IVOD_ID |
162784 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162784 |
日期 |
2025-06-23 |
會議資料.會議代碼 |
委員會-11-3-19-17 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-23T11:37:55+08:00 |
結束時間 |
2025-06-23T11:50:42+08:00 |
影片長度 |
00:12:47 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b58c4cf52db2e91ab89330fb577eca0ab85017248ed72d8dda6ae3643212cc5f9307f5de316788b35ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蔡易餘 |
委員發言時間 |
11:37:55 - 11:50:42 |
會議時間 |
2025-06-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第17次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員、交通部首長及國家科學及技術委員會首長就「因應高齡化社會,我國智慧公共運具發展及目標」進行報告,並備質詢。【6月23日及6月25日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
14.42534375 |
transcript.pyannote[0].end |
18.08721875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
18.27284375 |
transcript.pyannote[1].end |
19.35284375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
19.55534375 |
transcript.pyannote[2].end |
20.07846875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
21.64784375 |
transcript.pyannote[3].end |
23.16659375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
24.34784375 |
transcript.pyannote[4].end |
24.92159375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
25.56284375 |
transcript.pyannote[5].end |
25.81596875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
26.11971875 |
transcript.pyannote[6].end |
26.81159375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
27.67221875 |
transcript.pyannote[7].end |
27.92534375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
29.03909375 |
transcript.pyannote[8].end |
29.49471875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
30.00096875 |
transcript.pyannote[9].end |
37.57784375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
38.13471875 |
transcript.pyannote[10].end |
42.92721875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
43.18034375 |
transcript.pyannote[11].end |
44.07471875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
44.61471875 |
transcript.pyannote[12].end |
47.19659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
47.78721875 |
transcript.pyannote[13].end |
48.74909375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
49.15409375 |
transcript.pyannote[14].end |
50.75721875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
51.41534375 |
transcript.pyannote[15].end |
63.88596875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
64.10534375 |
transcript.pyannote[16].end |
68.34096875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
68.50971875 |
transcript.pyannote[17].end |
81.04784375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
81.36846875 |
transcript.pyannote[18].end |
83.05596875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
83.12346875 |
transcript.pyannote[19].end |
91.27409375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
91.78034375 |
transcript.pyannote[20].end |
95.32409375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
95.81346875 |
transcript.pyannote[21].end |
97.78784375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
98.20971875 |
transcript.pyannote[22].end |
104.14971875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
104.45346875 |
transcript.pyannote[23].end |
108.67221875 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
108.75659375 |
transcript.pyannote[24].end |
125.56409375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
125.91846875 |
transcript.pyannote[25].end |
131.03159375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
125.96909375 |
transcript.pyannote[26].end |
126.96471875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
131.33534375 |
transcript.pyannote[27].end |
133.27596875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
133.27596875 |
transcript.pyannote[28].end |
133.71471875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
133.64721875 |
transcript.pyannote[29].end |
144.26159375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
137.56221875 |
transcript.pyannote[30].end |
139.92471875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
144.48096875 |
transcript.pyannote[31].end |
149.49284375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
149.62784375 |
transcript.pyannote[32].end |
151.82159375 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
152.10846875 |
transcript.pyannote[33].end |
155.46659375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
152.61471875 |
transcript.pyannote[34].end |
153.12096875 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
156.14159375 |
transcript.pyannote[35].end |
157.18784375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
156.19221875 |
transcript.pyannote[36].end |
165.15284375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
157.33971875 |
transcript.pyannote[37].end |
158.99346875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
159.11159375 |
transcript.pyannote[38].end |
159.12846875 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
159.28034375 |
transcript.pyannote[39].end |
159.63471875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
165.81096875 |
transcript.pyannote[40].end |
168.07221875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
168.07221875 |
transcript.pyannote[41].end |
168.46034375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
168.13971875 |
transcript.pyannote[42].end |
173.05034375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
173.43846875 |
transcript.pyannote[43].end |
174.92346875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
175.04159375 |
transcript.pyannote[44].end |
178.80471875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
179.12534375 |
transcript.pyannote[45].end |
183.34409375 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
183.46221875 |
transcript.pyannote[46].end |
184.76159375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
184.99784375 |
transcript.pyannote[47].end |
193.65471875 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
194.24534375 |
transcript.pyannote[48].end |
194.95409375 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
195.40971875 |
transcript.pyannote[49].end |
195.94971875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
196.35471875 |
transcript.pyannote[50].end |
206.19284375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
204.10034375 |
transcript.pyannote[51].end |
209.50034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
209.63534375 |
transcript.pyannote[52].end |
211.76159375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
212.23409375 |
transcript.pyannote[53].end |
214.47846875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
214.90034375 |
transcript.pyannote[54].end |
218.76471875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
219.38909375 |
transcript.pyannote[55].end |
222.32534375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
222.35909375 |
transcript.pyannote[56].end |
222.37596875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
222.37596875 |
transcript.pyannote[57].end |
224.11409375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
223.03409375 |
transcript.pyannote[58].end |
223.05096875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
223.16909375 |
transcript.pyannote[59].end |
225.80159375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
224.95784375 |
transcript.pyannote[60].end |
235.11659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
228.31596875 |
transcript.pyannote[61].end |
228.63659375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
231.65721875 |
transcript.pyannote[62].end |
232.21409375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
235.55534375 |
transcript.pyannote[63].end |
245.86596875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
245.98409375 |
transcript.pyannote[64].end |
247.38471875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
247.70534375 |
transcript.pyannote[65].end |
251.68784375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
252.02534375 |
transcript.pyannote[66].end |
256.95284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
256.95284375 |
transcript.pyannote[67].end |
272.46096875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
260.56409375 |
transcript.pyannote[68].end |
260.58096875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
260.93534375 |
transcript.pyannote[69].end |
261.27284375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
271.83659375 |
transcript.pyannote[70].end |
271.87034375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
272.73096875 |
transcript.pyannote[71].end |
280.49346875 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
280.54409375 |
transcript.pyannote[72].end |
280.88159375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
280.79721875 |
transcript.pyannote[73].end |
286.28159375 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
282.60284375 |
transcript.pyannote[74].end |
282.87284375 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
286.09596875 |
transcript.pyannote[75].end |
286.43346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
286.41659375 |
transcript.pyannote[76].end |
298.56659375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
291.19221875 |
transcript.pyannote[77].end |
291.58034375 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
291.85034375 |
transcript.pyannote[78].end |
292.64346875 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
298.09409375 |
transcript.pyannote[79].end |
305.68784375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
299.03909375 |
transcript.pyannote[80].end |
299.61284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
303.86534375 |
transcript.pyannote[81].end |
304.30409375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
305.82284375 |
transcript.pyannote[82].end |
320.53784375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
320.94284375 |
transcript.pyannote[83].end |
321.66846875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
321.78659375 |
transcript.pyannote[84].end |
324.33471875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
324.55409375 |
transcript.pyannote[85].end |
326.73096875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
326.98409375 |
transcript.pyannote[86].end |
328.55346875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
328.90784375 |
transcript.pyannote[87].end |
331.35471875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
331.86096875 |
transcript.pyannote[88].end |
336.14721875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
335.50596875 |
transcript.pyannote[89].end |
337.36221875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
336.78846875 |
transcript.pyannote[90].end |
349.98471875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
343.90971875 |
transcript.pyannote[91].end |
343.94346875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
343.94346875 |
transcript.pyannote[92].end |
344.02784375 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
344.02784375 |
transcript.pyannote[93].end |
344.06159375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
344.06159375 |
transcript.pyannote[94].end |
344.17971875 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
348.49971875 |
transcript.pyannote[95].end |
349.30971875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
350.57534375 |
transcript.pyannote[96].end |
354.16971875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
354.40596875 |
transcript.pyannote[97].end |
354.42284375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
354.42284375 |
transcript.pyannote[98].end |
354.43971875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
354.43971875 |
transcript.pyannote[99].end |
354.45659375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
354.45659375 |
transcript.pyannote[100].end |
354.96284375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
354.96284375 |
transcript.pyannote[101].end |
355.41846875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
354.97971875 |
transcript.pyannote[102].end |
356.14409375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
356.14409375 |
transcript.pyannote[103].end |
363.11346875 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
356.86971875 |
transcript.pyannote[104].end |
357.35909375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
363.28221875 |
transcript.pyannote[105].end |
371.41596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
372.25971875 |
transcript.pyannote[106].end |
373.93034375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
374.43659375 |
transcript.pyannote[107].end |
382.50284375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
382.63784375 |
transcript.pyannote[108].end |
387.51471875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
385.28721875 |
transcript.pyannote[109].end |
390.58596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
391.07534375 |
transcript.pyannote[110].end |
398.44971875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
398.60159375 |
transcript.pyannote[111].end |
406.63409375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
406.17846875 |
transcript.pyannote[112].end |
418.24409375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
408.05159375 |
transcript.pyannote[113].end |
408.54096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
410.71784375 |
transcript.pyannote[114].end |
410.95409375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
412.62471875 |
transcript.pyannote[115].end |
412.67534375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
418.24409375 |
transcript.pyannote[116].end |
418.73346875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
418.73346875 |
transcript.pyannote[117].end |
420.69096875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
418.75034375 |
transcript.pyannote[118].end |
435.59159375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
424.01534375 |
transcript.pyannote[119].end |
425.02784375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
432.31784375 |
transcript.pyannote[120].end |
433.06034375 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
435.79409375 |
transcript.pyannote[121].end |
435.81096875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
435.81096875 |
transcript.pyannote[122].end |
439.52346875 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
437.27909375 |
transcript.pyannote[123].end |
437.97096875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
438.54471875 |
transcript.pyannote[124].end |
439.33784375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
439.77659375 |
transcript.pyannote[125].end |
441.26159375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
441.78471875 |
transcript.pyannote[126].end |
442.20659375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
449.80034375 |
transcript.pyannote[127].end |
450.23909375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
450.45846875 |
transcript.pyannote[128].end |
451.11659375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
451.30221875 |
transcript.pyannote[129].end |
453.25971875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
453.74909375 |
transcript.pyannote[130].end |
455.33534375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
455.99346875 |
transcript.pyannote[131].end |
458.77784375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
459.08159375 |
transcript.pyannote[132].end |
460.83659375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
461.52846875 |
transcript.pyannote[133].end |
462.62534375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
463.28346875 |
transcript.pyannote[134].end |
494.78909375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
495.44721875 |
transcript.pyannote[135].end |
497.77596875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
498.21471875 |
transcript.pyannote[136].end |
499.29471875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
499.91909375 |
transcript.pyannote[137].end |
500.30721875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
500.79659375 |
transcript.pyannote[138].end |
503.26034375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
503.90159375 |
transcript.pyannote[139].end |
506.97284375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
506.97284375 |
transcript.pyannote[140].end |
507.14159375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
507.76596875 |
transcript.pyannote[141].end |
531.74534375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
511.74846875 |
transcript.pyannote[142].end |
512.52471875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
531.89721875 |
transcript.pyannote[143].end |
532.52159375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
532.94346875 |
transcript.pyannote[144].end |
536.25096875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
536.79096875 |
transcript.pyannote[145].end |
538.00596875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
538.73159375 |
transcript.pyannote[146].end |
558.22221875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
555.70784375 |
transcript.pyannote[147].end |
566.81159375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
561.64784375 |
transcript.pyannote[148].end |
562.67721875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
567.19971875 |
transcript.pyannote[149].end |
574.05096875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
574.15221875 |
transcript.pyannote[150].end |
574.48971875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
574.43909375 |
transcript.pyannote[151].end |
576.93659375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
577.69596875 |
transcript.pyannote[152].end |
579.46784375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
579.90659375 |
transcript.pyannote[153].end |
580.24409375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
580.59846875 |
transcript.pyannote[154].end |
595.12784375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
595.92096875 |
transcript.pyannote[155].end |
598.72221875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
599.29596875 |
transcript.pyannote[156].end |
601.60784375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
601.99596875 |
transcript.pyannote[157].end |
613.85909375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
614.28096875 |
transcript.pyannote[158].end |
619.64721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
619.90034375 |
transcript.pyannote[159].end |
631.84784375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
632.47221875 |
transcript.pyannote[160].end |
637.41659375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
638.10846875 |
transcript.pyannote[161].end |
640.03221875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
641.39909375 |
transcript.pyannote[162].end |
641.97284375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
641.97284375 |
transcript.pyannote[163].end |
665.44596875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
665.83409375 |
transcript.pyannote[164].end |
677.51159375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
676.39784375 |
transcript.pyannote[165].end |
676.80284375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
677.51159375 |
transcript.pyannote[166].end |
698.06534375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
677.52846875 |
transcript.pyannote[167].end |
678.11909375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
681.19034375 |
transcript.pyannote[168].end |
682.96221875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
684.43034375 |
transcript.pyannote[169].end |
684.81846875 |
transcript.pyannote[170].speaker |
SPEAKER_02 |
transcript.pyannote[170].start |
690.64034375 |
transcript.pyannote[170].end |
690.97784375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
690.97784375 |
transcript.pyannote[171].end |
691.01159375 |
transcript.pyannote[172].speaker |
SPEAKER_02 |
transcript.pyannote[172].start |
693.28971875 |
transcript.pyannote[172].end |
693.96471875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
693.96471875 |
transcript.pyannote[173].end |
694.60596875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
698.53784375 |
transcript.pyannote[174].end |
704.84909375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
705.30471875 |
transcript.pyannote[175].end |
711.34596875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
708.17346875 |
transcript.pyannote[176].end |
709.01721875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
710.40096875 |
transcript.pyannote[177].end |
733.75596875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
731.51159375 |
transcript.pyannote[178].end |
740.01659375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
734.09346875 |
transcript.pyannote[179].end |
735.10596875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
735.39284375 |
transcript.pyannote[180].end |
736.38846875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
740.40471875 |
transcript.pyannote[181].end |
742.63221875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
743.50971875 |
transcript.pyannote[182].end |
748.18409375 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
747.67784375 |
transcript.pyannote[183].end |
764.08034375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
751.87971875 |
transcript.pyannote[184].end |
751.96409375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
764.08034375 |
transcript.pyannote[185].end |
766.00409375 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
764.62034375 |
transcript.pyannote[186].end |
765.58221875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
766.29096875 |
transcript.pyannote[187].end |
767.35409375 |
transcript.whisperx[0].start |
14.448 |
transcript.whisperx[0].end |
29.169 |
transcript.whisperx[0].text |
好謝謝主席那我們是不是先請交通部次長林次長林次長和公路局副局長副局長蔡委員長好次長 |
transcript.whisperx[1].start |
30.066 |
transcript.whisperx[1].end |
50.437 |
transcript.whisperx[1].text |
那因為今天我們昭偉在關心的關於說這個老齡化他去使用的這個客運的問題那事實上我們也知道像是很多偏鄉也不用說到完全偏鄉像現在我們嘉義縣嘉義縣大概晚上之後幾乎就沒有客運了 |
transcript.whisperx[2].start |
51.557 |
transcript.whisperx[2].end |
79.178 |
transcript.whisperx[2].text |
完全過去的客運功能完全已經沒了就是說不管是到台北啦高雄啦大家都覺得說哇這個投報率來越低可能承載的人數也少那就變得說沒有就沒有這樣的一個客運服務了那我想要請教次長那因為這種有一點是因為市場導向的然後造成了這個客運的終止那這樣的情況站在交通部的立場你們是樂見嗎還是你們覺得 |
transcript.whisperx[3].start |
81.48 |
transcript.whisperx[3].end |
96.681 |
transcript.whisperx[3].text |
就讓它市場下去包園當然不樂見我們不樂見公共運輸退場的這麼快但是現在的狀況是可能委員也知道我們在疫情期間也很多私人運具是有註冊或購買 |
transcript.whisperx[4].start |
98.263 |
transcript.whisperx[4].end |
125.313 |
transcript.whisperx[4].text |
那有一部分的使用者在那段時間是轉到私人運區去那第二個呢是我們也曾經注意到客運車的駕駛相對壓力比較大因為他會面臨乘客的抱怨或是路線比較長疲勞駕駛的問題甚至剛剛游委員也提到他可能會有用餐上廁所的一些壓力所以這些課題如果不能夠逐步來處理大概公路駕駛會不太容易找得到 |
transcript.whisperx[5].start |
126.193 |
transcript.whisperx[5].end |
154.535 |
transcript.whisperx[5].text |
對因為你剛講到有所謂的私人的一個運具但是他畢竟他是不是很大客群他是懂得去使用這個私人運具的人他才有辦法尤其是在這種跑長城的比方我就是說如果從嘉義要到台北我晚上在趕不上最後一班的高鐵十點半的高鐵我趕不上了那我有其他選擇嗎好像沒有除了自用車以外就是轎車了 |
transcript.whisperx[6].start |
157.45 |
transcript.whisperx[6].end |
171.221 |
transcript.whisperx[6].text |
但是客運這一塊就沒了所以市長你說你不樂見那交通部要提出怎樣的替代方式去延長這些客運的壽命也好還是他們能夠繼續提供服務 |
transcript.whisperx[7].start |
173.933 |
transcript.whisperx[7].end |
192.925 |
transcript.whisperx[7].text |
跟委員報告這個全世界可能都面臨一樣的問題一個缺工第二個是這個駕駛人在超過65歲以上的時候其實有些駕駛他還有一定的能力像計程車的部分我們就放得比較寬那所以有關是否把駕駛年齡延長第二個是否能找到更多的駕駛來源 |
transcript.whisperx[8].start |
195.447 |
transcript.whisperx[8].end |
206.674 |
transcript.whisperx[8].text |
包含我們前一陣子討論的這個外籍駕駛通通是我們努力的方向不過目前並沒有很好的一個結果啦市長這也是有很多矛盾的你說要駕駛年齡延長 不然你現在延長下去我們也沒辦法預見說駕駛年齡延長 |
transcript.whisperx[9].start |
219.451 |
transcript.whisperx[9].end |
234.586 |
transcript.whisperx[9].text |
那後面這一段到底要延長多久延長到66歲67歲這個延長的部分還需要精細的討論因為畢竟不是說直接依照工序來處理有些部分還是要看年齡的部分 |
transcript.whisperx[10].start |
235.646 |
transcript.whisperx[10].end |
251.42 |
transcript.whisperx[10].text |
那第二個是駕駛人的部分我們今天的主題就是智慧運輸跟自動駕駛能否幫助駕駛降低他的壓力以及行車安全所以我們也希望透過智慧運輸智慧公車的提供 |
transcript.whisperx[11].start |
252.641 |
transcript.whisperx[11].end |
271.975 |
transcript.whisperx[11].text |
讓駕駛的壓力降低以後能夠用這個方式來吸引新的駕駛人員來進行當然啦我們期待未來可以有無人載具智慧運輸來取代這樣的一個客運的服務但是我覺得市長還是要去關注到啦在偏鄉本身的公共運輸的能量就很不足那 |
transcript.whisperx[12].start |
272.856 |
transcript.whisperx[12].end |
294.717 |
transcript.whisperx[12].text |
又因為偏鄉然後你再說這個駕駛人數的一個限制的話這個在偏鄉更嚴重所以我們交通部還是要去顧及到很多不同的城鄉落差鎮下所在一萬人我要找個公共運輸就沒有辦法找不到而且本身地方的年輕人也不足他要說叫家人才知道 |
transcript.whisperx[13].start |
296.659 |
transcript.whisperx[13].end |
311.414 |
transcript.whisperx[13].text |
所以為什麼會開始把幸福巴士導入幸福小房的作用大概是這個就是說用計程車來協助非特定路線的公共運輸那第二個我們同仁也在研議 |
transcript.whisperx[14].start |
312.655 |
transcript.whisperx[14].end |
331.181 |
transcript.whisperx[14].text |
有些如果连幸福小房都没有那更偏远的郊区或是山区可不可以开放社会型的服务比如说这个团体协会来参与我们的公共运输服务这个在别的地区是有那目前就是还没有正规化来导入 |
transcript.whisperx[15].start |
332.341 |
transcript.whisperx[15].end |
349.552 |
transcript.whisperx[15].text |
對 既然有方法我覺得就要去嘗試看看了這個大概就是對 記得市長你都講到說可能用一些工協會由他來扮演的適度的運輸的角色市長你要工協會扮演對不對但是你很多配套還是要先給他第一個就是說 |
transcript.whisperx[16].start |
351.066 |
transcript.whisperx[16].end |
371.145 |
transcript.whisperx[16].text |
這個你叫協會去當駕駛他們的車他還是要符合規格但是我跟你說他們很多是會害怕的我之前有遇過一些類似消防的就是要帶老人去長照中間一小段對不對你知道 |
transcript.whisperx[17].start |
372.315 |
transcript.whisperx[17].end |
390.141 |
transcript.whisperx[17].text |
他們駕駛是不敢把老人從車上把他扶到車下他會怕他會怕什麼他怕後續的一些責任問題他沒有受過正當的教育課是啊是啊他就會有這些責任問題所以所以我要說很多時候你們好 |
transcript.whisperx[18].start |
391.161 |
transcript.whisperx[18].end |
416.553 |
transcript.whisperx[18].text |
大方法抓出來那剩下一些配套一些要解套然後一些讓這些駕駛人他們適度的一些責任應該要讓他們有豁免的機會不然他要塞車然後要救整車的老人他也是怕的應該是兩個方面一個就是提升他的職能讓他認識了解他要做的工作那第二個豁免的部分可能要思考怎麼來補強他 |
transcript.whisperx[19].start |
419.375 |
transcript.whisperx[19].end |
441.003 |
transcript.whisperx[19].text |
這部分我想可以再想辦法啦偏鄉地方對於公共運輸的需求我覺得這個交通部你們在思考台灣的發展交通的時候一定要注意到城鄉的差距因為偏鄉的地方看是政府部門應該要顧好好不好謝謝委員好來市長請回那我是不是再請經濟部郭部長郭部長 |
transcript.whisperx[20].start |
449.827 |
transcript.whisperx[20].end |
454.109 |
transcript.whisperx[20].text |
我們來討論一個時事的現在以伊戰爭看起來伊朗國會已經批准要封鎖赫默茲海峽 |
transcript.whisperx[21].start |
463.362 |
transcript.whisperx[21].end |
480.783 |
transcript.whisperx[21].text |
那封鎖了赫默茲海峽大概整個石油從中東的石油大概會斷裂那如果以台灣對台灣的影響來說台灣有超過六成的石油或者也還有兩成以上的天然氣是來自包括沙烏地阿拉伯啦包括科威特包括 |
transcript.whisperx[22].start |
481.543 |
transcript.whisperx[22].end |
505.863 |
transcript.whisperx[22].text |
卡達啦 這樣的一些中東國家所以會產生這樣石油供應的斷鏈跟天然氣那未來勢必可以想像 可能油價會上漲那油價會上漲這件事情兩個直接衝擊 中油跟台塑那部長 我們未來對中油我們因應油價上漲 我們要怎樣的對策嗎 |
transcript.whisperx[23].start |
507.925 |
transcript.whisperx[23].end |
532.243 |
transcript.whisperx[23].text |
報告委員我想油價的部分因為我們還有一個亞林最低價這樣一個部分存在所以我想這個行政院他應該會去考量這部分不是經濟部的業務啦我們是盡量配合這個行政院的這個指示來因應但是我們有做了一些推估大概會漲多少做了一些推估不過經濟部現在關切的是這個20%的油到25%的氣 |
transcript.whisperx[24].start |
536.887 |
transcript.whisperx[24].end |
537.369 |
transcript.whisperx[24].text |
其實那幫人 |
transcript.whisperx[25].start |
539.666 |
transcript.whisperx[25].end |
566.273 |
transcript.whisperx[25].text |
這個供給上面不順利的時候我要怎麼來彌補這個市場的這個需求啦所以我們經濟部現在大部分都在著力於對量的穩定量的穩定啦介紹的部分因為我們有供應量的穩定很重要就是要有一些替代的一些能源的一些來源啦但是部長我現在我想要問這一題我比較想要呼籲的就是說 |
transcript.whisperx[26].start |
567.293 |
transcript.whisperx[26].end |
576.485 |
transcript.whisperx[26].text |
我們中油 畢竟中油是國營事業啦那如果亞林最低價那當然中油就要去吸收要去吸收這一些油價的 |
transcript.whisperx[27].start |
577.708 |
transcript.whisperx[27].end |
598.128 |
transcript.whisperx[27].text |
但是另外一間台塑,台塑面對整個中國的石化業產能過剩所以台塑已經面對很大的衝擊這次的油價如果上漲,對台塑是可以說雪上加霜,更嚴重 |
transcript.whisperx[28].start |
599.529 |
transcript.whisperx[28].end |
613.459 |
transcript.whisperx[28].text |
台塑這間公司這樣經營下去壓力這麼大,勢必會面對台灣很多的就業市場,不然我想你一定知道,很多台灣的員工在台塑上班,你看賣料那裡,現在賣料那裡已經變成一個很大的鄉鎮,你看我們跟台北比較辛苦, |
transcript.whisperx[29].start |
620.484 |
transcript.whisperx[29].end |
639.847 |
transcript.whisperx[29].text |
那也幾乎都是在台塑或是台塑的關係企業那如果未來台塑跟中油一樣面對油價上漲然後有面對這個油價要吸收成本的這樣的危機的時候雖然它是一些私人企業但是它已經大到我們政府應該要去關心它保證這塊是不是你可以 |
transcript.whisperx[30].start |
641.468 |
transcript.whisperx[30].end |
662.993 |
transcript.whisperx[30].text |
思考一下報告委員我們現在大概就是對油價的目前大概在75塊到85塊這個地方我們還在評估那當然更高的時候我想我們會從這個影響CPI這個物價指數上面來看那根據我們的模型來推論如果油價上漲10%影響CPI大概只有0.3% |
transcript.whisperx[31].start |
666.654 |
transcript.whisperx[31].end |
684.12 |
transcript.whisperx[31].text |
對於這私人企業因為他大到影響我們會來跟他接觸來尋求跟他做充分的溝通看需要怎樣來倒三缸我的意思是這樣我覺得跟台秀應該對話台秀這間企業已經這麼大這麼多員工在那裡上班所以我們也不想看到台秀有裁員的狀況一個裁員就是很多家庭他少了這樣的一個依靠 |
transcript.whisperx[32].start |
695.583 |
transcript.whisperx[32].end |
714.016 |
transcript.whisperx[32].text |
所以台塑要怎麼讓它可以至少要撐過你說中國的產能過剩再加上這一次以異戰爭可能會面對的一個能源危機這個部分中有需要台塑這也是可能我們國家的台東應該也是要來關心當然我們就是現在台塑是大企業 |
transcript.whisperx[33].start |
715.177 |
transcript.whisperx[33].end |
741.73 |
transcript.whisperx[33].text |
那大企業有大企業的運作模式現在我們經濟部主要還是對中小微企業我們著力比較深啦當然委員現在關注到這個命題我們會回去以後馬上召集我們部裡面的這些同仁來詳細跟這個你們應該思考一下啦所以我也沒辦法有大案啦因為畢竟還是智能企業我可以想像因為在我的選區我好多人都都是台所上班他們都會歡樂 |
transcript.whisperx[34].start |
744.252 |
transcript.whisperx[34].end |
764.506 |
transcript.whisperx[34].text |
這員工在替老闆在擔心啦是是是 這個部分台塑應該是我們會去考量啦就是說基本上還是要反映成本啦我們還是盡量讓他反映成本這個部分我想我們會跟台塑然後我們整體所有的相關的同仁我們會來努力好 謝謝部長好 謝謝 |