IVOD_ID |
162190 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162190 |
日期 |
2025-06-04 |
會議資料.會議代碼 |
委員會-11-3-26-15 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-04T09:43:06+08:00 |
結束時間 |
2025-06-04T09:56:22+08:00 |
影片長度 |
00:13:16 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b98284203dff1f5230e4b69516374867620cef0976ba27860ef1202c9b1c5cbfb041b5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
劉建國 |
委員發言時間 |
09:43:06 - 09:56:22 |
會議時間 |
2025-06-04T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.70159375 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
1.88721875 |
transcript.pyannote[1].end |
2.29221875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
2.29221875 |
transcript.pyannote[2].end |
3.35534375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
2.95034375 |
transcript.pyannote[3].end |
4.55346875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
5.17784375 |
transcript.pyannote[4].end |
11.48909375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
12.01221875 |
transcript.pyannote[5].end |
19.33596875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
19.77471875 |
transcript.pyannote[6].end |
26.74409375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
27.14909375 |
transcript.pyannote[7].end |
30.55784375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
31.03034375 |
transcript.pyannote[8].end |
32.98784375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
33.40971875 |
transcript.pyannote[9].end |
34.13534375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
34.50659375 |
transcript.pyannote[10].end |
37.03784375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
34.65846875 |
transcript.pyannote[11].end |
35.21534375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
37.03784375 |
transcript.pyannote[12].end |
82.06034375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
82.06034375 |
transcript.pyannote[13].end |
127.57221875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
97.70346875 |
transcript.pyannote[14].end |
98.34471875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
128.26409375 |
transcript.pyannote[15].end |
139.73909375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
140.59971875 |
transcript.pyannote[16].end |
189.97596875 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
189.97596875 |
transcript.pyannote[17].end |
203.27346875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
203.40846875 |
transcript.pyannote[18].end |
203.71221875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
203.69534375 |
transcript.pyannote[19].end |
211.45784375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
210.73221875 |
transcript.pyannote[20].end |
214.96784375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
212.48721875 |
transcript.pyannote[21].end |
212.80784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
214.96784375 |
transcript.pyannote[22].end |
215.03534375 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
215.03534375 |
transcript.pyannote[23].end |
227.05034375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
215.08596875 |
transcript.pyannote[24].end |
215.20409375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
215.28846875 |
transcript.pyannote[25].end |
215.32221875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
221.24534375 |
transcript.pyannote[26].end |
221.58284375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
227.20221875 |
transcript.pyannote[27].end |
246.18659375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
245.79846875 |
transcript.pyannote[28].end |
257.25659375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
257.84721875 |
transcript.pyannote[29].end |
258.84284375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
259.26471875 |
transcript.pyannote[30].end |
262.99409375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
262.99409375 |
transcript.pyannote[31].end |
280.30784375 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
263.50034375 |
transcript.pyannote[32].end |
263.83784375 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
268.15784375 |
transcript.pyannote[33].end |
268.59659375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
268.59659375 |
transcript.pyannote[34].end |
268.61346875 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
280.30784375 |
transcript.pyannote[35].end |
293.97659375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
286.50096875 |
transcript.pyannote[36].end |
287.53034375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
294.70221875 |
transcript.pyannote[37].end |
297.84096875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
298.24596875 |
transcript.pyannote[38].end |
299.68034375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
299.95034375 |
transcript.pyannote[39].end |
301.65471875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
301.08096875 |
transcript.pyannote[40].end |
301.72221875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
301.85721875 |
transcript.pyannote[41].end |
302.22846875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
302.22846875 |
transcript.pyannote[42].end |
332.38409375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
332.83971875 |
transcript.pyannote[43].end |
333.98721875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
334.94909375 |
transcript.pyannote[44].end |
335.84346875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
335.96159375 |
transcript.pyannote[45].end |
339.03284375 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
339.06659375 |
transcript.pyannote[46].end |
344.78721875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
344.78721875 |
transcript.pyannote[47].end |
352.93784375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
352.93784375 |
transcript.pyannote[48].end |
353.03909375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
353.03909375 |
transcript.pyannote[49].end |
359.95784375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
359.95784375 |
transcript.pyannote[50].end |
360.34596875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
360.34596875 |
transcript.pyannote[51].end |
360.36284375 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
360.36284375 |
transcript.pyannote[52].end |
360.37971875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
360.37971875 |
transcript.pyannote[53].end |
360.44721875 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
360.44721875 |
transcript.pyannote[54].end |
365.71221875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
360.48096875 |
transcript.pyannote[55].end |
361.08846875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
365.71221875 |
transcript.pyannote[56].end |
395.96909375 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
395.96909375 |
transcript.pyannote[57].end |
419.03721875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
419.03721875 |
transcript.pyannote[58].end |
432.03096875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
432.03096875 |
transcript.pyannote[59].end |
463.09784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
432.31784375 |
transcript.pyannote[60].end |
432.50346875 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
463.14846875 |
transcript.pyannote[61].end |
485.37284375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
486.50346875 |
transcript.pyannote[62].end |
489.27096875 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
487.81971875 |
transcript.pyannote[63].end |
488.24159375 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
489.27096875 |
transcript.pyannote[64].end |
490.01346875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
490.36784375 |
transcript.pyannote[65].end |
491.75159375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
492.08909375 |
transcript.pyannote[66].end |
509.84159375 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
501.69096875 |
transcript.pyannote[67].end |
502.36596875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
508.27221875 |
transcript.pyannote[68].end |
509.75721875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
509.84159375 |
transcript.pyannote[69].end |
510.16221875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
510.16221875 |
transcript.pyannote[70].end |
510.38159375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
510.38159375 |
transcript.pyannote[71].end |
516.70971875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
515.78159375 |
transcript.pyannote[72].end |
517.92471875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
517.92471875 |
transcript.pyannote[73].end |
518.56596875 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
519.13971875 |
transcript.pyannote[74].end |
520.15221875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
520.87784375 |
transcript.pyannote[75].end |
521.46846875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
521.70471875 |
transcript.pyannote[76].end |
522.09284375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
522.10971875 |
transcript.pyannote[77].end |
522.75096875 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
523.05471875 |
transcript.pyannote[78].end |
524.05034375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
524.62409375 |
transcript.pyannote[79].end |
527.23971875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
527.27346875 |
transcript.pyannote[80].end |
529.82159375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
530.76659375 |
transcript.pyannote[81].end |
531.05346875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
531.05346875 |
transcript.pyannote[82].end |
531.07034375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
531.45846875 |
transcript.pyannote[83].end |
531.52596875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
531.52596875 |
transcript.pyannote[84].end |
532.74096875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
532.80846875 |
transcript.pyannote[85].end |
536.62221875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
537.19596875 |
transcript.pyannote[86].end |
544.80659375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
539.08596875 |
transcript.pyannote[87].end |
539.86221875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
545.19471875 |
transcript.pyannote[88].end |
547.94534375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
546.86534375 |
transcript.pyannote[89].end |
549.31221875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
550.78034375 |
transcript.pyannote[90].end |
551.25284375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
551.86034375 |
transcript.pyannote[91].end |
564.22971875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
563.26784375 |
transcript.pyannote[92].end |
567.28409375 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
567.36846875 |
transcript.pyannote[93].end |
569.03909375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
567.82409375 |
transcript.pyannote[94].end |
568.61721875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
569.03909375 |
transcript.pyannote[95].end |
570.91221875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
570.91221875 |
transcript.pyannote[96].end |
574.94534375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
571.38471875 |
transcript.pyannote[97].end |
572.16096875 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
576.02534375 |
transcript.pyannote[98].end |
593.44034375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
576.09284375 |
transcript.pyannote[99].end |
577.81409375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
594.68909375 |
transcript.pyannote[100].end |
596.34284375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
597.70971875 |
transcript.pyannote[101].end |
598.03034375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
598.58721875 |
transcript.pyannote[102].end |
601.70909375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
599.48159375 |
transcript.pyannote[103].end |
599.86971875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
600.32534375 |
transcript.pyannote[104].end |
600.49409375 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
602.35034375 |
transcript.pyannote[105].end |
604.64534375 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
604.91534375 |
transcript.pyannote[106].end |
605.15159375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
605.65784375 |
transcript.pyannote[107].end |
606.78846875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
608.54346875 |
transcript.pyannote[108].end |
616.55909375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
616.62659375 |
transcript.pyannote[109].end |
640.30221875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
641.14596875 |
transcript.pyannote[110].end |
653.61659375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
654.47721875 |
transcript.pyannote[111].end |
656.35034375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
657.09284375 |
transcript.pyannote[112].end |
659.20221875 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
659.65784375 |
transcript.pyannote[113].end |
661.19346875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
661.48034375 |
transcript.pyannote[114].end |
662.99909375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
663.58971875 |
transcript.pyannote[115].end |
665.27721875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
666.61034375 |
transcript.pyannote[116].end |
669.32721875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
669.64784375 |
transcript.pyannote[117].end |
670.25534375 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
670.59284375 |
transcript.pyannote[118].end |
671.92596875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
671.92596875 |
transcript.pyannote[119].end |
671.94284375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
674.28846875 |
transcript.pyannote[120].end |
678.18659375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
678.38909375 |
transcript.pyannote[121].end |
678.40596875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
678.40596875 |
transcript.pyannote[122].end |
678.42284375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
678.42284375 |
transcript.pyannote[123].end |
678.96284375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
678.96284375 |
transcript.pyannote[124].end |
680.58284375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
680.58284375 |
transcript.pyannote[125].end |
681.08909375 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
681.08909375 |
transcript.pyannote[126].end |
684.29534375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
681.12284375 |
transcript.pyannote[127].end |
681.44346875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
684.68346875 |
transcript.pyannote[128].end |
686.10096875 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
685.40909375 |
transcript.pyannote[129].end |
686.59034375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
686.42159375 |
transcript.pyannote[130].end |
686.45534375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
686.48909375 |
transcript.pyannote[131].end |
705.55784375 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
703.31346875 |
transcript.pyannote[132].end |
714.51846875 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
715.39596875 |
transcript.pyannote[133].end |
716.44221875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
716.62784375 |
transcript.pyannote[134].end |
719.02409375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
719.02409375 |
transcript.pyannote[135].end |
727.42784375 |
transcript.pyannote[136].speaker |
SPEAKER_02 |
transcript.pyannote[136].start |
724.08659375 |
transcript.pyannote[136].end |
729.03096875 |
transcript.pyannote[137].speaker |
SPEAKER_02 |
transcript.pyannote[137].start |
729.08159375 |
transcript.pyannote[137].end |
730.43159375 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
730.65096875 |
transcript.pyannote[138].end |
732.62534375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
733.28346875 |
transcript.pyannote[139].end |
733.60409375 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
734.04284375 |
transcript.pyannote[140].end |
734.71784375 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
735.20721875 |
transcript.pyannote[141].end |
735.89909375 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
736.13534375 |
transcript.pyannote[142].end |
736.92846875 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
737.35034375 |
transcript.pyannote[143].end |
738.29534375 |
transcript.pyannote[144].speaker |
SPEAKER_02 |
transcript.pyannote[144].start |
739.96596875 |
transcript.pyannote[144].end |
742.98659375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
742.98659375 |
transcript.pyannote[145].end |
743.00346875 |
transcript.pyannote[146].speaker |
SPEAKER_02 |
transcript.pyannote[146].start |
743.27346875 |
transcript.pyannote[146].end |
744.72471875 |
transcript.pyannote[147].speaker |
SPEAKER_02 |
transcript.pyannote[147].start |
745.87221875 |
transcript.pyannote[147].end |
748.52159375 |
transcript.pyannote[148].speaker |
SPEAKER_02 |
transcript.pyannote[148].start |
748.84221875 |
transcript.pyannote[148].end |
749.29784375 |
transcript.pyannote[149].speaker |
SPEAKER_02 |
transcript.pyannote[149].start |
750.31034375 |
transcript.pyannote[149].end |
750.74909375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
751.18784375 |
transcript.pyannote[150].end |
753.97221875 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
751.44096875 |
transcript.pyannote[151].end |
753.28034375 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
753.97221875 |
transcript.pyannote[152].end |
756.95909375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
754.32659375 |
transcript.pyannote[153].end |
755.87909375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
756.95909375 |
transcript.pyannote[154].end |
757.31346875 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
757.31346875 |
transcript.pyannote[155].end |
772.06221875 |
transcript.pyannote[156].speaker |
SPEAKER_02 |
transcript.pyannote[156].start |
772.41659375 |
transcript.pyannote[156].end |
773.54721875 |
transcript.pyannote[157].speaker |
SPEAKER_02 |
transcript.pyannote[157].start |
773.93534375 |
transcript.pyannote[157].end |
778.00221875 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
779.09909375 |
transcript.pyannote[158].end |
780.56721875 |
transcript.pyannote[159].speaker |
SPEAKER_02 |
transcript.pyannote[159].start |
780.76971875 |
transcript.pyannote[159].end |
782.76096875 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
783.41909375 |
transcript.pyannote[160].end |
784.70159375 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
785.02221875 |
transcript.pyannote[161].end |
785.81534375 |
transcript.pyannote[162].speaker |
SPEAKER_02 |
transcript.pyannote[162].start |
786.13596875 |
transcript.pyannote[162].end |
787.65471875 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
787.78971875 |
transcript.pyannote[163].end |
788.58284375 |
transcript.pyannote[164].speaker |
SPEAKER_02 |
transcript.pyannote[164].start |
789.10596875 |
transcript.pyannote[164].end |
789.96659375 |
transcript.pyannote[165].speaker |
SPEAKER_02 |
transcript.pyannote[165].start |
790.37159375 |
transcript.pyannote[165].end |
791.70471875 |
transcript.pyannote[166].speaker |
SPEAKER_02 |
transcript.pyannote[166].start |
791.89034375 |
transcript.pyannote[166].end |
797.22284375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
796.31159375 |
transcript.pyannote[167].end |
796.96971875 |
transcript.whisperx[0].start |
0.069 |
transcript.whisperx[0].end |
0.17 |
transcript.whisperx[0].text |
請部長謝謝請部長上來 |
transcript.whisperx[1].start |
5.219 |
transcript.whisperx[1].end |
29.957 |
transcript.whisperx[1].text |
根據勞金局公布的最新資料目前勞動基金總規模是七兆一千多億在今年美國對等關稅影響下已經虧損了將近一千九百多億如果再加上委託管理的國民年金保險基金還有這個農民的退休基金應該是總虧損高達兩千多億然後民間有個說法就是說平均每年賠一萬多 |
transcript.whisperx[2].start |
31.078 |
transcript.whisperx[2].end |
51.183 |
transcript.whisperx[2].text |
你覺得這樣的說法正確嗎如果不正確請趕快跟證說明清楚我想這個說法當然是不對的勞工朋友提繳的年金那是絕對不會減少的尤其是像在我們勞退機制裡面其實就有保障的收益制度雖然看起來 |
transcript.whisperx[3].start |
52.384 |
transcript.whisperx[3].end |
66.259 |
transcript.whisperx[3].text |
這過去一段時間因為美國關稅的原因所以它在收益上面是有些波動但是我們在這個勞退的保障收益機制裡面其實是有確保其實累積的收益一定會是不低於銀行兩年期定存利率的保障收益 |
transcript.whisperx[4].start |
66.98 |
transcript.whisperx[4].end |
92.845 |
transcript.whisperx[4].text |
那這是勞退的部分 那勞保的部分我們是確定給複製所以基金收益的波動是不會影響到勞保給付的金額我想這部分是我們一定會來跟社會來講清楚剛剛委員在講說市面上面在流傳的這個說法我想它是不正確的對啊 所以你們就是站在勞動部的這個立場一定要儘早把這事情說明清楚不然好像2000多一起處理2300萬人平均每一個人要賠1萬多這種算法實在是 |
transcript.whisperx[5].start |
94.705 |
transcript.whisperx[5].end |
110.454 |
transcript.whisperx[5].text |
實在是有在勞動民心我覺得是很不正確原本投資是有起有落那我們有設定所謂的保障機制基本上就不可能有這種事情發生所以這必須要盡快的說明清楚是其一但是美國關稅90天期間將至在7月8號前或許我們會朝向 |
transcript.whisperx[6].start |
117.077 |
transcript.whisperx[6].end |
139.383 |
transcript.whisperx[6].text |
好的方向去發展也或許會朝向不是好的方向去發展萊頓部這邊針對相關的基金運用上有沒有什麼因應的作為跟基本的方針因為當川普大力宣布這樣的事情的情況之下確實造成很大的市場上的波動那我們現在不曉得萊頓部的因應作為是什麼 |
transcript.whisperx[7].start |
140.66 |
transcript.whisperx[7].end |
163.602 |
transcript.whisperx[7].text |
我想因為現在台灣的我們的國家的談判團隊正在跟美國在做這個關稅的談判但是我想勞動部有可能就像剛剛文說有可能比較好往好的狀況方也有可能往比較這個嚴峻的狀況那從勞動部角度我們當然一定會把情境設定是比較嚴峻的狀況來去做相關的準備 |
transcript.whisperx[8].start |
164.022 |
transcript.whisperx[8].end |
192.359 |
transcript.whisperx[8].text |
因為如果嚴峻的狀況你過得了的話好的狀況其實當然就也比較能夠過所以我們包括現在在這個現在的這個特別條例裡面其實已經有規劃了150億的這個經費那如果150億來協助來支持我們勞動朋友度過關稅的這樣子的衝擊還不夠的話其實我們也還有包括我們的救保或者是救安的基金其實可以來支應不是不是不是部長我的問題focus是在這個 |
transcript.whisperx[9].start |
194.04 |
transcript.whisperx[9].end |
215.465 |
transcript.whisperx[9].text |
勞動基金的運用這些相關的基金有沒有一個具體的方針然後避免這樣的這個基金的虧損持續擴大對不對跟委員報告我們勞動基金的運用我們一向就是從長期來看市場的波動一定有我當然說是從長期來看啦不是看短暫的這個我非常清楚嘛對不對但是因為 |
transcript.whisperx[10].start |
216.545 |
transcript.whisperx[10].end |
240.555 |
transcript.whisperx[10].text |
因為川普大帝的這樣的一個震撼力有時候真的你必須要去有一些具體的因應方針來做處理我們會持續關我們一向本來就是會關注市場的變化隨時來調整那在市場整個大跌的時候我們的基金的運用絕對不會像市場所說的全部殺出認賠出來這個反而對我們基金不利 |
transcript.whisperx[11].start |
244.577 |
transcript.whisperx[11].end |
254.402 |
transcript.whisperx[11].text |
那我要補充說明 你要不要出言你不用在委會講你只要跟我講說因為這個美國對你關稅而且7月8日到期有沒有任何的你們有評估過的相關研擬的具體方針 |
transcript.whisperx[12].start |
257.878 |
transcript.whisperx[12].end |
278.669 |
transcript.whisperx[12].text |
可以來做這樣的較好的營運 避免基金的虧損擴大 就這樣而已委員跟您報告 這個投資本來每天就要看市場所以我們內部隨時都在調整我們的策略我們基本上我們每年有一個大策略但是我們每季也有 我們隨時都在 |
transcript.whisperx[13].start |
280.37 |
transcript.whisperx[13].end |
299.586 |
transcript.whisperx[13].text |
你們每年都有大策略我知道但是你們每年大策略沒有包含到川普的這種個性的死難嘛所以他是一個很突破狀況他是一個很不確定的狀況他是一個從頭到尾我們不可預知的一個狀態情況之下劉謙許有沒有相關的因應的具體方針這樣就好了啦你簡單回應我就好了好不好 |
transcript.whisperx[14].start |
301.13 |
transcript.whisperx[14].end |
319.609 |
transcript.whisperx[14].text |
有沒有啦有有好謝謝這樣就好了不要再講下去了對你又說到時候是因為你的一些講話造成一些波動這樣不好對不對好那我們接著請請我回報請部長你再看一下因為是受到美國人關稅這樣的一個影響嘛目前這個全台實務薪假 |
transcript.whisperx[15].start |
320.089 |
transcript.whisperx[15].end |
331.576 |
transcript.whisperx[15].text |
已經達到155家所以影響的勞工高達2800多人無薪假當然是直接影響勞工的大議題未來七八個月會不會有更多企業、廠家提出無薪假通報我們不能去預估 |
transcript.whisperx[16].start |
334.96 |
transcript.whisperx[16].end |
359.069 |
transcript.whisperx[16].text |
未來這幾個月到底可能會有在多少家提出來然後我們針對這幾家可能受到衝擊是怎麼樣有沒有去做相關的一些預估各位報告其實我們一直在密切的監測跟關注現在這個我們會講減班休息因為它並不是真的無薪OK對那這個減班休息的加速那確實現在是大概其實是有微幅的緩步的上升 |
transcript.whisperx[17].start |
359.989 |
transcript.whisperx[17].end |
384.817 |
transcript.whisperx[17].text |
那但是17月8號之後會不會原有的直接衝擊變成間接衝擊這個影響會不會更大我們現在其實我們也做好相關的準備了這個準備其實就包括我們的僱用安定措施包括我們這個充電再觸發的措施都是如果接下來這個無薪假確實有擴大的話怎麼樣來支持我們可能會受影響的勞工在收入上面的這個減損那我們怎麼樣來協助 |
transcript.whisperx[18].start |
387.578 |
transcript.whisperx[18].end |
414.79 |
transcript.whisperx[18].text |
所以這幾個我們都做包括剛才在講到就是說透過特別條例的150億那也包括我們的救保的基金其實就是來做這方面的因應好 我只是要提醒部長因為我還是特別強調剛剛上個題目問題是一樣的因為你面對川普的狀況很多事情你是很難預估的然後我們或許跟美國談的後來可能會朝向很好的方向去發展那有些事情就一定能解嘛那萬一不是呢 相反之 |
transcript.whisperx[19].start |
415.45 |
transcript.whisperx[19].end |
433.219 |
transcript.whisperx[19].text |
那勞動部可能要辦起更重大的這樣的一個應變的能力跟責任嘛現在確實減班休息裡面目前看起來是在比較多那有幾個特定的產業其實增加的幅度會多一點可是我們其實很密切在監測也主動的跟這些相關的工會或者產業在做座談來提供我們協助我知道你都有在做啦 |
transcript.whisperx[20].start |
433.339 |
transcript.whisperx[20].end |
462.091 |
transcript.whisperx[20].text |
不過我是針對點的這一個現在我們遇到這個狀況真的是跟以前完全不一樣那如果我用兩千零八兩千我還下了對比當時全國持是無薪假高達五百八十幾家啦受到影響的勞工將近快到二十四萬嘛對不對那我們我們新任的調兵師我們黃師長宋永是這麼講嘛齁目前對等對美的這個對等關稅能有高度的不確定性台灣也正與美國談判中政府採取謹慎態度密切掌握通報的事業單位狀況 |
transcript.whisperx[21].start |
463.451 |
transcript.whisperx[21].end |
485.203 |
transcript.whisperx[21].text |
會主動聯繫通報事業單位進行輔導方式提供勞動部勞動力發展署如充電載出發訓練計畫僱用安定措施等支援以保障勞工權利對不對OK沒問題我請教一下目前155家有提出充電載出發訓練計畫還有僱用安定措施有幾家 |
transcript.whisperx[22].start |
486.567 |
transcript.whisperx[22].end |
513.049 |
transcript.whisperx[22].text |
現在是比較少的 目前有提出為什麼會比較少因為不好用因為不知道怎麼用應該是確實有些僱主我們其實有問他說你要不要提出比方說充電材出發可是僱主目前是說他沒有意願你們要去鼓勵他們要提出嘛對不對當然而且我們現在其實在甚至檢討因為過去其實是要透過僱主才能夠申請我們現在新的設計勞工直接就可以申請不然你能不能直接導入我150家目前 |
transcript.whisperx[23].start |
513.729 |
transcript.whisperx[23].end |
523.877 |
transcript.whisperx[23].text |
提出是幾家啦 簡單就好這兩個計畫 充電站目前是七家七家 七家這樣不到一趴多 對啊僱用呢 僱用安定措施 |
transcript.whisperx[24].start |
524.799 |
transcript.whisperx[24].end |
549.162 |
transcript.whisperx[24].text |
顧問安定措施現在是大概30家30家兩成多合理嗎合不合理嗎我們確實覺得要再提高所以這也是為什麼我們現在是設計我們自己包括勞動部跟地方政府我們會主動的來聯繫已經放這個減班休息的勞工你們的計畫到底是不是沒有吸引力 |
transcript.whisperx[25].start |
553.26 |
transcript.whisperx[25].end |
572.106 |
transcript.whisperx[25].text |
我自己覺得當很多的雇主他聽完完整的了解我們計劃的設計以後他們是覺得這是不錯的有吸引力的可是確實現在是有很多的企業他對我們相關的企業聽完之後覺得有吸引力然後又不提出然後提出又是一層多有一些聽完他就有來表達155家目前為止執行有聽完的幾家 |
transcript.whisperx[26].start |
576.221 |
transcript.whisperx[26].end |
593.251 |
transcript.whisperx[26].text |
我們其實都沒有主動聯繫啦沒有主動聯繫不然你怎麼會講說有幾家聽起來覺得還不錯是幾家嘛我們一個電台資料基本上要有個基本的數額嘛對不對155家如果是有一家兩家聽到覺得還不錯這兩家又不提出來那這真的還不錯了 |
transcript.whisperx[27].start |
597.765 |
transcript.whisperx[27].end |
600.752 |
transcript.whisperx[27].text |
監察院這個報告裡面這當然不是新的署長的任內也不是部長任內 |
transcript.whisperx[28].start |
608.601 |
transcript.whisperx[28].end |
633.407 |
transcript.whisperx[28].text |
老化署青年自來發展中心運作長達12年能為訂定服務基線均與產出型指標衡量績效至達成旅超標200%甚至破千以上能夠提升青年就業資成效為敏因為優先對就業不利的青年族群建構差異性自來輔導模式服務內容高度重疊交易部門導致相關經費預算乃至專職專業人力長期低度投資已發展 |
transcript.whisperx[29].start |
638.428 |
transcript.whisperx[29].end |
665.095 |
transcript.whisperx[29].text |
我要一次講這兩件事情啦這是監察院剛剛糾正的5月21號糾正的沒有錯嘛對不對好那我再回歸到頭這裡面還有很多洋洋灑灑寫的一大堆東西啦齁我再回歸到頭就是說你的充電債出發你的職癌你的僱用安定措施到底陳如妮說的好不好用聽了大家都覺得還不錯但是大家都不提出申請還是提出申請的比例非常低 |
transcript.whisperx[30].start |
666.994 |
transcript.whisperx[30].end |
671.481 |
transcript.whisperx[30].text |
應該就是有檢討的必要的空間了嘛對不對對當然當然都有精進的空間 |
transcript.whisperx[31].start |
674.338 |
transcript.whisperx[31].end |
698.134 |
transcript.whisperx[31].text |
什麼時候可以檢討盤整完成 提出修正相關的計畫因為7月8號快到了到時候還是這個計畫一層多 那個計畫兩層多根本說明關於充電災出發的部分我們其實近期我們已經都取得了這些可能放減班休息勞工的聯繫方式我們會直接聯繫這個勞工本人不一定非得要透過僱主 |
transcript.whisperx[32].start |
698.954 |
transcript.whisperx[32].end |
712.875 |
transcript.whisperx[32].text |
因為過去就是僱主他覺得他他沒有意願可是這可能會影響了勞工來舉舉的自願的權利變化就是說原有僱主提出申請現在勞工可以提出申請嘛對不對好這個應變的措施我OK我接受但是實質的內容 |
transcript.whisperx[33].start |
715.461 |
transcript.whisperx[33].end |
738.096 |
transcript.whisperx[33].text |
真的有幫助嗎真的覺得不錯嗎還是部長你個人認為不錯他其實能夠獲得的訓練的津貼那其實是對於勞工在收入上面的影響是有幫助的我們就要檢視現在才六月初而已嘛我們六月底來檢視嘛反正我們這是研會到七月底了呀對不對這一個月內如果這兩個計畫你都沒有辦法因為一個一成多實在很難去幫你訂這個KPI啦你都沒有辦法超過五成 |
transcript.whisperx[34].start |
745.97 |
transcript.whisperx[34].end |
749.169 |
transcript.whisperx[34].text |
那你這兩個計畫要不要大幅的去修正?要不要? |
transcript.whisperx[35].start |
750.356 |
transcript.whisperx[35].end |
777.631 |
transcript.whisperx[35].text |
要不要?我們會強化的來執行但是你不能逼人家執行啊你不能在我那邊說大家聽起來都不錯啊但是我們就不要申請啊結果你如果說我怎樣怎樣他就給你打出來申請結果那個還是假的就像監察院糾正的狀況狀況的事情會持續發生我不好意思再唸下去的這幾項再唸下去真的這個老花鼠新來的署長可能你要有相關的因應作為 |
transcript.whisperx[36].start |
779.144 |
transcript.whisperx[36].end |
796.936 |
transcript.whisperx[36].text |
因為監察院已經提出糾正你不要未來又這兩個計畫又被糾正不好我只是提醒一個月內相關的調整計畫成立委員會然後提高申請的比例當然破50%OK謝謝好 謝謝主席謝謝部長謝謝各位辛苦了 |