iVOD / 162440

Field Value
IVOD_ID 162440
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162440
日期 2025-06-11
會議資料.會議代碼 聯席會議-11-3-19,20-3
會議資料.會議代碼:str 第11屆第3會期經濟、財政兩委員會第3次聯席會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 3
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 19
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第3會期經濟、財政兩委員會第3次聯席會議
影片種類 Clip
開始時間 2025-06-11T11:21:26+08:00
結束時間 2025-06-11T11:33:43+08:00
影片長度 00:12:17
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c98ed0624e65eb5ccbb4fab53e924c0ec1643b132f871dcdd883b6116c1c0933fe5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 11:21:26 - 11:33:43
會議時間 2025-06-11T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。 二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。 三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答))
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.37659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 9.09284375
transcript.pyannote[1].end 11.13471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 11.74221875
transcript.pyannote[2].end 12.80534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 18.47534375
transcript.pyannote[3].end 18.94784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.36971875
transcript.pyannote[4].end 19.85909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.21346875
transcript.pyannote[5].end 30.82784375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 30.91221875
transcript.pyannote[6].end 37.35846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 37.35846875
transcript.pyannote[7].end 37.81409375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 38.32034375
transcript.pyannote[8].end 38.62409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 39.09659375
transcript.pyannote[9].end 48.78284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 42.60659375
transcript.pyannote[10].end 43.06221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 48.93471875
transcript.pyannote[11].end 50.79096875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 50.99346875
transcript.pyannote[12].end 51.58409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 51.58409375
transcript.pyannote[13].end 52.00596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 52.00596875
transcript.pyannote[14].end 66.41721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.75471875
transcript.pyannote[15].end 85.19909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 85.40159375
transcript.pyannote[16].end 118.10534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 118.45971875
transcript.pyannote[17].end 122.08784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 122.57721875
transcript.pyannote[18].end 130.62659375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 131.14971875
transcript.pyannote[19].end 131.58846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 131.87534375
transcript.pyannote[20].end 136.02659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 136.06034375
transcript.pyannote[21].end 140.04284375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 140.05971875
transcript.pyannote[22].end 142.87784375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 143.01284375
transcript.pyannote[23].end 143.09721875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 143.09721875
transcript.pyannote[24].end 143.31659375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 143.31659375
transcript.pyannote[25].end 143.35034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 143.35034375
transcript.pyannote[26].end 143.36721875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 143.75534375
transcript.pyannote[27].end 145.20659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 145.52721875
transcript.pyannote[28].end 145.54409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 145.54409375
transcript.pyannote[29].end 150.87659375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 147.07971875
transcript.pyannote[30].end 149.15534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 149.59409375
transcript.pyannote[31].end 161.08596875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 161.76096875
transcript.pyannote[32].end 166.19909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 166.95846875
transcript.pyannote[33].end 169.75971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 170.06346875
transcript.pyannote[34].end 172.37534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 173.13471875
transcript.pyannote[35].end 183.74909375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 178.31534375
transcript.pyannote[36].end 178.43346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 178.50096875
transcript.pyannote[37].end 178.60221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 184.20471875
transcript.pyannote[38].end 192.77721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 193.04721875
transcript.pyannote[39].end 194.39721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 194.58284375
transcript.pyannote[40].end 201.21471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 201.97409375
transcript.pyannote[41].end 212.99346875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 213.55034375
transcript.pyannote[42].end 213.97221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 214.41096875
transcript.pyannote[43].end 227.35409375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 217.29659375
transcript.pyannote[44].end 217.41471875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 226.52721875
transcript.pyannote[45].end 265.08659375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 234.49221875
transcript.pyannote[46].end 234.86346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 237.90096875
transcript.pyannote[47].end 238.82909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 265.08659375
transcript.pyannote[48].end 275.31284375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 274.65471875
transcript.pyannote[49].end 285.79221875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 277.81034375
transcript.pyannote[50].end 278.04659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 280.91534375
transcript.pyannote[51].end 280.94909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 286.07909375
transcript.pyannote[52].end 294.21284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 294.75284375
transcript.pyannote[53].end 297.63846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 297.82409375
transcript.pyannote[54].end 300.30471875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 300.74346875
transcript.pyannote[55].end 306.63284375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 307.15596875
transcript.pyannote[56].end 310.81784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 310.95284375
transcript.pyannote[57].end 312.16784375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 312.08346875
transcript.pyannote[58].end 312.48846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 312.31971875
transcript.pyannote[59].end 316.69034375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 316.96034375
transcript.pyannote[60].end 340.48409375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 323.15346875
transcript.pyannote[61].end 323.17034375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 323.52471875
transcript.pyannote[62].end 323.57534375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 325.21221875
transcript.pyannote[63].end 325.44846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 340.78784375
transcript.pyannote[64].end 344.68596875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 342.79596875
transcript.pyannote[65].end 342.82971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 342.98159375
transcript.pyannote[66].end 343.04909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 344.98971875
transcript.pyannote[67].end 357.46034375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 347.74034375
transcript.pyannote[68].end 347.79096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 357.46034375
transcript.pyannote[69].end 400.62659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 361.25721875
transcript.pyannote[70].end 361.59471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 371.87159375
transcript.pyannote[71].end 372.34409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 380.34284375
transcript.pyannote[72].end 380.95034375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 387.17721875
transcript.pyannote[73].end 387.32909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 401.08221875
transcript.pyannote[74].end 404.44034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 404.81159375
transcript.pyannote[75].end 407.57909375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 407.47784375
transcript.pyannote[76].end 407.73096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 407.73096875
transcript.pyannote[77].end 408.47346875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 408.92909375
transcript.pyannote[78].end 410.86971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 411.39284375
transcript.pyannote[79].end 412.25346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 412.43909375
transcript.pyannote[80].end 424.13346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 416.86034375
transcript.pyannote[81].end 416.97846875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 417.06284375
transcript.pyannote[82].end 417.19784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 422.34471875
transcript.pyannote[83].end 422.83409375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 424.97721875
transcript.pyannote[84].end 436.13159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 436.72221875
transcript.pyannote[85].end 437.81909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 437.81909375
transcript.pyannote[86].end 438.07221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 438.07221875
transcript.pyannote[87].end 440.23221875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 438.08909375
transcript.pyannote[88].end 438.10596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 440.11409375
transcript.pyannote[89].end 442.79721875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 442.96596875
transcript.pyannote[90].end 445.07534375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 445.19346875
transcript.pyannote[91].end 456.29721875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 456.75284375
transcript.pyannote[92].end 462.45659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 459.89159375
transcript.pyannote[93].end 460.65096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 461.20784375
transcript.pyannote[94].end 468.43034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 468.41346875
transcript.pyannote[95].end 468.68346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 468.88596875
transcript.pyannote[96].end 474.85971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 471.48471875
transcript.pyannote[97].end 471.82221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 475.33221875
transcript.pyannote[98].end 494.08034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 485.38971875
transcript.pyannote[99].end 485.82846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 494.51909375
transcript.pyannote[100].end 498.01221875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 498.01221875
transcript.pyannote[101].end 498.53534375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 498.11346875
transcript.pyannote[102].end 498.18096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 498.28221875
transcript.pyannote[103].end 509.99346875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 510.36471875
transcript.pyannote[104].end 519.64596875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 519.64596875
transcript.pyannote[105].end 520.03409375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 520.03409375
transcript.pyannote[106].end 525.88971875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 526.42971875
transcript.pyannote[107].end 527.12159375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 527.22284375
transcript.pyannote[108].end 527.86409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 528.21846875
transcript.pyannote[109].end 529.36596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 529.11284375
transcript.pyannote[110].end 533.16284375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 530.02409375
transcript.pyannote[111].end 531.01971875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 533.39909375
transcript.pyannote[112].end 534.61409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 534.78284375
transcript.pyannote[113].end 535.00221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 535.00221875
transcript.pyannote[114].end 535.01909375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 535.01909375
transcript.pyannote[115].end 536.38596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 536.11596875
transcript.pyannote[116].end 538.09034375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 537.49971875
transcript.pyannote[117].end 550.00409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 541.44846875
transcript.pyannote[118].end 541.80284375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 542.88284375
transcript.pyannote[119].end 543.74346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 550.12221875
transcript.pyannote[120].end 558.07034375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 550.32471875
transcript.pyannote[121].end 550.35846875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 550.49346875
transcript.pyannote[122].end 550.51034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 554.64471875
transcript.pyannote[123].end 564.88784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 560.24721875
transcript.pyannote[124].end 566.20409375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 566.08596875
transcript.pyannote[125].end 567.75659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 567.84096875
transcript.pyannote[126].end 569.22471875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 570.10221875
transcript.pyannote[127].end 571.23284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 571.70534375
transcript.pyannote[128].end 573.73034375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 572.92034375
transcript.pyannote[129].end 576.12659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 574.77659375
transcript.pyannote[130].end 592.83284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 583.50096875
transcript.pyannote[131].end 583.90596875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 585.34034375
transcript.pyannote[132].end 585.74534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 586.20096875
transcript.pyannote[133].end 586.47096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 591.63471875
transcript.pyannote[134].end 594.92534375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 595.24596875
transcript.pyannote[135].end 610.61909375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 600.64596875
transcript.pyannote[136].end 600.84846875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 600.88221875
transcript.pyannote[137].end 601.10159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 610.50096875
transcript.pyannote[138].end 610.85534375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 610.75409375
transcript.pyannote[139].end 612.86346875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 613.38659375
transcript.pyannote[140].end 618.76971875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 619.00596875
transcript.pyannote[141].end 620.13659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 619.14096875
transcript.pyannote[142].end 623.71409375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 620.54159375
transcript.pyannote[143].end 620.96346875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 624.00096875
transcript.pyannote[144].end 632.69159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 633.33284375
transcript.pyannote[145].end 635.02034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 635.00346875
transcript.pyannote[146].end 644.16659375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 637.51784375
transcript.pyannote[147].end 638.88471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 643.17096875
transcript.pyannote[148].end 646.78221875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 646.64721875
transcript.pyannote[149].end 647.00159375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 647.25471875
transcript.pyannote[150].end 647.59221875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 648.48659375
transcript.pyannote[151].end 651.82784375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 652.31721875
transcript.pyannote[152].end 652.82346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 653.43096875
transcript.pyannote[153].end 656.53596875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 656.72159375
transcript.pyannote[154].end 657.19409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 657.81846875
transcript.pyannote[155].end 663.53909375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 663.57284375
transcript.pyannote[156].end 663.62346875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 663.72471875
transcript.pyannote[157].end 674.08596875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 668.61846875
transcript.pyannote[158].end 668.63534375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 668.93909375
transcript.pyannote[159].end 669.05721875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 672.44909375
transcript.pyannote[160].end 676.83659375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 676.83659375
transcript.pyannote[161].end 688.41284375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 684.22784375
transcript.pyannote[162].end 684.29534375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 687.09659375
transcript.pyannote[163].end 687.16409375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 688.64909375
transcript.pyannote[164].end 689.88096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 690.11721875
transcript.pyannote[165].end 695.88846875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 696.10784375
transcript.pyannote[166].end 697.79534375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 699.48284375
transcript.pyannote[167].end 702.03096875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 702.08159375
transcript.pyannote[168].end 702.85784375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 703.51596875
transcript.pyannote[169].end 704.35971875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 704.71409375
transcript.pyannote[170].end 705.15284375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 705.28784375
transcript.pyannote[171].end 709.05096875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 709.10159375
transcript.pyannote[172].end 710.45159375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 710.75534375
transcript.pyannote[173].end 713.59034375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 713.69159375
transcript.pyannote[174].end 717.85971875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 714.13034375
transcript.pyannote[175].end 714.50159375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 717.85971875
transcript.pyannote[176].end 718.70346875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 719.44596875
transcript.pyannote[177].end 723.05721875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 723.47909375
transcript.pyannote[178].end 725.94284375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 724.76159375
transcript.pyannote[179].end 725.20034375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 725.84159375
transcript.pyannote[180].end 726.19596875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 726.22971875
transcript.pyannote[181].end 726.85409375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 726.92159375
transcript.pyannote[182].end 728.79471875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 728.33909375
transcript.pyannote[183].end 731.83221875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 730.11096875
transcript.pyannote[184].end 731.47784375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 732.00096875
transcript.pyannote[185].end 733.41846875
transcript.whisperx[0].start 0.089
transcript.whisperx[0].end 1.55
transcript.whisperx[0].text 接下來請謝依鳳委員質詢謝謝主席我想要請陳部長請陳部長委員好
transcript.whisperx[1].start 20.324
transcript.whisperx[1].end 37.495
transcript.whisperx[1].text 部長我看到你說對於農業保險的這個就是說我們希望修正的在6年以後就是降低成補助就是可以達60%這個上限你不建議拿掉是不是是
transcript.whisperx[2].start 39.136
transcript.whisperx[2].end 66.218
transcript.whisperx[2].text 我覺得說我們今天在討論因為六年快到了嘛我們必須要來討論嘛那今天討論的很多委員所講的就是覆蓋率不高的問題是不是那你認為拿掉這個60%的上限對於法律沒有一個確定性讓公務人員也沒有遵循的標準那我們還有幾種修法啊
transcript.whisperx[3].start 66.798
transcript.whisperx[3].end 81.601
transcript.whisperx[3].text 對不對我們畢竟在這個目前這個農業保險沒有一個像我們來提到說保單的這個品項沒有辦法涵蓋全方面例如
transcript.whisperx[4].start 82.382
transcript.whisperx[4].end 95.886
transcript.whisperx[4].text 像我們今年彰化縣的荔枝因為低溫灼果不成所以導致於產量受損但是過去的農業保險的保單內容只有舊氣溫太高
transcript.whisperx[5].start 99.207
transcript.whisperx[5].end 121.923
transcript.whisperx[5].text 相關性來提出相關的保單而沒有對於氣溫太低造成灼果不易產生產果量不足這樣子的一個情況給予他的一個保單的內容嗎那這個部分你們未來怎麼樣子來提供相關的保單呢
transcript.whisperx[6].start 122.783
transcript.whisperx[6].end 130.395
transcript.whisperx[6].text 我想非常謝謝委員的一個提問特別是委員提這樣的一個案子其實也讓我們有機會能夠重新去思考
transcript.whisperx[7].start 131.209
transcript.whisperx[7].end 160.629
transcript.whisperx[7].text 那因為委員的版本把六年以下的劃掉了以後然後第二項又加了前項要去做滾動檢討嘛那變成前項只有變成前面五年而已前面五年已經過了就還是我們增加就是說增加就是說六年或者是把它留著以後然後第二項說要做滾動的檢討這第一個第二個部分我覺得委員一個重要的精神我們有catch到就是說
transcript.whisperx[8].start 161.829
transcript.whisperx[8].end 172.096
transcript.whisperx[8].text 我們要協助在某一個條件之下讓農民的保費能夠少繳一點那我們是希望用什麼用
transcript.whisperx[9].start 173.191
transcript.whisperx[9].end 200.474
transcript.whisperx[9].text 一個條件我舉個例子他如果每年都從事同樣作物的保險的時候那相對的他的保費是可以打折的我們用保費打折的概念會讓農民有一個另外一個誘因我不是跟天氣對賭今年好像颱風會來我就來保明年好像機會不大就不保我希望他們是一個持續性的投保那這樣子的話保險的覆蓋力不是保險的整個分擔風險的
transcript.whisperx[10].start 202.071
transcript.whisperx[10].end 212.749
transcript.whisperx[10].text 程度會變大那如果說連續兩年或連續三年都有保的時候我的保費的打折的比例我可以調整那這樣其實也達到委員的目的就是
transcript.whisperx[11].start 213.598
transcript.whisperx[11].end 237.246
transcript.whisperx[11].text 因為保費打折也要等於政府增加嘛那其實也是達到同仁的目的但是對農民來講喔不會造成農民說這都建物來出了後我就不要去管理了不要去幹什麼可是問題是目前我們在涵蓋率不足的情況下我們就已經到了這個六年要就是降低成就是保費補助只能60%的上限嘛
transcript.whisperx[12].start 238.846
transcript.whisperx[12].end 264.922
transcript.whisperx[12].text 那當然對於農民的這樣的投保率以及我們希望拉高這個就是農業保險的覆蓋率那會不會也有相關的你知道嗎農民也會覺得說未來整個保費的補助以及相關的誘因不足的情況下那我們怎麼樣子來增加農民的提保率有可能他們就不要啊
transcript.whisperx[13].start 265.622
transcript.whisperx[13].end 293.72
transcript.whisperx[13].text 所以我才會說我們現在更重要的作為是提高保單的品質去設計一些真正的符合農民需求的而且每一張保單你提到了設計保單那今天我們金管會的保險局也有來那對於農民的保單的設計那當然了會不會我們產業界的就是說所有的保險公司他們不願意共同的投入會不會
transcript.whisperx[14].start 294.82
transcript.whisperx[14].end 314.949
transcript.whisperx[14].text 我先跟委員說明也許金管會等一下再說明我覺得現在我們遇到的商業的保險公司其實他都還蠻樂意配合政策的那現在很重要一點就是我們保險的風險有沒有過去累積的資料並不夠長所以他在有限的資料去設計的時候那個風險值會變高
transcript.whisperx[15].start 317.45
transcript.whisperx[15].end 338.019
transcript.whisperx[15].text 風險值一變高的時候保費就會變高保費變高的時候農民看到這個保費也不想保了所以變成一個惡性循環但是隨著時間拉長你的保險本身的數據的累積夠多的時候就能夠趨近於一個比較合理的風險值而且我們會看就像剛才委員有提到的
transcript.whisperx[16].start 338.399
transcript.whisperx[16].end 357.3
transcript.whisperx[16].text 如果商業型保單現在平均的理賠率47那47我剛才說的好的理賠率應該是70到80包括可以扣除它的成本那如果比較低的話我們就會希望它能夠降低保費做一個動態的調整那這個東西就是我們現在在努力的
transcript.whisperx[17].start 357.5
transcript.whisperx[17].end 379.983
transcript.whisperx[17].text 但是對啊這是你們農業部期待的方向嗎但是商業保險這些保險公司有沒有辦法共同配合國家的政策嗎這也是我們在下一波應該要共同來檢討的嗎那你說到了去年的我看到你說去年我們的天然災害救助的八十幾億
transcript.whisperx[18].start 381.164
transcript.whisperx[18].end 403.62
transcript.whisperx[18].text 去年的災損是多少錢我的資料只有到112年112年是150億左右那隨著氣候變遷的條件因此加劇的情況下會不會導致於我們天然災害的這個受損的金額越來越高呢你有觀察到相關的趨勢嗎
transcript.whisperx[19].start 405.485
transcript.whisperx[19].end 423.721
transcript.whisperx[19].text 這個趨勢一定是逐步的上升啦等於說我們現在的像去年上個颱風那今年還沒有到颱風季真的颱風來我們已經因為低溫有沒有造成一些開花不結果的這個品項公告的品項有超過60項已經蠻高了表示說
transcript.whisperx[20].start 425.852
transcript.whisperx[20].end 440.422
transcript.whisperx[20].text 就是極端的天后造成農業經營不確定性越來越高這個越來越高的時候以去年大概農損大概500多億那我相信今年也不會太低啦以現在的天后來講也不會太低所以
transcript.whisperx[21].start 441.122
transcript.whisperx[21].end 455.952
transcript.whisperx[21].text 當我們加入了農業保險這樣的項目能不能共同的來就是說來幫助我們涵蓋所有受災農民的這樣子的一個就是
transcript.whisperx[22].start 456.892
transcript.whisperx[22].end 474.622
transcript.whisperx[22].text 受災的金額有沒有辦法共同來協助這就是我們未來的目標我們會再跟商業保險公司剛才也有委員提到農會也是一個可以承保的單位那農會跟農民的互動會更好也許我們可以共同努力還有一個重點就是
transcript.whisperx[23].start 475.402
transcript.whisperx[23].end 493.536
transcript.whisperx[23].text 中央跟地方因為農業部現在出百分一般都出二分之一那有些品項是地區型的品項地方政府會再加碼甚至於加了百分之三十百分之四十所以農民有時候只負擔百分之十百分之二十所以這個比例在這個法定其實
transcript.whisperx[24].start 494.617
transcript.whisperx[24].end 509.718
transcript.whisperx[24].text 我覺得它不會影響到中央跟地方的合作啦所以後續我想我們一定會透過中央跟地方的合作如果適當的品項的時候看怎麼樣去協助農民來做這個分擔如果風險高的話也許它的比例可以提高一點
transcript.whisperx[25].start 510.379
transcript.whisperx[25].end 525.693
transcript.whisperx[25].text 好還有你說了你去年你就答應我了今年你三個豬瘟都拔針了你說我們拔針的時候台灣的稻谷是不是可以輸到日本
transcript.whisperx[26].start 526.725
transcript.whisperx[26].end 542.638
transcript.whisperx[26].text 臺灣在什麼 稻谷 稻桿對 我們現在也在處理這個區塊因為臺灣的稻草啦對 稻草 稻桿嘛 做榻榻米的那個我們現在已經在談了因為當初他們有一個理由就是因為我們還有這些傳統豬瘟存在
transcript.whisperx[27].start 544.099
transcript.whisperx[27].end 568.807
transcript.whisperx[27].text 那現在沒有了包括我們的豬肉的生煎豬肉的削日本還有相關的稻草的削日其實他們也蠻需要業者蠻需要的做榻榻米啊那些東西所以我們同步已經在跟他們在談而且我們自己也可以處理我們的農費嘛對不對減少減少那個人家燒稻感吧委員關憲的我們一直在做啦那現在目前進行了怎樣喔談判的東西齁
transcript.whisperx[28].start 570.285
transcript.whisperx[28].end 594.553
transcript.whisperx[28].text 還要再跟他們爐啦還沒爐成功是不是這個要繼續努力啦還有啊剛才有委員提到我們彰化的194號米是你們農改廠出來的啊是不是是不是也應該要共同的推銷到日本嘛它的那個米相跟傳統的日本米的米相是不一樣的不是月光米的那種品種我跟委員報告我們現在有個想法就是
transcript.whisperx[29].start 595.333
transcript.whisperx[29].end 622.91
transcript.whisperx[29].text 我們會針對不同地區的特色米會建立地區的品牌然後會跟日方的通路做連結像今年二月初我們就邀請了日方的幾個大的商社來台灣然後我們有做了一個簡單的媒合讓他們了解台灣到底有多少種米讓他們試吃可是他們有擴大嘛對不對我們台灣米蔬日有擴大對不對
transcript.whisperx[30].start 624.062
transcript.whisperx[30].end 649.653
transcript.whisperx[30].text 沒有 擴大是固定的但是如果說我們的族群鎖定在比較高端的話它的配額外的關稅就算比較高那個售價還是有利潤的啦好那這個部分再麻煩你協助好不好會 一定會要協助我們彰化有非常多的米喔都是可以適合去外銷到日本去的而且要建立特有的品牌啦這個我想我們會來努力好 那那個美國的對等關稅7月8號會談完嗎我們
transcript.whisperx[31].start 653.756
transcript.whisperx[31].end 675.705
transcript.whisperx[31].text 會談完嗎?台美的關稅現在正在談判中那農業部的立場還是一致的就是在確保糧食安全產業永續的情形之下我們會尋求一個雙贏貿易雙贏的一個方法那我們不會放棄水稻讓它變成外界所說的關稅會不會最後要拿我們的農業去換
transcript.whisperx[32].start 677.086
transcript.whisperx[32].end 697.353
transcript.whisperx[32].text 我想我想總統已經宣示了很多次的包括院長也說的農民農漁民優先我們絕對不會犧牲農業來換取工業的一個利益那這個部分一定是國家整體考量那農業部有農業部的堅持我們也一定會堅持那7月8號會出來嗎照理論上應該要一定要出來對啊會嗎
transcript.whisperx[33].start 703.544
transcript.whisperx[33].end 718.467
transcript.whisperx[33].text 我相信會吧會啊我相信因為美國就三個月嘛三個月他就一定要處理啊你覺得會出來嗎那我覺得我們現在正在做積極的談判啊所以你覺得7月8號就是會出來了我希望
transcript.whisperx[34].start 719.54
transcript.whisperx[34].end 730.051
transcript.whisperx[34].text 什麼時候出來不是重點出來的結果是我們能夠大家都很開心的對那才是重點對所以你也不確定7月8號因為談判還在進行當中是不是對好 謝謝
gazette.lineno 675
gazette.blocks[0][0] 謝委員衣鳯:(11時21分)謝謝主席,我想要請陳部長。
gazette.blocks[1][0] 主席:請陳部長。
gazette.blocks[2][0] 陳部長駿季:委員好。
gazette.blocks[3][0] 謝委員衣鳯:部長,對於農業保險的修正,在六年以後降低補助可以達60%的上限,我有看到你說你不建議拿掉,是不是?
gazette.blocks[4][0] 陳部長駿季:是。
gazette.blocks[5][0] 謝委員衣鳯:因為六年快到了,所以我們必須要來討論,今天很多委員所講的就是覆蓋率不高的問題,是不是?
gazette.blocks[6][0] 陳部長駿季:是。
gazette.blocks[7][0] 謝委員衣鳯:你認為拿掉60%的上限,對於法律沒有一個確定性,讓公務人員也沒有遵循的標準,那我們還有幾種修法?就像我們剛才提到的,畢竟目前農業保險的保單品項沒有辦法涵蓋全方面,例如,今年彰化縣的荔枝因為低溫著果不成,導致產量受損,但是過去農業保險的保單內容只有就氣溫太高等相關性提出相關的保單,而沒有對於氣溫太低造成著果不易產生產果量不足的情況,給予保單的內容,在這個部分你們未來怎麼樣提供相關的保單呢?
gazette.blocks[8][0] 陳部長駿季:非常謝謝委員的提問,特別是委員提出這樣一個案子,其實也讓我們有機會能夠重新去思考,因為委員的版本把六年以下劃掉了以後,第二項又加了前項要去做滾動檢討,這樣子前項變成只有前面五年而已,但是前面五年已經過了……
gazette.blocks[9][0] 謝委員衣鳯:還是我們增加六年或者是……
gazette.blocks[10][0] 陳部長駿季:所以我的意思是把它留著,第二項加入要做滾動檢討,這是第一個。第二個部分,委員覺得重要的精神,我們有catch到,我們要協助在某一個條件之下,讓農民的保費能夠少繳一點,我們是希望用什麼條件,我舉個例子,他如果每年都是從事同樣作物保險的時候,相對地,他的保費是可以打折的,我們用保費打折的概念會讓農民有另外一個誘因,就是我不是跟天氣對賭,今年好像颱風會來,我就來投保,明年好像機會不大就不投保,我希望他們是持續性的投保,這樣子保險的覆蓋率,也就是保險分攤風險的程度會變大。他如果連續兩年或三年都有保的話,保費的打折比例可以調整,這樣其實也達到委員的目的,因為保費打折了以後,等於政府增加補助,其實也是達到同樣的目的。但是對農民來講,不會造成農民認為這都是由政府來出就好,他就不要去管理,不要去幹什麼,我就等到……
gazette.blocks[11][0] 謝委員衣鳯:可是問題是目前我們在涵蓋率不足的情況下,我們已經到了六年要降低保費補助只能60%的上限,對於農民的投保率以及我們希望拉高農業保險的覆蓋率,會不會也有相關的影響?農民也會覺得未來整個保費的補助以及相關誘因不足的情況下,我們怎麼樣增加農民的投保率,有可能他們就不要投保,是不是?
gazette.blocks[12][0] 陳部長駿季:對,所以我才會說,我們現在更重要的作為是提高保單的品質,去設計一些真正符合農民需求的保單,而且每一張保單……
gazette.blocks[13][0] 謝委員衣鳯:對,你提到了設計保單,今天我們金管會的保險局也有來,對於農業保險的保單設計,產業界所有保險公司會不會不願意共同投入?
gazette.blocks[14][0] 陳部長駿季:我先跟委員說明,也請金管會等一下再說明,現在我們遇到的商業保險公司,其實都還滿樂意配合政策的,現在很重要的一點就是我們保險風險過去累積的資料並不夠多,所以它在有限的資料要去設計的時候,那個風險值會變高,風險值一變高,保費就會變高,當保費變高的時候,農民看到這個保費也不想保了,所以變成一個惡性循環。但是隨著時間拉長,保險本身的數據累積夠多的時候,就能夠趨近於一個比較合理的風險值,而且我們會看,就像剛才委員有提到的,商業型保單現在平均的理賠率是47%,我剛才說好的理賠率應該是70%到80%,包括扣除他的成本,如果理賠率比較低的話,我們就會希望它能夠降低保費,來做一個動態調整,這個部分就是我們現在在努力的。
gazette.blocks[15][0] 謝委員衣鳯:對,這是我們農業部期待的方向,但是這些商業保險公司有沒有辦法共同配合國家的政策,這也是我們在下一波應該要共同來檢討的。你提到去年我們的天然災害救助八十幾億,去年的災損是多少錢?我的資料只有到112年,112年是150億左右,隨著氣候變遷條件因子加劇的情況下,會不會導致我們天然災害受損的金額越來越高呢?你有觀察到相關的趨勢嗎?
gazette.blocks[16][0] 陳部長駿季:這個趨勢一定是逐步地上升,像去年有3個颱風,今年還沒有到颱風季或真的颱風來,我們已經因為低溫造成一些開花不結果的狀況,公告的品項就超過60項,已經滿高的,表示極端天候造成農業經營的不確定性越來越高,去年農損將近五百多億,我相信今年也不會太低,以現在的天候來講也不會太低。
gazette.blocks[17][0] 謝委員衣鳯:所以當我們加入了農業保險的項目,能不能共同來幫助、涵蓋所有受災農民的受災金額,有沒有辦法共同來協助?這就是我們未來的目標,是不是?
gazette.blocks[18][0] 陳部長駿季:對,我們會再跟商業保險公司討論,剛才也有委員提到,農會也是一個可以承保的單位,農會跟農民的互動會更好,也許我們可以共同努力。還有一個重點,中央跟地方,因為農業部一般都出二分之一,有些品項是地區型的品項,地方政府會再加碼,甚至加了30%、40%,所以農民有時候只負擔10%、20%,這個比例其實我覺得不會影響到中央跟地方的合作。後續我們一定會透過中央跟地方的合作,如果有適當的品項,我們再看怎麼樣去協助農民來做分擔,如果風險高的話,也許它的比例可以提高一點。
gazette.blocks[19][0] 謝委員衣鳯:好,還有你說的去年你就答應我了,今年你3個豬瘟都拔針了,你說我們拔針的時候,臺灣的稻穀是不是可以輸到日本?
gazette.blocks[20][0] 陳部長駿季:臺灣的什麼?
gazette.blocks[21][0] 謝委員衣鳯:稻穀,稻稈那個……
gazette.blocks[22][0] 陳部長駿季:對,我們現在也在……
gazette.blocks[23][0] 謝委員衣鳯:對不對?農廢。
gazette.blocks[24][0] 陳部長駿季:也在處理這個區塊,因為臺灣的稻草……
gazette.blocks[25][0] 謝委員衣鳯:對,稻草,就是稻稈嘛!做榻榻米的嘛!
gazette.blocks[26][0] 陳部長駿季:我們現在已經在談了,因為當初他們有一個理由就是因為我們還有這些傳統豬瘟存在,現在沒有了,包括我們的生鮮豬肉銷日本,還有稻草銷日,其實他們業者蠻需要的,做榻榻米等那些東西。
gazette.blocks[27][0] 謝委員衣鳯:對啊!他們有需求嘛!
gazette.blocks[28][0] 陳部長駿季:所以我們已經同步跟他們在談了。
gazette.blocks[29][0] 謝委員衣鳯:而且我們自己也可以處理我們的農廢嘛,對不對?
gazette.blocks[30][0] 陳部長駿季:對。
gazette.blocks[31][0] 謝委員衣鳯:減少人家燒稻稈嘛!
gazette.blocks[32][0] 陳部長駿季:委員關切的,我們一直在做啦!
gazette.blocks[33][0] 謝委員衣鳯:現在進行的怎樣?
gazette.blocks[34][0] 陳部長駿季:談判的東西還要再跟他們「盧」啦!
gazette.blocks[35][0] 謝委員衣鳯:還沒「盧」成功是不是?
gazette.blocks[36][0] 陳部長駿季:這個要繼續努力啦!
gazette.blocks[37][0] 謝委員衣鳯:還有剛才有委員提到,我們彰化的194號米是你們農改場出來的,是不是?是不是也應該要共同推銷到日本嘛!它的米相跟傳統日本米的米相是不一樣的,不是越光米的品種。
gazette.blocks[38][0] 陳部長駿季:對,我跟委員報告,我們現在有個想法就是,我們會針對不同地區的特色米建立地區品牌,然後會跟日方的通路做連結,像今年2月初,我們就邀請了日方的幾個大商社來臺灣,然後我們做了一個簡單的媒合,讓他們了解臺灣到底有多少種米,讓他們試吃,然後做媒合。
gazette.blocks[39][0] 謝委員衣鳯:可是他們有quota嘛!對不對?我們臺灣米輸日有quota,對不對?
gazette.blocks[40][0] 陳部長駿季:沒有,quota是固定的,但是如果我們的族群鎖定在比較高端的話,就算它配額外的關稅比較高,售價還是有利潤的。
gazette.blocks[41][0] 謝委員衣鳯:這個部分再麻煩你協助,好不好?
gazette.blocks[42][0] 陳部長駿季:會,一定會協助。
gazette.blocks[43][0] 謝委員衣鳯:我們彰化有非常多的米都是適合外銷到日本的。
gazette.blocks[44][0] 陳部長駿季:對,而且要建立特有的品牌,這個我們會來努力。
gazette.blocks[45][0] 謝委員衣鳯:好,美國的對等關稅7月8號會談完嗎?
gazette.blocks[46][0] 陳部長駿季:我們臺美的關稅現在正在談判中,農業部的立場還是一致的,就是在確保糧食安全、產業永續的前提之下,我們會尋求貿易雙贏的方法,我們不會放棄水稻,讓它變成外界所說的零關稅。
gazette.blocks[47][0] 謝委員衣鳯:會不會最後要拿我們的農業去換?
gazette.blocks[48][0] 陳部長駿季:總統已經宣示了很多次,包括院長也說了,農漁民優先嘛!我們絕對不會犧牲農業來換取工業的利益,這個部分一定是國家整體考量,農業部有農業部的堅持,我們也一定會堅持。
gazette.blocks[49][0] 謝委員衣鳯:那7月8日會出來嗎?
gazette.blocks[50][0] 陳部長駿季:理論上應該一定要出來啦!
gazette.blocks[51][0] 謝委員衣鳯:會嗎?
gazette.blocks[52][0] 陳部長駿季:我相信會吧!
gazette.blocks[53][0] 謝委員衣鳯:會啊?
gazette.blocks[54][0] 陳部長駿季:我相信,因為美國就3個月嘛!3個月他就一定要處理。
gazette.blocks[55][0] 謝委員衣鳯:你覺得會出來嗎?
gazette.blocks[56][0] 陳部長駿季:我們現在正在做積極的談判。
gazette.blocks[57][0] 謝委員衣鳯:所以你覺得7月8號會出來?
gazette.blocks[58][0] 陳部長駿季:什麼時候出來不是重點,出來的結果是我們大家都能夠很開心,那才是重點。
gazette.blocks[59][0] 謝委員衣鳯:對,所以你也不確定7月8號?
gazette.blocks[60][0] 陳部長駿季:因為談判還在進行當中。
gazette.blocks[61][0] 謝委員衣鳯:好,謝謝。
gazette.blocks[62][0] 陳部長駿季:謝謝。
gazette.agenda.page_end 140
gazette.agenda.meet_id 聯席會議-11-3-19,20-3
gazette.agenda.speakers[0] 謝衣鳯
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 林德福
gazette.agenda.speakers[3] 鄭正鈐
gazette.agenda.speakers[4] 張啓楷
gazette.agenda.speakers[5] 鄭天財Sra Kacaw
gazette.agenda.speakers[6] 賴瑞隆
gazette.agenda.speakers[7] 林岱樺
gazette.agenda.speakers[8] 郭國文
gazette.agenda.speakers[9] 陳亭妃
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 張嘉郡
gazette.agenda.speakers[12] 蔡易餘
gazette.agenda.speakers[13] 陳超明
gazette.agenda.speakers[14] 鍾佳濱
gazette.agenda.speakers[15] 邱志偉
gazette.agenda.speakers[16] 徐富癸
gazette.agenda.speakers[17] 楊瓊瓔
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.speakers[19] 李彥秀
gazette.agenda.speakers[20] 麥玉珍
gazette.agenda.speakers[21] 黃珊珊
gazette.agenda.speakers[22] 呂玉玲
gazette.agenda.speakers[23] 林思銘
gazette.agenda.speakers[24] 羅明才
gazette.agenda.speakers[25] 徐欣瑩
gazette.agenda.page_start 63
gazette.agenda.meetingDate[0] 2025-06-11
gazette.agenda.gazette_id 1145901
gazette.agenda.agenda_lcidc_ids[0] 1145901_00003
gazette.agenda.meet_name 立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議紀錄
gazette.agenda.content 審查:一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案;二、本院委員邱 若華等21人擬具「農業保險法第二條及第十條條文修正草案」案;三、本院台灣民眾黨黨團擬具 「農業保險法第二條及第十條條文修正草案」案(詢答)
gazette.agenda.agenda_id 1145901_00002