IVOD_ID |
162675 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162675 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
聯席會議-11-3-19,26,22-1 |
會議資料.會議代碼:str |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
26 |
會議資料.委員會代碼[2] |
22 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
社會福利及衛生環境委員會 |
會議資料.委員會代碼:str[2] |
教育及文化委員會 |
會議資料.標題 |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T14:32:24+08:00 |
結束時間 |
2025-06-18T14:41:54+08:00 |
影片長度 |
00:09:30 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552aa9fe9d5cd266aeec5c8a36db9e18c27b944e3ca7709b1a2fb604f0d634e96aee5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蔡易餘 |
委員發言時間 |
14:32:24 - 14:41:54 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議(事由:審查:
一、行政院函請審議「外國專業人才延攬及僱用法修正草案」案。
二、本院委員何欣純等19人擬具「外國專業人才延攬及僱用法第十二條及第十四條條文修正草案」案。
三、本院委員陳亭妃等16人擬具「外國專業人才延攬及僱用法第四條、第六條及第十四條條文修正草案」案。
四、本院委員蔡易餘等17人擬具「外國專業人才延攬及僱用法修正草案」案。
五、本院委員羅美玲等16人擬具「外國專業人才延攬及僱用法修正草案」案。(詢答)
(第一案如未接獲議事處來函則不予審查。)) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
2.34284375 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
11.79284375 |
transcript.pyannote[1].end |
14.99909375 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
15.20159375 |
transcript.pyannote[2].end |
19.03221875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
19.99409375 |
transcript.pyannote[3].end |
22.23846875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
23.41971875 |
transcript.pyannote[4].end |
24.19596875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
24.66846875 |
transcript.pyannote[5].end |
26.37284375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
28.12784375 |
transcript.pyannote[6].end |
29.12346875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
30.03471875 |
transcript.pyannote[7].end |
32.70096875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
33.13971875 |
transcript.pyannote[8].end |
34.01721875 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
34.01721875 |
transcript.pyannote[9].end |
34.06784375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
34.75971875 |
transcript.pyannote[10].end |
34.96221875 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
34.96221875 |
transcript.pyannote[11].end |
35.72159375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
35.09721875 |
transcript.pyannote[12].end |
35.13096875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
35.14784375 |
transcript.pyannote[13].end |
35.19846875 |
transcript.pyannote[14].speaker |
SPEAKER_03 |
transcript.pyannote[14].start |
35.19846875 |
transcript.pyannote[14].end |
35.40096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
35.40096875 |
transcript.pyannote[15].end |
35.50221875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
35.87346875 |
transcript.pyannote[16].end |
36.22784375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
37.35846875 |
transcript.pyannote[17].end |
40.07534375 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
41.30721875 |
transcript.pyannote[18].end |
46.13346875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
46.33596875 |
transcript.pyannote[19].end |
48.27659375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
48.58034375 |
transcript.pyannote[20].end |
54.57096875 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
54.03096875 |
transcript.pyannote[21].end |
55.26284375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
54.84096875 |
transcript.pyannote[22].end |
70.38284375 |
transcript.pyannote[23].speaker |
SPEAKER_03 |
transcript.pyannote[23].start |
58.11471875 |
transcript.pyannote[23].end |
58.33409375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
64.51034375 |
transcript.pyannote[24].end |
64.83096875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
66.60284375 |
transcript.pyannote[25].end |
67.27784375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
67.39596875 |
transcript.pyannote[26].end |
67.76721875 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
70.68659375 |
transcript.pyannote[27].end |
77.60534375 |
transcript.pyannote[28].speaker |
SPEAKER_03 |
transcript.pyannote[28].start |
77.60534375 |
transcript.pyannote[28].end |
77.95971875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
77.95971875 |
transcript.pyannote[29].end |
90.34596875 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
90.75096875 |
transcript.pyannote[30].end |
92.35409375 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
92.69159375 |
transcript.pyannote[31].end |
105.71909375 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
107.40659375 |
transcript.pyannote[32].end |
114.84846875 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
115.11846875 |
transcript.pyannote[33].end |
116.62034375 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
116.82284375 |
transcript.pyannote[34].end |
118.27409375 |
transcript.pyannote[35].speaker |
SPEAKER_03 |
transcript.pyannote[35].start |
118.62846875 |
transcript.pyannote[35].end |
119.91096875 |
transcript.pyannote[36].speaker |
SPEAKER_03 |
transcript.pyannote[36].start |
120.40034375 |
transcript.pyannote[36].end |
121.02471875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
120.43409375 |
transcript.pyannote[37].end |
120.92346875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
121.02471875 |
transcript.pyannote[38].end |
122.02034375 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
121.34534375 |
transcript.pyannote[39].end |
128.71971875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
128.71971875 |
transcript.pyannote[40].end |
130.86284375 |
transcript.pyannote[41].speaker |
SPEAKER_03 |
transcript.pyannote[41].start |
128.80409375 |
transcript.pyannote[41].end |
131.18346875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
131.18346875 |
transcript.pyannote[42].end |
141.05534375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
141.46034375 |
transcript.pyannote[43].end |
146.52284375 |
transcript.pyannote[44].speaker |
SPEAKER_03 |
transcript.pyannote[44].start |
146.52284375 |
transcript.pyannote[44].end |
146.97846875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
146.77596875 |
transcript.pyannote[45].end |
149.20596875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
149.84721875 |
transcript.pyannote[46].end |
154.30221875 |
transcript.pyannote[47].speaker |
SPEAKER_03 |
transcript.pyannote[47].start |
154.30221875 |
transcript.pyannote[47].end |
154.55534375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
154.55534375 |
transcript.pyannote[48].end |
154.60596875 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
154.87596875 |
transcript.pyannote[49].end |
162.28409375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
162.68909375 |
transcript.pyannote[50].end |
170.19846875 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
170.72159375 |
transcript.pyannote[51].end |
174.21471875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
174.50159375 |
transcript.pyannote[52].end |
177.57284375 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
178.55159375 |
transcript.pyannote[53].end |
183.05721875 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
183.64784375 |
transcript.pyannote[54].end |
188.28846875 |
transcript.pyannote[55].speaker |
SPEAKER_03 |
transcript.pyannote[55].start |
189.16596875 |
transcript.pyannote[55].end |
192.11909375 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
192.45659375 |
transcript.pyannote[56].end |
196.75971875 |
transcript.pyannote[57].speaker |
SPEAKER_03 |
transcript.pyannote[57].start |
197.48534375 |
transcript.pyannote[57].end |
200.42159375 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
202.46346875 |
transcript.pyannote[58].end |
202.96971875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
202.96971875 |
transcript.pyannote[59].end |
205.83846875 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
206.12534375 |
transcript.pyannote[60].end |
207.08721875 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
207.66096875 |
transcript.pyannote[61].end |
211.03596875 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
211.50846875 |
transcript.pyannote[62].end |
212.80784375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
213.39846875 |
transcript.pyannote[63].end |
215.38971875 |
transcript.pyannote[64].speaker |
SPEAKER_03 |
transcript.pyannote[64].start |
215.38971875 |
transcript.pyannote[64].end |
215.44034375 |
transcript.pyannote[65].speaker |
SPEAKER_03 |
transcript.pyannote[65].start |
216.09846875 |
transcript.pyannote[65].end |
222.86534375 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
223.42221875 |
transcript.pyannote[66].end |
231.97784375 |
transcript.pyannote[67].speaker |
SPEAKER_03 |
transcript.pyannote[67].start |
232.41659375 |
transcript.pyannote[67].end |
233.24346875 |
transcript.pyannote[68].speaker |
SPEAKER_03 |
transcript.pyannote[68].start |
233.34471875 |
transcript.pyannote[68].end |
241.03971875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
238.49159375 |
transcript.pyannote[69].end |
238.57596875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
238.57596875 |
transcript.pyannote[70].end |
238.96409375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
238.96409375 |
transcript.pyannote[71].end |
239.06534375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
239.97659375 |
transcript.pyannote[72].end |
240.02721875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
240.02721875 |
transcript.pyannote[73].end |
240.75284375 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
241.83284375 |
transcript.pyannote[74].end |
246.55784375 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
245.05596875 |
transcript.pyannote[75].end |
245.51159375 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
246.55784375 |
transcript.pyannote[76].end |
246.70971875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
246.72659375 |
transcript.pyannote[77].end |
248.27909375 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
248.66721875 |
transcript.pyannote[78].end |
251.24909375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
251.70471875 |
transcript.pyannote[79].end |
252.44721875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
253.13909375 |
transcript.pyannote[80].end |
258.67409375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
259.65284375 |
transcript.pyannote[81].end |
262.62284375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
262.87596875 |
transcript.pyannote[82].end |
267.29721875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
267.58409375 |
transcript.pyannote[83].end |
272.86596875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
273.25409375 |
transcript.pyannote[84].end |
274.78971875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
275.29596875 |
transcript.pyannote[85].end |
277.77659375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
278.02971875 |
transcript.pyannote[86].end |
281.92784375 |
transcript.pyannote[87].speaker |
SPEAKER_03 |
transcript.pyannote[87].start |
282.38346875 |
transcript.pyannote[87].end |
303.02159375 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
303.15659375 |
transcript.pyannote[88].end |
308.13471875 |
transcript.pyannote[89].speaker |
SPEAKER_03 |
transcript.pyannote[89].start |
308.92784375 |
transcript.pyannote[89].end |
317.04471875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
309.02909375 |
transcript.pyannote[90].end |
309.24846875 |
transcript.pyannote[91].speaker |
SPEAKER_03 |
transcript.pyannote[91].start |
317.50034375 |
transcript.pyannote[91].end |
321.82034375 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
322.25909375 |
transcript.pyannote[92].end |
327.65909375 |
transcript.pyannote[93].speaker |
SPEAKER_03 |
transcript.pyannote[93].start |
327.99659375 |
transcript.pyannote[93].end |
332.95784375 |
transcript.pyannote[94].speaker |
SPEAKER_03 |
transcript.pyannote[94].start |
333.32909375 |
transcript.pyannote[94].end |
337.85159375 |
transcript.pyannote[95].speaker |
SPEAKER_03 |
transcript.pyannote[95].start |
338.32409375 |
transcript.pyannote[95].end |
340.66971875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
342.01971875 |
transcript.pyannote[96].end |
344.61846875 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
345.37784375 |
transcript.pyannote[97].end |
346.12034375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
346.32284375 |
transcript.pyannote[98].end |
348.76971875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
349.03971875 |
transcript.pyannote[99].end |
350.47409375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
351.16596875 |
transcript.pyannote[100].end |
354.52409375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
354.89534375 |
transcript.pyannote[101].end |
357.08909375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
357.57846875 |
transcript.pyannote[102].end |
365.18909375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
366.21846875 |
transcript.pyannote[103].end |
367.06221875 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
367.45034375 |
transcript.pyannote[104].end |
370.13346875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
370.85909375 |
transcript.pyannote[105].end |
373.60971875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
374.84159375 |
transcript.pyannote[106].end |
377.96346875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
378.58784375 |
transcript.pyannote[107].end |
380.78159375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
381.18659375 |
transcript.pyannote[108].end |
383.41409375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
383.65034375 |
transcript.pyannote[109].end |
386.53596875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
387.46409375 |
transcript.pyannote[110].end |
397.79159375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
398.36534375 |
transcript.pyannote[111].end |
399.93471875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
400.18784375 |
transcript.pyannote[112].end |
404.99721875 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
406.16159375 |
transcript.pyannote[113].end |
413.28284375 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
413.60346875 |
transcript.pyannote[114].end |
415.51034375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
415.62846875 |
transcript.pyannote[115].end |
420.91034375 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
421.31534375 |
transcript.pyannote[116].end |
423.27284375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
424.15034375 |
transcript.pyannote[117].end |
433.90409375 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
434.37659375 |
transcript.pyannote[118].end |
435.84471875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
436.26659375 |
transcript.pyannote[119].end |
438.19034375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
438.64596875 |
transcript.pyannote[120].end |
440.14784375 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
440.43471875 |
transcript.pyannote[121].end |
443.13471875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
443.60721875 |
transcript.pyannote[122].end |
446.98221875 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
447.72471875 |
transcript.pyannote[123].end |
460.78596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
463.33409375 |
transcript.pyannote[124].end |
500.96534375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
501.37034375 |
transcript.pyannote[125].end |
502.19721875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
502.65284375 |
transcript.pyannote[126].end |
511.78221875 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
512.28846875 |
transcript.pyannote[127].end |
517.06409375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
517.70534375 |
transcript.pyannote[128].end |
521.75534375 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
522.48096875 |
transcript.pyannote[129].end |
524.01659375 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
525.24846875 |
transcript.pyannote[130].end |
526.36221875 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
527.07096875 |
transcript.pyannote[131].end |
529.85534375 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
530.34471875 |
transcript.pyannote[132].end |
530.78346875 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
531.49221875 |
transcript.pyannote[133].end |
535.54221875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
535.89659375 |
transcript.pyannote[134].end |
545.63346875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
546.05534375 |
transcript.pyannote[135].end |
549.71721875 |
transcript.pyannote[136].speaker |
SPEAKER_02 |
transcript.pyannote[136].start |
550.44284375 |
transcript.pyannote[136].end |
553.36221875 |
transcript.pyannote[137].speaker |
SPEAKER_02 |
transcript.pyannote[137].start |
553.44659375 |
transcript.pyannote[137].end |
554.27346875 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
554.54346875 |
transcript.pyannote[138].end |
557.34471875 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
557.54721875 |
transcript.pyannote[139].end |
561.96846875 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
562.08659375 |
transcript.pyannote[140].end |
563.09909375 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
563.25096875 |
transcript.pyannote[141].end |
563.75721875 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
563.97659375 |
transcript.pyannote[142].end |
566.17034375 |
transcript.pyannote[143].speaker |
SPEAKER_03 |
transcript.pyannote[143].start |
565.46159375 |
transcript.pyannote[143].end |
565.95096875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
568.54971875 |
transcript.pyannote[144].end |
569.96721875 |
transcript.whisperx[0].start |
0.449 |
transcript.whisperx[0].end |
17.654 |
transcript.whisperx[0].text |
麻煩蔡議員發言好謝謝主席我們是不是有請國發會我們組委跟我們勞動部勞動部的這個跨國勞動力管理組組長 |
transcript.whisperx[1].start |
30.203 |
transcript.whisperx[1].end |
58.552 |
transcript.whisperx[1].text |
那就請劉委員還有組長發這個位置蔡委員好主委那上午大概也是都在聽美國委員的詢答那也有講到了很多金卡的問題那我想要請教主委那相關於這樣的就業金卡目前差不多有一萬兩千多一萬三千多那去年增加了三千那看起來 |
transcript.whisperx[2].start |
59.232 |
transcript.whisperx[2].end |
77.446 |
transcript.whisperx[2].text |
人數最多是美國然後後來是香港然後日本也是很多那我們再來看另外一個數據另外一個數據就是離開的人數離開的人數對應的當然美國也是最多那香港也是多的 |
transcript.whisperx[3].start |
78.906 |
transcript.whisperx[3].end |
105.562 |
transcript.whisperx[3].text |
但是我其中觀察到幾個數字第一個就是說看起來東南亞國家包括印度他們來的人數雖然不多但是他離開的人數是相對就比較多所以是不是變得說以台灣現在的環境對於這些東南亞的人士這一些專業的人才東南亞來的反而他在台灣是留不住的那是不是環境的因素讓他們不會想留在台灣呢 |
transcript.whisperx[4].start |
107.575 |
transcript.whisperx[4].end |
129.883 |
transcript.whisperx[4].text |
我們有進行過普查那大概還是在生活環境上面還有待加強讓就是他需要更方便的英語環境因為他有語言的問題一個是語言上的障礙所以造成他包括小孩的就學也好包括生活變異性對 這早上我都有聽到不過我比較好奇的是你看像美國啦 |
transcript.whisperx[5].start |
133.024 |
transcript.whisperx[5].end |
148.138 |
transcript.whisperx[5].text |
美國大概來的人數跟離開的人數我看起來就差不多在三分之一來了三千多人然後來離開了一千多人相對比例比較低的是日本日本大概是在五分之一左右可是日本留下來的機會比較高 |
transcript.whisperx[6].start |
150.075 |
transcript.whisperx[6].end |
177.259 |
transcript.whisperx[6].text |
所以我覺得這個因素應該不是只有英語環境喔還有他們可能國情上的一些差異他們可能會覺得說來台灣後覺得比較適應像美國來甚至東南亞來他可能覺得環境上的落差就比較多所以後來就變得留不住人才主委我覺得因素就會只有英語的環境需要被營造然後這個就業金卡人才會留住嗎 |
transcript.whisperx[7].start |
179.216 |
transcript.whisperx[7].end |
200.217 |
transcript.whisperx[7].text |
這個是其中一項如果以美國、印度這些國家來看的話這幾個我們調查下來是這個方向那日本因為它的文化跟我們比較接近我們在調查上面它的移動的人離開的人也比較少一點那我們大概得到訊息就比較有限 |
transcript.whisperx[8].start |
203.378 |
transcript.whisperx[8].end |
214.37 |
transcript.whisperx[8].text |
所以我要再進一步問那我們現在國發會針對這一些來的人才他們大概的居住的地點會選擇哪邊 |
transcript.whisperx[9].start |
216.338 |
transcript.whisperx[9].end |
240.574 |
transcript.whisperx[9].text |
目前來講47%在台北那新北的只有14%那如果是金卡的部分那如果特專來講也是在台北58%台中占13.8%新竹占13.4%那大概那非六都之外的呢非六都我們現在手上比較沒有手上沒有 |
transcript.whisperx[10].start |
242.192 |
transcript.whisperx[10].end |
256.924 |
transcript.whisperx[10].text |
應該低於我們同仁認為是低於10%低於10%我猜也是這樣那所以會不會變得說這些就業金卡然後他們來但是相對是可能在六都尤其是在台北光台北就47%所以變得說 |
transcript.whisperx[11].start |
259.867 |
transcript.whisperx[11].end |
281.418 |
transcript.whisperx[11].text |
這部分還是會有城鄉落差就是說因為如果以缺工來看每個企業都會有缺工的狀況但是看起來要引進這樣的專業人才他們卻沒有辦法把他留在台北以外的都市那這個也是會有產生城鄉差距所以主委你怎麼樣去看這部分的問題要來做一個彌補 |
transcript.whisperx[12].start |
282.641 |
transcript.whisperx[12].end |
307.689 |
transcript.whisperx[12].text |
這個部分有兩件事要做第一個是我們可能可以再多做一點宣導讓六都以外的企業知道第二個部分是我們有跟經濟部在溝通在未來人才越來越缺乏的情況下企業可能會有越來越多的外籍專業人士進來這家公司在管理上面就會出現有多語言的問題 |
transcript.whisperx[13].start |
308.973 |
transcript.whisperx[13].end |
326.52 |
transcript.whisperx[13].text |
那我們現在也希望透過雙語政策去協助這些企業培訓他們內部的語言的管理能力那這個會越來越多那像我在彰化就遇到幾個自行車產業他們現在內部就開始有很多外國專業人士從美國過來的或是從歐洲過來的 |
transcript.whisperx[14].start |
328.101 |
transcript.whisperx[14].end |
344.05 |
transcript.whisperx[14].text |
那他們現在在慢慢也開始形成了中小企業也具備多元能力那我們也希望能夠盡快的協助到更多的中小企業具備這樣的能力那讓他們更有信心去招募這樣的人才好那我再問一個就是說 |
transcript.whisperx[15].start |
346.485 |
transcript.whisperx[15].end |
373.426 |
transcript.whisperx[15].text |
除了這個專業人才啦事實上企業的缺工他在於一些傳統的一些需要的移工他是他也是有高度的需求但是我們台灣現在有一個很大的問題這部分我也等希望勞動部等下回答就是說台灣在於審查一些企業然後一些領域上他們要是否要開放移工審查的很慢 |
transcript.whisperx[16].start |
374.892 |
transcript.whisperx[16].end |
386.233 |
transcript.whisperx[16].text |
比方說我之前在講說一樣是在這個加工廠的一個上班如果你是在續產的加工廠他 |
transcript.whisperx[17].start |
387.503 |
transcript.whisperx[17].end |
404.756 |
transcript.whisperx[17].text |
可以請的移工的這個比重就比在水產的加工廠還要多所以對於請水產的加工廠他所可以申請移工的比例就比較吃虧所以這部分他在做當時在做申請的時候 哇審查了快三年耶 |
transcript.whisperx[18].start |
406.606 |
transcript.whisperx[18].end |
435.421 |
transcript.whisperx[18].text |
這樣就審查了三年就是單就這一件事讓蓄產跟水產可以一致的這件事就省了三年那最近事實上有很多產業像我也有跟勞動部去談過像台灣的高峰煙火高峰煙火的產業事實上也是講白的他也是很雖然是傳統但是他也是危險性風險性比較高的一個產業事實上你要應徵到人才也是很困難 |
transcript.whisperx[19].start |
436.448 |
transcript.whisperx[19].end |
460.655 |
transcript.whisperx[19].text |
結果也是審查了好久從我反應到現在大概也已經經過近兩年了所以這個審查的速度效率不彰變得說我們台灣很多產業需要移工的時候結果就卡在我們整個勞動部你們在做這些評估的時候花了好久的時間這到底是為什麼啊 |
transcript.whisperx[20].start |
463.573 |
transcript.whisperx[20].end |
486.81 |
transcript.whisperx[20].text |
報導委員 目前移工開放其實我們是全面線上申辦的那委員所提的應該是說如果開放一個新的業別或者是他現有的合併比例要去調整那他的這比例調整的部分那這評估的程序可能可以在這個調可以再做縮短那事實上是因為要評估一個新的業別的調整 |
transcript.whisperx[21].start |
487.17 |
transcript.whisperx[21].end |
511.616 |
transcript.whisperx[21].text |
那勞動部會去跟主管機關比方說像剛剛提到的如果是爆裂物的話那就跟經濟部就工廠的部分來進行評估那另外環保部也會跟這個環境部這邊來做協商那整體的考量規劃會在這個不影響國人就業以及在促進國人加薪的這種前提之下再來評估這個可以引進的人數以上 |
transcript.whisperx[22].start |
512.755 |
transcript.whisperx[22].end |
526.263 |
transcript.whisperx[22].text |
組長你給我的這些都是自私的答案啦我也相信你們會跟其他部會去做評估會跟經濟部會跟環境部啊但是咧就是慢啦速度就是慢啦 |
transcript.whisperx[23].start |
527.513 |
transcript.whisperx[23].end |
549.536 |
transcript.whisperx[23].text |
這個才是問題啊 所以我覺得這件事你們要檢討啦 好不好國發會這邊應該也是要督促勞動部 很多產業事實上我們除了這一些專業的人才要讓他進來之外對於很多移工 這個很多勞動力不足需要移工的這件事我們確實非常的溫吞非常的慢 |
transcript.whisperx[24].start |
550.718 |
transcript.whisperx[24].end |
565.668 |
transcript.whisperx[24].text |
這個才是現在台灣整個企業遇到的大危機這部分我覺得國發會我們也要督促相關部會說該剎的時候手腳要快一點就要快一點怎麼這樣一直拖呢好不好是的好那就麻煩主委好謝謝好謝謝蔡議員 |