iVOD / 162295

Field Value
IVOD_ID 162295
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162295
日期 2025-06-05
會議資料.會議代碼 委員會-11-3-20-15
會議資料.會議代碼:str 第11屆第3會期財政委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-05T11:41:35+08:00
結束時間 2025-06-05T11:51:29+08:00
影片長度 00:09:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3f41131fcd5ae564ff840afd7c6ab9bdbbacbcf4f939c22c46063d171e8badfa1ca84830d9e0e02a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 11:41:35 - 11:51:29
會議時間 2025-06-05T10:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第15次全體委員會議(事由:邀請審計部陳審計長瑞敏、衛生福利部就「最近疫情再起,有關衛生福利部過去所準備的快篩試劑、疫苗、各式藥品及相關醫療機構因應措施」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.49909375
transcript.pyannote[0].end 5.09346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.39721875
transcript.pyannote[1].end 18.17159375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 22.79534375
transcript.pyannote[2].end 23.50409375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 23.50409375
transcript.pyannote[3].end 24.26346875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.65159375
transcript.pyannote[4].end 26.62596875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 27.03096875
transcript.pyannote[5].end 28.41471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 29.39346875
transcript.pyannote[6].end 31.82346875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 31.97534375
transcript.pyannote[7].end 39.77159375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 40.19346875
transcript.pyannote[8].end 46.35284375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 46.43721875
transcript.pyannote[9].end 46.74096875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 46.74096875
transcript.pyannote[10].end 47.09534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 46.90971875
transcript.pyannote[11].end 51.68534375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 53.65971875
transcript.pyannote[12].end 53.77784375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 56.24159375
transcript.pyannote[13].end 61.28721875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 58.92471875
transcript.pyannote[14].end 59.17784375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 61.67534375
transcript.pyannote[15].end 62.01284375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 62.51909375
transcript.pyannote[16].end 74.43284375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 63.78471875
transcript.pyannote[17].end 64.67909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 66.18096875
transcript.pyannote[18].end 66.51846875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 68.49284375
transcript.pyannote[19].end 68.76284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 70.14659375
transcript.pyannote[20].end 71.05784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 73.26846875
transcript.pyannote[21].end 76.66034375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 74.68596875
transcript.pyannote[22].end 77.26784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 77.26784375
transcript.pyannote[23].end 87.51096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 87.83159375
transcript.pyannote[24].end 109.73534375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 108.97596875
transcript.pyannote[25].end 108.99284375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 109.02659375
transcript.pyannote[26].end 111.62534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 109.73534375
transcript.pyannote[27].end 109.75221875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 111.27096875
transcript.pyannote[28].end 111.30471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 111.30471875
transcript.pyannote[29].end 121.12596875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 111.62534375
transcript.pyannote[30].end 111.87846875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 120.83909375
transcript.pyannote[31].end 160.34346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 123.96096875
transcript.pyannote[32].end 125.63159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 160.54596875
transcript.pyannote[33].end 170.23221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 160.57971875
transcript.pyannote[34].end 161.11971875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 171.12659375
transcript.pyannote[35].end 174.33284375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 174.34971875
transcript.pyannote[36].end 179.34471875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 179.85096875
transcript.pyannote[37].end 180.37409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 181.06596875
transcript.pyannote[38].end 181.60596875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 181.60596875
transcript.pyannote[39].end 183.54659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 183.34409375
transcript.pyannote[40].end 200.48909375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 185.43659375
transcript.pyannote[41].end 185.45346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 185.47034375
transcript.pyannote[42].end 185.53784375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 200.79284375
transcript.pyannote[43].end 201.43409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 202.41284375
transcript.pyannote[44].end 208.75784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 209.23034375
transcript.pyannote[45].end 212.47034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 212.89221875
transcript.pyannote[46].end 229.76721875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 229.76721875
transcript.pyannote[47].end 252.04221875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 252.26159375
transcript.pyannote[48].end 252.27846875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 252.27846875
transcript.pyannote[49].end 267.87096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 267.98909375
transcript.pyannote[50].end 289.04909375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 283.19346875
transcript.pyannote[51].end 285.57284375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 289.28534375
transcript.pyannote[52].end 299.03909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 299.37659375
transcript.pyannote[53].end 299.68034375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 299.66346875
transcript.pyannote[54].end 331.05096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 322.49534375
transcript.pyannote[55].end 323.69346875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 329.51534375
transcript.pyannote[56].end 329.81909375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 332.51909375
transcript.pyannote[57].end 333.02534375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 333.10971875
transcript.pyannote[58].end 338.79659375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 339.26909375
transcript.pyannote[59].end 342.49221875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 341.80034375
transcript.pyannote[60].end 342.62721875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 342.86346875
transcript.pyannote[61].end 349.66409375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 348.63471875
transcript.pyannote[62].end 350.52471875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 350.72721875
transcript.pyannote[63].end 353.34284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 353.91659375
transcript.pyannote[64].end 358.69221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 358.92846875
transcript.pyannote[65].end 360.95346875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 361.37534375
transcript.pyannote[66].end 361.67909375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 362.03346875
transcript.pyannote[67].end 362.79284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 362.94471875
transcript.pyannote[68].end 365.54346875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 365.86409375
transcript.pyannote[69].end 368.22659375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 368.86784375
transcript.pyannote[70].end 376.27596875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 376.46159375
transcript.pyannote[71].end 378.03096875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 378.21659375
transcript.pyannote[72].end 387.37971875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 388.20659375
transcript.pyannote[73].end 393.45471875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 393.91034375
transcript.pyannote[74].end 394.31534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 394.92284375
transcript.pyannote[75].end 399.05721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 399.31034375
transcript.pyannote[76].end 400.76159375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 401.23409375
transcript.pyannote[77].end 407.00534375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 407.35971875
transcript.pyannote[78].end 407.89971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 408.15284375
transcript.pyannote[79].end 410.26221875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 409.57034375
transcript.pyannote[80].end 422.15909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 420.99471875
transcript.pyannote[81].end 424.84221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 425.19659375
transcript.pyannote[82].end 426.58034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 427.00221875
transcript.pyannote[83].end 434.79846875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 434.79846875
transcript.pyannote[84].end 437.59971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 434.89971875
transcript.pyannote[85].end 436.08096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 437.59971875
transcript.pyannote[86].end 437.76846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 437.76846875
transcript.pyannote[87].end 437.83596875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 437.83596875
transcript.pyannote[88].end 437.88659375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 437.88659375
transcript.pyannote[89].end 437.90346875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 437.90346875
transcript.pyannote[90].end 438.03846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 438.03846875
transcript.pyannote[91].end 482.80784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 482.80784375
transcript.pyannote[92].end 484.02284375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 484.61346875
transcript.pyannote[93].end 486.60471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 486.70596875
transcript.pyannote[94].end 487.11096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 487.29659375
transcript.pyannote[95].end 491.36346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 491.34659375
transcript.pyannote[96].end 491.70096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 491.49846875
transcript.pyannote[97].end 497.40471875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 497.94471875
transcript.pyannote[98].end 503.58096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 504.30659375
transcript.pyannote[99].end 509.08221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 509.23409375
transcript.pyannote[100].end 514.02659375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 514.49909375
transcript.pyannote[101].end 524.79284375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 525.23159375
transcript.pyannote[102].end 525.77159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 526.46346875
transcript.pyannote[103].end 526.95284375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 527.10471875
transcript.pyannote[104].end 528.30284375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 528.37034375
transcript.pyannote[105].end 529.63596875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 529.68659375
transcript.pyannote[106].end 533.06159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 533.39909375
transcript.pyannote[107].end 534.91784375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 534.95159375
transcript.pyannote[108].end 542.25846875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 542.47784375
transcript.pyannote[109].end 546.34221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 547.13534375
transcript.pyannote[110].end 548.89034375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 548.26596875
transcript.pyannote[111].end 549.51471875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 549.64971875
transcript.pyannote[112].end 576.43034375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 567.72284375
transcript.pyannote[113].end 568.00971875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 576.43034375
transcript.pyannote[114].end 580.93596875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 576.61596875
transcript.pyannote[115].end 576.91971875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 577.24034375
transcript.pyannote[116].end 578.75909375
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 579.45096875
transcript.pyannote[117].end 587.93909375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 587.92221875
transcript.pyannote[118].end 593.37284375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 588.96846875
transcript.pyannote[119].end 589.12034375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 590.68971875
transcript.pyannote[120].end 593.89596875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 593.57534375
transcript.pyannote[121].end 594.14909375
transcript.whisperx[0].start 1.57
transcript.whisperx[0].end 17.316
transcript.whisperx[0].text 好 謝謝主席各位列席 各位大家早我在這邊先聲明有關疫情需求的部分預算的部分我們請衛福部儘早送到立法院來我們會全力來協助主席 謝謝有請衛福部邱部長
transcript.whisperx[1].start 23.73
transcript.whisperx[1].end 48.361
transcript.whisperx[1].text 部長早部長現在疫情升溫的現在在升溫是那很多人都在網路上面謠傳說是因為藍白的立委刪了疫苗的預算那我想要在這邊跟部長請你做一下說明就是說疫苗採購的預算是編列在基金目前根本就沒有所謂的刪減跟凍結那會不會要趁這個機會來告訴民眾不要誤信謠言是不是這樣子 部長
transcript.whisperx[2].start 56.442
transcript.whisperx[2].end 70.511
transcript.whisperx[2].text 當然基金的財產也是公務預算補助啦其實都有互動但是這一次的基金的購買是沒有刪除的對就是疫苗防疫的部分但是在凍結剛剛你有提到1000萬的那個吼那個是業務費
transcript.whisperx[3].start 71.451
transcript.whisperx[3].end 87
transcript.whisperx[3].text 那個部分有影響到我們對 你剛剛說的是另外一部分我現在問的部長已經解凍了啦我們要很明確不是解凍歸解凍那是另外一件事我們要說的就是疫苗採購這些部分不管是這個包括我們
transcript.whisperx[4].start 88.642
transcript.whisperx[4].end 105.482
transcript.whisperx[4].text 審計部的這個部分也是在1213114年的也都是這個都是在這個疫苗基金裡面所以這個部分也都沒有所謂的刪減或凍結所以要在這個機會讓衛福部來說明就是說疫苗的基金
transcript.whisperx[5].start 106.623
transcript.whisperx[5].end 134.746
transcript.whisperx[5].text 預算完全沒有凍結跟刪減對不對部長是不是那個署長要不要先回答一下我再報告一下就是有關那個公務基金公務預算補這個疫苗基金的部分原來有凍結1000萬疫苗的部分有凍結不過已經解凍了不是你剛剛提到凍結就是剛剛業務費的部分對業務費那除了之外所以應該這麼講就是說目前這個也還沒有二三讀所以根本就沒有凍結買疫苗的錢一文未減這是很明確的
transcript.whisperx[6].start 135.126
transcript.whisperx[6].end 155.797
transcript.whisperx[6].text 那第二個就是2021年6月7號到2023年的5月1號期間因為為了要鼓勵醫療院所協助執行大規模的新冠疫苗接種作業所以政府提供每人這個公費疫苗100元的處置費另外100元額外加碼的這個獎勵金這個獎勵就是要作為醫療院所不收掛號費的一個補貼這是明確的這是對的嘛
transcript.whisperx[7].start 162.161
transcript.whisperx[7].end 176.509
transcript.whisperx[7].text 所以現在短少的100元獎勵金的部分是因為我們衛福部這邊沒有編列這100元的獎勵金對不對那個是用特別預算 現在沒有特別預算對 所以是因為我們衛福部這邊沒有編列這100元的獎勵金對不對
transcript.whisperx[8].start 181.738
transcript.whisperx[8].end 192.842
transcript.whisperx[8].text 因為那個要有特別預算才有啦沒有這個預算所以沒有編嘛所以不是因為預算刪減的問題是因為沒有這個預算沒有這個特別預算所以沒有編所以這樣很明確我們是在這邊要澄清這些謠言謝謝部長這部分我想還回歸正題因為
transcript.whisperx[9].start 202.452
transcript.whisperx[9].end 229.213
transcript.whisperx[9].text 都有廉價我們的急診數你剛剛有報告上升了許多像這個是急診就診人數45.9%然後這個住院人數較前一週上漲了18.6%那所以我想在這麼高的一個就診人數的一個情況趨勢這往上升那我們衛福部會不會再一次把新冠升級為法定傳染病會不會有沒有這個
transcript.whisperx[10].start 230.073
transcript.whisperx[10].end 251.804
transcript.whisperx[10].text 因為它本來就第四類傳染病 新委員的執行那傳染病其實是依照致死率 發生率 還有傳播速度等危害程度來分類那現在因為整個國際間 包括WHO也把這樣的新冠變成一個常規監測的方面所以目前來講還沒有到達需要去升級的地步
transcript.whisperx[11].start 252.344
transcript.whisperx[11].end 269.12
transcript.whisperx[11].text 就是說如果有這個必要我們就會來做這樣子的一個裁判定那另外我再請教就是說我還是要提醒衛福部就快篩用藥還有邊境的檢疫事後後續的這些醫療處理這個部分我們因為你們推估從6月到7月初是疫情的高峰嘛
transcript.whisperx[12].start 270.561
transcript.whisperx[12].end 297.876
transcript.whisperx[12].text 從五月底到八月初整體染疫人數將會上達高達170萬人次所以現在民眾都很關注我們的所有的防疫作為尤其像快篩試劑現在不足嘛馬上會補足我知道剛剛我聽到你的報告那包括這個抗毒抗病毒的藥物等等這些要讓他盡快的充足那另外我們警官署最近也跟這些我們醫界的團體舉行過會議
transcript.whisperx[13].start 299.717
transcript.whisperx[13].end 324.052
transcript.whisperx[13].text 整個研疫的研疫新冠病情的這些防疫作為都聚焦在這個快篩試劑還有抗病毒的藥物那你剛剛都說了很多也說得很完整那我是要提醒就是說我們還是要告訴民眾要告訴民眾說如果出現了新冠疫情的病狀我們還是要如果是比較輕的病狀還是要在診所就醫診所就醫那如果像
transcript.whisperx[14].start 325.372
transcript.whisperx[14].end 349.886
transcript.whisperx[14].text 這種症狀嚴重的還有長者跟小孩的部分才建議到醫院那確實是因為說我們現在目前COVID-19的施打情形你剛剛也有報告了所以你現在也是鼓勵民眾要盡速的來施打COVID-19對不對是這樣子的我們10月1號還沒有打的現在6個月以上就可以打最好是大家有一個問題就是美國的CDC
transcript.whisperx[15].start 353.968
transcript.whisperx[15].end 367.779
transcript.whisperx[15].text 他說如果家長和醫生同意有必要新冠疫苗仍是健康兒童的接種選項但是他這個觀點跟美國的衛生部長他日前的宣布不同調
transcript.whisperx[16].start 368.922
transcript.whisperx[16].end 393.077
transcript.whisperx[16].text 美國的這個衛福部長在社群媒體上面發布影片說他非常高興的宣布從今天起針對健康兒童健康孕婦的新冠疫苗已從疾病管制預防中心CDC預防接種建議時程中移除所以我要請教部長說那現在我們國內在施打的疫苗都是美國的莫德納
transcript.whisperx[17].start 394.98
transcript.whisperx[17].end 406.638
transcript.whisperx[17].text 他是一家美國的部長跟他們的CDC有不同的看法那他們連美國衛福部部長都對於他們的疫苗都有疑慮那我們衛福部
transcript.whisperx[18].start 407.441
transcript.whisperx[18].end 421.906
transcript.whisperx[18].text 要的指引是什麼我們有堅強的防疫專家我們的任何怎麼施打包括騎乘換尾其實都有經過ACIP請教說為什麼他們的衛福部長會要求
transcript.whisperx[19].start 427.068
transcript.whisperx[19].end 443.584
transcript.whisperx[19].text 等於是說跟他們的CDC不同調然後認為說健康的兒童跟健康的孕婦不適合施打他們的疫苗主要是因為本身美國的部長他本身也是一個反疫苗的一個人士
transcript.whisperx[20].start 444.204
transcript.whisperx[20].end 471.091
transcript.whisperx[20].text 那再加上說他是希望說FDA美國FDA在今年10月的時候的那個就是有關健康有關兒童跟孕婦的這一塊能有更多的證據來提供所以他是希望說可以進行一些理想試驗主要是因為他是認為過去的這個很多人感染很多人這個也打了疫苗那這個評估很難做一個建議不過這個部分我們事實上
transcript.whisperx[21].start 472.352
transcript.whisperx[21].end 496.426
transcript.whisperx[21].text 會 其實各國有各有不同的意見那我們會在收集之後在ACIP的一個我們國內ACIP的委員在做一個討論來做一個建議 以上好 謝謝署長那我再請教病床的問題部長你是醫界出身那我非常尊敬你但是像急診擁塞沒有病床這個部分我看到你們的報告書裡面是寫是
transcript.whisperx[22].start 498.027
transcript.whisperx[22].end 524.554
transcript.whisperx[22].text 告訴我們說病床是充裕的但是我們實際知道的情況這個從這個健保署重度急救責任醫院急診及時查詢結果到6月2日子林口禪更有147人台大醫院有119人等待住院那隨著這次疫情的升溫我們醫師職業工會也都跳出來講說一切的窘境都往這個
transcript.whisperx[23].start 526.694
transcript.whisperx[23].end 545.168
transcript.whisperx[23].text 惡化的方向演進那家屋病房人力不足人力流失而縮緊人手關閉病床那不同的醫院之間也依靠電話逐床逐院問床總是問不到願意接手的醫院那急診醫師只能感嘆的說不要生重病不要生重病那外部在這邊
transcript.whisperx[24].start 547.169
transcript.whisperx[24].end 575.885
transcript.whisperx[24].text 有什麼不就措施我們在過年那一波其實已經建立好有三大策略兩大方向第一個就是分級分流要做好院內的病房的病床的調控要配合急診的需求還有當然提高提高相關的給付這個其實都有幫忙我相信都有幫忙那剛剛您提的這個是大概是不是禮拜一的狀況台大醫院大概禮拜一都會大概一百二十個
transcript.whisperx[25].start 576.605
transcript.whisperx[25].end 580.47
transcript.whisperx[25].text 我們在講重症病床是比較充裕那當然就職的人士是比較多一點是有這樣子我們不要讓第一線的醫務人員我們一定會努力