iVOD / 162201

Field Value
IVOD_ID 162201
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162201
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-26-15
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T10:23:04+08:00
結束時間 2025-06-04T10:32:26+08:00
影片長度 00:09:22
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b982844bdc9dca737d57669516374867620ce1b0714f80b9af8b5941388ba911f71655ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱鎮軍
委員發言時間 10:23:04 - 10:32:26
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 7.18596875
transcript.pyannote[0].end 9.22784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 15.97784375
transcript.pyannote[1].end 17.64846875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.91846875
transcript.pyannote[2].end 20.02784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 20.19659375
transcript.pyannote[3].end 40.49721875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 41.39159375
transcript.pyannote[4].end 48.86721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 49.69409375
transcript.pyannote[5].end 53.42346875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 54.08159375
transcript.pyannote[6].end 56.32596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 57.10221875
transcript.pyannote[7].end 58.03034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 58.63784375
transcript.pyannote[8].end 60.05534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 60.17346875
transcript.pyannote[9].end 61.77659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 62.33346875
transcript.pyannote[10].end 66.56909375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 67.07534375
transcript.pyannote[11].end 69.35346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 70.63596875
transcript.pyannote[12].end 73.11659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 73.42034375
transcript.pyannote[13].end 79.07346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 79.73159375
transcript.pyannote[14].end 80.86221875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 81.45284375
transcript.pyannote[15].end 81.94221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 82.19534375
transcript.pyannote[16].end 89.63721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 89.73846875
transcript.pyannote[17].end 104.52096875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 102.86721875
transcript.pyannote[18].end 113.54909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 113.54909375
transcript.pyannote[19].end 113.56596875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 113.81909375
transcript.pyannote[20].end 114.03846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 114.03846875
transcript.pyannote[21].end 114.71346875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 115.25346875
transcript.pyannote[22].end 115.27034375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 115.27034375
transcript.pyannote[23].end 119.77596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 118.96596875
transcript.pyannote[24].end 124.99034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 124.99034375
transcript.pyannote[25].end 131.77409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 129.09096875
transcript.pyannote[26].end 133.52909375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 133.52909375
transcript.pyannote[27].end 145.32471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 133.54596875
transcript.pyannote[28].end 133.73159375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 145.71284375
transcript.pyannote[29].end 151.82159375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 148.68284375
transcript.pyannote[30].end 153.05346875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 153.27284375
transcript.pyannote[31].end 157.23846875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 157.69409375
transcript.pyannote[32].end 168.39284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 169.05096875
transcript.pyannote[33].end 169.52346875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 170.23221875
transcript.pyannote[34].end 176.88096875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 172.10534375
transcript.pyannote[35].end 173.60721875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 174.90659375
transcript.pyannote[36].end 175.49721875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 176.88096875
transcript.pyannote[37].end 177.15096875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 177.18471875
transcript.pyannote[38].end 190.00971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 186.61784375
transcript.pyannote[39].end 205.33221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 203.39159375
transcript.pyannote[40].end 213.73596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 211.22159375
transcript.pyannote[41].end 219.32159375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 219.76034375
transcript.pyannote[42].end 237.34409375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 237.63096875
transcript.pyannote[43].end 249.03846875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 249.03846875
transcript.pyannote[44].end 251.43471875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 252.26159375
transcript.pyannote[45].end 260.09159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 260.73284375
transcript.pyannote[46].end 267.28034375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 260.80034375
transcript.pyannote[47].end 284.03721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 268.95096875
transcript.pyannote[48].end 272.78159375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 284.03721875
transcript.pyannote[49].end 284.88096875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 286.07909375
transcript.pyannote[50].end 287.58096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 287.95221875
transcript.pyannote[51].end 301.97534375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 301.97534375
transcript.pyannote[52].end 305.40096875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 305.97471875
transcript.pyannote[53].end 319.54221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 320.21721875
transcript.pyannote[54].end 321.04409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 322.76534375
transcript.pyannote[55].end 323.91284375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 325.17846875
transcript.pyannote[56].end 326.35971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 330.34221875
transcript.pyannote[57].end 330.64596875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 330.74721875
transcript.pyannote[58].end 331.81034375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 335.77596875
transcript.pyannote[59].end 336.02909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 336.02909375
transcript.pyannote[60].end 336.60284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 337.37909375
transcript.pyannote[61].end 338.66159375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 338.57721875
transcript.pyannote[62].end 341.86784375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 342.61034375
transcript.pyannote[63].end 343.82534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 344.68596875
transcript.pyannote[64].end 347.23409375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 349.41096875
transcript.pyannote[65].end 350.03534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 351.08159375
transcript.pyannote[66].end 352.71846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 351.16596875
transcript.pyannote[67].end 352.00971875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 353.49471875
transcript.pyannote[68].end 358.03409375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 354.15284375
transcript.pyannote[69].end 355.09784375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 358.03409375
transcript.pyannote[70].end 358.45596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 358.45596875
transcript.pyannote[71].end 358.94534375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 358.94534375
transcript.pyannote[72].end 358.96221875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 358.96221875
transcript.pyannote[73].end 359.02971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 359.02971875
transcript.pyannote[74].end 360.07596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 360.22784375
transcript.pyannote[75].end 361.69596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 363.14721875
transcript.pyannote[76].end 363.77159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 364.48034375
transcript.pyannote[77].end 368.44596875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 367.02846875
transcript.pyannote[78].end 367.09596875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 368.78346875
transcript.pyannote[79].end 369.34034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 369.76221875
transcript.pyannote[80].end 370.89284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 370.89284375
transcript.pyannote[81].end 371.09534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 371.09534375
transcript.pyannote[82].end 371.12909375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 371.12909375
transcript.pyannote[83].end 371.17971875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 371.17971875
transcript.pyannote[84].end 371.19659375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 371.19659375
transcript.pyannote[85].end 371.53409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 371.53409375
transcript.pyannote[86].end 371.60159375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 371.60159375
transcript.pyannote[87].end 373.28909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 373.60971875
transcript.pyannote[88].end 377.03534375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 377.03534375
transcript.pyannote[89].end 377.27159375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 378.57096875
transcript.pyannote[90].end 384.57846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 382.85721875
transcript.pyannote[91].end 384.51096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 384.57846875
transcript.pyannote[92].end 392.88096875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 393.42096875
transcript.pyannote[93].end 400.13721875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 401.58846875
transcript.pyannote[94].end 413.48534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 414.39659375
transcript.pyannote[95].end 422.41221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 423.17159375
transcript.pyannote[96].end 423.86346875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 424.65659375
transcript.pyannote[97].end 440.97471875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 426.15846875
transcript.pyannote[98].end 426.79971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 440.97471875
transcript.pyannote[99].end 445.51409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 446.54346875
transcript.pyannote[100].end 447.11721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 447.11721875
transcript.pyannote[101].end 454.35659375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 454.99784375
transcript.pyannote[102].end 459.40221875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 459.63846875
transcript.pyannote[103].end 462.01784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 462.35534375
transcript.pyannote[104].end 467.90721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 468.56534375
transcript.pyannote[105].end 475.83846875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 472.91909375
transcript.pyannote[106].end 479.50034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 480.49596875
transcript.pyannote[107].end 481.96409375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 481.96409375
transcript.pyannote[108].end 482.03159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 482.74034375
transcript.pyannote[109].end 483.17909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 483.83721875
transcript.pyannote[110].end 489.15284375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 489.84471875
transcript.pyannote[111].end 499.83471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 500.47596875
transcript.pyannote[112].end 501.97784375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 501.97784375
transcript.pyannote[113].end 505.63971875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 506.14596875
transcript.pyannote[114].end 506.58471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 507.51284375
transcript.pyannote[115].end 515.96721875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 508.23846875
transcript.pyannote[116].end 509.36909375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 510.93846875
transcript.pyannote[117].end 511.83284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 517.16534375
transcript.pyannote[118].end 518.92034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 520.23659375
transcript.pyannote[119].end 521.02971875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 521.02971875
transcript.pyannote[120].end 524.60721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 521.09721875
transcript.pyannote[121].end 521.26596875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 523.94909375
transcript.pyannote[122].end 529.11284375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 530.39534375
transcript.pyannote[123].end 531.01971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 531.72846875
transcript.pyannote[124].end 536.14971875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 535.12034375
transcript.pyannote[125].end 544.03034375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 544.14846875
transcript.pyannote[126].end 544.75596875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 545.75159375
transcript.pyannote[127].end 546.61221875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 548.35034375
transcript.pyannote[128].end 549.02534375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 549.02534375
transcript.pyannote[129].end 557.58096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 560.14596875
transcript.pyannote[130].end 561.14159375
transcript.whisperx[0].start 7.303
transcript.whisperx[0].end 8.857
transcript.whisperx[0].text 主席好 我們請洪部長
transcript.whisperx[1].start 16.027
transcript.whisperx[1].end 22.03
transcript.whisperx[1].text 邱委員好部長好部長我想請問你根據主計總數的統計我們2024年中央及地方政府的潛藏負債達到20兆6490億元其中勞保潛藏負債佔最大中有13兆6466億
transcript.whisperx[2].start 41.448
transcript.whisperx[2].end 69.111
transcript.whisperx[2].text 那我要這樣講 勞工朋友每個月在繳保費就像定期的把錢丟進一個存錢筒那說想說等老了之後呢可以領回來過日子但現在這個存錢筒破了一個大洞政府每年拿稅金去補連補了八年已經到今年已經快四千億了 還是補不完那我想問部長 這個是不是該修理一下
transcript.whisperx[3].start 70.783
transcript.whisperx[3].end 88.48
transcript.whisperx[3].text 還是要等到水都漏光了我們才開始修我想其實勞保財務的問題政府態度一直很清楚就是政府會負最後的責任你要怎麼負責任當然現在其實我們有很多不同的做法其實都是希望盡力在維持基金的水位你的錢要從哪裡來
transcript.whisperx[4].start 90.141
transcript.whisperx[4].end 114.298
transcript.whisperx[4].text 包括我們這幾年其實在這個投資上面其實也效益是不錯的那撥補當然其實也是其中一個那其實我們有一些其他的做法希望再盡力的去拉升這個基金的水位你講到撥補撥補就像我們在一個破洞的這個容器裡面一直加水你認為一直加一直補水一直漏這樣有用嗎
transcript.whisperx[5].start 115.599
transcript.whisperx[5].end 144.118
transcript.whisperx[5].text 其實撥補這幾年確實是達到一定維持基金水位的那以後呢你這個撥補總不能說變成一個永遠都用撥補的狀態吧你的政策不改嗎我們並不是要說一定要永遠的撥補可是撥補確實在那你現在除了撥補之外你還有沒有其他的想法想更具體的做我想其實這幾年在基金的投資上面的效果是蠻好的那我包括我們也透過各種其他在包括剛才講到說我們在鼓勵這個中高齡高齡者的就業跟這個
transcript.whisperx[6].start 146.04
transcript.whisperx[6].end 167.718
transcript.whisperx[6].text 投入這個勞保那也包括其實我們在講話納保跟肌膚的審查我們總統當然也講過啦只要政府在勞保就不會倒那我在想我看到那個我們總統他的院長他說新財化法就會影響撥補的金額那個做法是不是在就跟總統的立場不一樣啊對不對
transcript.whisperx[7].start 170.67
transcript.whisperx[7].end 193.609
transcript.whisperx[7].text 並沒有衝突 我想其實政府在沒有錢怎麼補啊 我們的態度就是政府在你 你就沒有錢啊 那你要怎麼補不是沒有錢 是確實是會有影響所以這是為什麼我們認為現在這個新修的財化法它在分配上面是有很大的意義的對 這也是行政不斷的在緊張 我現在講的問題就是說不管財化法或者是其他原因那它有可能
transcript.whisperx[8].start 194.289
transcript.whisperx[8].end 216.914
transcript.whisperx[8].text 未來都是會發生的啦你不能說等到發生了你再來解決再來想說要怎麼樣解決這個問題我現在講的意思是這個我希望部長你是部長這是為什麼我們之前對於這個新修的財務法一直在表達其實真的要非常的非常的謹慎甚至他可能會有政府當然會負責嘛政府會負責那你說政府負責可是錢從哪裡來你要從稅徵收
transcript.whisperx[9].start 220.616
transcript.whisperx[9].end 236.873
transcript.whisperx[9].text 還是去借那未來是誰還是我們的年輕人來去未來的年輕人去償還這些嗎對不對這一代的事情是不是應該在這一代來解決另外你說基金基金當然這十年來這個平均粉絲面可是還是逆差
transcript.whisperx[10].start 237.974
transcript.whisperx[10].end 259.8
transcript.whisperx[10].text 制度本身這個還是逆差只是你不改革只是想靠投資來這個來彌補年金的這個虧損你覺得這個是一個長久之計嗎我這樣跟你說明執政團隊的政府的立場當然就是政府會對勞保負最終的責任但我們也很希望國會可以支持
transcript.whisperx[11].start 262.221
transcript.whisperx[11].end 282.335
transcript.whisperx[11].text 國會支持我們來確保中央政府相關的台政的狀況國會支持是一件事情不是說一直拿我們納稅人的錢去補啊你懂我意思嗎國會當然支持只要你有新的做法我們當然會支持可是如果你只是一直要挖錢來補這個洞你認為這是對的嗎
transcript.whisperx[12].start 286.107
transcript.whisperx[12].end 305.256
transcript.whisperx[12].text 跟文說明齁其實撥補這當然是現在是有助於維持勞保基金水位的一個現在是有效的做法所以這部分當然也是政府表達我們負責任態度其中的重要的做法之一啊我就跟你講了嘛撥補不是長久之計嘛
transcript.whisperx[13].start 306.276
transcript.whisperx[13].end 320.526
transcript.whisperx[13].text 你已經補了四千億了,八年了,那你還要補多久?像你講說基金這幾年有賺錢那基金賺錢不代表夠用啊你去年在那個有一個補了,我看一下你去年賺多少錢?你基金賺多少錢?
transcript.whisperx[14].start 335.816
transcript.whisperx[14].end 343.219
transcript.whisperx[14].text 去年賺了1629億那你今年一到四月你就虧了多少錢你就虧了快兩千億啊你怎麼補呢老保是300我說基金基金賺了一千多億沒錯啊可是你今年一到四月你就虧了快兩千億啊1991億那是八個基金加起來八個基金
transcript.whisperx[15].start 365.261
transcript.whisperx[15].end 376.989
transcript.whisperx[15].text 相應兩千億是八個基金 八個基金加起來那 勞保基金是三百虧三百是嗎對啊你還是不夠啊 我認為這個都是不穩定的 你知道嗎
transcript.whisperx[16].start 378.615
transcript.whisperx[16].end 399.882
transcript.whisperx[16].text 那個我們當然都盡力用各種方式去維持基金的水位那不過當然整體的勞保改革你一直當然投資是一個來償還那然後又用撥補然後又說你們會負責任那我現在要的是部長你是主管單位嘛對不對那你有沒有更具體的做法你有沒有想過你想要做什麼
transcript.whisperx[17].start 401.618
transcript.whisperx[17].end 423.366
transcript.whisperx[17].text 我想我們其實就是用各種方式那包括多元開源的方式那剛剛也講到說其實我們也希望鼓勵更多中高齡或高齡者來回到職場那甚至加入投保那都希望透過這種方式來多挹注一些基金的水位跟開源你說什麼
transcript.whisperx[18].start 425.042
transcript.whisperx[18].end 445.181
transcript.whisperx[18].text 你剛才再講一下我說我們現在政策上面其實也在鼓勵中高齡或高齡者的重返職場如果有更多的高齡者重返職場然後其實也投入勞保的話那我想都有機會他之前投的就快領不太到了你又快倒了你又叫他回來
transcript.whisperx[19].start 446.847
transcript.whisperx[19].end 466.608
transcript.whisperx[19].text 這是兩件事吧我們不能用你這個想法如果這樣想法那大家都不要那這其實可能對勞保的財務來說會更嚴峻啊對啊所以我們當然是希望在這裡面有更多的開源的做法然後更多種可以提高效益的做法這當然是去維持基金財務的一個態度
transcript.whisperx[20].start 468.63
transcript.whisperx[20].end 488.68
transcript.whisperx[20].text 所以並不是說現在基金怎樣所以大家就不要來投保那是反而保持基金更大的財務上面的威脅你除了這個你還有沒有更具體的呢有沒有想過有沒有想過要解決這個問題我們就是希望透過這些多元的做法來去做維持你覺得夠嗎 這些做法夠嗎
transcript.whisperx[21].start 490.115
transcript.whisperx[21].end 518.141
transcript.whisperx[21].text 當然都可以再有更精進的空間可是目前我們其實就是希望這些方法那這些方法在這幾年其實對水位確實是有幫助的然後呢 但是我覺得這樣子你只是延緩它破產 對不對目前是這些做法是有延緩你這些做法只是延緩那我現在是要的是要一個有一個根本的有一個想有一個新的做法你部長你沒有想過這個問題
transcript.whisperx[22].start 520.473
transcript.whisperx[22].end 546.098
transcript.whisperx[22].text 你沒有討論過我想我們各種問題我想我們各種方法其實都你什麼時候不然這樣啦你要多久時間寫一個這個你的初步的一個想法給我我覺得我可以我們可以再做更多的討論甚至在這邊交換意見不要討論不要討論只變成一個儀式嘛那個然後又不了了之然後又再研議這有什麼意義呢對不對你是不是有一個具體的做法我給你三個月時間
transcript.whisperx[23].start 548.393
transcript.whisperx[23].end 557.343
transcript.whisperx[23].text 你寫一個方向我想我們當然要提供給委員一些接下來維持基金所要的做法我們可以提供好謝謝部長好謝謝