].text 那因為今天我們昭偉在關心的關於說這個老齡化他去使用的這個客運的問題那事實上我們也知道像是很多偏鄉也不用說到完全偏鄉像現在我們嘉義縣嘉義縣大概晚上之後幾乎就沒有客運了
transcript.whisperx[2].start 51.557
transcript.whisperx[2].end 79.178
transcript.whisperx[2].text 完全過去的客運功能完全已經沒了就是說不管是到台北啦高雄啦大家都覺得說哇這個投報率來越低可能承載的人數也少那就變得說沒有就沒有這樣的一個客運服務了那我想要請教次長那因為這種有一點是因為市場導向的然後造成了這個客運的終止那這樣的情況站在交通部的立場你們是樂見嗎還是你們覺得
transcript.whisperx[3].start 81.48
transcript.whisperx[3].end 96.681
transcript.whisperx[3].text 就讓它市場下去包園當然不樂見我們不樂見公共運輸退場的這麼快但是現在的狀況是可能委員也知道我們在疫情期間也很多私人運具是有註冊或購買
transcript.whisperx[4].start 98.263
transcript.whisperx[4].end 125.313
transcript.whisperx[4].text 那有一部分的使用者在那段時間是轉到私人運區去那第二個呢是我們也曾經注意到客運車的駕駛相對壓力比較大因為他會面臨乘客的抱怨或是路線比較長疲勞駕駛的問題甚至剛剛游委員也提到他可能會有用餐上廁所的一些壓力所以這些課題如果不能夠逐步來處理大概公路駕駛會不太容易找得到
transcript.whisperx[5].start 126.193
transcript.whisperx[5].end 154.535
transcript.whisperx[5].text 對因為你剛講到有所謂的私人的一個運具但是他畢竟他是不是很大客群他是懂得去使用這個私人運具的人他才有辦法尤其是在這種跑長城的比方我就是說如果從嘉義要到台北我晚上在趕不上最後一班的高鐵十點半的高鐵我趕不上了那我有其他選擇嗎好像沒有除了自用車以外就是轎車了
transcript.whisperx[6].start 157.45
transcript.whisperx[6].end 171.221
transcript.whisperx[6].text 但是客運這一塊就沒了所以市長你說你不樂見那交通部要提出怎樣的替代方式去延長這些客運的壽命也好還是他們能夠繼續提供服務
transcript.whisperx[7].start 173.933
transcript.whisperx[7].end 192.925
transcript.whisperx[7].text 跟委員報告這個全世界可能都面臨一樣的問題一個缺工第二個是這個駕駛人在超過65歲以上的時候其實有些駕駛他還有一定的能力像計程車的部分我們就放得比較寬那所以有關是否把駕駛年齡延長第二個是否能找到更多的駕駛來源
transcript.whisperx[8].start 195.447
transcript.whisperx[8].end 206.674
transcript.whisperx[8].text 包含我們前一陣子討論的這個外籍駕駛通通是我們努力的方向不過目前並沒有很好的一個結果啦市長這也是有很多矛盾的你說要駕駛年齡延長 不然你現在延長下去我們也沒辦法預見說駕駛年齡延長
transcript.whisperx[9].start 219.451
transcript.whisperx[9].end 234.586
transcript.whisperx[9].text 那後面這一段到底要延長多久延長到66歲67歲這個延長的部分還需要精細的討論因為畢竟不是說直接依照工序來處理有些部分還是要看年齡的部分
transcript.whisperx[10].start 235.646
transcript.whisperx[10].end 251.42
transcript.whisperx[10].text 那第二個是駕駛人的部分我們今天的主題就是智慧運輸跟自動駕駛能否幫助駕駛降低他的壓力以及行車安全所以我們也希望透過智慧運輸智慧公車的提供
transcript.whisperx[11].start 252.641
transcript.whisperx[11].end 271.975
transcript.whisperx[11].text 讓駕駛的壓力降低以後能夠用這個方式來吸引新的駕駛人員來進行當然啦我們期待未來可以有無人載具智慧運輸來取代這樣的一個客運的服務但是我覺得市長還是要去關注到啦在偏鄉本身的公共運輸的能量就很不足那
transcript.whisperx[12].start 272.856
transcript.whisperx[12].end 294.717
transcript.whisperx[12].text 又因為偏鄉然後你再說這個駕駛人數的一個限制的話這個在偏鄉更嚴重所以我們交通部還是要去顧及到很多不同的城鄉落差鎮下所在一萬人我要找個公共運輸就沒有辦法找不到而且本身地方的年輕人也不足他要說叫家人才知道
transcript.whisperx[13].start 296.659
transcript.whisperx[13].end 311.414
transcript.whisperx[13].text 所以為什麼會開始把幸福巴士導入幸福小房的作用大概是這個就是說用計程車來協助非特定路線的公共運輸那第二個我們同仁也在研議
transcript.whisperx[14].start 312.655
transcript.whisperx[14].end 331.181
transcript.whisperx[14].text 有些如果连幸福小房都没有那更偏远的郊区或是山区可不可以开放社会型的服务比如说这个团体协会来参与我们的公共运输服务这个在别的地区是有那目前就是还没有正规化来导入
transcript.whisperx[15].start 332.341
transcript.whisperx[15].end 349.552
transcript.whisperx[15].text 對 既然有方法我覺得就要去嘗試看看了這個大概就是對 記得市長你都講到說可能用一些工協會由他來扮演的適度的運輸的角色市長你要工協會扮演對不對但是你很多配套還是要先給他第一個就是說
transcript.whisperx[16].start 351.066
transcript.whisperx[16].end 371.145
transcript.whisperx[16].text 這個你叫協會去當駕駛他們的車他還是要符合規格但是我跟你說他們很多是會害怕的我之前有遇過一些類似消防的就是要帶老人去長照中間一小段對不對你知道
transcript.whisperx[17].start 372.315
transcript.whisperx[17].end 390.141
transcript.whisperx[17].text 他們駕駛是不敢把老人從車上把他扶到車下他會怕他會怕什麼他怕後續的一些責任問題他沒有受過正當的教育課是啊是啊他就會有這些責任問題所以所以我要說很多時候你們好
transcript.whisperx[18].start 391.161
transcript.whisperx[18].end 416.553
transcript.whisperx[18].text 大方法抓出來那剩下一些配套一些要解套然後一些讓這些駕駛人他們適度的一些責任應該要讓他們有豁免的機會不然他要塞車然後要救整車的老人他也是怕的應該是兩個方面一個就是提升他的職能讓他認識了解他要做的工作那第二個豁免的部分可能要思考怎麼來補強他
transcript.whisperx[19].start 419.375
transcript.whisperx[19].end 441.003
transcript.whisperx[19].text 這部分我想可以再想辦法啦偏鄉地方對於公共運輸的需求我覺得這個交通部你們在思考台灣的發展交通的時候一定要注意到城鄉的差距因為偏鄉的地方看是政府部門應該要顧好好不好謝謝委員好來市長請回那我是不是再請經濟部郭部長郭部長
transcript.whisperx[20].start 449.827
transcript.whisperx[20].end 454.109
transcript.whisperx[20].text 我們來討論一個時事的現在以伊戰爭看起來伊朗國會已經批准要封鎖赫默茲海峽
transcript.whisperx[21].start 463.362
transcript.whisperx[21].end 480.783
transcript.whisperx[21].text 那封鎖了赫默茲海峽大概整個石油從中東的石油大概會斷裂那如果以台灣對台灣的影響來說台灣有超過六成的石油或者也還有兩成以上的天然氣是來自包括沙烏地阿拉伯啦包括科威特包括
transcript.whisperx[22].start 481.543
transcript.whisperx[22].end 505.863
transcript.whisperx[22].text 卡達啦 這樣的一些中東國家所以會產生這樣石油供應的斷鏈跟天然氣那未來勢必可以想像 可能油價會上漲那油價會上漲這件事情兩個直接衝擊 中油跟台塑那部長 我們未來對中油我們因應油價上漲 我們要怎樣的對策嗎
transcript.whisperx[23].start 507.925
transcript.whisperx[23].end 532.243
transcript.whisperx[23].text 報告委員我想油價的部分因為我們還有一個亞林最低價這樣一個部分存在所以我想這個行政院他應該會去考量這部分不是經濟部的業務啦我們是盡量配合這個行政院的這個指示來因應但是我們有做了一些推估大概會漲多少做了一些推估不過經濟部現在關切的是這個20%的油到25%的氣
transcript.whisperx[24].start 536.887
transcript.whisperx[24].end 537.369
transcript.whisperx[24].text 其實那幫人
transcript.whisperx[25].start 539.666
transcript.whisperx[25].end 566.273
transcript.whisperx[25].text 這個供給上面不順利的時候我要怎麼來彌補這個市場的這個需求啦所以我們經濟部現在大部分都在著力於對量的穩定量的穩定啦介紹的部分因為我們有供應量的穩定很重要就是要有一些替代的一些能源的一些來源啦但是部長我現在我想要問這一題我比較想要呼籲的就是說
transcript.whisperx[26].start 567.293
transcript.whisperx[26].end 576.485
transcript.whisperx[26].text 我們中油 畢竟中油是國營事業啦那如果亞林最低價那當然中油就要去吸收要去吸收這一些油價的
transcript.whisperx[27].start 577.708
transcript.whisperx[27].end 598.128
transcript.whisperx[27].text 但是另外一間台塑,台塑面對整個中國的石化業產能過剩所以台塑已經面對很大的衝擊這次的油價如果上漲,對台塑是可以說雪上加霜,更嚴重
transcript.whisperx[28].start 599.529
transcript.whisperx[28].end 613.459
transcript.whisperx[28].text 台塑這間公司這樣經營下去壓力這麼大,勢必會面對台灣很多的就業市場,不然我想你一定知道,很多台灣的員工在台塑上班,你看賣料那裡,現在賣料那裡已經變成一個很大的鄉鎮,你看我們跟台北比較辛苦,
transcript.whisperx[29].start 620.484
transcript.whisperx[29].end 639.847
transcript.whisperx[29].text 那也幾乎都是在台塑或是台塑的關係企業那如果未來台塑跟中油一樣面對油價上漲然後有面對這個油價要吸收成本的這樣的危機的時候雖然它是一些私人企業但是它已經大到我們政府應該要去關心它保證這塊是不是你可以
transcript.whisperx[30].start 641.468
transcript.whisperx[30].end 662.993
transcript.whisperx[30].text 思考一下報告委員我們現在大概就是對油價的目前大概在75塊到85塊這個地方我們還在評估那當然更高的時候我想我們會從這個影響CPI這個物價指數上面來看那根據我們的模型來推論如果油價上漲10%影響CPI大概只有0.3%
transcript.whisperx[31].start 666.654
transcript.whisperx[31].end 684.12
transcript.whisperx[31].text 對於這私人企業因為他大到影響我們會來跟他接觸來尋求跟他做充分的溝通看需要怎樣來倒三缸我的意思是這樣我覺得跟台秀應該對話台秀這間企業已經這麼大這麼多員工在那裡上班所以我們也不想看到台秀有裁員的狀況一個裁員就是很多家庭他少了這樣的一個依靠
transcript.whisperx[32].start 695.583
transcript.whisperx[32].end 714.016
transcript.whisperx[32].text 所以台塑要怎麼讓它可以至少要撐過你說中國的產能過剩再加上這一次以異戰爭可能會面對的一個能源危機這個部分中有需要台塑這也是可能我們國家的台東應該也是要來關心當然我們就是現在台塑是大企業
transcript.whisperx[33].start 715.177
transcript.whisperx[33].end 741.73
transcript.whisperx[33].text 那大企業有大企業的運作模式現在我們經濟部主要還是對中小微企業我們著力比較深啦當然委員現在關注到這個命題我們會回去以後馬上召集我們部裡面的這些同仁來詳細跟這個你們應該思考一下啦所以我也沒辦法有大案啦因為畢竟還是智能企業我可以想像因為在我的選區我好多人都都是台所上班他們都會歡樂
transcript.whisperx[34].start 744.252
transcript.whisperx[34].end 764.506
transcript.whisperx[34].text 這員工在替老闆在擔心啦是是是 這個部分台塑應該是我們會去考量啦就是說基本上還是要反映成本啦我們還是盡量讓他反映成本這個部分我想我們會跟台塑然後我們整體所有的相關的同仁我們會來努力好 謝謝部長好 謝謝