IVOD_ID |
162201 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162201 |
日期 |
2025-06-04 |
會議資料.會議代碼 |
委員會-11-3-26-15 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-04T10:23:04+08:00 |
結束時間 |
2025-06-04T10:32:26+08:00 |
影片長度 |
00:09:22 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b982844bdc9dca737d57669516374867620ce1b0714f80b9af8b5941388ba911f71655ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱鎮軍 |
委員發言時間 |
10:23:04 - 10:32:26 |
會議時間 |
2025-06-04T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
7.18596875 |
transcript.pyannote[0].end |
9.22784375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
15.97784375 |
transcript.pyannote[1].end |
17.64846875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
17.91846875 |
transcript.pyannote[2].end |
20.02784375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
20.19659375 |
transcript.pyannote[3].end |
40.49721875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
41.39159375 |
transcript.pyannote[4].end |
48.86721875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
49.69409375 |
transcript.pyannote[5].end |
53.42346875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
54.08159375 |
transcript.pyannote[6].end |
56.32596875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
57.10221875 |
transcript.pyannote[7].end |
58.03034375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
58.63784375 |
transcript.pyannote[8].end |
60.05534375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
60.17346875 |
transcript.pyannote[9].end |
61.77659375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
62.33346875 |
transcript.pyannote[10].end |
66.56909375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
67.07534375 |
transcript.pyannote[11].end |
69.35346875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
70.63596875 |
transcript.pyannote[12].end |
73.11659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
73.42034375 |
transcript.pyannote[13].end |
79.07346875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
79.73159375 |
transcript.pyannote[14].end |
80.86221875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
81.45284375 |
transcript.pyannote[15].end |
81.94221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
82.19534375 |
transcript.pyannote[16].end |
89.63721875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
89.73846875 |
transcript.pyannote[17].end |
104.52096875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
102.86721875 |
transcript.pyannote[18].end |
113.54909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
113.54909375 |
transcript.pyannote[19].end |
113.56596875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
113.81909375 |
transcript.pyannote[20].end |
114.03846875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
114.03846875 |
transcript.pyannote[21].end |
114.71346875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
115.25346875 |
transcript.pyannote[22].end |
115.27034375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
115.27034375 |
transcript.pyannote[23].end |
119.77596875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
118.96596875 |
transcript.pyannote[24].end |
124.99034375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
124.99034375 |
transcript.pyannote[25].end |
131.77409375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
129.09096875 |
transcript.pyannote[26].end |
133.52909375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
133.52909375 |
transcript.pyannote[27].end |
145.32471875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
133.54596875 |
transcript.pyannote[28].end |
133.73159375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
145.71284375 |
transcript.pyannote[29].end |
151.82159375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
148.68284375 |
transcript.pyannote[30].end |
153.05346875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
153.27284375 |
transcript.pyannote[31].end |
157.23846875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
157.69409375 |
transcript.pyannote[32].end |
168.39284375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
169.05096875 |
transcript.pyannote[33].end |
169.52346875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
170.23221875 |
transcript.pyannote[34].end |
176.88096875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
172.10534375 |
transcript.pyannote[35].end |
173.60721875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
174.90659375 |
transcript.pyannote[36].end |
175.49721875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
176.88096875 |
transcript.pyannote[37].end |
177.15096875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
177.18471875 |
transcript.pyannote[38].end |
190.00971875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
186.61784375 |
transcript.pyannote[39].end |
205.33221875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
203.39159375 |
transcript.pyannote[40].end |
213.73596875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
211.22159375 |
transcript.pyannote[41].end |
219.32159375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
219.76034375 |
transcript.pyannote[42].end |
237.34409375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
237.63096875 |
transcript.pyannote[43].end |
249.03846875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
249.03846875 |
transcript.pyannote[44].end |
251.43471875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
252.26159375 |
transcript.pyannote[45].end |
260.09159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
260.73284375 |
transcript.pyannote[46].end |
267.28034375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
260.80034375 |
transcript.pyannote[47].end |
284.03721875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
268.95096875 |
transcript.pyannote[48].end |
272.78159375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
284.03721875 |
transcript.pyannote[49].end |
284.88096875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
286.07909375 |
transcript.pyannote[50].end |
287.58096875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
287.95221875 |
transcript.pyannote[51].end |
301.97534375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
301.97534375 |
transcript.pyannote[52].end |
305.40096875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
305.97471875 |
transcript.pyannote[53].end |
319.54221875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
320.21721875 |
transcript.pyannote[54].end |
321.04409375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
322.76534375 |
transcript.pyannote[55].end |
323.91284375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
325.17846875 |
transcript.pyannote[56].end |
326.35971875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
330.34221875 |
transcript.pyannote[57].end |
330.64596875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
330.74721875 |
transcript.pyannote[58].end |
331.81034375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
335.77596875 |
transcript.pyannote[59].end |
336.02909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
336.02909375 |
transcript.pyannote[60].end |
336.60284375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
337.37909375 |
transcript.pyannote[61].end |
338.66159375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
338.57721875 |
transcript.pyannote[62].end |
341.86784375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
342.61034375 |
transcript.pyannote[63].end |
343.82534375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
344.68596875 |
transcript.pyannote[64].end |
347.23409375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
349.41096875 |
transcript.pyannote[65].end |
350.03534375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
351.08159375 |
transcript.pyannote[66].end |
352.71846875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
351.16596875 |
transcript.pyannote[67].end |
352.00971875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
353.49471875 |
transcript.pyannote[68].end |
358.03409375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
354.15284375 |
transcript.pyannote[69].end |
355.09784375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
358.03409375 |
transcript.pyannote[70].end |
358.45596875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
358.45596875 |
transcript.pyannote[71].end |
358.94534375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
358.94534375 |
transcript.pyannote[72].end |
358.96221875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
358.96221875 |
transcript.pyannote[73].end |
359.02971875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
359.02971875 |
transcript.pyannote[74].end |
360.07596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
360.22784375 |
transcript.pyannote[75].end |
361.69596875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
363.14721875 |
transcript.pyannote[76].end |
363.77159375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
364.48034375 |
transcript.pyannote[77].end |
368.44596875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
367.02846875 |
transcript.pyannote[78].end |
367.09596875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
368.78346875 |
transcript.pyannote[79].end |
369.34034375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
369.76221875 |
transcript.pyannote[80].end |
370.89284375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
370.89284375 |
transcript.pyannote[81].end |
371.09534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
371.09534375 |
transcript.pyannote[82].end |
371.12909375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
371.12909375 |
transcript.pyannote[83].end |
371.17971875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
371.17971875 |
transcript.pyannote[84].end |
371.19659375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
371.19659375 |
transcript.pyannote[85].end |
371.53409375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
371.53409375 |
transcript.pyannote[86].end |
371.60159375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
371.60159375 |
transcript.pyannote[87].end |
373.28909375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
373.60971875 |
transcript.pyannote[88].end |
377.03534375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
377.03534375 |
transcript.pyannote[89].end |
377.27159375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
378.57096875 |
transcript.pyannote[90].end |
384.57846875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
382.85721875 |
transcript.pyannote[91].end |
384.51096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
384.57846875 |
transcript.pyannote[92].end |
392.88096875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
393.42096875 |
transcript.pyannote[93].end |
400.13721875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
401.58846875 |
transcript.pyannote[94].end |
413.48534375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
414.39659375 |
transcript.pyannote[95].end |
422.41221875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
423.17159375 |
transcript.pyannote[96].end |
423.86346875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
424.65659375 |
transcript.pyannote[97].end |
440.97471875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
426.15846875 |
transcript.pyannote[98].end |
426.79971875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
440.97471875 |
transcript.pyannote[99].end |
445.51409375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
446.54346875 |
transcript.pyannote[100].end |
447.11721875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
447.11721875 |
transcript.pyannote[101].end |
454.35659375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
454.99784375 |
transcript.pyannote[102].end |
459.40221875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
459.63846875 |
transcript.pyannote[103].end |
462.01784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
462.35534375 |
transcript.pyannote[104].end |
467.90721875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
468.56534375 |
transcript.pyannote[105].end |
475.83846875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
472.91909375 |
transcript.pyannote[106].end |
479.50034375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
480.49596875 |
transcript.pyannote[107].end |
481.96409375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
481.96409375 |
transcript.pyannote[108].end |
482.03159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
482.74034375 |
transcript.pyannote[109].end |
483.17909375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
483.83721875 |
transcript.pyannote[110].end |
489.15284375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
489.84471875 |
transcript.pyannote[111].end |
499.83471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
500.47596875 |
transcript.pyannote[112].end |
501.97784375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
501.97784375 |
transcript.pyannote[113].end |
505.63971875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
506.14596875 |
transcript.pyannote[114].end |
506.58471875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
507.51284375 |
transcript.pyannote[115].end |
515.96721875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
508.23846875 |
transcript.pyannote[116].end |
509.36909375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
510.93846875 |
transcript.pyannote[117].end |
511.83284375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
517.16534375 |
transcript.pyannote[118].end |
518.92034375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
520.23659375 |
transcript.pyannote[119].end |
521.02971875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
521.02971875 |
transcript.pyannote[120].end |
524.60721875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
521.09721875 |
transcript.pyannote[121].end |
521.26596875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
523.94909375 |
transcript.pyannote[122].end |
529.11284375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
530.39534375 |
transcript.pyannote[123].end |
531.01971875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
531.72846875 |
transcript.pyannote[124].end |
536.14971875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
535.12034375 |
transcript.pyannote[125].end |
544.03034375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
544.14846875 |
transcript.pyannote[126].end |
544.75596875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
545.75159375 |
transcript.pyannote[127].end |
546.61221875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
548.35034375 |
transcript.pyannote[128].end |
549.02534375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
549.02534375 |
transcript.pyannote[129].end |
557.58096875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
560.14596875 |
transcript.pyannote[130].end |
561.14159375 |
transcript.whisperx[0].start |
7.303 |
transcript.whisperx[0].end |
8.857 |
transcript.whisperx[0].text |
主席好 我們請洪部長 |
transcript.whisperx[1].start |
16.027 |
transcript.whisperx[1].end |
22.03 |
transcript.whisperx[1].text |
邱委員好部長好部長我想請問你根據主計總數的統計我們2024年中央及地方政府的潛藏負債達到20兆6490億元其中勞保潛藏負債佔最大中有13兆6466億 |
transcript.whisperx[2].start |
41.448 |
transcript.whisperx[2].end |
69.111 |
transcript.whisperx[2].text |
那我要這樣講 勞工朋友每個月在繳保費就像定期的把錢丟進一個存錢筒那說想說等老了之後呢可以領回來過日子但現在這個存錢筒破了一個大洞政府每年拿稅金去補連補了八年已經到今年已經快四千億了 還是補不完那我想問部長 這個是不是該修理一下 |
transcript.whisperx[3].start |
70.783 |
transcript.whisperx[3].end |
88.48 |
transcript.whisperx[3].text |
還是要等到水都漏光了我們才開始修我想其實勞保財務的問題政府態度一直很清楚就是政府會負最後的責任你要怎麼負責任當然現在其實我們有很多不同的做法其實都是希望盡力在維持基金的水位你的錢要從哪裡來 |
transcript.whisperx[4].start |
90.141 |
transcript.whisperx[4].end |
114.298 |
transcript.whisperx[4].text |
包括我們這幾年其實在這個投資上面其實也效益是不錯的那撥補當然其實也是其中一個那其實我們有一些其他的做法希望再盡力的去拉升這個基金的水位你講到撥補撥補就像我們在一個破洞的這個容器裡面一直加水你認為一直加一直補水一直漏這樣有用嗎 |
transcript.whisperx[5].start |
115.599 |
transcript.whisperx[5].end |
144.118 |
transcript.whisperx[5].text |
其實撥補這幾年確實是達到一定維持基金水位的那以後呢你這個撥補總不能說變成一個永遠都用撥補的狀態吧你的政策不改嗎我們並不是要說一定要永遠的撥補可是撥補確實在那你現在除了撥補之外你還有沒有其他的想法想更具體的做我想其實這幾年在基金的投資上面的效果是蠻好的那我包括我們也透過各種其他在包括剛才講到說我們在鼓勵這個中高齡高齡者的就業跟這個 |
transcript.whisperx[6].start |
146.04 |
transcript.whisperx[6].end |
167.718 |
transcript.whisperx[6].text |
投入這個勞保那也包括其實我們在講話納保跟肌膚的審查我們總統當然也講過啦只要政府在勞保就不會倒那我在想我看到那個我們總統他的院長他說新財化法就會影響撥補的金額那個做法是不是在就跟總統的立場不一樣啊對不對 |
transcript.whisperx[7].start |
170.67 |
transcript.whisperx[7].end |
193.609 |
transcript.whisperx[7].text |
並沒有衝突 我想其實政府在沒有錢怎麼補啊 我們的態度就是政府在你 你就沒有錢啊 那你要怎麼補不是沒有錢 是確實是會有影響所以這是為什麼我們認為現在這個新修的財化法它在分配上面是有很大的意義的對 這也是行政不斷的在緊張 我現在講的問題就是說不管財化法或者是其他原因那它有可能 |
transcript.whisperx[8].start |
194.289 |
transcript.whisperx[8].end |
216.914 |
transcript.whisperx[8].text |
未來都是會發生的啦你不能說等到發生了你再來解決再來想說要怎麼樣解決這個問題我現在講的意思是這個我希望部長你是部長這是為什麼我們之前對於這個新修的財務法一直在表達其實真的要非常的非常的謹慎甚至他可能會有政府當然會負責嘛政府會負責那你說政府負責可是錢從哪裡來你要從稅徵收 |
transcript.whisperx[9].start |
220.616 |
transcript.whisperx[9].end |
236.873 |
transcript.whisperx[9].text |
還是去借那未來是誰還是我們的年輕人來去未來的年輕人去償還這些嗎對不對這一代的事情是不是應該在這一代來解決另外你說基金基金當然這十年來這個平均粉絲面可是還是逆差 |
transcript.whisperx[10].start |
237.974 |
transcript.whisperx[10].end |
259.8 |
transcript.whisperx[10].text |
制度本身這個還是逆差只是你不改革只是想靠投資來這個來彌補年金的這個虧損你覺得這個是一個長久之計嗎我這樣跟你說明執政團隊的政府的立場當然就是政府會對勞保負最終的責任但我們也很希望國會可以支持 |
transcript.whisperx[11].start |
262.221 |
transcript.whisperx[11].end |
282.335 |
transcript.whisperx[11].text |
國會支持我們來確保中央政府相關的台政的狀況國會支持是一件事情不是說一直拿我們納稅人的錢去補啊你懂我意思嗎國會當然支持只要你有新的做法我們當然會支持可是如果你只是一直要挖錢來補這個洞你認為這是對的嗎 |
transcript.whisperx[12].start |
286.107 |
transcript.whisperx[12].end |
305.256 |
transcript.whisperx[12].text |
跟文說明齁其實撥補這當然是現在是有助於維持勞保基金水位的一個現在是有效的做法所以這部分當然也是政府表達我們負責任態度其中的重要的做法之一啊我就跟你講了嘛撥補不是長久之計嘛 |
transcript.whisperx[13].start |
306.276 |
transcript.whisperx[13].end |
320.526 |
transcript.whisperx[13].text |
你已經補了四千億了,八年了,那你還要補多久?像你講說基金這幾年有賺錢那基金賺錢不代表夠用啊你去年在那個有一個補了,我看一下你去年賺多少錢?你基金賺多少錢? |
transcript.whisperx[14].start |
335.816 |
transcript.whisperx[14].end |
343.219 |
transcript.whisperx[14].text |
去年賺了1629億那你今年一到四月你就虧了多少錢你就虧了快兩千億啊你怎麼補呢老保是300我說基金基金賺了一千多億沒錯啊可是你今年一到四月你就虧了快兩千億啊1991億那是八個基金加起來八個基金 |
transcript.whisperx[15].start |
365.261 |
transcript.whisperx[15].end |
376.989 |
transcript.whisperx[15].text |
相應兩千億是八個基金 八個基金加起來那 勞保基金是三百虧三百是嗎對啊你還是不夠啊 我認為這個都是不穩定的 你知道嗎 |
transcript.whisperx[16].start |
378.615 |
transcript.whisperx[16].end |
399.882 |
transcript.whisperx[16].text |
那個我們當然都盡力用各種方式去維持基金的水位那不過當然整體的勞保改革你一直當然投資是一個來償還那然後又用撥補然後又說你們會負責任那我現在要的是部長你是主管單位嘛對不對那你有沒有更具體的做法你有沒有想過你想要做什麼 |
transcript.whisperx[17].start |
401.618 |
transcript.whisperx[17].end |
423.366 |
transcript.whisperx[17].text |
我想我們其實就是用各種方式那包括多元開源的方式那剛剛也講到說其實我們也希望鼓勵更多中高齡或高齡者來回到職場那甚至加入投保那都希望透過這種方式來多挹注一些基金的水位跟開源你說什麼 |
transcript.whisperx[18].start |
425.042 |
transcript.whisperx[18].end |
445.181 |
transcript.whisperx[18].text |
你剛才再講一下我說我們現在政策上面其實也在鼓勵中高齡或高齡者的重返職場如果有更多的高齡者重返職場然後其實也投入勞保的話那我想都有機會他之前投的就快領不太到了你又快倒了你又叫他回來 |
transcript.whisperx[19].start |
446.847 |
transcript.whisperx[19].end |
466.608 |
transcript.whisperx[19].text |
這是兩件事吧我們不能用你這個想法如果這樣想法那大家都不要那這其實可能對勞保的財務來說會更嚴峻啊對啊所以我們當然是希望在這裡面有更多的開源的做法然後更多種可以提高效益的做法這當然是去維持基金財務的一個態度 |
transcript.whisperx[20].start |
468.63 |
transcript.whisperx[20].end |
488.68 |
transcript.whisperx[20].text |
所以並不是說現在基金怎樣所以大家就不要來投保那是反而保持基金更大的財務上面的威脅你除了這個你還有沒有更具體的呢有沒有想過有沒有想過要解決這個問題我們就是希望透過這些多元的做法來去做維持你覺得夠嗎 這些做法夠嗎 |
transcript.whisperx[21].start |
490.115 |
transcript.whisperx[21].end |
518.141 |
transcript.whisperx[21].text |
當然都可以再有更精進的空間可是目前我們其實就是希望這些方法那這些方法在這幾年其實對水位確實是有幫助的然後呢 但是我覺得這樣子你只是延緩它破產 對不對目前是這些做法是有延緩你這些做法只是延緩那我現在是要的是要一個有一個根本的有一個想有一個新的做法你部長你沒有想過這個問題 |
transcript.whisperx[22].start |
520.473 |
transcript.whisperx[22].end |
546.098 |
transcript.whisperx[22].text |
你沒有討論過我想我們各種問題我想我們各種方法其實都你什麼時候不然這樣啦你要多久時間寫一個這個你的初步的一個想法給我我覺得我可以我們可以再做更多的討論甚至在這邊交換意見不要討論不要討論只變成一個儀式嘛那個然後又不了了之然後又再研議這有什麼意義呢對不對你是不是有一個具體的做法我給你三個月時間 |
transcript.whisperx[23].start |
548.393 |
transcript.whisperx[23].end |
557.343 |
transcript.whisperx[23].text |
你寫一個方向我想我們當然要提供給委員一些接下來維持基金所要的做法我們可以提供好謝謝部長好謝謝 |