IVOD_ID |
162630 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162630 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
聯席會議-11-3-19,26,22-1 |
會議資料.會議代碼:str |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
26 |
會議資料.委員會代碼[2] |
22 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
社會福利及衛生環境委員會 |
會議資料.委員會代碼:str[2] |
教育及文化委員會 |
會議資料.標題 |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T12:05:43+08:00 |
結束時間 |
2025-06-18T12:14:26+08:00 |
影片長度 |
00:08:43 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552a3dc02141f58455c05c8a36db9e18c27ba48dd392130a6736482c983ede377c945ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
葉元之 |
委員發言時間 |
12:05:43 - 12:14:26 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議(事由:審查:
一、行政院函請審議「外國專業人才延攬及僱用法修正草案」案。
二、本院委員何欣純等19人擬具「外國專業人才延攬及僱用法第十二條及第十四條條文修正草案」案。
三、本院委員陳亭妃等16人擬具「外國專業人才延攬及僱用法第四條、第六條及第十四條條文修正草案」案。
四、本院委員蔡易餘等17人擬具「外國專業人才延攬及僱用法修正草案」案。
五、本院委員羅美玲等16人擬具「外國專業人才延攬及僱用法修正草案」案。(詢答)
(第一案如未接獲議事處來函則不予審查。)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
7.06784375 |
transcript.pyannote[0].end |
9.36284375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
10.99971875 |
transcript.pyannote[1].end |
11.82659375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
16.41659375 |
transcript.pyannote[2].end |
16.97346875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
17.31096875 |
transcript.pyannote[3].end |
19.90971875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
20.29784375 |
transcript.pyannote[4].end |
24.70221875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
24.98909375 |
transcript.pyannote[5].end |
27.50346875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
27.84096875 |
transcript.pyannote[6].end |
31.03034375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
31.14846875 |
transcript.pyannote[7].end |
35.14784375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
35.26596875 |
transcript.pyannote[8].end |
35.28284375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
35.31659375 |
transcript.pyannote[9].end |
39.45096875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
39.78846875 |
transcript.pyannote[10].end |
40.91909375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
41.07096875 |
transcript.pyannote[11].end |
45.18846875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
45.67784375 |
transcript.pyannote[12].end |
53.27159375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
47.41596875 |
transcript.pyannote[13].end |
47.78721875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
53.87909375 |
transcript.pyannote[14].end |
55.61721875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
56.00534375 |
transcript.pyannote[15].end |
57.81096875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
57.96284375 |
transcript.pyannote[16].end |
61.38846875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
61.96221875 |
transcript.pyannote[17].end |
63.04221875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
63.29534375 |
transcript.pyannote[18].end |
70.48409375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
70.80471875 |
transcript.pyannote[19].end |
72.35721875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
72.76221875 |
transcript.pyannote[20].end |
78.48284375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
78.98909375 |
transcript.pyannote[21].end |
84.32159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
84.32159375 |
transcript.pyannote[22].end |
96.03284375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
96.45471875 |
transcript.pyannote[23].end |
105.95534375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
97.95659375 |
transcript.pyannote[24].end |
98.26034375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
105.14534375 |
transcript.pyannote[25].end |
107.30534375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
107.30534375 |
transcript.pyannote[26].end |
122.77971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
122.88096875 |
transcript.pyannote[27].end |
126.61034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
127.16721875 |
transcript.pyannote[28].end |
130.32284375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
130.50846875 |
transcript.pyannote[29].end |
133.05659375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
133.61346875 |
transcript.pyannote[30].end |
136.85346875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
136.85346875 |
transcript.pyannote[31].end |
136.92096875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
136.92096875 |
transcript.pyannote[32].end |
137.03909375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
137.03909375 |
transcript.pyannote[33].end |
137.07284375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
137.07284375 |
transcript.pyannote[34].end |
137.08971875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
137.08971875 |
transcript.pyannote[35].end |
138.94596875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
138.96284375 |
transcript.pyannote[36].end |
141.78096875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
141.91596875 |
transcript.pyannote[37].end |
143.60346875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
143.60346875 |
transcript.pyannote[38].end |
150.97784375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
143.67096875 |
transcript.pyannote[39].end |
144.34596875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
144.59909375 |
transcript.pyannote[40].end |
145.00409375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
146.74221875 |
transcript.pyannote[41].end |
147.45096875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
149.25659375 |
transcript.pyannote[42].end |
149.93159375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
150.55596875 |
transcript.pyannote[43].end |
150.65721875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
150.97784375 |
transcript.pyannote[44].end |
152.02409375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
151.21409375 |
transcript.pyannote[45].end |
151.83846875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
152.02409375 |
transcript.pyannote[46].end |
154.92659375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
152.53034375 |
transcript.pyannote[47].end |
164.61284375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
164.79846875 |
transcript.pyannote[48].end |
173.89409375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
164.93346875 |
transcript.pyannote[49].end |
165.37221875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
167.19471875 |
transcript.pyannote[50].end |
167.92034375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
168.86534375 |
transcript.pyannote[51].end |
169.84409375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
174.50159375 |
transcript.pyannote[52].end |
179.37846875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
177.99471875 |
transcript.pyannote[53].end |
197.51909375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
189.70596875 |
transcript.pyannote[54].end |
190.04346875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
192.76034375 |
transcript.pyannote[55].end |
193.11471875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
196.55721875 |
transcript.pyannote[56].end |
201.02909375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
197.58659375 |
transcript.pyannote[57].end |
197.92409375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
201.11346875 |
transcript.pyannote[58].end |
202.15971875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
202.51409375 |
transcript.pyannote[59].end |
206.68221875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
207.42471875 |
transcript.pyannote[60].end |
212.25096875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
212.57159375 |
transcript.pyannote[61].end |
213.80346875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
214.32659375 |
transcript.pyannote[62].end |
216.21659375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
216.79034375 |
transcript.pyannote[63].end |
222.30846875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
222.61221875 |
transcript.pyannote[64].end |
224.02971875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
224.02971875 |
transcript.pyannote[65].end |
224.94096875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
225.43034375 |
transcript.pyannote[66].end |
225.90284375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
225.90284375 |
transcript.pyannote[67].end |
226.08846875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
225.91971875 |
transcript.pyannote[68].end |
238.72784375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
230.86409375 |
transcript.pyannote[69].end |
231.10034375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
238.25534375 |
transcript.pyannote[70].end |
238.52534375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
239.18346875 |
transcript.pyannote[71].end |
250.32096875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
250.54034375 |
transcript.pyannote[72].end |
255.18096875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
255.58596875 |
transcript.pyannote[73].end |
258.94409375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
259.33221875 |
transcript.pyannote[74].end |
262.45409375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
262.60596875 |
transcript.pyannote[75].end |
279.09284375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
279.21096875 |
transcript.pyannote[76].end |
282.63659375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
282.97409375 |
transcript.pyannote[77].end |
285.97784375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
285.97784375 |
transcript.pyannote[78].end |
287.19284375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
287.80034375 |
transcript.pyannote[79].end |
293.84159375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
293.84159375 |
transcript.pyannote[80].end |
295.74846875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
294.98909375 |
transcript.pyannote[81].end |
295.17471875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
295.74846875 |
transcript.pyannote[82].end |
296.59221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
296.59221875 |
transcript.pyannote[83].end |
296.87909375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
296.87909375 |
transcript.pyannote[84].end |
296.89596875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
296.89596875 |
transcript.pyannote[85].end |
297.19971875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
297.19971875 |
transcript.pyannote[86].end |
308.67471875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
297.26721875 |
transcript.pyannote[87].end |
298.75221875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
301.51971875 |
transcript.pyannote[88].end |
302.32971875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
309.02909375 |
transcript.pyannote[89].end |
313.28159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
313.82159375 |
transcript.pyannote[90].end |
316.97721875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
317.61846875 |
transcript.pyannote[91].end |
321.56721875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
321.93846875 |
transcript.pyannote[92].end |
325.65096875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
326.29221875 |
transcript.pyannote[93].end |
328.87409375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
329.24534375 |
transcript.pyannote[94].end |
337.32846875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
337.53096875 |
transcript.pyannote[95].end |
345.83346875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
338.39159375 |
transcript.pyannote[96].end |
338.57721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
346.23846875 |
transcript.pyannote[97].end |
347.18346875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
347.45346875 |
transcript.pyannote[98].end |
391.36221875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
349.86659375 |
transcript.pyannote[99].end |
350.06909375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
376.63034375 |
transcript.pyannote[100].end |
379.00971875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
389.97846875 |
transcript.pyannote[101].end |
399.76596875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
400.15409375 |
transcript.pyannote[102].end |
402.09471875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
402.61784375 |
transcript.pyannote[103].end |
404.08596875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
404.59221875 |
transcript.pyannote[104].end |
405.70596875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
406.02659375 |
transcript.pyannote[105].end |
408.79409375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
409.14846875 |
transcript.pyannote[106].end |
412.25346875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
412.54034375 |
transcript.pyannote[107].end |
420.28596875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
420.30284375 |
transcript.pyannote[108].end |
424.01534375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
424.36971875 |
transcript.pyannote[109].end |
431.18721875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
431.81159375 |
transcript.pyannote[110].end |
432.50346875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
433.14471875 |
transcript.pyannote[111].end |
434.41034375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
434.69721875 |
transcript.pyannote[112].end |
435.55784375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
435.91221875 |
transcript.pyannote[113].end |
441.27846875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
440.92409375 |
transcript.pyannote[114].end |
466.05096875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
441.98721875 |
transcript.pyannote[115].end |
442.40909375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
447.75846875 |
transcript.pyannote[116].end |
451.08284375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
465.40971875 |
transcript.pyannote[117].end |
471.95721875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
467.11409375 |
transcript.pyannote[118].end |
467.95784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
471.13034375 |
transcript.pyannote[119].end |
504.71159375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
472.07534375 |
transcript.pyannote[120].end |
472.44659375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
474.53909375 |
transcript.pyannote[121].end |
474.92721875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
494.06346875 |
transcript.pyannote[122].end |
495.68346875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
504.84659375 |
transcript.pyannote[123].end |
506.70284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
505.08284375 |
transcript.pyannote[124].end |
505.16721875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
506.92221875 |
transcript.pyannote[125].end |
510.58409375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
510.95534375 |
transcript.pyannote[126].end |
514.36409375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
511.05659375 |
transcript.pyannote[127].end |
511.32659375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
514.68471875 |
transcript.pyannote[128].end |
518.19471875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
520.72596875 |
transcript.pyannote[129].end |
522.19409375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
521.35034375 |
transcript.pyannote[130].end |
522.51471875 |
transcript.whisperx[0].start |
7.082 |
transcript.whisperx[0].end |
8.046 |
transcript.whisperx[0].text |
麻煩請國發會主委謝謝請劉主委 |
transcript.whisperx[1].start |
16.588 |
transcript.whisperx[1].end |
45 |
transcript.whisperx[1].text |
主委好今天我們在討論其實人才的問題啦那我想先講一個我知道國發會現在很積極在發展AIAI人才也非常重要那我跟很多AI的懂AI的人他們要新創他們一直覺得說沒有很重視政府沒有很重視的AI對他們而言啦好那有幾件事情第一個要發展AI算力很重要嘛那現在我們的GPU大致上還是過度非常高度的依賴三大雲啦 |
transcript.whisperx[2].start |
45.72 |
transcript.whisperx[2].end |
53.194 |
transcript.whisperx[2].text |
就像Amazon Google還有微軟三大雲那像這種比較小型的新創公司實際上要取得算力有其難度 |
transcript.whisperx[3].start |
53.919 |
transcript.whisperx[3].end |
78.237 |
transcript.whisperx[3].text |
那我知道速發部是有推一個要給他們一些免費資源那速發部有購買一些算力要提供給他但是有限制那而且對於比較大的AI公司他也許可以透過集團力量取得一些算力可是那就是近期未來可能也不確定所以業界一直在呼喊說我們台灣能不能夠成立我們自己的算力的一個中心 |
transcript.whisperx[4].start |
79.042 |
transcript.whisperx[4].end |
92.179 |
transcript.whisperx[4].text |
那這個國發,不知道這個主委我們現在這個計畫大概定定的狀況如何?就我了解喔,國科會有一個計畫喔我說算力喔,算力算力算力,那他的目標是在我如果沒記錯應該在2028年會達到480PF |
transcript.whisperx[5].start |
97.925 |
transcript.whisperx[5].end |
122.412 |
transcript.whisperx[5].text |
2028?對,它會達到480PF那當然現在國際算法開始要改成Megawatt當然國科會也會進行所以到時候算力的問題可以解決嗎?就是不要讓大家過度依賴這三大原因可以解決,我們現在除了這個部分以外我們也有一些民間企業投資的這個算力那也有一些我們在投資兆元台灣的時候計畫裡面也有一些保險業者來請問我們可不可以投資算力 |
transcript.whisperx[6].start |
123.012 |
transcript.whisperx[6].end |
150.266 |
transcript.whisperx[6].text |
那接下來事實上在NVIDIA在高雄的那個算力中心是會是應該是亞洲最大的算力那所以這整個算力加起來會讓我們的算力變成這個亞洲很頂尖的是好謝謝第二個問題啊就是國發會說也有一個100億的預算嘛對不對國發基金啊我們希望扶持AI相關的新創那我們是委由這個速發部來做這個其實講很久了 |
transcript.whisperx[7].start |
151.867 |
transcript.whisperx[7].end |
173.487 |
transcript.whisperx[7].text |
已經公告了 而且有記者會宣傳再加強一下好不好因為我跟幾個AI的新創公司聊到這東西聽說有這個啦 但是不知道怎麼申請我覺得要加強宣傳力道因為我也有去查 除了有一些新聞而已那個新聞都是網路新聞 |
transcript.whisperx[8].start |
174.548 |
transcript.whisperx[8].end |
181.552 |
transcript.whisperx[8].text |
可能我覺得國發會是不是在透過什麼系統可以直接我們會請再跟蘇發部看看怎麼樣來調整因為當時他建立了兩個系統一個是偵案系統一個是Venture Capital VC的系統當時在記者會我有去參加在蘇發部舉行這兩個系統都在推那看起來宣傳還有待加強對 再加強一下 |
transcript.whisperx[9].start |
197.762 |
transcript.whisperx[9].end |
221.721 |
transcript.whisperx[9].text |
然後再來就是那個AI的人才因為就我的了解現在台灣比較在研發的一些比較好的團隊他們的科學家都是來自於國外然後都是帶過大公司的像帶過什麼Yahoo啊 Google啊或者是阿里巴巴的就比較有經驗那台灣這一塊有沒有一些比較大型的招攬的計畫就至少有比較多有經驗的AI人才可以來到台灣來 |
transcript.whisperx[10].start |
222.691 |
transcript.whisperx[10].end |
235.516 |
transcript.whisperx[10].text |
不知道政府能不能夠打造這樣的環境我們現在因為的確就像委員講的AI最頂尖的人才其實是在美國我們很希望我們在今年的年初其實我們到美國去攬財過效果怎麼樣 |
transcript.whisperx[11].start |
239.378 |
transcript.whisperx[11].end |
258.809 |
transcript.whisperx[11].text |
其實有一些人是有願意再考慮回來的過程當然也有人會考慮到兵役的問題那我們招募的人數一場比一場多那原因是也跟委員報告我們當時也帶著NVIDIA跟Google的職缺過去那因為他們要進入Google、NVIDIA在台灣更容易 |
transcript.whisperx[12].start |
259.449 |
transcript.whisperx[12].end |
286.79 |
transcript.whisperx[12].text |
所以台灣現在提供的就業機會是比較高的那我們希望在這次的攬財專法能夠有更大的誘因讓他們回來然後能夠一起帶動那另外同時我們也會將來也會利用這個新創的機會吸引這些人更回來所以我們現在已經建立一個窗口在在那個矽谷那我們希望可以做媒介能夠讓讓更多這個部分我們再加強力道再來現在很多台廠 |
transcript.whisperx[13].start |
287.83 |
transcript.whisperx[13].end |
313.069 |
transcript.whisperx[13].text |
都外移了那台廠外移可能會造成就是我們有一些人才也外移應該不是外移 是全球化的建廠對啦 總部都在台廠那人才就會移到其他國外去而且很多是大型的投資我看到有很多上市公司在國外是大型的投資那他們本來培養出來的人才很有可能就隨著這樣的佈局策略就到國外去了 |
transcript.whisperx[14].start |
313.869 |
transcript.whisperx[14].end |
336.379 |
transcript.whisperx[14].text |
我想要建議啦 就國安會有沒有可能研究一下 譬如說像這種在全球都在搶人才的狀況底下如果有這種大的台廠外流的話能不能也提出一個人力資源的評估報告啦然後就針對說有沒有可能造成人才這方面的流失然後或者是相關因應的策略就是我們可以來討論 |
transcript.whisperx[15].start |
337.74 |
transcript.whisperx[15].end |
359.945 |
transcript.whisperx[15].text |
各位報告一個企業到海外設廠他一定希望導入他在本國的制度經驗可以讓快速的讓海外能夠崛起這個過程一定會派出幹部到海外去就像日商在台灣都會有日本的幹部過來我們過去台商到了 |
transcript.whisperx[16].start |
361.005 |
transcript.whisperx[16].end |
377.797 |
transcript.whisperx[16].text |
中國也會有台幹在那裡的原因都是希望都是讓跟本國的連結比較好那讓本國對於海外的公司的控制能力跟這個績效管理的比較好這個是一個自然現象我們可能難以限制我們現在比較要限制的是說 |
transcript.whisperx[17].start |
380.319 |
transcript.whisperx[17].end |
401.831 |
transcript.whisperx[17].text |
我們現在有很多高科技的半導體人才跑到了對岸然後去壯大對岸來打擊我們那個我們覺得可能這個才是我們目前國家比較高的危險主委你是從國安的角度談那個問題那這個部分我們都沒有意見也都支持我現在是從產業的角度因為現在全球都在搶人才 |
transcript.whisperx[18].start |
402.879 |
transcript.whisperx[18].end |
426.967 |
transcript.whisperx[18].text |
而且都搶得非常兇那我們這邊假設現在有兩個部分一個是我們的台廠可能會帶著我們優秀人才可能到其他國家去那當然另外一個就是剛剛那個主委你提到像輝達啊他們也要來台灣設立中心嘛我們也會需要很多本地的人才那就是大家現在就是擔心說人才要怎麼樣讓他更充足所以才會討論這個議題嘛就是問說有沒有一個比較具體的評估報告是說比如說針對台廠 |
transcript.whisperx[19].start |
431.849 |
transcript.whisperx[19].end |
452.847 |
transcript.whisperx[19].text |
海外布局以及就是我們不斷的有一些我們招商有成果也需要人才那這一塊我們有沒有做過評估因為我們是一個民主自由國家如果企業要把他的幹部調到海外不需要得到政府的許可我知道我是說就人才的評估啦所以這種外調的部分我們目前是不會有資訊的那 |
transcript.whisperx[20].start |
455.008 |
transcript.whisperx[20].end |
473.962 |
transcript.whisperx[20].text |
但是我們定期會有統計海外的工作人數但是這個在全球化過程中我們還是傾向支持廠商但是跟委員報告主委你不要一直誤會我的意思沒有說要你們去阻止他們我們現在講的是國內人才的部分國內人才我們現在有經過多元管道在培養 |
transcript.whisperx[21].start |
474.802 |
transcript.whisperx[21].end |
488.818 |
transcript.whisperx[21].text |
那尤其在AI人才上面像經濟部有一個20萬AI人才的培育計畫那像速發部也有AI人才的培育教育部有STEM就是科技數位人才的培育那我們現在一年這樣下來我們會有將近10萬 |
transcript.whisperx[22].start |
491.081 |
transcript.whisperx[22].end |
517.361 |
transcript.whisperx[22].text |
左右的AI人才會產生我們Stan一年大概有6萬多人就是學校屬於Stan的人才就有6萬多那大概社會上我們現在有很多協助青年轉職然後轉職進到數位領域那這些都在發生中那經濟部會有一個比較大的計畫是20萬AI人才的培育計畫那也積極地在佈建中好 謝謝 |
transcript.whisperx[23].start |
520.765 |
transcript.whisperx[23].end |
520.785 |
transcript.whisperx[23].text |
好謝謝 |