iVOD / 162675

Field Value
IVOD_ID 162675
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162675
日期 2025-06-18
會議資料.會議代碼 聯席會議-11-3-19,26,22-1
會議資料.會議代碼:str 第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 19
會議資料.委員會代碼[1] 26
會議資料.委員會代碼[2] 22
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.委員會代碼:str[1] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[2] 教育及文化委員會
會議資料.標題 第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議
影片種類 Clip
開始時間 2025-06-18T14:32:24+08:00
結束時間 2025-06-18T14:41:54+08:00
影片長度 00:09:30
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552aa9fe9d5cd266aeec5c8a36db9e18c27b944e3ca7709b1a2fb604f0d634e96aee5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡易餘
委員發言時間 14:32:24 - 14:41:54
會議時間 2025-06-18T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議(事由:審查: 一、行政院函請審議「外國專業人才延攬及僱用法修正草案」案。 二、本院委員何欣純等19人擬具「外國專業人才延攬及僱用法第十二條及第十四條條文修正草案」案。 三、本院委員陳亭妃等16人擬具「外國專業人才延攬及僱用法第四條、第六條及第十四條條文修正草案」案。 四、本院委員蔡易餘等17人擬具「外國專業人才延攬及僱用法修正草案」案。 五、本院委員羅美玲等16人擬具「外國專業人才延攬及僱用法修正草案」案。(詢答) (第一案如未接獲議事處來函則不予審查。))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.34284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 11.79284375
transcript.pyannote[1].end 14.99909375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 15.20159375
transcript.pyannote[2].end 19.03221875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 19.99409375
transcript.pyannote[3].end 22.23846875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 23.41971875
transcript.pyannote[4].end 24.19596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 24.66846875
transcript.pyannote[5].end 26.37284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 28.12784375
transcript.pyannote[6].end 29.12346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 30.03471875
transcript.pyannote[7].end 32.70096875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 33.13971875
transcript.pyannote[8].end 34.01721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 34.01721875
transcript.pyannote[9].end 34.06784375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 34.75971875
transcript.pyannote[10].end 34.96221875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 34.96221875
transcript.pyannote[11].end 35.72159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 35.09721875
transcript.pyannote[12].end 35.13096875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 35.14784375
transcript.pyannote[13].end 35.19846875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 35.19846875
transcript.pyannote[14].end 35.40096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 35.40096875
transcript.pyannote[15].end 35.50221875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 35.87346875
transcript.pyannote[16].end 36.22784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 37.35846875
transcript.pyannote[17].end 40.07534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 41.30721875
transcript.pyannote[18].end 46.13346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 46.33596875
transcript.pyannote[19].end 48.27659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 48.58034375
transcript.pyannote[20].end 54.57096875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 54.03096875
transcript.pyannote[21].end 55.26284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 54.84096875
transcript.pyannote[22].end 70.38284375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 58.11471875
transcript.pyannote[23].end 58.33409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 64.51034375
transcript.pyannote[24].end 64.83096875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 66.60284375
transcript.pyannote[25].end 67.27784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 67.39596875
transcript.pyannote[26].end 67.76721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 70.68659375
transcript.pyannote[27].end 77.60534375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 77.60534375
transcript.pyannote[28].end 77.95971875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 77.95971875
transcript.pyannote[29].end 90.34596875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 90.75096875
transcript.pyannote[30].end 92.35409375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 92.69159375
transcript.pyannote[31].end 105.71909375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 107.40659375
transcript.pyannote[32].end 114.84846875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 115.11846875
transcript.pyannote[33].end 116.62034375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 116.82284375
transcript.pyannote[34].end 118.27409375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 118.62846875
transcript.pyannote[35].end 119.91096875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 120.40034375
transcript.pyannote[36].end 121.02471875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 120.43409375
transcript.pyannote[37].end 120.92346875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 121.02471875
transcript.pyannote[38].end 122.02034375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 121.34534375
transcript.pyannote[39].end 128.71971875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 128.71971875
transcript.pyannote[40].end 130.86284375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 128.80409375
transcript.pyannote[41].end 131.18346875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 131.18346875
transcript.pyannote[42].end 141.05534375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 141.46034375
transcript.pyannote[43].end 146.52284375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 146.52284375
transcript.pyannote[44].end 146.97846875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 146.77596875
transcript.pyannote[45].end 149.20596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 149.84721875
transcript.pyannote[46].end 154.30221875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 154.30221875
transcript.pyannote[47].end 154.55534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 154.55534375
transcript.pyannote[48].end 154.60596875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 154.87596875
transcript.pyannote[49].end 162.28409375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 162.68909375
transcript.pyannote[50].end 170.19846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 170.72159375
transcript.pyannote[51].end 174.21471875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 174.50159375
transcript.pyannote[52].end 177.57284375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 178.55159375
transcript.pyannote[53].end 183.05721875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 183.64784375
transcript.pyannote[54].end 188.28846875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 189.16596875
transcript.pyannote[55].end 192.11909375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 192.45659375
transcript.pyannote[56].end 196.75971875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 197.48534375
transcript.pyannote[57].end 200.42159375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 202.46346875
transcript.pyannote[58].end 202.96971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 202.96971875
transcript.pyannote[59].end 205.83846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 206.12534375
transcript.pyannote[60].end 207.08721875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 207.66096875
transcript.pyannote[61].end 211.03596875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 211.50846875
transcript.pyannote[62].end 212.80784375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 213.39846875
transcript.pyannote[63].end 215.38971875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 215.38971875
transcript.pyannote[64].end 215.44034375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 216.09846875
transcript.pyannote[65].end 222.86534375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 223.42221875
transcript.pyannote[66].end 231.97784375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 232.41659375
transcript.pyannote[67].end 233.24346875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 233.34471875
transcript.pyannote[68].end 241.03971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 238.49159375
transcript.pyannote[69].end 238.57596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 238.57596875
transcript.pyannote[70].end 238.96409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 238.96409375
transcript.pyannote[71].end 239.06534375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 239.97659375
transcript.pyannote[72].end 240.02721875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 240.02721875
transcript.pyannote[73].end 240.75284375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 241.83284375
transcript.pyannote[74].end 246.55784375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 245.05596875
transcript.pyannote[75].end 245.51159375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 246.55784375
transcript.pyannote[76].end 246.70971875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 246.72659375
transcript.pyannote[77].end 248.27909375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 248.66721875
transcript.pyannote[78].end 251.24909375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 251.70471875
transcript.pyannote[79].end 252.44721875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 253.13909375
transcript.pyannote[80].end 258.67409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 259.65284375
transcript.pyannote[81].end 262.62284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 262.87596875
transcript.pyannote[82].end 267.29721875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 267.58409375
transcript.pyannote[83].end 272.86596875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 273.25409375
transcript.pyannote[84].end 274.78971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 275.29596875
transcript.pyannote[85].end 277.77659375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 278.02971875
transcript.pyannote[86].end 281.92784375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 282.38346875
transcript.pyannote[87].end 303.02159375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 303.15659375
transcript.pyannote[88].end 308.13471875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 308.92784375
transcript.pyannote[89].end 317.04471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 309.02909375
transcript.pyannote[90].end 309.24846875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 317.50034375
transcript.pyannote[91].end 321.82034375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 322.25909375
transcript.pyannote[92].end 327.65909375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 327.99659375
transcript.pyannote[93].end 332.95784375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 333.32909375
transcript.pyannote[94].end 337.85159375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 338.32409375
transcript.pyannote[95].end 340.66971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 342.01971875
transcript.pyannote[96].end 344.61846875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 345.37784375
transcript.pyannote[97].end 346.12034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 346.32284375
transcript.pyannote[98].end 348.76971875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 349.03971875
transcript.pyannote[99].end 350.47409375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 351.16596875
transcript.pyannote[100].end 354.52409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 354.89534375
transcript.pyannote[101].end 357.08909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 357.57846875
transcript.pyannote[102].end 365.18909375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 366.21846875
transcript.pyannote[103].end 367.06221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 367.45034375
transcript.pyannote[104].end 370.13346875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 370.85909375
transcript.pyannote[105].end 373.60971875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 374.84159375
transcript.pyannote[106].end 377.96346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 378.58784375
transcript.pyannote[107].end 380.78159375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 381.18659375
transcript.pyannote[108].end 383.41409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 383.65034375
transcript.pyannote[109].end 386.53596875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 387.46409375
transcript.pyannote[110].end 397.79159375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 398.36534375
transcript.pyannote[111].end 399.93471875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 400.18784375
transcript.pyannote[112].end 404.99721875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 406.16159375
transcript.pyannote[113].end 413.28284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 413.60346875
transcript.pyannote[114].end 415.51034375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 415.62846875
transcript.pyannote[115].end 420.91034375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 421.31534375
transcript.pyannote[116].end 423.27284375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 424.15034375
transcript.pyannote[117].end 433.90409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 434.37659375
transcript.pyannote[118].end 435.84471875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 436.26659375
transcript.pyannote[119].end 438.19034375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 438.64596875
transcript.pyannote[120].end 440.14784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 440.43471875
transcript.pyannote[121].end 443.13471875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 443.60721875
transcript.pyannote[122].end 446.98221875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 447.72471875
transcript.pyannote[123].end 460.78596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 463.33409375
transcript.pyannote[124].end 500.96534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 501.37034375
transcript.pyannote[125].end 502.19721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 502.65284375
transcript.pyannote[126].end 511.78221875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 512.28846875
transcript.pyannote[127].end 517.06409375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 517.70534375
transcript.pyannote[128].end 521.75534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 522.48096875
transcript.pyannote[129].end 524.01659375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 525.24846875
transcript.pyannote[130].end 526.36221875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 527.07096875
transcript.pyannote[131].end 529.85534375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 530.34471875
transcript.pyannote[132].end 530.78346875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 531.49221875
transcript.pyannote[133].end 535.54221875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 535.89659375
transcript.pyannote[134].end 545.63346875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 546.05534375
transcript.pyannote[135].end 549.71721875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 550.44284375
transcript.pyannote[136].end 553.36221875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 553.44659375
transcript.pyannote[137].end 554.27346875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 554.54346875
transcript.pyannote[138].end 557.34471875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 557.54721875
transcript.pyannote[139].end 561.96846875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 562.08659375
transcript.pyannote[140].end 563.09909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 563.25096875
transcript.pyannote[141].end 563.75721875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 563.97659375
transcript.pyannote[142].end 566.17034375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 565.46159375
transcript.pyannote[143].end 565.95096875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 568.54971875
transcript.pyannote[144].end 569.96721875
transcript.whisperx[0].start 0.449
transcript.whisperx[0].end 17.654
transcript.whisperx[0].text 麻煩蔡議員發言好謝謝主席我們是不是有請國發會我們組委跟我們勞動部勞動部的這個跨國勞動力管理組組長
transcript.whisperx[1].start 30.203
transcript.whisperx[1].end 58.552
transcript.whisperx[1].text 那就請劉委員還有組長發這個位置蔡委員好主委那上午大概也是都在聽美國委員的詢答那也有講到了很多金卡的問題那我想要請教主委那相關於這樣的就業金卡目前差不多有一萬兩千多一萬三千多那去年增加了三千那看起來
transcript.whisperx[2].start 59.232
transcript.whisperx[2].end 77.446
transcript.whisperx[2].text 人數最多是美國然後後來是香港然後日本也是很多那我們再來看另外一個數據另外一個數據就是離開的人數離開的人數對應的當然美國也是最多那香港也是多的
transcript.whisperx[3].start 78.906
transcript.whisperx[3].end 105.562
transcript.whisperx[3].text 但是我其中觀察到幾個數字第一個就是說看起來東南亞國家包括印度他們來的人數雖然不多但是他離開的人數是相對就比較多所以是不是變得說以台灣現在的環境對於這些東南亞的人士這一些專業的人才東南亞來的反而他在台灣是留不住的那是不是環境的因素讓他們不會想留在台灣呢
transcript.whisperx[4].start 107.575
transcript.whisperx[4].end 129.883
transcript.whisperx[4].text 我們有進行過普查那大概還是在生活環境上面還有待加強讓就是他需要更方便的英語環境因為他有語言的問題一個是語言上的障礙所以造成他包括小孩的就學也好包括生活變異性對 這早上我都有聽到不過我比較好奇的是你看像美國啦
transcript.whisperx[5].start 133.024
transcript.whisperx[5].end 148.138
transcript.whisperx[5].text 美國大概來的人數跟離開的人數我看起來就差不多在三分之一來了三千多人然後來離開了一千多人相對比例比較低的是日本日本大概是在五分之一左右可是日本留下來的機會比較高
transcript.whisperx[6].start 150.075
transcript.whisperx[6].end 177.259
transcript.whisperx[6].text 所以我覺得這個因素應該不是只有英語環境喔還有他們可能國情上的一些差異他們可能會覺得說來台灣後覺得比較適應像美國來甚至東南亞來他可能覺得環境上的落差就比較多所以後來就變得留不住人才主委我覺得因素就會只有英語的環境需要被營造然後這個就業金卡人才會留住嗎
transcript.whisperx[7].start 179.216
transcript.whisperx[7].end 200.217
transcript.whisperx[7].text 這個是其中一項如果以美國、印度這些國家來看的話這幾個我們調查下來是這個方向那日本因為它的文化跟我們比較接近我們在調查上面它的移動的人離開的人也比較少一點那我們大概得到訊息就比較有限
transcript.whisperx[8].start 203.378
transcript.whisperx[8].end 214.37
transcript.whisperx[8].text 所以我要再進一步問那我們現在國發會針對這一些來的人才他們大概的居住的地點會選擇哪邊
transcript.whisperx[9].start 216.338
transcript.whisperx[9].end 240.574
transcript.whisperx[9].text 目前來講47%在台北那新北的只有14%那如果是金卡的部分那如果特專來講也是在台北58%台中占13.8%新竹占13.4%那大概那非六都之外的呢非六都我們現在手上比較沒有手上沒有
transcript.whisperx[10].start 242.192
transcript.whisperx[10].end 256.924
transcript.whisperx[10].text 應該低於我們同仁認為是低於10%低於10%我猜也是這樣那所以會不會變得說這些就業金卡然後他們來但是相對是可能在六都尤其是在台北光台北就47%所以變得說
transcript.whisperx[11].start 259.867
transcript.whisperx[11].end 281.418
transcript.whisperx[11].text 這部分還是會有城鄉落差就是說因為如果以缺工來看每個企業都會有缺工的狀況但是看起來要引進這樣的專業人才他們卻沒有辦法把他留在台北以外的都市那這個也是會有產生城鄉差距所以主委你怎麼樣去看這部分的問題要來做一個彌補
transcript.whisperx[12].start 282.641
transcript.whisperx[12].end 307.689
transcript.whisperx[12].text 這個部分有兩件事要做第一個是我們可能可以再多做一點宣導讓六都以外的企業知道第二個部分是我們有跟經濟部在溝通在未來人才越來越缺乏的情況下企業可能會有越來越多的外籍專業人士進來這家公司在管理上面就會出現有多語言的問題
transcript.whisperx[13].start 308.973
transcript.whisperx[13].end 326.52
transcript.whisperx[13].text 那我們現在也希望透過雙語政策去協助這些企業培訓他們內部的語言的管理能力那這個會越來越多那像我在彰化就遇到幾個自行車產業他們現在內部就開始有很多外國專業人士從美國過來的或是從歐洲過來的
transcript.whisperx[14].start 328.101
transcript.whisperx[14].end 344.05
transcript.whisperx[14].text 那他們現在在慢慢也開始形成了中小企業也具備多元能力那我們也希望能夠盡快的協助到更多的中小企業具備這樣的能力那讓他們更有信心去招募這樣的人才好那我再問一個就是說
transcript.whisperx[15].start 346.485
transcript.whisperx[15].end 373.426
transcript.whisperx[15].text 除了這個專業人才啦事實上企業的缺工他在於一些傳統的一些需要的移工他是他也是有高度的需求但是我們台灣現在有一個很大的問題這部分我也等希望勞動部等下回答就是說台灣在於審查一些企業然後一些領域上他們要是否要開放移工審查的很慢
transcript.whisperx[16].start 374.892
transcript.whisperx[16].end 386.233
transcript.whisperx[16].text 比方說我之前在講說一樣是在這個加工廠的一個上班如果你是在續產的加工廠他
transcript.whisperx[17].start 387.503
transcript.whisperx[17].end 404.756
transcript.whisperx[17].text 可以請的移工的這個比重就比在水產的加工廠還要多所以對於請水產的加工廠他所可以申請移工的比例就比較吃虧所以這部分他在做當時在做申請的時候 哇審查了快三年耶
transcript.whisperx[18].start 406.606
transcript.whisperx[18].end 435.421
transcript.whisperx[18].text 這樣就審查了三年就是單就這一件事讓蓄產跟水產可以一致的這件事就省了三年那最近事實上有很多產業像我也有跟勞動部去談過像台灣的高峰煙火高峰煙火的產業事實上也是講白的他也是很雖然是傳統但是他也是危險性風險性比較高的一個產業事實上你要應徵到人才也是很困難
transcript.whisperx[19].start 436.448
transcript.whisperx[19].end 460.655
transcript.whisperx[19].text 結果也是審查了好久從我反應到現在大概也已經經過近兩年了所以這個審查的速度效率不彰變得說我們台灣很多產業需要移工的時候結果就卡在我們整個勞動部你們在做這些評估的時候花了好久的時間這到底是為什麼啊
transcript.whisperx[20].start 463.573
transcript.whisperx[20].end 486.81
transcript.whisperx[20].text 報導委員 目前移工開放其實我們是全面線上申辦的那委員所提的應該是說如果開放一個新的業別或者是他現有的合併比例要去調整那他的這比例調整的部分那這評估的程序可能可以在這個調可以再做縮短那事實上是因為要評估一個新的業別的調整
transcript.whisperx[21].start 487.17
transcript.whisperx[21].end 511.616
transcript.whisperx[21].text 那勞動部會去跟主管機關比方說像剛剛提到的如果是爆裂物的話那就跟經濟部就工廠的部分來進行評估那另外環保部也會跟這個環境部這邊來做協商那整體的考量規劃會在這個不影響國人就業以及在促進國人加薪的這種前提之下再來評估這個可以引進的人數以上
transcript.whisperx[22].start 512.755
transcript.whisperx[22].end 526.263
transcript.whisperx[22].text 組長你給我的這些都是自私的答案啦我也相信你們會跟其他部會去做評估會跟經濟部會跟環境部啊但是咧就是慢啦速度就是慢啦
transcript.whisperx[23].start 527.513
transcript.whisperx[23].end 549.536
transcript.whisperx[23].text 這個才是問題啊 所以我覺得這件事你們要檢討啦 好不好國發會這邊應該也是要督促勞動部 很多產業事實上我們除了這一些專業的人才要讓他進來之外對於很多移工 這個很多勞動力不足需要移工的這件事我們確實非常的溫吞非常的慢
transcript.whisperx[24].start 550.718
transcript.whisperx[24].end 565.668
transcript.whisperx[24].text 這個才是現在台灣整個企業遇到的大危機這部分我覺得國發會我們也要督促相關部會說該剎的時候手腳要快一點就要快一點怎麼這樣一直拖呢好不好是的好那就麻煩主委好謝謝好謝謝蔡議員