iVOD / 16216

Field Value
IVOD_ID 16216
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16216
日期 2024-10-30
會議資料.會議代碼 委員會-11-2-26-6
會議資料.會議代碼:str 第11屆第2會期社會福利及衛生環境委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第6次全體委員會議
影片種類 Full
開始時間 2024-10-30T08:31:34+08:00
結束時間 2024-10-30T13:37:00+08:00
影片長度 05:05:26
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685b2ea4a3bfaaca62b4be335d15c1ead010202062f76816a1767055026792aeada5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-10-30T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第6次全體委員會議(事由:邀請勞動部部長就「我國全時職位缺工概況」進行專題報告,並備質詢。 【10月30日及31日二天一次會】)
委員名稱 完整會議
委員發言時間 08:31:34 - 13:37:00
transcript.pyannote[0].speaker SPEAKER_08
transcript.pyannote[0].start 1757.02221875
transcript.pyannote[0].end 1763.02971875
transcript.pyannote[1].speaker SPEAKER_16
transcript.pyannote[1].start 1763.02971875
transcript.pyannote[1].end 1763.21534375
transcript.pyannote[2].speaker SPEAKER_16
transcript.pyannote[2].start 1763.43471875
transcript.pyannote[2].end 1801.72409375
transcript.pyannote[3].speaker SPEAKER_16
transcript.pyannote[3].start 1802.14596875
transcript.pyannote[3].end 1812.18659375
transcript.pyannote[4].speaker SPEAKER_16
transcript.pyannote[4].start 1812.40596875
transcript.pyannote[4].end 1839.96284375
transcript.pyannote[5].speaker SPEAKER_08
transcript.pyannote[5].start 1842.22409375
transcript.pyannote[5].end 1846.29096875
transcript.pyannote[6].speaker SPEAKER_08
transcript.pyannote[6].start 1847.37096875
transcript.pyannote[6].end 1847.48909375
transcript.pyannote[7].speaker SPEAKER_08
transcript.pyannote[7].start 1848.01221875
transcript.pyannote[7].end 1848.43409375
transcript.pyannote[8].speaker SPEAKER_08
transcript.pyannote[8].start 1848.80534375
transcript.pyannote[8].end 1863.18284375
transcript.pyannote[9].speaker SPEAKER_08
transcript.pyannote[9].start 1863.60471875
transcript.pyannote[9].end 1866.47346875
transcript.pyannote[10].speaker SPEAKER_08
transcript.pyannote[10].start 1868.61659375
transcript.pyannote[10].end 1869.91596875
transcript.pyannote[11].speaker SPEAKER_08
transcript.pyannote[11].start 1872.93659375
transcript.pyannote[11].end 1877.03721875
transcript.pyannote[12].speaker SPEAKER_08
transcript.pyannote[12].start 1879.29846875
transcript.pyannote[12].end 1882.43721875
transcript.pyannote[13].speaker SPEAKER_08
transcript.pyannote[13].start 1883.85471875
transcript.pyannote[13].end 1888.02284375
transcript.pyannote[14].speaker SPEAKER_08
transcript.pyannote[14].start 1890.94221875
transcript.pyannote[14].end 1891.90409375
transcript.pyannote[15].speaker SPEAKER_08
transcript.pyannote[15].start 1892.86596875
transcript.pyannote[15].end 1897.27034375
transcript.pyannote[16].speaker SPEAKER_08
transcript.pyannote[16].start 1899.31221875
transcript.pyannote[16].end 1904.23971875
transcript.pyannote[17].speaker SPEAKER_08
transcript.pyannote[17].start 1905.60659375
transcript.pyannote[17].end 1908.34034375
transcript.pyannote[18].speaker SPEAKER_08
transcript.pyannote[18].start 1911.74909375
transcript.pyannote[18].end 1915.88346875
transcript.pyannote[19].speaker SPEAKER_09
transcript.pyannote[19].start 1921.31721875
transcript.pyannote[19].end 1936.16721875
transcript.pyannote[20].speaker SPEAKER_09
transcript.pyannote[20].start 1936.70721875
transcript.pyannote[20].end 1937.17971875
transcript.pyannote[21].speaker SPEAKER_09
transcript.pyannote[21].start 1937.75346875
transcript.pyannote[21].end 1956.70409375
transcript.pyannote[22].speaker SPEAKER_09
transcript.pyannote[22].start 1957.02471875
transcript.pyannote[22].end 1962.27284375
transcript.pyannote[23].speaker SPEAKER_09
transcript.pyannote[23].start 1962.61034375
transcript.pyannote[23].end 1968.28034375
transcript.pyannote[24].speaker SPEAKER_09
transcript.pyannote[24].start 1968.56721875
transcript.pyannote[24].end 1973.17409375
transcript.pyannote[25].speaker SPEAKER_09
transcript.pyannote[25].start 1973.56221875
transcript.pyannote[25].end 1974.92909375
transcript.pyannote[26].speaker SPEAKER_09
transcript.pyannote[26].start 1975.26659375
transcript.pyannote[26].end 1978.48971875
transcript.pyannote[27].speaker SPEAKER_09
transcript.pyannote[27].start 1978.52346875
transcript.pyannote[27].end 1982.65784375
transcript.pyannote[28].speaker SPEAKER_09
transcript.pyannote[28].start 1983.06284375
transcript.pyannote[28].end 2012.81346875
transcript.pyannote[29].speaker SPEAKER_09
transcript.pyannote[29].start 2012.86409375
transcript.pyannote[29].end 2023.71471875
transcript.pyannote[30].speaker SPEAKER_09
transcript.pyannote[30].start 2023.81596875
transcript.pyannote[30].end 2026.73534375
transcript.pyannote[31].speaker SPEAKER_09
transcript.pyannote[31].start 2027.39346875
transcript.pyannote[31].end 2029.03034375
transcript.pyannote[32].speaker SPEAKER_09
transcript.pyannote[32].start 2029.45221875
transcript.pyannote[32].end 2048.87534375
transcript.pyannote[33].speaker SPEAKER_09
transcript.pyannote[33].start 2049.19596875
transcript.pyannote[33].end 2049.76971875
transcript.pyannote[34].speaker SPEAKER_09
transcript.pyannote[34].start 2050.25909375
transcript.pyannote[34].end 2059.69221875
transcript.pyannote[35].speaker SPEAKER_09
transcript.pyannote[35].start 2059.94534375
transcript.pyannote[35].end 2064.06284375
transcript.pyannote[36].speaker SPEAKER_09
transcript.pyannote[36].start 2064.55221875
transcript.pyannote[36].end 2089.12221875
transcript.pyannote[37].speaker SPEAKER_09
transcript.pyannote[37].start 2089.59471875
transcript.pyannote[37].end 2098.67346875
transcript.pyannote[38].speaker SPEAKER_09
transcript.pyannote[38].start 2098.89284375
transcript.pyannote[38].end 2108.12346875
transcript.pyannote[39].speaker SPEAKER_09
transcript.pyannote[39].start 2108.59596875
transcript.pyannote[39].end 2114.14784375
transcript.pyannote[40].speaker SPEAKER_09
transcript.pyannote[40].start 2114.45159375
transcript.pyannote[40].end 2115.41346875
transcript.pyannote[41].speaker SPEAKER_09
transcript.pyannote[41].start 2115.73409375
transcript.pyannote[41].end 2121.26909375
transcript.pyannote[42].speaker SPEAKER_09
transcript.pyannote[42].start 2121.70784375
transcript.pyannote[42].end 2129.52096875
transcript.pyannote[43].speaker SPEAKER_09
transcript.pyannote[43].start 2130.14534375
transcript.pyannote[43].end 2154.39471875
transcript.pyannote[44].speaker SPEAKER_09
transcript.pyannote[44].start 2154.68159375
transcript.pyannote[44].end 2159.11971875
transcript.pyannote[45].speaker SPEAKER_09
transcript.pyannote[45].start 2159.28846875
transcript.pyannote[45].end 2161.51596875
transcript.pyannote[46].speaker SPEAKER_09
transcript.pyannote[46].start 2161.83659375
transcript.pyannote[46].end 2210.26784375
transcript.pyannote[47].speaker SPEAKER_09
transcript.pyannote[47].start 2210.67284375
transcript.pyannote[47].end 2216.84909375
transcript.pyannote[48].speaker SPEAKER_09
transcript.pyannote[48].start 2216.98409375
transcript.pyannote[48].end 2258.37846875
transcript.pyannote[49].speaker SPEAKER_08
transcript.pyannote[49].start 2258.37846875
transcript.pyannote[49].end 2258.39534375
transcript.pyannote[50].speaker SPEAKER_09
transcript.pyannote[50].start 2259.54284375
transcript.pyannote[50].end 2259.55971875
transcript.pyannote[51].speaker SPEAKER_08
transcript.pyannote[51].start 2259.55971875
transcript.pyannote[51].end 2260.77471875
transcript.pyannote[52].speaker SPEAKER_08
transcript.pyannote[52].start 2260.84221875
transcript.pyannote[52].end 2269.31346875
transcript.pyannote[53].speaker SPEAKER_08
transcript.pyannote[53].start 2269.49909375
transcript.pyannote[53].end 2274.74721875
transcript.pyannote[54].speaker SPEAKER_08
transcript.pyannote[54].start 2275.16909375
transcript.pyannote[54].end 2278.10534375
transcript.pyannote[55].speaker SPEAKER_08
transcript.pyannote[55].start 2278.35846875
transcript.pyannote[55].end 2292.09471875
transcript.pyannote[56].speaker SPEAKER_08
transcript.pyannote[56].start 2292.38159375
transcript.pyannote[56].end 2296.22909375
transcript.pyannote[57].speaker SPEAKER_10
transcript.pyannote[57].start 2302.50659375
transcript.pyannote[57].end 2304.68346875
transcript.pyannote[58].speaker SPEAKER_10
transcript.pyannote[58].start 2305.00409375
transcript.pyannote[58].end 2305.99971875
transcript.pyannote[59].speaker SPEAKER_10
transcript.pyannote[59].start 2309.83034375
transcript.pyannote[59].end 2319.61784375
transcript.pyannote[60].speaker SPEAKER_09
transcript.pyannote[60].start 2320.66409375
transcript.pyannote[60].end 2340.81284375
transcript.pyannote[61].speaker SPEAKER_10
transcript.pyannote[61].start 2321.13659375
transcript.pyannote[61].end 2321.84534375
transcript.pyannote[62].speaker SPEAKER_10
transcript.pyannote[62].start 2321.91284375
transcript.pyannote[62].end 2322.38534375
transcript.pyannote[63].speaker SPEAKER_10
transcript.pyannote[63].start 2323.76909375
transcript.pyannote[63].end 2324.17409375
transcript.pyannote[64].speaker SPEAKER_10
transcript.pyannote[64].start 2326.77284375
transcript.pyannote[64].end 2327.16096875
transcript.pyannote[65].speaker SPEAKER_20
transcript.pyannote[65].start 2327.16096875
transcript.pyannote[65].end 2327.19471875
transcript.pyannote[66].speaker SPEAKER_10
transcript.pyannote[66].start 2339.36159375
transcript.pyannote[66].end 2379.35534375
transcript.pyannote[67].speaker SPEAKER_09
transcript.pyannote[67].start 2341.62284375
transcript.pyannote[67].end 2341.84221875
transcript.pyannote[68].speaker SPEAKER_20
transcript.pyannote[68].start 2349.46971875
transcript.pyannote[68].end 2349.48659375
transcript.pyannote[69].speaker SPEAKER_09
transcript.pyannote[69].start 2349.48659375
transcript.pyannote[69].end 2350.97159375
transcript.pyannote[70].speaker SPEAKER_20
transcript.pyannote[70].start 2350.97159375
transcript.pyannote[70].end 2351.93346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 2351.93346875
transcript.pyannote[71].end 2351.96721875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 2363.94846875
transcript.pyannote[72].end 2364.38721875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 2378.44409375
transcript.pyannote[73].end 2378.93346875
transcript.pyannote[74].speaker SPEAKER_10
transcript.pyannote[74].start 2380.24971875
transcript.pyannote[74].end 2390.67846875
transcript.pyannote[75].speaker SPEAKER_10
transcript.pyannote[75].start 2390.86409375
transcript.pyannote[75].end 2397.42846875
transcript.pyannote[76].speaker SPEAKER_10
transcript.pyannote[76].start 2397.46221875
transcript.pyannote[76].end 2406.01784375
transcript.pyannote[77].speaker SPEAKER_20
transcript.pyannote[77].start 2406.18659375
transcript.pyannote[77].end 2406.20346875
transcript.pyannote[78].speaker SPEAKER_09
transcript.pyannote[78].start 2406.20346875
transcript.pyannote[78].end 2406.30471875
transcript.pyannote[79].speaker SPEAKER_10
transcript.pyannote[79].start 2406.82784375
transcript.pyannote[79].end 2406.86159375
transcript.pyannote[80].speaker SPEAKER_09
transcript.pyannote[80].start 2406.86159375
transcript.pyannote[80].end 2427.12846875
transcript.pyannote[81].speaker SPEAKER_10
transcript.pyannote[81].start 2420.76659375
transcript.pyannote[81].end 2422.20096875
transcript.pyannote[82].speaker SPEAKER_09
transcript.pyannote[82].start 2427.83721875
transcript.pyannote[82].end 2434.77284375
transcript.pyannote[83].speaker SPEAKER_10
transcript.pyannote[83].start 2432.25846875
transcript.pyannote[83].end 2432.69721875
transcript.pyannote[84].speaker SPEAKER_10
transcript.pyannote[84].start 2433.01784375
transcript.pyannote[84].end 2455.76534375
transcript.pyannote[85].speaker SPEAKER_09
transcript.pyannote[85].start 2441.26971875
transcript.pyannote[85].end 2441.62409375
transcript.pyannote[86].speaker SPEAKER_20
transcript.pyannote[86].start 2444.50971875
transcript.pyannote[86].end 2444.77971875
transcript.pyannote[87].speaker SPEAKER_10
transcript.pyannote[87].start 2455.98471875
transcript.pyannote[87].end 2457.97596875
transcript.pyannote[88].speaker SPEAKER_09
transcript.pyannote[88].start 2457.97596875
transcript.pyannote[88].end 2466.44721875
transcript.pyannote[89].speaker SPEAKER_10
transcript.pyannote[89].start 2458.46534375
transcript.pyannote[89].end 2458.75221875
transcript.pyannote[90].speaker SPEAKER_10
transcript.pyannote[90].start 2463.44346875
transcript.pyannote[90].end 2463.69659375
transcript.pyannote[91].speaker SPEAKER_10
transcript.pyannote[91].start 2464.23659375
transcript.pyannote[91].end 2464.99596875
transcript.pyannote[92].speaker SPEAKER_09
transcript.pyannote[92].start 2466.78471875
transcript.pyannote[92].end 2472.48846875
transcript.pyannote[93].speaker SPEAKER_10
transcript.pyannote[93].start 2466.88596875
transcript.pyannote[93].end 2469.41721875
transcript.pyannote[94].speaker SPEAKER_10
transcript.pyannote[94].start 2470.29471875
transcript.pyannote[94].end 2472.35346875
transcript.pyannote[95].speaker SPEAKER_10
transcript.pyannote[95].start 2472.48846875
transcript.pyannote[95].end 2472.60659375
transcript.pyannote[96].speaker SPEAKER_09
transcript.pyannote[96].start 2472.60659375
transcript.pyannote[96].end 2473.95659375
transcript.pyannote[97].speaker SPEAKER_10
transcript.pyannote[97].start 2472.67409375
transcript.pyannote[97].end 2510.86221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 2479.74471875
transcript.pyannote[98].end 2479.76159375
transcript.pyannote[99].speaker SPEAKER_09
transcript.pyannote[99].start 2479.76159375
transcript.pyannote[99].end 2480.31846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 2482.07346875
transcript.pyannote[100].end 2482.12409375
transcript.pyannote[101].speaker SPEAKER_20
transcript.pyannote[101].start 2482.12409375
transcript.pyannote[101].end 2482.61346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 2492.62034375
transcript.pyannote[102].end 2493.14346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 2494.52721875
transcript.pyannote[103].end 2494.94909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 2502.35721875
transcript.pyannote[104].end 2502.86346875
transcript.pyannote[105].speaker SPEAKER_10
transcript.pyannote[105].start 2511.46971875
transcript.pyannote[105].end 2517.78096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 2517.15659375
transcript.pyannote[106].end 2517.62909375
transcript.pyannote[107].speaker SPEAKER_10
transcript.pyannote[107].start 2518.21971875
transcript.pyannote[107].end 2525.77971875
transcript.pyannote[108].speaker SPEAKER_10
transcript.pyannote[108].start 2525.89784375
transcript.pyannote[108].end 2528.22659375
transcript.pyannote[109].speaker SPEAKER_10
transcript.pyannote[109].start 2528.80034375
transcript.pyannote[109].end 2528.81721875
transcript.pyannote[110].speaker SPEAKER_09
transcript.pyannote[110].start 2528.81721875
transcript.pyannote[110].end 2536.02284375
transcript.pyannote[111].speaker SPEAKER_10
transcript.pyannote[111].start 2536.02284375
transcript.pyannote[111].end 2559.54659375
transcript.pyannote[112].speaker SPEAKER_09
transcript.pyannote[112].start 2537.23784375
transcript.pyannote[112].end 2537.98034375
transcript.pyannote[113].speaker SPEAKER_11
transcript.pyannote[113].start 2548.42596875
transcript.pyannote[113].end 2548.45971875
transcript.pyannote[114].speaker SPEAKER_13
transcript.pyannote[114].start 2548.45971875
transcript.pyannote[114].end 2548.89846875
transcript.pyannote[115].speaker SPEAKER_10
transcript.pyannote[115].start 2559.69846875
transcript.pyannote[115].end 2560.96409375
transcript.pyannote[116].speaker SPEAKER_09
transcript.pyannote[116].start 2560.96409375
transcript.pyannote[116].end 2569.30034375
transcript.pyannote[117].speaker SPEAKER_09
transcript.pyannote[117].start 2569.70534375
transcript.pyannote[117].end 2575.54409375
transcript.pyannote[118].speaker SPEAKER_09
transcript.pyannote[118].start 2575.67909375
transcript.pyannote[118].end 2575.94909375
transcript.pyannote[119].speaker SPEAKER_09
transcript.pyannote[119].start 2576.18534375
transcript.pyannote[119].end 2599.48971875
transcript.pyannote[120].speaker SPEAKER_10
transcript.pyannote[120].start 2589.90471875
transcript.pyannote[120].end 2590.64721875
transcript.pyannote[121].speaker SPEAKER_10
transcript.pyannote[121].start 2590.98471875
transcript.pyannote[121].end 2593.24596875
transcript.pyannote[122].speaker SPEAKER_10
transcript.pyannote[122].start 2597.49846875
transcript.pyannote[122].end 2618.91284375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 2607.97784375
transcript.pyannote[123].end 2608.55159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 2608.85534375
transcript.pyannote[124].end 2609.42909375
transcript.pyannote[125].speaker SPEAKER_10
transcript.pyannote[125].start 2619.09846875
transcript.pyannote[125].end 2629.20659375
transcript.pyannote[126].speaker SPEAKER_10
transcript.pyannote[126].start 2629.86471875
transcript.pyannote[126].end 2632.54784375
transcript.pyannote[127].speaker SPEAKER_10
transcript.pyannote[127].start 2632.83471875
transcript.pyannote[127].end 2633.10471875
transcript.pyannote[128].speaker SPEAKER_20
transcript.pyannote[128].start 2632.98659375
transcript.pyannote[128].end 2633.54346875
transcript.pyannote[129].speaker SPEAKER_10
transcript.pyannote[129].start 2633.25659375
transcript.pyannote[129].end 2639.44971875
transcript.pyannote[130].speaker SPEAKER_20
transcript.pyannote[130].start 2636.09159375
transcript.pyannote[130].end 2636.63159375
transcript.pyannote[131].speaker SPEAKER_20
transcript.pyannote[131].start 2637.32346875
transcript.pyannote[131].end 2637.44159375
transcript.pyannote[132].speaker SPEAKER_10
transcript.pyannote[132].start 2640.20909375
transcript.pyannote[132].end 2662.97346875
transcript.pyannote[133].speaker SPEAKER_09
transcript.pyannote[133].start 2657.77596875
transcript.pyannote[133].end 2658.38346875
transcript.pyannote[134].speaker SPEAKER_09
transcript.pyannote[134].start 2659.21034375
transcript.pyannote[134].end 2659.46346875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 2659.46346875
transcript.pyannote[135].end 2659.71659375
transcript.pyannote[136].speaker SPEAKER_09
transcript.pyannote[136].start 2659.71659375
transcript.pyannote[136].end 2659.83471875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 2659.83471875
transcript.pyannote[137].end 2660.02034375
transcript.pyannote[138].speaker SPEAKER_09
transcript.pyannote[138].start 2662.97346875
transcript.pyannote[138].end 2663.46284375
transcript.pyannote[139].speaker SPEAKER_09
transcript.pyannote[139].start 2663.86784375
transcript.pyannote[139].end 2670.01034375
transcript.pyannote[140].speaker SPEAKER_09
transcript.pyannote[140].start 2670.16221875
transcript.pyannote[140].end 2674.39784375
transcript.pyannote[141].speaker SPEAKER_09
transcript.pyannote[141].start 2674.75221875
transcript.pyannote[141].end 2678.22846875
transcript.pyannote[142].speaker SPEAKER_10
transcript.pyannote[142].start 2677.11471875
transcript.pyannote[142].end 2684.32034375
transcript.pyannote[143].speaker SPEAKER_09
transcript.pyannote[143].start 2680.92846875
transcript.pyannote[143].end 2681.87346875
transcript.pyannote[144].speaker SPEAKER_09
transcript.pyannote[144].start 2682.58221875
transcript.pyannote[144].end 2683.08846875
transcript.pyannote[145].speaker SPEAKER_10
transcript.pyannote[145].start 2684.33721875
transcript.pyannote[145].end 2701.88721875
transcript.pyannote[146].speaker SPEAKER_09
transcript.pyannote[146].start 2684.70846875
transcript.pyannote[146].end 2688.45471875
transcript.pyannote[147].speaker SPEAKER_20
transcript.pyannote[147].start 2694.66471875
transcript.pyannote[147].end 2694.68159375
transcript.pyannote[148].speaker SPEAKER_09
transcript.pyannote[148].start 2694.68159375
transcript.pyannote[148].end 2695.03596875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 2695.03596875
transcript.pyannote[149].end 2695.10346875
transcript.pyannote[150].speaker SPEAKER_10
transcript.pyannote[150].start 2703.06846875
transcript.pyannote[150].end 2719.75784375
transcript.pyannote[151].speaker SPEAKER_10
transcript.pyannote[151].start 2721.15846875
transcript.pyannote[151].end 2724.36471875
transcript.pyannote[152].speaker SPEAKER_09
transcript.pyannote[152].start 2724.95534375
transcript.pyannote[152].end 2726.98034375
transcript.pyannote[153].speaker SPEAKER_10
transcript.pyannote[153].start 2726.98034375
transcript.pyannote[153].end 2731.70534375
transcript.pyannote[154].speaker SPEAKER_09
transcript.pyannote[154].start 2727.53721875
transcript.pyannote[154].end 2727.70596875
transcript.pyannote[155].speaker SPEAKER_10
transcript.pyannote[155].start 2732.36346875
transcript.pyannote[155].end 2740.86846875
transcript.pyannote[156].speaker SPEAKER_10
transcript.pyannote[156].start 2741.61096875
transcript.pyannote[156].end 2749.06971875
transcript.pyannote[157].speaker SPEAKER_10
transcript.pyannote[157].start 2749.13721875
transcript.pyannote[157].end 2749.17096875
transcript.pyannote[158].speaker SPEAKER_10
transcript.pyannote[158].start 2749.32284375
transcript.pyannote[158].end 2774.80409375
transcript.pyannote[159].speaker SPEAKER_09
transcript.pyannote[159].start 2775.54659375
transcript.pyannote[159].end 2776.79534375
transcript.pyannote[160].speaker SPEAKER_10
transcript.pyannote[160].start 2775.54659375
transcript.pyannote[160].end 2777.55471875
transcript.pyannote[161].speaker SPEAKER_09
transcript.pyannote[161].start 2776.89659375
transcript.pyannote[161].end 2777.52096875
transcript.pyannote[162].speaker SPEAKER_09
transcript.pyannote[162].start 2777.55471875
transcript.pyannote[162].end 2780.45721875
transcript.pyannote[163].speaker SPEAKER_10
transcript.pyannote[163].start 2779.00596875
transcript.pyannote[163].end 2780.05221875
transcript.pyannote[164].speaker SPEAKER_10
transcript.pyannote[164].start 2780.45721875
transcript.pyannote[164].end 2782.71846875
transcript.pyannote[165].speaker SPEAKER_09
transcript.pyannote[165].start 2780.49096875
transcript.pyannote[165].end 2780.76096875
transcript.pyannote[166].speaker SPEAKER_10
transcript.pyannote[166].start 2782.97159375
transcript.pyannote[166].end 2789.16471875
transcript.pyannote[167].speaker SPEAKER_09
transcript.pyannote[167].start 2784.74346875
transcript.pyannote[167].end 2785.92471875
transcript.pyannote[168].speaker SPEAKER_10
transcript.pyannote[168].start 2789.48534375
transcript.pyannote[168].end 2792.21909375
transcript.pyannote[169].speaker SPEAKER_09
transcript.pyannote[169].start 2791.24034375
transcript.pyannote[169].end 2791.25721875
transcript.pyannote[170].speaker SPEAKER_20
transcript.pyannote[170].start 2791.25721875
transcript.pyannote[170].end 2792.18534375
transcript.pyannote[171].speaker SPEAKER_09
transcript.pyannote[171].start 2792.18534375
transcript.pyannote[171].end 2792.20221875
transcript.pyannote[172].speaker SPEAKER_20
transcript.pyannote[172].start 2792.21909375
transcript.pyannote[172].end 2792.23596875
transcript.pyannote[173].speaker SPEAKER_20
transcript.pyannote[173].start 2792.96159375
transcript.pyannote[173].end 2793.23159375
transcript.pyannote[174].speaker SPEAKER_10
transcript.pyannote[174].start 2793.51846875
transcript.pyannote[174].end 2794.31159375
transcript.pyannote[175].speaker SPEAKER_11
transcript.pyannote[175].start 2794.31159375
transcript.pyannote[175].end 2794.32846875
transcript.pyannote[176].speaker SPEAKER_12
transcript.pyannote[176].start 2794.75034375
transcript.pyannote[176].end 2810.20784375
transcript.pyannote[177].speaker SPEAKER_11
transcript.pyannote[177].start 2798.81721875
transcript.pyannote[177].end 2798.95221875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 2798.95221875
transcript.pyannote[178].end 2799.27284375
transcript.pyannote[179].speaker SPEAKER_11
transcript.pyannote[179].start 2799.27284375
transcript.pyannote[179].end 2799.35721875
transcript.pyannote[180].speaker SPEAKER_10
transcript.pyannote[180].start 2809.56659375
transcript.pyannote[180].end 2810.76471875
transcript.pyannote[181].speaker SPEAKER_12
transcript.pyannote[181].start 2810.54534375
transcript.pyannote[181].end 2813.95409375
transcript.pyannote[182].speaker SPEAKER_10
transcript.pyannote[182].start 2811.99659375
transcript.pyannote[182].end 2822.71221875
transcript.pyannote[183].speaker SPEAKER_12
transcript.pyannote[183].start 2817.98721875
transcript.pyannote[183].end 2818.25721875
transcript.pyannote[184].speaker SPEAKER_12
transcript.pyannote[184].start 2820.26534375
transcript.pyannote[184].end 2821.58159375
transcript.pyannote[185].speaker SPEAKER_10
transcript.pyannote[185].start 2822.86409375
transcript.pyannote[185].end 2825.29409375
transcript.pyannote[186].speaker SPEAKER_12
transcript.pyannote[186].start 2823.64034375
transcript.pyannote[186].end 2824.33221875
transcript.pyannote[187].speaker SPEAKER_12
transcript.pyannote[187].start 2825.29409375
transcript.pyannote[187].end 2829.52971875
transcript.pyannote[188].speaker SPEAKER_10
transcript.pyannote[188].start 2829.00659375
transcript.pyannote[188].end 2831.38596875
transcript.pyannote[189].speaker SPEAKER_12
transcript.pyannote[189].start 2830.03596875
transcript.pyannote[189].end 2830.72784375
transcript.pyannote[190].speaker SPEAKER_12
transcript.pyannote[190].start 2831.16659375
transcript.pyannote[190].end 2835.11534375
transcript.pyannote[191].speaker SPEAKER_10
transcript.pyannote[191].start 2834.28846875
transcript.pyannote[191].end 2842.13534375
transcript.pyannote[192].speaker SPEAKER_12
transcript.pyannote[192].start 2835.46971875
transcript.pyannote[192].end 2837.56221875
transcript.pyannote[193].speaker SPEAKER_09
transcript.pyannote[193].start 2841.24096875
transcript.pyannote[193].end 2841.30846875
transcript.pyannote[194].speaker SPEAKER_28
transcript.pyannote[194].start 2842.59096875
transcript.pyannote[194].end 2848.95284375
transcript.pyannote[195].speaker SPEAKER_08
transcript.pyannote[195].start 2856.36096875
transcript.pyannote[195].end 2858.03159375
transcript.pyannote[196].speaker SPEAKER_08
transcript.pyannote[196].start 2858.18346875
transcript.pyannote[196].end 2858.31846875
transcript.pyannote[197].speaker SPEAKER_28
transcript.pyannote[197].start 2858.31846875
transcript.pyannote[197].end 2859.11159375
transcript.pyannote[198].speaker SPEAKER_09
transcript.pyannote[198].start 2860.96784375
transcript.pyannote[198].end 2861.81159375
transcript.pyannote[199].speaker SPEAKER_08
transcript.pyannote[199].start 2862.60471875
transcript.pyannote[199].end 2863.92096875
transcript.pyannote[200].speaker SPEAKER_09
transcript.pyannote[200].start 2863.27971875
transcript.pyannote[200].end 2863.97159375
transcript.pyannote[201].speaker SPEAKER_08
transcript.pyannote[201].start 2864.98409375
transcript.pyannote[201].end 2873.33721875
transcript.pyannote[202].speaker SPEAKER_20
transcript.pyannote[202].start 2872.67909375
transcript.pyannote[202].end 2873.28659375
transcript.pyannote[203].speaker SPEAKER_20
transcript.pyannote[203].start 2873.33721875
transcript.pyannote[203].end 2873.87721875
transcript.pyannote[204].speaker SPEAKER_08
transcript.pyannote[204].start 2873.82659375
transcript.pyannote[204].end 2880.49221875
transcript.pyannote[205].speaker SPEAKER_20
transcript.pyannote[205].start 2878.95659375
transcript.pyannote[205].end 2879.27721875
transcript.pyannote[206].speaker SPEAKER_08
transcript.pyannote[206].start 2880.88034375
transcript.pyannote[206].end 2900.96159375
transcript.pyannote[207].speaker SPEAKER_08
transcript.pyannote[207].start 2901.23159375
transcript.pyannote[207].end 2913.82034375
transcript.pyannote[208].speaker SPEAKER_08
transcript.pyannote[208].start 2914.39409375
transcript.pyannote[208].end 2917.83659375
transcript.pyannote[209].speaker SPEAKER_08
transcript.pyannote[209].start 2918.30909375
transcript.pyannote[209].end 2927.77596875
transcript.pyannote[210].speaker SPEAKER_08
transcript.pyannote[210].start 2928.36659375
transcript.pyannote[210].end 2951.95784375
transcript.pyannote[211].speaker SPEAKER_09
transcript.pyannote[211].start 2952.95346875
transcript.pyannote[211].end 2955.55221875
transcript.pyannote[212].speaker SPEAKER_04
transcript.pyannote[212].start 2956.61534375
transcript.pyannote[212].end 2991.95159375
transcript.pyannote[213].speaker SPEAKER_08
transcript.pyannote[213].start 2991.96846875
transcript.pyannote[213].end 3006.37971875
transcript.pyannote[214].speaker SPEAKER_08
transcript.pyannote[214].start 3006.75096875
transcript.pyannote[214].end 3015.27284375
transcript.pyannote[215].speaker SPEAKER_08
transcript.pyannote[215].start 3015.71159375
transcript.pyannote[215].end 3060.73409375
transcript.pyannote[216].speaker SPEAKER_08
transcript.pyannote[216].start 3060.90284375
transcript.pyannote[216].end 3067.55159375
transcript.pyannote[217].speaker SPEAKER_09
transcript.pyannote[217].start 3068.24346875
transcript.pyannote[217].end 3079.88721875
transcript.pyannote[218].speaker SPEAKER_08
transcript.pyannote[218].start 3078.65534375
transcript.pyannote[218].end 3088.07159375
transcript.pyannote[219].speaker SPEAKER_09
transcript.pyannote[219].start 3083.09346875
transcript.pyannote[219].end 3083.27909375
transcript.pyannote[220].speaker SPEAKER_09
transcript.pyannote[220].start 3086.80596875
transcript.pyannote[220].end 3090.36659375
transcript.pyannote[221].speaker SPEAKER_08
transcript.pyannote[221].start 3088.89846875
transcript.pyannote[221].end 3089.91096875
transcript.pyannote[222].speaker SPEAKER_08
transcript.pyannote[222].start 3090.04596875
transcript.pyannote[222].end 3098.66909375
transcript.pyannote[223].speaker SPEAKER_09
transcript.pyannote[223].start 3095.34471875
transcript.pyannote[223].end 3095.68221875
transcript.pyannote[224].speaker SPEAKER_08
transcript.pyannote[224].start 3099.59721875
transcript.pyannote[224].end 3120.15096875
transcript.pyannote[225].speaker SPEAKER_08
transcript.pyannote[225].start 3120.47159375
transcript.pyannote[225].end 3157.91721875
transcript.pyannote[226].speaker SPEAKER_08
transcript.pyannote[226].start 3157.96784375
transcript.pyannote[226].end 3158.23784375
transcript.pyannote[227].speaker SPEAKER_08
transcript.pyannote[227].start 3158.52471875
transcript.pyannote[227].end 3211.07346875
transcript.pyannote[228].speaker SPEAKER_09
transcript.pyannote[228].start 3211.27596875
transcript.pyannote[228].end 3212.81159375
transcript.pyannote[229].speaker SPEAKER_04
transcript.pyannote[229].start 3214.24596875
transcript.pyannote[229].end 3222.00846875
transcript.pyannote[230].speaker SPEAKER_08
transcript.pyannote[230].start 3221.21534375
transcript.pyannote[230].end 3222.54846875
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 3222.37971875
transcript.pyannote[231].end 3227.22284375
transcript.pyannote[232].speaker SPEAKER_08
transcript.pyannote[232].start 3227.57721875
transcript.pyannote[232].end 3235.03596875
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 3227.69534375
transcript.pyannote[233].end 3228.21846875
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 3229.19721875
transcript.pyannote[234].end 3230.26034375
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 3230.49659375
transcript.pyannote[235].end 3231.20534375
transcript.pyannote[236].speaker SPEAKER_04
transcript.pyannote[236].start 3235.03596875
transcript.pyannote[236].end 3245.73471875
transcript.pyannote[237].speaker SPEAKER_08
transcript.pyannote[237].start 3244.65471875
transcript.pyannote[237].end 3250.78034375
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 3246.30846875
transcript.pyannote[238].end 3247.16909375
transcript.pyannote[239].speaker SPEAKER_04
transcript.pyannote[239].start 3249.61596875
transcript.pyannote[239].end 3264.97221875
transcript.pyannote[240].speaker SPEAKER_08
transcript.pyannote[240].start 3264.97221875
transcript.pyannote[240].end 3270.94596875
transcript.pyannote[241].speaker SPEAKER_09
transcript.pyannote[241].start 3269.56221875
transcript.pyannote[241].end 3277.05471875
transcript.pyannote[242].speaker SPEAKER_08
transcript.pyannote[242].start 3271.36784375
transcript.pyannote[242].end 3271.75596875
transcript.pyannote[243].speaker SPEAKER_09
transcript.pyannote[243].start 3277.72971875
transcript.pyannote[243].end 3282.62346875
transcript.pyannote[244].speaker SPEAKER_08
transcript.pyannote[244].start 3279.56909375
transcript.pyannote[244].end 3279.97409375
transcript.pyannote[245].speaker SPEAKER_08
transcript.pyannote[245].start 3281.27346875
transcript.pyannote[245].end 3281.76284375
transcript.pyannote[246].speaker SPEAKER_09
transcript.pyannote[246].start 3283.04534375
transcript.pyannote[246].end 3284.83409375
transcript.pyannote[247].speaker SPEAKER_08
transcript.pyannote[247].start 3283.06221875
transcript.pyannote[247].end 3291.38159375
transcript.pyannote[248].speaker SPEAKER_09
transcript.pyannote[248].start 3285.13784375
transcript.pyannote[248].end 3286.20096875
transcript.pyannote[249].speaker SPEAKER_09
transcript.pyannote[249].start 3288.31034375
transcript.pyannote[249].end 3288.95159375
transcript.pyannote[250].speaker SPEAKER_08
transcript.pyannote[250].start 3291.48284375
transcript.pyannote[250].end 3301.08471875
transcript.pyannote[251].speaker SPEAKER_20
transcript.pyannote[251].start 3296.02221875
transcript.pyannote[251].end 3296.91659375
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 3296.91659375
transcript.pyannote[252].end 3296.98409375
transcript.pyannote[253].speaker SPEAKER_08
transcript.pyannote[253].start 3301.86096875
transcript.pyannote[253].end 3320.69346875
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 3305.28659375
transcript.pyannote[254].end 3305.82659375
transcript.pyannote[255].speaker SPEAKER_08
transcript.pyannote[255].start 3320.87909375
transcript.pyannote[255].end 3323.84909375
transcript.pyannote[256].speaker SPEAKER_09
transcript.pyannote[256].start 3321.72284375
transcript.pyannote[256].end 3334.85159375
transcript.pyannote[257].speaker SPEAKER_08
transcript.pyannote[257].start 3330.90284375
transcript.pyannote[257].end 3331.69596875
transcript.pyannote[258].speaker SPEAKER_09
transcript.pyannote[258].start 3335.23971875
transcript.pyannote[258].end 3343.33971875
transcript.pyannote[259].speaker SPEAKER_08
transcript.pyannote[259].start 3341.12909375
transcript.pyannote[259].end 3341.68596875
transcript.pyannote[260].speaker SPEAKER_08
transcript.pyannote[260].start 3342.39471875
transcript.pyannote[260].end 3347.11971875
transcript.pyannote[261].speaker SPEAKER_09
transcript.pyannote[261].start 3345.22971875
transcript.pyannote[261].end 3346.41096875
transcript.pyannote[262].speaker SPEAKER_08
transcript.pyannote[262].start 3347.62596875
transcript.pyannote[262].end 3354.05534375
transcript.pyannote[263].speaker SPEAKER_08
transcript.pyannote[263].start 3354.42659375
transcript.pyannote[263].end 3375.18284375
transcript.pyannote[264].speaker SPEAKER_08
transcript.pyannote[264].start 3377.49471875
transcript.pyannote[264].end 3387.45096875
transcript.pyannote[265].speaker SPEAKER_08
transcript.pyannote[265].start 3387.85596875
transcript.pyannote[265].end 3389.57721875
transcript.pyannote[266].speaker SPEAKER_08
transcript.pyannote[266].start 3391.19721875
transcript.pyannote[266].end 3392.29409375
transcript.pyannote[267].speaker SPEAKER_08
transcript.pyannote[267].start 3392.47971875
transcript.pyannote[267].end 3399.65159375
transcript.pyannote[268].speaker SPEAKER_08
transcript.pyannote[268].start 3399.98909375
transcript.pyannote[268].end 3403.92096875
transcript.pyannote[269].speaker SPEAKER_08
transcript.pyannote[269].start 3404.59596875
transcript.pyannote[269].end 3405.99659375
transcript.pyannote[270].speaker SPEAKER_09
transcript.pyannote[270].start 3405.99659375
transcript.pyannote[270].end 3406.03034375
transcript.pyannote[271].speaker SPEAKER_09
transcript.pyannote[271].start 3407.78534375
transcript.pyannote[271].end 3408.08909375
transcript.pyannote[272].speaker SPEAKER_09
transcript.pyannote[272].start 3408.47721875
transcript.pyannote[272].end 3409.65846875
transcript.pyannote[273].speaker SPEAKER_09
transcript.pyannote[273].start 3410.02971875
transcript.pyannote[273].end 3410.45159375
transcript.pyannote[274].speaker SPEAKER_09
transcript.pyannote[274].start 3410.92409375
transcript.pyannote[274].end 3412.25721875
transcript.pyannote[275].speaker SPEAKER_04
transcript.pyannote[275].start 3412.64534375
transcript.pyannote[275].end 3433.11471875
transcript.pyannote[276].speaker SPEAKER_08
transcript.pyannote[276].start 3432.49034375
transcript.pyannote[276].end 3445.78784375
transcript.pyannote[277].speaker SPEAKER_20
transcript.pyannote[277].start 3445.78784375
transcript.pyannote[277].end 3446.07471875
transcript.pyannote[278].speaker SPEAKER_08
transcript.pyannote[278].start 3446.07471875
transcript.pyannote[278].end 3480.17909375
transcript.pyannote[279].speaker SPEAKER_11
transcript.pyannote[279].start 3474.17159375
transcript.pyannote[279].end 3474.69471875
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 3474.69471875
transcript.pyannote[280].end 3474.72846875
transcript.pyannote[281].speaker SPEAKER_11
transcript.pyannote[281].start 3474.88034375
transcript.pyannote[281].end 3475.03221875
transcript.pyannote[282].speaker SPEAKER_10
transcript.pyannote[282].start 3475.03221875
transcript.pyannote[282].end 3475.21784375
transcript.pyannote[283].speaker SPEAKER_11
transcript.pyannote[283].start 3475.21784375
transcript.pyannote[283].end 3475.26846875
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 3475.26846875
transcript.pyannote[284].end 3475.30221875
transcript.pyannote[285].speaker SPEAKER_11
transcript.pyannote[285].start 3477.39471875
transcript.pyannote[285].end 3477.44534375
transcript.pyannote[286].speaker SPEAKER_10
transcript.pyannote[286].start 3477.44534375
transcript.pyannote[286].end 3478.30596875
transcript.pyannote[287].speaker SPEAKER_00
transcript.pyannote[287].start 3479.40284375
transcript.pyannote[287].end 3479.43659375
transcript.pyannote[288].speaker SPEAKER_10
transcript.pyannote[288].start 3479.43659375
transcript.pyannote[288].end 3479.47034375
transcript.pyannote[289].speaker SPEAKER_28
transcript.pyannote[289].start 3479.47034375
transcript.pyannote[289].end 3479.79096875
transcript.pyannote[290].speaker SPEAKER_08
transcript.pyannote[290].start 3480.56721875
transcript.pyannote[290].end 3487.40159375
transcript.pyannote[291].speaker SPEAKER_20
transcript.pyannote[291].start 3485.89971875
transcript.pyannote[291].end 3487.48596875
transcript.pyannote[292].speaker SPEAKER_28
transcript.pyannote[292].start 3488.31284375
transcript.pyannote[292].end 3492.17721875
transcript.pyannote[293].speaker SPEAKER_28
transcript.pyannote[293].start 3492.75096875
transcript.pyannote[293].end 3495.60284375
transcript.pyannote[294].speaker SPEAKER_15
transcript.pyannote[294].start 3499.90596875
transcript.pyannote[294].end 3501.50909375
transcript.pyannote[295].speaker SPEAKER_28
transcript.pyannote[295].start 3502.38659375
transcript.pyannote[295].end 3503.19659375
transcript.pyannote[296].speaker SPEAKER_15
transcript.pyannote[296].start 3504.25971875
transcript.pyannote[296].end 3513.81096875
transcript.pyannote[297].speaker SPEAKER_15
transcript.pyannote[297].start 3514.94159375
transcript.pyannote[297].end 3515.24534375
transcript.pyannote[298].speaker SPEAKER_15
transcript.pyannote[298].start 3515.90346875
transcript.pyannote[298].end 3532.20471875
transcript.pyannote[299].speaker SPEAKER_15
transcript.pyannote[299].start 3532.25534375
transcript.pyannote[299].end 3555.08721875
transcript.pyannote[300].speaker SPEAKER_09
transcript.pyannote[300].start 3555.30659375
transcript.pyannote[300].end 3559.72784375
transcript.pyannote[301].speaker SPEAKER_15
transcript.pyannote[301].start 3556.48784375
transcript.pyannote[301].end 3569.46471875
transcript.pyannote[302].speaker SPEAKER_09
transcript.pyannote[302].start 3570.05534375
transcript.pyannote[302].end 3594.64221875
transcript.pyannote[303].speaker SPEAKER_00
transcript.pyannote[303].start 3577.76721875
transcript.pyannote[303].end 3577.80096875
transcript.pyannote[304].speaker SPEAKER_15
transcript.pyannote[304].start 3577.80096875
transcript.pyannote[304].end 3577.83471875
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 3577.83471875
transcript.pyannote[305].end 3578.17221875
transcript.pyannote[306].speaker SPEAKER_16
transcript.pyannote[306].start 3583.85909375
transcript.pyannote[306].end 3584.28096875
transcript.pyannote[307].speaker SPEAKER_00
transcript.pyannote[307].start 3584.28096875
transcript.pyannote[307].end 3584.34846875
transcript.pyannote[308].speaker SPEAKER_16
transcript.pyannote[308].start 3588.26346875
transcript.pyannote[308].end 3588.58409375
transcript.pyannote[309].speaker SPEAKER_15
transcript.pyannote[309].start 3592.48221875
transcript.pyannote[309].end 3596.00909375
transcript.pyannote[310].speaker SPEAKER_15
transcript.pyannote[310].start 3596.12721875
transcript.pyannote[310].end 3599.14784375
transcript.pyannote[311].speaker SPEAKER_09
transcript.pyannote[311].start 3596.22846875
transcript.pyannote[311].end 3596.97096875
transcript.pyannote[312].speaker SPEAKER_09
transcript.pyannote[312].start 3597.61221875
transcript.pyannote[312].end 3598.33784375
transcript.pyannote[313].speaker SPEAKER_15
transcript.pyannote[313].start 3599.36721875
transcript.pyannote[313].end 3607.56846875
transcript.pyannote[314].speaker SPEAKER_09
transcript.pyannote[314].start 3601.13909375
transcript.pyannote[314].end 3601.61159375
transcript.pyannote[315].speaker SPEAKER_09
transcript.pyannote[315].start 3605.67846875
transcript.pyannote[315].end 3607.55159375
transcript.pyannote[316].speaker SPEAKER_09
transcript.pyannote[316].start 3607.56846875
transcript.pyannote[316].end 3607.58534375
transcript.pyannote[317].speaker SPEAKER_15
transcript.pyannote[317].start 3607.58534375
transcript.pyannote[317].end 3607.97346875
transcript.pyannote[318].speaker SPEAKER_09
transcript.pyannote[318].start 3607.97346875
transcript.pyannote[318].end 3611.66909375
transcript.pyannote[319].speaker SPEAKER_15
transcript.pyannote[319].start 3608.15909375
transcript.pyannote[319].end 3609.88034375
transcript.pyannote[320].speaker SPEAKER_09
transcript.pyannote[320].start 3612.00659375
transcript.pyannote[320].end 3618.80721875
transcript.pyannote[321].speaker SPEAKER_15
transcript.pyannote[321].start 3612.17534375
transcript.pyannote[321].end 3613.18784375
transcript.pyannote[322].speaker SPEAKER_15
transcript.pyannote[322].start 3617.38971875
transcript.pyannote[322].end 3618.08159375
transcript.pyannote[323].speaker SPEAKER_09
transcript.pyannote[323].start 3619.38096875
transcript.pyannote[323].end 3622.58721875
transcript.pyannote[324].speaker SPEAKER_04
transcript.pyannote[324].start 3622.13159375
transcript.pyannote[324].end 3646.78596875
transcript.pyannote[325].speaker SPEAKER_09
transcript.pyannote[325].start 3628.15596875
transcript.pyannote[325].end 3628.61159375
transcript.pyannote[326].speaker SPEAKER_00
transcript.pyannote[326].start 3635.42909375
transcript.pyannote[326].end 3635.74971875
transcript.pyannote[327].speaker SPEAKER_15
transcript.pyannote[327].start 3641.26784375
transcript.pyannote[327].end 3641.63909375
transcript.pyannote[328].speaker SPEAKER_15
transcript.pyannote[328].start 3646.78596875
transcript.pyannote[328].end 3658.71659375
transcript.pyannote[329].speaker SPEAKER_09
transcript.pyannote[329].start 3649.13159375
transcript.pyannote[329].end 3649.75596875
transcript.pyannote[330].speaker SPEAKER_09
transcript.pyannote[330].start 3650.19471875
transcript.pyannote[330].end 3650.21159375
transcript.pyannote[331].speaker SPEAKER_09
transcript.pyannote[331].start 3651.69659375
transcript.pyannote[331].end 3651.93284375
transcript.pyannote[332].speaker SPEAKER_09
transcript.pyannote[332].start 3651.96659375
transcript.pyannote[332].end 3652.11846875
transcript.pyannote[333].speaker SPEAKER_17
transcript.pyannote[333].start 3652.11846875
transcript.pyannote[333].end 3652.27034375
transcript.pyannote[334].speaker SPEAKER_09
transcript.pyannote[334].start 3652.27034375
transcript.pyannote[334].end 3652.32096875
transcript.pyannote[335].speaker SPEAKER_17
transcript.pyannote[335].start 3652.32096875
transcript.pyannote[335].end 3652.37159375
transcript.pyannote[336].speaker SPEAKER_15
transcript.pyannote[336].start 3659.67846875
transcript.pyannote[336].end 3659.69534375
transcript.pyannote[337].speaker SPEAKER_09
transcript.pyannote[337].start 3659.69534375
transcript.pyannote[337].end 3660.11721875
transcript.pyannote[338].speaker SPEAKER_15
transcript.pyannote[338].start 3660.55596875
transcript.pyannote[338].end 3660.57284375
transcript.pyannote[339].speaker SPEAKER_09
transcript.pyannote[339].start 3660.57284375
transcript.pyannote[339].end 3681.68346875
transcript.pyannote[340].speaker SPEAKER_15
transcript.pyannote[340].start 3664.28534375
transcript.pyannote[340].end 3664.52159375
transcript.pyannote[341].speaker SPEAKER_15
transcript.pyannote[341].start 3665.23034375
transcript.pyannote[341].end 3666.34409375
transcript.pyannote[342].speaker SPEAKER_20
transcript.pyannote[342].start 3666.34409375
transcript.pyannote[342].end 3666.39471875
transcript.pyannote[343].speaker SPEAKER_15
transcript.pyannote[343].start 3677.81909375
transcript.pyannote[343].end 3678.20721875
transcript.pyannote[344].speaker SPEAKER_15
transcript.pyannote[344].start 3681.68346875
transcript.pyannote[344].end 3686.56034375
transcript.pyannote[345].speaker SPEAKER_09
transcript.pyannote[345].start 3685.10909375
transcript.pyannote[345].end 3691.36971875
transcript.pyannote[346].speaker SPEAKER_09
transcript.pyannote[346].start 3691.58909375
transcript.pyannote[346].end 3704.54909375
transcript.pyannote[347].speaker SPEAKER_15
transcript.pyannote[347].start 3693.68159375
transcript.pyannote[347].end 3694.27221875
transcript.pyannote[348].speaker SPEAKER_09
transcript.pyannote[348].start 3704.85284375
transcript.pyannote[348].end 3723.02721875
transcript.pyannote[349].speaker SPEAKER_11
transcript.pyannote[349].start 3711.24846875
transcript.pyannote[349].end 3711.88971875
transcript.pyannote[350].speaker SPEAKER_20
transcript.pyannote[350].start 3719.61846875
transcript.pyannote[350].end 3719.85471875
transcript.pyannote[351].speaker SPEAKER_15
transcript.pyannote[351].start 3723.02721875
transcript.pyannote[351].end 3723.36471875
transcript.pyannote[352].speaker SPEAKER_20
transcript.pyannote[352].start 3723.36471875
transcript.pyannote[352].end 3723.85409375
transcript.pyannote[353].speaker SPEAKER_09
transcript.pyannote[353].start 3723.75284375
transcript.pyannote[353].end 3723.82034375
transcript.pyannote[354].speaker SPEAKER_15
transcript.pyannote[354].start 3723.82034375
transcript.pyannote[354].end 3784.40159375
transcript.pyannote[355].speaker SPEAKER_15
transcript.pyannote[355].start 3784.95846875
transcript.pyannote[355].end 3786.96659375
transcript.pyannote[356].speaker SPEAKER_09
transcript.pyannote[356].start 3786.96659375
transcript.pyannote[356].end 3788.21534375
transcript.pyannote[357].speaker SPEAKER_04
transcript.pyannote[357].start 3788.77221875
transcript.pyannote[357].end 3807.11534375
transcript.pyannote[358].speaker SPEAKER_00
transcript.pyannote[358].start 3796.06221875
transcript.pyannote[358].end 3796.07909375
transcript.pyannote[359].speaker SPEAKER_09
transcript.pyannote[359].start 3796.07909375
transcript.pyannote[359].end 3796.31534375
transcript.pyannote[360].speaker SPEAKER_00
transcript.pyannote[360].start 3796.31534375
transcript.pyannote[360].end 3796.41659375
transcript.pyannote[361].speaker SPEAKER_15
transcript.pyannote[361].start 3807.31784375
transcript.pyannote[361].end 3811.30034375
transcript.pyannote[362].speaker SPEAKER_04
transcript.pyannote[362].start 3809.86596875
transcript.pyannote[362].end 3812.61659375
transcript.pyannote[363].speaker SPEAKER_15
transcript.pyannote[363].start 3811.89096875
transcript.pyannote[363].end 3815.94096875
transcript.pyannote[364].speaker SPEAKER_15
transcript.pyannote[364].start 3816.93659375
transcript.pyannote[364].end 3817.42596875
transcript.pyannote[365].speaker SPEAKER_04
transcript.pyannote[365].start 3817.88159375
transcript.pyannote[365].end 3823.21409375
transcript.pyannote[366].speaker SPEAKER_15
transcript.pyannote[366].start 3821.64471875
transcript.pyannote[366].end 3821.96534375
transcript.pyannote[367].speaker SPEAKER_15
transcript.pyannote[367].start 3823.33221875
transcript.pyannote[367].end 3834.60471875
transcript.pyannote[368].speaker SPEAKER_15
transcript.pyannote[368].start 3834.97596875
transcript.pyannote[368].end 3838.19909375
transcript.pyannote[369].speaker SPEAKER_15
transcript.pyannote[369].start 3838.75596875
transcript.pyannote[369].end 3852.30659375
transcript.pyannote[370].speaker SPEAKER_09
transcript.pyannote[370].start 3853.33596875
transcript.pyannote[370].end 3859.64721875
transcript.pyannote[371].speaker SPEAKER_15
transcript.pyannote[371].start 3856.06971875
transcript.pyannote[371].end 3856.08659375
transcript.pyannote[372].speaker SPEAKER_04
transcript.pyannote[372].start 3860.32221875
transcript.pyannote[372].end 3868.72596875
transcript.pyannote[373].speaker SPEAKER_15
transcript.pyannote[373].start 3869.28284375
transcript.pyannote[373].end 3871.61159375
transcript.pyannote[374].speaker SPEAKER_04
transcript.pyannote[374].start 3869.33346875
transcript.pyannote[374].end 3870.17721875
transcript.pyannote[375].speaker SPEAKER_04
transcript.pyannote[375].start 3871.61159375
transcript.pyannote[375].end 3873.48471875
transcript.pyannote[376].speaker SPEAKER_15
transcript.pyannote[376].start 3873.33284375
transcript.pyannote[376].end 3873.63659375
transcript.pyannote[377].speaker SPEAKER_15
transcript.pyannote[377].start 3873.94034375
transcript.pyannote[377].end 3894.47721875
transcript.pyannote[378].speaker SPEAKER_15
transcript.pyannote[378].start 3894.89909375
transcript.pyannote[378].end 3899.08409375
transcript.pyannote[379].speaker SPEAKER_15
transcript.pyannote[379].start 3900.11346875
transcript.pyannote[379].end 3904.26471875
transcript.pyannote[380].speaker SPEAKER_15
transcript.pyannote[380].start 3904.77096875
transcript.pyannote[380].end 3907.57221875
transcript.pyannote[381].speaker SPEAKER_15
transcript.pyannote[381].start 3908.01096875
transcript.pyannote[381].end 3908.82096875
transcript.pyannote[382].speaker SPEAKER_09
transcript.pyannote[382].start 3910.49159375
transcript.pyannote[382].end 3928.12596875
transcript.pyannote[383].speaker SPEAKER_20
transcript.pyannote[383].start 3922.16909375
transcript.pyannote[383].end 3922.20284375
transcript.pyannote[384].speaker SPEAKER_09
transcript.pyannote[384].start 3928.41284375
transcript.pyannote[384].end 3930.77534375
transcript.pyannote[385].speaker SPEAKER_15
transcript.pyannote[385].start 3928.91909375
transcript.pyannote[385].end 3929.25659375
transcript.pyannote[386].speaker SPEAKER_15
transcript.pyannote[386].start 3930.77534375
transcript.pyannote[386].end 3935.21346875
transcript.pyannote[387].speaker SPEAKER_09
transcript.pyannote[387].start 3933.82971875
transcript.pyannote[387].end 3943.02659375
transcript.pyannote[388].speaker SPEAKER_15
transcript.pyannote[388].start 3936.07409375
transcript.pyannote[388].end 3936.32721875
transcript.pyannote[389].speaker SPEAKER_15
transcript.pyannote[389].start 3938.14971875
transcript.pyannote[389].end 3938.26784375
transcript.pyannote[390].speaker SPEAKER_15
transcript.pyannote[390].start 3939.51659375
transcript.pyannote[390].end 3940.09034375
transcript.pyannote[391].speaker SPEAKER_15
transcript.pyannote[391].start 3943.02659375
transcript.pyannote[391].end 3944.88284375
transcript.pyannote[392].speaker SPEAKER_09
transcript.pyannote[392].start 3944.88284375
transcript.pyannote[392].end 3944.91659375
transcript.pyannote[393].speaker SPEAKER_09
transcript.pyannote[393].start 3944.96721875
transcript.pyannote[393].end 3945.01784375
transcript.pyannote[394].speaker SPEAKER_15
transcript.pyannote[394].start 3945.01784375
transcript.pyannote[394].end 3960.67784375
transcript.pyannote[395].speaker SPEAKER_09
transcript.pyannote[395].start 3945.10221875
transcript.pyannote[395].end 3946.48596875
transcript.pyannote[396].speaker SPEAKER_20
transcript.pyannote[396].start 3960.67784375
transcript.pyannote[396].end 3961.87596875
transcript.pyannote[397].speaker SPEAKER_15
transcript.pyannote[397].start 3961.28534375
transcript.pyannote[397].end 3968.55846875
transcript.pyannote[398].speaker SPEAKER_20
transcript.pyannote[398].start 3962.28096875
transcript.pyannote[398].end 3962.85471875
transcript.pyannote[399].speaker SPEAKER_15
transcript.pyannote[399].start 3969.52034375
transcript.pyannote[399].end 3975.39284375
transcript.pyannote[400].speaker SPEAKER_15
transcript.pyannote[400].start 3975.66284375
transcript.pyannote[400].end 3981.95721875
transcript.pyannote[401].speaker SPEAKER_04
transcript.pyannote[401].start 3981.95721875
transcript.pyannote[401].end 3992.84159375
transcript.pyannote[402].speaker SPEAKER_15
transcript.pyannote[402].start 3993.24659375
transcript.pyannote[402].end 3994.10721875
transcript.pyannote[403].speaker SPEAKER_04
transcript.pyannote[403].start 3995.28846875
transcript.pyannote[403].end 4002.22409375
transcript.pyannote[404].speaker SPEAKER_15
transcript.pyannote[404].start 3999.70971875
transcript.pyannote[404].end 4000.14846875
transcript.pyannote[405].speaker SPEAKER_15
transcript.pyannote[405].start 4000.95846875
transcript.pyannote[405].end 4001.71784375
transcript.pyannote[406].speaker SPEAKER_15
transcript.pyannote[406].start 4002.10596875
transcript.pyannote[406].end 4009.29471875
transcript.pyannote[407].speaker SPEAKER_15
transcript.pyannote[407].start 4009.78409375
transcript.pyannote[407].end 4010.15534375
transcript.pyannote[408].speaker SPEAKER_15
transcript.pyannote[408].start 4010.39159375
transcript.pyannote[408].end 4011.45471875
transcript.pyannote[409].speaker SPEAKER_15
transcript.pyannote[409].start 4011.91034375
transcript.pyannote[409].end 4012.12971875
transcript.pyannote[410].speaker SPEAKER_15
transcript.pyannote[410].start 4013.14221875
transcript.pyannote[410].end 4022.47409375
transcript.pyannote[411].speaker SPEAKER_20
transcript.pyannote[411].start 4023.52034375
transcript.pyannote[411].end 4024.00971875
transcript.pyannote[412].speaker SPEAKER_15
transcript.pyannote[412].start 4026.00096875
transcript.pyannote[412].end 4032.09284375
transcript.pyannote[413].speaker SPEAKER_15
transcript.pyannote[413].start 4032.41346875
transcript.pyannote[413].end 4034.03346875
transcript.pyannote[414].speaker SPEAKER_06
transcript.pyannote[414].start 4033.32471875
transcript.pyannote[414].end 4054.35096875
transcript.pyannote[415].speaker SPEAKER_00
transcript.pyannote[415].start 4037.44221875
transcript.pyannote[415].end 4037.47596875
transcript.pyannote[416].speaker SPEAKER_15
transcript.pyannote[416].start 4037.47596875
transcript.pyannote[416].end 4037.96534375
transcript.pyannote[417].speaker SPEAKER_00
transcript.pyannote[417].start 4037.96534375
transcript.pyannote[417].end 4038.01596875
transcript.pyannote[418].speaker SPEAKER_00
transcript.pyannote[418].start 4042.65659375
transcript.pyannote[418].end 4043.06159375
transcript.pyannote[419].speaker SPEAKER_15
transcript.pyannote[419].start 4054.35096875
transcript.pyannote[419].end 4054.40159375
transcript.pyannote[420].speaker SPEAKER_07
transcript.pyannote[420].start 4054.40159375
transcript.pyannote[420].end 4055.02596875
transcript.pyannote[421].speaker SPEAKER_15
transcript.pyannote[421].start 4055.02596875
transcript.pyannote[421].end 4055.39721875
transcript.pyannote[422].speaker SPEAKER_15
transcript.pyannote[422].start 4057.50659375
transcript.pyannote[422].end 4079.76471875
transcript.pyannote[423].speaker SPEAKER_09
transcript.pyannote[423].start 4081.01346875
transcript.pyannote[423].end 4083.69659375
transcript.pyannote[424].speaker SPEAKER_15
transcript.pyannote[424].start 4083.44346875
transcript.pyannote[424].end 4083.64596875
transcript.pyannote[425].speaker SPEAKER_09
transcript.pyannote[425].start 4084.20284375
transcript.pyannote[425].end 4088.03346875
transcript.pyannote[426].speaker SPEAKER_09
transcript.pyannote[426].start 4088.47221875
transcript.pyannote[426].end 4101.88784375
transcript.pyannote[427].speaker SPEAKER_09
transcript.pyannote[427].start 4102.54596875
transcript.pyannote[427].end 4109.24534375
transcript.pyannote[428].speaker SPEAKER_09
transcript.pyannote[428].start 4109.65034375
transcript.pyannote[428].end 4130.03534375
transcript.pyannote[429].speaker SPEAKER_00
transcript.pyannote[429].start 4117.90221875
transcript.pyannote[429].end 4118.74596875
transcript.pyannote[430].speaker SPEAKER_15
transcript.pyannote[430].start 4126.55909375
transcript.pyannote[430].end 4126.91346875
transcript.pyannote[431].speaker SPEAKER_15
transcript.pyannote[431].start 4130.03534375
transcript.pyannote[431].end 4147.48409375
transcript.pyannote[432].speaker SPEAKER_09
transcript.pyannote[432].start 4131.36846875
transcript.pyannote[432].end 4131.75659375
transcript.pyannote[433].speaker SPEAKER_09
transcript.pyannote[433].start 4137.37596875
transcript.pyannote[433].end 4138.59096875
transcript.pyannote[434].speaker SPEAKER_00
transcript.pyannote[434].start 4138.59096875
transcript.pyannote[434].end 4138.79346875
transcript.pyannote[435].speaker SPEAKER_15
transcript.pyannote[435].start 4148.24346875
transcript.pyannote[435].end 4179.32721875
transcript.pyannote[436].speaker SPEAKER_09
transcript.pyannote[436].start 4180.12034375
transcript.pyannote[436].end 4188.52409375
transcript.pyannote[437].speaker SPEAKER_09
transcript.pyannote[437].start 4189.11471875
transcript.pyannote[437].end 4192.18596875
transcript.pyannote[438].speaker SPEAKER_09
transcript.pyannote[438].start 4192.54034375
transcript.pyannote[438].end 4196.94471875
transcript.pyannote[439].speaker SPEAKER_09
transcript.pyannote[439].start 4197.21471875
transcript.pyannote[439].end 4204.48784375
transcript.pyannote[440].speaker SPEAKER_16
transcript.pyannote[440].start 4202.22659375
transcript.pyannote[440].end 4202.24346875
transcript.pyannote[441].speaker SPEAKER_15
transcript.pyannote[441].start 4202.24346875
transcript.pyannote[441].end 4202.86784375
transcript.pyannote[442].speaker SPEAKER_15
transcript.pyannote[442].start 4203.57659375
transcript.pyannote[442].end 4203.59346875
transcript.pyannote[443].speaker SPEAKER_16
transcript.pyannote[443].start 4203.59346875
transcript.pyannote[443].end 4203.64409375
transcript.pyannote[444].speaker SPEAKER_15
transcript.pyannote[444].start 4203.64409375
transcript.pyannote[444].end 4223.15159375
transcript.pyannote[445].speaker SPEAKER_15
transcript.pyannote[445].start 4223.89409375
transcript.pyannote[445].end 4237.22534375
transcript.pyannote[446].speaker SPEAKER_15
transcript.pyannote[446].start 4238.03534375
transcript.pyannote[446].end 4243.26659375
transcript.pyannote[447].speaker SPEAKER_09
transcript.pyannote[447].start 4244.54909375
transcript.pyannote[447].end 4246.33784375
transcript.pyannote[448].speaker SPEAKER_09
transcript.pyannote[448].start 4246.72596875
transcript.pyannote[448].end 4249.69596875
transcript.pyannote[449].speaker SPEAKER_09
transcript.pyannote[449].start 4250.47221875
transcript.pyannote[449].end 4257.49221875
transcript.pyannote[450].speaker SPEAKER_15
transcript.pyannote[450].start 4257.49221875
transcript.pyannote[450].end 4260.93471875
transcript.pyannote[451].speaker SPEAKER_09
transcript.pyannote[451].start 4258.18409375
transcript.pyannote[451].end 4258.31909375
transcript.pyannote[452].speaker SPEAKER_09
transcript.pyannote[452].start 4259.65221875
transcript.pyannote[452].end 4260.64784375
transcript.pyannote[453].speaker SPEAKER_08
transcript.pyannote[453].start 4260.98534375
transcript.pyannote[453].end 4266.16596875
transcript.pyannote[454].speaker SPEAKER_27
transcript.pyannote[454].start 4272.37596875
transcript.pyannote[454].end 4273.33784375
transcript.pyannote[455].speaker SPEAKER_27
transcript.pyannote[455].start 4273.75971875
transcript.pyannote[455].end 4274.48534375
transcript.pyannote[456].speaker SPEAKER_27
transcript.pyannote[456].start 4278.24846875
transcript.pyannote[456].end 4278.26534375
transcript.pyannote[457].speaker SPEAKER_20
transcript.pyannote[457].start 4278.26534375
transcript.pyannote[457].end 4278.70409375
transcript.pyannote[458].speaker SPEAKER_27
transcript.pyannote[458].start 4278.70409375
transcript.pyannote[458].end 4279.66596875
transcript.pyannote[459].speaker SPEAKER_27
transcript.pyannote[459].start 4280.12159375
transcript.pyannote[459].end 4283.93534375
transcript.pyannote[460].speaker SPEAKER_27
transcript.pyannote[460].start 4283.96909375
transcript.pyannote[460].end 4284.03659375
transcript.pyannote[461].speaker SPEAKER_27
transcript.pyannote[461].start 4284.23909375
transcript.pyannote[461].end 4290.22971875
transcript.pyannote[462].speaker SPEAKER_09
transcript.pyannote[462].start 4290.88784375
transcript.pyannote[462].end 4294.06034375
transcript.pyannote[463].speaker SPEAKER_27
transcript.pyannote[463].start 4292.27159375
transcript.pyannote[463].end 4299.27471875
transcript.pyannote[464].speaker SPEAKER_09
transcript.pyannote[464].start 4299.52784375
transcript.pyannote[464].end 4303.49346875
transcript.pyannote[465].speaker SPEAKER_27
transcript.pyannote[465].start 4303.49346875
transcript.pyannote[465].end 4324.26659375
transcript.pyannote[466].speaker SPEAKER_27
transcript.pyannote[466].start 4324.89096875
transcript.pyannote[466].end 4336.24784375
transcript.pyannote[467].speaker SPEAKER_27
transcript.pyannote[467].start 4337.44596875
transcript.pyannote[467].end 4345.20846875
transcript.pyannote[468].speaker SPEAKER_09
transcript.pyannote[468].start 4346.35596875
transcript.pyannote[468].end 4346.91284375
transcript.pyannote[469].speaker SPEAKER_04
transcript.pyannote[469].start 4347.09846875
transcript.pyannote[469].end 4347.33471875
transcript.pyannote[470].speaker SPEAKER_04
transcript.pyannote[470].start 4347.43596875
transcript.pyannote[470].end 4348.11096875
transcript.pyannote[471].speaker SPEAKER_09
transcript.pyannote[471].start 4347.48659375
transcript.pyannote[471].end 4349.74784375
transcript.pyannote[472].speaker SPEAKER_04
transcript.pyannote[472].start 4348.70159375
transcript.pyannote[472].end 4349.86596875
transcript.pyannote[473].speaker SPEAKER_04
transcript.pyannote[473].start 4350.38909375
transcript.pyannote[473].end 4366.99409375
transcript.pyannote[474].speaker SPEAKER_00
transcript.pyannote[474].start 4358.06721875
transcript.pyannote[474].end 4358.28659375
transcript.pyannote[475].speaker SPEAKER_27
transcript.pyannote[475].start 4367.28096875
transcript.pyannote[475].end 4367.31471875
transcript.pyannote[476].speaker SPEAKER_04
transcript.pyannote[476].start 4367.31471875
transcript.pyannote[476].end 4367.34846875
transcript.pyannote[477].speaker SPEAKER_27
transcript.pyannote[477].start 4367.34846875
transcript.pyannote[477].end 4367.82096875
transcript.pyannote[478].speaker SPEAKER_04
transcript.pyannote[478].start 4367.82096875
transcript.pyannote[478].end 4369.23846875
transcript.pyannote[479].speaker SPEAKER_27
transcript.pyannote[479].start 4369.23846875
transcript.pyannote[479].end 4395.68159375
transcript.pyannote[480].speaker SPEAKER_27
transcript.pyannote[480].start 4396.00221875
transcript.pyannote[480].end 4399.64721875
transcript.pyannote[481].speaker SPEAKER_09
transcript.pyannote[481].start 4400.20409375
transcript.pyannote[481].end 4401.18284375
transcript.pyannote[482].speaker SPEAKER_27
transcript.pyannote[482].start 4401.09846875
transcript.pyannote[482].end 4401.11534375
transcript.pyannote[483].speaker SPEAKER_04
transcript.pyannote[483].start 4401.11534375
transcript.pyannote[483].end 4401.13221875
transcript.pyannote[484].speaker SPEAKER_27
transcript.pyannote[484].start 4401.13221875
transcript.pyannote[484].end 4401.18284375
transcript.pyannote[485].speaker SPEAKER_04
transcript.pyannote[485].start 4401.18284375
transcript.pyannote[485].end 4408.42221875
transcript.pyannote[486].speaker SPEAKER_27
transcript.pyannote[486].start 4407.91596875
transcript.pyannote[486].end 4420.26846875
transcript.pyannote[487].speaker SPEAKER_04
transcript.pyannote[487].start 4410.59909375
transcript.pyannote[487].end 4410.88596875
transcript.pyannote[488].speaker SPEAKER_04
transcript.pyannote[488].start 4419.84659375
transcript.pyannote[488].end 4423.98096875
transcript.pyannote[489].speaker SPEAKER_27
transcript.pyannote[489].start 4423.98096875
transcript.pyannote[489].end 4424.25096875
transcript.pyannote[490].speaker SPEAKER_04
transcript.pyannote[490].start 4424.25096875
transcript.pyannote[490].end 4424.38596875
transcript.pyannote[491].speaker SPEAKER_27
transcript.pyannote[491].start 4424.38596875
transcript.pyannote[491].end 4424.41971875
transcript.pyannote[492].speaker SPEAKER_04
transcript.pyannote[492].start 4424.41971875
transcript.pyannote[492].end 4424.57159375
transcript.pyannote[493].speaker SPEAKER_27
transcript.pyannote[493].start 4424.80784375
transcript.pyannote[493].end 4424.84159375
transcript.pyannote[494].speaker SPEAKER_04
transcript.pyannote[494].start 4424.84159375
transcript.pyannote[494].end 4424.85846875
transcript.pyannote[495].speaker SPEAKER_27
transcript.pyannote[495].start 4424.85846875
transcript.pyannote[495].end 4426.00596875
transcript.pyannote[496].speaker SPEAKER_04
transcript.pyannote[496].start 4425.46596875
transcript.pyannote[496].end 4425.83721875
transcript.pyannote[497].speaker SPEAKER_27
transcript.pyannote[497].start 4426.61346875
transcript.pyannote[497].end 4441.29471875
transcript.pyannote[498].speaker SPEAKER_09
transcript.pyannote[498].start 4442.22284375
transcript.pyannote[498].end 4444.29846875
transcript.pyannote[499].speaker SPEAKER_27
transcript.pyannote[499].start 4444.01159375
transcript.pyannote[499].end 4444.02846875
transcript.pyannote[500].speaker SPEAKER_04
transcript.pyannote[500].start 4444.02846875
transcript.pyannote[500].end 4444.63596875
transcript.pyannote[501].speaker SPEAKER_04
transcript.pyannote[501].start 4445.27721875
transcript.pyannote[501].end 4475.01096875
transcript.pyannote[502].speaker SPEAKER_20
transcript.pyannote[502].start 4462.45596875
transcript.pyannote[502].end 4463.94096875
transcript.pyannote[503].speaker SPEAKER_20
transcript.pyannote[503].start 4464.83534375
transcript.pyannote[503].end 4465.29096875
transcript.pyannote[504].speaker SPEAKER_27
transcript.pyannote[504].start 4473.82971875
transcript.pyannote[504].end 4481.96346875
transcript.pyannote[505].speaker SPEAKER_04
transcript.pyannote[505].start 4476.19221875
transcript.pyannote[505].end 4477.20471875
transcript.pyannote[506].speaker SPEAKER_04
transcript.pyannote[506].start 4477.77846875
transcript.pyannote[506].end 4479.51659375
transcript.pyannote[507].speaker SPEAKER_04
transcript.pyannote[507].start 4481.96346875
transcript.pyannote[507].end 4482.63846875
transcript.pyannote[508].speaker SPEAKER_27
transcript.pyannote[508].start 4482.63846875
transcript.pyannote[508].end 4482.77346875
transcript.pyannote[509].speaker SPEAKER_04
transcript.pyannote[509].start 4482.77346875
transcript.pyannote[509].end 4501.25159375
transcript.pyannote[510].speaker SPEAKER_27
transcript.pyannote[510].start 4501.60596875
transcript.pyannote[510].end 4512.27096875
transcript.pyannote[511].speaker SPEAKER_04
transcript.pyannote[511].start 4512.45659375
transcript.pyannote[511].end 4518.53159375
transcript.pyannote[512].speaker SPEAKER_27
transcript.pyannote[512].start 4518.85221875
transcript.pyannote[512].end 4544.23221875
transcript.pyannote[513].speaker SPEAKER_27
transcript.pyannote[513].start 4544.40096875
transcript.pyannote[513].end 4550.57721875
transcript.pyannote[514].speaker SPEAKER_04
transcript.pyannote[514].start 4550.22284375
transcript.pyannote[514].end 4550.49284375
transcript.pyannote[515].speaker SPEAKER_04
transcript.pyannote[515].start 4550.50971875
transcript.pyannote[515].end 4550.52659375
transcript.pyannote[516].speaker SPEAKER_04
transcript.pyannote[516].start 4550.57721875
transcript.pyannote[516].end 4552.09596875
transcript.pyannote[517].speaker SPEAKER_04
transcript.pyannote[517].start 4552.68659375
transcript.pyannote[517].end 4561.25909375
transcript.pyannote[518].speaker SPEAKER_27
transcript.pyannote[518].start 4558.57596875
transcript.pyannote[518].end 4566.99659375
transcript.pyannote[519].speaker SPEAKER_04
transcript.pyannote[519].start 4561.90034375
transcript.pyannote[519].end 4562.72721875
transcript.pyannote[520].speaker SPEAKER_09
transcript.pyannote[520].start 4566.77721875
transcript.pyannote[520].end 4577.10471875
transcript.pyannote[521].speaker SPEAKER_27
transcript.pyannote[521].start 4567.94159375
transcript.pyannote[521].end 4568.32971875
transcript.pyannote[522].speaker SPEAKER_27
transcript.pyannote[522].start 4575.97409375
transcript.pyannote[522].end 4579.28159375
transcript.pyannote[523].speaker SPEAKER_09
transcript.pyannote[523].start 4579.07909375
transcript.pyannote[523].end 4579.24784375
transcript.pyannote[524].speaker SPEAKER_09
transcript.pyannote[524].start 4579.28159375
transcript.pyannote[524].end 4579.39971875
transcript.pyannote[525].speaker SPEAKER_27
transcript.pyannote[525].start 4579.39971875
transcript.pyannote[525].end 4579.50096875
transcript.pyannote[526].speaker SPEAKER_27
transcript.pyannote[526].start 4579.55159375
transcript.pyannote[526].end 4579.60221875
transcript.pyannote[527].speaker SPEAKER_27
transcript.pyannote[527].start 4579.63596875
transcript.pyannote[527].end 4589.65971875
transcript.pyannote[528].speaker SPEAKER_09
transcript.pyannote[528].start 4588.39409375
transcript.pyannote[528].end 4590.14909375
transcript.pyannote[529].speaker SPEAKER_27
transcript.pyannote[529].start 4590.03096875
transcript.pyannote[529].end 4590.53721875
transcript.pyannote[530].speaker SPEAKER_09
transcript.pyannote[530].start 4590.36846875
transcript.pyannote[530].end 4591.34721875
transcript.pyannote[531].speaker SPEAKER_27
transcript.pyannote[531].start 4592.19096875
transcript.pyannote[531].end 4597.64159375
transcript.pyannote[532].speaker SPEAKER_27
transcript.pyannote[532].start 4598.06346875
transcript.pyannote[532].end 4602.06284375
transcript.pyannote[533].speaker SPEAKER_09
transcript.pyannote[533].start 4602.45096875
transcript.pyannote[533].end 4604.93159375
transcript.pyannote[534].speaker SPEAKER_27
transcript.pyannote[534].start 4604.08784375
transcript.pyannote[534].end 4606.83846875
transcript.pyannote[535].speaker SPEAKER_09
transcript.pyannote[535].start 4605.94409375
transcript.pyannote[535].end 4606.23096875
transcript.pyannote[536].speaker SPEAKER_09
transcript.pyannote[536].start 4607.19284375
transcript.pyannote[536].end 4616.33909375
transcript.pyannote[537].speaker SPEAKER_27
transcript.pyannote[537].start 4607.29409375
transcript.pyannote[537].end 4608.03659375
transcript.pyannote[538].speaker SPEAKER_27
transcript.pyannote[538].start 4610.80409375
transcript.pyannote[538].end 4610.97284375
transcript.pyannote[539].speaker SPEAKER_27
transcript.pyannote[539].start 4616.54159375
transcript.pyannote[539].end 4621.38471875
transcript.pyannote[540].speaker SPEAKER_09
transcript.pyannote[540].start 4619.19096875
transcript.pyannote[540].end 4624.23659375
transcript.pyannote[541].speaker SPEAKER_27
transcript.pyannote[541].start 4623.03846875
transcript.pyannote[541].end 4623.42659375
transcript.pyannote[542].speaker SPEAKER_20
transcript.pyannote[542].start 4623.42659375
transcript.pyannote[542].end 4623.44346875
transcript.pyannote[543].speaker SPEAKER_09
transcript.pyannote[543].start 4624.74284375
transcript.pyannote[543].end 4632.52221875
transcript.pyannote[544].speaker SPEAKER_27
transcript.pyannote[544].start 4633.01159375
transcript.pyannote[544].end 4639.13721875
transcript.pyannote[545].speaker SPEAKER_09
transcript.pyannote[545].start 4640.36909375
transcript.pyannote[545].end 4654.08846875
transcript.pyannote[546].speaker SPEAKER_27
transcript.pyannote[546].start 4642.47846875
transcript.pyannote[546].end 4642.86659375
transcript.pyannote[547].speaker SPEAKER_27
transcript.pyannote[547].start 4654.27409375
transcript.pyannote[547].end 4667.52096875
transcript.pyannote[548].speaker SPEAKER_09
transcript.pyannote[548].start 4667.87534375
transcript.pyannote[548].end 4684.85159375
transcript.pyannote[549].speaker SPEAKER_20
transcript.pyannote[549].start 4684.85159375
transcript.pyannote[549].end 4684.88534375
transcript.pyannote[550].speaker SPEAKER_09
transcript.pyannote[550].start 4684.88534375
transcript.pyannote[550].end 4697.81159375
transcript.pyannote[551].speaker SPEAKER_09
transcript.pyannote[551].start 4697.82846875
transcript.pyannote[551].end 4701.92909375
transcript.pyannote[552].speaker SPEAKER_27
transcript.pyannote[552].start 4701.27096875
transcript.pyannote[552].end 4709.84346875
transcript.pyannote[553].speaker SPEAKER_09
transcript.pyannote[553].start 4706.92409375
transcript.pyannote[553].end 4707.49784375
transcript.pyannote[554].speaker SPEAKER_27
transcript.pyannote[554].start 4709.86034375
transcript.pyannote[554].end 4709.87721875
transcript.pyannote[555].speaker SPEAKER_09
transcript.pyannote[555].start 4709.87721875
transcript.pyannote[555].end 4720.50846875
transcript.pyannote[556].speaker SPEAKER_27
transcript.pyannote[556].start 4719.86721875
transcript.pyannote[556].end 4724.72721875
transcript.pyannote[557].speaker SPEAKER_09
transcript.pyannote[557].start 4720.72784375
transcript.pyannote[557].end 4721.70659375
transcript.pyannote[558].speaker SPEAKER_09
transcript.pyannote[558].start 4723.71471875
transcript.pyannote[558].end 4726.34721875
transcript.pyannote[559].speaker SPEAKER_27
transcript.pyannote[559].start 4725.52034375
transcript.pyannote[559].end 4728.94596875
transcript.pyannote[560].speaker SPEAKER_09
transcript.pyannote[560].start 4728.72659375
transcript.pyannote[560].end 4730.58284375
transcript.pyannote[561].speaker SPEAKER_27
transcript.pyannote[561].start 4730.19471875
transcript.pyannote[561].end 4737.21471875
transcript.pyannote[562].speaker SPEAKER_09
transcript.pyannote[562].start 4733.51909375
transcript.pyannote[562].end 4734.66659375
transcript.pyannote[563].speaker SPEAKER_09
transcript.pyannote[563].start 4736.32034375
transcript.pyannote[563].end 4737.21471875
transcript.pyannote[564].speaker SPEAKER_19
transcript.pyannote[564].start 4737.21471875
transcript.pyannote[564].end 4737.24846875
transcript.pyannote[565].speaker SPEAKER_09
transcript.pyannote[565].start 4737.24846875
transcript.pyannote[565].end 4737.26534375
transcript.pyannote[566].speaker SPEAKER_27
transcript.pyannote[566].start 4737.24846875
transcript.pyannote[566].end 4737.26534375
transcript.pyannote[567].speaker SPEAKER_19
transcript.pyannote[567].start 4737.26534375
transcript.pyannote[567].end 4737.40034375
transcript.pyannote[568].speaker SPEAKER_09
transcript.pyannote[568].start 4737.40034375
transcript.pyannote[568].end 4737.97409375
transcript.pyannote[569].speaker SPEAKER_27
transcript.pyannote[569].start 4737.40034375
transcript.pyannote[569].end 4738.49721875
transcript.pyannote[570].speaker SPEAKER_19
transcript.pyannote[570].start 4737.97409375
transcript.pyannote[570].end 4738.51409375
transcript.pyannote[571].speaker SPEAKER_09
transcript.pyannote[571].start 4738.51409375
transcript.pyannote[571].end 4738.58159375
transcript.pyannote[572].speaker SPEAKER_19
transcript.pyannote[572].start 4738.58159375
transcript.pyannote[572].end 4739.50971875
transcript.pyannote[573].speaker SPEAKER_19
transcript.pyannote[573].start 4740.99471875
transcript.pyannote[573].end 4745.51721875
transcript.pyannote[574].speaker SPEAKER_13
transcript.pyannote[574].start 4752.94221875
transcript.pyannote[574].end 4755.87846875
transcript.pyannote[575].speaker SPEAKER_13
transcript.pyannote[575].start 4759.40534375
transcript.pyannote[575].end 4764.23159375
transcript.pyannote[576].speaker SPEAKER_09
transcript.pyannote[576].start 4765.58159375
transcript.pyannote[576].end 4766.49284375
transcript.pyannote[577].speaker SPEAKER_09
transcript.pyannote[577].start 4766.81346875
transcript.pyannote[577].end 4777.02284375
transcript.pyannote[578].speaker SPEAKER_13
transcript.pyannote[578].start 4771.11659375
transcript.pyannote[578].end 4772.33159375
transcript.pyannote[579].speaker SPEAKER_00
transcript.pyannote[579].start 4773.49596875
transcript.pyannote[579].end 4773.51284375
transcript.pyannote[580].speaker SPEAKER_13
transcript.pyannote[580].start 4773.51284375
transcript.pyannote[580].end 4775.35221875
transcript.pyannote[581].speaker SPEAKER_09
transcript.pyannote[581].start 4778.08596875
transcript.pyannote[581].end 4784.56596875
transcript.pyannote[582].speaker SPEAKER_09
transcript.pyannote[582].start 4785.29159375
transcript.pyannote[582].end 4788.68346875
transcript.pyannote[583].speaker SPEAKER_13
transcript.pyannote[583].start 4789.18971875
transcript.pyannote[583].end 4800.47909375
transcript.pyannote[584].speaker SPEAKER_09
transcript.pyannote[584].start 4789.20659375
transcript.pyannote[584].end 4790.28659375
transcript.pyannote[585].speaker SPEAKER_09
transcript.pyannote[585].start 4798.53846875
transcript.pyannote[585].end 4798.55534375
transcript.pyannote[586].speaker SPEAKER_11
transcript.pyannote[586].start 4798.55534375
transcript.pyannote[586].end 4799.33159375
transcript.pyannote[587].speaker SPEAKER_09
transcript.pyannote[587].start 4799.33159375
transcript.pyannote[587].end 4799.38221875
transcript.pyannote[588].speaker SPEAKER_13
transcript.pyannote[588].start 4800.58034375
transcript.pyannote[588].end 4815.85221875
transcript.pyannote[589].speaker SPEAKER_11
transcript.pyannote[589].start 4800.66471875
transcript.pyannote[589].end 4800.71534375
transcript.pyannote[590].speaker SPEAKER_09
transcript.pyannote[590].start 4800.71534375
transcript.pyannote[590].end 4800.81659375
transcript.pyannote[591].speaker SPEAKER_11
transcript.pyannote[591].start 4800.81659375
transcript.pyannote[591].end 4800.83346875
transcript.pyannote[592].speaker SPEAKER_09
transcript.pyannote[592].start 4800.83346875
transcript.pyannote[592].end 4800.91784375
transcript.pyannote[593].speaker SPEAKER_11
transcript.pyannote[593].start 4800.91784375
transcript.pyannote[593].end 4801.01909375
transcript.pyannote[594].speaker SPEAKER_13
transcript.pyannote[594].start 4816.42596875
transcript.pyannote[594].end 4816.44284375
transcript.pyannote[595].speaker SPEAKER_09
transcript.pyannote[595].start 4816.44284375
transcript.pyannote[595].end 4821.13409375
transcript.pyannote[596].speaker SPEAKER_13
transcript.pyannote[596].start 4821.13409375
transcript.pyannote[596].end 4832.33909375
transcript.pyannote[597].speaker SPEAKER_09
transcript.pyannote[597].start 4832.33909375
transcript.pyannote[597].end 4832.38971875
transcript.pyannote[598].speaker SPEAKER_13
transcript.pyannote[598].start 4833.63846875
transcript.pyannote[598].end 4833.65534375
transcript.pyannote[599].speaker SPEAKER_09
transcript.pyannote[599].start 4833.65534375
transcript.pyannote[599].end 4837.95846875
transcript.pyannote[600].speaker SPEAKER_09
transcript.pyannote[600].start 4838.34659375
transcript.pyannote[600].end 4842.53159375
transcript.pyannote[601].speaker SPEAKER_13
transcript.pyannote[601].start 4841.43471875
transcript.pyannote[601].end 4846.96971875
transcript.pyannote[602].speaker SPEAKER_09
transcript.pyannote[602].start 4846.96971875
transcript.pyannote[602].end 4863.03471875
transcript.pyannote[603].speaker SPEAKER_20
transcript.pyannote[603].start 4851.93096875
transcript.pyannote[603].end 4852.28534375
transcript.pyannote[604].speaker SPEAKER_16
transcript.pyannote[604].start 4852.28534375
transcript.pyannote[604].end 4852.30221875
transcript.pyannote[605].speaker SPEAKER_16
transcript.pyannote[605].start 4855.23846875
transcript.pyannote[605].end 4855.28909375
transcript.pyannote[606].speaker SPEAKER_20
transcript.pyannote[606].start 4855.28909375
transcript.pyannote[606].end 4855.55909375
transcript.pyannote[607].speaker SPEAKER_16
transcript.pyannote[607].start 4855.55909375
transcript.pyannote[607].end 4855.64346875
transcript.pyannote[608].speaker SPEAKER_18
transcript.pyannote[608].start 4857.75284375
transcript.pyannote[608].end 4857.98909375
transcript.pyannote[609].speaker SPEAKER_13
transcript.pyannote[609].start 4863.03471875
transcript.pyannote[609].end 4906.97721875
transcript.pyannote[610].speaker SPEAKER_09
transcript.pyannote[610].start 4906.97721875
transcript.pyannote[610].end 4915.65096875
transcript.pyannote[611].speaker SPEAKER_09
transcript.pyannote[611].start 4916.00534375
transcript.pyannote[611].end 4940.64284375
transcript.pyannote[612].speaker SPEAKER_13
transcript.pyannote[612].start 4939.71471875
transcript.pyannote[612].end 4944.72659375
transcript.pyannote[613].speaker SPEAKER_09
transcript.pyannote[613].start 4945.68846875
transcript.pyannote[613].end 4951.15596875
transcript.pyannote[614].speaker SPEAKER_13
transcript.pyannote[614].start 4947.78096875
transcript.pyannote[614].end 4954.41284375
transcript.pyannote[615].speaker SPEAKER_09
transcript.pyannote[615].start 4952.45534375
transcript.pyannote[615].end 4953.43409375
transcript.pyannote[616].speaker SPEAKER_13
transcript.pyannote[616].start 4954.56471875
transcript.pyannote[616].end 4956.84284375
transcript.pyannote[617].speaker SPEAKER_13
transcript.pyannote[617].start 4957.36596875
transcript.pyannote[617].end 4960.03221875
transcript.pyannote[618].speaker SPEAKER_20
transcript.pyannote[618].start 4960.20096875
transcript.pyannote[618].end 4960.23471875
transcript.pyannote[619].speaker SPEAKER_13
transcript.pyannote[619].start 4960.23471875
transcript.pyannote[619].end 4963.32284375
transcript.pyannote[620].speaker SPEAKER_13
transcript.pyannote[620].start 4964.60534375
transcript.pyannote[620].end 4984.58534375
transcript.pyannote[621].speaker SPEAKER_09
transcript.pyannote[621].start 4983.96096875
transcript.pyannote[621].end 4985.37846875
transcript.pyannote[622].speaker SPEAKER_09
transcript.pyannote[622].start 4985.90159375
transcript.pyannote[622].end 4985.91846875
transcript.pyannote[623].speaker SPEAKER_13
transcript.pyannote[623].start 4985.91846875
transcript.pyannote[623].end 4986.15471875
transcript.pyannote[624].speaker SPEAKER_09
transcript.pyannote[624].start 4986.15471875
transcript.pyannote[624].end 4986.22221875
transcript.pyannote[625].speaker SPEAKER_13
transcript.pyannote[625].start 4986.22221875
transcript.pyannote[625].end 4986.62721875
transcript.pyannote[626].speaker SPEAKER_09
transcript.pyannote[626].start 4986.62721875
transcript.pyannote[626].end 4986.64409375
transcript.pyannote[627].speaker SPEAKER_13
transcript.pyannote[627].start 4986.64409375
transcript.pyannote[627].end 4986.79596875
transcript.pyannote[628].speaker SPEAKER_09
transcript.pyannote[628].start 4986.79596875
transcript.pyannote[628].end 4987.04909375
transcript.pyannote[629].speaker SPEAKER_13
transcript.pyannote[629].start 4987.04909375
transcript.pyannote[629].end 4987.40346875
transcript.pyannote[630].speaker SPEAKER_09
transcript.pyannote[630].start 4987.40346875
transcript.pyannote[630].end 4987.42034375
transcript.pyannote[631].speaker SPEAKER_13
transcript.pyannote[631].start 4987.42034375
transcript.pyannote[631].end 4987.85909375
transcript.pyannote[632].speaker SPEAKER_09
transcript.pyannote[632].start 4987.85909375
transcript.pyannote[632].end 4989.49596875
transcript.pyannote[633].speaker SPEAKER_13
transcript.pyannote[633].start 4987.87596875
transcript.pyannote[633].end 4991.35221875
transcript.pyannote[634].speaker SPEAKER_20
transcript.pyannote[634].start 4991.35221875
transcript.pyannote[634].end 4991.65596875
transcript.pyannote[635].speaker SPEAKER_13
transcript.pyannote[635].start 4991.65596875
transcript.pyannote[635].end 5001.44346875
transcript.pyannote[636].speaker SPEAKER_09
transcript.pyannote[636].start 4991.70659375
transcript.pyannote[636].end 4991.75721875
transcript.pyannote[637].speaker SPEAKER_20
transcript.pyannote[637].start 4991.75721875
transcript.pyannote[637].end 4993.20846875
transcript.pyannote[638].speaker SPEAKER_20
transcript.pyannote[638].start 4995.18284375
transcript.pyannote[638].end 4997.76471875
transcript.pyannote[639].speaker SPEAKER_13
transcript.pyannote[639].start 5001.74721875
transcript.pyannote[639].end 5006.11784375
transcript.pyannote[640].speaker SPEAKER_09
transcript.pyannote[640].start 5004.98721875
transcript.pyannote[640].end 5013.03659375
transcript.pyannote[641].speaker SPEAKER_13
transcript.pyannote[641].start 5013.03659375
transcript.pyannote[641].end 5013.94784375
transcript.pyannote[642].speaker SPEAKER_09
transcript.pyannote[642].start 5013.94784375
transcript.pyannote[642].end 5014.03221875
transcript.pyannote[643].speaker SPEAKER_13
transcript.pyannote[643].start 5014.03221875
transcript.pyannote[643].end 5039.54721875
transcript.pyannote[644].speaker SPEAKER_09
transcript.pyannote[644].start 5014.57221875
transcript.pyannote[644].end 5015.36534375
transcript.pyannote[645].speaker SPEAKER_13
transcript.pyannote[645].start 5039.91846875
transcript.pyannote[645].end 5042.68596875
transcript.pyannote[646].speaker SPEAKER_16
transcript.pyannote[646].start 5039.95221875
transcript.pyannote[646].end 5043.88409375
transcript.pyannote[647].speaker SPEAKER_13
transcript.pyannote[647].start 5043.04034375
transcript.pyannote[647].end 5051.78159375
transcript.pyannote[648].speaker SPEAKER_16
transcript.pyannote[648].start 5044.08659375
transcript.pyannote[648].end 5044.54221875
transcript.pyannote[649].speaker SPEAKER_13
transcript.pyannote[649].start 5051.88284375
transcript.pyannote[649].end 5075.27159375
transcript.pyannote[650].speaker SPEAKER_13
transcript.pyannote[650].start 5075.79471875
transcript.pyannote[650].end 5078.17409375
transcript.pyannote[651].speaker SPEAKER_13
transcript.pyannote[651].start 5078.54534375
transcript.pyannote[651].end 5079.28784375
transcript.pyannote[652].speaker SPEAKER_13
transcript.pyannote[652].start 5079.32159375
transcript.pyannote[652].end 5079.33846875
transcript.pyannote[653].speaker SPEAKER_13
transcript.pyannote[653].start 5079.38909375
transcript.pyannote[653].end 5092.46721875
transcript.pyannote[654].speaker SPEAKER_13
transcript.pyannote[654].start 5092.63596875
transcript.pyannote[654].end 5095.23471875
transcript.pyannote[655].speaker SPEAKER_09
transcript.pyannote[655].start 5095.62284375
transcript.pyannote[655].end 5101.20846875
transcript.pyannote[656].speaker SPEAKER_13
transcript.pyannote[656].start 5099.41971875
transcript.pyannote[656].end 5102.54159375
transcript.pyannote[657].speaker SPEAKER_13
transcript.pyannote[657].start 5102.72721875
transcript.pyannote[657].end 5105.19096875
transcript.pyannote[658].speaker SPEAKER_13
transcript.pyannote[658].start 5106.92909375
transcript.pyannote[658].end 5109.10596875
transcript.pyannote[659].speaker SPEAKER_13
transcript.pyannote[659].start 5109.62909375
transcript.pyannote[659].end 5111.97471875
transcript.pyannote[660].speaker SPEAKER_09
transcript.pyannote[660].start 5111.97471875
transcript.pyannote[660].end 5112.00846875
transcript.pyannote[661].speaker SPEAKER_13
transcript.pyannote[661].start 5112.00846875
transcript.pyannote[661].end 5112.14346875
transcript.pyannote[662].speaker SPEAKER_09
transcript.pyannote[662].start 5112.14346875
transcript.pyannote[662].end 5115.01221875
transcript.pyannote[663].speaker SPEAKER_13
transcript.pyannote[663].start 5113.03784375
transcript.pyannote[663].end 5113.62846875
transcript.pyannote[664].speaker SPEAKER_09
transcript.pyannote[664].start 5115.21471875
transcript.pyannote[664].end 5116.86846875
transcript.pyannote[665].speaker SPEAKER_09
transcript.pyannote[665].start 5118.16784375
transcript.pyannote[665].end 5127.78659375
transcript.pyannote[666].speaker SPEAKER_17
transcript.pyannote[666].start 5118.21846875
transcript.pyannote[666].end 5119.02846875
transcript.pyannote[667].speaker SPEAKER_20
transcript.pyannote[667].start 5119.02846875
transcript.pyannote[667].end 5119.92284375
transcript.pyannote[668].speaker SPEAKER_15
transcript.pyannote[668].start 5119.92284375
transcript.pyannote[668].end 5119.93971875
transcript.pyannote[669].speaker SPEAKER_20
transcript.pyannote[669].start 5119.93971875
transcript.pyannote[669].end 5119.95659375
transcript.pyannote[670].speaker SPEAKER_13
transcript.pyannote[670].start 5126.68971875
transcript.pyannote[670].end 5131.12784375
transcript.pyannote[671].speaker SPEAKER_09
transcript.pyannote[671].start 5131.21221875
transcript.pyannote[671].end 5135.49846875
transcript.pyannote[672].speaker SPEAKER_09
transcript.pyannote[672].start 5135.65034375
transcript.pyannote[672].end 5143.04159375
transcript.pyannote[673].speaker SPEAKER_13
transcript.pyannote[673].start 5137.32096875
transcript.pyannote[673].end 5139.54846875
transcript.pyannote[674].speaker SPEAKER_09
transcript.pyannote[674].start 5143.49721875
transcript.pyannote[674].end 5146.75409375
transcript.pyannote[675].speaker SPEAKER_09
transcript.pyannote[675].start 5147.63159375
transcript.pyannote[675].end 5151.41159375
transcript.pyannote[676].speaker SPEAKER_09
transcript.pyannote[676].start 5152.25534375
transcript.pyannote[676].end 5162.65034375
transcript.pyannote[677].speaker SPEAKER_13
transcript.pyannote[677].start 5152.81221875
transcript.pyannote[677].end 5154.12846875
transcript.pyannote[678].speaker SPEAKER_13
transcript.pyannote[678].start 5162.65034375
transcript.pyannote[678].end 5162.75159375
transcript.pyannote[679].speaker SPEAKER_09
transcript.pyannote[679].start 5162.75159375
transcript.pyannote[679].end 5162.90346875
transcript.pyannote[680].speaker SPEAKER_13
transcript.pyannote[680].start 5162.90346875
transcript.pyannote[680].end 5205.32721875
transcript.pyannote[681].speaker SPEAKER_09
transcript.pyannote[681].start 5162.92034375
transcript.pyannote[681].end 5163.88221875
transcript.pyannote[682].speaker SPEAKER_09
transcript.pyannote[682].start 5179.10346875
transcript.pyannote[682].end 5180.72346875
transcript.pyannote[683].speaker SPEAKER_09
transcript.pyannote[683].start 5182.66409375
transcript.pyannote[683].end 5183.00159375
transcript.pyannote[684].speaker SPEAKER_16
transcript.pyannote[684].start 5185.29659375
transcript.pyannote[684].end 5186.07284375
transcript.pyannote[685].speaker SPEAKER_09
transcript.pyannote[685].start 5206.94721875
transcript.pyannote[685].end 5208.07784375
transcript.pyannote[686].speaker SPEAKER_09
transcript.pyannote[686].start 5208.19596875
transcript.pyannote[686].end 5208.22971875
transcript.pyannote[687].speaker SPEAKER_13
transcript.pyannote[687].start 5208.22971875
transcript.pyannote[687].end 5209.83284375
transcript.pyannote[688].speaker SPEAKER_09
transcript.pyannote[688].start 5208.68534375
transcript.pyannote[688].end 5210.25471875
transcript.pyannote[689].speaker SPEAKER_13
transcript.pyannote[689].start 5210.54159375
transcript.pyannote[689].end 5210.55846875
transcript.pyannote[690].speaker SPEAKER_09
transcript.pyannote[690].start 5210.55846875
transcript.pyannote[690].end 5219.63721875
transcript.pyannote[691].speaker SPEAKER_13
transcript.pyannote[691].start 5212.93784375
transcript.pyannote[691].end 5213.27534375
transcript.pyannote[692].speaker SPEAKER_09
transcript.pyannote[692].start 5219.85659375
transcript.pyannote[692].end 5222.42159375
transcript.pyannote[693].speaker SPEAKER_13
transcript.pyannote[693].start 5220.53159375
transcript.pyannote[693].end 5225.61096875
transcript.pyannote[694].speaker SPEAKER_13
transcript.pyannote[694].start 5226.10034375
transcript.pyannote[694].end 5228.05784375
transcript.pyannote[695].speaker SPEAKER_09
transcript.pyannote[695].start 5228.56409375
transcript.pyannote[695].end 5229.23909375
transcript.pyannote[696].speaker SPEAKER_13
transcript.pyannote[696].start 5229.23909375
transcript.pyannote[696].end 5231.65221875
transcript.pyannote[697].speaker SPEAKER_13
transcript.pyannote[697].start 5232.68159375
transcript.pyannote[697].end 5287.98096875
transcript.pyannote[698].speaker SPEAKER_00
transcript.pyannote[698].start 5251.42971875
transcript.pyannote[698].end 5252.18909375
transcript.pyannote[699].speaker SPEAKER_00
transcript.pyannote[699].start 5261.13284375
transcript.pyannote[699].end 5261.16659375
transcript.pyannote[700].speaker SPEAKER_20
transcript.pyannote[700].start 5261.16659375
transcript.pyannote[700].end 5261.55471875
transcript.pyannote[701].speaker SPEAKER_20
transcript.pyannote[701].start 5268.97971875
transcript.pyannote[701].end 5269.60409375
transcript.pyannote[702].speaker SPEAKER_09
transcript.pyannote[702].start 5279.59409375
transcript.pyannote[702].end 5280.15096875
transcript.pyannote[703].speaker SPEAKER_09
transcript.pyannote[703].start 5280.75846875
transcript.pyannote[703].end 5280.80909375
transcript.pyannote[704].speaker SPEAKER_09
transcript.pyannote[704].start 5281.90596875
transcript.pyannote[704].end 5282.19284375
transcript.pyannote[705].speaker SPEAKER_09
transcript.pyannote[705].start 5286.29346875
transcript.pyannote[705].end 5286.93471875
transcript.pyannote[706].speaker SPEAKER_09
transcript.pyannote[706].start 5287.84596875
transcript.pyannote[706].end 5288.75721875
transcript.pyannote[707].speaker SPEAKER_13
transcript.pyannote[707].start 5288.13284375
transcript.pyannote[707].end 5289.97221875
transcript.pyannote[708].speaker SPEAKER_09
transcript.pyannote[708].start 5289.97221875
transcript.pyannote[708].end 5292.53721875
transcript.pyannote[709].speaker SPEAKER_13
transcript.pyannote[709].start 5290.22534375
transcript.pyannote[709].end 5292.23346875
transcript.pyannote[710].speaker SPEAKER_19
transcript.pyannote[710].start 5292.23346875
transcript.pyannote[710].end 5292.26721875
transcript.pyannote[711].speaker SPEAKER_20
transcript.pyannote[711].start 5292.26721875
transcript.pyannote[711].end 5292.33471875
transcript.pyannote[712].speaker SPEAKER_19
transcript.pyannote[712].start 5294.54534375
transcript.pyannote[712].end 5298.84846875
transcript.pyannote[713].speaker SPEAKER_21
transcript.pyannote[713].start 5308.29846875
transcript.pyannote[713].end 5310.34034375
transcript.pyannote[714].speaker SPEAKER_19
transcript.pyannote[714].start 5310.49221875
transcript.pyannote[714].end 5311.30221875
transcript.pyannote[715].speaker SPEAKER_19
transcript.pyannote[715].start 5313.73221875
transcript.pyannote[715].end 5314.05284375
transcript.pyannote[716].speaker SPEAKER_21
transcript.pyannote[716].start 5314.32284375
transcript.pyannote[716].end 5316.55034375
transcript.pyannote[717].speaker SPEAKER_21
transcript.pyannote[717].start 5316.93846875
transcript.pyannote[717].end 5322.52409375
transcript.pyannote[718].speaker SPEAKER_21
transcript.pyannote[718].start 5323.01346875
transcript.pyannote[718].end 5327.16471875
transcript.pyannote[719].speaker SPEAKER_09
transcript.pyannote[719].start 5327.16471875
transcript.pyannote[719].end 5330.60721875
transcript.pyannote[720].speaker SPEAKER_21
transcript.pyannote[720].start 5327.35034375
transcript.pyannote[720].end 5328.14346875
transcript.pyannote[721].speaker SPEAKER_21
transcript.pyannote[721].start 5329.05471875
transcript.pyannote[721].end 5329.49346875
transcript.pyannote[722].speaker SPEAKER_21
transcript.pyannote[722].start 5330.10096875
transcript.pyannote[722].end 5333.18909375
transcript.pyannote[723].speaker SPEAKER_21
transcript.pyannote[723].start 5333.50971875
transcript.pyannote[723].end 5337.01971875
transcript.pyannote[724].speaker SPEAKER_09
transcript.pyannote[724].start 5337.18846875
transcript.pyannote[724].end 5337.66096875
transcript.pyannote[725].speaker SPEAKER_09
transcript.pyannote[725].start 5337.71159375
transcript.pyannote[725].end 5339.02784375
transcript.pyannote[726].speaker SPEAKER_21
transcript.pyannote[726].start 5337.81284375
transcript.pyannote[726].end 5339.75346875
transcript.pyannote[727].speaker SPEAKER_09
transcript.pyannote[727].start 5339.66909375
transcript.pyannote[727].end 5340.42846875
transcript.pyannote[728].speaker SPEAKER_21
transcript.pyannote[728].start 5340.10784375
transcript.pyannote[728].end 5340.90096875
transcript.pyannote[729].speaker SPEAKER_09
transcript.pyannote[729].start 5341.50846875
transcript.pyannote[729].end 5342.74034375
transcript.pyannote[730].speaker SPEAKER_21
transcript.pyannote[730].start 5341.96409375
transcript.pyannote[730].end 5343.29721875
transcript.pyannote[731].speaker SPEAKER_09
transcript.pyannote[731].start 5343.29721875
transcript.pyannote[731].end 5345.13659375
transcript.pyannote[732].speaker SPEAKER_21
transcript.pyannote[732].start 5344.32659375
transcript.pyannote[732].end 5345.79471875
transcript.pyannote[733].speaker SPEAKER_09
transcript.pyannote[733].start 5345.87909375
transcript.pyannote[733].end 5349.33846875
transcript.pyannote[734].speaker SPEAKER_21
transcript.pyannote[734].start 5348.78159375
transcript.pyannote[734].end 5354.53596875
transcript.pyannote[735].speaker SPEAKER_09
transcript.pyannote[735].start 5355.36284375
transcript.pyannote[735].end 5357.91096875
transcript.pyannote[736].speaker SPEAKER_21
transcript.pyannote[736].start 5357.25284375
transcript.pyannote[736].end 5359.58159375
transcript.pyannote[737].speaker SPEAKER_09
transcript.pyannote[737].start 5358.29909375
transcript.pyannote[737].end 5361.77534375
transcript.pyannote[738].speaker SPEAKER_21
transcript.pyannote[738].start 5361.40409375
transcript.pyannote[738].end 5362.72034375
transcript.pyannote[739].speaker SPEAKER_09
transcript.pyannote[739].start 5363.49659375
transcript.pyannote[739].end 5364.66096875
transcript.pyannote[740].speaker SPEAKER_21
transcript.pyannote[740].start 5364.74534375
transcript.pyannote[740].end 5367.91784375
transcript.pyannote[741].speaker SPEAKER_09
transcript.pyannote[741].start 5368.13721875
transcript.pyannote[741].end 5369.04846875
transcript.pyannote[742].speaker SPEAKER_21
transcript.pyannote[742].start 5368.42409375
transcript.pyannote[742].end 5369.48721875
transcript.pyannote[743].speaker SPEAKER_09
transcript.pyannote[743].start 5369.99346875
transcript.pyannote[743].end 5382.09284375
transcript.pyannote[744].speaker SPEAKER_21
transcript.pyannote[744].start 5381.45159375
transcript.pyannote[744].end 5383.78034375
transcript.pyannote[745].speaker SPEAKER_09
transcript.pyannote[745].start 5382.22784375
transcript.pyannote[745].end 5382.59909375
transcript.pyannote[746].speaker SPEAKER_09
transcript.pyannote[746].start 5384.25284375
transcript.pyannote[746].end 5386.24409375
transcript.pyannote[747].speaker SPEAKER_21
transcript.pyannote[747].start 5386.22721875
transcript.pyannote[747].end 5401.83659375
transcript.pyannote[748].speaker SPEAKER_09
transcript.pyannote[748].start 5386.66596875
transcript.pyannote[748].end 5388.28596875
transcript.pyannote[749].speaker SPEAKER_23
transcript.pyannote[749].start 5390.54721875
transcript.pyannote[749].end 5390.59784375
transcript.pyannote[750].speaker SPEAKER_09
transcript.pyannote[750].start 5390.59784375
transcript.pyannote[750].end 5390.95221875
transcript.pyannote[751].speaker SPEAKER_23
transcript.pyannote[751].start 5390.95221875
transcript.pyannote[751].end 5390.98596875
transcript.pyannote[752].speaker SPEAKER_23
transcript.pyannote[752].start 5395.13721875
transcript.pyannote[752].end 5395.17096875
transcript.pyannote[753].speaker SPEAKER_09
transcript.pyannote[753].start 5395.17096875
transcript.pyannote[753].end 5397.09471875
transcript.pyannote[754].speaker SPEAKER_09
transcript.pyannote[754].start 5402.15721875
transcript.pyannote[754].end 5404.63784375
transcript.pyannote[755].speaker SPEAKER_21
transcript.pyannote[755].start 5404.16534375
transcript.pyannote[755].end 5405.41409375
transcript.pyannote[756].speaker SPEAKER_09
transcript.pyannote[756].start 5405.58284375
transcript.pyannote[756].end 5405.61659375
transcript.pyannote[757].speaker SPEAKER_21
transcript.pyannote[757].start 5405.68409375
transcript.pyannote[757].end 5406.76409375
transcript.pyannote[758].speaker SPEAKER_21
transcript.pyannote[758].start 5406.93284375
transcript.pyannote[758].end 5413.53096875
transcript.pyannote[759].speaker SPEAKER_20
transcript.pyannote[759].start 5409.98721875
transcript.pyannote[759].end 5410.45971875
transcript.pyannote[760].speaker SPEAKER_21
transcript.pyannote[760].start 5413.90221875
transcript.pyannote[760].end 5414.30721875
transcript.pyannote[761].speaker SPEAKER_20
transcript.pyannote[761].start 5414.30721875
transcript.pyannote[761].end 5414.77971875
transcript.pyannote[762].speaker SPEAKER_21
transcript.pyannote[762].start 5414.66159375
transcript.pyannote[762].end 5417.07471875
transcript.pyannote[763].speaker SPEAKER_21
transcript.pyannote[763].start 5417.69909375
transcript.pyannote[763].end 5424.48284375
transcript.pyannote[764].speaker SPEAKER_21
transcript.pyannote[764].start 5424.88784375
transcript.pyannote[764].end 5426.59221875
transcript.pyannote[765].speaker SPEAKER_09
transcript.pyannote[765].start 5427.55409375
transcript.pyannote[765].end 5428.16159375
transcript.pyannote[766].speaker SPEAKER_09
transcript.pyannote[766].start 5428.68471875
transcript.pyannote[766].end 5439.63659375
transcript.pyannote[767].speaker SPEAKER_21
transcript.pyannote[767].start 5437.07159375
transcript.pyannote[767].end 5440.75034375
transcript.pyannote[768].speaker SPEAKER_09
transcript.pyannote[768].start 5440.04159375
transcript.pyannote[768].end 5440.46346875
transcript.pyannote[769].speaker SPEAKER_21
transcript.pyannote[769].start 5440.86846875
transcript.pyannote[769].end 5441.47596875
transcript.pyannote[770].speaker SPEAKER_21
transcript.pyannote[770].start 5441.84721875
transcript.pyannote[770].end 5447.23034375
transcript.pyannote[771].speaker SPEAKER_09
transcript.pyannote[771].start 5443.14659375
transcript.pyannote[771].end 5443.19721875
transcript.pyannote[772].speaker SPEAKER_20
transcript.pyannote[772].start 5447.02784375
transcript.pyannote[772].end 5447.44971875
transcript.pyannote[773].speaker SPEAKER_21
transcript.pyannote[773].start 5447.44971875
transcript.pyannote[773].end 5449.37346875
transcript.pyannote[774].speaker SPEAKER_20
transcript.pyannote[774].start 5449.37346875
transcript.pyannote[774].end 5449.57596875
transcript.pyannote[775].speaker SPEAKER_21
transcript.pyannote[775].start 5449.57596875
transcript.pyannote[775].end 5459.14409375
transcript.pyannote[776].speaker SPEAKER_20
transcript.pyannote[776].start 5459.02596875
transcript.pyannote[776].end 5459.41409375
transcript.pyannote[777].speaker SPEAKER_21
transcript.pyannote[777].start 5459.85284375
transcript.pyannote[777].end 5461.55721875
transcript.pyannote[778].speaker SPEAKER_20
transcript.pyannote[778].start 5461.69221875
transcript.pyannote[778].end 5462.19846875
transcript.pyannote[779].speaker SPEAKER_21
transcript.pyannote[779].start 5462.08034375
transcript.pyannote[779].end 5467.14284375
transcript.pyannote[780].speaker SPEAKER_21
transcript.pyannote[780].start 5467.51409375
transcript.pyannote[780].end 5468.40846875
transcript.pyannote[781].speaker SPEAKER_21
transcript.pyannote[781].start 5469.01596875
transcript.pyannote[781].end 5484.08534375
transcript.pyannote[782].speaker SPEAKER_09
transcript.pyannote[782].start 5484.22034375
transcript.pyannote[782].end 5491.45971875
transcript.pyannote[783].speaker SPEAKER_21
transcript.pyannote[783].start 5490.36284375
transcript.pyannote[783].end 5494.88534375
transcript.pyannote[784].speaker SPEAKER_09
transcript.pyannote[784].start 5493.65346875
transcript.pyannote[784].end 5501.24721875
transcript.pyannote[785].speaker SPEAKER_21
transcript.pyannote[785].start 5498.80034375
transcript.pyannote[785].end 5502.90096875
transcript.pyannote[786].speaker SPEAKER_09
transcript.pyannote[786].start 5502.90096875
transcript.pyannote[786].end 5514.10596875
transcript.pyannote[787].speaker SPEAKER_21
transcript.pyannote[787].start 5503.50846875
transcript.pyannote[787].end 5503.98096875
transcript.pyannote[788].speaker SPEAKER_21
transcript.pyannote[788].start 5506.69784375
transcript.pyannote[788].end 5508.95909375
transcript.pyannote[789].speaker SPEAKER_21
transcript.pyannote[789].start 5509.63409375
transcript.pyannote[789].end 5510.10659375
transcript.pyannote[790].speaker SPEAKER_21
transcript.pyannote[790].start 5513.24534375
transcript.pyannote[790].end 5520.34971875
transcript.pyannote[791].speaker SPEAKER_09
transcript.pyannote[791].start 5518.74659375
transcript.pyannote[791].end 5519.05034375
transcript.pyannote[792].speaker SPEAKER_21
transcript.pyannote[792].start 5520.83909375
transcript.pyannote[792].end 5527.25159375
transcript.pyannote[793].speaker SPEAKER_09
transcript.pyannote[793].start 5522.29034375
transcript.pyannote[793].end 5522.30721875
transcript.pyannote[794].speaker SPEAKER_20
transcript.pyannote[794].start 5522.30721875
transcript.pyannote[794].end 5524.61909375
transcript.pyannote[795].speaker SPEAKER_20
transcript.pyannote[795].start 5527.25159375
transcript.pyannote[795].end 5527.77471875
transcript.pyannote[796].speaker SPEAKER_21
transcript.pyannote[796].start 5527.58909375
transcript.pyannote[796].end 5530.54221875
transcript.pyannote[797].speaker SPEAKER_20
transcript.pyannote[797].start 5530.52534375
transcript.pyannote[797].end 5531.57159375
transcript.pyannote[798].speaker SPEAKER_21
transcript.pyannote[798].start 5530.93034375
transcript.pyannote[798].end 5531.38596875
transcript.pyannote[799].speaker SPEAKER_21
transcript.pyannote[799].start 5532.17909375
transcript.pyannote[799].end 5538.47346875
transcript.pyannote[800].speaker SPEAKER_09
transcript.pyannote[800].start 5538.79409375
transcript.pyannote[800].end 5539.18221875
transcript.pyannote[801].speaker SPEAKER_21
transcript.pyannote[801].start 5538.84471875
transcript.pyannote[801].end 5540.43096875
transcript.pyannote[802].speaker SPEAKER_09
transcript.pyannote[802].start 5540.46471875
transcript.pyannote[802].end 5541.84846875
transcript.pyannote[803].speaker SPEAKER_21
transcript.pyannote[803].start 5541.42659375
transcript.pyannote[803].end 5547.38346875
transcript.pyannote[804].speaker SPEAKER_21
transcript.pyannote[804].start 5547.40034375
transcript.pyannote[804].end 5547.41721875
transcript.pyannote[805].speaker SPEAKER_09
transcript.pyannote[805].start 5547.41721875
transcript.pyannote[805].end 5548.07534375
transcript.pyannote[806].speaker SPEAKER_21
transcript.pyannote[806].start 5548.21034375
transcript.pyannote[806].end 5550.28596875
transcript.pyannote[807].speaker SPEAKER_09
transcript.pyannote[807].start 5551.34909375
transcript.pyannote[807].end 5552.04096875
transcript.pyannote[808].speaker SPEAKER_21
transcript.pyannote[808].start 5551.66971875
transcript.pyannote[808].end 5561.99721875
transcript.pyannote[809].speaker SPEAKER_20
transcript.pyannote[809].start 5552.04096875
transcript.pyannote[809].end 5552.10846875
transcript.pyannote[810].speaker SPEAKER_20
transcript.pyannote[810].start 5552.86784375
transcript.pyannote[810].end 5553.82971875
transcript.pyannote[811].speaker SPEAKER_21
transcript.pyannote[811].start 5562.19971875
transcript.pyannote[811].end 5585.25096875
transcript.pyannote[812].speaker SPEAKER_27
transcript.pyannote[812].start 5564.78159375
transcript.pyannote[812].end 5565.35534375
transcript.pyannote[813].speaker SPEAKER_20
transcript.pyannote[813].start 5571.29534375
transcript.pyannote[813].end 5571.86909375
transcript.pyannote[814].speaker SPEAKER_20
transcript.pyannote[814].start 5573.86034375
transcript.pyannote[814].end 5575.46346875
transcript.pyannote[815].speaker SPEAKER_00
transcript.pyannote[815].start 5575.46346875
transcript.pyannote[815].end 5575.53096875
transcript.pyannote[816].speaker SPEAKER_09
transcript.pyannote[816].start 5584.64346875
transcript.pyannote[816].end 5586.58409375
transcript.pyannote[817].speaker SPEAKER_21
transcript.pyannote[817].start 5585.60534375
transcript.pyannote[817].end 5586.16221875
transcript.pyannote[818].speaker SPEAKER_21
transcript.pyannote[818].start 5587.14096875
transcript.pyannote[818].end 5589.45284375
transcript.pyannote[819].speaker SPEAKER_21
transcript.pyannote[819].start 5589.68909375
transcript.pyannote[819].end 5590.24596875
transcript.pyannote[820].speaker SPEAKER_21
transcript.pyannote[820].start 5590.58346875
transcript.pyannote[820].end 5592.45659375
transcript.pyannote[821].speaker SPEAKER_21
transcript.pyannote[821].start 5593.04721875
transcript.pyannote[821].end 5601.51846875
transcript.pyannote[822].speaker SPEAKER_09
transcript.pyannote[822].start 5595.69659375
transcript.pyannote[822].end 5595.86534375
transcript.pyannote[823].speaker SPEAKER_20
transcript.pyannote[823].start 5595.86534375
transcript.pyannote[823].end 5595.88221875
transcript.pyannote[824].speaker SPEAKER_20
transcript.pyannote[824].start 5596.84409375
transcript.pyannote[824].end 5596.86096875
transcript.pyannote[825].speaker SPEAKER_09
transcript.pyannote[825].start 5596.86096875
transcript.pyannote[825].end 5598.66659375
transcript.pyannote[826].speaker SPEAKER_09
transcript.pyannote[826].start 5601.72096875
transcript.pyannote[826].end 5609.21346875
transcript.pyannote[827].speaker SPEAKER_21
transcript.pyannote[827].start 5605.83846875
transcript.pyannote[827].end 5606.95221875
transcript.pyannote[828].speaker SPEAKER_21
transcript.pyannote[828].start 5608.85909375
transcript.pyannote[828].end 5616.18284375
transcript.pyannote[829].speaker SPEAKER_09
transcript.pyannote[829].start 5612.47034375
transcript.pyannote[829].end 5612.79096875
transcript.pyannote[830].speaker SPEAKER_20
transcript.pyannote[830].start 5614.30971875
transcript.pyannote[830].end 5614.51221875
transcript.pyannote[831].speaker SPEAKER_20
transcript.pyannote[831].start 5615.79471875
transcript.pyannote[831].end 5615.82846875
transcript.pyannote[832].speaker SPEAKER_09
transcript.pyannote[832].start 5615.82846875
transcript.pyannote[832].end 5616.57096875
transcript.pyannote[833].speaker SPEAKER_21
transcript.pyannote[833].start 5616.25034375
transcript.pyannote[833].end 5620.01346875
transcript.pyannote[834].speaker SPEAKER_20
transcript.pyannote[834].start 5616.57096875
transcript.pyannote[834].end 5616.58784375
transcript.pyannote[835].speaker SPEAKER_09
transcript.pyannote[835].start 5619.72659375
transcript.pyannote[835].end 5620.41846875
transcript.pyannote[836].speaker SPEAKER_21
transcript.pyannote[836].start 5620.26659375
transcript.pyannote[836].end 5622.56159375
transcript.pyannote[837].speaker SPEAKER_09
transcript.pyannote[837].start 5623.10159375
transcript.pyannote[837].end 5629.91909375
transcript.pyannote[838].speaker SPEAKER_09
transcript.pyannote[838].start 5630.13846875
transcript.pyannote[838].end 5637.98534375
transcript.pyannote[839].speaker SPEAKER_21
transcript.pyannote[839].start 5636.78721875
transcript.pyannote[839].end 5658.38721875
transcript.pyannote[840].speaker SPEAKER_09
transcript.pyannote[840].start 5640.68534375
transcript.pyannote[840].end 5641.27596875
transcript.pyannote[841].speaker SPEAKER_20
transcript.pyannote[841].start 5646.57471875
transcript.pyannote[841].end 5647.09784375
transcript.pyannote[842].speaker SPEAKER_00
transcript.pyannote[842].start 5647.09784375
transcript.pyannote[842].end 5647.14846875
transcript.pyannote[843].speaker SPEAKER_09
transcript.pyannote[843].start 5650.13534375
transcript.pyannote[843].end 5650.69221875
transcript.pyannote[844].speaker SPEAKER_00
transcript.pyannote[844].start 5650.69221875
transcript.pyannote[844].end 5650.70909375
transcript.pyannote[845].speaker SPEAKER_09
transcript.pyannote[845].start 5659.07909375
transcript.pyannote[845].end 5676.34221875
transcript.pyannote[846].speaker SPEAKER_21
transcript.pyannote[846].start 5674.62096875
transcript.pyannote[846].end 5684.56034375
transcript.pyannote[847].speaker SPEAKER_09
transcript.pyannote[847].start 5684.47596875
transcript.pyannote[847].end 5699.95034375
transcript.pyannote[848].speaker SPEAKER_21
transcript.pyannote[848].start 5685.37034375
transcript.pyannote[848].end 5687.22659375
transcript.pyannote[849].speaker SPEAKER_21
transcript.pyannote[849].start 5698.76909375
transcript.pyannote[849].end 5703.98346875
transcript.pyannote[850].speaker SPEAKER_09
transcript.pyannote[850].start 5704.38846875
transcript.pyannote[850].end 5711.12159375
transcript.pyannote[851].speaker SPEAKER_21
transcript.pyannote[851].start 5706.75096875
transcript.pyannote[851].end 5707.56096875
transcript.pyannote[852].speaker SPEAKER_21
transcript.pyannote[852].start 5709.61971875
transcript.pyannote[852].end 5711.67846875
transcript.pyannote[853].speaker SPEAKER_09
transcript.pyannote[853].start 5711.76284375
transcript.pyannote[853].end 5713.02846875
transcript.pyannote[854].speaker SPEAKER_09
transcript.pyannote[854].start 5713.92284375
transcript.pyannote[854].end 5718.36096875
transcript.pyannote[855].speaker SPEAKER_21
transcript.pyannote[855].start 5717.80409375
transcript.pyannote[855].end 5721.63471875
transcript.pyannote[856].speaker SPEAKER_09
transcript.pyannote[856].start 5719.18784375
transcript.pyannote[856].end 5719.66034375
transcript.pyannote[857].speaker SPEAKER_09
transcript.pyannote[857].start 5720.33534375
transcript.pyannote[857].end 5721.21284375
transcript.pyannote[858].speaker SPEAKER_21
transcript.pyannote[858].start 5721.98909375
transcript.pyannote[858].end 5723.42346875
transcript.pyannote[859].speaker SPEAKER_09
transcript.pyannote[859].start 5723.89596875
transcript.pyannote[859].end 5727.74346875
transcript.pyannote[860].speaker SPEAKER_21
transcript.pyannote[860].start 5728.23284375
transcript.pyannote[860].end 5732.06346875
transcript.pyannote[861].speaker SPEAKER_21
transcript.pyannote[861].start 5732.56971875
transcript.pyannote[861].end 5735.77596875
transcript.pyannote[862].speaker SPEAKER_09
transcript.pyannote[862].start 5732.70471875
transcript.pyannote[862].end 5733.05909375
transcript.pyannote[863].speaker SPEAKER_09
transcript.pyannote[863].start 5736.24846875
transcript.pyannote[863].end 5743.85909375
transcript.pyannote[864].speaker SPEAKER_21
transcript.pyannote[864].start 5743.85909375
transcript.pyannote[864].end 5750.37284375
transcript.pyannote[865].speaker SPEAKER_09
transcript.pyannote[865].start 5744.56784375
transcript.pyannote[865].end 5745.88409375
transcript.pyannote[866].speaker SPEAKER_21
transcript.pyannote[866].start 5750.59221875
transcript.pyannote[866].end 5756.31284375
transcript.pyannote[867].speaker SPEAKER_21
transcript.pyannote[867].start 5756.75159375
transcript.pyannote[867].end 5768.58096875
transcript.pyannote[868].speaker SPEAKER_21
transcript.pyannote[868].start 5769.01971875
transcript.pyannote[868].end 5771.70284375
transcript.pyannote[869].speaker SPEAKER_21
transcript.pyannote[869].start 5772.02346875
transcript.pyannote[869].end 5773.45784375
transcript.pyannote[870].speaker SPEAKER_21
transcript.pyannote[870].start 5773.79534375
transcript.pyannote[870].end 5777.00159375
transcript.pyannote[871].speaker SPEAKER_09
transcript.pyannote[871].start 5777.44034375
transcript.pyannote[871].end 5787.02534375
transcript.pyannote[872].speaker SPEAKER_21
transcript.pyannote[872].start 5778.70596875
transcript.pyannote[872].end 5779.80284375
transcript.pyannote[873].speaker SPEAKER_09
transcript.pyannote[873].start 5787.34596875
transcript.pyannote[873].end 5796.57659375
transcript.pyannote[874].speaker SPEAKER_13
transcript.pyannote[874].start 5796.57659375
transcript.pyannote[874].end 5796.77909375
transcript.pyannote[875].speaker SPEAKER_09
transcript.pyannote[875].start 5796.77909375
transcript.pyannote[875].end 5796.93096875
transcript.pyannote[876].speaker SPEAKER_09
transcript.pyannote[876].start 5797.09971875
transcript.pyannote[876].end 5801.57159375
transcript.pyannote[877].speaker SPEAKER_13
transcript.pyannote[877].start 5797.97721875
transcript.pyannote[877].end 5799.96846875
transcript.pyannote[878].speaker SPEAKER_20
transcript.pyannote[878].start 5799.96846875
transcript.pyannote[878].end 5800.03596875
transcript.pyannote[879].speaker SPEAKER_21
transcript.pyannote[879].start 5800.03596875
transcript.pyannote[879].end 5801.01471875
transcript.pyannote[880].speaker SPEAKER_09
transcript.pyannote[880].start 5802.11159375
transcript.pyannote[880].end 5808.23721875
transcript.pyannote[881].speaker SPEAKER_21
transcript.pyannote[881].start 5806.31346875
transcript.pyannote[881].end 5818.42971875
transcript.pyannote[882].speaker SPEAKER_09
transcript.pyannote[882].start 5810.29596875
transcript.pyannote[882].end 5810.81909375
transcript.pyannote[883].speaker SPEAKER_09
transcript.pyannote[883].start 5814.24471875
transcript.pyannote[883].end 5814.27846875
transcript.pyannote[884].speaker SPEAKER_19
transcript.pyannote[884].start 5814.27846875
transcript.pyannote[884].end 5814.81846875
transcript.pyannote[885].speaker SPEAKER_19
transcript.pyannote[885].start 5815.98284375
transcript.pyannote[885].end 5816.59034375
transcript.pyannote[886].speaker SPEAKER_19
transcript.pyannote[886].start 5817.31596875
transcript.pyannote[886].end 5818.54784375
transcript.pyannote[887].speaker SPEAKER_19
transcript.pyannote[887].start 5819.67846875
transcript.pyannote[887].end 5821.68659375
transcript.pyannote[888].speaker SPEAKER_19
transcript.pyannote[888].start 5821.85534375
transcript.pyannote[888].end 5824.23471875
transcript.pyannote[889].speaker SPEAKER_32
transcript.pyannote[889].start 5843.62409375
transcript.pyannote[889].end 5845.61534375
transcript.pyannote[890].speaker SPEAKER_19
transcript.pyannote[890].start 5845.76721875
transcript.pyannote[890].end 5846.56034375
transcript.pyannote[891].speaker SPEAKER_19
transcript.pyannote[891].start 5848.60221875
transcript.pyannote[891].end 5849.41221875
transcript.pyannote[892].speaker SPEAKER_32
transcript.pyannote[892].start 5849.68221875
transcript.pyannote[892].end 5850.10409375
transcript.pyannote[893].speaker SPEAKER_19
transcript.pyannote[893].start 5850.34034375
transcript.pyannote[893].end 5850.72846875
transcript.pyannote[894].speaker SPEAKER_32
transcript.pyannote[894].start 5851.30221875
transcript.pyannote[894].end 5855.99346875
transcript.pyannote[895].speaker SPEAKER_32
transcript.pyannote[895].start 5856.41534375
transcript.pyannote[895].end 5860.44846875
transcript.pyannote[896].speaker SPEAKER_09
transcript.pyannote[896].start 5860.43159375
transcript.pyannote[896].end 5861.14034375
transcript.pyannote[897].speaker SPEAKER_32
transcript.pyannote[897].start 5861.10659375
transcript.pyannote[897].end 5865.78096875
transcript.pyannote[898].speaker SPEAKER_09
transcript.pyannote[898].start 5866.92846875
transcript.pyannote[898].end 5869.07159375
transcript.pyannote[899].speaker SPEAKER_09
transcript.pyannote[899].start 5869.61159375
transcript.pyannote[899].end 5870.10096875
transcript.pyannote[900].speaker SPEAKER_04
transcript.pyannote[900].start 5871.01221875
transcript.pyannote[900].end 5871.43409375
transcript.pyannote[901].speaker SPEAKER_04
transcript.pyannote[901].start 5871.77159375
transcript.pyannote[901].end 5876.47971875
transcript.pyannote[902].speaker SPEAKER_32
transcript.pyannote[902].start 5876.83409375
transcript.pyannote[902].end 5882.36909375
transcript.pyannote[903].speaker SPEAKER_20
transcript.pyannote[903].start 5881.55909375
transcript.pyannote[903].end 5882.53784375
transcript.pyannote[904].speaker SPEAKER_32
transcript.pyannote[904].start 5882.53784375
transcript.pyannote[904].end 5886.13221875
transcript.pyannote[905].speaker SPEAKER_32
transcript.pyannote[905].start 5886.43596875
transcript.pyannote[905].end 5888.64659375
transcript.pyannote[906].speaker SPEAKER_32
transcript.pyannote[906].start 5888.88284375
transcript.pyannote[906].end 5890.62096875
transcript.pyannote[907].speaker SPEAKER_20
transcript.pyannote[907].start 5889.10221875
transcript.pyannote[907].end 5889.57471875
transcript.pyannote[908].speaker SPEAKER_32
transcript.pyannote[908].start 5890.90784375
transcript.pyannote[908].end 5891.95409375
transcript.pyannote[909].speaker SPEAKER_20
transcript.pyannote[909].start 5891.98784375
transcript.pyannote[909].end 5892.66284375
transcript.pyannote[910].speaker SPEAKER_32
transcript.pyannote[910].start 5892.67971875
transcript.pyannote[910].end 5893.35471875
transcript.pyannote[911].speaker SPEAKER_32
transcript.pyannote[911].start 5893.69221875
transcript.pyannote[911].end 5897.47221875
transcript.pyannote[912].speaker SPEAKER_20
transcript.pyannote[912].start 5897.47221875
transcript.pyannote[912].end 5897.94471875
transcript.pyannote[913].speaker SPEAKER_09
transcript.pyannote[913].start 5897.94471875
transcript.pyannote[913].end 5897.97846875
transcript.pyannote[914].speaker SPEAKER_32
transcript.pyannote[914].start 5897.99534375
transcript.pyannote[914].end 5900.03721875
transcript.pyannote[915].speaker SPEAKER_32
transcript.pyannote[915].start 5900.81346875
transcript.pyannote[915].end 5902.07909375
transcript.pyannote[916].speaker SPEAKER_09
transcript.pyannote[916].start 5902.55159375
transcript.pyannote[916].end 5908.71096875
transcript.pyannote[917].speaker SPEAKER_32
transcript.pyannote[917].start 5903.15909375
transcript.pyannote[917].end 5903.59784375
transcript.pyannote[918].speaker SPEAKER_32
transcript.pyannote[918].start 5907.32721875
transcript.pyannote[918].end 5907.56346875
transcript.pyannote[919].speaker SPEAKER_32
transcript.pyannote[919].start 5908.37346875
transcript.pyannote[919].end 5920.08471875
transcript.pyannote[920].speaker SPEAKER_09
transcript.pyannote[920].start 5909.84159375
transcript.pyannote[920].end 5910.24659375
transcript.pyannote[921].speaker SPEAKER_09
transcript.pyannote[921].start 5914.46534375
transcript.pyannote[921].end 5914.98846875
transcript.pyannote[922].speaker SPEAKER_09
transcript.pyannote[922].start 5921.18159375
transcript.pyannote[922].end 5925.68721875
transcript.pyannote[923].speaker SPEAKER_09
transcript.pyannote[923].start 5926.26096875
transcript.pyannote[923].end 5927.47596875
transcript.pyannote[924].speaker SPEAKER_09
transcript.pyannote[924].start 5928.06659375
transcript.pyannote[924].end 5932.90971875
transcript.pyannote[925].speaker SPEAKER_09
transcript.pyannote[925].start 5933.34846875
transcript.pyannote[925].end 5934.49596875
transcript.pyannote[926].speaker SPEAKER_32
transcript.pyannote[926].start 5933.53409375
transcript.pyannote[926].end 5936.08221875
transcript.pyannote[927].speaker SPEAKER_09
transcript.pyannote[927].start 5936.20034375
transcript.pyannote[927].end 5939.50784375
transcript.pyannote[928].speaker SPEAKER_09
transcript.pyannote[928].start 5939.67659375
transcript.pyannote[928].end 5940.60471875
transcript.pyannote[929].speaker SPEAKER_09
transcript.pyannote[929].start 5940.97596875
transcript.pyannote[929].end 5947.13534375
transcript.pyannote[930].speaker SPEAKER_32
transcript.pyannote[930].start 5947.91159375
transcript.pyannote[930].end 5952.06284375
transcript.pyannote[931].speaker SPEAKER_32
transcript.pyannote[931].start 5952.50159375
transcript.pyannote[931].end 5958.23909375
transcript.pyannote[932].speaker SPEAKER_32
transcript.pyannote[932].start 5958.96471875
transcript.pyannote[932].end 5964.80346875
transcript.pyannote[933].speaker SPEAKER_20
transcript.pyannote[933].start 5962.72784375
transcript.pyannote[933].end 5963.45346875
transcript.pyannote[934].speaker SPEAKER_20
transcript.pyannote[934].start 5964.61784375
transcript.pyannote[934].end 5965.17471875
transcript.pyannote[935].speaker SPEAKER_32
transcript.pyannote[935].start 5965.17471875
transcript.pyannote[935].end 5966.25471875
transcript.pyannote[936].speaker SPEAKER_32
transcript.pyannote[936].start 5966.81159375
transcript.pyannote[936].end 5970.52409375
transcript.pyannote[937].speaker SPEAKER_32
transcript.pyannote[937].start 5971.28346875
transcript.pyannote[937].end 5971.82346875
transcript.pyannote[938].speaker SPEAKER_32
transcript.pyannote[938].start 5972.71784375
transcript.pyannote[938].end 5978.32034375
transcript.pyannote[939].speaker SPEAKER_07
transcript.pyannote[939].start 5978.32034375
transcript.pyannote[939].end 5979.24846875
transcript.pyannote[940].speaker SPEAKER_32
transcript.pyannote[940].start 5978.33721875
transcript.pyannote[940].end 5978.35409375
transcript.pyannote[941].speaker SPEAKER_32
transcript.pyannote[941].start 5979.07971875
transcript.pyannote[941].end 5979.60284375
transcript.pyannote[942].speaker SPEAKER_32
transcript.pyannote[942].start 5980.81784375
transcript.pyannote[942].end 5982.62346875
transcript.pyannote[943].speaker SPEAKER_32
transcript.pyannote[943].start 5982.91034375
transcript.pyannote[943].end 5983.55159375
transcript.pyannote[944].speaker SPEAKER_32
transcript.pyannote[944].start 5984.29409375
transcript.pyannote[944].end 5985.71159375
transcript.pyannote[945].speaker SPEAKER_32
transcript.pyannote[945].start 5985.99846875
transcript.pyannote[945].end 5986.67346875
transcript.pyannote[946].speaker SPEAKER_32
transcript.pyannote[946].start 5987.11221875
transcript.pyannote[946].end 5988.46221875
transcript.pyannote[947].speaker SPEAKER_32
transcript.pyannote[947].start 5988.91784375
transcript.pyannote[947].end 5989.60971875
transcript.pyannote[948].speaker SPEAKER_32
transcript.pyannote[948].start 5989.89659375
transcript.pyannote[948].end 5994.18284375
transcript.pyannote[949].speaker SPEAKER_20
transcript.pyannote[949].start 5994.18284375
transcript.pyannote[949].end 5994.75659375
transcript.pyannote[950].speaker SPEAKER_32
transcript.pyannote[950].start 5994.75659375
transcript.pyannote[950].end 6000.10596875
transcript.pyannote[951].speaker SPEAKER_32
transcript.pyannote[951].start 6001.11846875
transcript.pyannote[951].end 6017.40284375
transcript.pyannote[952].speaker SPEAKER_20
transcript.pyannote[952].start 6002.48534375
transcript.pyannote[952].end 6003.97034375
transcript.pyannote[953].speaker SPEAKER_00
transcript.pyannote[953].start 6003.97034375
transcript.pyannote[953].end 6004.78034375
transcript.pyannote[954].speaker SPEAKER_00
transcript.pyannote[954].start 6007.26096875
transcript.pyannote[954].end 6008.45909375
transcript.pyannote[955].speaker SPEAKER_32
transcript.pyannote[955].start 6018.06096875
transcript.pyannote[955].end 6019.76534375
transcript.pyannote[956].speaker SPEAKER_32
transcript.pyannote[956].start 6019.95096875
transcript.pyannote[956].end 6020.05221875
transcript.pyannote[957].speaker SPEAKER_32
transcript.pyannote[957].start 6020.06909375
transcript.pyannote[957].end 6021.63846875
transcript.pyannote[958].speaker SPEAKER_32
transcript.pyannote[958].start 6022.80284375
transcript.pyannote[958].end 6023.95034375
transcript.pyannote[959].speaker SPEAKER_32
transcript.pyannote[959].start 6024.74346875
transcript.pyannote[959].end 6027.83159375
transcript.pyannote[960].speaker SPEAKER_32
transcript.pyannote[960].start 6028.69221875
transcript.pyannote[960].end 6031.81409375
transcript.pyannote[961].speaker SPEAKER_32
transcript.pyannote[961].start 6031.96596875
transcript.pyannote[961].end 6033.90659375
transcript.pyannote[962].speaker SPEAKER_32
transcript.pyannote[962].start 6034.56471875
transcript.pyannote[962].end 6037.09596875
transcript.pyannote[963].speaker SPEAKER_32
transcript.pyannote[963].start 6037.88909375
transcript.pyannote[963].end 6041.60159375
transcript.pyannote[964].speaker SPEAKER_32
transcript.pyannote[964].start 6042.79971875
transcript.pyannote[964].end 6045.24659375
transcript.pyannote[965].speaker SPEAKER_09
transcript.pyannote[965].start 6044.70659375
transcript.pyannote[965].end 6045.48284375
transcript.pyannote[966].speaker SPEAKER_09
transcript.pyannote[966].start 6045.85409375
transcript.pyannote[966].end 6046.37721875
transcript.pyannote[967].speaker SPEAKER_09
transcript.pyannote[967].start 6046.63034375
transcript.pyannote[967].end 6052.55346875
transcript.pyannote[968].speaker SPEAKER_20
transcript.pyannote[968].start 6052.55346875
transcript.pyannote[968].end 6052.78971875
transcript.pyannote[969].speaker SPEAKER_09
transcript.pyannote[969].start 6052.75596875
transcript.pyannote[969].end 6056.13096875
transcript.pyannote[970].speaker SPEAKER_09
transcript.pyannote[970].start 6056.53596875
transcript.pyannote[970].end 6061.02471875
transcript.pyannote[971].speaker SPEAKER_09
transcript.pyannote[971].start 6061.64909375
transcript.pyannote[971].end 6076.17846875
transcript.pyannote[972].speaker SPEAKER_09
transcript.pyannote[972].start 6076.75221875
transcript.pyannote[972].end 6079.87409375
transcript.pyannote[973].speaker SPEAKER_09
transcript.pyannote[973].start 6079.92471875
transcript.pyannote[973].end 6081.03846875
transcript.pyannote[974].speaker SPEAKER_09
transcript.pyannote[974].start 6081.49409375
transcript.pyannote[974].end 6086.10096875
transcript.pyannote[975].speaker SPEAKER_09
transcript.pyannote[975].start 6086.64096875
transcript.pyannote[975].end 6099.97221875
transcript.pyannote[976].speaker SPEAKER_32
transcript.pyannote[976].start 6099.60096875
transcript.pyannote[976].end 6120.86346875
transcript.pyannote[977].speaker SPEAKER_09
transcript.pyannote[977].start 6119.10846875
transcript.pyannote[977].end 6120.07034375
transcript.pyannote[978].speaker SPEAKER_32
transcript.pyannote[978].start 6120.89721875
transcript.pyannote[978].end 6120.91409375
transcript.pyannote[979].speaker SPEAKER_09
transcript.pyannote[979].start 6120.91409375
transcript.pyannote[979].end 6148.08284375
transcript.pyannote[980].speaker SPEAKER_32
transcript.pyannote[980].start 6121.52159375
transcript.pyannote[980].end 6122.04471875
transcript.pyannote[981].speaker SPEAKER_32
transcript.pyannote[981].start 6147.17159375
transcript.pyannote[981].end 6147.57659375
transcript.pyannote[982].speaker SPEAKER_32
transcript.pyannote[982].start 6148.08284375
transcript.pyannote[982].end 6148.11659375
transcript.pyannote[983].speaker SPEAKER_32
transcript.pyannote[983].start 6148.13346875
transcript.pyannote[983].end 6149.56784375
transcript.pyannote[984].speaker SPEAKER_32
transcript.pyannote[984].start 6149.85471875
transcript.pyannote[984].end 6150.46221875
transcript.pyannote[985].speaker SPEAKER_32
transcript.pyannote[985].start 6150.76596875
transcript.pyannote[985].end 6151.71096875
transcript.pyannote[986].speaker SPEAKER_32
transcript.pyannote[986].start 6152.26784375
transcript.pyannote[986].end 6156.01409375
transcript.pyannote[987].speaker SPEAKER_32
transcript.pyannote[987].start 6156.73971875
transcript.pyannote[987].end 6165.37971875
transcript.pyannote[988].speaker SPEAKER_32
transcript.pyannote[988].start 6165.98721875
transcript.pyannote[988].end 6166.78034375
transcript.pyannote[989].speaker SPEAKER_32
transcript.pyannote[989].start 6167.13471875
transcript.pyannote[989].end 6168.77159375
transcript.pyannote[990].speaker SPEAKER_32
transcript.pyannote[990].start 6170.08784375
transcript.pyannote[990].end 6172.34909375
transcript.pyannote[991].speaker SPEAKER_32
transcript.pyannote[991].start 6173.00721875
transcript.pyannote[991].end 6173.73284375
transcript.pyannote[992].speaker SPEAKER_32
transcript.pyannote[992].start 6174.40784375
transcript.pyannote[992].end 6189.29159375
transcript.pyannote[993].speaker SPEAKER_32
transcript.pyannote[993].start 6189.88221875
transcript.pyannote[993].end 6190.86096875
transcript.pyannote[994].speaker SPEAKER_32
transcript.pyannote[994].start 6191.55284375
transcript.pyannote[994].end 6194.38784375
transcript.pyannote[995].speaker SPEAKER_32
transcript.pyannote[995].start 6195.04596875
transcript.pyannote[995].end 6199.02846875
transcript.pyannote[996].speaker SPEAKER_20
transcript.pyannote[996].start 6200.34471875
transcript.pyannote[996].end 6200.86784375
transcript.pyannote[997].speaker SPEAKER_32
transcript.pyannote[997].start 6200.59784375
transcript.pyannote[997].end 6207.53346875
transcript.pyannote[998].speaker SPEAKER_32
transcript.pyannote[998].start 6208.03971875
transcript.pyannote[998].end 6210.04784375
transcript.pyannote[999].speaker SPEAKER_20
transcript.pyannote[999].start 6210.04784375
transcript.pyannote[999].end 6210.63846875
transcript.pyannote[1000].speaker SPEAKER_32
transcript.pyannote[1000].start 6210.63846875
transcript.pyannote[1000].end 6215.38034375
transcript.pyannote[1001].speaker SPEAKER_09
transcript.pyannote[1001].start 6215.58284375
transcript.pyannote[1001].end 6216.49409375
transcript.pyannote[1002].speaker SPEAKER_32
transcript.pyannote[1002].start 6216.93284375
transcript.pyannote[1002].end 6217.70909375
transcript.pyannote[1003].speaker SPEAKER_09
transcript.pyannote[1003].start 6217.35471875
transcript.pyannote[1003].end 6223.44659375
transcript.pyannote[1004].speaker SPEAKER_32
transcript.pyannote[1004].start 6219.78471875
transcript.pyannote[1004].end 6222.99096875
transcript.pyannote[1005].speaker SPEAKER_32
transcript.pyannote[1005].start 6224.57721875
transcript.pyannote[1005].end 6229.11659375
transcript.pyannote[1006].speaker SPEAKER_09
transcript.pyannote[1006].start 6229.67346875
transcript.pyannote[1006].end 6231.51284375
transcript.pyannote[1007].speaker SPEAKER_32
transcript.pyannote[1007].start 6231.00659375
transcript.pyannote[1007].end 6231.96846875
transcript.pyannote[1008].speaker SPEAKER_09
transcript.pyannote[1008].start 6231.96846875
transcript.pyannote[1008].end 6236.10284375
transcript.pyannote[1009].speaker SPEAKER_32
transcript.pyannote[1009].start 6235.27596875
transcript.pyannote[1009].end 6237.46971875
transcript.pyannote[1010].speaker SPEAKER_09
transcript.pyannote[1010].start 6237.11534375
transcript.pyannote[1010].end 6239.47784375
transcript.pyannote[1011].speaker SPEAKER_32
transcript.pyannote[1011].start 6238.78596875
transcript.pyannote[1011].end 6239.95034375
transcript.pyannote[1012].speaker SPEAKER_32
transcript.pyannote[1012].start 6240.79409375
transcript.pyannote[1012].end 6242.53221875
transcript.pyannote[1013].speaker SPEAKER_09
transcript.pyannote[1013].start 6243.24096875
transcript.pyannote[1013].end 6244.43909375
transcript.pyannote[1014].speaker SPEAKER_32
transcript.pyannote[1014].start 6244.72596875
transcript.pyannote[1014].end 6245.31659375
transcript.pyannote[1015].speaker SPEAKER_09
transcript.pyannote[1015].start 6244.99596875
transcript.pyannote[1015].end 6247.56096875
transcript.pyannote[1016].speaker SPEAKER_32
transcript.pyannote[1016].start 6246.46409375
transcript.pyannote[1016].end 6256.31909375
transcript.pyannote[1017].speaker SPEAKER_09
transcript.pyannote[1017].start 6251.18909375
transcript.pyannote[1017].end 6251.20596875
transcript.pyannote[1018].speaker SPEAKER_20
transcript.pyannote[1018].start 6251.20596875
transcript.pyannote[1018].end 6251.22284375
transcript.pyannote[1019].speaker SPEAKER_09
transcript.pyannote[1019].start 6251.22284375
transcript.pyannote[1019].end 6251.96534375
transcript.pyannote[1020].speaker SPEAKER_20
transcript.pyannote[1020].start 6251.96534375
transcript.pyannote[1020].end 6252.03284375
transcript.pyannote[1021].speaker SPEAKER_09
transcript.pyannote[1021].start 6252.03284375
transcript.pyannote[1021].end 6252.97784375
transcript.pyannote[1022].speaker SPEAKER_20
transcript.pyannote[1022].start 6252.97784375
transcript.pyannote[1022].end 6253.09596875
transcript.pyannote[1023].speaker SPEAKER_09
transcript.pyannote[1023].start 6253.09596875
transcript.pyannote[1023].end 6253.16346875
transcript.pyannote[1024].speaker SPEAKER_32
transcript.pyannote[1024].start 6256.79159375
transcript.pyannote[1024].end 6259.81221875
transcript.pyannote[1025].speaker SPEAKER_09
transcript.pyannote[1025].start 6257.88846875
transcript.pyannote[1025].end 6259.67721875
transcript.pyannote[1026].speaker SPEAKER_09
transcript.pyannote[1026].start 6259.99784375
transcript.pyannote[1026].end 6277.46346875
transcript.pyannote[1027].speaker SPEAKER_32
transcript.pyannote[1027].start 6260.01471875
transcript.pyannote[1027].end 6260.57159375
transcript.pyannote[1028].speaker SPEAKER_32
transcript.pyannote[1028].start 6274.72971875
transcript.pyannote[1028].end 6275.42159375
transcript.pyannote[1029].speaker SPEAKER_32
transcript.pyannote[1029].start 6275.99534375
transcript.pyannote[1029].end 6279.57284375
transcript.pyannote[1030].speaker SPEAKER_09
transcript.pyannote[1030].start 6279.52221875
transcript.pyannote[1030].end 6280.18034375
transcript.pyannote[1031].speaker SPEAKER_32
transcript.pyannote[1031].start 6280.26471875
transcript.pyannote[1031].end 6289.05659375
transcript.pyannote[1032].speaker SPEAKER_09
transcript.pyannote[1032].start 6280.73721875
transcript.pyannote[1032].end 6281.22659375
transcript.pyannote[1033].speaker SPEAKER_09
transcript.pyannote[1033].start 6283.79159375
transcript.pyannote[1033].end 6285.47909375
transcript.pyannote[1034].speaker SPEAKER_20
transcript.pyannote[1034].start 6285.47909375
transcript.pyannote[1034].end 6285.49596875
transcript.pyannote[1035].speaker SPEAKER_09
transcript.pyannote[1035].start 6286.74471875
transcript.pyannote[1035].end 6287.97659375
transcript.pyannote[1036].speaker SPEAKER_02
transcript.pyannote[1036].start 6287.97659375
transcript.pyannote[1036].end 6288.98909375
transcript.pyannote[1037].speaker SPEAKER_32
transcript.pyannote[1037].start 6289.71471875
transcript.pyannote[1037].end 6293.22471875
transcript.pyannote[1038].speaker SPEAKER_32
transcript.pyannote[1038].start 6293.68034375
transcript.pyannote[1038].end 6294.72659375
transcript.pyannote[1039].speaker SPEAKER_32
transcript.pyannote[1039].start 6295.01346875
transcript.pyannote[1039].end 6298.18596875
transcript.pyannote[1040].speaker SPEAKER_20
transcript.pyannote[1040].start 6298.18596875
transcript.pyannote[1040].end 6299.06346875
transcript.pyannote[1041].speaker SPEAKER_32
transcript.pyannote[1041].start 6298.52346875
transcript.pyannote[1041].end 6308.05784375
transcript.pyannote[1042].speaker SPEAKER_20
transcript.pyannote[1042].start 6302.10096875
transcript.pyannote[1042].end 6302.70846875
transcript.pyannote[1043].speaker SPEAKER_09
transcript.pyannote[1043].start 6302.70846875
transcript.pyannote[1043].end 6302.75909375
transcript.pyannote[1044].speaker SPEAKER_09
transcript.pyannote[1044].start 6307.06221875
transcript.pyannote[1044].end 6311.14596875
transcript.pyannote[1045].speaker SPEAKER_32
transcript.pyannote[1045].start 6309.89721875
transcript.pyannote[1045].end 6316.32659375
transcript.pyannote[1046].speaker SPEAKER_09
transcript.pyannote[1046].start 6317.35596875
transcript.pyannote[1046].end 6320.46096875
transcript.pyannote[1047].speaker SPEAKER_32
transcript.pyannote[1047].start 6317.89596875
transcript.pyannote[1047].end 6322.94159375
transcript.pyannote[1048].speaker SPEAKER_09
transcript.pyannote[1048].start 6322.65471875
transcript.pyannote[1048].end 6330.21471875
transcript.pyannote[1049].speaker SPEAKER_32
transcript.pyannote[1049].start 6327.37971875
transcript.pyannote[1049].end 6337.33596875
transcript.pyannote[1050].speaker SPEAKER_09
transcript.pyannote[1050].start 6337.85909375
transcript.pyannote[1050].end 6343.95096875
transcript.pyannote[1051].speaker SPEAKER_32
transcript.pyannote[1051].start 6340.82909375
transcript.pyannote[1051].end 6351.30846875
transcript.pyannote[1052].speaker SPEAKER_09
transcript.pyannote[1052].start 6345.36846875
transcript.pyannote[1052].end 6345.95909375
transcript.pyannote[1053].speaker SPEAKER_20
transcript.pyannote[1053].start 6351.05534375
transcript.pyannote[1053].end 6351.44346875
transcript.pyannote[1054].speaker SPEAKER_32
transcript.pyannote[1054].start 6351.35909375
transcript.pyannote[1054].end 6363.17159375
transcript.pyannote[1055].speaker SPEAKER_20
transcript.pyannote[1055].start 6354.31221875
transcript.pyannote[1055].end 6354.88596875
transcript.pyannote[1056].speaker SPEAKER_20
transcript.pyannote[1056].start 6363.17159375
transcript.pyannote[1056].end 6363.64409375
transcript.pyannote[1057].speaker SPEAKER_32
transcript.pyannote[1057].start 6363.45846875
transcript.pyannote[1057].end 6365.56784375
transcript.pyannote[1058].speaker SPEAKER_32
transcript.pyannote[1058].start 6366.74909375
transcript.pyannote[1058].end 6367.67721875
transcript.pyannote[1059].speaker SPEAKER_32
transcript.pyannote[1059].start 6368.20034375
transcript.pyannote[1059].end 6374.07284375
transcript.pyannote[1060].speaker SPEAKER_32
transcript.pyannote[1060].start 6374.68034375
transcript.pyannote[1060].end 6378.89909375
transcript.pyannote[1061].speaker SPEAKER_20
transcript.pyannote[1061].start 6379.11846875
transcript.pyannote[1061].end 6379.75971875
transcript.pyannote[1062].speaker SPEAKER_32
transcript.pyannote[1062].start 6379.48971875
transcript.pyannote[1062].end 6384.11346875
transcript.pyannote[1063].speaker SPEAKER_32
transcript.pyannote[1063].start 6384.51846875
transcript.pyannote[1063].end 6385.19346875
transcript.pyannote[1064].speaker SPEAKER_32
transcript.pyannote[1064].start 6386.35784375
transcript.pyannote[1064].end 6387.79221875
transcript.pyannote[1065].speaker SPEAKER_32
transcript.pyannote[1065].start 6388.31534375
transcript.pyannote[1065].end 6389.91846875
transcript.pyannote[1066].speaker SPEAKER_32
transcript.pyannote[1066].start 6391.31909375
transcript.pyannote[1066].end 6400.39784375
transcript.pyannote[1067].speaker SPEAKER_32
transcript.pyannote[1067].start 6401.00534375
transcript.pyannote[1067].end 6403.87409375
transcript.pyannote[1068].speaker SPEAKER_20
transcript.pyannote[1068].start 6403.55346875
transcript.pyannote[1068].end 6404.24534375
transcript.pyannote[1069].speaker SPEAKER_32
transcript.pyannote[1069].start 6404.27909375
transcript.pyannote[1069].end 6408.81846875
transcript.pyannote[1070].speaker SPEAKER_32
transcript.pyannote[1070].start 6409.67909375
transcript.pyannote[1070].end 6410.65784375
transcript.pyannote[1071].speaker SPEAKER_32
transcript.pyannote[1071].start 6411.28221875
transcript.pyannote[1071].end 6415.38284375
transcript.pyannote[1072].speaker SPEAKER_09
transcript.pyannote[1072].start 6414.04971875
transcript.pyannote[1072].end 6414.38721875
transcript.pyannote[1073].speaker SPEAKER_09
transcript.pyannote[1073].start 6415.04534375
transcript.pyannote[1073].end 6418.38659375
transcript.pyannote[1074].speaker SPEAKER_32
transcript.pyannote[1074].start 6415.87221875
transcript.pyannote[1074].end 6415.90596875
transcript.pyannote[1075].speaker SPEAKER_32
transcript.pyannote[1075].start 6417.88034375
transcript.pyannote[1075].end 6419.78721875
transcript.pyannote[1076].speaker SPEAKER_09
transcript.pyannote[1076].start 6419.02784375
transcript.pyannote[1076].end 6419.55096875
transcript.pyannote[1077].speaker SPEAKER_20
transcript.pyannote[1077].start 6420.47909375
transcript.pyannote[1077].end 6420.49596875
transcript.pyannote[1078].speaker SPEAKER_09
transcript.pyannote[1078].start 6420.49596875
transcript.pyannote[1078].end 6420.78284375
transcript.pyannote[1079].speaker SPEAKER_32
transcript.pyannote[1079].start 6420.78284375
transcript.pyannote[1079].end 6426.87471875
transcript.pyannote[1080].speaker SPEAKER_20
transcript.pyannote[1080].start 6426.87471875
transcript.pyannote[1080].end 6427.81971875
transcript.pyannote[1081].speaker SPEAKER_32
transcript.pyannote[1081].start 6427.19534375
transcript.pyannote[1081].end 6431.38034375
transcript.pyannote[1082].speaker SPEAKER_20
transcript.pyannote[1082].start 6428.24159375
transcript.pyannote[1082].end 6429.06846875
transcript.pyannote[1083].speaker SPEAKER_32
transcript.pyannote[1083].start 6431.83596875
transcript.pyannote[1083].end 6438.67034375
transcript.pyannote[1084].speaker SPEAKER_20
transcript.pyannote[1084].start 6433.50659375
transcript.pyannote[1084].end 6434.75534375
transcript.pyannote[1085].speaker SPEAKER_32
transcript.pyannote[1085].start 6439.00784375
transcript.pyannote[1085].end 6441.38721875
transcript.pyannote[1086].speaker SPEAKER_32
transcript.pyannote[1086].start 6441.70784375
transcript.pyannote[1086].end 6448.54221875
transcript.pyannote[1087].speaker SPEAKER_32
transcript.pyannote[1087].start 6448.84596875
transcript.pyannote[1087].end 6451.69784375
transcript.pyannote[1088].speaker SPEAKER_20
transcript.pyannote[1088].start 6451.69784375
transcript.pyannote[1088].end 6452.25471875
transcript.pyannote[1089].speaker SPEAKER_32
transcript.pyannote[1089].start 6452.00159375
transcript.pyannote[1089].end 6453.58784375
transcript.pyannote[1090].speaker SPEAKER_19
transcript.pyannote[1090].start 6452.25471875
transcript.pyannote[1090].end 6452.27159375
transcript.pyannote[1091].speaker SPEAKER_20
transcript.pyannote[1091].start 6453.30096875
transcript.pyannote[1091].end 6453.57096875
transcript.pyannote[1092].speaker SPEAKER_20
transcript.pyannote[1092].start 6453.58784375
transcript.pyannote[1092].end 6453.92534375
transcript.pyannote[1093].speaker SPEAKER_32
transcript.pyannote[1093].start 6453.85784375
transcript.pyannote[1093].end 6454.75221875
transcript.pyannote[1094].speaker SPEAKER_20
transcript.pyannote[1094].start 6454.00971875
transcript.pyannote[1094].end 6454.16159375
transcript.pyannote[1095].speaker SPEAKER_19
transcript.pyannote[1095].start 6454.16159375
transcript.pyannote[1095].end 6454.61721875
transcript.pyannote[1096].speaker SPEAKER_32
transcript.pyannote[1096].start 6454.98846875
transcript.pyannote[1096].end 6456.40596875
transcript.pyannote[1097].speaker SPEAKER_09
transcript.pyannote[1097].start 6456.10221875
transcript.pyannote[1097].end 6456.11909375
transcript.pyannote[1098].speaker SPEAKER_19
transcript.pyannote[1098].start 6456.11909375
transcript.pyannote[1098].end 6456.35534375
transcript.pyannote[1099].speaker SPEAKER_19
transcript.pyannote[1099].start 6456.40596875
transcript.pyannote[1099].end 6457.92471875
transcript.pyannote[1100].speaker SPEAKER_32
transcript.pyannote[1100].start 6456.77721875
transcript.pyannote[1100].end 6457.63784375
transcript.pyannote[1101].speaker SPEAKER_19
transcript.pyannote[1101].start 6459.22409375
transcript.pyannote[1101].end 6465.82221875
transcript.pyannote[1102].speaker SPEAKER_19
transcript.pyannote[1102].start 6466.12596875
transcript.pyannote[1102].end 6468.48846875
transcript.pyannote[1103].speaker SPEAKER_32
transcript.pyannote[1103].start 6468.91034375
transcript.pyannote[1103].end 6469.18034375
transcript.pyannote[1104].speaker SPEAKER_28
transcript.pyannote[1104].start 6477.88784375
transcript.pyannote[1104].end 6481.11096875
transcript.pyannote[1105].speaker SPEAKER_20
transcript.pyannote[1105].start 6480.33471875
transcript.pyannote[1105].end 6480.35159375
transcript.pyannote[1106].speaker SPEAKER_09
transcript.pyannote[1106].start 6480.35159375
transcript.pyannote[1106].end 6481.22909375
transcript.pyannote[1107].speaker SPEAKER_20
transcript.pyannote[1107].start 6481.22909375
transcript.pyannote[1107].end 6481.26284375
transcript.pyannote[1108].speaker SPEAKER_28
transcript.pyannote[1108].start 6482.27534375
transcript.pyannote[1108].end 6482.42721875
transcript.pyannote[1109].speaker SPEAKER_09
transcript.pyannote[1109].start 6483.77721875
transcript.pyannote[1109].end 6484.38471875
transcript.pyannote[1110].speaker SPEAKER_28
transcript.pyannote[1110].start 6484.40159375
transcript.pyannote[1110].end 6487.42221875
transcript.pyannote[1111].speaker SPEAKER_28
transcript.pyannote[1111].start 6487.62471875
transcript.pyannote[1111].end 6496.41659375
transcript.pyannote[1112].speaker SPEAKER_09
transcript.pyannote[1112].start 6490.86471875
transcript.pyannote[1112].end 6491.45534375
transcript.pyannote[1113].speaker SPEAKER_26
transcript.pyannote[1113].start 6491.45534375
transcript.pyannote[1113].end 6491.55659375
transcript.pyannote[1114].speaker SPEAKER_00
transcript.pyannote[1114].start 6494.72909375
transcript.pyannote[1114].end 6495.37034375
transcript.pyannote[1115].speaker SPEAKER_28
transcript.pyannote[1115].start 6496.80471875
transcript.pyannote[1115].end 6497.56409375
transcript.pyannote[1116].speaker SPEAKER_28
transcript.pyannote[1116].start 6498.12096875
transcript.pyannote[1116].end 6511.28346875
transcript.pyannote[1117].speaker SPEAKER_00
transcript.pyannote[1117].start 6502.87971875
transcript.pyannote[1117].end 6502.91346875
transcript.pyannote[1118].speaker SPEAKER_20
transcript.pyannote[1118].start 6502.91346875
transcript.pyannote[1118].end 6504.43221875
transcript.pyannote[1119].speaker SPEAKER_28
transcript.pyannote[1119].start 6511.45221875
transcript.pyannote[1119].end 6511.46909375
transcript.pyannote[1120].speaker SPEAKER_20
transcript.pyannote[1120].start 6511.46909375
transcript.pyannote[1120].end 6512.14409375
transcript.pyannote[1121].speaker SPEAKER_28
transcript.pyannote[1121].start 6511.50284375
transcript.pyannote[1121].end 6511.55346875
transcript.pyannote[1122].speaker SPEAKER_28
transcript.pyannote[1122].start 6511.77284375
transcript.pyannote[1122].end 6512.04284375
transcript.pyannote[1123].speaker SPEAKER_28
transcript.pyannote[1123].start 6512.14409375
transcript.pyannote[1123].end 6514.11846875
transcript.pyannote[1124].speaker SPEAKER_28
transcript.pyannote[1124].start 6514.54034375
transcript.pyannote[1124].end 6517.13909375
transcript.pyannote[1125].speaker SPEAKER_28
transcript.pyannote[1125].start 6517.81409375
transcript.pyannote[1125].end 6519.07971875
transcript.pyannote[1126].speaker SPEAKER_28
transcript.pyannote[1126].start 6519.41721875
transcript.pyannote[1126].end 6526.09971875
transcript.pyannote[1127].speaker SPEAKER_28
transcript.pyannote[1127].start 6527.16284375
transcript.pyannote[1127].end 6539.14409375
transcript.pyannote[1128].speaker SPEAKER_28
transcript.pyannote[1128].start 6539.73471875
transcript.pyannote[1128].end 6543.19409375
transcript.pyannote[1129].speaker SPEAKER_28
transcript.pyannote[1129].start 6543.51471875
transcript.pyannote[1129].end 6547.83471875
transcript.pyannote[1130].speaker SPEAKER_28
transcript.pyannote[1130].start 6548.45909375
transcript.pyannote[1130].end 6550.18034375
transcript.pyannote[1131].speaker SPEAKER_28
transcript.pyannote[1131].start 6550.85534375
transcript.pyannote[1131].end 6561.18284375
transcript.pyannote[1132].speaker SPEAKER_20
transcript.pyannote[1132].start 6561.43596875
transcript.pyannote[1132].end 6561.92534375
transcript.pyannote[1133].speaker SPEAKER_28
transcript.pyannote[1133].start 6561.73971875
transcript.pyannote[1133].end 6592.85721875
transcript.pyannote[1134].speaker SPEAKER_28
transcript.pyannote[1134].start 6593.27909375
transcript.pyannote[1134].end 6597.83534375
transcript.pyannote[1135].speaker SPEAKER_28
transcript.pyannote[1135].start 6598.72971875
transcript.pyannote[1135].end 6611.74034375
transcript.pyannote[1136].speaker SPEAKER_09
transcript.pyannote[1136].start 6611.99346875
transcript.pyannote[1136].end 6620.21159375
transcript.pyannote[1137].speaker SPEAKER_09
transcript.pyannote[1137].start 6620.97096875
transcript.pyannote[1137].end 6622.87784375
transcript.pyannote[1138].speaker SPEAKER_20
transcript.pyannote[1138].start 6622.87784375
transcript.pyannote[1138].end 6623.24909375
transcript.pyannote[1139].speaker SPEAKER_09
transcript.pyannote[1139].start 6623.24909375
transcript.pyannote[1139].end 6626.42159375
transcript.pyannote[1140].speaker SPEAKER_09
transcript.pyannote[1140].start 6627.07971875
transcript.pyannote[1140].end 6633.86346875
transcript.pyannote[1141].speaker SPEAKER_20
transcript.pyannote[1141].start 6633.86346875
transcript.pyannote[1141].end 6634.09971875
transcript.pyannote[1142].speaker SPEAKER_09
transcript.pyannote[1142].start 6633.98159375
transcript.pyannote[1142].end 6640.44471875
transcript.pyannote[1143].speaker SPEAKER_20
transcript.pyannote[1143].start 6640.42784375
transcript.pyannote[1143].end 6640.79909375
transcript.pyannote[1144].speaker SPEAKER_09
transcript.pyannote[1144].start 6640.46159375
transcript.pyannote[1144].end 6640.49534375
transcript.pyannote[1145].speaker SPEAKER_09
transcript.pyannote[1145].start 6640.52909375
transcript.pyannote[1145].end 6644.47784375
transcript.pyannote[1146].speaker SPEAKER_20
transcript.pyannote[1146].start 6642.11534375
transcript.pyannote[1146].end 6642.72284375
transcript.pyannote[1147].speaker SPEAKER_09
transcript.pyannote[1147].start 6644.52846875
transcript.pyannote[1147].end 6651.07596875
transcript.pyannote[1148].speaker SPEAKER_20
transcript.pyannote[1148].start 6645.22034375
transcript.pyannote[1148].end 6645.60846875
transcript.pyannote[1149].speaker SPEAKER_09
transcript.pyannote[1149].start 6651.61596875
transcript.pyannote[1149].end 6656.10471875
transcript.pyannote[1150].speaker SPEAKER_09
transcript.pyannote[1150].start 6656.59409375
transcript.pyannote[1150].end 6661.04909375
transcript.pyannote[1151].speaker SPEAKER_28
transcript.pyannote[1151].start 6660.61034375
transcript.pyannote[1151].end 6671.46096875
transcript.pyannote[1152].speaker SPEAKER_28
transcript.pyannote[1152].start 6671.74784375
transcript.pyannote[1152].end 6676.97909375
transcript.pyannote[1153].speaker SPEAKER_09
transcript.pyannote[1153].start 6671.81534375
transcript.pyannote[1153].end 6672.62534375
transcript.pyannote[1154].speaker SPEAKER_20
transcript.pyannote[1154].start 6673.36784375
transcript.pyannote[1154].end 6673.38471875
transcript.pyannote[1155].speaker SPEAKER_09
transcript.pyannote[1155].start 6673.38471875
transcript.pyannote[1155].end 6687.47534375
transcript.pyannote[1156].speaker SPEAKER_28
transcript.pyannote[1156].start 6677.06346875
transcript.pyannote[1156].end 6677.72159375
transcript.pyannote[1157].speaker SPEAKER_20
transcript.pyannote[1157].start 6677.72159375
transcript.pyannote[1157].end 6677.75534375
transcript.pyannote[1158].speaker SPEAKER_28
transcript.pyannote[1158].start 6679.30784375
transcript.pyannote[1158].end 6680.77596875
transcript.pyannote[1159].speaker SPEAKER_28
transcript.pyannote[1159].start 6685.63596875
transcript.pyannote[1159].end 6698.56221875
transcript.pyannote[1160].speaker SPEAKER_28
transcript.pyannote[1160].start 6698.84909375
transcript.pyannote[1160].end 6699.94596875
transcript.pyannote[1161].speaker SPEAKER_28
transcript.pyannote[1161].start 6700.26659375
transcript.pyannote[1161].end 6701.54909375
transcript.pyannote[1162].speaker SPEAKER_28
transcript.pyannote[1162].start 6701.83596875
transcript.pyannote[1162].end 6705.10971875
transcript.pyannote[1163].speaker SPEAKER_28
transcript.pyannote[1163].start 6705.76784375
transcript.pyannote[1163].end 6707.40471875
transcript.pyannote[1164].speaker SPEAKER_28
transcript.pyannote[1164].start 6707.77596875
transcript.pyannote[1164].end 6733.20659375
transcript.pyannote[1165].speaker SPEAKER_28
transcript.pyannote[1165].start 6734.65784375
transcript.pyannote[1165].end 6737.77971875
transcript.pyannote[1166].speaker SPEAKER_28
transcript.pyannote[1166].start 6738.13409375
transcript.pyannote[1166].end 6741.40784375
transcript.pyannote[1167].speaker SPEAKER_28
transcript.pyannote[1167].start 6741.74534375
transcript.pyannote[1167].end 6751.14471875
transcript.pyannote[1168].speaker SPEAKER_09
transcript.pyannote[1168].start 6751.41471875
transcript.pyannote[1168].end 6763.64909375
transcript.pyannote[1169].speaker SPEAKER_09
transcript.pyannote[1169].start 6764.22284375
transcript.pyannote[1169].end 6764.57721875
transcript.pyannote[1170].speaker SPEAKER_09
transcript.pyannote[1170].start 6765.50534375
transcript.pyannote[1170].end 6768.84659375
transcript.pyannote[1171].speaker SPEAKER_20
transcript.pyannote[1171].start 6768.84659375
transcript.pyannote[1171].end 6769.35284375
transcript.pyannote[1172].speaker SPEAKER_09
transcript.pyannote[1172].start 6769.35284375
transcript.pyannote[1172].end 6777.90846875
transcript.pyannote[1173].speaker SPEAKER_09
transcript.pyannote[1173].start 6778.00971875
transcript.pyannote[1173].end 6785.78909375
transcript.pyannote[1174].speaker SPEAKER_28
transcript.pyannote[1174].start 6785.78909375
transcript.pyannote[1174].end 6793.31534375
transcript.pyannote[1175].speaker SPEAKER_09
transcript.pyannote[1175].start 6786.48096875
transcript.pyannote[1175].end 6786.58221875
transcript.pyannote[1176].speaker SPEAKER_09
transcript.pyannote[1176].start 6792.79221875
transcript.pyannote[1176].end 6794.05784375
transcript.pyannote[1177].speaker SPEAKER_28
transcript.pyannote[1177].start 6793.87221875
transcript.pyannote[1177].end 6794.81721875
transcript.pyannote[1178].speaker SPEAKER_09
transcript.pyannote[1178].start 6794.26034375
transcript.pyannote[1178].end 6802.24221875
transcript.pyannote[1179].speaker SPEAKER_28
transcript.pyannote[1179].start 6796.20096875
transcript.pyannote[1179].end 6796.70721875
transcript.pyannote[1180].speaker SPEAKER_28
transcript.pyannote[1180].start 6797.07846875
transcript.pyannote[1180].end 6797.58471875
transcript.pyannote[1181].speaker SPEAKER_28
transcript.pyannote[1181].start 6802.24221875
transcript.pyannote[1181].end 6804.41909375
transcript.pyannote[1182].speaker SPEAKER_28
transcript.pyannote[1182].start 6805.11096875
transcript.pyannote[1182].end 6818.47596875
transcript.pyannote[1183].speaker SPEAKER_28
transcript.pyannote[1183].start 6819.06659375
transcript.pyannote[1183].end 6820.11284375
transcript.pyannote[1184].speaker SPEAKER_28
transcript.pyannote[1184].start 6820.38284375
transcript.pyannote[1184].end 6824.31471875
transcript.pyannote[1185].speaker SPEAKER_28
transcript.pyannote[1185].start 6824.65221875
transcript.pyannote[1185].end 6826.66034375
transcript.pyannote[1186].speaker SPEAKER_28
transcript.pyannote[1186].start 6827.55471875
transcript.pyannote[1186].end 6828.87096875
transcript.pyannote[1187].speaker SPEAKER_28
transcript.pyannote[1187].start 6828.97221875
transcript.pyannote[1187].end 6833.39346875
transcript.pyannote[1188].speaker SPEAKER_28
transcript.pyannote[1188].start 6833.95034375
transcript.pyannote[1188].end 6837.42659375
transcript.pyannote[1189].speaker SPEAKER_28
transcript.pyannote[1189].start 6837.94971875
transcript.pyannote[1189].end 6843.94034375
transcript.pyannote[1190].speaker SPEAKER_28
transcript.pyannote[1190].start 6844.05846875
transcript.pyannote[1190].end 6864.13971875
transcript.pyannote[1191].speaker SPEAKER_28
transcript.pyannote[1191].start 6864.27471875
transcript.pyannote[1191].end 6868.49346875
transcript.pyannote[1192].speaker SPEAKER_09
transcript.pyannote[1192].start 6865.08471875
transcript.pyannote[1192].end 6866.94096875
transcript.pyannote[1193].speaker SPEAKER_09
transcript.pyannote[1193].start 6867.51471875
transcript.pyannote[1193].end 6870.04596875
transcript.pyannote[1194].speaker SPEAKER_28
transcript.pyannote[1194].start 6869.03346875
transcript.pyannote[1194].end 6870.06284375
transcript.pyannote[1195].speaker SPEAKER_28
transcript.pyannote[1195].start 6870.29909375
transcript.pyannote[1195].end 6897.24846875
transcript.pyannote[1196].speaker SPEAKER_09
transcript.pyannote[1196].start 6878.21346875
transcript.pyannote[1196].end 6878.23034375
transcript.pyannote[1197].speaker SPEAKER_20
transcript.pyannote[1197].start 6878.23034375
transcript.pyannote[1197].end 6878.83784375
transcript.pyannote[1198].speaker SPEAKER_09
transcript.pyannote[1198].start 6878.83784375
transcript.pyannote[1198].end 6878.87159375
transcript.pyannote[1199].speaker SPEAKER_28
transcript.pyannote[1199].start 6897.95721875
transcript.pyannote[1199].end 6899.81346875
transcript.pyannote[1200].speaker SPEAKER_28
transcript.pyannote[1200].start 6900.79221875
transcript.pyannote[1200].end 6918.69659375
transcript.pyannote[1201].speaker SPEAKER_28
transcript.pyannote[1201].start 6919.00034375
transcript.pyannote[1201].end 6929.36159375
transcript.pyannote[1202].speaker SPEAKER_28
transcript.pyannote[1202].start 6929.93534375
transcript.pyannote[1202].end 6932.44971875
transcript.pyannote[1203].speaker SPEAKER_28
transcript.pyannote[1203].start 6933.22596875
transcript.pyannote[1203].end 6948.26159375
transcript.pyannote[1204].speaker SPEAKER_09
transcript.pyannote[1204].start 6948.39659375
transcript.pyannote[1204].end 6955.19721875
transcript.pyannote[1205].speaker SPEAKER_09
transcript.pyannote[1205].start 6955.77096875
transcript.pyannote[1205].end 6956.37846875
transcript.pyannote[1206].speaker SPEAKER_09
transcript.pyannote[1206].start 6956.61471875
transcript.pyannote[1206].end 6970.62096875
transcript.pyannote[1207].speaker SPEAKER_09
transcript.pyannote[1207].start 6971.04284375
transcript.pyannote[1207].end 6974.63721875
transcript.pyannote[1208].speaker SPEAKER_09
transcript.pyannote[1208].start 6974.92409375
transcript.pyannote[1208].end 6980.54346875
transcript.pyannote[1209].speaker SPEAKER_09
transcript.pyannote[1209].start 6980.89784375
transcript.pyannote[1209].end 6986.04471875
transcript.pyannote[1210].speaker SPEAKER_16
transcript.pyannote[1210].start 6986.36534375
transcript.pyannote[1210].end 6986.39909375
transcript.pyannote[1211].speaker SPEAKER_09
transcript.pyannote[1211].start 6986.39909375
transcript.pyannote[1211].end 6987.07409375
transcript.pyannote[1212].speaker SPEAKER_09
transcript.pyannote[1212].start 6987.52971875
transcript.pyannote[1212].end 7009.82159375
transcript.pyannote[1213].speaker SPEAKER_28
transcript.pyannote[1213].start 7010.04096875
transcript.pyannote[1213].end 7041.76596875
transcript.pyannote[1214].speaker SPEAKER_09
transcript.pyannote[1214].start 7013.97284375
transcript.pyannote[1214].end 7015.12034375
transcript.pyannote[1215].speaker SPEAKER_09
transcript.pyannote[1215].start 7016.63909375
transcript.pyannote[1215].end 7017.06096875
transcript.pyannote[1216].speaker SPEAKER_20
transcript.pyannote[1216].start 7017.06096875
transcript.pyannote[1216].end 7017.07784375
transcript.pyannote[1217].speaker SPEAKER_00
transcript.pyannote[1217].start 7017.07784375
transcript.pyannote[1217].end 7017.09471875
transcript.pyannote[1218].speaker SPEAKER_20
transcript.pyannote[1218].start 7018.39409375
transcript.pyannote[1218].end 7018.96784375
transcript.pyannote[1219].speaker SPEAKER_00
transcript.pyannote[1219].start 7018.96784375
transcript.pyannote[1219].end 7019.22096875
transcript.pyannote[1220].speaker SPEAKER_00
transcript.pyannote[1220].start 7036.26471875
transcript.pyannote[1220].end 7036.55159375
transcript.pyannote[1221].speaker SPEAKER_28
transcript.pyannote[1221].start 7041.93471875
transcript.pyannote[1221].end 7057.42596875
transcript.pyannote[1222].speaker SPEAKER_09
transcript.pyannote[1222].start 7058.32034375
transcript.pyannote[1222].end 7062.85971875
transcript.pyannote[1223].speaker SPEAKER_09
transcript.pyannote[1223].start 7063.14659375
transcript.pyannote[1223].end 7066.52159375
transcript.pyannote[1224].speaker SPEAKER_20
transcript.pyannote[1224].start 7066.52159375
transcript.pyannote[1224].end 7066.92659375
transcript.pyannote[1225].speaker SPEAKER_09
transcript.pyannote[1225].start 7066.70721875
transcript.pyannote[1225].end 7089.48846875
transcript.pyannote[1226].speaker SPEAKER_00
transcript.pyannote[1226].start 7080.22409375
transcript.pyannote[1226].end 7080.25784375
transcript.pyannote[1227].speaker SPEAKER_20
transcript.pyannote[1227].start 7080.25784375
transcript.pyannote[1227].end 7080.40971875
transcript.pyannote[1228].speaker SPEAKER_00
transcript.pyannote[1228].start 7080.40971875
transcript.pyannote[1228].end 7080.62909375
transcript.pyannote[1229].speaker SPEAKER_09
transcript.pyannote[1229].start 7089.79221875
transcript.pyannote[1229].end 7097.58846875
transcript.pyannote[1230].speaker SPEAKER_28
transcript.pyannote[1230].start 7097.47034375
transcript.pyannote[1230].end 7112.59034375
transcript.pyannote[1231].speaker SPEAKER_09
transcript.pyannote[1231].start 7103.74784375
transcript.pyannote[1231].end 7104.96284375
transcript.pyannote[1232].speaker SPEAKER_20
transcript.pyannote[1232].start 7104.96284375
transcript.pyannote[1232].end 7105.57034375
transcript.pyannote[1233].speaker SPEAKER_13
transcript.pyannote[1233].start 7105.57034375
transcript.pyannote[1233].end 7105.63784375
transcript.pyannote[1234].speaker SPEAKER_19
transcript.pyannote[1234].start 7109.56971875
transcript.pyannote[1234].end 7112.86034375
transcript.pyannote[1235].speaker SPEAKER_19
transcript.pyannote[1235].start 7113.26534375
transcript.pyannote[1235].end 7115.29034375
transcript.pyannote[1236].speaker SPEAKER_19
transcript.pyannote[1236].start 7116.94409375
transcript.pyannote[1236].end 7119.03659375
transcript.pyannote[1237].speaker SPEAKER_05
transcript.pyannote[1237].start 7128.75659375
transcript.pyannote[1237].end 7131.60846875
transcript.pyannote[1238].speaker SPEAKER_05
transcript.pyannote[1238].start 7131.81096875
transcript.pyannote[1238].end 7132.70534375
transcript.pyannote[1239].speaker SPEAKER_05
transcript.pyannote[1239].start 7135.82721875
transcript.pyannote[1239].end 7204.05284375
transcript.pyannote[1240].speaker SPEAKER_00
transcript.pyannote[1240].start 7149.04034375
transcript.pyannote[1240].end 7149.83346875
transcript.pyannote[1241].speaker SPEAKER_20
transcript.pyannote[1241].start 7196.44221875
transcript.pyannote[1241].end 7196.61096875
transcript.pyannote[1242].speaker SPEAKER_05
transcript.pyannote[1242].start 7204.25534375
transcript.pyannote[1242].end 7235.77784375
transcript.pyannote[1243].speaker SPEAKER_05
transcript.pyannote[1243].start 7236.43596875
transcript.pyannote[1243].end 7245.54846875
transcript.pyannote[1244].speaker SPEAKER_05
transcript.pyannote[1244].start 7246.10534375
transcript.pyannote[1244].end 7263.53721875
transcript.pyannote[1245].speaker SPEAKER_16
transcript.pyannote[1245].start 7257.81659375
transcript.pyannote[1245].end 7258.30596875
transcript.pyannote[1246].speaker SPEAKER_05
transcript.pyannote[1246].start 7263.65534375
transcript.pyannote[1246].end 7354.96596875
transcript.pyannote[1247].speaker SPEAKER_05
transcript.pyannote[1247].start 7355.50596875
transcript.pyannote[1247].end 7364.16284375
transcript.pyannote[1248].speaker SPEAKER_09
transcript.pyannote[1248].start 7365.41159375
transcript.pyannote[1248].end 7367.38596875
transcript.pyannote[1249].speaker SPEAKER_09
transcript.pyannote[1249].start 7367.65596875
transcript.pyannote[1249].end 7369.57971875
transcript.pyannote[1250].speaker SPEAKER_09
transcript.pyannote[1250].start 7369.83284375
transcript.pyannote[1250].end 7374.03471875
transcript.pyannote[1251].speaker SPEAKER_05
transcript.pyannote[1251].start 7374.03471875
transcript.pyannote[1251].end 7377.40971875
transcript.pyannote[1252].speaker SPEAKER_05
transcript.pyannote[1252].start 7377.93284375
transcript.pyannote[1252].end 7384.24409375
transcript.pyannote[1253].speaker SPEAKER_31
transcript.pyannote[1253].start 7384.66596875
transcript.pyannote[1253].end 7384.76721875
transcript.pyannote[1254].speaker SPEAKER_09
transcript.pyannote[1254].start 7384.96971875
transcript.pyannote[1254].end 7385.03721875
transcript.pyannote[1255].speaker SPEAKER_09
transcript.pyannote[1255].start 7385.77971875
transcript.pyannote[1255].end 7386.10034375
transcript.pyannote[1256].speaker SPEAKER_09
transcript.pyannote[1256].start 7386.30284375
transcript.pyannote[1256].end 7390.75784375
transcript.pyannote[1257].speaker SPEAKER_09
transcript.pyannote[1257].start 7391.21346875
transcript.pyannote[1257].end 7396.57971875
transcript.pyannote[1258].speaker SPEAKER_05
transcript.pyannote[1258].start 7392.51284375
transcript.pyannote[1258].end 7393.30596875
transcript.pyannote[1259].speaker SPEAKER_05
transcript.pyannote[1259].start 7395.60096875
transcript.pyannote[1259].end 7420.44096875
transcript.pyannote[1260].speaker SPEAKER_00
transcript.pyannote[1260].start 7410.50159375
transcript.pyannote[1260].end 7412.32409375
transcript.pyannote[1261].speaker SPEAKER_05
transcript.pyannote[1261].start 7421.60534375
transcript.pyannote[1261].end 7424.03534375
transcript.pyannote[1262].speaker SPEAKER_05
transcript.pyannote[1262].start 7425.09846875
transcript.pyannote[1262].end 7426.21221875
transcript.pyannote[1263].speaker SPEAKER_05
transcript.pyannote[1263].start 7427.27534375
transcript.pyannote[1263].end 7450.09034375
transcript.pyannote[1264].speaker SPEAKER_09
transcript.pyannote[1264].start 7450.37721875
transcript.pyannote[1264].end 7455.18659375
transcript.pyannote[1265].speaker SPEAKER_05
transcript.pyannote[1265].start 7453.71846875
transcript.pyannote[1265].end 7496.78346875
transcript.pyannote[1266].speaker SPEAKER_09
transcript.pyannote[1266].start 7490.79284375
transcript.pyannote[1266].end 7493.03721875
transcript.pyannote[1267].speaker SPEAKER_20
transcript.pyannote[1267].start 7493.03721875
transcript.pyannote[1267].end 7493.18909375
transcript.pyannote[1268].speaker SPEAKER_05
transcript.pyannote[1268].start 7497.23909375
transcript.pyannote[1268].end 7499.97284375
transcript.pyannote[1269].speaker SPEAKER_09
transcript.pyannote[1269].start 7499.97284375
transcript.pyannote[1269].end 7503.48284375
transcript.pyannote[1270].speaker SPEAKER_20
transcript.pyannote[1270].start 7500.44534375
transcript.pyannote[1270].end 7500.46221875
transcript.pyannote[1271].speaker SPEAKER_05
transcript.pyannote[1271].start 7500.46221875
transcript.pyannote[1271].end 7500.52971875
transcript.pyannote[1272].speaker SPEAKER_20
transcript.pyannote[1272].start 7500.52971875
transcript.pyannote[1272].end 7500.58034375
transcript.pyannote[1273].speaker SPEAKER_05
transcript.pyannote[1273].start 7500.58034375
transcript.pyannote[1273].end 7500.63096875
transcript.pyannote[1274].speaker SPEAKER_20
transcript.pyannote[1274].start 7500.63096875
transcript.pyannote[1274].end 7500.78284375
transcript.pyannote[1275].speaker SPEAKER_05
transcript.pyannote[1275].start 7500.78284375
transcript.pyannote[1275].end 7500.96846875
transcript.pyannote[1276].speaker SPEAKER_20
transcript.pyannote[1276].start 7500.96846875
transcript.pyannote[1276].end 7501.37346875
transcript.pyannote[1277].speaker SPEAKER_19
transcript.pyannote[1277].start 7501.37346875
transcript.pyannote[1277].end 7501.42409375
transcript.pyannote[1278].speaker SPEAKER_20
transcript.pyannote[1278].start 7501.42409375
transcript.pyannote[1278].end 7501.74471875
transcript.pyannote[1279].speaker SPEAKER_19
transcript.pyannote[1279].start 7501.74471875
transcript.pyannote[1279].end 7501.84596875
transcript.pyannote[1280].speaker SPEAKER_19
transcript.pyannote[1280].start 7504.14096875
transcript.pyannote[1280].end 7512.88221875
transcript.pyannote[1281].speaker SPEAKER_19
transcript.pyannote[1281].start 8153.84534375
transcript.pyannote[1281].end 8154.04784375
transcript.pyannote[1282].speaker SPEAKER_19
transcript.pyannote[1282].start 8154.68909375
transcript.pyannote[1282].end 8155.58346875
transcript.pyannote[1283].speaker SPEAKER_19
transcript.pyannote[1283].start 8156.39346875
transcript.pyannote[1283].end 8158.72221875
transcript.pyannote[1284].speaker SPEAKER_23
transcript.pyannote[1284].start 8162.51909375
transcript.pyannote[1284].end 8162.73846875
transcript.pyannote[1285].speaker SPEAKER_25
transcript.pyannote[1285].start 8168.00346875
transcript.pyannote[1285].end 8169.47159375
transcript.pyannote[1286].speaker SPEAKER_19
transcript.pyannote[1286].start 8169.77534375
transcript.pyannote[1286].end 8170.55159375
transcript.pyannote[1287].speaker SPEAKER_25
transcript.pyannote[1287].start 8174.46659375
transcript.pyannote[1287].end 8176.69409375
transcript.pyannote[1288].speaker SPEAKER_25
transcript.pyannote[1288].start 8177.26784375
transcript.pyannote[1288].end 8184.13596875
transcript.pyannote[1289].speaker SPEAKER_20
transcript.pyannote[1289].start 8184.13596875
transcript.pyannote[1289].end 8184.35534375
transcript.pyannote[1290].speaker SPEAKER_25
transcript.pyannote[1290].start 8184.35534375
transcript.pyannote[1290].end 8189.89034375
transcript.pyannote[1291].speaker SPEAKER_20
transcript.pyannote[1291].start 8184.42284375
transcript.pyannote[1291].end 8184.43971875
transcript.pyannote[1292].speaker SPEAKER_25
transcript.pyannote[1292].start 8190.09284375
transcript.pyannote[1292].end 8191.71284375
transcript.pyannote[1293].speaker SPEAKER_09
transcript.pyannote[1293].start 8191.07159375
transcript.pyannote[1293].end 8191.56096875
transcript.pyannote[1294].speaker SPEAKER_09
transcript.pyannote[1294].start 8191.99971875
transcript.pyannote[1294].end 8194.32846875
transcript.pyannote[1295].speaker SPEAKER_25
transcript.pyannote[1295].start 8194.31159375
transcript.pyannote[1295].end 8194.66596875
transcript.pyannote[1296].speaker SPEAKER_09
transcript.pyannote[1296].start 8194.66596875
transcript.pyannote[1296].end 8196.08346875
transcript.pyannote[1297].speaker SPEAKER_25
transcript.pyannote[1297].start 8195.74596875
transcript.pyannote[1297].end 8197.23096875
transcript.pyannote[1298].speaker SPEAKER_09
transcript.pyannote[1298].start 8197.41659375
transcript.pyannote[1298].end 8198.44596875
transcript.pyannote[1299].speaker SPEAKER_25
transcript.pyannote[1299].start 8197.85534375
transcript.pyannote[1299].end 8204.36909375
transcript.pyannote[1300].speaker SPEAKER_25
transcript.pyannote[1300].start 8204.99346875
transcript.pyannote[1300].end 8206.90034375
transcript.pyannote[1301].speaker SPEAKER_25
transcript.pyannote[1301].start 8207.62596875
transcript.pyannote[1301].end 8208.09846875
transcript.pyannote[1302].speaker SPEAKER_09
transcript.pyannote[1302].start 8208.52034375
transcript.pyannote[1302].end 8209.87034375
transcript.pyannote[1303].speaker SPEAKER_09
transcript.pyannote[1303].start 8210.42721875
transcript.pyannote[1303].end 8211.28784375
transcript.pyannote[1304].speaker SPEAKER_25
transcript.pyannote[1304].start 8210.91659375
transcript.pyannote[1304].end 8213.24534375
transcript.pyannote[1305].speaker SPEAKER_25
transcript.pyannote[1305].start 8215.33784375
transcript.pyannote[1305].end 8217.88596875
transcript.pyannote[1306].speaker SPEAKER_20
transcript.pyannote[1306].start 8217.97034375
transcript.pyannote[1306].end 8218.27409375
transcript.pyannote[1307].speaker SPEAKER_25
transcript.pyannote[1307].start 8218.27409375
transcript.pyannote[1307].end 8218.84784375
transcript.pyannote[1308].speaker SPEAKER_25
transcript.pyannote[1308].start 8219.05034375
transcript.pyannote[1308].end 8220.82221875
transcript.pyannote[1309].speaker SPEAKER_25
transcript.pyannote[1309].start 8221.09221875
transcript.pyannote[1309].end 8227.43721875
transcript.pyannote[1310].speaker SPEAKER_25
transcript.pyannote[1310].start 8227.65659375
transcript.pyannote[1310].end 8235.11534375
transcript.pyannote[1311].speaker SPEAKER_09
transcript.pyannote[1311].start 8234.52471875
transcript.pyannote[1311].end 8236.80284375
transcript.pyannote[1312].speaker SPEAKER_25
transcript.pyannote[1312].start 8235.87471875
transcript.pyannote[1312].end 8245.52721875
transcript.pyannote[1313].speaker SPEAKER_09
transcript.pyannote[1313].start 8245.93221875
transcript.pyannote[1313].end 8261.40659375
transcript.pyannote[1314].speaker SPEAKER_25
transcript.pyannote[1314].start 8251.77096875
transcript.pyannote[1314].end 8251.87221875
transcript.pyannote[1315].speaker SPEAKER_20
transcript.pyannote[1315].start 8251.87221875
transcript.pyannote[1315].end 8251.88909375
transcript.pyannote[1316].speaker SPEAKER_25
transcript.pyannote[1316].start 8251.88909375
transcript.pyannote[1316].end 8251.92284375
transcript.pyannote[1317].speaker SPEAKER_20
transcript.pyannote[1317].start 8251.92284375
transcript.pyannote[1317].end 8252.17596875
transcript.pyannote[1318].speaker SPEAKER_25
transcript.pyannote[1318].start 8259.21284375
transcript.pyannote[1318].end 8264.34284375
transcript.pyannote[1319].speaker SPEAKER_09
transcript.pyannote[1319].start 8264.95034375
transcript.pyannote[1319].end 8267.46471875
transcript.pyannote[1320].speaker SPEAKER_25
transcript.pyannote[1320].start 8265.49034375
transcript.pyannote[1320].end 8267.11034375
transcript.pyannote[1321].speaker SPEAKER_09
transcript.pyannote[1321].start 8267.56596875
transcript.pyannote[1321].end 8273.10096875
transcript.pyannote[1322].speaker SPEAKER_25
transcript.pyannote[1322].start 8272.78034375
transcript.pyannote[1322].end 8276.42534375
transcript.pyannote[1323].speaker SPEAKER_09
transcript.pyannote[1323].start 8273.45534375
transcript.pyannote[1323].end 8273.55659375
transcript.pyannote[1324].speaker SPEAKER_25
transcript.pyannote[1324].start 8277.42096875
transcript.pyannote[1324].end 8282.78721875
transcript.pyannote[1325].speaker SPEAKER_09
transcript.pyannote[1325].start 8282.16284375
transcript.pyannote[1325].end 8285.18346875
transcript.pyannote[1326].speaker SPEAKER_25
transcript.pyannote[1326].start 8285.14971875
transcript.pyannote[1326].end 8285.60534375
transcript.pyannote[1327].speaker SPEAKER_25
transcript.pyannote[1327].start 8285.79096875
transcript.pyannote[1327].end 8285.82471875
transcript.pyannote[1328].speaker SPEAKER_09
transcript.pyannote[1328].start 8285.82471875
transcript.pyannote[1328].end 8286.11159375
transcript.pyannote[1329].speaker SPEAKER_25
transcript.pyannote[1329].start 8286.09471875
transcript.pyannote[1329].end 8287.61346875
transcript.pyannote[1330].speaker SPEAKER_09
transcript.pyannote[1330].start 8287.61346875
transcript.pyannote[1330].end 8294.14409375
transcript.pyannote[1331].speaker SPEAKER_25
transcript.pyannote[1331].start 8291.46096875
transcript.pyannote[1331].end 8291.93346875
transcript.pyannote[1332].speaker SPEAKER_25
transcript.pyannote[1332].start 8292.57471875
transcript.pyannote[1332].end 8293.82346875
transcript.pyannote[1333].speaker SPEAKER_25
transcript.pyannote[1333].start 8294.14409375
transcript.pyannote[1333].end 8294.61659375
transcript.pyannote[1334].speaker SPEAKER_09
transcript.pyannote[1334].start 8294.16096875
transcript.pyannote[1334].end 8294.21159375
transcript.pyannote[1335].speaker SPEAKER_25
transcript.pyannote[1335].start 8294.97096875
transcript.pyannote[1335].end 8314.02284375
transcript.pyannote[1336].speaker SPEAKER_00
transcript.pyannote[1336].start 8304.53909375
transcript.pyannote[1336].end 8304.72471875
transcript.pyannote[1337].speaker SPEAKER_25
transcript.pyannote[1337].start 8314.34346875
transcript.pyannote[1337].end 8318.96721875
transcript.pyannote[1338].speaker SPEAKER_25
transcript.pyannote[1338].start 8319.28784375
transcript.pyannote[1338].end 8320.84034375
transcript.pyannote[1339].speaker SPEAKER_20
transcript.pyannote[1339].start 8319.37221875
transcript.pyannote[1339].end 8319.77721875
transcript.pyannote[1340].speaker SPEAKER_20
transcript.pyannote[1340].start 8320.70534375
transcript.pyannote[1340].end 8321.12721875
transcript.pyannote[1341].speaker SPEAKER_25
transcript.pyannote[1341].start 8321.05971875
transcript.pyannote[1341].end 8329.66596875
transcript.pyannote[1342].speaker SPEAKER_20
transcript.pyannote[1342].start 8329.37909375
transcript.pyannote[1342].end 8330.27346875
transcript.pyannote[1343].speaker SPEAKER_09
transcript.pyannote[1343].start 8330.27346875
transcript.pyannote[1343].end 8330.88096875
transcript.pyannote[1344].speaker SPEAKER_25
transcript.pyannote[1344].start 8330.27346875
transcript.pyannote[1344].end 8332.02846875
transcript.pyannote[1345].speaker SPEAKER_20
transcript.pyannote[1345].start 8330.88096875
transcript.pyannote[1345].end 8331.04971875
transcript.pyannote[1346].speaker SPEAKER_09
transcript.pyannote[1346].start 8331.04971875
transcript.pyannote[1346].end 8331.08346875
transcript.pyannote[1347].speaker SPEAKER_20
transcript.pyannote[1347].start 8331.08346875
transcript.pyannote[1347].end 8331.13409375
transcript.pyannote[1348].speaker SPEAKER_20
transcript.pyannote[1348].start 8332.02846875
transcript.pyannote[1348].end 8332.06221875
transcript.pyannote[1349].speaker SPEAKER_25
transcript.pyannote[1349].start 8332.06221875
transcript.pyannote[1349].end 8332.16346875
transcript.pyannote[1350].speaker SPEAKER_25
transcript.pyannote[1350].start 8332.26471875
transcript.pyannote[1350].end 8340.73596875
transcript.pyannote[1351].speaker SPEAKER_25
transcript.pyannote[1351].start 8340.82034375
transcript.pyannote[1351].end 8344.70159375
transcript.pyannote[1352].speaker SPEAKER_09
transcript.pyannote[1352].start 8344.51596875
transcript.pyannote[1352].end 8350.37159375
transcript.pyannote[1353].speaker SPEAKER_25
transcript.pyannote[1353].start 8347.77284375
transcript.pyannote[1353].end 8348.17784375
transcript.pyannote[1354].speaker SPEAKER_25
transcript.pyannote[1354].start 8348.66721875
transcript.pyannote[1354].end 8351.14784375
transcript.pyannote[1355].speaker SPEAKER_09
transcript.pyannote[1355].start 8351.53596875
transcript.pyannote[1355].end 8351.99159375
transcript.pyannote[1356].speaker SPEAKER_09
transcript.pyannote[1356].start 8352.58221875
transcript.pyannote[1356].end 8361.44159375
transcript.pyannote[1357].speaker SPEAKER_25
transcript.pyannote[1357].start 8354.82659375
transcript.pyannote[1357].end 8355.21471875
transcript.pyannote[1358].speaker SPEAKER_25
transcript.pyannote[1358].start 8358.89346875
transcript.pyannote[1358].end 8360.02409375
transcript.pyannote[1359].speaker SPEAKER_25
transcript.pyannote[1359].start 8360.78346875
transcript.pyannote[1359].end 8364.61409375
transcript.pyannote[1360].speaker SPEAKER_25
transcript.pyannote[1360].start 8365.35659375
transcript.pyannote[1360].end 8366.43659375
transcript.pyannote[1361].speaker SPEAKER_09
transcript.pyannote[1361].start 8366.62221875
transcript.pyannote[1361].end 8367.80346875
transcript.pyannote[1362].speaker SPEAKER_25
transcript.pyannote[1362].start 8367.95534375
transcript.pyannote[1362].end 8376.00471875
transcript.pyannote[1363].speaker SPEAKER_25
transcript.pyannote[1363].start 8376.44346875
transcript.pyannote[1363].end 8383.39596875
transcript.pyannote[1364].speaker SPEAKER_25
transcript.pyannote[1364].start 8383.68284375
transcript.pyannote[1364].end 8384.77971875
transcript.pyannote[1365].speaker SPEAKER_25
transcript.pyannote[1365].start 8385.10034375
transcript.pyannote[1365].end 8394.58409375
transcript.pyannote[1366].speaker SPEAKER_25
transcript.pyannote[1366].start 8394.78659375
transcript.pyannote[1366].end 8394.80346875
transcript.pyannote[1367].speaker SPEAKER_09
transcript.pyannote[1367].start 8394.80346875
transcript.pyannote[1367].end 8395.27596875
transcript.pyannote[1368].speaker SPEAKER_25
transcript.pyannote[1368].start 8395.10721875
transcript.pyannote[1368].end 8397.95909375
transcript.pyannote[1369].speaker SPEAKER_09
transcript.pyannote[1369].start 8398.16159375
transcript.pyannote[1369].end 8399.84909375
transcript.pyannote[1370].speaker SPEAKER_25
transcript.pyannote[1370].start 8399.84909375
transcript.pyannote[1370].end 8400.45659375
transcript.pyannote[1371].speaker SPEAKER_25
transcript.pyannote[1371].start 8400.77721875
transcript.pyannote[1371].end 8406.95346875
transcript.pyannote[1372].speaker SPEAKER_09
transcript.pyannote[1372].start 8400.86159375
transcript.pyannote[1372].end 8401.36784375
transcript.pyannote[1373].speaker SPEAKER_09
transcript.pyannote[1373].start 8407.03784375
transcript.pyannote[1373].end 8408.26971875
transcript.pyannote[1374].speaker SPEAKER_25
transcript.pyannote[1374].start 8407.74659375
transcript.pyannote[1374].end 8418.74909375
transcript.pyannote[1375].speaker SPEAKER_09
transcript.pyannote[1375].start 8419.08659375
transcript.pyannote[1375].end 8432.08034375
transcript.pyannote[1376].speaker SPEAKER_25
transcript.pyannote[1376].start 8422.86659375
transcript.pyannote[1376].end 8423.28846875
transcript.pyannote[1377].speaker SPEAKER_20
transcript.pyannote[1377].start 8423.28846875
transcript.pyannote[1377].end 8423.30534375
transcript.pyannote[1378].speaker SPEAKER_25
transcript.pyannote[1378].start 8424.26721875
transcript.pyannote[1378].end 8424.72284375
transcript.pyannote[1379].speaker SPEAKER_20
transcript.pyannote[1379].start 8429.14409375
transcript.pyannote[1379].end 8429.56596875
transcript.pyannote[1380].speaker SPEAKER_09
transcript.pyannote[1380].start 8432.40096875
transcript.pyannote[1380].end 8435.74221875
transcript.pyannote[1381].speaker SPEAKER_09
transcript.pyannote[1381].start 8435.96159375
transcript.pyannote[1381].end 8440.16346875
transcript.pyannote[1382].speaker SPEAKER_20
transcript.pyannote[1382].start 8437.29471875
transcript.pyannote[1382].end 8437.90221875
transcript.pyannote[1383].speaker SPEAKER_09
transcript.pyannote[1383].start 8440.45034375
transcript.pyannote[1383].end 8459.01284375
transcript.pyannote[1384].speaker SPEAKER_20
transcript.pyannote[1384].start 8444.04471875
transcript.pyannote[1384].end 8444.48346875
transcript.pyannote[1385].speaker SPEAKER_25
transcript.pyannote[1385].start 8458.13534375
transcript.pyannote[1385].end 8470.11659375
transcript.pyannote[1386].speaker SPEAKER_25
transcript.pyannote[1386].start 8470.69034375
transcript.pyannote[1386].end 8472.02346875
transcript.pyannote[1387].speaker SPEAKER_20
transcript.pyannote[1387].start 8471.95596875
transcript.pyannote[1387].end 8472.31034375
transcript.pyannote[1388].speaker SPEAKER_25
transcript.pyannote[1388].start 8472.10784375
transcript.pyannote[1388].end 8487.39659375
transcript.pyannote[1389].speaker SPEAKER_09
transcript.pyannote[1389].start 8485.08471875
transcript.pyannote[1389].end 8485.64159375
transcript.pyannote[1390].speaker SPEAKER_09
transcript.pyannote[1390].start 8488.32471875
transcript.pyannote[1390].end 8503.95096875
transcript.pyannote[1391].speaker SPEAKER_25
transcript.pyannote[1391].start 8492.27346875
transcript.pyannote[1391].end 8492.66159375
transcript.pyannote[1392].speaker SPEAKER_00
transcript.pyannote[1392].start 8492.66159375
transcript.pyannote[1392].end 8492.67846875
transcript.pyannote[1393].speaker SPEAKER_25
transcript.pyannote[1393].start 8503.66409375
transcript.pyannote[1393].end 8506.65096875
transcript.pyannote[1394].speaker SPEAKER_09
transcript.pyannote[1394].start 8506.04346875
transcript.pyannote[1394].end 8507.34284375
transcript.pyannote[1395].speaker SPEAKER_25
transcript.pyannote[1395].start 8507.19096875
transcript.pyannote[1395].end 8508.32159375
transcript.pyannote[1396].speaker SPEAKER_09
transcript.pyannote[1396].start 8507.95034375
transcript.pyannote[1396].end 8513.60346875
transcript.pyannote[1397].speaker SPEAKER_25
transcript.pyannote[1397].start 8509.18221875
transcript.pyannote[1397].end 8509.45221875
transcript.pyannote[1398].speaker SPEAKER_25
transcript.pyannote[1398].start 8513.45159375
transcript.pyannote[1398].end 8513.97471875
transcript.pyannote[1399].speaker SPEAKER_09
transcript.pyannote[1399].start 8513.83971875
transcript.pyannote[1399].end 8516.03346875
transcript.pyannote[1400].speaker SPEAKER_25
transcript.pyannote[1400].start 8515.78034375
transcript.pyannote[1400].end 8526.98534375
transcript.pyannote[1401].speaker SPEAKER_20
transcript.pyannote[1401].start 8526.98534375
transcript.pyannote[1401].end 8527.44096875
transcript.pyannote[1402].speaker SPEAKER_25
transcript.pyannote[1402].start 8527.35659375
transcript.pyannote[1402].end 8533.29659375
transcript.pyannote[1403].speaker SPEAKER_25
transcript.pyannote[1403].start 8533.48221875
transcript.pyannote[1403].end 8540.45159375
transcript.pyannote[1404].speaker SPEAKER_25
transcript.pyannote[1404].start 8540.89034375
transcript.pyannote[1404].end 8545.66596875
transcript.pyannote[1405].speaker SPEAKER_25
transcript.pyannote[1405].start 8546.00346875
transcript.pyannote[1405].end 8546.89784375
transcript.pyannote[1406].speaker SPEAKER_25
transcript.pyannote[1406].start 8547.72471875
transcript.pyannote[1406].end 8548.06221875
transcript.pyannote[1407].speaker SPEAKER_25
transcript.pyannote[1407].start 8548.66971875
transcript.pyannote[1407].end 8563.63784375
transcript.pyannote[1408].speaker SPEAKER_25
transcript.pyannote[1408].start 8564.51534375
transcript.pyannote[1408].end 8565.62909375
transcript.pyannote[1409].speaker SPEAKER_25
transcript.pyannote[1409].start 8565.89909375
transcript.pyannote[1409].end 8565.91596875
transcript.pyannote[1410].speaker SPEAKER_09
transcript.pyannote[1410].start 8565.91596875
transcript.pyannote[1410].end 8570.60721875
transcript.pyannote[1411].speaker SPEAKER_25
transcript.pyannote[1411].start 8565.93284375
transcript.pyannote[1411].end 8566.48971875
transcript.pyannote[1412].speaker SPEAKER_25
transcript.pyannote[1412].start 8569.61159375
transcript.pyannote[1412].end 8577.05346875
transcript.pyannote[1413].speaker SPEAKER_09
transcript.pyannote[1413].start 8572.91909375
transcript.pyannote[1413].end 8573.18909375
transcript.pyannote[1414].speaker SPEAKER_19
transcript.pyannote[1414].start 8579.01096875
transcript.pyannote[1414].end 8583.01034375
transcript.pyannote[1415].speaker SPEAKER_18
transcript.pyannote[1415].start 8590.45221875
transcript.pyannote[1415].end 8591.70096875
transcript.pyannote[1416].speaker SPEAKER_18
transcript.pyannote[1416].start 8592.02159375
transcript.pyannote[1416].end 8593.86096875
transcript.pyannote[1417].speaker SPEAKER_14
transcript.pyannote[1417].start 8597.03346875
transcript.pyannote[1417].end 8599.27784375
transcript.pyannote[1418].speaker SPEAKER_14
transcript.pyannote[1418].start 8600.08784375
transcript.pyannote[1418].end 8608.33971875
transcript.pyannote[1419].speaker SPEAKER_14
transcript.pyannote[1419].start 8608.79534375
transcript.pyannote[1419].end 8614.06034375
transcript.pyannote[1420].speaker SPEAKER_20
transcript.pyannote[1420].start 8614.24596875
transcript.pyannote[1420].end 8614.70159375
transcript.pyannote[1421].speaker SPEAKER_14
transcript.pyannote[1421].start 8614.46534375
transcript.pyannote[1421].end 8623.96596875
transcript.pyannote[1422].speaker SPEAKER_20
transcript.pyannote[1422].start 8615.20784375
transcript.pyannote[1422].end 8615.68034375
transcript.pyannote[1423].speaker SPEAKER_14
transcript.pyannote[1423].start 8624.40471875
transcript.pyannote[1423].end 8660.24721875
transcript.pyannote[1424].speaker SPEAKER_09
transcript.pyannote[1424].start 8660.70284375
transcript.pyannote[1424].end 8662.03596875
transcript.pyannote[1425].speaker SPEAKER_09
transcript.pyannote[1425].start 8662.22159375
transcript.pyannote[1425].end 8671.57034375
transcript.pyannote[1426].speaker SPEAKER_09
transcript.pyannote[1426].start 8671.82346875
transcript.pyannote[1426].end 8731.49346875
transcript.pyannote[1427].speaker SPEAKER_00
transcript.pyannote[1427].start 8682.03284375
transcript.pyannote[1427].end 8682.48846875
transcript.pyannote[1428].speaker SPEAKER_00
transcript.pyannote[1428].start 8689.12034375
transcript.pyannote[1428].end 8689.62659375
transcript.pyannote[1429].speaker SPEAKER_00
transcript.pyannote[1429].start 8698.65471875
transcript.pyannote[1429].end 8698.67159375
transcript.pyannote[1430].speaker SPEAKER_20
transcript.pyannote[1430].start 8698.67159375
transcript.pyannote[1430].end 8699.07659375
transcript.pyannote[1431].speaker SPEAKER_00
transcript.pyannote[1431].start 8699.07659375
transcript.pyannote[1431].end 8699.14409375
transcript.pyannote[1432].speaker SPEAKER_00
transcript.pyannote[1432].start 8699.97096875
transcript.pyannote[1432].end 8701.79346875
transcript.pyannote[1433].speaker SPEAKER_00
transcript.pyannote[1433].start 8703.51471875
transcript.pyannote[1433].end 8703.71721875
transcript.pyannote[1434].speaker SPEAKER_20
transcript.pyannote[1434].start 8703.71721875
transcript.pyannote[1434].end 8703.90284375
transcript.pyannote[1435].speaker SPEAKER_00
transcript.pyannote[1435].start 8703.90284375
transcript.pyannote[1435].end 8703.98721875
transcript.pyannote[1436].speaker SPEAKER_14
transcript.pyannote[1436].start 8726.68409375
transcript.pyannote[1436].end 8727.10596875
transcript.pyannote[1437].speaker SPEAKER_14
transcript.pyannote[1437].start 8727.91596875
transcript.pyannote[1437].end 8728.38846875
transcript.pyannote[1438].speaker SPEAKER_09
transcript.pyannote[1438].start 8731.66221875
transcript.pyannote[1438].end 8733.90659375
transcript.pyannote[1439].speaker SPEAKER_14
transcript.pyannote[1439].start 8733.11346875
transcript.pyannote[1439].end 8779.16534375
transcript.pyannote[1440].speaker SPEAKER_09
transcript.pyannote[1440].start 8739.84659375
transcript.pyannote[1440].end 8740.15034375
transcript.pyannote[1441].speaker SPEAKER_00
transcript.pyannote[1441].start 8740.15034375
transcript.pyannote[1441].end 8740.21784375
transcript.pyannote[1442].speaker SPEAKER_20
transcript.pyannote[1442].start 8779.16534375
transcript.pyannote[1442].end 8779.55346875
transcript.pyannote[1443].speaker SPEAKER_14
transcript.pyannote[1443].start 8779.41846875
transcript.pyannote[1443].end 8837.50221875
transcript.pyannote[1444].speaker SPEAKER_20
transcript.pyannote[1444].start 8837.50221875
transcript.pyannote[1444].end 8838.04221875
transcript.pyannote[1445].speaker SPEAKER_14
transcript.pyannote[1445].start 8838.22784375
transcript.pyannote[1445].end 8843.23971875
transcript.pyannote[1446].speaker SPEAKER_14
transcript.pyannote[1446].start 8843.35784375
transcript.pyannote[1446].end 8850.09096875
transcript.pyannote[1447].speaker SPEAKER_14
transcript.pyannote[1447].start 8850.54659375
transcript.pyannote[1447].end 8858.96721875
transcript.pyannote[1448].speaker SPEAKER_14
transcript.pyannote[1448].start 8859.08534375
transcript.pyannote[1448].end 8905.84596875
transcript.pyannote[1449].speaker SPEAKER_09
transcript.pyannote[1449].start 8905.84596875
transcript.pyannote[1449].end 8921.08409375
transcript.pyannote[1450].speaker SPEAKER_16
transcript.pyannote[1450].start 8913.37221875
transcript.pyannote[1450].end 8913.91221875
transcript.pyannote[1451].speaker SPEAKER_14
transcript.pyannote[1451].start 8913.91221875
transcript.pyannote[1451].end 8913.92909375
transcript.pyannote[1452].speaker SPEAKER_00
transcript.pyannote[1452].start 8916.24096875
transcript.pyannote[1452].end 8916.35909375
transcript.pyannote[1453].speaker SPEAKER_16
transcript.pyannote[1453].start 8918.36721875
transcript.pyannote[1453].end 8918.78909375
transcript.pyannote[1454].speaker SPEAKER_00
transcript.pyannote[1454].start 8918.78909375
transcript.pyannote[1454].end 8918.82284375
transcript.pyannote[1455].speaker SPEAKER_09
transcript.pyannote[1455].start 8921.67471875
transcript.pyannote[1455].end 8927.39534375
transcript.pyannote[1456].speaker SPEAKER_14
transcript.pyannote[1456].start 8924.25659375
transcript.pyannote[1456].end 8924.77971875
transcript.pyannote[1457].speaker SPEAKER_14
transcript.pyannote[1457].start 8925.42096875
transcript.pyannote[1457].end 8928.32346875
transcript.pyannote[1458].speaker SPEAKER_14
transcript.pyannote[1458].start 8928.54284375
transcript.pyannote[1458].end 8939.07284375
transcript.pyannote[1459].speaker SPEAKER_14
transcript.pyannote[1459].start 8939.89971875
transcript.pyannote[1459].end 8950.22721875
transcript.pyannote[1460].speaker SPEAKER_20
transcript.pyannote[1460].start 8950.39596875
transcript.pyannote[1460].end 8950.81784375
transcript.pyannote[1461].speaker SPEAKER_14
transcript.pyannote[1461].start 8950.51409375
transcript.pyannote[1461].end 8977.59846875
transcript.pyannote[1462].speaker SPEAKER_20
transcript.pyannote[1462].start 8969.66721875
transcript.pyannote[1462].end 8971.03409375
transcript.pyannote[1463].speaker SPEAKER_09
transcript.pyannote[1463].start 8971.03409375
transcript.pyannote[1463].end 8971.96221875
transcript.pyannote[1464].speaker SPEAKER_20
transcript.pyannote[1464].start 8971.96221875
transcript.pyannote[1464].end 8972.21534375
transcript.pyannote[1465].speaker SPEAKER_09
transcript.pyannote[1465].start 8977.10909375
transcript.pyannote[1465].end 8984.11221875
transcript.pyannote[1466].speaker SPEAKER_14
transcript.pyannote[1466].start 8977.95284375
transcript.pyannote[1466].end 8978.71221875
transcript.pyannote[1467].speaker SPEAKER_19
transcript.pyannote[1467].start 8981.51346875
transcript.pyannote[1467].end 8982.71159375
transcript.pyannote[1468].speaker SPEAKER_19
transcript.pyannote[1468].start 8983.38659375
transcript.pyannote[1468].end 8983.89284375
transcript.pyannote[1469].speaker SPEAKER_19
transcript.pyannote[1469].start 8984.78721875
transcript.pyannote[1469].end 8988.82034375
transcript.pyannote[1470].speaker SPEAKER_20
transcript.pyannote[1470].start 8990.59221875
transcript.pyannote[1470].end 8990.79471875
transcript.pyannote[1471].speaker SPEAKER_02
transcript.pyannote[1471].start 8996.68409375
transcript.pyannote[1471].end 9000.32909375
transcript.pyannote[1472].speaker SPEAKER_20
transcript.pyannote[1472].start 9004.09221875
transcript.pyannote[1472].end 9004.17659375
transcript.pyannote[1473].speaker SPEAKER_02
transcript.pyannote[1473].start 9004.54784375
transcript.pyannote[1473].end 9005.81346875
transcript.pyannote[1474].speaker SPEAKER_02
transcript.pyannote[1474].start 9005.94846875
transcript.pyannote[1474].end 9011.68596875
transcript.pyannote[1475].speaker SPEAKER_02
transcript.pyannote[1475].start 9012.47909375
transcript.pyannote[1475].end 9013.03596875
transcript.pyannote[1476].speaker SPEAKER_02
transcript.pyannote[1476].start 9013.60971875
transcript.pyannote[1476].end 9014.35221875
transcript.pyannote[1477].speaker SPEAKER_02
transcript.pyannote[1477].start 9015.12846875
transcript.pyannote[1477].end 9019.21221875
transcript.pyannote[1478].speaker SPEAKER_20
transcript.pyannote[1478].start 9019.88721875
transcript.pyannote[1478].end 9019.90409375
transcript.pyannote[1479].speaker SPEAKER_02
transcript.pyannote[1479].start 9019.90409375
transcript.pyannote[1479].end 9023.49846875
transcript.pyannote[1480].speaker SPEAKER_20
transcript.pyannote[1480].start 9019.93784375
transcript.pyannote[1480].end 9020.20784375
transcript.pyannote[1481].speaker SPEAKER_02
transcript.pyannote[1481].start 9024.19034375
transcript.pyannote[1481].end 9028.81409375
transcript.pyannote[1482].speaker SPEAKER_02
transcript.pyannote[1482].start 9029.65784375
transcript.pyannote[1482].end 9032.74596875
transcript.pyannote[1483].speaker SPEAKER_02
transcript.pyannote[1483].start 9033.43784375
transcript.pyannote[1483].end 9036.86346875
transcript.pyannote[1484].speaker SPEAKER_09
transcript.pyannote[1484].start 9037.70721875
transcript.pyannote[1484].end 9038.88846875
transcript.pyannote[1485].speaker SPEAKER_02
transcript.pyannote[1485].start 9039.61409375
transcript.pyannote[1485].end 9040.84596875
transcript.pyannote[1486].speaker SPEAKER_09
transcript.pyannote[1486].start 9040.99784375
transcript.pyannote[1486].end 9049.21596875
transcript.pyannote[1487].speaker SPEAKER_02
transcript.pyannote[1487].start 9043.66409375
transcript.pyannote[1487].end 9045.90846875
transcript.pyannote[1488].speaker SPEAKER_02
transcript.pyannote[1488].start 9046.97159375
transcript.pyannote[1488].end 9052.64159375
transcript.pyannote[1489].speaker SPEAKER_09
transcript.pyannote[1489].start 9050.02596875
transcript.pyannote[1489].end 9050.56596875
transcript.pyannote[1490].speaker SPEAKER_02
transcript.pyannote[1490].start 9052.89471875
transcript.pyannote[1490].end 9064.26846875
transcript.pyannote[1491].speaker SPEAKER_09
transcript.pyannote[1491].start 9053.06346875
transcript.pyannote[1491].end 9053.38409375
transcript.pyannote[1492].speaker SPEAKER_20
transcript.pyannote[1492].start 9053.38409375
transcript.pyannote[1492].end 9053.78909375
transcript.pyannote[1493].speaker SPEAKER_09
transcript.pyannote[1493].start 9053.78909375
transcript.pyannote[1493].end 9055.35846875
transcript.pyannote[1494].speaker SPEAKER_20
transcript.pyannote[1494].start 9055.35846875
transcript.pyannote[1494].end 9055.74659375
transcript.pyannote[1495].speaker SPEAKER_09
transcript.pyannote[1495].start 9055.74659375
transcript.pyannote[1495].end 9055.96596875
transcript.pyannote[1496].speaker SPEAKER_20
transcript.pyannote[1496].start 9055.96596875
transcript.pyannote[1496].end 9056.16846875
transcript.pyannote[1497].speaker SPEAKER_00
transcript.pyannote[1497].start 9056.16846875
transcript.pyannote[1497].end 9056.18534375
transcript.pyannote[1498].speaker SPEAKER_20
transcript.pyannote[1498].start 9057.21471875
transcript.pyannote[1498].end 9057.77159375
transcript.pyannote[1499].speaker SPEAKER_20
transcript.pyannote[1499].start 9057.97409375
transcript.pyannote[1499].end 9058.90221875
transcript.pyannote[1500].speaker SPEAKER_02
transcript.pyannote[1500].start 9064.96034375
transcript.pyannote[1500].end 9067.01909375
transcript.pyannote[1501].speaker SPEAKER_02
transcript.pyannote[1501].start 9067.33971875
transcript.pyannote[1501].end 9072.57096875
transcript.pyannote[1502].speaker SPEAKER_20
transcript.pyannote[1502].start 9072.57096875
transcript.pyannote[1502].end 9072.82409375
transcript.pyannote[1503].speaker SPEAKER_02
transcript.pyannote[1503].start 9072.82409375
transcript.pyannote[1503].end 9074.12346875
transcript.pyannote[1504].speaker SPEAKER_02
transcript.pyannote[1504].start 9074.37659375
transcript.pyannote[1504].end 9074.83221875
transcript.pyannote[1505].speaker SPEAKER_20
transcript.pyannote[1505].start 9074.54534375
transcript.pyannote[1505].end 9074.61284375
transcript.pyannote[1506].speaker SPEAKER_02
transcript.pyannote[1506].start 9075.06846875
transcript.pyannote[1506].end 9076.45221875
transcript.pyannote[1507].speaker SPEAKER_20
transcript.pyannote[1507].start 9076.26659375
transcript.pyannote[1507].end 9076.92471875
transcript.pyannote[1508].speaker SPEAKER_02
transcript.pyannote[1508].start 9077.31284375
transcript.pyannote[1508].end 9079.38846875
transcript.pyannote[1509].speaker SPEAKER_02
transcript.pyannote[1509].start 9079.89471875
transcript.pyannote[1509].end 9085.02471875
transcript.pyannote[1510].speaker SPEAKER_02
transcript.pyannote[1510].start 9085.78409375
transcript.pyannote[1510].end 9094.12034375
transcript.pyannote[1511].speaker SPEAKER_02
transcript.pyannote[1511].start 9094.87971875
transcript.pyannote[1511].end 9096.07784375
transcript.pyannote[1512].speaker SPEAKER_02
transcript.pyannote[1512].start 9097.17471875
transcript.pyannote[1512].end 9100.73534375
transcript.pyannote[1513].speaker SPEAKER_02
transcript.pyannote[1513].start 9101.02221875
transcript.pyannote[1513].end 9103.30034375
transcript.pyannote[1514].speaker SPEAKER_02
transcript.pyannote[1514].start 9103.77284375
transcript.pyannote[1514].end 9105.98346875
transcript.pyannote[1515].speaker SPEAKER_20
transcript.pyannote[1515].start 9105.78096875
transcript.pyannote[1515].end 9106.28721875
transcript.pyannote[1516].speaker SPEAKER_02
transcript.pyannote[1516].start 9106.42221875
transcript.pyannote[1516].end 9106.79346875
transcript.pyannote[1517].speaker SPEAKER_02
transcript.pyannote[1517].start 9107.16471875
transcript.pyannote[1517].end 9113.17221875
transcript.pyannote[1518].speaker SPEAKER_02
transcript.pyannote[1518].start 9114.33659375
transcript.pyannote[1518].end 9117.42471875
transcript.pyannote[1519].speaker SPEAKER_02
transcript.pyannote[1519].start 9118.11659375
transcript.pyannote[1519].end 9120.19221875
transcript.pyannote[1520].speaker SPEAKER_02
transcript.pyannote[1520].start 9120.68159375
transcript.pyannote[1520].end 9122.85846875
transcript.pyannote[1521].speaker SPEAKER_02
transcript.pyannote[1521].start 9123.63471875
transcript.pyannote[1521].end 9124.88346875
transcript.pyannote[1522].speaker SPEAKER_02
transcript.pyannote[1522].start 9125.23784375
transcript.pyannote[1522].end 9127.12784375
transcript.pyannote[1523].speaker SPEAKER_02
transcript.pyannote[1523].start 9128.15721875
transcript.pyannote[1523].end 9139.80096875
transcript.pyannote[1524].speaker SPEAKER_20
transcript.pyannote[1524].start 9140.23971875
transcript.pyannote[1524].end 9140.67846875
transcript.pyannote[1525].speaker SPEAKER_02
transcript.pyannote[1525].start 9140.67846875
transcript.pyannote[1525].end 9142.07909375
transcript.pyannote[1526].speaker SPEAKER_20
transcript.pyannote[1526].start 9142.68659375
transcript.pyannote[1526].end 9142.97346875
transcript.pyannote[1527].speaker SPEAKER_02
transcript.pyannote[1527].start 9142.97346875
transcript.pyannote[1527].end 9144.96471875
transcript.pyannote[1528].speaker SPEAKER_02
transcript.pyannote[1528].start 9145.18409375
transcript.pyannote[1528].end 9152.32221875
transcript.pyannote[1529].speaker SPEAKER_02
transcript.pyannote[1529].start 9153.08159375
transcript.pyannote[1529].end 9158.02596875
transcript.pyannote[1530].speaker SPEAKER_02
transcript.pyannote[1530].start 9158.41409375
transcript.pyannote[1530].end 9160.48971875
transcript.pyannote[1531].speaker SPEAKER_20
transcript.pyannote[1531].start 9160.48971875
transcript.pyannote[1531].end 9160.82721875
transcript.pyannote[1532].speaker SPEAKER_02
transcript.pyannote[1532].start 9161.01284375
transcript.pyannote[1532].end 9162.04221875
transcript.pyannote[1533].speaker SPEAKER_02
transcript.pyannote[1533].start 9162.44721875
transcript.pyannote[1533].end 9167.29034375
transcript.pyannote[1534].speaker SPEAKER_02
transcript.pyannote[1534].start 9167.93159375
transcript.pyannote[1534].end 9171.54284375
transcript.pyannote[1535].speaker SPEAKER_02
transcript.pyannote[1535].start 9172.01534375
transcript.pyannote[1535].end 9174.91784375
transcript.pyannote[1536].speaker SPEAKER_02
transcript.pyannote[1536].start 9175.25534375
transcript.pyannote[1536].end 9176.50409375
transcript.pyannote[1537].speaker SPEAKER_02
transcript.pyannote[1537].start 9177.46596875
transcript.pyannote[1537].end 9185.34659375
transcript.pyannote[1538].speaker SPEAKER_02
transcript.pyannote[1538].start 9185.68409375
transcript.pyannote[1538].end 9186.51096875
transcript.pyannote[1539].speaker SPEAKER_02
transcript.pyannote[1539].start 9187.62471875
transcript.pyannote[1539].end 9188.29971875
transcript.pyannote[1540].speaker SPEAKER_09
transcript.pyannote[1540].start 9188.87346875
transcript.pyannote[1540].end 9191.47221875
transcript.pyannote[1541].speaker SPEAKER_09
transcript.pyannote[1541].start 9192.02909375
transcript.pyannote[1541].end 9201.27659375
transcript.pyannote[1542].speaker SPEAKER_09
transcript.pyannote[1542].start 9201.86721875
transcript.pyannote[1542].end 9203.95971875
transcript.pyannote[1543].speaker SPEAKER_09
transcript.pyannote[1543].start 9204.38159375
transcript.pyannote[1543].end 9218.03346875
transcript.pyannote[1544].speaker SPEAKER_09
transcript.pyannote[1544].start 9218.05034375
transcript.pyannote[1544].end 9220.69971875
transcript.pyannote[1545].speaker SPEAKER_02
transcript.pyannote[1545].start 9219.53534375
transcript.pyannote[1545].end 9240.51096875
transcript.pyannote[1546].speaker SPEAKER_09
transcript.pyannote[1546].start 9221.35784375
transcript.pyannote[1546].end 9221.57721875
transcript.pyannote[1547].speaker SPEAKER_20
transcript.pyannote[1547].start 9224.36159375
transcript.pyannote[1547].end 9224.66534375
transcript.pyannote[1548].speaker SPEAKER_20
transcript.pyannote[1548].start 9231.43221875
transcript.pyannote[1548].end 9232.47846875
transcript.pyannote[1549].speaker SPEAKER_20
transcript.pyannote[1549].start 9232.66409375
transcript.pyannote[1549].end 9233.25471875
transcript.pyannote[1550].speaker SPEAKER_02
transcript.pyannote[1550].start 9240.91596875
transcript.pyannote[1550].end 9245.11784375
transcript.pyannote[1551].speaker SPEAKER_02
transcript.pyannote[1551].start 9245.47221875
transcript.pyannote[1551].end 9246.43409375
transcript.pyannote[1552].speaker SPEAKER_02
transcript.pyannote[1552].start 9246.94034375
transcript.pyannote[1552].end 9250.85534375
transcript.pyannote[1553].speaker SPEAKER_02
transcript.pyannote[1553].start 9252.08721875
transcript.pyannote[1553].end 9256.44096875
transcript.pyannote[1554].speaker SPEAKER_02
transcript.pyannote[1554].start 9256.76159375
transcript.pyannote[1554].end 9257.16659375
transcript.pyannote[1555].speaker SPEAKER_09
transcript.pyannote[1555].start 9257.16659375
transcript.pyannote[1555].end 9257.72346875
transcript.pyannote[1556].speaker SPEAKER_02
transcript.pyannote[1556].start 9257.72346875
transcript.pyannote[1556].end 9257.89221875
transcript.pyannote[1557].speaker SPEAKER_09
transcript.pyannote[1557].start 9257.89221875
transcript.pyannote[1557].end 9265.89096875
transcript.pyannote[1558].speaker SPEAKER_09
transcript.pyannote[1558].start 9266.05971875
transcript.pyannote[1558].end 9269.63721875
transcript.pyannote[1559].speaker SPEAKER_09
transcript.pyannote[1559].start 9269.75534375
transcript.pyannote[1559].end 9280.97721875
transcript.pyannote[1560].speaker SPEAKER_02
transcript.pyannote[1560].start 9279.98159375
transcript.pyannote[1560].end 9282.29346875
transcript.pyannote[1561].speaker SPEAKER_02
transcript.pyannote[1561].start 9282.56346875
transcript.pyannote[1561].end 9283.64346875
transcript.pyannote[1562].speaker SPEAKER_02
transcript.pyannote[1562].start 9283.96409375
transcript.pyannote[1562].end 9287.74409375
transcript.pyannote[1563].speaker SPEAKER_02
transcript.pyannote[1563].start 9288.23346875
transcript.pyannote[1563].end 9292.82346875
transcript.pyannote[1564].speaker SPEAKER_02
transcript.pyannote[1564].start 9293.93721875
transcript.pyannote[1564].end 9295.67534375
transcript.pyannote[1565].speaker SPEAKER_02
transcript.pyannote[1565].start 9296.13096875
transcript.pyannote[1565].end 9298.88159375
transcript.pyannote[1566].speaker SPEAKER_02
transcript.pyannote[1566].start 9299.32034375
transcript.pyannote[1566].end 9300.70409375
transcript.pyannote[1567].speaker SPEAKER_02
transcript.pyannote[1567].start 9301.56471875
transcript.pyannote[1567].end 9303.33659375
transcript.pyannote[1568].speaker SPEAKER_02
transcript.pyannote[1568].start 9304.01159375
transcript.pyannote[1568].end 9310.59284375
transcript.pyannote[1569].speaker SPEAKER_02
transcript.pyannote[1569].start 9311.30159375
transcript.pyannote[1569].end 9323.41784375
transcript.pyannote[1570].speaker SPEAKER_02
transcript.pyannote[1570].start 9324.12659375
transcript.pyannote[1570].end 9329.49284375
transcript.pyannote[1571].speaker SPEAKER_09
transcript.pyannote[1571].start 9329.39159375
transcript.pyannote[1571].end 9339.88784375
transcript.pyannote[1572].speaker SPEAKER_02
transcript.pyannote[1572].start 9331.65284375
transcript.pyannote[1572].end 9332.07471875
transcript.pyannote[1573].speaker SPEAKER_09
transcript.pyannote[1573].start 9340.07346875
transcript.pyannote[1573].end 9341.69346875
transcript.pyannote[1574].speaker SPEAKER_09
transcript.pyannote[1574].start 9341.74409375
transcript.pyannote[1574].end 9341.76096875
transcript.pyannote[1575].speaker SPEAKER_02
transcript.pyannote[1575].start 9341.76096875
transcript.pyannote[1575].end 9344.30909375
transcript.pyannote[1576].speaker SPEAKER_09
transcript.pyannote[1576].start 9342.72284375
transcript.pyannote[1576].end 9344.25846875
transcript.pyannote[1577].speaker SPEAKER_02
transcript.pyannote[1577].start 9344.35971875
transcript.pyannote[1577].end 9350.06346875
transcript.pyannote[1578].speaker SPEAKER_09
transcript.pyannote[1578].start 9344.62971875
transcript.pyannote[1578].end 9344.96721875
transcript.pyannote[1579].speaker SPEAKER_09
transcript.pyannote[1579].start 9345.57471875
transcript.pyannote[1579].end 9345.96284375
transcript.pyannote[1580].speaker SPEAKER_02
transcript.pyannote[1580].start 9350.78909375
transcript.pyannote[1580].end 9354.36659375
transcript.pyannote[1581].speaker SPEAKER_20
transcript.pyannote[1581].start 9350.89034375
transcript.pyannote[1581].end 9352.07159375
transcript.pyannote[1582].speaker SPEAKER_02
transcript.pyannote[1582].start 9354.50159375
transcript.pyannote[1582].end 9357.20159375
transcript.pyannote[1583].speaker SPEAKER_02
transcript.pyannote[1583].start 9357.67409375
transcript.pyannote[1583].end 9362.92221875
transcript.pyannote[1584].speaker SPEAKER_02
transcript.pyannote[1584].start 9364.20471875
transcript.pyannote[1584].end 9371.44409375
transcript.pyannote[1585].speaker SPEAKER_02
transcript.pyannote[1585].start 9372.69284375
transcript.pyannote[1585].end 9373.78971875
transcript.pyannote[1586].speaker SPEAKER_02
transcript.pyannote[1586].start 9374.53221875
transcript.pyannote[1586].end 9377.77221875
transcript.pyannote[1587].speaker SPEAKER_02
transcript.pyannote[1587].start 9377.94096875
transcript.pyannote[1587].end 9380.26971875
transcript.pyannote[1588].speaker SPEAKER_09
transcript.pyannote[1588].start 9381.70409375
transcript.pyannote[1588].end 9382.41284375
transcript.pyannote[1589].speaker SPEAKER_02
transcript.pyannote[1589].start 9383.15534375
transcript.pyannote[1589].end 9383.86409375
transcript.pyannote[1590].speaker SPEAKER_09
transcript.pyannote[1590].start 9383.17221875
transcript.pyannote[1590].end 9387.45846875
transcript.pyannote[1591].speaker SPEAKER_02
transcript.pyannote[1591].start 9384.91034375
transcript.pyannote[1591].end 9387.03659375
transcript.pyannote[1592].speaker SPEAKER_02
transcript.pyannote[1592].start 9388.42034375
transcript.pyannote[1592].end 9390.91784375
transcript.pyannote[1593].speaker SPEAKER_02
transcript.pyannote[1593].start 9392.01471875
transcript.pyannote[1593].end 9394.57971875
transcript.pyannote[1594].speaker SPEAKER_20
transcript.pyannote[1594].start 9395.27159375
transcript.pyannote[1594].end 9395.42346875
transcript.pyannote[1595].speaker SPEAKER_02
transcript.pyannote[1595].start 9395.42346875
transcript.pyannote[1595].end 9397.07721875
transcript.pyannote[1596].speaker SPEAKER_02
transcript.pyannote[1596].start 9397.60034375
transcript.pyannote[1596].end 9399.52409375
transcript.pyannote[1597].speaker SPEAKER_02
transcript.pyannote[1597].start 9399.94596875
transcript.pyannote[1597].end 9403.01721875
transcript.pyannote[1598].speaker SPEAKER_02
transcript.pyannote[1598].start 9404.04659375
transcript.pyannote[1598].end 9408.06284375
transcript.pyannote[1599].speaker SPEAKER_02
transcript.pyannote[1599].start 9408.73784375
transcript.pyannote[1599].end 9409.76721875
transcript.pyannote[1600].speaker SPEAKER_02
transcript.pyannote[1600].start 9411.50534375
transcript.pyannote[1600].end 9411.91034375
transcript.pyannote[1601].speaker SPEAKER_02
transcript.pyannote[1601].start 9412.56846875
transcript.pyannote[1601].end 9419.72346875
transcript.pyannote[1602].speaker SPEAKER_02
transcript.pyannote[1602].start 9419.89221875
transcript.pyannote[1602].end 9420.97221875
transcript.pyannote[1603].speaker SPEAKER_09
transcript.pyannote[1603].start 9420.97221875
transcript.pyannote[1603].end 9424.48221875
transcript.pyannote[1604].speaker SPEAKER_09
transcript.pyannote[1604].start 9424.88721875
transcript.pyannote[1604].end 9429.56159375
transcript.pyannote[1605].speaker SPEAKER_09
transcript.pyannote[1605].start 9430.01721875
transcript.pyannote[1605].end 9443.02784375
transcript.pyannote[1606].speaker SPEAKER_00
transcript.pyannote[1606].start 9430.10159375
transcript.pyannote[1606].end 9430.11846875
transcript.pyannote[1607].speaker SPEAKER_02
transcript.pyannote[1607].start 9430.11846875
transcript.pyannote[1607].end 9430.67534375
transcript.pyannote[1608].speaker SPEAKER_02
transcript.pyannote[1608].start 9441.74534375
transcript.pyannote[1608].end 9443.01096875
transcript.pyannote[1609].speaker SPEAKER_20
transcript.pyannote[1609].start 9443.01096875
transcript.pyannote[1609].end 9443.44971875
transcript.pyannote[1610].speaker SPEAKER_02
transcript.pyannote[1610].start 9443.55096875
transcript.pyannote[1610].end 9447.95534375
transcript.pyannote[1611].speaker SPEAKER_02
transcript.pyannote[1611].start 9448.20846875
transcript.pyannote[1611].end 9455.88659375
transcript.pyannote[1612].speaker SPEAKER_02
transcript.pyannote[1612].start 9456.10596875
transcript.pyannote[1612].end 9457.45596875
transcript.pyannote[1613].speaker SPEAKER_02
transcript.pyannote[1613].start 9457.99596875
transcript.pyannote[1613].end 9458.87346875
transcript.pyannote[1614].speaker SPEAKER_02
transcript.pyannote[1614].start 9459.36284375
transcript.pyannote[1614].end 9469.55534375
transcript.pyannote[1615].speaker SPEAKER_20
transcript.pyannote[1615].start 9463.69971875
transcript.pyannote[1615].end 9463.73346875
transcript.pyannote[1616].speaker SPEAKER_02
transcript.pyannote[1616].start 9469.82534375
transcript.pyannote[1616].end 9478.93784375
transcript.pyannote[1617].speaker SPEAKER_20
transcript.pyannote[1617].start 9471.51284375
transcript.pyannote[1617].end 9472.27221875
transcript.pyannote[1618].speaker SPEAKER_20
transcript.pyannote[1618].start 9478.93784375
transcript.pyannote[1618].end 9479.52846875
transcript.pyannote[1619].speaker SPEAKER_02
transcript.pyannote[1619].start 9479.32596875
transcript.pyannote[1619].end 9489.78846875
transcript.pyannote[1620].speaker SPEAKER_20
transcript.pyannote[1620].start 9489.68721875
transcript.pyannote[1620].end 9490.71659375
transcript.pyannote[1621].speaker SPEAKER_02
transcript.pyannote[1621].start 9489.88971875
transcript.pyannote[1621].end 9492.85971875
transcript.pyannote[1622].speaker SPEAKER_02
transcript.pyannote[1622].start 9493.33221875
transcript.pyannote[1622].end 9498.54659375
transcript.pyannote[1623].speaker SPEAKER_02
transcript.pyannote[1623].start 9499.03596875
transcript.pyannote[1623].end 9505.61721875
transcript.pyannote[1624].speaker SPEAKER_02
transcript.pyannote[1624].start 9506.35971875
transcript.pyannote[1624].end 9509.85284375
transcript.pyannote[1625].speaker SPEAKER_09
transcript.pyannote[1625].start 9508.58721875
transcript.pyannote[1625].end 9510.40971875
transcript.pyannote[1626].speaker SPEAKER_02
transcript.pyannote[1626].start 9510.30846875
transcript.pyannote[1626].end 9516.26534375
transcript.pyannote[1627].speaker SPEAKER_20
transcript.pyannote[1627].start 9516.26534375
transcript.pyannote[1627].end 9516.51846875
transcript.pyannote[1628].speaker SPEAKER_09
transcript.pyannote[1628].start 9516.51846875
transcript.pyannote[1628].end 9516.58596875
transcript.pyannote[1629].speaker SPEAKER_02
transcript.pyannote[1629].start 9516.51846875
transcript.pyannote[1629].end 9520.80471875
transcript.pyannote[1630].speaker SPEAKER_09
transcript.pyannote[1630].start 9517.88534375
transcript.pyannote[1630].end 9518.03721875
transcript.pyannote[1631].speaker SPEAKER_20
transcript.pyannote[1631].start 9518.03721875
transcript.pyannote[1631].end 9518.17221875
transcript.pyannote[1632].speaker SPEAKER_09
transcript.pyannote[1632].start 9520.70346875
transcript.pyannote[1632].end 9520.72034375
transcript.pyannote[1633].speaker SPEAKER_20
transcript.pyannote[1633].start 9520.72034375
transcript.pyannote[1633].end 9520.75409375
transcript.pyannote[1634].speaker SPEAKER_20
transcript.pyannote[1634].start 9520.80471875
transcript.pyannote[1634].end 9521.02409375
transcript.pyannote[1635].speaker SPEAKER_09
transcript.pyannote[1635].start 9521.02409375
transcript.pyannote[1635].end 9521.10846875
transcript.pyannote[1636].speaker SPEAKER_02
transcript.pyannote[1636].start 9521.10846875
transcript.pyannote[1636].end 9523.70721875
transcript.pyannote[1637].speaker SPEAKER_09
transcript.pyannote[1637].start 9522.47534375
transcript.pyannote[1637].end 9525.95159375
transcript.pyannote[1638].speaker SPEAKER_19
transcript.pyannote[1638].start 9523.70721875
transcript.pyannote[1638].end 9525.52971875
transcript.pyannote[1639].speaker SPEAKER_19
transcript.pyannote[1639].start 9526.57596875
transcript.pyannote[1639].end 9528.41534375
transcript.pyannote[1640].speaker SPEAKER_19
transcript.pyannote[1640].start 9529.07346875
transcript.pyannote[1640].end 9531.46971875
transcript.pyannote[1641].speaker SPEAKER_03
transcript.pyannote[1641].start 9539.08034375
transcript.pyannote[1641].end 9540.78471875
transcript.pyannote[1642].speaker SPEAKER_03
transcript.pyannote[1642].start 9541.37534375
transcript.pyannote[1642].end 9541.76346875
transcript.pyannote[1643].speaker SPEAKER_19
transcript.pyannote[1643].start 9542.15159375
transcript.pyannote[1643].end 9543.01221875
transcript.pyannote[1644].speaker SPEAKER_03
transcript.pyannote[1644].start 9546.58971875
transcript.pyannote[1644].end 9546.91034375
transcript.pyannote[1645].speaker SPEAKER_03
transcript.pyannote[1645].start 9546.94409375
transcript.pyannote[1645].end 9546.97784375
transcript.pyannote[1646].speaker SPEAKER_03
transcript.pyannote[1646].start 9547.60221875
transcript.pyannote[1646].end 9549.03659375
transcript.pyannote[1647].speaker SPEAKER_03
transcript.pyannote[1647].start 9550.15034375
transcript.pyannote[1647].end 9558.72284375
transcript.pyannote[1648].speaker SPEAKER_00
transcript.pyannote[1648].start 9553.27221875
transcript.pyannote[1648].end 9553.84596875
transcript.pyannote[1649].speaker SPEAKER_03
transcript.pyannote[1649].start 9559.21221875
transcript.pyannote[1649].end 9565.11846875
transcript.pyannote[1650].speaker SPEAKER_03
transcript.pyannote[1650].start 9565.64159375
transcript.pyannote[1650].end 9572.23971875
transcript.pyannote[1651].speaker SPEAKER_20
transcript.pyannote[1651].start 9569.40471875
transcript.pyannote[1651].end 9569.99534375
transcript.pyannote[1652].speaker SPEAKER_20
transcript.pyannote[1652].start 9572.23971875
transcript.pyannote[1652].end 9572.66159375
transcript.pyannote[1653].speaker SPEAKER_03
transcript.pyannote[1653].start 9572.66159375
transcript.pyannote[1653].end 9573.03284375
transcript.pyannote[1654].speaker SPEAKER_03
transcript.pyannote[1654].start 9573.40409375
transcript.pyannote[1654].end 9574.28159375
transcript.pyannote[1655].speaker SPEAKER_03
transcript.pyannote[1655].start 9574.65284375
transcript.pyannote[1655].end 9582.58409375
transcript.pyannote[1656].speaker SPEAKER_20
transcript.pyannote[1656].start 9577.09971875
transcript.pyannote[1656].end 9578.60159375
transcript.pyannote[1657].speaker SPEAKER_09
transcript.pyannote[1657].start 9578.60159375
transcript.pyannote[1657].end 9578.92221875
transcript.pyannote[1658].speaker SPEAKER_20
transcript.pyannote[1658].start 9578.92221875
transcript.pyannote[1658].end 9578.98971875
transcript.pyannote[1659].speaker SPEAKER_09
transcript.pyannote[1659].start 9583.22534375
transcript.pyannote[1659].end 9585.28409375
transcript.pyannote[1660].speaker SPEAKER_03
transcript.pyannote[1660].start 9583.63034375
transcript.pyannote[1660].end 9590.92034375
transcript.pyannote[1661].speaker SPEAKER_03
transcript.pyannote[1661].start 9591.94971875
transcript.pyannote[1661].end 9601.02846875
transcript.pyannote[1662].speaker SPEAKER_09
transcript.pyannote[1662].start 9596.80971875
transcript.pyannote[1662].end 9597.77159375
transcript.pyannote[1663].speaker SPEAKER_03
transcript.pyannote[1663].start 9601.26471875
transcript.pyannote[1663].end 9603.28971875
transcript.pyannote[1664].speaker SPEAKER_03
transcript.pyannote[1664].start 9603.47534375
transcript.pyannote[1664].end 9605.36534375
transcript.pyannote[1665].speaker SPEAKER_03
transcript.pyannote[1665].start 9605.97284375
transcript.pyannote[1665].end 9611.25471875
transcript.pyannote[1666].speaker SPEAKER_03
transcript.pyannote[1666].start 9614.54534375
transcript.pyannote[1666].end 9618.19034375
transcript.pyannote[1667].speaker SPEAKER_20
transcript.pyannote[1667].start 9618.19034375
transcript.pyannote[1667].end 9618.30846875
transcript.pyannote[1668].speaker SPEAKER_03
transcript.pyannote[1668].start 9618.30846875
transcript.pyannote[1668].end 9618.91596875
transcript.pyannote[1669].speaker SPEAKER_03
transcript.pyannote[1669].start 9619.65846875
transcript.pyannote[1669].end 9628.61909375
transcript.pyannote[1670].speaker SPEAKER_17
transcript.pyannote[1670].start 9626.94846875
transcript.pyannote[1670].end 9627.31971875
transcript.pyannote[1671].speaker SPEAKER_03
transcript.pyannote[1671].start 9628.85534375
transcript.pyannote[1671].end 9633.73221875
transcript.pyannote[1672].speaker SPEAKER_03
transcript.pyannote[1672].start 9634.20471875
transcript.pyannote[1672].end 9640.16159375
transcript.pyannote[1673].speaker SPEAKER_03
transcript.pyannote[1673].start 9640.71846875
transcript.pyannote[1673].end 9646.89471875
transcript.pyannote[1674].speaker SPEAKER_03
transcript.pyannote[1674].start 9647.16471875
transcript.pyannote[1674].end 9648.78471875
transcript.pyannote[1675].speaker SPEAKER_03
transcript.pyannote[1675].start 9648.97034375
transcript.pyannote[1675].end 9649.83096875
transcript.pyannote[1676].speaker SPEAKER_03
transcript.pyannote[1676].start 9650.20221875
transcript.pyannote[1676].end 9655.43346875
transcript.pyannote[1677].speaker SPEAKER_03
transcript.pyannote[1677].start 9656.29409375
transcript.pyannote[1677].end 9665.03534375
transcript.pyannote[1678].speaker SPEAKER_03
transcript.pyannote[1678].start 9665.65971875
transcript.pyannote[1678].end 9669.45659375
transcript.pyannote[1679].speaker SPEAKER_03
transcript.pyannote[1679].start 9670.04721875
transcript.pyannote[1679].end 9682.97346875
transcript.pyannote[1680].speaker SPEAKER_03
transcript.pyannote[1680].start 9683.05784375
transcript.pyannote[1680].end 9685.52159375
transcript.pyannote[1681].speaker SPEAKER_03
transcript.pyannote[1681].start 9685.90971875
transcript.pyannote[1681].end 9690.04409375
transcript.pyannote[1682].speaker SPEAKER_03
transcript.pyannote[1682].start 9690.66846875
transcript.pyannote[1682].end 9708.15096875
transcript.pyannote[1683].speaker SPEAKER_03
transcript.pyannote[1683].start 9708.37034375
transcript.pyannote[1683].end 9714.66471875
transcript.pyannote[1684].speaker SPEAKER_03
transcript.pyannote[1684].start 9714.91784375
transcript.pyannote[1684].end 9719.20409375
transcript.pyannote[1685].speaker SPEAKER_03
transcript.pyannote[1685].start 9719.98034375
transcript.pyannote[1685].end 9729.26159375
transcript.pyannote[1686].speaker SPEAKER_03
transcript.pyannote[1686].start 9729.83534375
transcript.pyannote[1686].end 9731.45534375
transcript.pyannote[1687].speaker SPEAKER_03
transcript.pyannote[1687].start 9731.86034375
transcript.pyannote[1687].end 9735.70784375
transcript.pyannote[1688].speaker SPEAKER_03
transcript.pyannote[1688].start 9736.39971875
transcript.pyannote[1688].end 9737.83409375
transcript.pyannote[1689].speaker SPEAKER_03
transcript.pyannote[1689].start 9738.05346875
transcript.pyannote[1689].end 9739.30221875
transcript.pyannote[1690].speaker SPEAKER_03
transcript.pyannote[1690].start 9739.50471875
transcript.pyannote[1690].end 9741.12471875
transcript.pyannote[1691].speaker SPEAKER_03
transcript.pyannote[1691].start 9741.95159375
transcript.pyannote[1691].end 9745.19159375
transcript.pyannote[1692].speaker SPEAKER_09
transcript.pyannote[1692].start 9746.35596875
transcript.pyannote[1692].end 9752.68409375
transcript.pyannote[1693].speaker SPEAKER_03
transcript.pyannote[1693].start 9753.49409375
transcript.pyannote[1693].end 9759.18096875
transcript.pyannote[1694].speaker SPEAKER_03
transcript.pyannote[1694].start 9759.53534375
transcript.pyannote[1694].end 9760.48034375
transcript.pyannote[1695].speaker SPEAKER_09
transcript.pyannote[1695].start 9759.75471875
transcript.pyannote[1695].end 9760.42971875
transcript.pyannote[1696].speaker SPEAKER_09
transcript.pyannote[1696].start 9760.71659375
transcript.pyannote[1696].end 9764.76659375
transcript.pyannote[1697].speaker SPEAKER_03
transcript.pyannote[1697].start 9761.42534375
transcript.pyannote[1697].end 9761.72909375
transcript.pyannote[1698].speaker SPEAKER_03
transcript.pyannote[1698].start 9762.97784375
transcript.pyannote[1698].end 9763.09596875
transcript.pyannote[1699].speaker SPEAKER_03
transcript.pyannote[1699].start 9764.76659375
transcript.pyannote[1699].end 9765.61034375
transcript.pyannote[1700].speaker SPEAKER_09
transcript.pyannote[1700].start 9764.78346875
transcript.pyannote[1700].end 9765.47534375
transcript.pyannote[1701].speaker SPEAKER_09
transcript.pyannote[1701].start 9765.61034375
transcript.pyannote[1701].end 9765.84659375
transcript.pyannote[1702].speaker SPEAKER_09
transcript.pyannote[1702].start 9765.96471875
transcript.pyannote[1702].end 9766.03221875
transcript.pyannote[1703].speaker SPEAKER_03
transcript.pyannote[1703].start 9766.03221875
transcript.pyannote[1703].end 9766.89284375
transcript.pyannote[1704].speaker SPEAKER_09
transcript.pyannote[1704].start 9766.09971875
transcript.pyannote[1704].end 9766.38659375
transcript.pyannote[1705].speaker SPEAKER_09
transcript.pyannote[1705].start 9766.77471875
transcript.pyannote[1705].end 9767.06159375
transcript.pyannote[1706].speaker SPEAKER_03
transcript.pyannote[1706].start 9766.97721875
transcript.pyannote[1706].end 9768.56346875
transcript.pyannote[1707].speaker SPEAKER_09
transcript.pyannote[1707].start 9768.56346875
transcript.pyannote[1707].end 9768.59721875
transcript.pyannote[1708].speaker SPEAKER_20
transcript.pyannote[1708].start 9768.59721875
transcript.pyannote[1708].end 9768.98534375
transcript.pyannote[1709].speaker SPEAKER_03
transcript.pyannote[1709].start 9768.98534375
transcript.pyannote[1709].end 9776.91659375
transcript.pyannote[1710].speaker SPEAKER_03
transcript.pyannote[1710].start 9777.37221875
transcript.pyannote[1710].end 9780.89909375
transcript.pyannote[1711].speaker SPEAKER_03
transcript.pyannote[1711].start 9780.98346875
transcript.pyannote[1711].end 9783.44721875
transcript.pyannote[1712].speaker SPEAKER_03
transcript.pyannote[1712].start 9783.66659375
transcript.pyannote[1712].end 9785.13471875
transcript.pyannote[1713].speaker SPEAKER_03
transcript.pyannote[1713].start 9785.79284375
transcript.pyannote[1713].end 9796.81221875
transcript.pyannote[1714].speaker SPEAKER_03
transcript.pyannote[1714].start 9797.28471875
transcript.pyannote[1714].end 9807.46034375
transcript.pyannote[1715].speaker SPEAKER_03
transcript.pyannote[1715].start 9807.94971875
transcript.pyannote[1715].end 9813.83909375
transcript.pyannote[1716].speaker SPEAKER_03
transcript.pyannote[1716].start 9814.12596875
transcript.pyannote[1716].end 9815.13846875
transcript.pyannote[1717].speaker SPEAKER_03
transcript.pyannote[1717].start 9815.61096875
transcript.pyannote[1717].end 9823.45784375
transcript.pyannote[1718].speaker SPEAKER_03
transcript.pyannote[1718].start 9823.71096875
transcript.pyannote[1718].end 9825.98909375
transcript.pyannote[1719].speaker SPEAKER_09
transcript.pyannote[1719].start 9823.82909375
transcript.pyannote[1719].end 9824.60534375
transcript.pyannote[1720].speaker SPEAKER_03
transcript.pyannote[1720].start 9826.15784375
transcript.pyannote[1720].end 9826.83284375
transcript.pyannote[1721].speaker SPEAKER_09
transcript.pyannote[1721].start 9826.19159375
transcript.pyannote[1721].end 9826.71471875
transcript.pyannote[1722].speaker SPEAKER_03
transcript.pyannote[1722].start 9826.95096875
transcript.pyannote[1722].end 9826.98471875
transcript.pyannote[1723].speaker SPEAKER_09
transcript.pyannote[1723].start 9826.98471875
transcript.pyannote[1723].end 9834.30846875
transcript.pyannote[1724].speaker SPEAKER_09
transcript.pyannote[1724].start 9834.56159375
transcript.pyannote[1724].end 9863.97471875
transcript.pyannote[1725].speaker SPEAKER_03
transcript.pyannote[1725].start 9860.85284375
transcript.pyannote[1725].end 9865.71284375
transcript.pyannote[1726].speaker SPEAKER_20
transcript.pyannote[1726].start 9863.97471875
transcript.pyannote[1726].end 9864.46409375
transcript.pyannote[1727].speaker SPEAKER_20
transcript.pyannote[1727].start 9865.49346875
transcript.pyannote[1727].end 9866.05034375
transcript.pyannote[1728].speaker SPEAKER_03
transcript.pyannote[1728].start 9866.05034375
transcript.pyannote[1728].end 9897.43784375
transcript.pyannote[1729].speaker SPEAKER_20
transcript.pyannote[1729].start 9871.75409375
transcript.pyannote[1729].end 9872.96909375
transcript.pyannote[1730].speaker SPEAKER_09
transcript.pyannote[1730].start 9872.96909375
transcript.pyannote[1730].end 9874.35284375
transcript.pyannote[1731].speaker SPEAKER_00
transcript.pyannote[1731].start 9874.35284375
transcript.pyannote[1731].end 9874.38659375
transcript.pyannote[1732].speaker SPEAKER_09
transcript.pyannote[1732].start 9896.56034375
transcript.pyannote[1732].end 9899.76659375
transcript.pyannote[1733].speaker SPEAKER_03
transcript.pyannote[1733].start 9898.50096875
transcript.pyannote[1733].end 9911.22471875
transcript.pyannote[1734].speaker SPEAKER_19
transcript.pyannote[1734].start 9908.05221875
transcript.pyannote[1734].end 9911.14034375
transcript.pyannote[1735].speaker SPEAKER_19
transcript.pyannote[1735].start 9912.49034375
transcript.pyannote[1735].end 9914.66721875
transcript.pyannote[1736].speaker SPEAKER_19
transcript.pyannote[1736].start 9915.19034375
transcript.pyannote[1736].end 9917.31659375
transcript.pyannote[1737].speaker SPEAKER_22
transcript.pyannote[1737].start 9925.29846875
transcript.pyannote[1737].end 9930.68159375
transcript.pyannote[1738].speaker SPEAKER_22
transcript.pyannote[1738].start 9930.81659375
transcript.pyannote[1738].end 9932.20034375
transcript.pyannote[1739].speaker SPEAKER_19
transcript.pyannote[1739].start 9932.30159375
transcript.pyannote[1739].end 9933.16221875
transcript.pyannote[1740].speaker SPEAKER_19
transcript.pyannote[1740].start 9936.40221875
transcript.pyannote[1740].end 9936.97596875
transcript.pyannote[1741].speaker SPEAKER_09
transcript.pyannote[1741].start 9936.97596875
transcript.pyannote[1741].end 9937.02659375
transcript.pyannote[1742].speaker SPEAKER_24
transcript.pyannote[1742].start 9937.83659375
transcript.pyannote[1742].end 9944.23221875
transcript.pyannote[1743].speaker SPEAKER_24
transcript.pyannote[1743].start 9944.43471875
transcript.pyannote[1743].end 9945.36284375
transcript.pyannote[1744].speaker SPEAKER_24
transcript.pyannote[1744].start 9945.73409375
transcript.pyannote[1744].end 9951.47159375
transcript.pyannote[1745].speaker SPEAKER_24
transcript.pyannote[1745].start 9952.95659375
transcript.pyannote[1745].end 9956.31471875
transcript.pyannote[1746].speaker SPEAKER_24
transcript.pyannote[1746].start 9956.55096875
transcript.pyannote[1746].end 9962.62596875
transcript.pyannote[1747].speaker SPEAKER_09
transcript.pyannote[1747].start 9963.60471875
transcript.pyannote[1747].end 9968.73471875
transcript.pyannote[1748].speaker SPEAKER_24
transcript.pyannote[1748].start 9967.85721875
transcript.pyannote[1748].end 9969.89909375
transcript.pyannote[1749].speaker SPEAKER_09
transcript.pyannote[1749].start 9970.01721875
transcript.pyannote[1749].end 9973.34159375
transcript.pyannote[1750].speaker SPEAKER_24
transcript.pyannote[1750].start 9972.27846875
transcript.pyannote[1750].end 9972.76784375
transcript.pyannote[1751].speaker SPEAKER_24
transcript.pyannote[1751].start 9973.34159375
transcript.pyannote[1751].end 9973.69596875
transcript.pyannote[1752].speaker SPEAKER_24
transcript.pyannote[1752].start 9974.70846875
transcript.pyannote[1752].end 9979.99034375
transcript.pyannote[1753].speaker SPEAKER_09
transcript.pyannote[1753].start 9980.44596875
transcript.pyannote[1753].end 9985.13721875
transcript.pyannote[1754].speaker SPEAKER_24
transcript.pyannote[1754].start 9985.13721875
transcript.pyannote[1754].end 9990.90846875
transcript.pyannote[1755].speaker SPEAKER_09
transcript.pyannote[1755].start 9990.60471875
transcript.pyannote[1755].end 9990.62159375
transcript.pyannote[1756].speaker SPEAKER_20
transcript.pyannote[1756].start 9990.62159375
transcript.pyannote[1756].end 9991.04346875
transcript.pyannote[1757].speaker SPEAKER_24
transcript.pyannote[1757].start 9990.97596875
transcript.pyannote[1757].end 9992.78159375
transcript.pyannote[1758].speaker SPEAKER_24
transcript.pyannote[1758].start 9992.98409375
transcript.pyannote[1758].end 9999.16034375
transcript.pyannote[1759].speaker SPEAKER_09
transcript.pyannote[1759].start 9999.93659375
transcript.pyannote[1759].end 10000.27409375
transcript.pyannote[1760].speaker SPEAKER_09
transcript.pyannote[1760].start 10000.74659375
transcript.pyannote[1760].end 10004.67846875
transcript.pyannote[1761].speaker SPEAKER_24
transcript.pyannote[1761].start 10003.68284375
transcript.pyannote[1761].end 10004.45909375
transcript.pyannote[1762].speaker SPEAKER_09
transcript.pyannote[1762].start 10004.69534375
transcript.pyannote[1762].end 10004.98221875
transcript.pyannote[1763].speaker SPEAKER_09
transcript.pyannote[1763].start 10005.53909375
transcript.pyannote[1763].end 10005.99471875
transcript.pyannote[1764].speaker SPEAKER_24
transcript.pyannote[1764].start 10006.29846875
transcript.pyannote[1764].end 10007.93534375
transcript.pyannote[1765].speaker SPEAKER_24
transcript.pyannote[1765].start 10008.50909375
transcript.pyannote[1765].end 10009.69034375
transcript.pyannote[1766].speaker SPEAKER_24
transcript.pyannote[1766].start 10010.07846875
transcript.pyannote[1766].end 10013.62221875
transcript.pyannote[1767].speaker SPEAKER_24
transcript.pyannote[1767].start 10014.22971875
transcript.pyannote[1767].end 10015.84971875
transcript.pyannote[1768].speaker SPEAKER_24
transcript.pyannote[1768].start 10016.52471875
transcript.pyannote[1768].end 10017.30096875
transcript.pyannote[1769].speaker SPEAKER_24
transcript.pyannote[1769].start 10017.68909375
transcript.pyannote[1769].end 10018.41471875
transcript.pyannote[1770].speaker SPEAKER_24
transcript.pyannote[1770].start 10018.70159375
transcript.pyannote[1770].end 10021.75596875
transcript.pyannote[1771].speaker SPEAKER_24
transcript.pyannote[1771].start 10022.34659375
transcript.pyannote[1771].end 10025.58659375
transcript.pyannote[1772].speaker SPEAKER_24
transcript.pyannote[1772].start 10026.39659375
transcript.pyannote[1772].end 10027.57784375
transcript.pyannote[1773].speaker SPEAKER_24
transcript.pyannote[1773].start 10028.16846875
transcript.pyannote[1773].end 10031.40846875
transcript.pyannote[1774].speaker SPEAKER_24
transcript.pyannote[1774].start 10031.54346875
transcript.pyannote[1774].end 10034.02409375
transcript.pyannote[1775].speaker SPEAKER_24
transcript.pyannote[1775].start 10034.42909375
transcript.pyannote[1775].end 10038.76596875
transcript.pyannote[1776].speaker SPEAKER_24
transcript.pyannote[1776].start 10039.27221875
transcript.pyannote[1776].end 10043.57534375
transcript.pyannote[1777].speaker SPEAKER_20
transcript.pyannote[1777].start 10043.91284375
transcript.pyannote[1777].end 10044.70596875
transcript.pyannote[1778].speaker SPEAKER_24
transcript.pyannote[1778].start 10044.25034375
transcript.pyannote[1778].end 10046.54534375
transcript.pyannote[1779].speaker SPEAKER_20
transcript.pyannote[1779].start 10046.54534375
transcript.pyannote[1779].end 10046.86596875
transcript.pyannote[1780].speaker SPEAKER_24
transcript.pyannote[1780].start 10046.89971875
transcript.pyannote[1780].end 10050.69659375
transcript.pyannote[1781].speaker SPEAKER_24
transcript.pyannote[1781].start 10051.43909375
transcript.pyannote[1781].end 10052.62034375
transcript.pyannote[1782].speaker SPEAKER_24
transcript.pyannote[1782].start 10052.75534375
transcript.pyannote[1782].end 10054.12221875
transcript.pyannote[1783].speaker SPEAKER_24
transcript.pyannote[1783].start 10054.34159375
transcript.pyannote[1783].end 10058.54346875
transcript.pyannote[1784].speaker SPEAKER_24
transcript.pyannote[1784].start 10059.01596875
transcript.pyannote[1784].end 10060.65284375
transcript.pyannote[1785].speaker SPEAKER_09
transcript.pyannote[1785].start 10060.72034375
transcript.pyannote[1785].end 10065.15846875
transcript.pyannote[1786].speaker SPEAKER_09
transcript.pyannote[1786].start 10065.27659375
transcript.pyannote[1786].end 10069.27596875
transcript.pyannote[1787].speaker SPEAKER_24
transcript.pyannote[1787].start 10067.72346875
transcript.pyannote[1787].end 10068.55034375
transcript.pyannote[1788].speaker SPEAKER_24
transcript.pyannote[1788].start 10068.63471875
transcript.pyannote[1788].end 10078.01721875
transcript.pyannote[1789].speaker SPEAKER_20
transcript.pyannote[1789].start 10074.06846875
transcript.pyannote[1789].end 10074.38909375
transcript.pyannote[1790].speaker SPEAKER_20
transcript.pyannote[1790].start 10075.21596875
transcript.pyannote[1790].end 10076.02596875
transcript.pyannote[1791].speaker SPEAKER_20
transcript.pyannote[1791].start 10077.56159375
transcript.pyannote[1791].end 10079.85659375
transcript.pyannote[1792].speaker SPEAKER_24
transcript.pyannote[1792].start 10078.52346875
transcript.pyannote[1792].end 10080.34596875
transcript.pyannote[1793].speaker SPEAKER_24
transcript.pyannote[1793].start 10080.66659375
transcript.pyannote[1793].end 10083.58596875
transcript.pyannote[1794].speaker SPEAKER_24
transcript.pyannote[1794].start 10083.97409375
transcript.pyannote[1794].end 10085.62784375
transcript.pyannote[1795].speaker SPEAKER_24
transcript.pyannote[1795].start 10086.01596875
transcript.pyannote[1795].end 10086.85971875
transcript.pyannote[1796].speaker SPEAKER_24
transcript.pyannote[1796].start 10087.53471875
transcript.pyannote[1796].end 10088.22659375
transcript.pyannote[1797].speaker SPEAKER_24
transcript.pyannote[1797].start 10089.03659375
transcript.pyannote[1797].end 10091.26409375
transcript.pyannote[1798].speaker SPEAKER_24
transcript.pyannote[1798].start 10091.61846875
transcript.pyannote[1798].end 10097.20409375
transcript.pyannote[1799].speaker SPEAKER_20
transcript.pyannote[1799].start 10097.49096875
transcript.pyannote[1799].end 10097.52471875
transcript.pyannote[1800].speaker SPEAKER_24
transcript.pyannote[1800].start 10097.52471875
transcript.pyannote[1800].end 10098.89159375
transcript.pyannote[1801].speaker SPEAKER_24
transcript.pyannote[1801].start 10099.54971875
transcript.pyannote[1801].end 10102.28346875
transcript.pyannote[1802].speaker SPEAKER_24
transcript.pyannote[1802].start 10102.53659375
transcript.pyannote[1802].end 10108.52721875
transcript.pyannote[1803].speaker SPEAKER_09
transcript.pyannote[1803].start 10108.40909375
transcript.pyannote[1803].end 10114.01159375
transcript.pyannote[1804].speaker SPEAKER_24
transcript.pyannote[1804].start 10109.48909375
transcript.pyannote[1804].end 10109.99534375
transcript.pyannote[1805].speaker SPEAKER_24
transcript.pyannote[1805].start 10111.98659375
transcript.pyannote[1805].end 10112.50971875
transcript.pyannote[1806].speaker SPEAKER_24
transcript.pyannote[1806].start 10114.01159375
transcript.pyannote[1806].end 10122.19596875
transcript.pyannote[1807].speaker SPEAKER_24
transcript.pyannote[1807].start 10122.80346875
transcript.pyannote[1807].end 10125.57096875
transcript.pyannote[1808].speaker SPEAKER_20
transcript.pyannote[1808].start 10125.57096875
transcript.pyannote[1808].end 10126.02659375
transcript.pyannote[1809].speaker SPEAKER_24
transcript.pyannote[1809].start 10126.07721875
transcript.pyannote[1809].end 10130.11034375
transcript.pyannote[1810].speaker SPEAKER_24
transcript.pyannote[1810].start 10130.17784375
transcript.pyannote[1810].end 10132.30409375
transcript.pyannote[1811].speaker SPEAKER_24
transcript.pyannote[1811].start 10132.94534375
transcript.pyannote[1811].end 10134.37971875
transcript.pyannote[1812].speaker SPEAKER_24
transcript.pyannote[1812].start 10134.54846875
transcript.pyannote[1812].end 10135.67909375
transcript.pyannote[1813].speaker SPEAKER_24
transcript.pyannote[1813].start 10135.83096875
transcript.pyannote[1813].end 10137.63659375
transcript.pyannote[1814].speaker SPEAKER_24
transcript.pyannote[1814].start 10138.19346875
transcript.pyannote[1814].end 10138.86846875
transcript.pyannote[1815].speaker SPEAKER_24
transcript.pyannote[1815].start 10138.96971875
transcript.pyannote[1815].end 10139.76284375
transcript.pyannote[1816].speaker SPEAKER_20
transcript.pyannote[1816].start 10139.71221875
transcript.pyannote[1816].end 10139.72909375
transcript.pyannote[1817].speaker SPEAKER_20
transcript.pyannote[1817].start 10139.74596875
transcript.pyannote[1817].end 10140.21846875
transcript.pyannote[1818].speaker SPEAKER_24
transcript.pyannote[1818].start 10140.21846875
transcript.pyannote[1818].end 10144.15034375
transcript.pyannote[1819].speaker SPEAKER_20
transcript.pyannote[1819].start 10140.23534375
transcript.pyannote[1819].end 10140.25221875
transcript.pyannote[1820].speaker SPEAKER_20
transcript.pyannote[1820].start 10144.06596875
transcript.pyannote[1820].end 10144.53846875
transcript.pyannote[1821].speaker SPEAKER_24
transcript.pyannote[1821].start 10144.53846875
transcript.pyannote[1821].end 10152.06471875
transcript.pyannote[1822].speaker SPEAKER_24
transcript.pyannote[1822].start 10152.25034375
transcript.pyannote[1822].end 10156.40159375
transcript.pyannote[1823].speaker SPEAKER_09
transcript.pyannote[1823].start 10156.40159375
transcript.pyannote[1823].end 10156.72221875
transcript.pyannote[1824].speaker SPEAKER_24
transcript.pyannote[1824].start 10156.72221875
transcript.pyannote[1824].end 10157.31284375
transcript.pyannote[1825].speaker SPEAKER_09
transcript.pyannote[1825].start 10157.27909375
transcript.pyannote[1825].end 10158.52784375
transcript.pyannote[1826].speaker SPEAKER_24
transcript.pyannote[1826].start 10158.83159375
transcript.pyannote[1826].end 10164.55221875
transcript.pyannote[1827].speaker SPEAKER_24
transcript.pyannote[1827].start 10164.67034375
transcript.pyannote[1827].end 10168.99034375
transcript.pyannote[1828].speaker SPEAKER_24
transcript.pyannote[1828].start 10169.36159375
transcript.pyannote[1828].end 10174.55909375
transcript.pyannote[1829].speaker SPEAKER_24
transcript.pyannote[1829].start 10174.77846875
transcript.pyannote[1829].end 10175.95971875
transcript.pyannote[1830].speaker SPEAKER_24
transcript.pyannote[1830].start 10176.44909375
transcript.pyannote[1830].end 10180.21221875
transcript.pyannote[1831].speaker SPEAKER_24
transcript.pyannote[1831].start 10180.51596875
transcript.pyannote[1831].end 10183.11471875
transcript.pyannote[1832].speaker SPEAKER_24
transcript.pyannote[1832].start 10183.68846875
transcript.pyannote[1832].end 10186.70909375
transcript.pyannote[1833].speaker SPEAKER_24
transcript.pyannote[1833].start 10187.28284375
transcript.pyannote[1833].end 10189.64534375
transcript.pyannote[1834].speaker SPEAKER_24
transcript.pyannote[1834].start 10189.88159375
transcript.pyannote[1834].end 10191.36659375
transcript.pyannote[1835].speaker SPEAKER_24
transcript.pyannote[1835].start 10191.60284375
transcript.pyannote[1835].end 10194.03284375
transcript.pyannote[1836].speaker SPEAKER_24
transcript.pyannote[1836].start 10194.25221875
transcript.pyannote[1836].end 10195.36596875
transcript.pyannote[1837].speaker SPEAKER_24
transcript.pyannote[1837].start 10195.41659375
transcript.pyannote[1837].end 10198.50471875
transcript.pyannote[1838].speaker SPEAKER_24
transcript.pyannote[1838].start 10200.51284375
transcript.pyannote[1838].end 10202.89221875
transcript.pyannote[1839].speaker SPEAKER_24
transcript.pyannote[1839].start 10203.48284375
transcript.pyannote[1839].end 10206.36846875
transcript.pyannote[1840].speaker SPEAKER_24
transcript.pyannote[1840].start 10206.85784375
transcript.pyannote[1840].end 10210.63784375
transcript.pyannote[1841].speaker SPEAKER_24
transcript.pyannote[1841].start 10211.32971875
transcript.pyannote[1841].end 10216.89846875
transcript.pyannote[1842].speaker SPEAKER_09
transcript.pyannote[1842].start 10217.28659375
transcript.pyannote[1842].end 10218.67034375
transcript.pyannote[1843].speaker SPEAKER_24
transcript.pyannote[1843].start 10217.89409375
transcript.pyannote[1843].end 10218.77159375
transcript.pyannote[1844].speaker SPEAKER_20
transcript.pyannote[1844].start 10218.67034375
transcript.pyannote[1844].end 10218.72096875
transcript.pyannote[1845].speaker SPEAKER_20
transcript.pyannote[1845].start 10218.97409375
transcript.pyannote[1845].end 10219.29471875
transcript.pyannote[1846].speaker SPEAKER_24
transcript.pyannote[1846].start 10219.26096875
transcript.pyannote[1846].end 10224.12096875
transcript.pyannote[1847].speaker SPEAKER_24
transcript.pyannote[1847].start 10224.47534375
transcript.pyannote[1847].end 10234.26284375
transcript.pyannote[1848].speaker SPEAKER_24
transcript.pyannote[1848].start 10234.95471875
transcript.pyannote[1848].end 10237.85721875
transcript.pyannote[1849].speaker SPEAKER_20
transcript.pyannote[1849].start 10238.17784375
transcript.pyannote[1849].end 10238.22846875
transcript.pyannote[1850].speaker SPEAKER_24
transcript.pyannote[1850].start 10238.22846875
transcript.pyannote[1850].end 10240.47284375
transcript.pyannote[1851].speaker SPEAKER_24
transcript.pyannote[1851].start 10240.81034375
transcript.pyannote[1851].end 10242.56534375
transcript.pyannote[1852].speaker SPEAKER_24
transcript.pyannote[1852].start 10242.85221875
transcript.pyannote[1852].end 10245.28221875
transcript.pyannote[1853].speaker SPEAKER_24
transcript.pyannote[1853].start 10245.78846875
transcript.pyannote[1853].end 10246.22721875
transcript.pyannote[1854].speaker SPEAKER_24
transcript.pyannote[1854].start 10246.53096875
transcript.pyannote[1854].end 10248.50534375
transcript.pyannote[1855].speaker SPEAKER_24
transcript.pyannote[1855].start 10248.99471875
transcript.pyannote[1855].end 10251.01971875
transcript.pyannote[1856].speaker SPEAKER_24
transcript.pyannote[1856].start 10251.94784375
transcript.pyannote[1856].end 10253.26409375
transcript.pyannote[1857].speaker SPEAKER_09
transcript.pyannote[1857].start 10253.56784375
transcript.pyannote[1857].end 10254.31034375
transcript.pyannote[1858].speaker SPEAKER_24
transcript.pyannote[1858].start 10254.31034375
transcript.pyannote[1858].end 10254.68159375
transcript.pyannote[1859].speaker SPEAKER_24
transcript.pyannote[1859].start 10254.86721875
transcript.pyannote[1859].end 10264.87409375
transcript.pyannote[1860].speaker SPEAKER_24
transcript.pyannote[1860].start 10265.22846875
transcript.pyannote[1860].end 10268.35034375
transcript.pyannote[1861].speaker SPEAKER_24
transcript.pyannote[1861].start 10268.51909375
transcript.pyannote[1861].end 10269.56534375
transcript.pyannote[1862].speaker SPEAKER_24
transcript.pyannote[1862].start 10270.00409375
transcript.pyannote[1862].end 10271.33721875
transcript.pyannote[1863].speaker SPEAKER_20
transcript.pyannote[1863].start 10271.55659375
transcript.pyannote[1863].end 10271.92784375
transcript.pyannote[1864].speaker SPEAKER_24
transcript.pyannote[1864].start 10272.13034375
transcript.pyannote[1864].end 10274.00346875
transcript.pyannote[1865].speaker SPEAKER_20
transcript.pyannote[1865].start 10274.00346875
transcript.pyannote[1865].end 10274.32409375
transcript.pyannote[1866].speaker SPEAKER_24
transcript.pyannote[1866].start 10274.52659375
transcript.pyannote[1866].end 10276.78784375
transcript.pyannote[1867].speaker SPEAKER_24
transcript.pyannote[1867].start 10277.20971875
transcript.pyannote[1867].end 10280.38221875
transcript.pyannote[1868].speaker SPEAKER_20
transcript.pyannote[1868].start 10280.38221875
transcript.pyannote[1868].end 10280.77034375
transcript.pyannote[1869].speaker SPEAKER_24
transcript.pyannote[1869].start 10280.56784375
transcript.pyannote[1869].end 10283.30159375
transcript.pyannote[1870].speaker SPEAKER_24
transcript.pyannote[1870].start 10283.41971875
transcript.pyannote[1870].end 10285.17471875
transcript.pyannote[1871].speaker SPEAKER_20
transcript.pyannote[1871].start 10285.32659375
transcript.pyannote[1871].end 10285.86659375
transcript.pyannote[1872].speaker SPEAKER_24
transcript.pyannote[1872].start 10286.23784375
transcript.pyannote[1872].end 10288.58346875
transcript.pyannote[1873].speaker SPEAKER_24
transcript.pyannote[1873].start 10289.05596875
transcript.pyannote[1873].end 10290.99659375
transcript.pyannote[1874].speaker SPEAKER_24
transcript.pyannote[1874].start 10291.19909375
transcript.pyannote[1874].end 10292.21159375
transcript.pyannote[1875].speaker SPEAKER_24
transcript.pyannote[1875].start 10292.90346875
transcript.pyannote[1875].end 10293.62909375
transcript.pyannote[1876].speaker SPEAKER_09
transcript.pyannote[1876].start 10295.45159375
transcript.pyannote[1876].end 10300.34534375
transcript.pyannote[1877].speaker SPEAKER_24
transcript.pyannote[1877].start 10296.59909375
transcript.pyannote[1877].end 10296.83534375
transcript.pyannote[1878].speaker SPEAKER_24
transcript.pyannote[1878].start 10297.81409375
transcript.pyannote[1878].end 10301.81346875
transcript.pyannote[1879].speaker SPEAKER_09
transcript.pyannote[1879].start 10301.76284375
transcript.pyannote[1879].end 10302.23534375
transcript.pyannote[1880].speaker SPEAKER_24
transcript.pyannote[1880].start 10301.93159375
transcript.pyannote[1880].end 10303.83846875
transcript.pyannote[1881].speaker SPEAKER_20
transcript.pyannote[1881].start 10302.23534375
transcript.pyannote[1881].end 10302.33659375
transcript.pyannote[1882].speaker SPEAKER_20
transcript.pyannote[1882].start 10303.78784375
transcript.pyannote[1882].end 10304.15909375
transcript.pyannote[1883].speaker SPEAKER_24
transcript.pyannote[1883].start 10304.15909375
transcript.pyannote[1883].end 10311.97221875
transcript.pyannote[1884].speaker SPEAKER_20
transcript.pyannote[1884].start 10306.06596875
transcript.pyannote[1884].end 10306.58909375
transcript.pyannote[1885].speaker SPEAKER_09
transcript.pyannote[1885].start 10311.87096875
transcript.pyannote[1885].end 10311.95534375
transcript.pyannote[1886].speaker SPEAKER_09
transcript.pyannote[1886].start 10311.97221875
transcript.pyannote[1886].end 10313.65971875
transcript.pyannote[1887].speaker SPEAKER_24
transcript.pyannote[1887].start 10312.36034375
transcript.pyannote[1887].end 10315.71846875
transcript.pyannote[1888].speaker SPEAKER_24
transcript.pyannote[1888].start 10316.14034375
transcript.pyannote[1888].end 10320.12284375
transcript.pyannote[1889].speaker SPEAKER_24
transcript.pyannote[1889].start 10320.46034375
transcript.pyannote[1889].end 10322.16471875
transcript.pyannote[1890].speaker SPEAKER_24
transcript.pyannote[1890].start 10322.58659375
transcript.pyannote[1890].end 10325.40471875
transcript.pyannote[1891].speaker SPEAKER_24
transcript.pyannote[1891].start 10325.70846875
transcript.pyannote[1891].end 10328.40846875
transcript.pyannote[1892].speaker SPEAKER_24
transcript.pyannote[1892].start 10328.96534375
transcript.pyannote[1892].end 10329.18471875
transcript.pyannote[1893].speaker SPEAKER_24
transcript.pyannote[1893].start 10329.82596875
transcript.pyannote[1893].end 10331.20971875
transcript.pyannote[1894].speaker SPEAKER_24
transcript.pyannote[1894].start 10331.47971875
transcript.pyannote[1894].end 10333.33596875
transcript.pyannote[1895].speaker SPEAKER_24
transcript.pyannote[1895].start 10333.94346875
transcript.pyannote[1895].end 10342.53284375
transcript.pyannote[1896].speaker SPEAKER_20
transcript.pyannote[1896].start 10342.58346875
transcript.pyannote[1896].end 10343.02221875
transcript.pyannote[1897].speaker SPEAKER_24
transcript.pyannote[1897].start 10343.14034375
transcript.pyannote[1897].end 10353.72096875
transcript.pyannote[1898].speaker SPEAKER_24
transcript.pyannote[1898].start 10354.31159375
transcript.pyannote[1898].end 10355.96534375
transcript.pyannote[1899].speaker SPEAKER_24
transcript.pyannote[1899].start 10356.79221875
transcript.pyannote[1899].end 10358.69909375
transcript.pyannote[1900].speaker SPEAKER_24
transcript.pyannote[1900].start 10358.73284375
transcript.pyannote[1900].end 10366.57971875
transcript.pyannote[1901].speaker SPEAKER_24
transcript.pyannote[1901].start 10366.91721875
transcript.pyannote[1901].end 10384.82159375
transcript.pyannote[1902].speaker SPEAKER_09
transcript.pyannote[1902].start 10385.59784375
transcript.pyannote[1902].end 10386.89721875
transcript.pyannote[1903].speaker SPEAKER_24
transcript.pyannote[1903].start 10386.77909375
transcript.pyannote[1903].end 10391.03159375
transcript.pyannote[1904].speaker SPEAKER_24
transcript.pyannote[1904].start 10391.68971875
transcript.pyannote[1904].end 10394.38971875
transcript.pyannote[1905].speaker SPEAKER_24
transcript.pyannote[1905].start 10394.87909375
transcript.pyannote[1905].end 10395.46971875
transcript.pyannote[1906].speaker SPEAKER_24
transcript.pyannote[1906].start 10396.33034375
transcript.pyannote[1906].end 10397.95034375
transcript.pyannote[1907].speaker SPEAKER_24
transcript.pyannote[1907].start 10398.38909375
transcript.pyannote[1907].end 10399.46909375
transcript.pyannote[1908].speaker SPEAKER_24
transcript.pyannote[1908].start 10399.85721875
transcript.pyannote[1908].end 10402.21971875
transcript.pyannote[1909].speaker SPEAKER_24
transcript.pyannote[1909].start 10402.67534375
transcript.pyannote[1909].end 10404.26159375
transcript.pyannote[1910].speaker SPEAKER_24
transcript.pyannote[1910].start 10404.53159375
transcript.pyannote[1910].end 10407.14721875
transcript.pyannote[1911].speaker SPEAKER_24
transcript.pyannote[1911].start 10407.28221875
transcript.pyannote[1911].end 10415.31471875
transcript.pyannote[1912].speaker SPEAKER_24
transcript.pyannote[1912].start 10415.58471875
transcript.pyannote[1912].end 10423.83659375
transcript.pyannote[1913].speaker SPEAKER_24
transcript.pyannote[1913].start 10424.08971875
transcript.pyannote[1913].end 10424.89971875
transcript.pyannote[1914].speaker SPEAKER_24
transcript.pyannote[1914].start 10425.25409375
transcript.pyannote[1914].end 10426.03034375
transcript.pyannote[1915].speaker SPEAKER_24
transcript.pyannote[1915].start 10426.35096875
transcript.pyannote[1915].end 10428.00471875
transcript.pyannote[1916].speaker SPEAKER_24
transcript.pyannote[1916].start 10428.29159375
transcript.pyannote[1916].end 10431.14346875
transcript.pyannote[1917].speaker SPEAKER_24
transcript.pyannote[1917].start 10431.16034375
transcript.pyannote[1917].end 10434.48471875
transcript.pyannote[1918].speaker SPEAKER_24
transcript.pyannote[1918].start 10434.90659375
transcript.pyannote[1918].end 10437.11721875
transcript.pyannote[1919].speaker SPEAKER_24
transcript.pyannote[1919].start 10437.40409375
transcript.pyannote[1919].end 10445.03159375
transcript.pyannote[1920].speaker SPEAKER_24
transcript.pyannote[1920].start 10445.16659375
transcript.pyannote[1920].end 10446.70221875
transcript.pyannote[1921].speaker SPEAKER_24
transcript.pyannote[1921].start 10446.90471875
transcript.pyannote[1921].end 10447.59659375
transcript.pyannote[1922].speaker SPEAKER_20
transcript.pyannote[1922].start 10449.36846875
transcript.pyannote[1922].end 10449.60471875
transcript.pyannote[1923].speaker SPEAKER_24
transcript.pyannote[1923].start 10449.85784375
transcript.pyannote[1923].end 10454.98784375
transcript.pyannote[1924].speaker SPEAKER_24
transcript.pyannote[1924].start 10455.19034375
transcript.pyannote[1924].end 10465.75409375
transcript.pyannote[1925].speaker SPEAKER_24
transcript.pyannote[1925].start 10465.95659375
transcript.pyannote[1925].end 10468.03221875
transcript.pyannote[1926].speaker SPEAKER_24
transcript.pyannote[1926].start 10468.21784375
transcript.pyannote[1926].end 10474.17471875
transcript.pyannote[1927].speaker SPEAKER_24
transcript.pyannote[1927].start 10475.08596875
transcript.pyannote[1927].end 10475.55846875
transcript.pyannote[1928].speaker SPEAKER_24
transcript.pyannote[1928].start 10476.73971875
transcript.pyannote[1928].end 10477.53284375
transcript.pyannote[1929].speaker SPEAKER_09
transcript.pyannote[1929].start 10476.80721875
transcript.pyannote[1929].end 10477.49909375
transcript.pyannote[1930].speaker SPEAKER_24
transcript.pyannote[1930].start 10478.14034375
transcript.pyannote[1930].end 10478.71409375
transcript.pyannote[1931].speaker SPEAKER_24
transcript.pyannote[1931].start 10478.79846875
transcript.pyannote[1931].end 10479.37221875
transcript.pyannote[1932].speaker SPEAKER_09
transcript.pyannote[1932].start 10479.67596875
transcript.pyannote[1932].end 10482.29159375
transcript.pyannote[1933].speaker SPEAKER_24
transcript.pyannote[1933].start 10481.97096875
transcript.pyannote[1933].end 10485.14346875
transcript.pyannote[1934].speaker SPEAKER_09
transcript.pyannote[1934].start 10485.04221875
transcript.pyannote[1934].end 10485.05909375
transcript.pyannote[1935].speaker SPEAKER_09
transcript.pyannote[1935].start 10485.07596875
transcript.pyannote[1935].end 10485.36284375
transcript.pyannote[1936].speaker SPEAKER_24
transcript.pyannote[1936].start 10485.36284375
transcript.pyannote[1936].end 10487.42159375
transcript.pyannote[1937].speaker SPEAKER_09
transcript.pyannote[1937].start 10485.39659375
transcript.pyannote[1937].end 10485.41346875
transcript.pyannote[1938].speaker SPEAKER_09
transcript.pyannote[1938].start 10487.10096875
transcript.pyannote[1938].end 10487.40471875
transcript.pyannote[1939].speaker SPEAKER_19
transcript.pyannote[1939].start 10487.40471875
transcript.pyannote[1939].end 10487.82659375
transcript.pyannote[1940].speaker SPEAKER_24
transcript.pyannote[1940].start 10487.79284375
transcript.pyannote[1940].end 10488.53534375
transcript.pyannote[1941].speaker SPEAKER_09
transcript.pyannote[1941].start 10487.82659375
transcript.pyannote[1941].end 10487.97846875
transcript.pyannote[1942].speaker SPEAKER_19
transcript.pyannote[1942].start 10487.97846875
transcript.pyannote[1942].end 10488.31596875
transcript.pyannote[1943].speaker SPEAKER_09
transcript.pyannote[1943].start 10488.31596875
transcript.pyannote[1943].end 10488.36659375
transcript.pyannote[1944].speaker SPEAKER_19
transcript.pyannote[1944].start 10488.36659375
transcript.pyannote[1944].end 10488.40034375
transcript.pyannote[1945].speaker SPEAKER_09
transcript.pyannote[1945].start 10488.40034375
transcript.pyannote[1945].end 10488.48471875
transcript.pyannote[1946].speaker SPEAKER_19
transcript.pyannote[1946].start 10488.48471875
transcript.pyannote[1946].end 10488.51846875
transcript.pyannote[1947].speaker SPEAKER_19
transcript.pyannote[1947].start 10488.53534375
transcript.pyannote[1947].end 10488.63659375
transcript.pyannote[1948].speaker SPEAKER_24
transcript.pyannote[1948].start 10488.63659375
transcript.pyannote[1948].end 10488.65346875
transcript.pyannote[1949].speaker SPEAKER_09
transcript.pyannote[1949].start 10488.85596875
transcript.pyannote[1949].end 10488.97409375
transcript.pyannote[1950].speaker SPEAKER_24
transcript.pyannote[1950].start 10488.97409375
transcript.pyannote[1950].end 10489.63221875
transcript.pyannote[1951].speaker SPEAKER_09
transcript.pyannote[1951].start 10489.24409375
transcript.pyannote[1951].end 10489.66596875
transcript.pyannote[1952].speaker SPEAKER_20
transcript.pyannote[1952].start 10489.63221875
transcript.pyannote[1952].end 10489.81784375
transcript.pyannote[1953].speaker SPEAKER_09
transcript.pyannote[1953].start 10489.81784375
transcript.pyannote[1953].end 10489.96971875
transcript.pyannote[1954].speaker SPEAKER_19
transcript.pyannote[1954].start 10490.62784375
transcript.pyannote[1954].end 10492.58534375
transcript.pyannote[1955].speaker SPEAKER_19
transcript.pyannote[1955].start 10492.87221875
transcript.pyannote[1955].end 10494.99846875
transcript.pyannote[1956].speaker SPEAKER_01
transcript.pyannote[1956].start 10505.20784375
transcript.pyannote[1956].end 10507.80659375
transcript.pyannote[1957].speaker SPEAKER_01
transcript.pyannote[1957].start 10508.12721875
transcript.pyannote[1957].end 10509.05534375
transcript.pyannote[1958].speaker SPEAKER_09
transcript.pyannote[1958].start 10512.91971875
transcript.pyannote[1958].end 10512.93659375
transcript.pyannote[1959].speaker SPEAKER_01
transcript.pyannote[1959].start 10512.93659375
transcript.pyannote[1959].end 10543.90221875
transcript.pyannote[1960].speaker SPEAKER_01
transcript.pyannote[1960].start 10544.40846875
transcript.pyannote[1960].end 10545.04971875
transcript.pyannote[1961].speaker SPEAKER_01
transcript.pyannote[1961].start 10545.23534375
transcript.pyannote[1961].end 10567.45971875
transcript.pyannote[1962].speaker SPEAKER_01
transcript.pyannote[1962].start 10567.86471875
transcript.pyannote[1962].end 10588.08096875
transcript.pyannote[1963].speaker SPEAKER_01
transcript.pyannote[1963].start 10588.16534375
transcript.pyannote[1963].end 10589.73471875
transcript.pyannote[1964].speaker SPEAKER_01
transcript.pyannote[1964].start 10590.24096875
transcript.pyannote[1964].end 10599.52221875
transcript.pyannote[1965].speaker SPEAKER_01
transcript.pyannote[1965].start 10599.64034375
transcript.pyannote[1965].end 10603.35284375
transcript.pyannote[1966].speaker SPEAKER_01
transcript.pyannote[1966].start 10604.36534375
transcript.pyannote[1966].end 10614.76034375
transcript.pyannote[1967].speaker SPEAKER_09
transcript.pyannote[1967].start 10615.40159375
transcript.pyannote[1967].end 10648.05471875
transcript.pyannote[1968].speaker SPEAKER_01
transcript.pyannote[1968].start 10623.99096875
transcript.pyannote[1968].end 10624.91909375
transcript.pyannote[1969].speaker SPEAKER_01
transcript.pyannote[1969].start 10625.29034375
transcript.pyannote[1969].end 10625.62784375
transcript.pyannote[1970].speaker SPEAKER_01
transcript.pyannote[1970].start 10646.06346875
transcript.pyannote[1970].end 10647.09284375
transcript.pyannote[1971].speaker SPEAKER_01
transcript.pyannote[1971].start 10648.89846875
transcript.pyannote[1971].end 10656.54284375
transcript.pyannote[1972].speaker SPEAKER_01
transcript.pyannote[1972].start 10656.88034375
transcript.pyannote[1972].end 10659.76596875
transcript.pyannote[1973].speaker SPEAKER_01
transcript.pyannote[1973].start 10659.78284375
transcript.pyannote[1973].end 10660.71096875
transcript.pyannote[1974].speaker SPEAKER_01
transcript.pyannote[1974].start 10660.96409375
transcript.pyannote[1974].end 10661.85846875
transcript.pyannote[1975].speaker SPEAKER_01
transcript.pyannote[1975].start 10661.92596875
transcript.pyannote[1975].end 10664.49096875
transcript.pyannote[1976].speaker SPEAKER_01
transcript.pyannote[1976].start 10664.82846875
transcript.pyannote[1976].end 10670.02596875
transcript.pyannote[1977].speaker SPEAKER_01
transcript.pyannote[1977].start 10670.32971875
transcript.pyannote[1977].end 10733.03721875
transcript.pyannote[1978].speaker SPEAKER_20
transcript.pyannote[1978].start 10708.38284375
transcript.pyannote[1978].end 10708.66971875
transcript.pyannote[1979].speaker SPEAKER_00
transcript.pyannote[1979].start 10708.66971875
transcript.pyannote[1979].end 10708.70346875
transcript.pyannote[1980].speaker SPEAKER_20
transcript.pyannote[1980].start 10709.71596875
transcript.pyannote[1980].end 10709.96909375
transcript.pyannote[1981].speaker SPEAKER_00
transcript.pyannote[1981].start 10709.96909375
transcript.pyannote[1981].end 10710.22221875
transcript.pyannote[1982].speaker SPEAKER_01
transcript.pyannote[1982].start 10733.23971875
transcript.pyannote[1982].end 10742.74034375
transcript.pyannote[1983].speaker SPEAKER_09
transcript.pyannote[1983].start 10733.52659375
transcript.pyannote[1983].end 10734.13409375
transcript.pyannote[1984].speaker SPEAKER_00
transcript.pyannote[1984].start 10735.36596875
transcript.pyannote[1984].end 10735.38284375
transcript.pyannote[1985].speaker SPEAKER_09
transcript.pyannote[1985].start 10735.38284375
transcript.pyannote[1985].end 10736.26034375
transcript.pyannote[1986].speaker SPEAKER_00
transcript.pyannote[1986].start 10736.26034375
transcript.pyannote[1986].end 10736.32784375
transcript.pyannote[1987].speaker SPEAKER_01
transcript.pyannote[1987].start 10743.01034375
transcript.pyannote[1987].end 10757.82659375
transcript.pyannote[1988].speaker SPEAKER_01
transcript.pyannote[1988].start 10758.19784375
transcript.pyannote[1988].end 10760.86409375
transcript.pyannote[1989].speaker SPEAKER_01
transcript.pyannote[1989].start 10761.31971875
transcript.pyannote[1989].end 10767.10784375
transcript.pyannote[1990].speaker SPEAKER_09
transcript.pyannote[1990].start 10767.63096875
transcript.pyannote[1990].end 10776.35534375
transcript.pyannote[1991].speaker SPEAKER_01
transcript.pyannote[1991].start 10769.13284375
transcript.pyannote[1991].end 10769.70659375
transcript.pyannote[1992].speaker SPEAKER_01
transcript.pyannote[1992].start 10769.97659375
transcript.pyannote[1992].end 10770.41534375
transcript.pyannote[1993].speaker SPEAKER_01
transcript.pyannote[1993].start 10774.41471875
transcript.pyannote[1993].end 10774.80284375
transcript.pyannote[1994].speaker SPEAKER_01
transcript.pyannote[1994].start 10775.98409375
transcript.pyannote[1994].end 10776.28784375
transcript.pyannote[1995].speaker SPEAKER_01
transcript.pyannote[1995].start 10776.35534375
transcript.pyannote[1995].end 10778.34659375
transcript.pyannote[1996].speaker SPEAKER_01
transcript.pyannote[1996].start 10778.63346875
transcript.pyannote[1996].end 10794.59721875
transcript.pyannote[1997].speaker SPEAKER_20
transcript.pyannote[1997].start 10783.86471875
transcript.pyannote[1997].end 10785.09659375
transcript.pyannote[1998].speaker SPEAKER_11
transcript.pyannote[1998].start 10785.09659375
transcript.pyannote[1998].end 10785.19784375
transcript.pyannote[1999].speaker SPEAKER_11
transcript.pyannote[1999].start 10790.47971875
transcript.pyannote[1999].end 10791.40784375
transcript.pyannote[2000].speaker SPEAKER_01
transcript.pyannote[2000].start 10795.40721875
transcript.pyannote[2000].end 10797.19596875
transcript.pyannote[2001].speaker SPEAKER_01
transcript.pyannote[2001].start 10797.58409375
transcript.pyannote[2001].end 10803.96284375
transcript.pyannote[2002].speaker SPEAKER_01
transcript.pyannote[2002].start 10804.41846875
transcript.pyannote[2002].end 10827.89159375
transcript.pyannote[2003].speaker SPEAKER_09
transcript.pyannote[2003].start 10815.40409375
transcript.pyannote[2003].end 10815.43784375
transcript.pyannote[2004].speaker SPEAKER_09
transcript.pyannote[2004].start 10815.50534375
transcript.pyannote[2004].end 10815.74159375
transcript.pyannote[2005].speaker SPEAKER_14
transcript.pyannote[2005].start 10816.19721875
transcript.pyannote[2005].end 10817.09159375
transcript.pyannote[2006].speaker SPEAKER_01
transcript.pyannote[2006].start 10828.27971875
transcript.pyannote[2006].end 10831.48596875
transcript.pyannote[2007].speaker SPEAKER_01
transcript.pyannote[2007].start 10831.68846875
transcript.pyannote[2007].end 10834.87784375
transcript.pyannote[2008].speaker SPEAKER_01
transcript.pyannote[2008].start 10835.40096875
transcript.pyannote[2008].end 10846.74096875
transcript.pyannote[2009].speaker SPEAKER_01
transcript.pyannote[2009].start 10847.36534375
transcript.pyannote[2009].end 10849.72784375
transcript.pyannote[2010].speaker SPEAKER_01
transcript.pyannote[2010].start 10850.21721875
transcript.pyannote[2010].end 10853.25471875
transcript.pyannote[2011].speaker SPEAKER_01
transcript.pyannote[2011].start 10853.45721875
transcript.pyannote[2011].end 10871.09159375
transcript.pyannote[2012].speaker SPEAKER_01
transcript.pyannote[2012].start 10871.36159375
transcript.pyannote[2012].end 10873.11659375
transcript.pyannote[2013].speaker SPEAKER_09
transcript.pyannote[2013].start 10873.57221875
transcript.pyannote[2013].end 10874.29784375
transcript.pyannote[2014].speaker SPEAKER_01
transcript.pyannote[2014].start 10874.29784375
transcript.pyannote[2014].end 10880.81159375
transcript.pyannote[2015].speaker SPEAKER_01
transcript.pyannote[2015].start 10881.16596875
transcript.pyannote[2015].end 10896.67409375
transcript.pyannote[2016].speaker SPEAKER_01
transcript.pyannote[2016].start 10896.75846875
transcript.pyannote[2016].end 10898.09159375
transcript.pyannote[2017].speaker SPEAKER_09
transcript.pyannote[2017].start 10896.80909375
transcript.pyannote[2017].end 10898.86784375
transcript.pyannote[2018].speaker SPEAKER_01
transcript.pyannote[2018].start 10898.31096875
transcript.pyannote[2018].end 10913.43096875
transcript.pyannote[2019].speaker SPEAKER_09
transcript.pyannote[2019].start 10912.94159375
transcript.pyannote[2019].end 10913.36346875
transcript.pyannote[2020].speaker SPEAKER_20
transcript.pyannote[2020].start 10913.36346875
transcript.pyannote[2020].end 10913.38034375
transcript.pyannote[2021].speaker SPEAKER_20
transcript.pyannote[2021].start 10913.43096875
transcript.pyannote[2021].end 10913.46471875
transcript.pyannote[2022].speaker SPEAKER_01
transcript.pyannote[2022].start 10913.46471875
transcript.pyannote[2022].end 10917.09284375
transcript.pyannote[2023].speaker SPEAKER_20
transcript.pyannote[2023].start 10913.56596875
transcript.pyannote[2023].end 10913.75159375
transcript.pyannote[2024].speaker SPEAKER_09
transcript.pyannote[2024].start 10913.75159375
transcript.pyannote[2024].end 10913.85284375
transcript.pyannote[2025].speaker SPEAKER_01
transcript.pyannote[2025].start 10917.24471875
transcript.pyannote[2025].end 10917.97034375
transcript.pyannote[2026].speaker SPEAKER_09
transcript.pyannote[2026].start 10917.97034375
transcript.pyannote[2026].end 10917.98721875
transcript.pyannote[2027].speaker SPEAKER_01
transcript.pyannote[2027].start 10917.98721875
transcript.pyannote[2027].end 10918.29096875
transcript.pyannote[2028].speaker SPEAKER_09
transcript.pyannote[2028].start 10918.29096875
transcript.pyannote[2028].end 10918.37534375
transcript.pyannote[2029].speaker SPEAKER_01
transcript.pyannote[2029].start 10918.37534375
transcript.pyannote[2029].end 10918.91534375
transcript.pyannote[2030].speaker SPEAKER_09
transcript.pyannote[2030].start 10918.91534375
transcript.pyannote[2030].end 10918.93221875
transcript.pyannote[2031].speaker SPEAKER_01
transcript.pyannote[2031].start 10918.93221875
transcript.pyannote[2031].end 10918.96596875
transcript.pyannote[2032].speaker SPEAKER_09
transcript.pyannote[2032].start 10918.96596875
transcript.pyannote[2032].end 10929.34409375
transcript.pyannote[2033].speaker SPEAKER_01
transcript.pyannote[2033].start 10921.71659375
transcript.pyannote[2033].end 10923.08346875
transcript.pyannote[2034].speaker SPEAKER_01
transcript.pyannote[2034].start 10926.50909375
transcript.pyannote[2034].end 10934.81159375
transcript.pyannote[2035].speaker SPEAKER_20
transcript.pyannote[2035].start 10932.83721875
transcript.pyannote[2035].end 10935.65534375
transcript.pyannote[2036].speaker SPEAKER_01
transcript.pyannote[2036].start 10936.19534375
transcript.pyannote[2036].end 10936.81971875
transcript.pyannote[2037].speaker SPEAKER_01
transcript.pyannote[2037].start 10937.07284375
transcript.pyannote[2037].end 10940.85284375
transcript.pyannote[2038].speaker SPEAKER_20
transcript.pyannote[2038].start 10940.81909375
transcript.pyannote[2038].end 10941.24096875
transcript.pyannote[2039].speaker SPEAKER_01
transcript.pyannote[2039].start 10941.24096875
transcript.pyannote[2039].end 10963.07721875
transcript.pyannote[2040].speaker SPEAKER_20
transcript.pyannote[2040].start 10947.36659375
transcript.pyannote[2040].end 10948.49721875
transcript.pyannote[2041].speaker SPEAKER_00
transcript.pyannote[2041].start 10950.38721875
transcript.pyannote[2041].end 10951.04534375
transcript.pyannote[2042].speaker SPEAKER_20
transcript.pyannote[2042].start 10958.03159375
transcript.pyannote[2042].end 10958.45346875
transcript.pyannote[2043].speaker SPEAKER_01
transcript.pyannote[2043].start 10964.00534375
transcript.pyannote[2043].end 10964.81534375
transcript.pyannote[2044].speaker SPEAKER_01
transcript.pyannote[2044].start 10965.13596875
transcript.pyannote[2044].end 10968.54471875
transcript.pyannote[2045].speaker SPEAKER_01
transcript.pyannote[2045].start 10968.78096875
transcript.pyannote[2045].end 10985.28471875
transcript.pyannote[2046].speaker SPEAKER_00
transcript.pyannote[2046].start 10975.24409375
transcript.pyannote[2046].end 10975.26096875
transcript.pyannote[2047].speaker SPEAKER_15
transcript.pyannote[2047].start 10975.26096875
transcript.pyannote[2047].end 10975.31159375
transcript.pyannote[2048].speaker SPEAKER_00
transcript.pyannote[2048].start 10975.31159375
transcript.pyannote[2048].end 10975.32846875
transcript.pyannote[2049].speaker SPEAKER_15
transcript.pyannote[2049].start 10975.32846875
transcript.pyannote[2049].end 10975.42971875
transcript.pyannote[2050].speaker SPEAKER_00
transcript.pyannote[2050].start 10975.42971875
transcript.pyannote[2050].end 10975.54784375
transcript.pyannote[2051].speaker SPEAKER_00
transcript.pyannote[2051].start 10975.98659375
transcript.pyannote[2051].end 10976.18909375
transcript.pyannote[2052].speaker SPEAKER_19
transcript.pyannote[2052].start 10980.17159375
transcript.pyannote[2052].end 10980.18846875
transcript.pyannote[2053].speaker SPEAKER_09
transcript.pyannote[2053].start 10980.18846875
transcript.pyannote[2053].end 10982.07846875
transcript.pyannote[2054].speaker SPEAKER_19
transcript.pyannote[2054].start 10983.51284375
transcript.pyannote[2054].end 10984.60971875
transcript.pyannote[2055].speaker SPEAKER_09
transcript.pyannote[2055].start 10984.60971875
transcript.pyannote[2055].end 10984.66034375
transcript.pyannote[2056].speaker SPEAKER_19
transcript.pyannote[2056].start 10984.66034375
transcript.pyannote[2056].end 10984.67721875
transcript.pyannote[2057].speaker SPEAKER_09
transcript.pyannote[2057].start 10984.67721875
transcript.pyannote[2057].end 10986.16221875
transcript.pyannote[2058].speaker SPEAKER_19
transcript.pyannote[2058].start 10986.66846875
transcript.pyannote[2058].end 10994.76846875
transcript.pyannote[2059].speaker SPEAKER_26
transcript.pyannote[2059].start 11009.46659375
transcript.pyannote[2059].end 11011.28909375
transcript.pyannote[2060].speaker SPEAKER_19
transcript.pyannote[2060].start 11011.47471875
transcript.pyannote[2060].end 11012.41971875
transcript.pyannote[2061].speaker SPEAKER_19
transcript.pyannote[2061].start 11017.12784375
transcript.pyannote[2061].end 11017.46534375
transcript.pyannote[2062].speaker SPEAKER_09
transcript.pyannote[2062].start 11017.46534375
transcript.pyannote[2062].end 11017.48221875
transcript.pyannote[2063].speaker SPEAKER_26
transcript.pyannote[2063].start 11017.80284375
transcript.pyannote[2063].end 11018.61284375
transcript.pyannote[2064].speaker SPEAKER_26
transcript.pyannote[2064].start 11018.81534375
transcript.pyannote[2064].end 11053.91534375
transcript.pyannote[2065].speaker SPEAKER_09
transcript.pyannote[2065].start 11055.33284375
transcript.pyannote[2065].end 11055.73784375
transcript.pyannote[2066].speaker SPEAKER_26
transcript.pyannote[2066].start 11056.10909375
transcript.pyannote[2066].end 11056.88534375
transcript.pyannote[2067].speaker SPEAKER_09
transcript.pyannote[2067].start 11056.53096875
transcript.pyannote[2067].end 11057.23971875
transcript.pyannote[2068].speaker SPEAKER_26
transcript.pyannote[2068].start 11057.13846875
transcript.pyannote[2068].end 11058.77534375
transcript.pyannote[2069].speaker SPEAKER_26
transcript.pyannote[2069].start 11059.14659375
transcript.pyannote[2069].end 11061.86346875
transcript.pyannote[2070].speaker SPEAKER_26
transcript.pyannote[2070].start 11065.32284375
transcript.pyannote[2070].end 11066.20034375
transcript.pyannote[2071].speaker SPEAKER_09
transcript.pyannote[2071].start 11065.66034375
transcript.pyannote[2071].end 11068.20846875
transcript.pyannote[2072].speaker SPEAKER_26
transcript.pyannote[2072].start 11066.79096875
transcript.pyannote[2072].end 11077.54034375
transcript.pyannote[2073].speaker SPEAKER_20
transcript.pyannote[2073].start 11077.30409375
transcript.pyannote[2073].end 11077.38846875
transcript.pyannote[2074].speaker SPEAKER_26
transcript.pyannote[2074].start 11077.96221875
transcript.pyannote[2074].end 11085.75846875
transcript.pyannote[2075].speaker SPEAKER_26
transcript.pyannote[2075].start 11085.97784375
transcript.pyannote[2075].end 11087.83409375
transcript.pyannote[2076].speaker SPEAKER_26
transcript.pyannote[2076].start 11087.95221875
transcript.pyannote[2076].end 11089.84221875
transcript.pyannote[2077].speaker SPEAKER_26
transcript.pyannote[2077].start 11090.07846875
transcript.pyannote[2077].end 11093.36909375
transcript.pyannote[2078].speaker SPEAKER_26
transcript.pyannote[2078].start 11094.55034375
transcript.pyannote[2078].end 11095.44471875
transcript.pyannote[2079].speaker SPEAKER_09
transcript.pyannote[2079].start 11095.66409375
transcript.pyannote[2079].end 11097.09846875
transcript.pyannote[2080].speaker SPEAKER_26
transcript.pyannote[2080].start 11096.67659375
transcript.pyannote[2080].end 11102.65034375
transcript.pyannote[2081].speaker SPEAKER_20
transcript.pyannote[2081].start 11102.65034375
transcript.pyannote[2081].end 11103.05534375
transcript.pyannote[2082].speaker SPEAKER_26
transcript.pyannote[2082].start 11103.00471875
transcript.pyannote[2082].end 11113.66971875
transcript.pyannote[2083].speaker SPEAKER_26
transcript.pyannote[2083].start 11114.31096875
transcript.pyannote[2083].end 11123.45721875
transcript.pyannote[2084].speaker SPEAKER_20
transcript.pyannote[2084].start 11114.91846875
transcript.pyannote[2084].end 11115.52596875
transcript.pyannote[2085].speaker SPEAKER_20
transcript.pyannote[2085].start 11116.18409375
transcript.pyannote[2085].end 11116.53846875
transcript.pyannote[2086].speaker SPEAKER_20
transcript.pyannote[2086].start 11119.01909375
transcript.pyannote[2086].end 11119.50846875
transcript.pyannote[2087].speaker SPEAKER_20
transcript.pyannote[2087].start 11119.86284375
transcript.pyannote[2087].end 11121.22971875
transcript.pyannote[2088].speaker SPEAKER_20
transcript.pyannote[2088].start 11121.51659375
transcript.pyannote[2088].end 11121.93846875
transcript.pyannote[2089].speaker SPEAKER_20
transcript.pyannote[2089].start 11123.28846875
transcript.pyannote[2089].end 11123.96346875
transcript.pyannote[2090].speaker SPEAKER_26
transcript.pyannote[2090].start 11124.48659375
transcript.pyannote[2090].end 11164.96971875
transcript.pyannote[2091].speaker SPEAKER_20
transcript.pyannote[2091].start 11143.75784375
transcript.pyannote[2091].end 11144.48346875
transcript.pyannote[2092].speaker SPEAKER_20
transcript.pyannote[2092].start 11147.47034375
transcript.pyannote[2092].end 11147.84159375
transcript.pyannote[2093].speaker SPEAKER_09
transcript.pyannote[2093].start 11165.03721875
transcript.pyannote[2093].end 11166.37034375
transcript.pyannote[2094].speaker SPEAKER_26
transcript.pyannote[2094].start 11166.92721875
transcript.pyannote[2094].end 11167.46721875
transcript.pyannote[2095].speaker SPEAKER_09
transcript.pyannote[2095].start 11166.94409375
transcript.pyannote[2095].end 11169.15471875
transcript.pyannote[2096].speaker SPEAKER_26
transcript.pyannote[2096].start 11169.12096875
transcript.pyannote[2096].end 11171.66909375
transcript.pyannote[2097].speaker SPEAKER_26
transcript.pyannote[2097].start 11171.83784375
transcript.pyannote[2097].end 11186.19846875
transcript.pyannote[2098].speaker SPEAKER_26
transcript.pyannote[2098].start 11186.60346875
transcript.pyannote[2098].end 11218.88534375
transcript.pyannote[2099].speaker SPEAKER_29
transcript.pyannote[2099].start 11205.11534375
transcript.pyannote[2099].end 11205.14909375
transcript.pyannote[2100].speaker SPEAKER_20
transcript.pyannote[2100].start 11205.14909375
transcript.pyannote[2100].end 11205.52034375
transcript.pyannote[2101].speaker SPEAKER_26
transcript.pyannote[2101].start 11219.30721875
transcript.pyannote[2101].end 11219.76284375
transcript.pyannote[2102].speaker SPEAKER_26
transcript.pyannote[2102].start 11220.18471875
transcript.pyannote[2102].end 11224.38659375
transcript.pyannote[2103].speaker SPEAKER_26
transcript.pyannote[2103].start 11224.42034375
transcript.pyannote[2103].end 11254.96409375
transcript.pyannote[2104].speaker SPEAKER_20
transcript.pyannote[2104].start 11254.89659375
transcript.pyannote[2104].end 11255.43659375
transcript.pyannote[2105].speaker SPEAKER_26
transcript.pyannote[2105].start 11254.98096875
transcript.pyannote[2105].end 11254.99784375
transcript.pyannote[2106].speaker SPEAKER_26
transcript.pyannote[2106].start 11255.08221875
transcript.pyannote[2106].end 11262.70971875
transcript.pyannote[2107].speaker SPEAKER_26
transcript.pyannote[2107].start 11262.72659375
transcript.pyannote[2107].end 11265.71346875
transcript.pyannote[2108].speaker SPEAKER_09
transcript.pyannote[2108].start 11266.75971875
transcript.pyannote[2108].end 11268.32909375
transcript.pyannote[2109].speaker SPEAKER_09
transcript.pyannote[2109].start 11268.66659375
transcript.pyannote[2109].end 11276.73284375
transcript.pyannote[2110].speaker SPEAKER_26
transcript.pyannote[2110].start 11275.02846875
transcript.pyannote[2110].end 11292.91596875
transcript.pyannote[2111].speaker SPEAKER_20
transcript.pyannote[2111].start 11279.23034375
transcript.pyannote[2111].end 11279.29784375
transcript.pyannote[2112].speaker SPEAKER_20
transcript.pyannote[2112].start 11279.41596875
transcript.pyannote[2112].end 11279.50034375
transcript.pyannote[2113].speaker SPEAKER_20
transcript.pyannote[2113].start 11281.84596875
transcript.pyannote[2113].end 11282.08221875
transcript.pyannote[2114].speaker SPEAKER_20
transcript.pyannote[2114].start 11292.91596875
transcript.pyannote[2114].end 11293.43909375
transcript.pyannote[2115].speaker SPEAKER_26
transcript.pyannote[2115].start 11292.98346875
transcript.pyannote[2115].end 11293.00034375
transcript.pyannote[2116].speaker SPEAKER_26
transcript.pyannote[2116].start 11293.28721875
transcript.pyannote[2116].end 11294.73846875
transcript.pyannote[2117].speaker SPEAKER_26
transcript.pyannote[2117].start 11295.09284375
transcript.pyannote[2117].end 11299.91909375
transcript.pyannote[2118].speaker SPEAKER_09
transcript.pyannote[2118].start 11297.20221875
transcript.pyannote[2118].end 11297.64096875
transcript.pyannote[2119].speaker SPEAKER_26
transcript.pyannote[2119].start 11300.23971875
transcript.pyannote[2119].end 11300.99909375
transcript.pyannote[2120].speaker SPEAKER_09
transcript.pyannote[2120].start 11301.79221875
transcript.pyannote[2120].end 11303.86784375
transcript.pyannote[2121].speaker SPEAKER_26
transcript.pyannote[2121].start 11303.78346875
transcript.pyannote[2121].end 11308.62659375
transcript.pyannote[2122].speaker SPEAKER_09
transcript.pyannote[2122].start 11304.05346875
transcript.pyannote[2122].end 11304.98159375
transcript.pyannote[2123].speaker SPEAKER_09
transcript.pyannote[2123].start 11306.24721875
transcript.pyannote[2123].end 11306.75346875
transcript.pyannote[2124].speaker SPEAKER_09
transcript.pyannote[2124].start 11308.62659375
transcript.pyannote[2124].end 11309.35221875
transcript.pyannote[2125].speaker SPEAKER_09
transcript.pyannote[2125].start 11310.11159375
transcript.pyannote[2125].end 11330.96909375
transcript.pyannote[2126].speaker SPEAKER_26
transcript.pyannote[2126].start 11330.64846875
transcript.pyannote[2126].end 11338.17471875
transcript.pyannote[2127].speaker SPEAKER_09
transcript.pyannote[2127].start 11335.55909375
transcript.pyannote[2127].end 11342.52846875
transcript.pyannote[2128].speaker SPEAKER_26
transcript.pyannote[2128].start 11339.76096875
transcript.pyannote[2128].end 11343.79409375
transcript.pyannote[2129].speaker SPEAKER_26
transcript.pyannote[2129].start 11343.86159375
transcript.pyannote[2129].end 11367.13221875
transcript.pyannote[2130].speaker SPEAKER_21
transcript.pyannote[2130].start 11348.73846875
transcript.pyannote[2130].end 11349.02534375
transcript.pyannote[2131].speaker SPEAKER_20
transcript.pyannote[2131].start 11349.02534375
transcript.pyannote[2131].end 11349.61596875
transcript.pyannote[2132].speaker SPEAKER_20
transcript.pyannote[2132].start 11351.35409375
transcript.pyannote[2132].end 11352.07971875
transcript.pyannote[2133].speaker SPEAKER_20
transcript.pyannote[2133].start 11356.92284375
transcript.pyannote[2133].end 11357.36159375
transcript.pyannote[2134].speaker SPEAKER_00
transcript.pyannote[2134].start 11357.36159375
transcript.pyannote[2134].end 11357.37846875
transcript.pyannote[2135].speaker SPEAKER_20
transcript.pyannote[2135].start 11367.13221875
transcript.pyannote[2135].end 11367.90846875
transcript.pyannote[2136].speaker SPEAKER_26
transcript.pyannote[2136].start 11367.50346875
transcript.pyannote[2136].end 11373.47721875
transcript.pyannote[2137].speaker SPEAKER_26
transcript.pyannote[2137].start 11373.57846875
transcript.pyannote[2137].end 11389.17096875
transcript.pyannote[2138].speaker SPEAKER_09
transcript.pyannote[2138].start 11389.47471875
transcript.pyannote[2138].end 11392.73159375
transcript.pyannote[2139].speaker SPEAKER_26
transcript.pyannote[2139].start 11392.68096875
transcript.pyannote[2139].end 11393.03534375
transcript.pyannote[2140].speaker SPEAKER_09
transcript.pyannote[2140].start 11393.42346875
transcript.pyannote[2140].end 11394.99284375
transcript.pyannote[2141].speaker SPEAKER_26
transcript.pyannote[2141].start 11393.99721875
transcript.pyannote[2141].end 11395.90409375
transcript.pyannote[2142].speaker SPEAKER_09
transcript.pyannote[2142].start 11397.20346875
transcript.pyannote[2142].end 11398.19909375
transcript.pyannote[2143].speaker SPEAKER_26
transcript.pyannote[2143].start 11398.19909375
transcript.pyannote[2143].end 11419.19159375
transcript.pyannote[2144].speaker SPEAKER_09
transcript.pyannote[2144].start 11398.21596875
transcript.pyannote[2144].end 11398.24971875
transcript.pyannote[2145].speaker SPEAKER_09
transcript.pyannote[2145].start 11398.77284375
transcript.pyannote[2145].end 11402.31659375
transcript.pyannote[2146].speaker SPEAKER_20
transcript.pyannote[2146].start 11403.32909375
transcript.pyannote[2146].end 11403.34596875
transcript.pyannote[2147].speaker SPEAKER_26
transcript.pyannote[2147].start 11420.10284375
transcript.pyannote[2147].end 11429.06346875
transcript.pyannote[2148].speaker SPEAKER_26
transcript.pyannote[2148].start 11429.28284375
transcript.pyannote[2148].end 11432.67471875
transcript.pyannote[2149].speaker SPEAKER_09
transcript.pyannote[2149].start 11433.85596875
transcript.pyannote[2149].end 11436.31971875
transcript.pyannote[2150].speaker SPEAKER_26
transcript.pyannote[2150].start 11436.69096875
transcript.pyannote[2150].end 11442.44534375
transcript.pyannote[2151].speaker SPEAKER_09
transcript.pyannote[2151].start 11438.90159375
transcript.pyannote[2151].end 11440.97721875
transcript.pyannote[2152].speaker SPEAKER_09
transcript.pyannote[2152].start 11442.91784375
transcript.pyannote[2152].end 11444.01471875
transcript.pyannote[2153].speaker SPEAKER_26
transcript.pyannote[2153].start 11444.67284375
transcript.pyannote[2153].end 11448.28409375
transcript.pyannote[2154].speaker SPEAKER_09
transcript.pyannote[2154].start 11445.85409375
transcript.pyannote[2154].end 11448.36846875
transcript.pyannote[2155].speaker SPEAKER_26
transcript.pyannote[2155].start 11448.33471875
transcript.pyannote[2155].end 11451.55784375
transcript.pyannote[2156].speaker SPEAKER_20
transcript.pyannote[2156].start 11448.36846875
transcript.pyannote[2156].end 11448.38534375
transcript.pyannote[2157].speaker SPEAKER_09
transcript.pyannote[2157].start 11448.87471875
transcript.pyannote[2157].end 11449.36409375
transcript.pyannote[2158].speaker SPEAKER_20
transcript.pyannote[2158].start 11449.36409375
transcript.pyannote[2158].end 11449.41471875
transcript.pyannote[2159].speaker SPEAKER_26
transcript.pyannote[2159].start 11451.76034375
transcript.pyannote[2159].end 11457.56534375
transcript.pyannote[2160].speaker SPEAKER_20
transcript.pyannote[2160].start 11454.00471875
transcript.pyannote[2160].end 11454.03846875
transcript.pyannote[2161].speaker SPEAKER_09
transcript.pyannote[2161].start 11454.03846875
transcript.pyannote[2161].end 11454.73034375
transcript.pyannote[2162].speaker SPEAKER_26
transcript.pyannote[2162].start 11458.94909375
transcript.pyannote[2162].end 11459.53971875
transcript.pyannote[2163].speaker SPEAKER_09
transcript.pyannote[2163].start 11460.13034375
transcript.pyannote[2163].end 11471.31846875
transcript.pyannote[2164].speaker SPEAKER_26
transcript.pyannote[2164].start 11465.05784375
transcript.pyannote[2164].end 11466.30659375
transcript.pyannote[2165].speaker SPEAKER_26
transcript.pyannote[2165].start 11468.83784375
transcript.pyannote[2165].end 11470.87971875
transcript.pyannote[2166].speaker SPEAKER_26
transcript.pyannote[2166].start 11471.30159375
transcript.pyannote[2166].end 11483.99159375
transcript.pyannote[2167].speaker SPEAKER_26
transcript.pyannote[2167].start 11485.72971875
transcript.pyannote[2167].end 11491.92284375
transcript.pyannote[2168].speaker SPEAKER_09
transcript.pyannote[2168].start 11491.82159375
transcript.pyannote[2168].end 11495.02784375
transcript.pyannote[2169].speaker SPEAKER_09
transcript.pyannote[2169].start 11495.60159375
transcript.pyannote[2169].end 11496.79971875
transcript.pyannote[2170].speaker SPEAKER_26
transcript.pyannote[2170].start 11497.45784375
transcript.pyannote[2170].end 11513.86034375
transcript.pyannote[2171].speaker SPEAKER_09
transcript.pyannote[2171].start 11500.93409375
transcript.pyannote[2171].end 11502.79034375
transcript.pyannote[2172].speaker SPEAKER_09
transcript.pyannote[2172].start 11503.48221875
transcript.pyannote[2172].end 11504.69721875
transcript.pyannote[2173].speaker SPEAKER_26
transcript.pyannote[2173].start 11514.36659375
transcript.pyannote[2173].end 11520.30659375
transcript.pyannote[2174].speaker SPEAKER_26
transcript.pyannote[2174].start 11520.39096875
transcript.pyannote[2174].end 11520.40784375
transcript.pyannote[2175].speaker SPEAKER_09
transcript.pyannote[2175].start 11520.40784375
transcript.pyannote[2175].end 11521.03221875
transcript.pyannote[2176].speaker SPEAKER_26
transcript.pyannote[2176].start 11520.67784375
transcript.pyannote[2176].end 11520.84659375
transcript.pyannote[2177].speaker SPEAKER_20
transcript.pyannote[2177].start 11521.03221875
transcript.pyannote[2177].end 11521.52159375
transcript.pyannote[2178].speaker SPEAKER_26
transcript.pyannote[2178].start 11521.47096875
transcript.pyannote[2178].end 11592.24471875
transcript.pyannote[2179].speaker SPEAKER_09
transcript.pyannote[2179].start 11521.52159375
transcript.pyannote[2179].end 11521.57221875
transcript.pyannote[2180].speaker SPEAKER_26
transcript.pyannote[2180].start 11592.39659375
transcript.pyannote[2180].end 11596.44659375
transcript.pyannote[2181].speaker SPEAKER_26
transcript.pyannote[2181].start 11596.59846875
transcript.pyannote[2181].end 11602.52159375
transcript.pyannote[2182].speaker SPEAKER_26
transcript.pyannote[2182].start 11604.61409375
transcript.pyannote[2182].end 11606.31846875
transcript.pyannote[2183].speaker SPEAKER_09
transcript.pyannote[2183].start 11606.72346875
transcript.pyannote[2183].end 11608.59659375
transcript.pyannote[2184].speaker SPEAKER_26
transcript.pyannote[2184].start 11608.44471875
transcript.pyannote[2184].end 11614.41846875
transcript.pyannote[2185].speaker SPEAKER_09
transcript.pyannote[2185].start 11610.30096875
transcript.pyannote[2185].end 11611.36409375
transcript.pyannote[2186].speaker SPEAKER_09
transcript.pyannote[2186].start 11613.69284375
transcript.pyannote[2186].end 11615.48159375
transcript.pyannote[2187].speaker SPEAKER_26
transcript.pyannote[2187].start 11615.70096875
transcript.pyannote[2187].end 11632.25534375
transcript.pyannote[2188].speaker SPEAKER_26
transcript.pyannote[2188].start 11632.59284375
transcript.pyannote[2188].end 11679.20159375
transcript.pyannote[2189].speaker SPEAKER_09
transcript.pyannote[2189].start 11679.65721875
transcript.pyannote[2189].end 11681.88471875
transcript.pyannote[2190].speaker SPEAKER_26
transcript.pyannote[2190].start 11682.32346875
transcript.pyannote[2190].end 11690.69346875
transcript.pyannote[2191].speaker SPEAKER_19
transcript.pyannote[2191].start 11688.46596875
transcript.pyannote[2191].end 11688.55034375
transcript.pyannote[2192].speaker SPEAKER_09
transcript.pyannote[2192].start 11688.55034375
transcript.pyannote[2192].end 11688.68534375
transcript.pyannote[2193].speaker SPEAKER_19
transcript.pyannote[2193].start 11688.68534375
transcript.pyannote[2193].end 11688.92159375
transcript.pyannote[2194].speaker SPEAKER_19
transcript.pyannote[2194].start 11689.15784375
transcript.pyannote[2194].end 11689.74846875
transcript.pyannote[2195].speaker SPEAKER_09
transcript.pyannote[2195].start 11689.74846875
transcript.pyannote[2195].end 11689.79909375
transcript.pyannote[2196].speaker SPEAKER_19
transcript.pyannote[2196].start 11689.79909375
transcript.pyannote[2196].end 11691.38534375
transcript.pyannote[2197].speaker SPEAKER_19
transcript.pyannote[2197].start 11692.66784375
transcript.pyannote[2197].end 11694.59159375
transcript.pyannote[2198].speaker SPEAKER_19
transcript.pyannote[2198].start 11695.16534375
transcript.pyannote[2198].end 11697.59534375
transcript.pyannote[2199].speaker SPEAKER_32
transcript.pyannote[2199].start 11701.83096875
transcript.pyannote[2199].end 11702.45534375
transcript.pyannote[2200].speaker SPEAKER_04
transcript.pyannote[2200].start 11704.04159375
transcript.pyannote[2200].end 11704.81784375
transcript.pyannote[2201].speaker SPEAKER_19
transcript.pyannote[2201].start 11711.75346875
transcript.pyannote[2201].end 11712.74909375
transcript.pyannote[2202].speaker SPEAKER_19
transcript.pyannote[2202].start 11713.55909375
transcript.pyannote[2202].end 11714.11596875
transcript.pyannote[2203].speaker SPEAKER_19
transcript.pyannote[2203].start 11715.46596875
transcript.pyannote[2203].end 11715.55034375
transcript.pyannote[2204].speaker SPEAKER_18
transcript.pyannote[2204].start 11715.55034375
transcript.pyannote[2204].end 11718.06471875
transcript.pyannote[2205].speaker SPEAKER_18
transcript.pyannote[2205].start 11721.22034375
transcript.pyannote[2205].end 11735.00721875
transcript.pyannote[2206].speaker SPEAKER_18
transcript.pyannote[2206].start 11735.07471875
transcript.pyannote[2206].end 11750.48159375
transcript.pyannote[2207].speaker SPEAKER_18
transcript.pyannote[2207].start 11750.90346875
transcript.pyannote[2207].end 11751.81471875
transcript.pyannote[2208].speaker SPEAKER_18
transcript.pyannote[2208].start 11752.55721875
transcript.pyannote[2208].end 11755.76346875
transcript.pyannote[2209].speaker SPEAKER_18
transcript.pyannote[2209].start 11756.03346875
transcript.pyannote[2209].end 11762.85096875
transcript.pyannote[2210].speaker SPEAKER_18
transcript.pyannote[2210].start 11763.22221875
transcript.pyannote[2210].end 11767.00221875
transcript.pyannote[2211].speaker SPEAKER_18
transcript.pyannote[2211].start 11767.22159375
transcript.pyannote[2211].end 11768.45346875
transcript.pyannote[2212].speaker SPEAKER_18
transcript.pyannote[2212].start 11768.79096875
transcript.pyannote[2212].end 11774.08971875
transcript.pyannote[2213].speaker SPEAKER_18
transcript.pyannote[2213].start 11774.47784375
transcript.pyannote[2213].end 11782.30784375
transcript.pyannote[2214].speaker SPEAKER_09
transcript.pyannote[2214].start 11782.22346875
transcript.pyannote[2214].end 11782.29096875
transcript.pyannote[2215].speaker SPEAKER_09
transcript.pyannote[2215].start 11782.30784375
transcript.pyannote[2215].end 11782.93221875
transcript.pyannote[2216].speaker SPEAKER_18
transcript.pyannote[2216].start 11783.40471875
transcript.pyannote[2216].end 11783.57346875
transcript.pyannote[2217].speaker SPEAKER_18
transcript.pyannote[2217].start 11784.09659375
transcript.pyannote[2217].end 11791.31909375
transcript.pyannote[2218].speaker SPEAKER_18
transcript.pyannote[2218].start 11791.42034375
transcript.pyannote[2218].end 11797.02284375
transcript.pyannote[2219].speaker SPEAKER_18
transcript.pyannote[2219].start 11797.12409375
transcript.pyannote[2219].end 11798.79471875
transcript.pyannote[2220].speaker SPEAKER_18
transcript.pyannote[2220].start 11799.01409375
transcript.pyannote[2220].end 11806.50659375
transcript.pyannote[2221].speaker SPEAKER_18
transcript.pyannote[2221].start 11806.96221875
transcript.pyannote[2221].end 11827.02659375
transcript.pyannote[2222].speaker SPEAKER_18
transcript.pyannote[2222].start 11827.43159375
transcript.pyannote[2222].end 11831.59971875
transcript.pyannote[2223].speaker SPEAKER_18
transcript.pyannote[2223].start 11832.62909375
transcript.pyannote[2223].end 11837.55659375
transcript.pyannote[2224].speaker SPEAKER_09
transcript.pyannote[2224].start 11838.13034375
transcript.pyannote[2224].end 11843.56409375
transcript.pyannote[2225].speaker SPEAKER_31
transcript.pyannote[2225].start 11844.23909375
transcript.pyannote[2225].end 11869.16346875
transcript.pyannote[2226].speaker SPEAKER_31
transcript.pyannote[2226].start 11869.58534375
transcript.pyannote[2226].end 11898.82971875
transcript.pyannote[2227].speaker SPEAKER_20
transcript.pyannote[2227].start 11892.07971875
transcript.pyannote[2227].end 11892.09659375
transcript.pyannote[2228].speaker SPEAKER_18
transcript.pyannote[2228].start 11892.14721875
transcript.pyannote[2228].end 11892.28221875
transcript.pyannote[2229].speaker SPEAKER_20
transcript.pyannote[2229].start 11893.19346875
transcript.pyannote[2229].end 11893.21034375
transcript.pyannote[2230].speaker SPEAKER_18
transcript.pyannote[2230].start 11893.21034375
transcript.pyannote[2230].end 11893.27784375
transcript.pyannote[2231].speaker SPEAKER_18
transcript.pyannote[2231].start 11898.50909375
transcript.pyannote[2231].end 11902.57596875
transcript.pyannote[2232].speaker SPEAKER_18
transcript.pyannote[2232].start 11902.74471875
transcript.pyannote[2232].end 11911.30034375
transcript.pyannote[2233].speaker SPEAKER_18
transcript.pyannote[2233].start 11911.80659375
transcript.pyannote[2233].end 11912.85284375
transcript.pyannote[2234].speaker SPEAKER_31
transcript.pyannote[2234].start 11913.08909375
transcript.pyannote[2234].end 11930.85846875
transcript.pyannote[2235].speaker SPEAKER_18
transcript.pyannote[2235].start 11930.25096875
transcript.pyannote[2235].end 11949.64034375
transcript.pyannote[2236].speaker SPEAKER_09
transcript.pyannote[2236].start 11949.64034375
transcript.pyannote[2236].end 11951.37846875
transcript.pyannote[2237].speaker SPEAKER_18
transcript.pyannote[2237].start 11950.04534375
transcript.pyannote[2237].end 11954.82096875
transcript.pyannote[2238].speaker SPEAKER_18
transcript.pyannote[2238].start 11954.98971875
transcript.pyannote[2238].end 11960.87909375
transcript.pyannote[2239].speaker SPEAKER_18
transcript.pyannote[2239].start 11961.18284375
transcript.pyannote[2239].end 11964.57471875
transcript.pyannote[2240].speaker SPEAKER_18
transcript.pyannote[2240].start 11964.84471875
transcript.pyannote[2240].end 11965.80659375
transcript.pyannote[2241].speaker SPEAKER_18
transcript.pyannote[2241].start 11966.32971875
transcript.pyannote[2241].end 11969.02971875
transcript.pyannote[2242].speaker SPEAKER_18
transcript.pyannote[2242].start 11969.75534375
transcript.pyannote[2242].end 11974.19346875
transcript.pyannote[2243].speaker SPEAKER_18
transcript.pyannote[2243].start 11974.24409375
transcript.pyannote[2243].end 11975.52659375
transcript.pyannote[2244].speaker SPEAKER_18
transcript.pyannote[2244].start 11976.21846875
transcript.pyannote[2244].end 11977.99034375
transcript.pyannote[2245].speaker SPEAKER_18
transcript.pyannote[2245].start 11978.34471875
transcript.pyannote[2245].end 11981.07846875
transcript.pyannote[2246].speaker SPEAKER_18
transcript.pyannote[2246].start 11981.21346875
transcript.pyannote[2246].end 11982.36096875
transcript.pyannote[2247].speaker SPEAKER_18
transcript.pyannote[2247].start 11982.59721875
transcript.pyannote[2247].end 11985.04409375
transcript.pyannote[2248].speaker SPEAKER_18
transcript.pyannote[2248].start 11985.49971875
transcript.pyannote[2248].end 11990.17409375
transcript.pyannote[2249].speaker SPEAKER_18
transcript.pyannote[2249].start 11990.51159375
transcript.pyannote[2249].end 12012.51659375
transcript.pyannote[2250].speaker SPEAKER_18
transcript.pyannote[2250].start 12012.88784375
transcript.pyannote[2250].end 12014.67659375
transcript.pyannote[2251].speaker SPEAKER_18
transcript.pyannote[2251].start 12015.52034375
transcript.pyannote[2251].end 12016.07721875
transcript.pyannote[2252].speaker SPEAKER_18
transcript.pyannote[2252].start 12016.85346875
transcript.pyannote[2252].end 12017.08971875
transcript.pyannote[2253].speaker SPEAKER_18
transcript.pyannote[2253].start 12017.25846875
transcript.pyannote[2253].end 12019.85721875
transcript.pyannote[2254].speaker SPEAKER_18
transcript.pyannote[2254].start 12020.48159375
transcript.pyannote[2254].end 12046.08096875
transcript.pyannote[2255].speaker SPEAKER_18
transcript.pyannote[2255].start 12046.41846875
transcript.pyannote[2255].end 12053.16846875
transcript.pyannote[2256].speaker SPEAKER_18
transcript.pyannote[2256].start 12054.19784375
transcript.pyannote[2256].end 12054.94034375
transcript.pyannote[2257].speaker SPEAKER_18
transcript.pyannote[2257].start 12055.53096875
transcript.pyannote[2257].end 12058.87221875
transcript.pyannote[2258].speaker SPEAKER_18
transcript.pyannote[2258].start 12059.61471875
transcript.pyannote[2258].end 12066.98909375
transcript.pyannote[2259].speaker SPEAKER_18
transcript.pyannote[2259].start 12067.83284375
transcript.pyannote[2259].end 12070.54971875
transcript.pyannote[2260].speaker SPEAKER_18
transcript.pyannote[2260].start 12071.25846875
transcript.pyannote[2260].end 12080.65784375
transcript.pyannote[2261].speaker SPEAKER_18
transcript.pyannote[2261].start 12081.38346875
transcript.pyannote[2261].end 12084.13409375
transcript.pyannote[2262].speaker SPEAKER_18
transcript.pyannote[2262].start 12084.30284375
transcript.pyannote[2262].end 12087.57659375
transcript.pyannote[2263].speaker SPEAKER_18
transcript.pyannote[2263].start 12087.62721875
transcript.pyannote[2263].end 12102.08909375
transcript.pyannote[2264].speaker SPEAKER_18
transcript.pyannote[2264].start 12102.30846875
transcript.pyannote[2264].end 12108.50159375
transcript.pyannote[2265].speaker SPEAKER_18
transcript.pyannote[2265].start 12108.80534375
transcript.pyannote[2265].end 12116.55096875
transcript.pyannote[2266].speaker SPEAKER_18
transcript.pyannote[2266].start 12116.80409375
transcript.pyannote[2266].end 12119.60534375
transcript.pyannote[2267].speaker SPEAKER_09
transcript.pyannote[2267].start 12120.46596875
transcript.pyannote[2267].end 12122.03534375
transcript.pyannote[2268].speaker SPEAKER_18
transcript.pyannote[2268].start 12122.03534375
transcript.pyannote[2268].end 12138.52221875
transcript.pyannote[2269].speaker SPEAKER_09
transcript.pyannote[2269].start 12137.32409375
transcript.pyannote[2269].end 12137.45909375
transcript.pyannote[2270].speaker SPEAKER_19
transcript.pyannote[2270].start 12137.45909375
transcript.pyannote[2270].end 12137.84721875
transcript.pyannote[2271].speaker SPEAKER_09
transcript.pyannote[2271].start 12137.84721875
transcript.pyannote[2271].end 12137.86409375
transcript.pyannote[2272].speaker SPEAKER_18
transcript.pyannote[2272].start 12139.61909375
transcript.pyannote[2272].end 12139.63596875
transcript.pyannote[2273].speaker SPEAKER_19
transcript.pyannote[2273].start 12139.63596875
transcript.pyannote[2273].end 12148.07346875
transcript.pyannote[2274].speaker SPEAKER_19
transcript.pyannote[2274].start 12148.71471875
transcript.pyannote[2274].end 12150.36846875
transcript.pyannote[2275].speaker SPEAKER_17
transcript.pyannote[2275].start 12160.37534375
transcript.pyannote[2275].end 12163.29471875
transcript.pyannote[2276].speaker SPEAKER_09
transcript.pyannote[2276].start 12167.10846875
transcript.pyannote[2276].end 12167.66534375
transcript.pyannote[2277].speaker SPEAKER_17
transcript.pyannote[2277].start 12167.66534375
transcript.pyannote[2277].end 12172.06971875
transcript.pyannote[2278].speaker SPEAKER_17
transcript.pyannote[2278].start 12172.28909375
transcript.pyannote[2278].end 12178.95471875
transcript.pyannote[2279].speaker SPEAKER_17
transcript.pyannote[2279].start 12179.14034375
transcript.pyannote[2279].end 12193.87221875
transcript.pyannote[2280].speaker SPEAKER_00
transcript.pyannote[2280].start 12191.47596875
transcript.pyannote[2280].end 12191.50971875
transcript.pyannote[2281].speaker SPEAKER_20
transcript.pyannote[2281].start 12191.50971875
transcript.pyannote[2281].end 12191.52659375
transcript.pyannote[2282].speaker SPEAKER_00
transcript.pyannote[2282].start 12191.52659375
transcript.pyannote[2282].end 12191.69534375
transcript.pyannote[2283].speaker SPEAKER_17
transcript.pyannote[2283].start 12194.37846875
transcript.pyannote[2283].end 12199.28909375
transcript.pyannote[2284].speaker SPEAKER_17
transcript.pyannote[2284].start 12199.87971875
transcript.pyannote[2284].end 12203.06909375
transcript.pyannote[2285].speaker SPEAKER_17
transcript.pyannote[2285].start 12203.60909375
transcript.pyannote[2285].end 12205.81971875
transcript.pyannote[2286].speaker SPEAKER_17
transcript.pyannote[2286].start 12206.39346875
transcript.pyannote[2286].end 12211.47284375
transcript.pyannote[2287].speaker SPEAKER_17
transcript.pyannote[2287].start 12211.75971875
transcript.pyannote[2287].end 12212.70471875
transcript.pyannote[2288].speaker SPEAKER_17
transcript.pyannote[2288].start 12212.87346875
transcript.pyannote[2288].end 12220.72034375
transcript.pyannote[2289].speaker SPEAKER_20
transcript.pyannote[2289].start 12220.61909375
transcript.pyannote[2289].end 12220.68659375
transcript.pyannote[2290].speaker SPEAKER_20
transcript.pyannote[2290].start 12220.72034375
transcript.pyannote[2290].end 12220.85534375
transcript.pyannote[2291].speaker SPEAKER_17
transcript.pyannote[2291].start 12220.85534375
transcript.pyannote[2291].end 12232.56659375
transcript.pyannote[2292].speaker SPEAKER_20
transcript.pyannote[2292].start 12220.88909375
transcript.pyannote[2292].end 12221.09159375
transcript.pyannote[2293].speaker SPEAKER_17
transcript.pyannote[2293].start 12233.08971875
transcript.pyannote[2293].end 12246.10034375
transcript.pyannote[2294].speaker SPEAKER_17
transcript.pyannote[2294].start 12246.42096875
transcript.pyannote[2294].end 12252.07409375
transcript.pyannote[2295].speaker SPEAKER_17
transcript.pyannote[2295].start 12252.42846875
transcript.pyannote[2295].end 12259.17846875
transcript.pyannote[2296].speaker SPEAKER_17
transcript.pyannote[2296].start 12259.36409375
transcript.pyannote[2296].end 12299.69534375
transcript.pyannote[2297].speaker SPEAKER_20
transcript.pyannote[2297].start 12271.96971875
transcript.pyannote[2297].end 12272.54346875
transcript.pyannote[2298].speaker SPEAKER_17
transcript.pyannote[2298].start 12300.52221875
transcript.pyannote[2298].end 12309.26346875
transcript.pyannote[2299].speaker SPEAKER_17
transcript.pyannote[2299].start 12309.61784375
transcript.pyannote[2299].end 12318.56159375
transcript.pyannote[2300].speaker SPEAKER_19
transcript.pyannote[2300].start 12318.56159375
transcript.pyannote[2300].end 12318.76409375
transcript.pyannote[2301].speaker SPEAKER_17
transcript.pyannote[2301].start 12319.67534375
transcript.pyannote[2301].end 12322.86471875
transcript.pyannote[2302].speaker SPEAKER_17
transcript.pyannote[2302].start 12323.70846875
transcript.pyannote[2302].end 12329.14221875
transcript.pyannote[2303].speaker SPEAKER_17
transcript.pyannote[2303].start 12329.68221875
transcript.pyannote[2303].end 12331.33596875
transcript.pyannote[2304].speaker SPEAKER_17
transcript.pyannote[2304].start 12331.94346875
transcript.pyannote[2304].end 12334.35659375
transcript.pyannote[2305].speaker SPEAKER_17
transcript.pyannote[2305].start 12334.84596875
transcript.pyannote[2305].end 12341.42721875
transcript.pyannote[2306].speaker SPEAKER_17
transcript.pyannote[2306].start 12341.79846875
transcript.pyannote[2306].end 12346.62471875
transcript.pyannote[2307].speaker SPEAKER_17
transcript.pyannote[2307].start 12346.79346875
transcript.pyannote[2307].end 12351.36659375
transcript.pyannote[2308].speaker SPEAKER_17
transcript.pyannote[2308].start 12351.85596875
transcript.pyannote[2308].end 12353.27346875
transcript.pyannote[2309].speaker SPEAKER_17
transcript.pyannote[2309].start 12353.88096875
transcript.pyannote[2309].end 12355.58534375
transcript.pyannote[2310].speaker SPEAKER_17
transcript.pyannote[2310].start 12355.78784375
transcript.pyannote[2310].end 12361.66034375
transcript.pyannote[2311].speaker SPEAKER_17
transcript.pyannote[2311].start 12362.04846875
transcript.pyannote[2311].end 12373.21971875
transcript.pyannote[2312].speaker SPEAKER_17
transcript.pyannote[2312].start 12373.67534375
transcript.pyannote[2312].end 12383.58096875
transcript.pyannote[2313].speaker SPEAKER_17
transcript.pyannote[2313].start 12384.03659375
transcript.pyannote[2313].end 12394.00971875
transcript.pyannote[2314].speaker SPEAKER_17
transcript.pyannote[2314].start 12394.46534375
transcript.pyannote[2314].end 12398.48159375
transcript.pyannote[2315].speaker SPEAKER_17
transcript.pyannote[2315].start 12398.83596875
transcript.pyannote[2315].end 12427.60784375
transcript.pyannote[2316].speaker SPEAKER_09
transcript.pyannote[2316].start 12426.79784375
transcript.pyannote[2316].end 12427.72596875
transcript.pyannote[2317].speaker SPEAKER_17
transcript.pyannote[2317].start 12427.72596875
transcript.pyannote[2317].end 12427.84409375
transcript.pyannote[2318].speaker SPEAKER_09
transcript.pyannote[2318].start 12427.84409375
transcript.pyannote[2318].end 12448.44846875
transcript.pyannote[2319].speaker SPEAKER_00
transcript.pyannote[2319].start 12436.72034375
transcript.pyannote[2319].end 12437.15909375
transcript.pyannote[2320].speaker SPEAKER_17
transcript.pyannote[2320].start 12442.42409375
transcript.pyannote[2320].end 12443.04846875
transcript.pyannote[2321].speaker SPEAKER_17
transcript.pyannote[2321].start 12444.46596875
transcript.pyannote[2321].end 12445.49534375
transcript.pyannote[2322].speaker SPEAKER_17
transcript.pyannote[2322].start 12446.40659375
transcript.pyannote[2322].end 12462.35346875
transcript.pyannote[2323].speaker SPEAKER_09
transcript.pyannote[2323].start 12449.71409375
transcript.pyannote[2323].end 12449.78159375
transcript.pyannote[2324].speaker SPEAKER_09
transcript.pyannote[2324].start 12451.65471875
transcript.pyannote[2324].end 12452.05971875
transcript.pyannote[2325].speaker SPEAKER_00
transcript.pyannote[2325].start 12452.05971875
transcript.pyannote[2325].end 12452.09346875
transcript.pyannote[2326].speaker SPEAKER_09
transcript.pyannote[2326].start 12462.40409375
transcript.pyannote[2326].end 12463.11284375
transcript.pyannote[2327].speaker SPEAKER_17
transcript.pyannote[2327].start 12463.06221875
transcript.pyannote[2327].end 12552.80346875
transcript.pyannote[2328].speaker SPEAKER_09
transcript.pyannote[2328].start 12465.99846875
transcript.pyannote[2328].end 12466.42034375
transcript.pyannote[2329].speaker SPEAKER_07
transcript.pyannote[2329].start 12475.71846875
transcript.pyannote[2329].end 12476.12346875
transcript.pyannote[2330].speaker SPEAKER_00
transcript.pyannote[2330].start 12492.20534375
transcript.pyannote[2330].end 12492.64409375
transcript.pyannote[2331].speaker SPEAKER_00
transcript.pyannote[2331].start 12522.71534375
transcript.pyannote[2331].end 12523.17096875
transcript.pyannote[2332].speaker SPEAKER_09
transcript.pyannote[2332].start 12552.80346875
transcript.pyannote[2332].end 12552.83721875
transcript.pyannote[2333].speaker SPEAKER_17
transcript.pyannote[2333].start 12552.83721875
transcript.pyannote[2333].end 12552.87096875
transcript.pyannote[2334].speaker SPEAKER_09
transcript.pyannote[2334].start 12552.87096875
transcript.pyannote[2334].end 12552.92159375
transcript.pyannote[2335].speaker SPEAKER_17
transcript.pyannote[2335].start 12552.92159375
transcript.pyannote[2335].end 12552.93846875
transcript.pyannote[2336].speaker SPEAKER_09
transcript.pyannote[2336].start 12553.10721875
transcript.pyannote[2336].end 12555.53721875
transcript.pyannote[2337].speaker SPEAKER_17
transcript.pyannote[2337].start 12554.74409375
transcript.pyannote[2337].end 12557.03909375
transcript.pyannote[2338].speaker SPEAKER_19
transcript.pyannote[2338].start 12558.16971875
transcript.pyannote[2338].end 12562.54034375
transcript.pyannote[2339].speaker SPEAKER_11
transcript.pyannote[2339].start 12568.53096875
transcript.pyannote[2339].end 12573.35721875
transcript.pyannote[2340].speaker SPEAKER_09
transcript.pyannote[2340].start 12576.81659375
transcript.pyannote[2340].end 12577.47471875
transcript.pyannote[2341].speaker SPEAKER_11
transcript.pyannote[2341].start 12577.81221875
transcript.pyannote[2341].end 12641.66721875
transcript.pyannote[2342].speaker SPEAKER_11
transcript.pyannote[2342].start 12641.80221875
transcript.pyannote[2342].end 12673.03784375
transcript.pyannote[2343].speaker SPEAKER_11
transcript.pyannote[2343].start 12675.55221875
transcript.pyannote[2343].end 12677.35784375
transcript.pyannote[2344].speaker SPEAKER_11
transcript.pyannote[2344].start 12677.67846875
transcript.pyannote[2344].end 12680.68221875
transcript.pyannote[2345].speaker SPEAKER_11
transcript.pyannote[2345].start 12682.42034375
transcript.pyannote[2345].end 12696.46034375
transcript.pyannote[2346].speaker SPEAKER_11
transcript.pyannote[2346].start 12697.10159375
transcript.pyannote[2346].end 12706.31534375
transcript.pyannote[2347].speaker SPEAKER_11
transcript.pyannote[2347].start 12706.48409375
transcript.pyannote[2347].end 12707.54721875
transcript.pyannote[2348].speaker SPEAKER_11
transcript.pyannote[2348].start 12707.85096875
transcript.pyannote[2348].end 12708.81284375
transcript.pyannote[2349].speaker SPEAKER_11
transcript.pyannote[2349].start 12709.67346875
transcript.pyannote[2349].end 12711.25971875
transcript.pyannote[2350].speaker SPEAKER_11
transcript.pyannote[2350].start 12712.10346875
transcript.pyannote[2350].end 12728.62409375
transcript.pyannote[2351].speaker SPEAKER_11
transcript.pyannote[2351].start 12728.79284375
transcript.pyannote[2351].end 12735.05346875
transcript.pyannote[2352].speaker SPEAKER_11
transcript.pyannote[2352].start 12736.38659375
transcript.pyannote[2352].end 12736.45409375
transcript.pyannote[2353].speaker SPEAKER_20
transcript.pyannote[2353].start 12736.45409375
transcript.pyannote[2353].end 12736.63971875
transcript.pyannote[2354].speaker SPEAKER_11
transcript.pyannote[2354].start 12736.63971875
transcript.pyannote[2354].end 12749.27909375
transcript.pyannote[2355].speaker SPEAKER_09
transcript.pyannote[2355].start 12750.32534375
transcript.pyannote[2355].end 12755.42159375
transcript.pyannote[2356].speaker SPEAKER_11
transcript.pyannote[2356].start 12755.13471875
transcript.pyannote[2356].end 12759.58971875
transcript.pyannote[2357].speaker SPEAKER_09
transcript.pyannote[2357].start 12758.08784375
transcript.pyannote[2357].end 12760.51784375
transcript.pyannote[2358].speaker SPEAKER_11
transcript.pyannote[2358].start 12759.70784375
transcript.pyannote[2358].end 12779.46846875
transcript.pyannote[2359].speaker SPEAKER_11
transcript.pyannote[2359].start 12780.59909375
transcript.pyannote[2359].end 12782.65784375
transcript.pyannote[2360].speaker SPEAKER_11
transcript.pyannote[2360].start 12783.02909375
transcript.pyannote[2360].end 12789.08721875
transcript.pyannote[2361].speaker SPEAKER_09
transcript.pyannote[2361].start 12789.08721875
transcript.pyannote[2361].end 12795.02721875
transcript.pyannote[2362].speaker SPEAKER_11
transcript.pyannote[2362].start 12795.02721875
transcript.pyannote[2362].end 12809.69159375
transcript.pyannote[2363].speaker SPEAKER_11
transcript.pyannote[2363].start 12810.38346875
transcript.pyannote[2363].end 12811.71659375
transcript.pyannote[2364].speaker SPEAKER_11
transcript.pyannote[2364].start 12812.18909375
transcript.pyannote[2364].end 12827.56221875
transcript.pyannote[2365].speaker SPEAKER_11
transcript.pyannote[2365].start 12827.96721875
transcript.pyannote[2365].end 12833.48534375
transcript.pyannote[2366].speaker SPEAKER_11
transcript.pyannote[2366].start 12833.56971875
transcript.pyannote[2366].end 12838.12596875
transcript.pyannote[2367].speaker SPEAKER_11
transcript.pyannote[2367].start 12839.62784375
transcript.pyannote[2367].end 12841.58534375
transcript.pyannote[2368].speaker SPEAKER_11
transcript.pyannote[2368].start 12842.17596875
transcript.pyannote[2368].end 12849.31409375
transcript.pyannote[2369].speaker SPEAKER_11
transcript.pyannote[2369].start 12850.46159375
transcript.pyannote[2369].end 12853.56659375
transcript.pyannote[2370].speaker SPEAKER_09
transcript.pyannote[2370].start 12853.93784375
transcript.pyannote[2370].end 12853.95471875
transcript.pyannote[2371].speaker SPEAKER_11
transcript.pyannote[2371].start 12853.95471875
transcript.pyannote[2371].end 12854.39346875
transcript.pyannote[2372].speaker SPEAKER_09
transcript.pyannote[2372].start 12853.98846875
transcript.pyannote[2372].end 12858.88221875
transcript.pyannote[2373].speaker SPEAKER_11
transcript.pyannote[2373].start 12857.04284375
transcript.pyannote[2373].end 12859.89471875
transcript.pyannote[2374].speaker SPEAKER_09
transcript.pyannote[2374].start 12860.38409375
transcript.pyannote[2374].end 12861.16034375
transcript.pyannote[2375].speaker SPEAKER_11
transcript.pyannote[2375].start 12861.17721875
transcript.pyannote[2375].end 12869.44596875
transcript.pyannote[2376].speaker SPEAKER_09
transcript.pyannote[2376].start 12864.73784375
transcript.pyannote[2376].end 12864.83909375
transcript.pyannote[2377].speaker SPEAKER_09
transcript.pyannote[2377].start 12864.88971875
transcript.pyannote[2377].end 12864.90659375
transcript.pyannote[2378].speaker SPEAKER_09
transcript.pyannote[2378].start 12869.44596875
transcript.pyannote[2378].end 12869.46284375
transcript.pyannote[2379].speaker SPEAKER_09
transcript.pyannote[2379].start 12870.25596875
transcript.pyannote[2379].end 12875.03159375
transcript.pyannote[2380].speaker SPEAKER_11
transcript.pyannote[2380].start 12875.03159375
transcript.pyannote[2380].end 12887.18159375
transcript.pyannote[2381].speaker SPEAKER_11
transcript.pyannote[2381].start 12887.77221875
transcript.pyannote[2381].end 12894.53909375
transcript.pyannote[2382].speaker SPEAKER_11
transcript.pyannote[2382].start 12896.19284375
transcript.pyannote[2382].end 12897.52596875
transcript.pyannote[2383].speaker SPEAKER_09
transcript.pyannote[2383].start 12897.12096875
transcript.pyannote[2383].end 12898.30221875
transcript.pyannote[2384].speaker SPEAKER_11
transcript.pyannote[2384].start 12898.45409375
transcript.pyannote[2384].end 12898.79159375
transcript.pyannote[2385].speaker SPEAKER_11
transcript.pyannote[2385].start 12899.93909375
transcript.pyannote[2385].end 12901.72784375
transcript.pyannote[2386].speaker SPEAKER_09
transcript.pyannote[2386].start 12901.01909375
transcript.pyannote[2386].end 12901.67721875
transcript.pyannote[2387].speaker SPEAKER_09
transcript.pyannote[2387].start 12901.72784375
transcript.pyannote[2387].end 12901.77846875
transcript.pyannote[2388].speaker SPEAKER_09
transcript.pyannote[2388].start 12902.16659375
transcript.pyannote[2388].end 12905.06909375
transcript.pyannote[2389].speaker SPEAKER_11
transcript.pyannote[2389].start 12905.03534375
transcript.pyannote[2389].end 12916.25721875
transcript.pyannote[2390].speaker SPEAKER_09
transcript.pyannote[2390].start 12918.51846875
transcript.pyannote[2390].end 12920.54346875
transcript.pyannote[2391].speaker SPEAKER_11
transcript.pyannote[2391].start 12921.30284375
transcript.pyannote[2391].end 12949.50096875
transcript.pyannote[2392].speaker SPEAKER_11
transcript.pyannote[2392].start 12950.00721875
transcript.pyannote[2392].end 12971.15159375
transcript.pyannote[2393].speaker SPEAKER_11
transcript.pyannote[2393].start 12971.79284375
transcript.pyannote[2393].end 12981.07409375
transcript.pyannote[2394].speaker SPEAKER_11
transcript.pyannote[2394].start 12981.44534375
transcript.pyannote[2394].end 12990.91221875
transcript.pyannote[2395].speaker SPEAKER_11
transcript.pyannote[2395].start 12991.48596875
transcript.pyannote[2395].end 13012.51221875
transcript.pyannote[2396].speaker SPEAKER_11
transcript.pyannote[2396].start 13013.03534375
transcript.pyannote[2396].end 13032.89721875
transcript.pyannote[2397].speaker SPEAKER_11
transcript.pyannote[2397].start 13033.42034375
transcript.pyannote[2397].end 13045.50284375
transcript.pyannote[2398].speaker SPEAKER_11
transcript.pyannote[2398].start 13045.97534375
transcript.pyannote[2398].end 13065.85409375
transcript.pyannote[2399].speaker SPEAKER_11
transcript.pyannote[2399].start 13066.86659375
transcript.pyannote[2399].end 13067.82846875
transcript.pyannote[2400].speaker SPEAKER_11
transcript.pyannote[2400].start 13068.16596875
transcript.pyannote[2400].end 13088.48346875
transcript.pyannote[2401].speaker SPEAKER_09
transcript.pyannote[2401].start 13089.22596875
transcript.pyannote[2401].end 13090.18784375
transcript.pyannote[2402].speaker SPEAKER_11
transcript.pyannote[2402].start 13090.13721875
transcript.pyannote[2402].end 13094.03534375
transcript.pyannote[2403].speaker SPEAKER_09
transcript.pyannote[2403].start 13095.03096875
transcript.pyannote[2403].end 13108.96971875
transcript.pyannote[2404].speaker SPEAKER_11
transcript.pyannote[2404].start 13108.53096875
transcript.pyannote[2404].end 13108.93596875
transcript.pyannote[2405].speaker SPEAKER_11
transcript.pyannote[2405].start 13108.96971875
transcript.pyannote[2405].end 13114.09971875
transcript.pyannote[2406].speaker SPEAKER_20
transcript.pyannote[2406].start 13114.47096875
transcript.pyannote[2406].end 13115.55096875
transcript.pyannote[2407].speaker SPEAKER_11
transcript.pyannote[2407].start 13114.99409375
transcript.pyannote[2407].end 13125.92909375
transcript.pyannote[2408].speaker SPEAKER_11
transcript.pyannote[2408].start 13126.43534375
transcript.pyannote[2408].end 13129.72596875
transcript.pyannote[2409].speaker SPEAKER_11
transcript.pyannote[2409].start 13130.13096875
transcript.pyannote[2409].end 13144.18784375
transcript.pyannote[2410].speaker SPEAKER_09
transcript.pyannote[2410].start 13144.77846875
transcript.pyannote[2410].end 13146.02721875
transcript.pyannote[2411].speaker SPEAKER_11
transcript.pyannote[2411].start 13146.02721875
transcript.pyannote[2411].end 13146.39846875
transcript.pyannote[2412].speaker SPEAKER_09
transcript.pyannote[2412].start 13146.39846875
transcript.pyannote[2412].end 13146.46596875
transcript.pyannote[2413].speaker SPEAKER_11
transcript.pyannote[2413].start 13146.46596875
transcript.pyannote[2413].end 13160.06721875
transcript.pyannote[2414].speaker SPEAKER_11
transcript.pyannote[2414].start 13160.13471875
transcript.pyannote[2414].end 13161.18096875
transcript.pyannote[2415].speaker SPEAKER_11
transcript.pyannote[2415].start 13161.87284375
transcript.pyannote[2415].end 13164.15096875
transcript.pyannote[2416].speaker SPEAKER_11
transcript.pyannote[2416].start 13165.56846875
transcript.pyannote[2416].end 13167.22221875
transcript.pyannote[2417].speaker SPEAKER_11
transcript.pyannote[2417].start 13167.69471875
transcript.pyannote[2417].end 13176.21659375
transcript.pyannote[2418].speaker SPEAKER_11
transcript.pyannote[2418].start 13177.95471875
transcript.pyannote[2418].end 13179.25409375
transcript.pyannote[2419].speaker SPEAKER_11
transcript.pyannote[2419].start 13179.64221875
transcript.pyannote[2419].end 13195.16721875
transcript.pyannote[2420].speaker SPEAKER_11
transcript.pyannote[2420].start 13196.34846875
transcript.pyannote[2420].end 13198.59284375
transcript.pyannote[2421].speaker SPEAKER_09
transcript.pyannote[2421].start 13199.58846875
transcript.pyannote[2421].end 13202.01846875
transcript.pyannote[2422].speaker SPEAKER_09
transcript.pyannote[2422].start 13202.33909375
transcript.pyannote[2422].end 13208.61659375
transcript.pyannote[2423].speaker SPEAKER_09
transcript.pyannote[2423].start 13208.70096875
transcript.pyannote[2423].end 13212.46409375
transcript.pyannote[2424].speaker SPEAKER_09
transcript.pyannote[2424].start 13212.49784375
transcript.pyannote[2424].end 13217.25659375
transcript.pyannote[2425].speaker SPEAKER_11
transcript.pyannote[2425].start 13217.25659375
transcript.pyannote[2425].end 13218.37034375
transcript.pyannote[2426].speaker SPEAKER_09
transcript.pyannote[2426].start 13217.47596875
transcript.pyannote[2426].end 13218.35346875
transcript.pyannote[2427].speaker SPEAKER_09
transcript.pyannote[2427].start 13218.37034375
transcript.pyannote[2427].end 13218.84284375
transcript.pyannote[2428].speaker SPEAKER_11
transcript.pyannote[2428].start 13218.84284375
transcript.pyannote[2428].end 13221.07034375
transcript.pyannote[2429].speaker SPEAKER_11
transcript.pyannote[2429].start 13221.71159375
transcript.pyannote[2429].end 13247.00721875
transcript.pyannote[2430].speaker SPEAKER_11
transcript.pyannote[2430].start 13247.34471875
transcript.pyannote[2430].end 13252.60971875
transcript.pyannote[2431].speaker SPEAKER_11
transcript.pyannote[2431].start 13255.32659375
transcript.pyannote[2431].end 13256.08596875
transcript.pyannote[2432].speaker SPEAKER_09
transcript.pyannote[2432].start 13255.36034375
transcript.pyannote[2432].end 13261.28346875
transcript.pyannote[2433].speaker SPEAKER_11
transcript.pyannote[2433].start 13259.68034375
transcript.pyannote[2433].end 13260.15284375
transcript.pyannote[2434].speaker SPEAKER_09
transcript.pyannote[2434].start 13261.72221875
transcript.pyannote[2434].end 13268.97846875
transcript.pyannote[2435].speaker SPEAKER_20
transcript.pyannote[2435].start 13261.90784375
transcript.pyannote[2435].end 13262.44784375
transcript.pyannote[2436].speaker SPEAKER_00
transcript.pyannote[2436].start 13262.44784375
transcript.pyannote[2436].end 13263.66284375
transcript.pyannote[2437].speaker SPEAKER_20
transcript.pyannote[2437].start 13263.66284375
transcript.pyannote[2437].end 13264.03409375
transcript.pyannote[2438].speaker SPEAKER_11
transcript.pyannote[2438].start 13264.03409375
transcript.pyannote[2438].end 13264.05096875
transcript.pyannote[2439].speaker SPEAKER_11
transcript.pyannote[2439].start 13267.32471875
transcript.pyannote[2439].end 13272.33659375
transcript.pyannote[2440].speaker SPEAKER_09
transcript.pyannote[2440].start 13269.33284375
transcript.pyannote[2440].end 13269.46784375
transcript.pyannote[2441].speaker SPEAKER_11
transcript.pyannote[2441].start 13273.34909375
transcript.pyannote[2441].end 13275.57659375
transcript.pyannote[2442].speaker SPEAKER_09
transcript.pyannote[2442].start 13276.21784375
transcript.pyannote[2442].end 13283.20409375
transcript.pyannote[2443].speaker SPEAKER_09
transcript.pyannote[2443].start 13283.30534375
transcript.pyannote[2443].end 13288.03034375
transcript.pyannote[2444].speaker SPEAKER_11
transcript.pyannote[2444].start 13288.03034375
transcript.pyannote[2444].end 13294.89846875
transcript.pyannote[2445].speaker SPEAKER_11
transcript.pyannote[2445].start 13295.60721875
transcript.pyannote[2445].end 13368.32159375
transcript.pyannote[2446].speaker SPEAKER_11
transcript.pyannote[2446].start 13368.99659375
transcript.pyannote[2446].end 13371.79784375
transcript.pyannote[2447].speaker SPEAKER_11
transcript.pyannote[2447].start 13372.81034375
transcript.pyannote[2447].end 13391.18721875
transcript.pyannote[2448].speaker SPEAKER_11
transcript.pyannote[2448].start 13392.06471875
transcript.pyannote[2448].end 13397.88659375
transcript.pyannote[2449].speaker SPEAKER_11
transcript.pyannote[2449].start 13398.44346875
transcript.pyannote[2449].end 13402.86471875
transcript.pyannote[2450].speaker SPEAKER_11
transcript.pyannote[2450].start 13403.35409375
transcript.pyannote[2450].end 13423.50284375
transcript.pyannote[2451].speaker SPEAKER_11
transcript.pyannote[2451].start 13424.44784375
transcript.pyannote[2451].end 13431.23159375
transcript.pyannote[2452].speaker SPEAKER_11
transcript.pyannote[2452].start 13431.53534375
transcript.pyannote[2452].end 13435.18034375
transcript.pyannote[2453].speaker SPEAKER_11
transcript.pyannote[2453].start 13435.72034375
transcript.pyannote[2453].end 13437.99846875
transcript.pyannote[2454].speaker SPEAKER_11
transcript.pyannote[2454].start 13438.47096875
transcript.pyannote[2454].end 13448.14034375
transcript.pyannote[2455].speaker SPEAKER_11
transcript.pyannote[2455].start 13448.95034375
transcript.pyannote[2455].end 13454.06346875
transcript.pyannote[2456].speaker SPEAKER_11
transcript.pyannote[2456].start 13454.58659375
transcript.pyannote[2456].end 13455.64971875
transcript.pyannote[2457].speaker SPEAKER_11
transcript.pyannote[2457].start 13456.03784375
transcript.pyannote[2457].end 13463.10846875
transcript.pyannote[2458].speaker SPEAKER_11
transcript.pyannote[2458].start 13463.34471875
transcript.pyannote[2458].end 13479.69659375
transcript.pyannote[2459].speaker SPEAKER_11
transcript.pyannote[2459].start 13480.30409375
transcript.pyannote[2459].end 13482.17721875
transcript.pyannote[2460].speaker SPEAKER_11
transcript.pyannote[2460].start 13482.76784375
transcript.pyannote[2460].end 13496.11596875
transcript.pyannote[2461].speaker SPEAKER_11
transcript.pyannote[2461].start 13496.70659375
transcript.pyannote[2461].end 13497.43221875
transcript.pyannote[2462].speaker SPEAKER_11
transcript.pyannote[2462].start 13499.79471875
transcript.pyannote[2462].end 13500.06471875
transcript.pyannote[2463].speaker SPEAKER_11
transcript.pyannote[2463].start 13500.48659375
transcript.pyannote[2463].end 13501.41471875
transcript.pyannote[2464].speaker SPEAKER_11
transcript.pyannote[2464].start 13502.78159375
transcript.pyannote[2464].end 13511.26971875
transcript.pyannote[2465].speaker SPEAKER_11
transcript.pyannote[2465].start 13514.69534375
transcript.pyannote[2465].end 13516.83846875
transcript.pyannote[2466].speaker SPEAKER_11
transcript.pyannote[2466].start 13518.79596875
transcript.pyannote[2466].end 13519.82534375
transcript.pyannote[2467].speaker SPEAKER_11
transcript.pyannote[2467].start 13522.15409375
transcript.pyannote[2467].end 13523.04846875
transcript.pyannote[2468].speaker SPEAKER_11
transcript.pyannote[2468].start 13523.58846875
transcript.pyannote[2468].end 13525.61346875
transcript.pyannote[2469].speaker SPEAKER_11
transcript.pyannote[2469].start 13525.84971875
transcript.pyannote[2469].end 13528.60034375
transcript.pyannote[2470].speaker SPEAKER_11
transcript.pyannote[2470].start 13529.10659375
transcript.pyannote[2470].end 13551.61784375
transcript.pyannote[2471].speaker SPEAKER_11
transcript.pyannote[2471].start 13552.07346875
transcript.pyannote[2471].end 13555.02659375
transcript.pyannote[2472].speaker SPEAKER_11
transcript.pyannote[2472].start 13555.36409375
transcript.pyannote[2472].end 13581.43596875
transcript.pyannote[2473].speaker SPEAKER_11
transcript.pyannote[2473].start 13582.11096875
transcript.pyannote[2473].end 13586.63346875
transcript.pyannote[2474].speaker SPEAKER_11
transcript.pyannote[2474].start 13586.92034375
transcript.pyannote[2474].end 13603.28909375
transcript.pyannote[2475].speaker SPEAKER_11
transcript.pyannote[2475].start 13603.40721875
transcript.pyannote[2475].end 13608.31784375
transcript.pyannote[2476].speaker SPEAKER_11
transcript.pyannote[2476].start 13608.62159375
transcript.pyannote[2476].end 13623.50534375
transcript.pyannote[2477].speaker SPEAKER_11
transcript.pyannote[2477].start 13624.41659375
transcript.pyannote[2477].end 13625.71596875
transcript.pyannote[2478].speaker SPEAKER_11
transcript.pyannote[2478].start 13625.76659375
transcript.pyannote[2478].end 13627.53846875
transcript.pyannote[2479].speaker SPEAKER_11
transcript.pyannote[2479].start 13628.19659375
transcript.pyannote[2479].end 13628.48346875
transcript.pyannote[2480].speaker SPEAKER_11
transcript.pyannote[2480].start 13628.70284375
transcript.pyannote[2480].end 13630.69409375
transcript.pyannote[2481].speaker SPEAKER_11
transcript.pyannote[2481].start 13631.45346875
transcript.pyannote[2481].end 13638.40596875
transcript.pyannote[2482].speaker SPEAKER_11
transcript.pyannote[2482].start 13638.77721875
transcript.pyannote[2482].end 13642.35471875
transcript.pyannote[2483].speaker SPEAKER_11
transcript.pyannote[2483].start 13643.09721875
transcript.pyannote[2483].end 13648.14284375
transcript.pyannote[2484].speaker SPEAKER_11
transcript.pyannote[2484].start 13648.54784375
transcript.pyannote[2484].end 13653.86346875
transcript.pyannote[2485].speaker SPEAKER_11
transcript.pyannote[2485].start 13654.13346875
transcript.pyannote[2485].end 13657.74471875
transcript.pyannote[2486].speaker SPEAKER_11
transcript.pyannote[2486].start 13657.94721875
transcript.pyannote[2486].end 13660.30971875
transcript.pyannote[2487].speaker SPEAKER_02
transcript.pyannote[2487].start 13661.42346875
transcript.pyannote[2487].end 13661.71034375
transcript.pyannote[2488].speaker SPEAKER_11
transcript.pyannote[2488].start 13661.71034375
transcript.pyannote[2488].end 13664.02221875
transcript.pyannote[2489].speaker SPEAKER_13
transcript.pyannote[2489].start 13661.76096875
transcript.pyannote[2489].end 13662.41909375
transcript.pyannote[2490].speaker SPEAKER_13
transcript.pyannote[2490].start 13663.73534375
transcript.pyannote[2490].end 13663.95471875
transcript.pyannote[2491].speaker SPEAKER_19
transcript.pyannote[2491].start 13663.95471875
transcript.pyannote[2491].end 13665.57471875
transcript.pyannote[2492].speaker SPEAKER_11
transcript.pyannote[2492].start 13665.57471875
transcript.pyannote[2492].end 13671.53159375
transcript.pyannote[2493].speaker SPEAKER_19
transcript.pyannote[2493].start 13665.59159375
transcript.pyannote[2493].end 13666.04721875
transcript.pyannote[2494].speaker SPEAKER_19
transcript.pyannote[2494].start 13666.13159375
transcript.pyannote[2494].end 13666.14846875
transcript.pyannote[2495].speaker SPEAKER_11
transcript.pyannote[2495].start 13671.70034375
transcript.pyannote[2495].end 13674.19784375
transcript.pyannote[2496].speaker SPEAKER_11
transcript.pyannote[2496].start 13675.81784375
transcript.pyannote[2496].end 13683.49596875
transcript.pyannote[2497].speaker SPEAKER_11
transcript.pyannote[2497].start 13683.66471875
transcript.pyannote[2497].end 13695.73034375
transcript.pyannote[2498].speaker SPEAKER_11
transcript.pyannote[2498].start 13696.16909375
transcript.pyannote[2498].end 13731.62346875
transcript.pyannote[2499].speaker SPEAKER_11
transcript.pyannote[2499].start 13732.60221875
transcript.pyannote[2499].end 13733.47971875
transcript.pyannote[2500].speaker SPEAKER_11
transcript.pyannote[2500].start 13734.07034375
transcript.pyannote[2500].end 13736.34846875
transcript.pyannote[2501].speaker SPEAKER_11
transcript.pyannote[2501].start 13737.17534375
transcript.pyannote[2501].end 13745.03909375
transcript.pyannote[2502].speaker SPEAKER_11
transcript.pyannote[2502].start 13745.69721875
transcript.pyannote[2502].end 13753.84784375
transcript.pyannote[2503].speaker SPEAKER_11
transcript.pyannote[2503].start 13754.80971875
transcript.pyannote[2503].end 13756.19346875
transcript.pyannote[2504].speaker SPEAKER_19
transcript.pyannote[2504].start 13756.19346875
transcript.pyannote[2504].end 13756.76721875
transcript.pyannote[2505].speaker SPEAKER_11
transcript.pyannote[2505].start 13756.76721875
transcript.pyannote[2505].end 13760.27721875
transcript.pyannote[2506].speaker SPEAKER_19
transcript.pyannote[2506].start 13757.03721875
transcript.pyannote[2506].end 13757.52659375
transcript.pyannote[2507].speaker SPEAKER_20
transcript.pyannote[2507].start 13757.52659375
transcript.pyannote[2507].end 13757.54346875
transcript.pyannote[2508].speaker SPEAKER_19
transcript.pyannote[2508].start 13757.54346875
transcript.pyannote[2508].end 13758.72471875
transcript.pyannote[2509].speaker SPEAKER_00
transcript.pyannote[2509].start 13758.72471875
transcript.pyannote[2509].end 13758.79221875
transcript.pyannote[2510].speaker SPEAKER_11
transcript.pyannote[2510].start 13760.66534375
transcript.pyannote[2510].end 13775.71784375
transcript.pyannote[2511].speaker SPEAKER_11
transcript.pyannote[2511].start 13776.44346875
transcript.pyannote[2511].end 13787.31096875
transcript.pyannote[2512].speaker SPEAKER_11
transcript.pyannote[2512].start 13788.03659375
transcript.pyannote[2512].end 13807.10534375
transcript.pyannote[2513].speaker SPEAKER_11
transcript.pyannote[2513].start 13807.30784375
transcript.pyannote[2513].end 13809.55221875
transcript.pyannote[2514].speaker SPEAKER_11
transcript.pyannote[2514].start 13809.95721875
transcript.pyannote[2514].end 13812.85971875
transcript.pyannote[2515].speaker SPEAKER_11
transcript.pyannote[2515].start 13813.28159375
transcript.pyannote[2515].end 13813.90596875
transcript.pyannote[2516].speaker SPEAKER_11
transcript.pyannote[2516].start 13814.81721875
transcript.pyannote[2516].end 13817.73659375
transcript.pyannote[2517].speaker SPEAKER_11
transcript.pyannote[2517].start 13817.88846875
transcript.pyannote[2517].end 13827.91221875
transcript.pyannote[2518].speaker SPEAKER_11
transcript.pyannote[2518].start 13828.46909375
transcript.pyannote[2518].end 13830.03846875
transcript.pyannote[2519].speaker SPEAKER_19
transcript.pyannote[2519].start 13830.03846875
transcript.pyannote[2519].end 13830.49409375
transcript.pyannote[2520].speaker SPEAKER_19
transcript.pyannote[2520].start 13831.50659375
transcript.pyannote[2520].end 13835.84346875
transcript.pyannote[2521].speaker SPEAKER_20
transcript.pyannote[2521].start 13844.77034375
transcript.pyannote[2521].end 13844.78721875
transcript.pyannote[2522].speaker SPEAKER_20
transcript.pyannote[2522].start 13844.82096875
transcript.pyannote[2522].end 13845.02346875
transcript.pyannote[2523].speaker SPEAKER_23
transcript.pyannote[2523].start 13850.33909375
transcript.pyannote[2523].end 13851.11534375
transcript.pyannote[2524].speaker SPEAKER_23
transcript.pyannote[2524].start 13851.41909375
transcript.pyannote[2524].end 13852.12784375
transcript.pyannote[2525].speaker SPEAKER_19
transcript.pyannote[2525].start 13852.71846875
transcript.pyannote[2525].end 13853.66346875
transcript.pyannote[2526].speaker SPEAKER_23
transcript.pyannote[2526].start 13860.70034375
transcript.pyannote[2526].end 13866.28596875
transcript.pyannote[2527].speaker SPEAKER_09
transcript.pyannote[2527].start 13868.29409375
transcript.pyannote[2527].end 13872.00659375
transcript.pyannote[2528].speaker SPEAKER_23
transcript.pyannote[2528].start 13870.99409375
transcript.pyannote[2528].end 13873.84596875
transcript.pyannote[2529].speaker SPEAKER_09
transcript.pyannote[2529].start 13873.89659375
transcript.pyannote[2529].end 13882.82346875
transcript.pyannote[2530].speaker SPEAKER_23
transcript.pyannote[2530].start 13874.89221875
transcript.pyannote[2530].end 13877.08596875
transcript.pyannote[2531].speaker SPEAKER_23
transcript.pyannote[2531].start 13881.62534375
transcript.pyannote[2531].end 13881.65909375
transcript.pyannote[2532].speaker SPEAKER_20
transcript.pyannote[2532].start 13881.65909375
transcript.pyannote[2532].end 13881.94596875
transcript.pyannote[2533].speaker SPEAKER_23
transcript.pyannote[2533].start 13881.94596875
transcript.pyannote[2533].end 13881.96284375
transcript.pyannote[2534].speaker SPEAKER_09
transcript.pyannote[2534].start 13883.29596875
transcript.pyannote[2534].end 13886.62034375
transcript.pyannote[2535].speaker SPEAKER_20
transcript.pyannote[2535].start 13886.68784375
transcript.pyannote[2535].end 13887.10971875
transcript.pyannote[2536].speaker SPEAKER_09
transcript.pyannote[2536].start 13887.10971875
transcript.pyannote[2536].end 13890.99096875
transcript.pyannote[2537].speaker SPEAKER_09
transcript.pyannote[2537].start 13891.71659375
transcript.pyannote[2537].end 13898.38221875
transcript.pyannote[2538].speaker SPEAKER_23
transcript.pyannote[2538].start 13898.38221875
transcript.pyannote[2538].end 13898.82096875
transcript.pyannote[2539].speaker SPEAKER_23
transcript.pyannote[2539].start 13898.98971875
transcript.pyannote[2539].end 13911.71346875
transcript.pyannote[2540].speaker SPEAKER_23
transcript.pyannote[2540].start 13912.50659375
transcript.pyannote[2540].end 13913.78909375
transcript.pyannote[2541].speaker SPEAKER_20
transcript.pyannote[2541].start 13914.02534375
transcript.pyannote[2541].end 13914.31221875
transcript.pyannote[2542].speaker SPEAKER_23
transcript.pyannote[2542].start 13914.37971875
transcript.pyannote[2542].end 13915.57784375
transcript.pyannote[2543].speaker SPEAKER_23
transcript.pyannote[2543].start 13916.33721875
transcript.pyannote[2543].end 13916.92784375
transcript.pyannote[2544].speaker SPEAKER_23
transcript.pyannote[2544].start 13918.05846875
transcript.pyannote[2544].end 13941.09284375
transcript.pyannote[2545].speaker SPEAKER_23
transcript.pyannote[2545].start 13941.68346875
transcript.pyannote[2545].end 13947.96096875
transcript.pyannote[2546].speaker SPEAKER_23
transcript.pyannote[2546].start 13948.19721875
transcript.pyannote[2546].end 13948.61909375
transcript.pyannote[2547].speaker SPEAKER_23
transcript.pyannote[2547].start 13949.31096875
transcript.pyannote[2547].end 13955.82471875
transcript.pyannote[2548].speaker SPEAKER_23
transcript.pyannote[2548].start 13956.33096875
transcript.pyannote[2548].end 13957.69784375
transcript.pyannote[2549].speaker SPEAKER_09
transcript.pyannote[2549].start 13958.65971875
transcript.pyannote[2549].end 13978.97721875
transcript.pyannote[2550].speaker SPEAKER_00
transcript.pyannote[2550].start 13967.08034375
transcript.pyannote[2550].end 13967.09721875
transcript.pyannote[2551].speaker SPEAKER_20
transcript.pyannote[2551].start 13967.09721875
transcript.pyannote[2551].end 13967.46846875
transcript.pyannote[2552].speaker SPEAKER_00
transcript.pyannote[2552].start 13967.46846875
transcript.pyannote[2552].end 13967.56971875
transcript.pyannote[2553].speaker SPEAKER_07
transcript.pyannote[2553].start 13977.03659375
transcript.pyannote[2553].end 13977.05346875
transcript.pyannote[2554].speaker SPEAKER_20
transcript.pyannote[2554].start 13977.05346875
transcript.pyannote[2554].end 13977.07034375
transcript.pyannote[2555].speaker SPEAKER_07
transcript.pyannote[2555].start 13977.07034375
transcript.pyannote[2555].end 13977.44159375
transcript.pyannote[2556].speaker SPEAKER_20
transcript.pyannote[2556].start 13977.44159375
transcript.pyannote[2556].end 13977.45846875
transcript.pyannote[2557].speaker SPEAKER_07
transcript.pyannote[2557].start 13977.45846875
transcript.pyannote[2557].end 13977.47534375
transcript.pyannote[2558].speaker SPEAKER_20
transcript.pyannote[2558].start 13977.47534375
transcript.pyannote[2558].end 13977.49221875
transcript.pyannote[2559].speaker SPEAKER_09
transcript.pyannote[2559].start 13979.55096875
transcript.pyannote[2559].end 13984.57971875
transcript.pyannote[2560].speaker SPEAKER_09
transcript.pyannote[2560].start 13985.05221875
transcript.pyannote[2560].end 13987.12784375
transcript.pyannote[2561].speaker SPEAKER_20
transcript.pyannote[2561].start 13987.12784375
transcript.pyannote[2561].end 13987.56659375
transcript.pyannote[2562].speaker SPEAKER_09
transcript.pyannote[2562].start 13987.41471875
transcript.pyannote[2562].end 13991.27909375
transcript.pyannote[2563].speaker SPEAKER_09
transcript.pyannote[2563].start 13991.41409375
transcript.pyannote[2563].end 13996.61159375
transcript.pyannote[2564].speaker SPEAKER_23
transcript.pyannote[2564].start 13995.46409375
transcript.pyannote[2564].end 14007.44534375
transcript.pyannote[2565].speaker SPEAKER_09
transcript.pyannote[2565].start 13997.20221875
transcript.pyannote[2565].end 13997.59034375
transcript.pyannote[2566].speaker SPEAKER_23
transcript.pyannote[2566].start 14008.20471875
transcript.pyannote[2566].end 14009.53784375
transcript.pyannote[2567].speaker SPEAKER_20
transcript.pyannote[2567].start 14009.13284375
transcript.pyannote[2567].end 14010.21284375
transcript.pyannote[2568].speaker SPEAKER_23
transcript.pyannote[2568].start 14010.11159375
transcript.pyannote[2568].end 14023.84784375
transcript.pyannote[2569].speaker SPEAKER_23
transcript.pyannote[2569].start 14024.28659375
transcript.pyannote[2569].end 14029.80471875
transcript.pyannote[2570].speaker SPEAKER_20
transcript.pyannote[2570].start 14030.10846875
transcript.pyannote[2570].end 14030.71596875
transcript.pyannote[2571].speaker SPEAKER_23
transcript.pyannote[2571].start 14030.66534375
transcript.pyannote[2571].end 14038.74846875
transcript.pyannote[2572].speaker SPEAKER_23
transcript.pyannote[2572].start 14039.23784375
transcript.pyannote[2572].end 14063.43659375
transcript.pyannote[2573].speaker SPEAKER_09
transcript.pyannote[2573].start 14063.43659375
transcript.pyannote[2573].end 14064.04409375
transcript.pyannote[2574].speaker SPEAKER_23
transcript.pyannote[2574].start 14063.62221875
transcript.pyannote[2574].end 14065.68096875
transcript.pyannote[2575].speaker SPEAKER_23
transcript.pyannote[2575].start 14066.00159375
transcript.pyannote[2575].end 14066.87909375
transcript.pyannote[2576].speaker SPEAKER_09
transcript.pyannote[2576].start 14067.35159375
transcript.pyannote[2576].end 14070.55784375
transcript.pyannote[2577].speaker SPEAKER_09
transcript.pyannote[2577].start 14070.91221875
transcript.pyannote[2577].end 14075.50221875
transcript.pyannote[2578].speaker SPEAKER_09
transcript.pyannote[2578].start 14076.05909375
transcript.pyannote[2578].end 14076.83534375
transcript.pyannote[2579].speaker SPEAKER_23
transcript.pyannote[2579].start 14076.88596875
transcript.pyannote[2579].end 14077.40909375
transcript.pyannote[2580].speaker SPEAKER_09
transcript.pyannote[2580].start 14077.45971875
transcript.pyannote[2580].end 14079.09659375
transcript.pyannote[2581].speaker SPEAKER_23
transcript.pyannote[2581].start 14078.38784375
transcript.pyannote[2581].end 14082.84284375
transcript.pyannote[2582].speaker SPEAKER_09
transcript.pyannote[2582].start 14082.33659375
transcript.pyannote[2582].end 14085.28971875
transcript.pyannote[2583].speaker SPEAKER_09
transcript.pyannote[2583].start 14085.39096875
transcript.pyannote[2583].end 14090.20034375
transcript.pyannote[2584].speaker SPEAKER_09
transcript.pyannote[2584].start 14090.33534375
transcript.pyannote[2584].end 14095.70159375
transcript.pyannote[2585].speaker SPEAKER_23
transcript.pyannote[2585].start 14091.48284375
transcript.pyannote[2585].end 14102.58659375
transcript.pyannote[2586].speaker SPEAKER_09
transcript.pyannote[2586].start 14102.56971875
transcript.pyannote[2586].end 14102.58659375
transcript.pyannote[2587].speaker SPEAKER_20
transcript.pyannote[2587].start 14102.58659375
transcript.pyannote[2587].end 14102.89034375
transcript.pyannote[2588].speaker SPEAKER_09
transcript.pyannote[2588].start 14102.89034375
transcript.pyannote[2588].end 14103.14346875
transcript.pyannote[2589].speaker SPEAKER_23
transcript.pyannote[2589].start 14102.89034375
transcript.pyannote[2589].end 14106.04596875
transcript.pyannote[2590].speaker SPEAKER_09
transcript.pyannote[2590].start 14106.09659375
transcript.pyannote[2590].end 14106.45096875
transcript.pyannote[2591].speaker SPEAKER_23
transcript.pyannote[2591].start 14106.88971875
transcript.pyannote[2591].end 14107.29471875
transcript.pyannote[2592].speaker SPEAKER_09
transcript.pyannote[2592].start 14107.29471875
transcript.pyannote[2592].end 14111.19284375
transcript.pyannote[2593].speaker SPEAKER_23
transcript.pyannote[2593].start 14109.15096875
transcript.pyannote[2593].end 14120.65971875
transcript.pyannote[2594].speaker SPEAKER_23
transcript.pyannote[2594].start 14121.08159375
transcript.pyannote[2594].end 14141.14596875
transcript.pyannote[2595].speaker SPEAKER_27
transcript.pyannote[2595].start 14135.35784375
transcript.pyannote[2595].end 14135.39159375
transcript.pyannote[2596].speaker SPEAKER_27
transcript.pyannote[2596].start 14135.45909375
transcript.pyannote[2596].end 14135.61096875
transcript.pyannote[2597].speaker SPEAKER_23
transcript.pyannote[2597].start 14141.44971875
transcript.pyannote[2597].end 14168.28096875
transcript.pyannote[2598].speaker SPEAKER_23
transcript.pyannote[2598].start 14168.70284375
transcript.pyannote[2598].end 14175.41909375
transcript.pyannote[2599].speaker SPEAKER_09
transcript.pyannote[2599].start 14175.95909375
transcript.pyannote[2599].end 14177.54534375
transcript.pyannote[2600].speaker SPEAKER_09
transcript.pyannote[2600].start 14178.16971875
transcript.pyannote[2600].end 14178.22034375
transcript.pyannote[2601].speaker SPEAKER_09
transcript.pyannote[2601].start 14178.82784375
transcript.pyannote[2601].end 14180.44784375
transcript.pyannote[2602].speaker SPEAKER_09
transcript.pyannote[2602].start 14180.68409375
transcript.pyannote[2602].end 14181.69659375
transcript.pyannote[2603].speaker SPEAKER_23
transcript.pyannote[2603].start 14181.69659375
transcript.pyannote[2603].end 14182.13534375
transcript.pyannote[2604].speaker SPEAKER_09
transcript.pyannote[2604].start 14181.96659375
transcript.pyannote[2604].end 14182.77659375
transcript.pyannote[2605].speaker SPEAKER_23
transcript.pyannote[2605].start 14182.37159375
transcript.pyannote[2605].end 14184.93659375
transcript.pyannote[2606].speaker SPEAKER_09
transcript.pyannote[2606].start 14185.00409375
transcript.pyannote[2606].end 14197.13721875
transcript.pyannote[2607].speaker SPEAKER_23
transcript.pyannote[2607].start 14187.19784375
transcript.pyannote[2607].end 14191.07909375
transcript.pyannote[2608].speaker SPEAKER_23
transcript.pyannote[2608].start 14195.78721875
transcript.pyannote[2608].end 14200.30971875
transcript.pyannote[2609].speaker SPEAKER_09
transcript.pyannote[2609].start 14199.49971875
transcript.pyannote[2609].end 14205.86159375
transcript.pyannote[2610].speaker SPEAKER_23
transcript.pyannote[2610].start 14205.65909375
transcript.pyannote[2610].end 14223.81659375
transcript.pyannote[2611].speaker SPEAKER_20
transcript.pyannote[2611].start 14214.94034375
transcript.pyannote[2611].end 14215.37909375
transcript.pyannote[2612].speaker SPEAKER_20
transcript.pyannote[2612].start 14223.81659375
transcript.pyannote[2612].end 14224.18784375
transcript.pyannote[2613].speaker SPEAKER_23
transcript.pyannote[2613].start 14224.01909375
transcript.pyannote[2613].end 14230.14471875
transcript.pyannote[2614].speaker SPEAKER_09
transcript.pyannote[2614].start 14230.39784375
transcript.pyannote[2614].end 14237.43471875
transcript.pyannote[2615].speaker SPEAKER_23
transcript.pyannote[2615].start 14237.43471875
transcript.pyannote[2615].end 14238.44721875
transcript.pyannote[2616].speaker SPEAKER_09
transcript.pyannote[2616].start 14238.14346875
transcript.pyannote[2616].end 14240.15159375
transcript.pyannote[2617].speaker SPEAKER_23
transcript.pyannote[2617].start 14239.18971875
transcript.pyannote[2617].end 14241.04596875
transcript.pyannote[2618].speaker SPEAKER_09
transcript.pyannote[2618].start 14240.91096875
transcript.pyannote[2618].end 14242.22721875
transcript.pyannote[2619].speaker SPEAKER_23
transcript.pyannote[2619].start 14241.77159375
transcript.pyannote[2619].end 14243.20596875
transcript.pyannote[2620].speaker SPEAKER_09
transcript.pyannote[2620].start 14243.20596875
transcript.pyannote[2620].end 14244.13409375
transcript.pyannote[2621].speaker SPEAKER_23
transcript.pyannote[2621].start 14243.67846875
transcript.pyannote[2621].end 14245.33221875
transcript.pyannote[2622].speaker SPEAKER_09
transcript.pyannote[2622].start 14246.15909375
transcript.pyannote[2622].end 14250.71534375
transcript.pyannote[2623].speaker SPEAKER_23
transcript.pyannote[2623].start 14249.33159375
transcript.pyannote[2623].end 14250.49596875
transcript.pyannote[2624].speaker SPEAKER_09
transcript.pyannote[2624].start 14250.90096875
transcript.pyannote[2624].end 14251.22159375
transcript.pyannote[2625].speaker SPEAKER_23
transcript.pyannote[2625].start 14250.96846875
transcript.pyannote[2625].end 14253.07784375
transcript.pyannote[2626].speaker SPEAKER_09
transcript.pyannote[2626].start 14253.61784375
transcript.pyannote[2626].end 14255.45721875
transcript.pyannote[2627].speaker SPEAKER_09
transcript.pyannote[2627].start 14255.62596875
transcript.pyannote[2627].end 14256.25034375
transcript.pyannote[2628].speaker SPEAKER_23
transcript.pyannote[2628].start 14257.07721875
transcript.pyannote[2628].end 14259.20346875
transcript.pyannote[2629].speaker SPEAKER_09
transcript.pyannote[2629].start 14259.74346875
transcript.pyannote[2629].end 14261.73471875
transcript.pyannote[2630].speaker SPEAKER_23
transcript.pyannote[2630].start 14260.58721875
transcript.pyannote[2630].end 14261.36346875
transcript.pyannote[2631].speaker SPEAKER_23
transcript.pyannote[2631].start 14261.73471875
transcript.pyannote[2631].end 14262.71346875
transcript.pyannote[2632].speaker SPEAKER_09
transcript.pyannote[2632].start 14262.20721875
transcript.pyannote[2632].end 14263.32096875
transcript.pyannote[2633].speaker SPEAKER_23
transcript.pyannote[2633].start 14263.33784375
transcript.pyannote[2633].end 14264.06346875
transcript.pyannote[2634].speaker SPEAKER_23
transcript.pyannote[2634].start 14264.36721875
transcript.pyannote[2634].end 14265.02534375
transcript.pyannote[2635].speaker SPEAKER_09
transcript.pyannote[2635].start 14266.17284375
transcript.pyannote[2635].end 14269.42971875
transcript.pyannote[2636].speaker SPEAKER_23
transcript.pyannote[2636].start 14267.01659375
transcript.pyannote[2636].end 14268.45096875
transcript.pyannote[2637].speaker SPEAKER_23
transcript.pyannote[2637].start 14268.99096875
transcript.pyannote[2637].end 14278.64346875
transcript.pyannote[2638].speaker SPEAKER_09
transcript.pyannote[2638].start 14270.34096875
transcript.pyannote[2638].end 14271.94409375
transcript.pyannote[2639].speaker SPEAKER_09
transcript.pyannote[2639].start 14278.01909375
transcript.pyannote[2639].end 14282.96346875
transcript.pyannote[2640].speaker SPEAKER_23
transcript.pyannote[2640].start 14282.77784375
transcript.pyannote[2640].end 14297.35784375
transcript.pyannote[2641].speaker SPEAKER_09
transcript.pyannote[2641].start 14287.06409375
transcript.pyannote[2641].end 14287.80659375
transcript.pyannote[2642].speaker SPEAKER_09
transcript.pyannote[2642].start 14296.34534375
transcript.pyannote[2642].end 14298.48846875
transcript.pyannote[2643].speaker SPEAKER_23
transcript.pyannote[2643].start 14297.67846875
transcript.pyannote[2643].end 14298.20159375
transcript.pyannote[2644].speaker SPEAKER_19
transcript.pyannote[2644].start 14299.48409375
transcript.pyannote[2644].end 14303.51721875
transcript.pyannote[2645].speaker SPEAKER_00
transcript.pyannote[2645].start 14311.97159375
transcript.pyannote[2645].end 14313.18659375
transcript.pyannote[2646].speaker SPEAKER_19
transcript.pyannote[2646].start 14313.43971875
transcript.pyannote[2646].end 14314.26659375
transcript.pyannote[2647].speaker SPEAKER_09
transcript.pyannote[2647].start 14316.30846875
transcript.pyannote[2647].end 14316.34221875
transcript.pyannote[2648].speaker SPEAKER_19
transcript.pyannote[2648].start 14317.47284375
transcript.pyannote[2648].end 14318.13096875
transcript.pyannote[2649].speaker SPEAKER_16
transcript.pyannote[2649].start 14318.13096875
transcript.pyannote[2649].end 14318.16471875
transcript.pyannote[2650].speaker SPEAKER_00
transcript.pyannote[2650].start 14318.23221875
transcript.pyannote[2650].end 14322.85596875
transcript.pyannote[2651].speaker SPEAKER_00
transcript.pyannote[2651].start 14323.61534375
transcript.pyannote[2651].end 14330.66909375
transcript.pyannote[2652].speaker SPEAKER_00
transcript.pyannote[2652].start 14331.17534375
transcript.pyannote[2652].end 14333.14971875
transcript.pyannote[2653].speaker SPEAKER_00
transcript.pyannote[2653].start 14335.20846875
transcript.pyannote[2653].end 14337.77346875
transcript.pyannote[2654].speaker SPEAKER_00
transcript.pyannote[2654].start 14338.22909375
transcript.pyannote[2654].end 14342.81909375
transcript.pyannote[2655].speaker SPEAKER_00
transcript.pyannote[2655].start 14343.34221875
transcript.pyannote[2655].end 14344.50659375
transcript.pyannote[2656].speaker SPEAKER_00
transcript.pyannote[2656].start 14344.74284375
transcript.pyannote[2656].end 14348.62409375
transcript.pyannote[2657].speaker SPEAKER_00
transcript.pyannote[2657].start 14348.84346875
transcript.pyannote[2657].end 14350.51409375
transcript.pyannote[2658].speaker SPEAKER_00
transcript.pyannote[2658].start 14351.07096875
transcript.pyannote[2658].end 14357.19659375
transcript.pyannote[2659].speaker SPEAKER_00
transcript.pyannote[2659].start 14357.43284375
transcript.pyannote[2659].end 14373.63284375
transcript.pyannote[2660].speaker SPEAKER_00
transcript.pyannote[2660].start 14373.83534375
transcript.pyannote[2660].end 14380.45034375
transcript.pyannote[2661].speaker SPEAKER_00
transcript.pyannote[2661].start 14380.73721875
transcript.pyannote[2661].end 14384.29784375
transcript.pyannote[2662].speaker SPEAKER_00
transcript.pyannote[2662].start 14385.39471875
transcript.pyannote[2662].end 14406.62346875
transcript.pyannote[2663].speaker SPEAKER_00
transcript.pyannote[2663].start 14406.94409375
transcript.pyannote[2663].end 14408.96909375
transcript.pyannote[2664].speaker SPEAKER_00
transcript.pyannote[2664].start 14410.94346875
transcript.pyannote[2664].end 14411.26409375
transcript.pyannote[2665].speaker SPEAKER_00
transcript.pyannote[2665].start 14411.70284375
transcript.pyannote[2665].end 14413.98096875
transcript.pyannote[2666].speaker SPEAKER_00
transcript.pyannote[2666].start 14414.43659375
transcript.pyannote[2666].end 14425.55721875
transcript.pyannote[2667].speaker SPEAKER_00
transcript.pyannote[2667].start 14425.89471875
transcript.pyannote[2667].end 14445.73971875
transcript.pyannote[2668].speaker SPEAKER_00
transcript.pyannote[2668].start 14445.95909375
transcript.pyannote[2668].end 14458.04159375
transcript.pyannote[2669].speaker SPEAKER_00
transcript.pyannote[2669].start 14458.27784375
transcript.pyannote[2669].end 14461.50096875
transcript.pyannote[2670].speaker SPEAKER_00
transcript.pyannote[2670].start 14462.47971875
transcript.pyannote[2670].end 14466.56346875
transcript.pyannote[2671].speaker SPEAKER_00
transcript.pyannote[2671].start 14467.62659375
transcript.pyannote[2671].end 14468.03159375
transcript.pyannote[2672].speaker SPEAKER_00
transcript.pyannote[2672].start 14468.58846875
transcript.pyannote[2672].end 14469.43221875
transcript.pyannote[2673].speaker SPEAKER_00
transcript.pyannote[2673].start 14469.63471875
transcript.pyannote[2673].end 14472.01409375
transcript.pyannote[2674].speaker SPEAKER_20
transcript.pyannote[2674].start 14472.01409375
transcript.pyannote[2674].end 14472.43596875
transcript.pyannote[2675].speaker SPEAKER_00
transcript.pyannote[2675].start 14472.50346875
transcript.pyannote[2675].end 14481.71721875
transcript.pyannote[2676].speaker SPEAKER_00
transcript.pyannote[2676].start 14482.32471875
transcript.pyannote[2676].end 14482.71284375
transcript.pyannote[2677].speaker SPEAKER_00
transcript.pyannote[2677].start 14483.18534375
transcript.pyannote[2677].end 14487.50534375
transcript.pyannote[2678].speaker SPEAKER_00
transcript.pyannote[2678].start 14487.75846875
transcript.pyannote[2678].end 14489.64846875
transcript.pyannote[2679].speaker SPEAKER_00
transcript.pyannote[2679].start 14490.10409375
transcript.pyannote[2679].end 14494.08659375
transcript.pyannote[2680].speaker SPEAKER_00
transcript.pyannote[2680].start 14494.45784375
transcript.pyannote[2680].end 14506.00034375
transcript.pyannote[2681].speaker SPEAKER_00
transcript.pyannote[2681].start 14506.15221875
transcript.pyannote[2681].end 14511.14721875
transcript.pyannote[2682].speaker SPEAKER_00
transcript.pyannote[2682].start 14511.23159375
transcript.pyannote[2682].end 14511.92346875
transcript.pyannote[2683].speaker SPEAKER_20
transcript.pyannote[2683].start 14511.56909375
transcript.pyannote[2683].end 14511.61971875
transcript.pyannote[2684].speaker SPEAKER_00
transcript.pyannote[2684].start 14512.66596875
transcript.pyannote[2684].end 14513.47596875
transcript.pyannote[2685].speaker SPEAKER_00
transcript.pyannote[2685].start 14513.91471875
transcript.pyannote[2685].end 14514.60659375
transcript.pyannote[2686].speaker SPEAKER_00
transcript.pyannote[2686].start 14515.11284375
transcript.pyannote[2686].end 14519.14596875
transcript.pyannote[2687].speaker SPEAKER_00
transcript.pyannote[2687].start 14519.71971875
transcript.pyannote[2687].end 14520.17534375
transcript.pyannote[2688].speaker SPEAKER_00
transcript.pyannote[2688].start 14520.73221875
transcript.pyannote[2688].end 14521.64346875
transcript.pyannote[2689].speaker SPEAKER_00
transcript.pyannote[2689].start 14522.16659375
transcript.pyannote[2689].end 14523.16221875
transcript.pyannote[2690].speaker SPEAKER_00
transcript.pyannote[2690].start 14524.73159375
transcript.pyannote[2690].end 14536.08846875
transcript.pyannote[2691].speaker SPEAKER_00
transcript.pyannote[2691].start 14536.62846875
transcript.pyannote[2691].end 14549.03159375
transcript.pyannote[2692].speaker SPEAKER_01
transcript.pyannote[2692].start 14546.44971875
transcript.pyannote[2692].end 14546.75346875
transcript.pyannote[2693].speaker SPEAKER_01
transcript.pyannote[2693].start 14547.39471875
transcript.pyannote[2693].end 14547.86721875
transcript.pyannote[2694].speaker SPEAKER_00
transcript.pyannote[2694].start 14549.11596875
transcript.pyannote[2694].end 14555.02221875
transcript.pyannote[2695].speaker SPEAKER_00
transcript.pyannote[2695].start 14555.19096875
transcript.pyannote[2695].end 14556.38909375
transcript.pyannote[2696].speaker SPEAKER_00
transcript.pyannote[2696].start 14556.77721875
transcript.pyannote[2696].end 14557.06409375
transcript.pyannote[2697].speaker SPEAKER_00
transcript.pyannote[2697].start 14558.02596875
transcript.pyannote[2697].end 14566.59846875
transcript.pyannote[2698].speaker SPEAKER_00
transcript.pyannote[2698].start 14566.96971875
transcript.pyannote[2698].end 14576.16659375
transcript.pyannote[2699].speaker SPEAKER_00
transcript.pyannote[2699].start 14576.95971875
transcript.pyannote[2699].end 14583.76034375
transcript.pyannote[2700].speaker SPEAKER_00
transcript.pyannote[2700].start 14584.28346875
transcript.pyannote[2700].end 14591.21909375
transcript.pyannote[2701].speaker SPEAKER_00
transcript.pyannote[2701].start 14592.29909375
transcript.pyannote[2701].end 14593.78409375
transcript.pyannote[2702].speaker SPEAKER_00
transcript.pyannote[2702].start 14594.49284375
transcript.pyannote[2702].end 14597.37846875
transcript.pyannote[2703].speaker SPEAKER_20
transcript.pyannote[2703].start 14597.69909375
transcript.pyannote[2703].end 14598.35721875
transcript.pyannote[2704].speaker SPEAKER_00
transcript.pyannote[2704].start 14598.54284375
transcript.pyannote[2704].end 14599.60596875
transcript.pyannote[2705].speaker SPEAKER_20
transcript.pyannote[2705].start 14600.21346875
transcript.pyannote[2705].end 14601.00659375
transcript.pyannote[2706].speaker SPEAKER_00
transcript.pyannote[2706].start 14600.28096875
transcript.pyannote[2706].end 14603.41971875
transcript.pyannote[2707].speaker SPEAKER_20
transcript.pyannote[2707].start 14603.41971875
transcript.pyannote[2707].end 14603.82471875
transcript.pyannote[2708].speaker SPEAKER_00
transcript.pyannote[2708].start 14603.72346875
transcript.pyannote[2708].end 14607.72284375
transcript.pyannote[2709].speaker SPEAKER_00
transcript.pyannote[2709].start 14609.02221875
transcript.pyannote[2709].end 14613.69659375
transcript.pyannote[2710].speaker SPEAKER_00
transcript.pyannote[2710].start 14614.20284375
transcript.pyannote[2710].end 14664.35534375
transcript.pyannote[2711].speaker SPEAKER_09
transcript.pyannote[2711].start 14664.69284375
transcript.pyannote[2711].end 14672.69159375
transcript.pyannote[2712].speaker SPEAKER_00
transcript.pyannote[2712].start 14671.72971875
transcript.pyannote[2712].end 14677.39971875
transcript.pyannote[2713].speaker SPEAKER_09
transcript.pyannote[2713].start 14675.30721875
transcript.pyannote[2713].end 14683.57596875
transcript.pyannote[2714].speaker SPEAKER_20
transcript.pyannote[2714].start 14683.57596875
transcript.pyannote[2714].end 14683.77846875
transcript.pyannote[2715].speaker SPEAKER_09
transcript.pyannote[2715].start 14683.77846875
transcript.pyannote[2715].end 14690.30909375
transcript.pyannote[2716].speaker SPEAKER_00
transcript.pyannote[2716].start 14683.79534375
transcript.pyannote[2716].end 14683.84596875
transcript.pyannote[2717].speaker SPEAKER_20
transcript.pyannote[2717].start 14685.12846875
transcript.pyannote[2717].end 14685.16221875
transcript.pyannote[2718].speaker SPEAKER_00
transcript.pyannote[2718].start 14685.16221875
transcript.pyannote[2718].end 14687.25471875
transcript.pyannote[2719].speaker SPEAKER_00
transcript.pyannote[2719].start 14689.44846875
transcript.pyannote[2719].end 14698.67909375
transcript.pyannote[2720].speaker SPEAKER_09
transcript.pyannote[2720].start 14691.64221875
transcript.pyannote[2720].end 14694.00471875
transcript.pyannote[2721].speaker SPEAKER_09
transcript.pyannote[2721].start 14694.71346875
transcript.pyannote[2721].end 14695.72596875
transcript.pyannote[2722].speaker SPEAKER_09
transcript.pyannote[2722].start 14696.50221875
transcript.pyannote[2722].end 14696.99159375
transcript.pyannote[2723].speaker SPEAKER_09
transcript.pyannote[2723].start 14698.67909375
transcript.pyannote[2723].end 14704.77096875
transcript.pyannote[2724].speaker SPEAKER_00
transcript.pyannote[2724].start 14704.07909375
transcript.pyannote[2724].end 14707.13346875
transcript.pyannote[2725].speaker SPEAKER_19
transcript.pyannote[2725].start 14704.77096875
transcript.pyannote[2725].end 14704.78784375
transcript.pyannote[2726].speaker SPEAKER_09
transcript.pyannote[2726].start 14705.12534375
transcript.pyannote[2726].end 14706.96471875
transcript.pyannote[2727].speaker SPEAKER_19
transcript.pyannote[2727].start 14706.96471875
transcript.pyannote[2727].end 14707.16721875
transcript.pyannote[2728].speaker SPEAKER_19
transcript.pyannote[2728].start 14707.97721875
transcript.pyannote[2728].end 14711.68971875
transcript.pyannote[2729].speaker SPEAKER_30
transcript.pyannote[2729].start 15354.49221875
transcript.pyannote[2729].end 15355.80846875
transcript.pyannote[2730].speaker SPEAKER_30
transcript.pyannote[2730].start 15356.14596875
transcript.pyannote[2730].end 15360.60096875
transcript.pyannote[2731].speaker SPEAKER_30
transcript.pyannote[2731].start 15361.07346875
transcript.pyannote[2731].end 15363.92534375
transcript.pyannote[2732].speaker SPEAKER_30
transcript.pyannote[2732].start 15364.26284375
transcript.pyannote[2732].end 15366.76034375
transcript.pyannote[2733].speaker SPEAKER_30
transcript.pyannote[2733].start 15367.09784375
transcript.pyannote[2733].end 15370.45596875
transcript.pyannote[2734].speaker SPEAKER_30
transcript.pyannote[2734].start 15370.59096875
transcript.pyannote[2734].end 15371.70471875
transcript.pyannote[2735].speaker SPEAKER_19
transcript.pyannote[2735].start 15376.02471875
transcript.pyannote[2735].end 15378.55596875
transcript.pyannote[2736].speaker SPEAKER_19
transcript.pyannote[2736].start 15382.85909375
transcript.pyannote[2736].end 15505.43909375
transcript.pyannote[2737].speaker SPEAKER_19
transcript.pyannote[2737].start 15506.13096875
transcript.pyannote[2737].end 15550.61346875
transcript.pyannote[2738].speaker SPEAKER_19
transcript.pyannote[2738].start 15551.03534375
transcript.pyannote[2738].end 15552.89159375
transcript.pyannote[2739].speaker SPEAKER_19
transcript.pyannote[2739].start 15553.43159375
transcript.pyannote[2739].end 15553.93784375
transcript.pyannote[2740].speaker SPEAKER_19
transcript.pyannote[2740].start 15553.97159375
transcript.pyannote[2740].end 15556.92471875
transcript.pyannote[2741].speaker SPEAKER_19
transcript.pyannote[2741].start 15557.29596875
transcript.pyannote[2741].end 15557.81909375
transcript.pyannote[2742].speaker SPEAKER_19
transcript.pyannote[2742].start 15558.12284375
transcript.pyannote[2742].end 15559.03409375
transcript.pyannote[2743].speaker SPEAKER_19
transcript.pyannote[2743].start 15559.25346875
transcript.pyannote[2743].end 15561.12659375
transcript.pyannote[2744].speaker SPEAKER_09
transcript.pyannote[2744].start 15561.12659375
transcript.pyannote[2744].end 15561.24471875
transcript.pyannote[2745].speaker SPEAKER_09
transcript.pyannote[2745].start 15561.49784375
transcript.pyannote[2745].end 15571.57221875
transcript.pyannote[2746].speaker SPEAKER_20
transcript.pyannote[2746].start 15571.55534375
transcript.pyannote[2746].end 15572.07846875
transcript.pyannote[2747].speaker SPEAKER_09
transcript.pyannote[2747].start 15572.02784375
transcript.pyannote[2747].end 15582.57471875
transcript.pyannote[2748].speaker SPEAKER_09
transcript.pyannote[2748].start 15582.99659375
transcript.pyannote[2748].end 15585.12284375
transcript.pyannote[2749].speaker SPEAKER_20
transcript.pyannote[2749].start 15585.44346875
transcript.pyannote[2749].end 15585.91596875
transcript.pyannote[2750].speaker SPEAKER_09
transcript.pyannote[2750].start 15585.93284375
transcript.pyannote[2750].end 15587.28284375
transcript.pyannote[2751].speaker SPEAKER_09
transcript.pyannote[2751].start 15587.41784375
transcript.pyannote[2751].end 15594.28596875
transcript.pyannote[2752].speaker SPEAKER_09
transcript.pyannote[2752].start 15594.74159375
transcript.pyannote[2752].end 15601.86284375
transcript.pyannote[2753].speaker SPEAKER_19
transcript.pyannote[2753].start 15601.86284375
transcript.pyannote[2753].end 15632.99721875
transcript.pyannote[2754].speaker SPEAKER_09
transcript.pyannote[2754].start 15601.91346875
transcript.pyannote[2754].end 15603.17909375
transcript.pyannote[2755].speaker SPEAKER_09
transcript.pyannote[2755].start 15604.81596875
transcript.pyannote[2755].end 15605.49096875
transcript.pyannote[2756].speaker SPEAKER_09
transcript.pyannote[2756].start 15632.08596875
transcript.pyannote[2756].end 15632.13659375
transcript.pyannote[2757].speaker SPEAKER_20
transcript.pyannote[2757].start 15632.13659375
transcript.pyannote[2757].end 15633.06471875
transcript.pyannote[2758].speaker SPEAKER_19
transcript.pyannote[2758].start 15633.95909375
transcript.pyannote[2758].end 15636.67596875
transcript.pyannote[2759].speaker SPEAKER_09
transcript.pyannote[2759].start 15635.41034375
transcript.pyannote[2759].end 15638.61659375
transcript.pyannote[2760].speaker SPEAKER_09
transcript.pyannote[2760].start 15638.71784375
transcript.pyannote[2760].end 15640.27034375
transcript.pyannote[2761].speaker SPEAKER_19
transcript.pyannote[2761].start 15638.81909375
transcript.pyannote[2761].end 15640.45596875
transcript.pyannote[2762].speaker SPEAKER_09
transcript.pyannote[2762].start 15640.45596875
transcript.pyannote[2762].end 15641.33346875
transcript.pyannote[2763].speaker SPEAKER_09
transcript.pyannote[2763].start 15641.63721875
transcript.pyannote[2763].end 15646.17659375
transcript.pyannote[2764].speaker SPEAKER_09
transcript.pyannote[2764].start 15646.19346875
transcript.pyannote[2764].end 15654.73221875
transcript.pyannote[2765].speaker SPEAKER_19
transcript.pyannote[2765].start 15650.27721875
transcript.pyannote[2765].end 15650.76659375
transcript.pyannote[2766].speaker SPEAKER_19
transcript.pyannote[2766].start 15651.57659375
transcript.pyannote[2766].end 15652.09971875
transcript.pyannote[2767].speaker SPEAKER_19
transcript.pyannote[2767].start 15653.43284375
transcript.pyannote[2767].end 15654.14159375
transcript.pyannote[2768].speaker SPEAKER_19
transcript.pyannote[2768].start 15654.39471875
transcript.pyannote[2768].end 15654.66471875
transcript.pyannote[2769].speaker SPEAKER_19
transcript.pyannote[2769].start 15654.73221875
transcript.pyannote[2769].end 15668.56971875
transcript.pyannote[2770].speaker SPEAKER_09
transcript.pyannote[2770].start 15667.59096875
transcript.pyannote[2770].end 15668.35034375
transcript.pyannote[2771].speaker SPEAKER_19
transcript.pyannote[2771].start 15668.62034375
transcript.pyannote[2771].end 15669.97034375
transcript.pyannote[2772].speaker SPEAKER_09
transcript.pyannote[2772].start 15668.85659375
transcript.pyannote[2772].end 15669.32909375
transcript.pyannote[2773].speaker SPEAKER_09
transcript.pyannote[2773].start 15669.80159375
transcript.pyannote[2773].end 15669.95346875
transcript.pyannote[2774].speaker SPEAKER_09
transcript.pyannote[2774].start 15669.97034375
transcript.pyannote[2774].end 15686.08596875
transcript.pyannote[2775].speaker SPEAKER_19
transcript.pyannote[2775].start 15670.44284375
transcript.pyannote[2775].end 15670.96596875
transcript.pyannote[2776].speaker SPEAKER_00
transcript.pyannote[2776].start 15678.61034375
transcript.pyannote[2776].end 15678.81284375
transcript.pyannote[2777].speaker SPEAKER_20
transcript.pyannote[2777].start 15686.08596875
transcript.pyannote[2777].end 15686.89596875
transcript.pyannote[2778].speaker SPEAKER_09
transcript.pyannote[2778].start 15686.42346875
transcript.pyannote[2778].end 15686.65971875
transcript.pyannote[2779].speaker SPEAKER_09
transcript.pyannote[2779].start 15686.89596875
transcript.pyannote[2779].end 15699.97409375
transcript.pyannote[2780].speaker SPEAKER_20
transcript.pyannote[2780].start 15693.37596875
transcript.pyannote[2780].end 15693.46034375
transcript.pyannote[2781].speaker SPEAKER_19
transcript.pyannote[2781].start 15699.01221875
transcript.pyannote[2781].end 15726.04596875
transcript.pyannote[2782].speaker SPEAKER_20
transcript.pyannote[2782].start 15712.02284375
transcript.pyannote[2782].end 15712.12409375
transcript.pyannote[2783].speaker SPEAKER_20
transcript.pyannote[2783].start 15712.17471875
transcript.pyannote[2783].end 15712.22534375
transcript.pyannote[2784].speaker SPEAKER_00
transcript.pyannote[2784].start 15712.22534375
transcript.pyannote[2784].end 15712.25909375
transcript.pyannote[2785].speaker SPEAKER_00
transcript.pyannote[2785].start 15718.13159375
transcript.pyannote[2785].end 15718.14846875
transcript.pyannote[2786].speaker SPEAKER_08
transcript.pyannote[2786].start 15718.14846875
transcript.pyannote[2786].end 15718.89096875
transcript.pyannote[2787].speaker SPEAKER_19
transcript.pyannote[2787].start 15726.46784375
transcript.pyannote[2787].end 15728.42534375
transcript.pyannote[2788].speaker SPEAKER_19
transcript.pyannote[2788].start 15728.66159375
transcript.pyannote[2788].end 15729.01596875
transcript.pyannote[2789].speaker SPEAKER_19
transcript.pyannote[2789].start 15729.55596875
transcript.pyannote[2789].end 15755.07096875
transcript.pyannote[2790].speaker SPEAKER_09
transcript.pyannote[2790].start 15729.85971875
transcript.pyannote[2790].end 15730.11284375
transcript.pyannote[2791].speaker SPEAKER_20
transcript.pyannote[2791].start 15730.11284375
transcript.pyannote[2791].end 15730.12971875
transcript.pyannote[2792].speaker SPEAKER_13
transcript.pyannote[2792].start 15745.30034375
transcript.pyannote[2792].end 15745.67159375
transcript.pyannote[2793].speaker SPEAKER_19
transcript.pyannote[2793].start 15755.50971875
transcript.pyannote[2793].end 15775.55721875
transcript.pyannote[2794].speaker SPEAKER_20
transcript.pyannote[2794].start 15757.34909375
transcript.pyannote[2794].end 15757.77096875
transcript.pyannote[2795].speaker SPEAKER_09
transcript.pyannote[2795].start 15775.55721875
transcript.pyannote[2795].end 15775.60784375
transcript.pyannote[2796].speaker SPEAKER_19
transcript.pyannote[2796].start 15776.35034375
transcript.pyannote[2796].end 15776.36721875
transcript.pyannote[2797].speaker SPEAKER_09
transcript.pyannote[2797].start 15776.36721875
transcript.pyannote[2797].end 15784.11284375
transcript.pyannote[2798].speaker SPEAKER_09
transcript.pyannote[2798].start 15784.29846875
transcript.pyannote[2798].end 15793.83284375
transcript.pyannote[2799].speaker SPEAKER_00
transcript.pyannote[2799].start 15790.96409375
transcript.pyannote[2799].end 15791.45346875
transcript.pyannote[2800].speaker SPEAKER_00
transcript.pyannote[2800].start 15791.85846875
transcript.pyannote[2800].end 15792.17909375
transcript.pyannote[2801].speaker SPEAKER_09
transcript.pyannote[2801].start 15793.88346875
transcript.pyannote[2801].end 15799.26659375
transcript.pyannote[2802].speaker SPEAKER_00
transcript.pyannote[2802].start 15797.17409375
transcript.pyannote[2802].end 15797.62971875
transcript.pyannote[2803].speaker SPEAKER_09
transcript.pyannote[2803].start 15799.84034375
transcript.pyannote[2803].end 15806.03346875
transcript.pyannote[2804].speaker SPEAKER_00
transcript.pyannote[2804].start 15801.03846875
transcript.pyannote[2804].end 15801.64596875
transcript.pyannote[2805].speaker SPEAKER_00
transcript.pyannote[2805].start 15802.82721875
transcript.pyannote[2805].end 15802.89471875
transcript.pyannote[2806].speaker SPEAKER_19
transcript.pyannote[2806].start 15802.89471875
transcript.pyannote[2806].end 15803.67096875
transcript.pyannote[2807].speaker SPEAKER_20
transcript.pyannote[2807].start 15803.67096875
transcript.pyannote[2807].end 15803.70471875
transcript.pyannote[2808].speaker SPEAKER_19
transcript.pyannote[2808].start 15803.70471875
transcript.pyannote[2808].end 15804.05909375
transcript.pyannote[2809].speaker SPEAKER_19
transcript.pyannote[2809].start 15806.03346875
transcript.pyannote[2809].end 15809.17221875
transcript.pyannote[2810].speaker SPEAKER_09
transcript.pyannote[2810].start 15806.13471875
transcript.pyannote[2810].end 15807.21471875
transcript.pyannote[2811].speaker SPEAKER_09
transcript.pyannote[2811].start 15808.53096875
transcript.pyannote[2811].end 15808.96971875
transcript.pyannote[2812].speaker SPEAKER_20
transcript.pyannote[2812].start 15808.96971875
transcript.pyannote[2812].end 15809.15534375
transcript.pyannote[2813].speaker SPEAKER_20
transcript.pyannote[2813].start 15809.17221875
transcript.pyannote[2813].end 15809.18909375
transcript.pyannote[2814].speaker SPEAKER_09
transcript.pyannote[2814].start 15809.64471875
transcript.pyannote[2814].end 15809.66159375
transcript.pyannote[2815].speaker SPEAKER_19
transcript.pyannote[2815].start 15809.66159375
transcript.pyannote[2815].end 15837.25221875
transcript.pyannote[2816].speaker SPEAKER_09
transcript.pyannote[2816].start 15809.69534375
transcript.pyannote[2816].end 15809.71221875
transcript.pyannote[2817].speaker SPEAKER_20
transcript.pyannote[2817].start 15809.71221875
transcript.pyannote[2817].end 15810.79221875
transcript.pyannote[2818].speaker SPEAKER_09
transcript.pyannote[2818].start 15810.79221875
transcript.pyannote[2818].end 15810.85971875
transcript.pyannote[2819].speaker SPEAKER_20
transcript.pyannote[2819].start 15837.03284375
transcript.pyannote[2819].end 15837.45471875
transcript.pyannote[2820].speaker SPEAKER_19
transcript.pyannote[2820].start 15837.35346875
transcript.pyannote[2820].end 15860.97846875
transcript.pyannote[2821].speaker SPEAKER_09
transcript.pyannote[2821].start 15847.54596875
transcript.pyannote[2821].end 15848.96346875
transcript.pyannote[2822].speaker SPEAKER_00
transcript.pyannote[2822].start 15848.96346875
transcript.pyannote[2822].end 15849.08159375
transcript.pyannote[2823].speaker SPEAKER_00
transcript.pyannote[2823].start 15854.68409375
transcript.pyannote[2823].end 15855.22409375
transcript.pyannote[2824].speaker SPEAKER_09
transcript.pyannote[2824].start 15860.97846875
transcript.pyannote[2824].end 15871.18784375
transcript.pyannote[2825].speaker SPEAKER_09
transcript.pyannote[2825].start 15871.45784375
transcript.pyannote[2825].end 15881.22846875
transcript.pyannote[2826].speaker SPEAKER_16
transcript.pyannote[2826].start 15874.12409375
transcript.pyannote[2826].end 15874.14096875
transcript.pyannote[2827].speaker SPEAKER_20
transcript.pyannote[2827].start 15874.14096875
transcript.pyannote[2827].end 15874.51221875
transcript.pyannote[2828].speaker SPEAKER_16
transcript.pyannote[2828].start 15874.51221875
transcript.pyannote[2828].end 15874.56284375
transcript.pyannote[2829].speaker SPEAKER_20
transcript.pyannote[2829].start 15878.37659375
transcript.pyannote[2829].end 15878.61284375
transcript.pyannote[2830].speaker SPEAKER_20
transcript.pyannote[2830].start 15880.84034375
transcript.pyannote[2830].end 15881.29596875
transcript.pyannote[2831].speaker SPEAKER_09
transcript.pyannote[2831].start 15881.29596875
transcript.pyannote[2831].end 15884.60346875
transcript.pyannote[2832].speaker SPEAKER_20
transcript.pyannote[2832].start 15881.31284375
transcript.pyannote[2832].end 15881.39721875
transcript.pyannote[2833].speaker SPEAKER_20
transcript.pyannote[2833].start 15883.01721875
transcript.pyannote[2833].end 15883.50659375
transcript.pyannote[2834].speaker SPEAKER_09
transcript.pyannote[2834].start 15884.87346875
transcript.pyannote[2834].end 15893.14221875
transcript.pyannote[2835].speaker SPEAKER_20
transcript.pyannote[2835].start 15889.59846875
transcript.pyannote[2835].end 15889.63221875
transcript.pyannote[2836].speaker SPEAKER_19
transcript.pyannote[2836].start 15889.63221875
transcript.pyannote[2836].end 15890.08784375
transcript.pyannote[2837].speaker SPEAKER_19
transcript.pyannote[2837].start 15891.67409375
transcript.pyannote[2837].end 15891.97784375
transcript.pyannote[2838].speaker SPEAKER_19
transcript.pyannote[2838].start 15892.73721875
transcript.pyannote[2838].end 15892.97346875
transcript.pyannote[2839].speaker SPEAKER_19
transcript.pyannote[2839].start 15893.10846875
transcript.pyannote[2839].end 15928.90034375
transcript.pyannote[2840].speaker SPEAKER_09
transcript.pyannote[2840].start 15893.31096875
transcript.pyannote[2840].end 15893.69909375
transcript.pyannote[2841].speaker SPEAKER_09
transcript.pyannote[2841].start 15896.58471875
transcript.pyannote[2841].end 15898.87971875
transcript.pyannote[2842].speaker SPEAKER_10
transcript.pyannote[2842].start 15907.53659375
transcript.pyannote[2842].end 15909.46034375
transcript.pyannote[2843].speaker SPEAKER_20
transcript.pyannote[2843].start 15909.46034375
transcript.pyannote[2843].end 15909.47721875
transcript.pyannote[2844].speaker SPEAKER_16
transcript.pyannote[2844].start 15911.50221875
transcript.pyannote[2844].end 15914.55659375
transcript.pyannote[2845].speaker SPEAKER_20
transcript.pyannote[2845].start 15914.55659375
transcript.pyannote[2845].end 15914.59034375
transcript.pyannote[2846].speaker SPEAKER_16
transcript.pyannote[2846].start 15914.59034375
transcript.pyannote[2846].end 15915.07971875
transcript.pyannote[2847].speaker SPEAKER_19
transcript.pyannote[2847].start 15929.22096875
transcript.pyannote[2847].end 15931.85346875
transcript.pyannote[2848].speaker SPEAKER_19
transcript.pyannote[2848].start 15932.10659375
transcript.pyannote[2848].end 15932.51159375
transcript.pyannote[2849].speaker SPEAKER_19
transcript.pyannote[2849].start 15933.05159375
transcript.pyannote[2849].end 15940.02096875
transcript.pyannote[2850].speaker SPEAKER_19
transcript.pyannote[2850].start 15940.84784375
transcript.pyannote[2850].end 15944.67846875
transcript.pyannote[2851].speaker SPEAKER_19
transcript.pyannote[2851].start 15945.26909375
transcript.pyannote[2851].end 15961.24971875
transcript.pyannote[2852].speaker SPEAKER_19
transcript.pyannote[2852].start 15961.45221875
transcript.pyannote[2852].end 15964.03409375
transcript.pyannote[2853].speaker SPEAKER_19
transcript.pyannote[2853].start 15964.40534375
transcript.pyannote[2853].end 15966.19409375
transcript.pyannote[2854].speaker SPEAKER_19
transcript.pyannote[2854].start 15966.46409375
transcript.pyannote[2854].end 15971.86409375
transcript.pyannote[2855].speaker SPEAKER_19
transcript.pyannote[2855].start 15972.11721875
transcript.pyannote[2855].end 15972.84284375
transcript.pyannote[2856].speaker SPEAKER_19
transcript.pyannote[2856].start 15972.87659375
transcript.pyannote[2856].end 15974.80034375
transcript.pyannote[2857].speaker SPEAKER_19
transcript.pyannote[2857].start 15975.17159375
transcript.pyannote[2857].end 15984.97596875
transcript.pyannote[2858].speaker SPEAKER_09
transcript.pyannote[2858].start 15984.97596875
transcript.pyannote[2858].end 15994.03784375
transcript.pyannote[2859].speaker SPEAKER_19
transcript.pyannote[2859].start 15988.48596875
transcript.pyannote[2859].end 15988.87409375
transcript.pyannote[2860].speaker SPEAKER_32
transcript.pyannote[2860].start 15988.87409375
transcript.pyannote[2860].end 15988.92471875
transcript.pyannote[2861].speaker SPEAKER_19
transcript.pyannote[2861].start 15988.92471875
transcript.pyannote[2861].end 15988.97534375
transcript.pyannote[2862].speaker SPEAKER_19
transcript.pyannote[2862].start 15994.03784375
transcript.pyannote[2862].end 15997.90221875
transcript.pyannote[2863].speaker SPEAKER_09
transcript.pyannote[2863].start 15995.20221875
transcript.pyannote[2863].end 15996.26534375
transcript.pyannote[2864].speaker SPEAKER_19
transcript.pyannote[2864].start 15998.32409375
transcript.pyannote[2864].end 16005.39471875
transcript.pyannote[2865].speaker SPEAKER_19
transcript.pyannote[2865].start 16006.13721875
transcript.pyannote[2865].end 16026.85971875
transcript.pyannote[2866].speaker SPEAKER_09
transcript.pyannote[2866].start 16026.26909375
transcript.pyannote[2866].end 16034.47034375
transcript.pyannote[2867].speaker SPEAKER_19
transcript.pyannote[2867].start 16027.73721875
transcript.pyannote[2867].end 16028.31096875
transcript.pyannote[2868].speaker SPEAKER_19
transcript.pyannote[2868].start 16030.38659375
transcript.pyannote[2868].end 16030.65659375
transcript.pyannote[2869].speaker SPEAKER_09
transcript.pyannote[2869].start 16034.67284375
transcript.pyannote[2869].end 16038.09846875
transcript.pyannote[2870].speaker SPEAKER_19
transcript.pyannote[2870].start 16037.23784375
transcript.pyannote[2870].end 16038.26721875
transcript.pyannote[2871].speaker SPEAKER_20
transcript.pyannote[2871].start 16038.26721875
transcript.pyannote[2871].end 16038.43596875
transcript.pyannote[2872].speaker SPEAKER_09
transcript.pyannote[2872].start 16038.43596875
transcript.pyannote[2872].end 16038.62159375
transcript.pyannote[2873].speaker SPEAKER_19
transcript.pyannote[2873].start 16038.43596875
transcript.pyannote[2873].end 16039.70159375
transcript.pyannote[2874].speaker SPEAKER_19
transcript.pyannote[2874].start 16040.49471875
transcript.pyannote[2874].end 16049.11784375
transcript.pyannote[2875].speaker SPEAKER_19
transcript.pyannote[2875].start 16049.18534375
transcript.pyannote[2875].end 16059.96846875
transcript.pyannote[2876].speaker SPEAKER_09
transcript.pyannote[2876].start 16053.80909375
transcript.pyannote[2876].end 16054.34909375
transcript.pyannote[2877].speaker SPEAKER_09
transcript.pyannote[2877].start 16058.07846875
transcript.pyannote[2877].end 16059.93471875
transcript.pyannote[2878].speaker SPEAKER_09
transcript.pyannote[2878].start 16059.96846875
transcript.pyannote[2878].end 16059.98534375
transcript.pyannote[2879].speaker SPEAKER_19
transcript.pyannote[2879].start 16059.98534375
transcript.pyannote[2879].end 16060.03596875
transcript.pyannote[2880].speaker SPEAKER_09
transcript.pyannote[2880].start 16060.03596875
transcript.pyannote[2880].end 16060.06971875
transcript.pyannote[2881].speaker SPEAKER_19
transcript.pyannote[2881].start 16076.06721875
transcript.pyannote[2881].end 16076.86034375
transcript.pyannote[2882].speaker SPEAKER_19
transcript.pyannote[2882].start 16077.11346875
transcript.pyannote[2882].end 16079.61096875
transcript.pyannote[2883].speaker SPEAKER_19
transcript.pyannote[2883].start 16080.04971875
transcript.pyannote[2883].end 16083.54284375
transcript.pyannote[2884].speaker SPEAKER_30
transcript.pyannote[2884].start 16087.01909375
transcript.pyannote[2884].end 16090.93409375
transcript.pyannote[2885].speaker SPEAKER_30
transcript.pyannote[2885].start 16091.45721875
transcript.pyannote[2885].end 16092.30096875
transcript.pyannote[2886].speaker SPEAKER_19
transcript.pyannote[2886].start 16092.21659375
transcript.pyannote[2886].end 16092.75659375
transcript.pyannote[2887].speaker SPEAKER_30
transcript.pyannote[2887].start 16092.75659375
transcript.pyannote[2887].end 16098.67971875
transcript.pyannote[2888].speaker SPEAKER_30
transcript.pyannote[2888].start 16099.81034375
transcript.pyannote[2888].end 16103.84346875
transcript.pyannote[2889].speaker SPEAKER_30
transcript.pyannote[2889].start 16104.53534375
transcript.pyannote[2889].end 16107.99471875
transcript.pyannote[2890].speaker SPEAKER_30
transcript.pyannote[2890].start 16108.65284375
transcript.pyannote[2890].end 16109.73284375
transcript.pyannote[2891].speaker SPEAKER_09
transcript.pyannote[2891].start 16111.15034375
transcript.pyannote[2891].end 16111.75784375
transcript.pyannote[2892].speaker SPEAKER_09
transcript.pyannote[2892].start 16112.53409375
transcript.pyannote[2892].end 16115.77409375
transcript.pyannote[2893].speaker SPEAKER_09
transcript.pyannote[2893].start 16116.49971875
transcript.pyannote[2893].end 16120.38096875
transcript.pyannote[2894].speaker SPEAKER_09
transcript.pyannote[2894].start 16121.10659375
transcript.pyannote[2894].end 16123.11471875
transcript.pyannote[2895].speaker SPEAKER_09
transcript.pyannote[2895].start 16123.62096875
transcript.pyannote[2895].end 16133.22284375
transcript.pyannote[2896].speaker SPEAKER_09
transcript.pyannote[2896].start 16133.40846875
transcript.pyannote[2896].end 16137.03659375
transcript.pyannote[2897].speaker SPEAKER_09
transcript.pyannote[2897].start 16137.22221875
transcript.pyannote[2897].end 16140.90096875
transcript.pyannote[2898].speaker SPEAKER_09
transcript.pyannote[2898].start 16141.15409375
transcript.pyannote[2898].end 16143.29721875
transcript.pyannote[2899].speaker SPEAKER_09
transcript.pyannote[2899].start 16143.76971875
transcript.pyannote[2899].end 16144.56284375
transcript.pyannote[2900].speaker SPEAKER_09
transcript.pyannote[2900].start 16145.00159375
transcript.pyannote[2900].end 16156.54409375
transcript.pyannote[2901].speaker SPEAKER_09
transcript.pyannote[2901].start 16157.08409375
transcript.pyannote[2901].end 16162.68659375
transcript.pyannote[2902].speaker SPEAKER_09
transcript.pyannote[2902].start 16163.20971875
transcript.pyannote[2902].end 16164.64409375
transcript.pyannote[2903].speaker SPEAKER_20
transcript.pyannote[2903].start 16165.28534375
transcript.pyannote[2903].end 16165.62284375
transcript.pyannote[2904].speaker SPEAKER_20
transcript.pyannote[2904].start 16166.55096875
transcript.pyannote[2904].end 16166.71971875
transcript.pyannote[2905].speaker SPEAKER_20
transcript.pyannote[2905].start 16167.27659375
transcript.pyannote[2905].end 16167.31034375
transcript.pyannote[2906].speaker SPEAKER_09
transcript.pyannote[2906].start 16167.31034375
transcript.pyannote[2906].end 16167.51284375
transcript.pyannote[2907].speaker SPEAKER_20
transcript.pyannote[2907].start 16167.51284375
transcript.pyannote[2907].end 16167.54659375
transcript.pyannote[2908].speaker SPEAKER_30
transcript.pyannote[2908].start 16167.54659375
transcript.pyannote[2908].end 16168.18784375
transcript.pyannote[2909].speaker SPEAKER_30
transcript.pyannote[2909].start 16168.98096875
transcript.pyannote[2909].end 16169.68971875
transcript.pyannote[2910].speaker SPEAKER_30
transcript.pyannote[2910].start 16170.63471875
transcript.pyannote[2910].end 16172.03534375
transcript.pyannote[2911].speaker SPEAKER_30
transcript.pyannote[2911].start 16172.27159375
transcript.pyannote[2911].end 16174.22909375
transcript.pyannote[2912].speaker SPEAKER_30
transcript.pyannote[2912].start 16174.85346875
transcript.pyannote[2912].end 16175.57909375
transcript.pyannote[2913].speaker SPEAKER_30
transcript.pyannote[2913].start 16177.53659375
transcript.pyannote[2913].end 16178.76846875
transcript.pyannote[2914].speaker SPEAKER_30
transcript.pyannote[2914].start 16179.20721875
transcript.pyannote[2914].end 16186.39596875
transcript.pyannote[2915].speaker SPEAKER_30
transcript.pyannote[2915].start 16186.98659375
transcript.pyannote[2915].end 16187.76284375
transcript.pyannote[2916].speaker SPEAKER_30
transcript.pyannote[2916].start 16188.70784375
transcript.pyannote[2916].end 16191.76221875
transcript.pyannote[2917].speaker SPEAKER_30
transcript.pyannote[2917].start 16191.96471875
transcript.pyannote[2917].end 16215.89346875
transcript.pyannote[2918].speaker SPEAKER_30
transcript.pyannote[2918].start 16216.99034375
transcript.pyannote[2918].end 16221.07409375
transcript.pyannote[2919].speaker SPEAKER_30
transcript.pyannote[2919].start 16222.57596875
transcript.pyannote[2919].end 16231.65471875
transcript.pyannote[2920].speaker SPEAKER_20
transcript.pyannote[2920].start 16231.35096875
transcript.pyannote[2920].end 16232.11034375
transcript.pyannote[2921].speaker SPEAKER_30
transcript.pyannote[2921].start 16232.24534375
transcript.pyannote[2921].end 16237.10534375
transcript.pyannote[2922].speaker SPEAKER_30
transcript.pyannote[2922].start 16237.69596875
transcript.pyannote[2922].end 16246.87596875
transcript.pyannote[2923].speaker SPEAKER_30
transcript.pyannote[2923].start 16247.26409375
transcript.pyannote[2923].end 16248.44534375
transcript.pyannote[2924].speaker SPEAKER_30
transcript.pyannote[2924].start 16248.81659375
transcript.pyannote[2924].end 16256.00534375
transcript.pyannote[2925].speaker SPEAKER_20
transcript.pyannote[2925].start 16255.90409375
transcript.pyannote[2925].end 16256.29221875
transcript.pyannote[2926].speaker SPEAKER_30
transcript.pyannote[2926].start 16256.59596875
transcript.pyannote[2926].end 16279.93409375
transcript.pyannote[2927].speaker SPEAKER_30
transcript.pyannote[2927].start 16280.25471875
transcript.pyannote[2927].end 16286.46471875
transcript.pyannote[2928].speaker SPEAKER_30
transcript.pyannote[2928].start 16287.34221875
transcript.pyannote[2928].end 16289.14784375
transcript.pyannote[2929].speaker SPEAKER_09
transcript.pyannote[2929].start 16290.49784375
transcript.pyannote[2929].end 16292.59034375
transcript.pyannote[2930].speaker SPEAKER_30
transcript.pyannote[2930].start 16293.19784375
transcript.pyannote[2930].end 16295.00346875
transcript.pyannote[2931].speaker SPEAKER_09
transcript.pyannote[2931].start 16294.24409375
transcript.pyannote[2931].end 16295.50971875
transcript.pyannote[2932].speaker SPEAKER_30
transcript.pyannote[2932].start 16295.20596875
transcript.pyannote[2932].end 16295.57721875
transcript.pyannote[2933].speaker SPEAKER_09
transcript.pyannote[2933].start 16295.57721875
transcript.pyannote[2933].end 16297.88909375
transcript.pyannote[2934].speaker SPEAKER_30
transcript.pyannote[2934].start 16299.17159375
transcript.pyannote[2934].end 16313.51534375
transcript.pyannote[2935].speaker SPEAKER_09
transcript.pyannote[2935].start 16300.89284375
transcript.pyannote[2935].end 16302.34409375
transcript.pyannote[2936].speaker SPEAKER_09
transcript.pyannote[2936].start 16307.10284375
transcript.pyannote[2936].end 16308.43596875
transcript.pyannote[2937].speaker SPEAKER_09
transcript.pyannote[2937].start 16311.97971875
transcript.pyannote[2937].end 16314.84846875
transcript.pyannote[2938].speaker SPEAKER_09
transcript.pyannote[2938].start 16314.96659375
transcript.pyannote[2938].end 16315.75971875
transcript.pyannote[2939].speaker SPEAKER_30
transcript.pyannote[2939].start 16315.55721875
transcript.pyannote[2939].end 16317.97034375
transcript.pyannote[2940].speaker SPEAKER_09
transcript.pyannote[2940].start 16315.81034375
transcript.pyannote[2940].end 16318.86471875
transcript.pyannote[2941].speaker SPEAKER_30
transcript.pyannote[2941].start 16318.91534375
transcript.pyannote[2941].end 16325.86784375
transcript.pyannote[2942].speaker SPEAKER_09
transcript.pyannote[2942].start 16321.22721875
transcript.pyannote[2942].end 16321.75034375
transcript.pyannote[2943].speaker SPEAKER_30
transcript.pyannote[2943].start 16326.69471875
transcript.pyannote[2943].end 16334.47409375
transcript.pyannote[2944].speaker SPEAKER_30
transcript.pyannote[2944].start 16334.77784375
transcript.pyannote[2944].end 16340.39721875
transcript.pyannote[2945].speaker SPEAKER_00
transcript.pyannote[2945].start 16336.56659375
transcript.pyannote[2945].end 16336.75221875
transcript.pyannote[2946].speaker SPEAKER_30
transcript.pyannote[2946].start 16340.73471875
transcript.pyannote[2946].end 16345.25721875
transcript.pyannote[2947].speaker SPEAKER_30
transcript.pyannote[2947].start 16345.66221875
transcript.pyannote[2947].end 16348.78409375
transcript.pyannote[2948].speaker SPEAKER_30
transcript.pyannote[2948].start 16349.50971875
transcript.pyannote[2948].end 16350.37034375
transcript.pyannote[2949].speaker SPEAKER_30
transcript.pyannote[2949].start 16350.47159375
transcript.pyannote[2949].end 16352.24346875
transcript.pyannote[2950].speaker SPEAKER_30
transcript.pyannote[2950].start 16352.86784375
transcript.pyannote[2950].end 16362.50346875
transcript.pyannote[2951].speaker SPEAKER_30
transcript.pyannote[2951].start 16362.57096875
transcript.pyannote[2951].end 16362.60471875
transcript.pyannote[2952].speaker SPEAKER_20
transcript.pyannote[2952].start 16362.60471875
transcript.pyannote[2952].end 16362.97596875
transcript.pyannote[2953].speaker SPEAKER_30
transcript.pyannote[2953].start 16362.97596875
transcript.pyannote[2953].end 16364.88284375
transcript.pyannote[2954].speaker SPEAKER_20
transcript.pyannote[2954].start 16362.99284375
transcript.pyannote[2954].end 16363.00971875
transcript.pyannote[2955].speaker SPEAKER_30
transcript.pyannote[2955].start 16365.28784375
transcript.pyannote[2955].end 16376.45909375
transcript.pyannote[2956].speaker SPEAKER_30
transcript.pyannote[2956].start 16377.01596875
transcript.pyannote[2956].end 16377.43784375
transcript.pyannote[2957].speaker SPEAKER_09
transcript.pyannote[2957].start 16377.53909375
transcript.pyannote[2957].end 16382.38221875
transcript.pyannote[2958].speaker SPEAKER_09
transcript.pyannote[2958].start 16382.66909375
transcript.pyannote[2958].end 16387.52909375
transcript.pyannote[2959].speaker SPEAKER_09
transcript.pyannote[2959].start 16388.23784375
transcript.pyannote[2959].end 16389.50346875
transcript.pyannote[2960].speaker SPEAKER_09
transcript.pyannote[2960].start 16389.97596875
transcript.pyannote[2960].end 16397.06346875
transcript.pyannote[2961].speaker SPEAKER_09
transcript.pyannote[2961].start 16397.23221875
transcript.pyannote[2961].end 16400.15159375
transcript.pyannote[2962].speaker SPEAKER_09
transcript.pyannote[2962].start 16400.64096875
transcript.pyannote[2962].end 16404.33659375
transcript.pyannote[2963].speaker SPEAKER_30
transcript.pyannote[2963].start 16404.89346875
transcript.pyannote[2963].end 16412.41971875
transcript.pyannote[2964].speaker SPEAKER_09
transcript.pyannote[2964].start 16411.06971875
transcript.pyannote[2964].end 16411.20471875
transcript.pyannote[2965].speaker SPEAKER_09
transcript.pyannote[2965].start 16412.31846875
transcript.pyannote[2965].end 16414.69784375
transcript.pyannote[2966].speaker SPEAKER_30
transcript.pyannote[2966].start 16414.69784375
transcript.pyannote[2966].end 16415.38971875
transcript.pyannote[2967].speaker SPEAKER_09
transcript.pyannote[2967].start 16415.08596875
transcript.pyannote[2967].end 16416.60471875
transcript.pyannote[2968].speaker SPEAKER_30
transcript.pyannote[2968].start 16416.65534375
transcript.pyannote[2968].end 16421.17784375
transcript.pyannote[2969].speaker SPEAKER_30
transcript.pyannote[2969].start 16421.22846875
transcript.pyannote[2969].end 16422.74721875
transcript.pyannote[2970].speaker SPEAKER_30
transcript.pyannote[2970].start 16423.32096875
transcript.pyannote[2970].end 16424.16471875
transcript.pyannote[2971].speaker SPEAKER_30
transcript.pyannote[2971].start 16424.56971875
transcript.pyannote[2971].end 16446.23721875
transcript.pyannote[2972].speaker SPEAKER_30
transcript.pyannote[2972].start 16446.74346875
transcript.pyannote[2972].end 16451.43471875
transcript.pyannote[2973].speaker SPEAKER_30
transcript.pyannote[2973].start 16452.04221875
transcript.pyannote[2973].end 16483.36221875
transcript.pyannote[2974].speaker SPEAKER_30
transcript.pyannote[2974].start 16483.80096875
transcript.pyannote[2974].end 16489.55534375
transcript.pyannote[2975].speaker SPEAKER_30
transcript.pyannote[2975].start 16490.14596875
transcript.pyannote[2975].end 16490.50034375
transcript.pyannote[2976].speaker SPEAKER_20
transcript.pyannote[2976].start 16491.81659375
transcript.pyannote[2976].end 16493.95971875
transcript.pyannote[2977].speaker SPEAKER_04
transcript.pyannote[2977].start 16493.48721875
transcript.pyannote[2977].end 16498.76909375
transcript.pyannote[2978].speaker SPEAKER_30
transcript.pyannote[2978].start 16493.95971875
transcript.pyannote[2978].end 16494.14534375
transcript.pyannote[2979].speaker SPEAKER_20
transcript.pyannote[2979].start 16494.14534375
transcript.pyannote[2979].end 16494.43221875
transcript.pyannote[2980].speaker SPEAKER_04
transcript.pyannote[2980].start 16499.15721875
transcript.pyannote[2980].end 16501.55346875
transcript.pyannote[2981].speaker SPEAKER_30
transcript.pyannote[2981].start 16500.69284375
transcript.pyannote[2981].end 16500.94596875
transcript.pyannote[2982].speaker SPEAKER_04
transcript.pyannote[2982].start 16501.85721875
transcript.pyannote[2982].end 16505.94096875
transcript.pyannote[2983].speaker SPEAKER_30
transcript.pyannote[2983].start 16507.32471875
transcript.pyannote[2983].end 16509.72096875
transcript.pyannote[2984].speaker SPEAKER_04
transcript.pyannote[2984].start 16508.38784375
transcript.pyannote[2984].end 16510.12596875
transcript.pyannote[2985].speaker SPEAKER_30
transcript.pyannote[2985].start 16510.24409375
transcript.pyannote[2985].end 16523.81159375
transcript.pyannote[2986].speaker SPEAKER_30
transcript.pyannote[2986].start 16524.95909375
transcript.pyannote[2986].end 16541.53034375
transcript.pyannote[2987].speaker SPEAKER_30
transcript.pyannote[2987].start 16542.49221875
transcript.pyannote[2987].end 16544.31471875
transcript.pyannote[2988].speaker SPEAKER_30
transcript.pyannote[2988].start 16544.60159375
transcript.pyannote[2988].end 16545.41159375
transcript.pyannote[2989].speaker SPEAKER_30
transcript.pyannote[2989].start 16546.28909375
transcript.pyannote[2989].end 16547.53784375
transcript.pyannote[2990].speaker SPEAKER_30
transcript.pyannote[2990].start 16547.90909375
transcript.pyannote[2990].end 16549.66409375
transcript.pyannote[2991].speaker SPEAKER_30
transcript.pyannote[2991].start 16550.49096875
transcript.pyannote[2991].end 16551.57096875
transcript.pyannote[2992].speaker SPEAKER_30
transcript.pyannote[2992].start 16553.20784375
transcript.pyannote[2992].end 16553.35971875
transcript.pyannote[2993].speaker SPEAKER_09
transcript.pyannote[2993].start 16553.30909375
transcript.pyannote[2993].end 16554.60846875
transcript.pyannote[2994].speaker SPEAKER_30
transcript.pyannote[2994].start 16554.60846875
transcript.pyannote[2994].end 16557.67971875
transcript.pyannote[2995].speaker SPEAKER_09
transcript.pyannote[2995].start 16557.42659375
transcript.pyannote[2995].end 16557.66284375
transcript.pyannote[2996].speaker SPEAKER_09
transcript.pyannote[2996].start 16557.67971875
transcript.pyannote[2996].end 16557.88221875
transcript.pyannote[2997].speaker SPEAKER_30
transcript.pyannote[2997].start 16558.28721875
transcript.pyannote[2997].end 16560.51471875
transcript.pyannote[2998].speaker SPEAKER_30
transcript.pyannote[2998].start 16561.59471875
transcript.pyannote[2998].end 16564.48034375
transcript.pyannote[2999].speaker SPEAKER_30
transcript.pyannote[2999].start 16564.88534375
transcript.pyannote[2999].end 16567.43346875
transcript.pyannote[3000].speaker SPEAKER_30
transcript.pyannote[3000].start 16567.66971875
transcript.pyannote[3000].end 16568.96909375
transcript.pyannote[3001].speaker SPEAKER_30
transcript.pyannote[3001].start 16569.45846875
transcript.pyannote[3001].end 16571.44971875
transcript.pyannote[3002].speaker SPEAKER_30
transcript.pyannote[3002].start 16571.58471875
transcript.pyannote[3002].end 16572.42846875
transcript.pyannote[3003].speaker SPEAKER_30
transcript.pyannote[3003].start 16572.90096875
transcript.pyannote[3003].end 16576.74846875
transcript.pyannote[3004].speaker SPEAKER_30
transcript.pyannote[3004].start 16577.30534375
transcript.pyannote[3004].end 16579.31346875
transcript.pyannote[3005].speaker SPEAKER_30
transcript.pyannote[3005].start 16580.24159375
transcript.pyannote[3005].end 16583.78534375
transcript.pyannote[3006].speaker SPEAKER_30
transcript.pyannote[3006].start 16585.59096875
transcript.pyannote[3006].end 16604.94659375
transcript.pyannote[3007].speaker SPEAKER_30
transcript.pyannote[3007].start 16604.96346875
transcript.pyannote[3007].end 16608.65909375
transcript.pyannote[3008].speaker SPEAKER_30
transcript.pyannote[3008].start 16609.03034375
transcript.pyannote[3008].end 16619.08784375
transcript.pyannote[3009].speaker SPEAKER_30
transcript.pyannote[3009].start 16619.42534375
transcript.pyannote[3009].end 16625.16284375
transcript.pyannote[3010].speaker SPEAKER_30
transcript.pyannote[3010].start 16625.58471875
transcript.pyannote[3010].end 16629.17909375
transcript.pyannote[3011].speaker SPEAKER_30
transcript.pyannote[3011].start 16629.90471875
transcript.pyannote[3011].end 16632.03096875
transcript.pyannote[3012].speaker SPEAKER_30
transcript.pyannote[3012].start 16633.26284375
transcript.pyannote[3012].end 16633.92096875
transcript.pyannote[3013].speaker SPEAKER_09
transcript.pyannote[3013].start 16633.60034375
transcript.pyannote[3013].end 16634.76471875
transcript.pyannote[3014].speaker SPEAKER_30
transcript.pyannote[3014].start 16634.76471875
transcript.pyannote[3014].end 16639.79346875
transcript.pyannote[3015].speaker SPEAKER_09
transcript.pyannote[3015].start 16636.85721875
transcript.pyannote[3015].end 16637.11034375
transcript.pyannote[3016].speaker SPEAKER_09
transcript.pyannote[3016].start 16637.41409375
transcript.pyannote[3016].end 16637.68409375
transcript.pyannote[3017].speaker SPEAKER_30
transcript.pyannote[3017].start 16640.04659375
transcript.pyannote[3017].end 16644.34971875
transcript.pyannote[3018].speaker SPEAKER_30
transcript.pyannote[3018].start 16644.55221875
transcript.pyannote[3018].end 16646.20596875
transcript.pyannote[3019].speaker SPEAKER_30
transcript.pyannote[3019].start 16646.83034375
transcript.pyannote[3019].end 16648.61909375
transcript.pyannote[3020].speaker SPEAKER_30
transcript.pyannote[3020].start 16649.27721875
transcript.pyannote[3020].end 16653.15846875
transcript.pyannote[3021].speaker SPEAKER_09
transcript.pyannote[3021].start 16653.96846875
transcript.pyannote[3021].end 16654.91346875
transcript.pyannote[3022].speaker SPEAKER_30
transcript.pyannote[3022].start 16654.93034375
transcript.pyannote[3022].end 16655.53784375
transcript.pyannote[3023].speaker SPEAKER_30
transcript.pyannote[3023].start 16656.07784375
transcript.pyannote[3023].end 16656.53346875
transcript.pyannote[3024].speaker SPEAKER_09
transcript.pyannote[3024].start 16656.19596875
transcript.pyannote[3024].end 16662.22034375
transcript.pyannote[3025].speaker SPEAKER_09
transcript.pyannote[3025].start 16662.62534375
transcript.pyannote[3025].end 16665.10596875
transcript.pyannote[3026].speaker SPEAKER_20
transcript.pyannote[3026].start 16665.10596875
transcript.pyannote[3026].end 16665.59534375
transcript.pyannote[3027].speaker SPEAKER_09
transcript.pyannote[3027].start 16665.57846875
transcript.pyannote[3027].end 16669.49346875
transcript.pyannote[3028].speaker SPEAKER_30
transcript.pyannote[3028].start 16669.37534375
transcript.pyannote[3028].end 16671.04596875
transcript.pyannote[3029].speaker SPEAKER_09
transcript.pyannote[3029].start 16669.67909375
transcript.pyannote[3029].end 16672.22721875
transcript.pyannote[3030].speaker SPEAKER_30
transcript.pyannote[3030].start 16672.27784375
transcript.pyannote[3030].end 16674.23534375
transcript.pyannote[3031].speaker SPEAKER_30
transcript.pyannote[3031].start 16675.31534375
transcript.pyannote[3031].end 16675.68659375
transcript.pyannote[3032].speaker SPEAKER_30
transcript.pyannote[3032].start 16676.00721875
transcript.pyannote[3032].end 16677.59346875
transcript.pyannote[3033].speaker SPEAKER_30
transcript.pyannote[3033].start 16677.96471875
transcript.pyannote[3033].end 16679.19659375
transcript.pyannote[3034].speaker SPEAKER_09
transcript.pyannote[3034].start 16679.43284375
transcript.pyannote[3034].end 16680.86721875
transcript.pyannote[3035].speaker SPEAKER_30
transcript.pyannote[3035].start 16680.69846875
transcript.pyannote[3035].end 16684.36034375
transcript.pyannote[3036].speaker SPEAKER_30
transcript.pyannote[3036].start 16685.11971875
transcript.pyannote[3036].end 16686.01409375
transcript.pyannote[3037].speaker SPEAKER_09
transcript.pyannote[3037].start 16685.64284375
transcript.pyannote[3037].end 16687.76909375
transcript.pyannote[3038].speaker SPEAKER_30
transcript.pyannote[3038].start 16687.44846875
transcript.pyannote[3038].end 16688.47784375
transcript.pyannote[3039].speaker SPEAKER_30
transcript.pyannote[3039].start 16689.30471875
transcript.pyannote[3039].end 16689.70971875
transcript.pyannote[3040].speaker SPEAKER_09
transcript.pyannote[3040].start 16690.14846875
transcript.pyannote[3040].end 16690.21596875
transcript.pyannote[3041].speaker SPEAKER_30
transcript.pyannote[3041].start 16690.21596875
transcript.pyannote[3041].end 16690.26659375
transcript.pyannote[3042].speaker SPEAKER_09
transcript.pyannote[3042].start 16690.26659375
transcript.pyannote[3042].end 16705.16721875
transcript.pyannote[3043].speaker SPEAKER_09
transcript.pyannote[3043].start 16705.31909375
transcript.pyannote[3043].end 16707.58034375
transcript.pyannote[3044].speaker SPEAKER_09
transcript.pyannote[3044].start 16707.90096875
transcript.pyannote[3044].end 16712.11971875
transcript.pyannote[3045].speaker SPEAKER_09
transcript.pyannote[3045].start 16712.40659375
transcript.pyannote[3045].end 16714.98846875
transcript.pyannote[3046].speaker SPEAKER_09
transcript.pyannote[3046].start 16715.64659375
transcript.pyannote[3046].end 16724.86034375
transcript.pyannote[3047].speaker SPEAKER_09
transcript.pyannote[3047].start 16725.21471875
transcript.pyannote[3047].end 16726.27784375
transcript.pyannote[3048].speaker SPEAKER_09
transcript.pyannote[3048].start 16726.51409375
transcript.pyannote[3048].end 16730.17596875
transcript.pyannote[3049].speaker SPEAKER_30
transcript.pyannote[3049].start 16731.08721875
transcript.pyannote[3049].end 16731.99846875
transcript.pyannote[3050].speaker SPEAKER_30
transcript.pyannote[3050].start 16732.18409375
transcript.pyannote[3050].end 16734.17534375
transcript.pyannote[3051].speaker SPEAKER_30
transcript.pyannote[3051].start 16734.68159375
transcript.pyannote[3051].end 16736.75721875
transcript.pyannote[3052].speaker SPEAKER_30
transcript.pyannote[3052].start 16737.28034375
transcript.pyannote[3052].end 16739.52471875
transcript.pyannote[3053].speaker SPEAKER_30
transcript.pyannote[3053].start 16740.38534375
transcript.pyannote[3053].end 16744.51971875
transcript.pyannote[3054].speaker SPEAKER_30
transcript.pyannote[3054].start 16746.05534375
transcript.pyannote[3054].end 16747.20284375
transcript.pyannote[3055].speaker SPEAKER_30
transcript.pyannote[3055].start 16748.02971875
transcript.pyannote[3055].end 16748.78909375
transcript.pyannote[3056].speaker SPEAKER_09
transcript.pyannote[3056].start 16749.43034375
transcript.pyannote[3056].end 16759.35284375
transcript.pyannote[3057].speaker SPEAKER_09
transcript.pyannote[3057].start 16759.69034375
transcript.pyannote[3057].end 16766.64284375
transcript.pyannote[3058].speaker SPEAKER_09
transcript.pyannote[3058].start 16767.19971875
transcript.pyannote[3058].end 16781.29034375
transcript.pyannote[3059].speaker SPEAKER_09
transcript.pyannote[3059].start 16781.56034375
transcript.pyannote[3059].end 16782.18471875
transcript.pyannote[3060].speaker SPEAKER_09
transcript.pyannote[3060].start 16783.51784375
transcript.pyannote[3060].end 16789.03596875
transcript.pyannote[3061].speaker SPEAKER_09
transcript.pyannote[3061].start 16789.64346875
transcript.pyannote[3061].end 16790.65596875
transcript.pyannote[3062].speaker SPEAKER_09
transcript.pyannote[3062].start 16792.88346875
transcript.pyannote[3062].end 16798.30034375
transcript.pyannote[3063].speaker SPEAKER_09
transcript.pyannote[3063].start 16798.36784375
transcript.pyannote[3063].end 16798.40159375
transcript.pyannote[3064].speaker SPEAKER_30
transcript.pyannote[3064].start 16798.40159375
transcript.pyannote[3064].end 16805.91096875
transcript.pyannote[3065].speaker SPEAKER_09
transcript.pyannote[3065].start 16798.62096875
transcript.pyannote[3065].end 16801.08471875
transcript.pyannote[3066].speaker SPEAKER_20
transcript.pyannote[3066].start 16801.08471875
transcript.pyannote[3066].end 16801.10159375
transcript.pyannote[3067].speaker SPEAKER_20
transcript.pyannote[3067].start 16806.53534375
transcript.pyannote[3067].end 16806.85596875
transcript.pyannote[3068].speaker SPEAKER_30
transcript.pyannote[3068].start 16806.85596875
transcript.pyannote[3068].end 16808.61096875
transcript.pyannote[3069].speaker SPEAKER_20
transcript.pyannote[3069].start 16808.20596875
transcript.pyannote[3069].end 16809.16784375
transcript.pyannote[3070].speaker SPEAKER_30
transcript.pyannote[3070].start 16808.74596875
transcript.pyannote[3070].end 16818.11159375
transcript.pyannote[3071].speaker SPEAKER_09
transcript.pyannote[3071].start 16809.16784375
transcript.pyannote[3071].end 16809.26909375
transcript.pyannote[3072].speaker SPEAKER_20
transcript.pyannote[3072].start 16809.26909375
transcript.pyannote[3072].end 16809.30284375
transcript.pyannote[3073].speaker SPEAKER_09
transcript.pyannote[3073].start 16819.25909375
transcript.pyannote[3073].end 16822.81971875
transcript.pyannote[3074].speaker SPEAKER_30
transcript.pyannote[3074].start 16823.52846875
transcript.pyannote[3074].end 16828.77659375
transcript.pyannote[3075].speaker SPEAKER_09
transcript.pyannote[3075].start 16824.22034375
transcript.pyannote[3075].end 16824.52409375
transcript.pyannote[3076].speaker SPEAKER_09
transcript.pyannote[3076].start 16826.49846875
transcript.pyannote[3076].end 16826.93721875
transcript.pyannote[3077].speaker SPEAKER_09
transcript.pyannote[3077].start 16828.48971875
transcript.pyannote[3077].end 16833.51846875
transcript.pyannote[3078].speaker SPEAKER_09
transcript.pyannote[3078].start 16833.72096875
transcript.pyannote[3078].end 16837.33221875
transcript.pyannote[3079].speaker SPEAKER_09
transcript.pyannote[3079].start 16837.80471875
transcript.pyannote[3079].end 16843.49159375
transcript.pyannote[3080].speaker SPEAKER_30
transcript.pyannote[3080].start 16842.79971875
transcript.pyannote[3080].end 16852.73909375
transcript.pyannote[3081].speaker SPEAKER_09
transcript.pyannote[3081].start 16853.34659375
transcript.pyannote[3081].end 16856.28284375
transcript.pyannote[3082].speaker SPEAKER_09
transcript.pyannote[3082].start 16857.07596875
transcript.pyannote[3082].end 16860.13034375
transcript.pyannote[3083].speaker SPEAKER_30
transcript.pyannote[3083].start 16860.43409375
transcript.pyannote[3083].end 16893.88034375
transcript.pyannote[3084].speaker SPEAKER_09
transcript.pyannote[3084].start 16867.23471875
transcript.pyannote[3084].end 16868.97284375
transcript.pyannote[3085].speaker SPEAKER_00
transcript.pyannote[3085].start 16868.97284375
transcript.pyannote[3085].end 16870.89659375
transcript.pyannote[3086].speaker SPEAKER_00
transcript.pyannote[3086].start 16874.30534375
transcript.pyannote[3086].end 16874.67659375
transcript.pyannote[3087].speaker SPEAKER_00
transcript.pyannote[3087].start 16876.88721875
transcript.pyannote[3087].end 16878.74346875
transcript.pyannote[3088].speaker SPEAKER_30
transcript.pyannote[3088].start 16894.38659375
transcript.pyannote[3088].end 16899.73596875
transcript.pyannote[3089].speaker SPEAKER_30
transcript.pyannote[3089].start 16900.47846875
transcript.pyannote[3089].end 16906.08096875
transcript.pyannote[3090].speaker SPEAKER_00
transcript.pyannote[3090].start 16902.43596875
transcript.pyannote[3090].end 16903.14471875
transcript.pyannote[3091].speaker SPEAKER_20
transcript.pyannote[3091].start 16903.14471875
transcript.pyannote[3091].end 16903.24596875
transcript.pyannote[3092].speaker SPEAKER_00
transcript.pyannote[3092].start 16903.24596875
transcript.pyannote[3092].end 16903.26284375
transcript.pyannote[3093].speaker SPEAKER_20
transcript.pyannote[3093].start 16903.26284375
transcript.pyannote[3093].end 16903.27971875
transcript.pyannote[3094].speaker SPEAKER_00
transcript.pyannote[3094].start 16903.27971875
transcript.pyannote[3094].end 16903.33034375
transcript.pyannote[3095].speaker SPEAKER_30
transcript.pyannote[3095].start 16906.58721875
transcript.pyannote[3095].end 16909.21971875
transcript.pyannote[3096].speaker SPEAKER_30
transcript.pyannote[3096].start 16909.47284375
transcript.pyannote[3096].end 16910.35034375
transcript.pyannote[3097].speaker SPEAKER_30
transcript.pyannote[3097].start 16911.05909375
transcript.pyannote[3097].end 16911.71721875
transcript.pyannote[3098].speaker SPEAKER_30
transcript.pyannote[3098].start 16913.67471875
transcript.pyannote[3098].end 16916.59409375
transcript.pyannote[3099].speaker SPEAKER_30
transcript.pyannote[3099].start 16917.13409375
transcript.pyannote[3099].end 16917.89346875
transcript.pyannote[3100].speaker SPEAKER_30
transcript.pyannote[3100].start 16918.70346875
transcript.pyannote[3100].end 16919.54721875
transcript.pyannote[3101].speaker SPEAKER_30
transcript.pyannote[3101].start 16921.13346875
transcript.pyannote[3101].end 16921.90971875
transcript.pyannote[3102].speaker SPEAKER_30
transcript.pyannote[3102].start 16922.83784375
transcript.pyannote[3102].end 16923.24284375
transcript.pyannote[3103].speaker SPEAKER_04
transcript.pyannote[3103].start 16926.16221875
transcript.pyannote[3103].end 16935.03846875
transcript.pyannote[3104].speaker SPEAKER_30
transcript.pyannote[3104].start 16927.30971875
transcript.pyannote[3104].end 16928.59221875
transcript.pyannote[3105].speaker SPEAKER_30
transcript.pyannote[3105].start 16931.84909375
transcript.pyannote[3105].end 16936.32096875
transcript.pyannote[3106].speaker SPEAKER_04
transcript.pyannote[3106].start 16935.83159375
transcript.pyannote[3106].end 16937.80596875
transcript.pyannote[3107].speaker SPEAKER_30
transcript.pyannote[3107].start 16938.32909375
transcript.pyannote[3107].end 16939.20659375
transcript.pyannote[3108].speaker SPEAKER_04
transcript.pyannote[3108].start 16939.20659375
transcript.pyannote[3108].end 16945.55159375
transcript.pyannote[3109].speaker SPEAKER_30
transcript.pyannote[3109].start 16944.45471875
transcript.pyannote[3109].end 16945.60221875
transcript.pyannote[3110].speaker SPEAKER_04
transcript.pyannote[3110].start 16945.60221875
transcript.pyannote[3110].end 16946.26034375
transcript.pyannote[3111].speaker SPEAKER_30
transcript.pyannote[3111].start 16946.64846875
transcript.pyannote[3111].end 16948.67346875
transcript.pyannote[3112].speaker SPEAKER_19
transcript.pyannote[3112].start 16949.71971875
transcript.pyannote[3112].end 16953.98909375
transcript.pyannote[3113].speaker SPEAKER_29
transcript.pyannote[3113].start 16968.06284375
transcript.pyannote[3113].end 16970.69534375
transcript.pyannote[3114].speaker SPEAKER_19
transcript.pyannote[3114].start 16970.69534375
transcript.pyannote[3114].end 16971.55596875
transcript.pyannote[3115].speaker SPEAKER_19
transcript.pyannote[3115].start 16975.42034375
transcript.pyannote[3115].end 16976.01096875
transcript.pyannote[3116].speaker SPEAKER_29
transcript.pyannote[3116].start 16976.14596875
transcript.pyannote[3116].end 16976.85471875
transcript.pyannote[3117].speaker SPEAKER_29
transcript.pyannote[3117].start 16976.92221875
transcript.pyannote[3117].end 16998.94409375
transcript.pyannote[3118].speaker SPEAKER_20
transcript.pyannote[3118].start 16991.53596875
transcript.pyannote[3118].end 16992.29534375
transcript.pyannote[3119].speaker SPEAKER_29
transcript.pyannote[3119].start 16999.50096875
transcript.pyannote[3119].end 17001.30659375
transcript.pyannote[3120].speaker SPEAKER_29
transcript.pyannote[3120].start 17001.71159375
transcript.pyannote[3120].end 17004.51284375
transcript.pyannote[3121].speaker SPEAKER_29
transcript.pyannote[3121].start 17005.23846875
transcript.pyannote[3121].end 17016.27471875
transcript.pyannote[3122].speaker SPEAKER_29
transcript.pyannote[3122].start 17016.69659375
transcript.pyannote[3122].end 17018.33346875
transcript.pyannote[3123].speaker SPEAKER_29
transcript.pyannote[3123].start 17019.02534375
transcript.pyannote[3123].end 17019.61596875
transcript.pyannote[3124].speaker SPEAKER_29
transcript.pyannote[3124].start 17020.13909375
transcript.pyannote[3124].end 17020.54409375
transcript.pyannote[3125].speaker SPEAKER_29
transcript.pyannote[3125].start 17021.59034375
transcript.pyannote[3125].end 17022.43409375
transcript.pyannote[3126].speaker SPEAKER_29
transcript.pyannote[3126].start 17022.92346875
transcript.pyannote[3126].end 17023.73346875
transcript.pyannote[3127].speaker SPEAKER_29
transcript.pyannote[3127].start 17025.89346875
transcript.pyannote[3127].end 17029.35284375
transcript.pyannote[3128].speaker SPEAKER_20
transcript.pyannote[3128].start 17027.36159375
transcript.pyannote[3128].end 17027.46284375
transcript.pyannote[3129].speaker SPEAKER_20
transcript.pyannote[3129].start 17029.35284375
transcript.pyannote[3129].end 17029.99409375
transcript.pyannote[3130].speaker SPEAKER_29
transcript.pyannote[3130].start 17029.89284375
transcript.pyannote[3130].end 17037.40221875
transcript.pyannote[3131].speaker SPEAKER_29
transcript.pyannote[3131].start 17038.11096875
transcript.pyannote[3131].end 17039.42721875
transcript.pyannote[3132].speaker SPEAKER_09
transcript.pyannote[3132].start 17039.62971875
transcript.pyannote[3132].end 17048.43846875
transcript.pyannote[3133].speaker SPEAKER_29
transcript.pyannote[3133].start 17048.43846875
transcript.pyannote[3133].end 17051.88096875
transcript.pyannote[3134].speaker SPEAKER_09
transcript.pyannote[3134].start 17051.74596875
transcript.pyannote[3134].end 17052.03284375
transcript.pyannote[3135].speaker SPEAKER_29
transcript.pyannote[3135].start 17052.03284375
transcript.pyannote[3135].end 17054.80034375
transcript.pyannote[3136].speaker SPEAKER_09
transcript.pyannote[3136].start 17052.04971875
transcript.pyannote[3136].end 17052.16784375
transcript.pyannote[3137].speaker SPEAKER_09
transcript.pyannote[3137].start 17052.70784375
transcript.pyannote[3137].end 17055.61034375
transcript.pyannote[3138].speaker SPEAKER_29
transcript.pyannote[3138].start 17055.01971875
transcript.pyannote[3138].end 17059.42409375
transcript.pyannote[3139].speaker SPEAKER_09
transcript.pyannote[3139].start 17057.88846875
transcript.pyannote[3139].end 17058.14159375
transcript.pyannote[3140].speaker SPEAKER_09
transcript.pyannote[3140].start 17059.91346875
transcript.pyannote[3140].end 17063.79471875
transcript.pyannote[3141].speaker SPEAKER_09
transcript.pyannote[3141].start 17064.18284375
transcript.pyannote[3141].end 17065.97159375
transcript.pyannote[3142].speaker SPEAKER_29
transcript.pyannote[3142].start 17064.53721875
transcript.pyannote[3142].end 17070.47721875
transcript.pyannote[3143].speaker SPEAKER_09
transcript.pyannote[3143].start 17071.52346875
transcript.pyannote[3143].end 17077.27784375
transcript.pyannote[3144].speaker SPEAKER_09
transcript.pyannote[3144].start 17077.48034375
transcript.pyannote[3144].end 17083.72409375
transcript.pyannote[3145].speaker SPEAKER_29
transcript.pyannote[3145].start 17083.16721875
transcript.pyannote[3145].end 17083.87596875
transcript.pyannote[3146].speaker SPEAKER_29
transcript.pyannote[3146].start 17084.78721875
transcript.pyannote[3146].end 17091.80721875
transcript.pyannote[3147].speaker SPEAKER_29
transcript.pyannote[3147].start 17092.39784375
transcript.pyannote[3147].end 17094.94596875
transcript.pyannote[3148].speaker SPEAKER_29
transcript.pyannote[3148].start 17095.60409375
transcript.pyannote[3148].end 17097.05534375
transcript.pyannote[3149].speaker SPEAKER_20
transcript.pyannote[3149].start 17097.05534375
transcript.pyannote[3149].end 17097.42659375
transcript.pyannote[3150].speaker SPEAKER_29
transcript.pyannote[3150].start 17097.30846875
transcript.pyannote[3150].end 17098.48971875
transcript.pyannote[3151].speaker SPEAKER_29
transcript.pyannote[3151].start 17098.87784375
transcript.pyannote[3151].end 17101.37534375
transcript.pyannote[3152].speaker SPEAKER_20
transcript.pyannote[3152].start 17099.16471875
transcript.pyannote[3152].end 17099.67096875
transcript.pyannote[3153].speaker SPEAKER_20
transcript.pyannote[3153].start 17100.66659375
transcript.pyannote[3153].end 17101.13909375
transcript.pyannote[3154].speaker SPEAKER_29
transcript.pyannote[3154].start 17102.01659375
transcript.pyannote[3154].end 17107.60221875
transcript.pyannote[3155].speaker SPEAKER_29
transcript.pyannote[3155].start 17107.80471875
transcript.pyannote[3155].end 17111.55096875
transcript.pyannote[3156].speaker SPEAKER_29
transcript.pyannote[3156].start 17111.93909375
transcript.pyannote[3156].end 17116.61346875
transcript.pyannote[3157].speaker SPEAKER_25
transcript.pyannote[3157].start 17112.41159375
transcript.pyannote[3157].end 17112.49596875
transcript.pyannote[3158].speaker SPEAKER_20
transcript.pyannote[3158].start 17112.49596875
transcript.pyannote[3158].end 17113.82909375
transcript.pyannote[3159].speaker SPEAKER_29
transcript.pyannote[3159].start 17116.93409375
transcript.pyannote[3159].end 17120.22471875
transcript.pyannote[3160].speaker SPEAKER_20
transcript.pyannote[3160].start 17120.14034375
transcript.pyannote[3160].end 17120.66346875
transcript.pyannote[3161].speaker SPEAKER_29
transcript.pyannote[3161].start 17121.43971875
transcript.pyannote[3161].end 17124.02159375
transcript.pyannote[3162].speaker SPEAKER_29
transcript.pyannote[3162].start 17124.34221875
transcript.pyannote[3162].end 17128.44284375
transcript.pyannote[3163].speaker SPEAKER_09
transcript.pyannote[3163].start 17129.25284375
transcript.pyannote[3163].end 17130.28221875
transcript.pyannote[3164].speaker SPEAKER_29
transcript.pyannote[3164].start 17129.91096875
transcript.pyannote[3164].end 17130.40034375
transcript.pyannote[3165].speaker SPEAKER_29
transcript.pyannote[3165].start 17130.77159375
transcript.pyannote[3165].end 17132.39159375
transcript.pyannote[3166].speaker SPEAKER_09
transcript.pyannote[3166].start 17131.02471875
transcript.pyannote[3166].end 17131.51409375
transcript.pyannote[3167].speaker SPEAKER_29
transcript.pyannote[3167].start 17133.96096875
transcript.pyannote[3167].end 17141.94284375
transcript.pyannote[3168].speaker SPEAKER_09
transcript.pyannote[3168].start 17142.65159375
transcript.pyannote[3168].end 17146.93784375
transcript.pyannote[3169].speaker SPEAKER_29
transcript.pyannote[3169].start 17146.71846875
transcript.pyannote[3169].end 17147.12346875
transcript.pyannote[3170].speaker SPEAKER_20
transcript.pyannote[3170].start 17147.12346875
transcript.pyannote[3170].end 17147.14034375
transcript.pyannote[3171].speaker SPEAKER_29
transcript.pyannote[3171].start 17147.14034375
transcript.pyannote[3171].end 17147.15721875
transcript.pyannote[3172].speaker SPEAKER_20
transcript.pyannote[3172].start 17147.15721875
transcript.pyannote[3172].end 17147.17409375
transcript.pyannote[3173].speaker SPEAKER_09
transcript.pyannote[3173].start 17147.30909375
transcript.pyannote[3173].end 17155.25721875
transcript.pyannote[3174].speaker SPEAKER_20
transcript.pyannote[3174].start 17152.28721875
transcript.pyannote[3174].end 17152.82721875
transcript.pyannote[3175].speaker SPEAKER_20
transcript.pyannote[3175].start 17153.56971875
transcript.pyannote[3175].end 17154.71721875
transcript.pyannote[3176].speaker SPEAKER_09
transcript.pyannote[3176].start 17155.88159375
transcript.pyannote[3176].end 17158.80096875
transcript.pyannote[3177].speaker SPEAKER_09
transcript.pyannote[3177].start 17158.85159375
transcript.pyannote[3177].end 17174.61284375
transcript.pyannote[3178].speaker SPEAKER_20
transcript.pyannote[3178].start 17161.85534375
transcript.pyannote[3178].end 17161.95659375
transcript.pyannote[3179].speaker SPEAKER_00
transcript.pyannote[3179].start 17167.03596875
transcript.pyannote[3179].end 17167.05284375
transcript.pyannote[3180].speaker SPEAKER_16
transcript.pyannote[3180].start 17167.05284375
transcript.pyannote[3180].end 17167.45784375
transcript.pyannote[3181].speaker SPEAKER_00
transcript.pyannote[3181].start 17167.45784375
transcript.pyannote[3181].end 17167.57596875
transcript.pyannote[3182].speaker SPEAKER_09
transcript.pyannote[3182].start 17175.01784375
transcript.pyannote[3182].end 17178.57846875
transcript.pyannote[3183].speaker SPEAKER_29
transcript.pyannote[3183].start 17175.35534375
transcript.pyannote[3183].end 17178.03846875
transcript.pyannote[3184].speaker SPEAKER_29
transcript.pyannote[3184].start 17179.27034375
transcript.pyannote[3184].end 17183.05034375
transcript.pyannote[3185].speaker SPEAKER_20
transcript.pyannote[3185].start 17183.05034375
transcript.pyannote[3185].end 17183.47221875
transcript.pyannote[3186].speaker SPEAKER_29
transcript.pyannote[3186].start 17183.47221875
transcript.pyannote[3186].end 17184.53534375
transcript.pyannote[3187].speaker SPEAKER_29
transcript.pyannote[3187].start 17184.88971875
transcript.pyannote[3187].end 17187.30284375
transcript.pyannote[3188].speaker SPEAKER_29
transcript.pyannote[3188].start 17188.07909375
transcript.pyannote[3188].end 17191.35284375
transcript.pyannote[3189].speaker SPEAKER_29
transcript.pyannote[3189].start 17191.55534375
transcript.pyannote[3189].end 17194.71096875
transcript.pyannote[3190].speaker SPEAKER_29
transcript.pyannote[3190].start 17195.13284375
transcript.pyannote[3190].end 17196.36471875
transcript.pyannote[3191].speaker SPEAKER_29
transcript.pyannote[3191].start 17196.43221875
transcript.pyannote[3191].end 17198.57534375
transcript.pyannote[3192].speaker SPEAKER_20
transcript.pyannote[3192].start 17196.76971875
transcript.pyannote[3192].end 17196.82034375
transcript.pyannote[3193].speaker SPEAKER_29
transcript.pyannote[3193].start 17198.91284375
transcript.pyannote[3193].end 17201.61284375
transcript.pyannote[3194].speaker SPEAKER_29
transcript.pyannote[3194].start 17201.62971875
transcript.pyannote[3194].end 17202.50721875
transcript.pyannote[3195].speaker SPEAKER_29
transcript.pyannote[3195].start 17203.04721875
transcript.pyannote[3195].end 17208.44721875
transcript.pyannote[3196].speaker SPEAKER_09
transcript.pyannote[3196].start 17208.70034375
transcript.pyannote[3196].end 17209.15596875
transcript.pyannote[3197].speaker SPEAKER_29
transcript.pyannote[3197].start 17208.91971875
transcript.pyannote[3197].end 17211.04596875
transcript.pyannote[3198].speaker SPEAKER_09
transcript.pyannote[3198].start 17211.04596875
transcript.pyannote[3198].end 17214.40409375
transcript.pyannote[3199].speaker SPEAKER_09
transcript.pyannote[3199].start 17214.64034375
transcript.pyannote[3199].end 17215.56846875
transcript.pyannote[3200].speaker SPEAKER_29
transcript.pyannote[3200].start 17214.89346875
transcript.pyannote[3200].end 17219.38221875
transcript.pyannote[3201].speaker SPEAKER_09
transcript.pyannote[3201].start 17216.91846875
transcript.pyannote[3201].end 17219.33159375
transcript.pyannote[3202].speaker SPEAKER_09
transcript.pyannote[3202].start 17219.38221875
transcript.pyannote[3202].end 17219.39909375
transcript.pyannote[3203].speaker SPEAKER_09
transcript.pyannote[3203].start 17219.83784375
transcript.pyannote[3203].end 17224.05659375
transcript.pyannote[3204].speaker SPEAKER_09
transcript.pyannote[3204].start 17224.09034375
transcript.pyannote[3204].end 17224.93409375
transcript.pyannote[3205].speaker SPEAKER_09
transcript.pyannote[3205].start 17225.22096875
transcript.pyannote[3205].end 17230.13159375
transcript.pyannote[3206].speaker SPEAKER_29
transcript.pyannote[3206].start 17228.89971875
transcript.pyannote[3206].end 17229.40596875
transcript.pyannote[3207].speaker SPEAKER_29
transcript.pyannote[3207].start 17229.79409375
transcript.pyannote[3207].end 17235.14346875
transcript.pyannote[3208].speaker SPEAKER_29
transcript.pyannote[3208].start 17236.08846875
transcript.pyannote[3208].end 17242.51784375
transcript.pyannote[3209].speaker SPEAKER_20
transcript.pyannote[3209].start 17237.60721875
transcript.pyannote[3209].end 17237.86034375
transcript.pyannote[3210].speaker SPEAKER_20
transcript.pyannote[3210].start 17242.28159375
transcript.pyannote[3210].end 17243.86784375
transcript.pyannote[3211].speaker SPEAKER_29
transcript.pyannote[3211].start 17243.10846875
transcript.pyannote[3211].end 17248.05284375
transcript.pyannote[3212].speaker SPEAKER_29
transcript.pyannote[3212].start 17249.03159375
transcript.pyannote[3212].end 17252.10284375
transcript.pyannote[3213].speaker SPEAKER_29
transcript.pyannote[3213].start 17253.09846875
transcript.pyannote[3213].end 17253.43596875
transcript.pyannote[3214].speaker SPEAKER_29
transcript.pyannote[3214].start 17253.75659375
transcript.pyannote[3214].end 17254.92096875
transcript.pyannote[3215].speaker SPEAKER_09
transcript.pyannote[3215].start 17254.92096875
transcript.pyannote[3215].end 17255.03909375
transcript.pyannote[3216].speaker SPEAKER_29
transcript.pyannote[3216].start 17256.60846875
transcript.pyannote[3216].end 17257.85721875
transcript.pyannote[3217].speaker SPEAKER_29
transcript.pyannote[3217].start 17258.36346875
transcript.pyannote[3217].end 17261.16471875
transcript.pyannote[3218].speaker SPEAKER_29
transcript.pyannote[3218].start 17261.78909375
transcript.pyannote[3218].end 17264.70846875
transcript.pyannote[3219].speaker SPEAKER_29
transcript.pyannote[3219].start 17264.99534375
transcript.pyannote[3219].end 17265.02909375
transcript.pyannote[3220].speaker SPEAKER_29
transcript.pyannote[3220].start 17265.06284375
transcript.pyannote[3220].end 17265.58596875
transcript.pyannote[3221].speaker SPEAKER_29
transcript.pyannote[3221].start 17266.48034375
transcript.pyannote[3221].end 17267.20596875
transcript.pyannote[3222].speaker SPEAKER_29
transcript.pyannote[3222].start 17269.63596875
transcript.pyannote[3222].end 17271.28971875
transcript.pyannote[3223].speaker SPEAKER_29
transcript.pyannote[3223].start 17271.76221875
transcript.pyannote[3223].end 17272.45409375
transcript.pyannote[3224].speaker SPEAKER_29
transcript.pyannote[3224].start 17273.16284375
transcript.pyannote[3224].end 17275.17096875
transcript.pyannote[3225].speaker SPEAKER_29
transcript.pyannote[3225].start 17275.39034375
transcript.pyannote[3225].end 17278.39409375
transcript.pyannote[3226].speaker SPEAKER_09
transcript.pyannote[3226].start 17279.89596875
transcript.pyannote[3226].end 17282.08971875
transcript.pyannote[3227].speaker SPEAKER_29
transcript.pyannote[3227].start 17282.59596875
transcript.pyannote[3227].end 17284.77284375
transcript.pyannote[3228].speaker SPEAKER_29
transcript.pyannote[3228].start 17285.21159375
transcript.pyannote[3228].end 17287.70909375
transcript.pyannote[3229].speaker SPEAKER_09
transcript.pyannote[3229].start 17286.79784375
transcript.pyannote[3229].end 17290.81409375
transcript.pyannote[3230].speaker SPEAKER_29
transcript.pyannote[3230].start 17291.40471875
transcript.pyannote[3230].end 17299.99409375
transcript.pyannote[3231].speaker SPEAKER_09
transcript.pyannote[3231].start 17292.36659375
transcript.pyannote[3231].end 17294.20596875
transcript.pyannote[3232].speaker SPEAKER_29
transcript.pyannote[3232].start 17300.97284375
transcript.pyannote[3232].end 17310.28784375
transcript.pyannote[3233].speaker SPEAKER_29
transcript.pyannote[3233].start 17310.54096875
transcript.pyannote[3233].end 17315.63721875
transcript.pyannote[3234].speaker SPEAKER_00
transcript.pyannote[3234].start 17311.24971875
transcript.pyannote[3234].end 17311.87409375
transcript.pyannote[3235].speaker SPEAKER_29
transcript.pyannote[3235].start 17315.95784375
transcript.pyannote[3235].end 17322.48846875
transcript.pyannote[3236].speaker SPEAKER_29
transcript.pyannote[3236].start 17322.67409375
transcript.pyannote[3236].end 17335.43159375
transcript.pyannote[3237].speaker SPEAKER_09
transcript.pyannote[3237].start 17337.00096875
transcript.pyannote[3237].end 17337.70971875
transcript.pyannote[3238].speaker SPEAKER_09
transcript.pyannote[3238].start 17338.21596875
transcript.pyannote[3238].end 17344.44284375
transcript.pyannote[3239].speaker SPEAKER_09
transcript.pyannote[3239].start 17344.71284375
transcript.pyannote[3239].end 17347.32846875
transcript.pyannote[3240].speaker SPEAKER_09
transcript.pyannote[3240].start 17347.76721875
transcript.pyannote[3240].end 17352.23909375
transcript.pyannote[3241].speaker SPEAKER_29
transcript.pyannote[3241].start 17352.23909375
transcript.pyannote[3241].end 17359.54596875
transcript.pyannote[3242].speaker SPEAKER_29
transcript.pyannote[3242].start 17360.01846875
transcript.pyannote[3242].end 17362.48221875
transcript.pyannote[3243].speaker SPEAKER_29
transcript.pyannote[3243].start 17363.42721875
transcript.pyannote[3243].end 17364.99659375
transcript.pyannote[3244].speaker SPEAKER_20
transcript.pyannote[3244].start 17363.57909375
transcript.pyannote[3244].end 17363.96721875
transcript.pyannote[3245].speaker SPEAKER_09
transcript.pyannote[3245].start 17363.96721875
transcript.pyannote[3245].end 17364.03471875
transcript.pyannote[3246].speaker SPEAKER_20
transcript.pyannote[3246].start 17364.03471875
transcript.pyannote[3246].end 17365.46909375
transcript.pyannote[3247].speaker SPEAKER_09
transcript.pyannote[3247].start 17365.46909375
transcript.pyannote[3247].end 17365.57034375
transcript.pyannote[3248].speaker SPEAKER_29
transcript.pyannote[3248].start 17365.46909375
transcript.pyannote[3248].end 17368.35471875
transcript.pyannote[3249].speaker SPEAKER_20
transcript.pyannote[3249].start 17365.57034375
transcript.pyannote[3249].end 17365.58721875
transcript.pyannote[3250].speaker SPEAKER_09
transcript.pyannote[3250].start 17365.58721875
transcript.pyannote[3250].end 17365.60409375
transcript.pyannote[3251].speaker SPEAKER_20
transcript.pyannote[3251].start 17365.60409375
transcript.pyannote[3251].end 17365.63784375
transcript.pyannote[3252].speaker SPEAKER_09
transcript.pyannote[3252].start 17365.63784375
transcript.pyannote[3252].end 17365.65471875
transcript.pyannote[3253].speaker SPEAKER_20
transcript.pyannote[3253].start 17365.65471875
transcript.pyannote[3253].end 17365.67159375
transcript.pyannote[3254].speaker SPEAKER_09
transcript.pyannote[3254].start 17365.67159375
transcript.pyannote[3254].end 17365.77284375
transcript.pyannote[3255].speaker SPEAKER_29
transcript.pyannote[3255].start 17369.16471875
transcript.pyannote[3255].end 17370.29534375
transcript.pyannote[3256].speaker SPEAKER_29
transcript.pyannote[3256].start 17370.97034375
transcript.pyannote[3256].end 17373.60284375
transcript.pyannote[3257].speaker SPEAKER_29
transcript.pyannote[3257].start 17375.22284375
transcript.pyannote[3257].end 17375.93159375
transcript.pyannote[3258].speaker SPEAKER_29
transcript.pyannote[3258].start 17377.65284375
transcript.pyannote[3258].end 17383.57596875
transcript.pyannote[3259].speaker SPEAKER_29
transcript.pyannote[3259].start 17383.99784375
transcript.pyannote[3259].end 17385.14534375
transcript.pyannote[3260].speaker SPEAKER_29
transcript.pyannote[3260].start 17386.00596875
transcript.pyannote[3260].end 17386.90034375
transcript.pyannote[3261].speaker SPEAKER_29
transcript.pyannote[3261].start 17387.44034375
transcript.pyannote[3261].end 17388.26721875
transcript.pyannote[3262].speaker SPEAKER_29
transcript.pyannote[3262].start 17388.72284375
transcript.pyannote[3262].end 17391.76034375
transcript.pyannote[3263].speaker SPEAKER_29
transcript.pyannote[3263].start 17392.41846875
transcript.pyannote[3263].end 17394.03846875
transcript.pyannote[3264].speaker SPEAKER_29
transcript.pyannote[3264].start 17395.94534375
transcript.pyannote[3264].end 17398.40909375
transcript.pyannote[3265].speaker SPEAKER_29
transcript.pyannote[3265].start 17398.83096875
transcript.pyannote[3265].end 17401.02471875
transcript.pyannote[3266].speaker SPEAKER_29
transcript.pyannote[3266].start 17401.41284375
transcript.pyannote[3266].end 17413.95096875
transcript.pyannote[3267].speaker SPEAKER_29
transcript.pyannote[3267].start 17414.23784375
transcript.pyannote[3267].end 17421.00471875
transcript.pyannote[3268].speaker SPEAKER_29
transcript.pyannote[3268].start 17421.32534375
transcript.pyannote[3268].end 17422.48971875
transcript.pyannote[3269].speaker SPEAKER_09
transcript.pyannote[3269].start 17423.18159375
transcript.pyannote[3269].end 17427.28221875
transcript.pyannote[3270].speaker SPEAKER_09
transcript.pyannote[3270].start 17427.70409375
transcript.pyannote[3270].end 17429.91471875
transcript.pyannote[3271].speaker SPEAKER_29
transcript.pyannote[3271].start 17428.90221875
transcript.pyannote[3271].end 17440.29284375
transcript.pyannote[3272].speaker SPEAKER_09
transcript.pyannote[3272].start 17430.48846875
transcript.pyannote[3272].end 17430.87659375
transcript.pyannote[3273].speaker SPEAKER_09
transcript.pyannote[3273].start 17439.85409375
transcript.pyannote[3273].end 17440.59659375
transcript.pyannote[3274].speaker SPEAKER_09
transcript.pyannote[3274].start 17441.01846875
transcript.pyannote[3274].end 17445.91221875
transcript.pyannote[3275].speaker SPEAKER_29
transcript.pyannote[3275].start 17441.76096875
transcript.pyannote[3275].end 17442.13221875
transcript.pyannote[3276].speaker SPEAKER_29
transcript.pyannote[3276].start 17443.00971875
transcript.pyannote[3276].end 17443.27971875
transcript.pyannote[3277].speaker SPEAKER_29
transcript.pyannote[3277].start 17444.76471875
transcript.pyannote[3277].end 17454.36659375
transcript.pyannote[3278].speaker SPEAKER_09
transcript.pyannote[3278].start 17450.50221875
transcript.pyannote[3278].end 17452.78034375
transcript.pyannote[3279].speaker SPEAKER_20
transcript.pyannote[3279].start 17452.78034375
transcript.pyannote[3279].end 17452.94909375
transcript.pyannote[3280].speaker SPEAKER_20
transcript.pyannote[3280].start 17454.36659375
transcript.pyannote[3280].end 17454.83909375
transcript.pyannote[3281].speaker SPEAKER_29
transcript.pyannote[3281].start 17455.22721875
transcript.pyannote[3281].end 17455.63221875
transcript.pyannote[3282].speaker SPEAKER_04
transcript.pyannote[3282].start 17455.63221875
transcript.pyannote[3282].end 17455.68284375
transcript.pyannote[3283].speaker SPEAKER_04
transcript.pyannote[3283].start 17456.07096875
transcript.pyannote[3283].end 17456.64471875
transcript.pyannote[3284].speaker SPEAKER_20
transcript.pyannote[3284].start 17457.06659375
transcript.pyannote[3284].end 17458.51784375
transcript.pyannote[3285].speaker SPEAKER_04
transcript.pyannote[3285].start 17458.50096875
transcript.pyannote[3285].end 17491.86284375
transcript.pyannote[3286].speaker SPEAKER_30
transcript.pyannote[3286].start 17460.76221875
transcript.pyannote[3286].end 17463.09096875
transcript.pyannote[3287].speaker SPEAKER_29
transcript.pyannote[3287].start 17463.09096875
transcript.pyannote[3287].end 17463.10784375
transcript.pyannote[3288].speaker SPEAKER_29
transcript.pyannote[3288].start 17491.60971875
transcript.pyannote[3288].end 17496.95909375
transcript.pyannote[3289].speaker SPEAKER_29
transcript.pyannote[3289].start 17497.87034375
transcript.pyannote[3289].end 17499.05159375
transcript.pyannote[3290].speaker SPEAKER_29
transcript.pyannote[3290].start 17499.30471875
transcript.pyannote[3290].end 17499.74346875
transcript.pyannote[3291].speaker SPEAKER_29
transcript.pyannote[3291].start 17500.01346875
transcript.pyannote[3291].end 17500.68846875
transcript.pyannote[3292].speaker SPEAKER_29
transcript.pyannote[3292].start 17501.36346875
transcript.pyannote[3292].end 17502.44346875
transcript.pyannote[3293].speaker SPEAKER_29
transcript.pyannote[3293].start 17503.30409375
transcript.pyannote[3293].end 17504.43471875
transcript.pyannote[3294].speaker SPEAKER_29
transcript.pyannote[3294].start 17504.85659375
transcript.pyannote[3294].end 17506.13909375
transcript.pyannote[3295].speaker SPEAKER_29
transcript.pyannote[3295].start 17508.23159375
transcript.pyannote[3295].end 17509.51409375
transcript.pyannote[3296].speaker SPEAKER_29
transcript.pyannote[3296].start 17510.94846875
transcript.pyannote[3296].end 17515.97721875
transcript.pyannote[3297].speaker SPEAKER_04
transcript.pyannote[3297].start 17515.97721875
transcript.pyannote[3297].end 17524.68471875
transcript.pyannote[3298].speaker SPEAKER_29
transcript.pyannote[3298].start 17524.68471875
transcript.pyannote[3298].end 17524.75221875
transcript.pyannote[3299].speaker SPEAKER_29
transcript.pyannote[3299].start 17525.74784375
transcript.pyannote[3299].end 17530.54034375
transcript.pyannote[3300].speaker SPEAKER_04
transcript.pyannote[3300].start 17530.82721875
transcript.pyannote[3300].end 17531.21534375
transcript.pyannote[3301].speaker SPEAKER_29
transcript.pyannote[3301].start 17531.13096875
transcript.pyannote[3301].end 17540.88471875
transcript.pyannote[3302].speaker SPEAKER_04
transcript.pyannote[3302].start 17540.88471875
transcript.pyannote[3302].end 17552.22471875
transcript.pyannote[3303].speaker SPEAKER_29
transcript.pyannote[3303].start 17549.60909375
transcript.pyannote[3303].end 17554.28346875
transcript.pyannote[3304].speaker SPEAKER_29
transcript.pyannote[3304].start 17554.70534375
transcript.pyannote[3304].end 17562.31596875
transcript.pyannote[3305].speaker SPEAKER_00
transcript.pyannote[3305].start 17558.82284375
transcript.pyannote[3305].end 17558.89034375
transcript.pyannote[3306].speaker SPEAKER_04
transcript.pyannote[3306].start 17558.89034375
transcript.pyannote[3306].end 17559.07596875
transcript.pyannote[3307].speaker SPEAKER_00
transcript.pyannote[3307].start 17559.07596875
transcript.pyannote[3307].end 17559.27846875
transcript.pyannote[3308].speaker SPEAKER_29
transcript.pyannote[3308].start 17563.32846875
transcript.pyannote[3308].end 17569.21784375
transcript.pyannote[3309].speaker SPEAKER_19
transcript.pyannote[3309].start 17570.50034375
transcript.pyannote[3309].end 17572.13721875
transcript.pyannote[3310].speaker SPEAKER_19
transcript.pyannote[3310].start 17572.81221875
transcript.pyannote[3310].end 17575.30971875
transcript.pyannote[3311].speaker SPEAKER_18
transcript.pyannote[3311].start 17587.56096875
transcript.pyannote[3311].end 17594.71596875
transcript.pyannote[3312].speaker SPEAKER_00
transcript.pyannote[3312].start 17592.60659375
transcript.pyannote[3312].end 17593.24784375
transcript.pyannote[3313].speaker SPEAKER_04
transcript.pyannote[3313].start 17598.02346875
transcript.pyannote[3313].end 17598.81659375
transcript.pyannote[3314].speaker SPEAKER_18
transcript.pyannote[3314].start 17600.16659375
transcript.pyannote[3314].end 17601.06096875
transcript.pyannote[3315].speaker SPEAKER_18
transcript.pyannote[3315].start 17601.39846875
transcript.pyannote[3315].end 17602.22534375
transcript.pyannote[3316].speaker SPEAKER_18
transcript.pyannote[3316].start 17602.66409375
transcript.pyannote[3316].end 17611.81034375
transcript.pyannote[3317].speaker SPEAKER_18
transcript.pyannote[3317].start 17611.96221875
transcript.pyannote[3317].end 17616.87284375
transcript.pyannote[3318].speaker SPEAKER_07
transcript.pyannote[3318].start 17617.91909375
transcript.pyannote[3318].end 17618.35784375
transcript.pyannote[3319].speaker SPEAKER_18
transcript.pyannote[3319].start 17619.64034375
transcript.pyannote[3319].end 17620.01159375
transcript.pyannote[3320].speaker SPEAKER_18
transcript.pyannote[3320].start 17621.05784375
transcript.pyannote[3320].end 17637.00471875
transcript.pyannote[3321].speaker SPEAKER_07
transcript.pyannote[3321].start 17638.81034375
transcript.pyannote[3321].end 17641.08846875
transcript.pyannote[3322].speaker SPEAKER_18
transcript.pyannote[3322].start 17641.08846875
transcript.pyannote[3322].end 17641.25721875
transcript.pyannote[3323].speaker SPEAKER_18
transcript.pyannote[3323].start 17641.72971875
transcript.pyannote[3323].end 17643.09659375
transcript.pyannote[3324].speaker SPEAKER_18
transcript.pyannote[3324].start 17643.94034375
transcript.pyannote[3324].end 17646.99471875
transcript.pyannote[3325].speaker SPEAKER_07
transcript.pyannote[3325].start 17648.15909375
transcript.pyannote[3325].end 17648.44596875
transcript.pyannote[3326].speaker SPEAKER_18
transcript.pyannote[3326].start 17649.72846875
transcript.pyannote[3326].end 17650.03221875
transcript.pyannote[3327].speaker SPEAKER_18
transcript.pyannote[3327].start 17650.70721875
transcript.pyannote[3327].end 17652.22596875
transcript.pyannote[3328].speaker SPEAKER_07
transcript.pyannote[3328].start 17652.22596875
transcript.pyannote[3328].end 17652.44534375
transcript.pyannote[3329].speaker SPEAKER_18
transcript.pyannote[3329].start 17653.45784375
transcript.pyannote[3329].end 17655.31409375
transcript.pyannote[3330].speaker SPEAKER_18
transcript.pyannote[3330].start 17656.64721875
transcript.pyannote[3330].end 17662.11471875
transcript.pyannote[3331].speaker SPEAKER_18
transcript.pyannote[3331].start 17662.63784375
transcript.pyannote[3331].end 17665.87784375
transcript.pyannote[3332].speaker SPEAKER_07
transcript.pyannote[3332].start 17666.72159375
transcript.pyannote[3332].end 17670.48471875
transcript.pyannote[3333].speaker SPEAKER_07
transcript.pyannote[3333].start 17670.97409375
transcript.pyannote[3333].end 17672.45909375
transcript.pyannote[3334].speaker SPEAKER_18
transcript.pyannote[3334].start 17672.96534375
transcript.pyannote[3334].end 17673.84284375
transcript.pyannote[3335].speaker SPEAKER_18
transcript.pyannote[3335].start 17673.89346875
transcript.pyannote[3335].end 17679.66471875
transcript.pyannote[3336].speaker SPEAKER_07
transcript.pyannote[3336].start 17680.45784375
transcript.pyannote[3336].end 17682.95534375
transcript.pyannote[3337].speaker SPEAKER_18
transcript.pyannote[3337].start 17682.90471875
transcript.pyannote[3337].end 17685.03096875
transcript.pyannote[3338].speaker SPEAKER_18
transcript.pyannote[3338].start 17685.09846875
transcript.pyannote[3338].end 17689.80659375
transcript.pyannote[3339].speaker SPEAKER_07
transcript.pyannote[3339].start 17687.39346875
transcript.pyannote[3339].end 17688.10221875
transcript.pyannote[3340].speaker SPEAKER_07
transcript.pyannote[3340].start 17689.78971875
transcript.pyannote[3340].end 17690.34659375
transcript.pyannote[3341].speaker SPEAKER_18
transcript.pyannote[3341].start 17690.14409375
transcript.pyannote[3341].end 17690.88659375
transcript.pyannote[3342].speaker SPEAKER_18
transcript.pyannote[3342].start 17691.91596875
transcript.pyannote[3342].end 17692.79346875
transcript.pyannote[3343].speaker SPEAKER_18
transcript.pyannote[3343].start 17694.17721875
transcript.pyannote[3343].end 17696.92784375
transcript.pyannote[3344].speaker SPEAKER_18
transcript.pyannote[3344].start 17698.96971875
transcript.pyannote[3344].end 17700.67409375
transcript.pyannote[3345].speaker SPEAKER_07
transcript.pyannote[3345].start 17700.04971875
transcript.pyannote[3345].end 17702.19284375
transcript.pyannote[3346].speaker SPEAKER_18
transcript.pyannote[3346].start 17702.32784375
transcript.pyannote[3346].end 17703.64409375
transcript.pyannote[3347].speaker SPEAKER_07
transcript.pyannote[3347].start 17702.98596875
transcript.pyannote[3347].end 17705.83784375
transcript.pyannote[3348].speaker SPEAKER_18
transcript.pyannote[3348].start 17704.80846875
transcript.pyannote[3348].end 17707.66034375
transcript.pyannote[3349].speaker SPEAKER_07
transcript.pyannote[3349].start 17706.66471875
transcript.pyannote[3349].end 17707.30596875
transcript.pyannote[3350].speaker SPEAKER_18
transcript.pyannote[3350].start 17708.23409375
transcript.pyannote[3350].end 17713.92096875
transcript.pyannote[3351].speaker SPEAKER_07
transcript.pyannote[3351].start 17715.47346875
transcript.pyannote[3351].end 17720.51909375
transcript.pyannote[3352].speaker SPEAKER_07
transcript.pyannote[3352].start 17721.09284375
transcript.pyannote[3352].end 17722.72971875
transcript.pyannote[3353].speaker SPEAKER_18
transcript.pyannote[3353].start 17723.28659375
transcript.pyannote[3353].end 17728.31534375
transcript.pyannote[3354].speaker SPEAKER_07
transcript.pyannote[3354].start 17729.15909375
transcript.pyannote[3354].end 17730.74534375
transcript.pyannote[3355].speaker SPEAKER_18
transcript.pyannote[3355].start 17731.09971875
transcript.pyannote[3355].end 17735.01471875
transcript.pyannote[3356].speaker SPEAKER_07
transcript.pyannote[3356].start 17731.63971875
transcript.pyannote[3356].end 17732.06159375
transcript.pyannote[3357].speaker SPEAKER_18
transcript.pyannote[3357].start 17735.43659375
transcript.pyannote[3357].end 17741.37659375
transcript.pyannote[3358].speaker SPEAKER_18
transcript.pyannote[3358].start 17741.54534375
transcript.pyannote[3358].end 17743.33409375
transcript.pyannote[3359].speaker SPEAKER_18
transcript.pyannote[3359].start 17743.78971875
transcript.pyannote[3359].end 17745.83159375
transcript.pyannote[3360].speaker SPEAKER_18
transcript.pyannote[3360].start 17749.76346875
transcript.pyannote[3360].end 17751.26534375
transcript.pyannote[3361].speaker SPEAKER_18
transcript.pyannote[3361].start 17752.02471875
transcript.pyannote[3361].end 17752.88534375
transcript.pyannote[3362].speaker SPEAKER_18
transcript.pyannote[3362].start 17753.57721875
transcript.pyannote[3362].end 17755.23096875
transcript.pyannote[3363].speaker SPEAKER_18
transcript.pyannote[3363].start 17756.02409375
transcript.pyannote[3363].end 17758.11659375
transcript.pyannote[3364].speaker SPEAKER_18
transcript.pyannote[3364].start 17758.53846875
transcript.pyannote[3364].end 17761.52534375
transcript.pyannote[3365].speaker SPEAKER_18
transcript.pyannote[3365].start 17761.54221875
transcript.pyannote[3365].end 17761.55909375
transcript.pyannote[3366].speaker SPEAKER_18
transcript.pyannote[3366].start 17761.60971875
transcript.pyannote[3366].end 17761.64346875
transcript.pyannote[3367].speaker SPEAKER_20
transcript.pyannote[3367].start 17761.64346875
transcript.pyannote[3367].end 17762.18346875
transcript.pyannote[3368].speaker SPEAKER_18
transcript.pyannote[3368].start 17761.69409375
transcript.pyannote[3368].end 17776.93221875
transcript.pyannote[3369].speaker SPEAKER_20
transcript.pyannote[3369].start 17766.84096875
transcript.pyannote[3369].end 17766.85784375
transcript.pyannote[3370].speaker SPEAKER_15
transcript.pyannote[3370].start 17766.85784375
transcript.pyannote[3370].end 17767.12784375
transcript.pyannote[3371].speaker SPEAKER_20
transcript.pyannote[3371].start 17776.81409375
transcript.pyannote[3371].end 17777.21909375
transcript.pyannote[3372].speaker SPEAKER_18
transcript.pyannote[3372].start 17777.21909375
transcript.pyannote[3372].end 17789.18346875
transcript.pyannote[3373].speaker SPEAKER_18
transcript.pyannote[3373].start 17789.70659375
transcript.pyannote[3373].end 17797.89096875
transcript.pyannote[3374].speaker SPEAKER_04
transcript.pyannote[3374].start 17798.24534375
transcript.pyannote[3374].end 17811.01971875
transcript.pyannote[3375].speaker SPEAKER_27
transcript.pyannote[3375].start 17808.13409375
transcript.pyannote[3375].end 17808.31971875
transcript.pyannote[3376].speaker SPEAKER_27
transcript.pyannote[3376].start 17808.33659375
transcript.pyannote[3376].end 17808.35346875
transcript.pyannote[3377].speaker SPEAKER_27
transcript.pyannote[3377].start 17808.47159375
transcript.pyannote[3377].end 17808.94409375
transcript.pyannote[3378].speaker SPEAKER_04
transcript.pyannote[3378].start 17811.17159375
transcript.pyannote[3378].end 17824.24971875
transcript.pyannote[3379].speaker SPEAKER_18
transcript.pyannote[3379].start 17824.16534375
transcript.pyannote[3379].end 17825.22846875
transcript.pyannote[3380].speaker SPEAKER_04
transcript.pyannote[3380].start 17824.35096875
transcript.pyannote[3380].end 17825.85284375
transcript.pyannote[3381].speaker SPEAKER_18
transcript.pyannote[3381].start 17825.61659375
transcript.pyannote[3381].end 17828.65409375
transcript.pyannote[3382].speaker SPEAKER_04
transcript.pyannote[3382].start 17827.87784375
transcript.pyannote[3382].end 17829.05909375
transcript.pyannote[3383].speaker SPEAKER_18
transcript.pyannote[3383].start 17829.05909375
transcript.pyannote[3383].end 17829.09284375
transcript.pyannote[3384].speaker SPEAKER_18
transcript.pyannote[3384].start 17829.10971875
transcript.pyannote[3384].end 17841.91784375
transcript.pyannote[3385].speaker SPEAKER_18
transcript.pyannote[3385].start 17842.20471875
transcript.pyannote[3385].end 17845.64721875
transcript.pyannote[3386].speaker SPEAKER_04
transcript.pyannote[3386].start 17847.03096875
transcript.pyannote[3386].end 17849.68034375
transcript.pyannote[3387].speaker SPEAKER_04
transcript.pyannote[3387].start 17850.27096875
transcript.pyannote[3387].end 17880.17346875
transcript.pyannote[3388].speaker SPEAKER_18
transcript.pyannote[3388].start 17879.66721875
transcript.pyannote[3388].end 17892.18846875
transcript.pyannote[3389].speaker SPEAKER_18
transcript.pyannote[3389].start 17892.61034375
transcript.pyannote[3389].end 17910.21096875
transcript.pyannote[3390].speaker SPEAKER_04
transcript.pyannote[3390].start 17910.90284375
transcript.pyannote[3390].end 17939.72534375
transcript.pyannote[3391].speaker SPEAKER_18
transcript.pyannote[3391].start 17939.70846875
transcript.pyannote[3391].end 17945.53034375
transcript.pyannote[3392].speaker SPEAKER_04
transcript.pyannote[3392].start 17945.86784375
transcript.pyannote[3392].end 17949.41159375
transcript.pyannote[3393].speaker SPEAKER_18
transcript.pyannote[3393].start 17948.65221875
transcript.pyannote[3393].end 17950.03596875
transcript.pyannote[3394].speaker SPEAKER_04
transcript.pyannote[3394].start 17950.98096875
transcript.pyannote[3394].end 17966.08409375
transcript.pyannote[3395].speaker SPEAKER_18
transcript.pyannote[3395].start 17952.41534375
transcript.pyannote[3395].end 17952.53346875
transcript.pyannote[3396].speaker SPEAKER_18
transcript.pyannote[3396].start 17965.78034375
transcript.pyannote[3396].end 17975.19659375
transcript.pyannote[3397].speaker SPEAKER_11
transcript.pyannote[3397].start 17973.01971875
transcript.pyannote[3397].end 17973.40784375
transcript.pyannote[3398].speaker SPEAKER_11
transcript.pyannote[3398].start 17974.79159375
transcript.pyannote[3398].end 17975.55096875
transcript.pyannote[3399].speaker SPEAKER_18
transcript.pyannote[3399].start 17975.48346875
transcript.pyannote[3399].end 17979.34784375
transcript.pyannote[3400].speaker SPEAKER_18
transcript.pyannote[3400].start 17979.63471875
transcript.pyannote[3400].end 17994.09659375
transcript.pyannote[3401].speaker SPEAKER_18
transcript.pyannote[3401].start 17994.67034375
transcript.pyannote[3401].end 17996.02034375
transcript.pyannote[3402].speaker SPEAKER_18
transcript.pyannote[3402].start 17996.62784375
transcript.pyannote[3402].end 17997.82596875
transcript.pyannote[3403].speaker SPEAKER_18
transcript.pyannote[3403].start 17998.82159375
transcript.pyannote[3403].end 18005.25096875
transcript.pyannote[3404].speaker SPEAKER_20
transcript.pyannote[3404].start 18003.41159375
transcript.pyannote[3404].end 18003.66471875
transcript.pyannote[3405].speaker SPEAKER_20
transcript.pyannote[3405].start 18005.25096875
transcript.pyannote[3405].end 18005.47034375
transcript.pyannote[3406].speaker SPEAKER_18
transcript.pyannote[3406].start 18005.43659375
transcript.pyannote[3406].end 18009.85784375
transcript.pyannote[3407].speaker SPEAKER_18
transcript.pyannote[3407].start 18009.97596875
transcript.pyannote[3407].end 18009.99284375
transcript.pyannote[3408].speaker SPEAKER_20
transcript.pyannote[3408].start 18009.99284375
transcript.pyannote[3408].end 18010.02659375
transcript.pyannote[3409].speaker SPEAKER_18
transcript.pyannote[3409].start 18010.02659375
transcript.pyannote[3409].end 18010.04346875
transcript.pyannote[3410].speaker SPEAKER_20
transcript.pyannote[3410].start 18010.04346875
transcript.pyannote[3410].end 18010.07721875
transcript.pyannote[3411].speaker SPEAKER_18
transcript.pyannote[3411].start 18010.07721875
transcript.pyannote[3411].end 18056.92221875
transcript.pyannote[3412].speaker SPEAKER_20
transcript.pyannote[3412].start 18010.09409375
transcript.pyannote[3412].end 18010.22909375
transcript.pyannote[3413].speaker SPEAKER_20
transcript.pyannote[3413].start 18010.24596875
transcript.pyannote[3413].end 18010.26284375
transcript.pyannote[3414].speaker SPEAKER_20
transcript.pyannote[3414].start 18055.70721875
transcript.pyannote[3414].end 18056.07846875
transcript.pyannote[3415].speaker SPEAKER_18
transcript.pyannote[3415].start 18057.09096875
transcript.pyannote[3415].end 18057.63096875
transcript.pyannote[3416].speaker SPEAKER_18
transcript.pyannote[3416].start 18057.90096875
transcript.pyannote[3416].end 18078.28596875
transcript.pyannote[3417].speaker SPEAKER_18
transcript.pyannote[3417].start 18078.74159375
transcript.pyannote[3417].end 18088.71471875
transcript.pyannote[3418].speaker SPEAKER_20
transcript.pyannote[3418].start 18090.92534375
transcript.pyannote[3418].end 18091.16159375
transcript.pyannote[3419].speaker SPEAKER_18
transcript.pyannote[3419].start 18090.99284375
transcript.pyannote[3419].end 18095.92034375
transcript.pyannote[3420].speaker SPEAKER_18
transcript.pyannote[3420].start 18096.17346875
transcript.pyannote[3420].end 18103.12596875
transcript.pyannote[3421].speaker SPEAKER_04
transcript.pyannote[3421].start 18099.24471875
transcript.pyannote[3421].end 18099.41346875
transcript.pyannote[3422].speaker SPEAKER_04
transcript.pyannote[3422].start 18099.73409375
transcript.pyannote[3422].end 18099.95346875
transcript.pyannote[3423].speaker SPEAKER_04
transcript.pyannote[3423].start 18101.86034375
transcript.pyannote[3423].end 18108.01971875
transcript.pyannote[3424].speaker SPEAKER_18
transcript.pyannote[3424].start 18106.99034375
transcript.pyannote[3424].end 18107.49659375
transcript.pyannote[3425].speaker SPEAKER_18
transcript.pyannote[3425].start 18107.76659375
transcript.pyannote[3425].end 18112.30596875
transcript.pyannote[3426].speaker SPEAKER_04
transcript.pyannote[3426].start 18111.27659375
transcript.pyannote[3426].end 18112.89659375
transcript.pyannote[3427].speaker SPEAKER_18
transcript.pyannote[3427].start 18112.54221875
transcript.pyannote[3427].end 18116.03534375
transcript.pyannote[3428].speaker SPEAKER_04
transcript.pyannote[3428].start 18116.03534375
transcript.pyannote[3428].end 18117.94221875
transcript.pyannote[3429].speaker SPEAKER_18
transcript.pyannote[3429].start 18116.11971875
transcript.pyannote[3429].end 18116.59221875
transcript.pyannote[3430].speaker SPEAKER_18
transcript.pyannote[3430].start 18118.07721875
transcript.pyannote[3430].end 18121.06409375
transcript.pyannote[3431].speaker SPEAKER_18
transcript.pyannote[3431].start 18121.85721875
transcript.pyannote[3431].end 18122.49846875
transcript.pyannote[3432].speaker SPEAKER_18
transcript.pyannote[3432].start 18123.10596875
transcript.pyannote[3432].end 18125.09721875
transcript.pyannote[3433].speaker SPEAKER_18
transcript.pyannote[3433].start 18126.27846875
transcript.pyannote[3433].end 18128.69159375
transcript.pyannote[3434].speaker SPEAKER_18
transcript.pyannote[3434].start 18129.33284375
transcript.pyannote[3434].end 18149.58284375
transcript.pyannote[3435].speaker SPEAKER_18
transcript.pyannote[3435].start 18150.13971875
transcript.pyannote[3435].end 18158.27346875
transcript.pyannote[3436].speaker SPEAKER_18
transcript.pyannote[3436].start 18159.01596875
transcript.pyannote[3436].end 18165.85034375
transcript.pyannote[3437].speaker SPEAKER_18
transcript.pyannote[3437].start 18165.88409375
transcript.pyannote[3437].end 18173.54534375
transcript.pyannote[3438].speaker SPEAKER_09
transcript.pyannote[3438].start 18174.10221875
transcript.pyannote[3438].end 18174.62534375
transcript.pyannote[3439].speaker SPEAKER_09
transcript.pyannote[3439].start 18175.24971875
transcript.pyannote[3439].end 18185.98221875
transcript.pyannote[3440].speaker SPEAKER_18
transcript.pyannote[3440].start 18178.74284375
transcript.pyannote[3440].end 18179.55284375
transcript.pyannote[3441].speaker SPEAKER_00
transcript.pyannote[3441].start 18184.54784375
transcript.pyannote[3441].end 18184.56471875
transcript.pyannote[3442].speaker SPEAKER_15
transcript.pyannote[3442].start 18184.56471875
transcript.pyannote[3442].end 18185.71221875
transcript.pyannote[3443].speaker SPEAKER_09
transcript.pyannote[3443].start 18186.04971875
transcript.pyannote[3443].end 18192.02346875
transcript.pyannote[3444].speaker SPEAKER_18
transcript.pyannote[3444].start 18190.69034375
transcript.pyannote[3444].end 18191.21346875
transcript.pyannote[3445].speaker SPEAKER_18
transcript.pyannote[3445].start 18192.02346875
transcript.pyannote[3445].end 18194.03159375
transcript.pyannote[3446].speaker SPEAKER_18
transcript.pyannote[3446].start 18194.53784375
transcript.pyannote[3446].end 18196.46159375
transcript.pyannote[3447].speaker SPEAKER_09
transcript.pyannote[3447].start 18195.49971875
transcript.pyannote[3447].end 18200.12346875
transcript.pyannote[3448].speaker SPEAKER_18
transcript.pyannote[3448].start 18197.71034375
transcript.pyannote[3448].end 18199.85346875
transcript.pyannote[3449].speaker SPEAKER_18
transcript.pyannote[3449].start 18200.12346875
transcript.pyannote[3449].end 18203.61659375
transcript.pyannote[3450].speaker SPEAKER_09
transcript.pyannote[3450].start 18204.49409375
transcript.pyannote[3450].end 18221.90909375
transcript.pyannote[3451].speaker SPEAKER_18
transcript.pyannote[3451].start 18220.22159375
transcript.pyannote[3451].end 18225.45284375
transcript.pyannote[3452].speaker SPEAKER_09
transcript.pyannote[3452].start 18224.42346875
transcript.pyannote[3452].end 18225.35159375
transcript.pyannote[3453].speaker SPEAKER_09
transcript.pyannote[3453].start 18225.45284375
transcript.pyannote[3453].end 18225.68909375
transcript.pyannote[3454].speaker SPEAKER_18
transcript.pyannote[3454].start 18225.68909375
transcript.pyannote[3454].end 18235.10534375
transcript.pyannote[3455].speaker SPEAKER_09
transcript.pyannote[3455].start 18235.44284375
transcript.pyannote[3455].end 18237.38346875
transcript.pyannote[3456].speaker SPEAKER_09
transcript.pyannote[3456].start 18237.88971875
transcript.pyannote[3456].end 18247.27221875
transcript.pyannote[3457].speaker SPEAKER_09
transcript.pyannote[3457].start 18247.66034375
transcript.pyannote[3457].end 18256.51971875
transcript.pyannote[3458].speaker SPEAKER_18
transcript.pyannote[3458].start 18255.70971875
transcript.pyannote[3458].end 18259.84409375
transcript.pyannote[3459].speaker SPEAKER_18
transcript.pyannote[3459].start 18260.35034375
transcript.pyannote[3459].end 18266.62784375
transcript.pyannote[3460].speaker SPEAKER_18
transcript.pyannote[3460].start 18267.06659375
transcript.pyannote[3460].end 18284.71784375
transcript.pyannote[3461].speaker SPEAKER_18
transcript.pyannote[3461].start 18285.00471875
transcript.pyannote[3461].end 18286.62471875
transcript.pyannote[3462].speaker SPEAKER_18
transcript.pyannote[3462].start 18287.11409375
transcript.pyannote[3462].end 18292.85159375
transcript.pyannote[3463].speaker SPEAKER_18
transcript.pyannote[3463].start 18293.59409375
transcript.pyannote[3463].end 18298.48784375
transcript.pyannote[3464].speaker SPEAKER_18
transcript.pyannote[3464].start 18299.01096875
transcript.pyannote[3464].end 18301.33971875
transcript.pyannote[3465].speaker SPEAKER_09
transcript.pyannote[3465].start 18299.95596875
transcript.pyannote[3465].end 18303.71909375
transcript.pyannote[3466].speaker SPEAKER_18
transcript.pyannote[3466].start 18302.26784375
transcript.pyannote[3466].end 18318.53534375
transcript.pyannote[3467].speaker SPEAKER_20
transcript.pyannote[3467].start 18310.11471875
transcript.pyannote[3467].end 18310.48596875
transcript.pyannote[3468].speaker SPEAKER_00
transcript.pyannote[3468].start 18315.81846875
transcript.pyannote[3468].end 18315.83534375
transcript.pyannote[3469].speaker SPEAKER_17
transcript.pyannote[3469].start 18315.83534375
transcript.pyannote[3469].end 18316.03784375
transcript.pyannote[3470].speaker SPEAKER_15
transcript.pyannote[3470].start 18316.03784375
transcript.pyannote[3470].end 18316.62846875
transcript.pyannote[3471].speaker SPEAKER_17
transcript.pyannote[3471].start 18316.62846875
transcript.pyannote[3471].end 18316.64534375
transcript.pyannote[3472].speaker SPEAKER_00
transcript.pyannote[3472].start 18316.64534375
transcript.pyannote[3472].end 18316.67909375
transcript.pyannote[3473].speaker SPEAKER_18
transcript.pyannote[3473].start 18319.63221875
transcript.pyannote[3473].end 18356.30159375
transcript.pyannote[3474].speaker SPEAKER_02
transcript.pyannote[3474].start 18346.76721875
transcript.pyannote[3474].end 18347.50971875
transcript.pyannote[3475].speaker SPEAKER_09
transcript.pyannote[3475].start 18349.11284375
transcript.pyannote[3475].end 18349.12971875
transcript.pyannote[3476].speaker SPEAKER_02
transcript.pyannote[3476].start 18349.12971875
transcript.pyannote[3476].end 18349.16346875
transcript.pyannote[3477].speaker SPEAKER_09
transcript.pyannote[3477].start 18349.16346875
transcript.pyannote[3477].end 18349.70346875
transcript.pyannote[3478].speaker SPEAKER_02
transcript.pyannote[3478].start 18349.70346875
transcript.pyannote[3478].end 18349.72034375
transcript.pyannote[3479].speaker SPEAKER_19
transcript.pyannote[3479].start 18355.25534375
transcript.pyannote[3479].end 18355.30596875
transcript.pyannote[3480].speaker SPEAKER_09
transcript.pyannote[3480].start 18355.30596875
transcript.pyannote[3480].end 18356.82471875
transcript.pyannote[3481].speaker SPEAKER_19
transcript.pyannote[3481].start 18358.19159375
transcript.pyannote[3481].end 18386.25471875
transcript.pyannote[3482].speaker SPEAKER_19
transcript.pyannote[3482].start 18390.20346875
transcript.pyannote[3482].end 18390.84471875
transcript.pyannote[3483].speaker SPEAKER_19
transcript.pyannote[3483].start 18392.95409375
transcript.pyannote[3483].end 18393.76409375
transcript.pyannote[3484].speaker SPEAKER_19
transcript.pyannote[3484].start 18393.88221875
transcript.pyannote[3484].end 18397.98284375
transcript.pyannote[3485].speaker SPEAKER_20
transcript.pyannote[3485].start 18397.20659375
transcript.pyannote[3485].end 18397.34159375
transcript.pyannote[3486].speaker SPEAKER_09
transcript.pyannote[3486].start 18397.34159375
transcript.pyannote[3486].end 18397.74659375
transcript.pyannote[3487].speaker SPEAKER_09
transcript.pyannote[3487].start 18397.98284375
transcript.pyannote[3487].end 18398.13471875
transcript.pyannote[3488].speaker SPEAKER_19
transcript.pyannote[3488].start 18398.13471875
transcript.pyannote[3488].end 18398.20221875
transcript.pyannote[3489].speaker SPEAKER_09
transcript.pyannote[3489].start 18398.20221875
transcript.pyannote[3489].end 18398.48909375
transcript.pyannote[3490].speaker SPEAKER_19
transcript.pyannote[3490].start 18398.48909375
transcript.pyannote[3490].end 18401.86409375
transcript.pyannote[3491].speaker SPEAKER_09
transcript.pyannote[3491].start 18398.55659375
transcript.pyannote[3491].end 18398.89409375
transcript.pyannote[3492].speaker SPEAKER_04
transcript.pyannote[3492].start 18428.89784375
transcript.pyannote[3492].end 18431.73284375
transcript.pyannote[3493].speaker SPEAKER_31
transcript.pyannote[3493].start 18443.00534375
transcript.pyannote[3493].end 18443.03909375
transcript.pyannote[3494].speaker SPEAKER_31
transcript.pyannote[3494].start 18444.49034375
transcript.pyannote[3494].end 18445.38471875
transcript.pyannote[3495].speaker SPEAKER_31
transcript.pyannote[3495].start 18447.42659375
transcript.pyannote[3495].end 18448.03409375
transcript.pyannote[3496].speaker SPEAKER_32
transcript.pyannote[3496].start 18448.03409375
transcript.pyannote[3496].end 18448.96221875
transcript.pyannote[3497].speaker SPEAKER_31
transcript.pyannote[3497].start 18448.96221875
transcript.pyannote[3497].end 18449.02971875
transcript.whisperx[0].start 1245.776
transcript.whisperx[0].end 1245.898
transcript.whisperx[0].text 本集完
transcript.whisperx[1].start 1635.896
transcript.whisperx[1].end 1636.044
transcript.whisperx[1].text 本集完
transcript.whisperx[2].start 1667.09
transcript.whisperx[2].end 1667.258
transcript.whisperx[2].text 本集完
transcript.whisperx[3].start 1757.342
transcript.whisperx[3].end 1769.126
transcript.whisperx[3].text 初期委員已主法定人數號現在開會:請議事人宣讀上次會議議事錄立法院第11屆第2會期社會福利及衛生環境委員會第5次全體委員會議議事錄時間113年10月23日星期三90至14時15分地點群賢樓801會議室
transcript.whisperx[4].start 1775.828
transcript.whisperx[4].end 1799.886
transcript.whisperx[4].text 出席委員:陳委員趙姿等14人:列席委員:葉委員袁芝等23人:列席官員:衛生福利部部長邱太元等相關人員:主席蘇兆吉委員清泉:報告事項:宣讀上次會議議事錄決定確定:邀請衛生福利部部長:法務部:內政部:財政部:教育部:列席就有關新興煙毒品防制及強化虐童防制作為進行專題報告:並備質詢。
transcript.whisperx[5].start 1802.248
transcript.whisperx[5].end 1817.466
transcript.whisperx[5].text 本次會議由衛生福利部部長報告後委員陳昭志等26人提出質詢軍警衛生福利部部長法務部檢察司司長郭永發內政部警政署刑事警察局警政監吳東文教育部學生事務及特殊教育司司長吳林輝
transcript.whisperx[6].start 1818.747
transcript.whisperx[6].end 1839.535
transcript.whisperx[6].text 司法院行事廳法官吳元耀及財政部官務署副署長陳世峰及各相關主管等及其答覆委員如現已所提書面質詢列入記錄刊登公報決定一報告及詢答完畢二委員質詢未及答覆或請補充資料者請相關機關於二週內書面答覆委員另要求期限者從其鎖定通過臨時提案二項宣讀完畢請問委員會上次議事錄有無錯誤或遺漏之處那
transcript.whisperx[7].start 1848.894
transcript.whisperx[7].end 1852.196
transcript.whisperx[7].text 那政府部門今天出席的有勞動部和沛山部長
transcript.whisperx[8].start 1879.892
transcript.whisperx[8].end 1896.484
transcript.whisperx[8].text 勞動力發展署蔡孟良署長勞動福祉退休師師長謝倩倩師長職業安全衛生署周子蓮周署長勞動條件及就業平等時黃維琛黃師長統計處梅家園處長
transcript.whisperx[9].start 1912.249
transcript.whisperx[9].end 1915.81
transcript.whisperx[9].text 接下來請我們的勞動部何部長報告時間5分鐘主席各位委員各位記者女士先生大家好今天很榮幸來參加委員會召開的我國全時職位缺工概況進行專題報告
transcript.whisperx[10].start 1939.013
transcript.whisperx[10].end 1948.175
transcript.whisperx[10].text 我在這邊要先跟委員報告就是說我上任以後因為目前缺工確實是我們臺灣社會一直在探討的問題可是我也期待說勞動部能夠建立自己的缺工統計
transcript.whisperx[11].start 1957.117
transcript.whisperx[11].end 1981.74
transcript.whisperx[11].text 所以這一次的全時職位缺工的調查其實也是我們本部第一次嘗試建立自己的這個缺工統計調查那麼我們希望能夠更精準的去掌握缺工的樣態然後過去呢我們都是做所謂的人力需求調查那這個人力需求調查他比較是以
transcript.whisperx[12].start 1983.462
transcript.whisperx[12].end 2001.177
transcript.whisperx[12].text 不是那麼精確就是說他大概是一種只是職缺數掌握的概念而已可是我們這一次的職位空缺概況調查他基本上他是大概是以4000家的廠商的樣本然後呢是電訪那麼我們調查的方式是詢問你過去6個月確實這個職位都空缺沒有人找不到人
transcript.whisperx[13].start 2010.324
transcript.whisperx[13].end 2010.684
transcript.whisperx[13].text 總共的大概值缺數大概是6.6萬
transcript.whisperx[14].start 2027.432
transcript.whisperx[14].end 2040.837
transcript.whisperx[14].text 就是說過去6個月都一直找不到人確實找不到人而不是那一種說可能當下只是出現職位的空缺很快的就可以補上人或者是說剛剛出缺這樣子而已所以這是以比較精確的一個調查那麼我們在這個行業的掌握數裡面工業部門是大概3.1萬個
transcript.whisperx[15].start 2053.661
transcript.whisperx[15].end 2057.602
transcript.whisperx[15].text 戰466.2趴服務業部門是3.6萬個職缺戰563.8趴工業部門裡面大概製造業2.1萬31.9趴是比較高的還有營建工程7.3千個11趴這兩個都屬於工業部門是比較高的服務業部門裡面批發零售9千戰13.6
transcript.whisperx[16].start 2080.329
transcript.whisperx[16].end 2102.461
transcript.whisperx[16].text 數數餐飲6.3千佔9.4%還有醫療保健6千人9.1%大概是前三名排行高的那麼在另外一個有意義的部分是在於所謂的什麼樣的類型的工作比較缺其實大家都以為是基層體力工缺其實不是
transcript.whisperx[17].start 2102.961
transcript.whisperx[17].end 2128.493
transcript.whisperx[17].text 基層體系工在我們這次的調查空缺裡面大概只有5.1%的戰缺而已那麼大概7000人左右最缺的是所謂的技術技術人員就是我們大概在行業分類裡面有第二層以上的就是所謂的記憶機械設備操作及組裝人員這樣的第二層的人他就缺了大概
transcript.whisperx[18].start 2130.234
transcript.whisperx[18].end 2158.843
transcript.whisperx[18].text 二十三趴的兩萬三千人三十四趴左右像這樣的技術人員總共在整個這個職缺裡面就佔了四萬個或是四萬個有六十趴左右的這樣的佔缺所以大概其實在我們這次的調查裡面比較有意義的呈現就是說真正的缺工其實是在中階技術人力的缺乏
transcript.whisperx[19].start 2159.523
transcript.whisperx[19].end 2178.152
transcript.whisperx[19].text 是目前當今是最嚴重的而不是基層的體力工所以這是這一次調查比較有意義的部分那麼當然我們現在對中階技術人力的這樣子的問題一方面我們必須補足本土中階技術人力的這樣子的訓練尤其是對青年中階人力這就要靠我們產學訓合作還有包括像我這一次帶出國
transcript.whisperx[20].start 2185.996
transcript.whisperx[20].end 2189.779
transcript.whisperx[20].text 而比賽的這種技能競賽的這樣的青年透過以賽代訓能夠學訓用合一打造跟教育部經濟部共同打造學訓用整合的平臺那麼這個是我們對國內的青年中階人才的這樣子的希望能夠進步加強來培訓以及培訓培訓跟這一個培育那麼其實是對於這一個橋外生
transcript.whisperx[21].start 2210.997
transcript.whisperx[21].end 2215.584
transcript.whisperx[21].text 引進橋外生的中階。各位也都知道我上任以來已經開放了我們橋外生包括這一個評點制的分數以及我們把配額的打開限制都放開了
transcript.whisperx[22].start 2226.84
transcript.whisperx[22].end 2241.784
transcript.whisperx[22].text 還有我們最近開放了旅宿業可以從事小外生可以從事旅宿業的中階工作以及我們也要進一步開放包括客運公車司機還有這個醫院護佐還有這個貨車司機跟助理員的這樣子的允許橋外生的中階技術人員來從事
transcript.whisperx[23].start 2250.146
transcript.whisperx[23].end 2274.315
transcript.whisperx[23].text 所以大概以上是我們關於這一次的職位缺工缺統計調查報告的報告以上謝謝好謝謝何部長那有關本次會議各項書面資料均列入記錄刊登公報那現在開始詢答以做以下宣告本會委員詢答時間6加2分鐘列席委員4加1分鐘
transcript.whisperx[24].start 2276.4
transcript.whisperx[24].end 2295.616
transcript.whisperx[24].text 10點30分截止發言登記委員如有書面質詢:三會前提出與其不受理暫定10點30分休息10分鐘原則上11點30分處理臨時提案10點30分截止收案現在請登記第一位委員陳昭芝委員發言
transcript.whisperx[25].start 2302.843
transcript.whisperx[25].end 2305.546
transcript.whisperx[25].text 謝謝主席有請何部長有請何部長昨天商總會邀請勞動部討論缺工議題不知道部長在那個會議當中有什麼心得嗎
transcript.whisperx[26].start 2321.284
transcript.whisperx[26].end 2321.464
transcript.whisperx[26].text 我是覺得當然
transcript.whisperx[27].start 2336.02
transcript.whisperx[27].end 2342.123
transcript.whisperx[27].text 裡面的其實我想也符合我們今天的統計調查我的意思就是說我坐在資方他們因為這個是大老闆們那資方會有一些觀點那我也希望說部長要記得要跟基層的這個員工不要開會從他們角度的一個觀點那部長
transcript.whisperx[28].start 2355.11
transcript.whisperx[28].end 2373.928
transcript.whisperx[28].text 主計總署對全臺灣的工作職缺做了調查根據目前最新的統計左邊這個紅框框只有24萬個工作職缺那最缺的全屋民跟您剛剛的報告方向大概是一致工業部門的製造業跟營業工程業是最多的然後服務部門是批發零售業還有住宿餐飲跟醫療保健
transcript.whisperx[29].start 2380.654
transcript.whisperx[29].end 2401.872
transcript.whisperx[29].text 勞動部本身有一個缺工調查我們都是把前五這個數字就是我們都拿前五的缺工最嚴重的部分來做個比對但是差很大部長你看這個部分是土地總署的那個數字是17萬3就是我們指的全缺工最五大行業的裡面是17萬個但是貴部的只有49700
transcript.whisperx[30].start 2406.976
transcript.whisperx[30].end 2426.868
transcript.whisperx[30].text 委員 我就是要跟您 剛剛我的報告 其實還有部分要補足 就是 組長的統計方式跟我們不一樣 他詢問的問題 他是問說 你現在缺什麼 你現在是否有 缺人 那麼我們問的是說 你過去6個月真的都找不到人
transcript.whisperx[31].start 2427.888
transcript.whisperx[31].end 2447.563
transcript.whisperx[31].text 就是這個兩個問題是不一樣的所以主總的問法他一定會呈現這樣都變成一國兩制因為我們都要了解缺工問題那這個數字差很大就算方法學不太一致但是這個數字差很大就是說差了三倍三四倍左右那我們都會擔心說勞動部有沒有在美化這個數字
transcript.whisperx[32].start 2450.485
transcript.whisperx[32].end 2465.487
transcript.whisperx[32].text 所以缺工的問題可能會比我認為可能會比勞動部所想的很嚴重就用你們的方法去瞭解市委員我們其實並不是說美化數字而是說要精準掌握因為有的時候那就要跟主計總署討論一下
transcript.whisperx[33].start 2467.029
transcript.whisperx[33].end 2470.855
transcript.whisperx[33].text 所以我們其實也是想要跟組長來會商這個調查方法的問題謝謝部長那我們看一下缺工的理由部長你自己曾經說過缺工當然不等於低薪這基本上我可以理解因為缺工原因太多了
transcript.whisperx[34].start 2482.691
transcript.whisperx[34].end 2509.97
transcript.whisperx[34].text 但是我們必須承認第一星的行業一定缺工因為前次有這個執行事由委員詢問部長說您認為第一星的標準是什麼那你回答了一個31K嘛這個大家現在都記得了那我們來看看右邊右邊這個數字就是現在五大缺工行業的薪資除了醫療服務業它的中位數是42000是12K稍微好一些但是批發零售業薪資中位數是37351只比那個整全體的行業的那個中位數多11塊錢
transcript.whisperx[35].start 2511.511
transcript.whisperx[35].end 2513.193
transcript.whisperx[35].text 我國全時職位缺工概況
transcript.whisperx[36].start 2528.946
transcript.whisperx[36].end 2543.161
transcript.whisperx[36].text 是啊我的意思說缺工不能等於低薪啦我反對就是說因為這個東西還有很多其他因素我了解但是低薪確實是一個一個問題因為過去我在新聞上看到有一些產業他們會說我們寄出高薪啦但是找不到人所以這個說法我我們
transcript.whisperx[37].start 2547.145
transcript.whisperx[37].end 2548.747
transcript.whisperx[37].text 主總的調查也反映國人為什麼找不到工作是待遇太低
transcript.whisperx[38].start 2567.905
transcript.whisperx[38].end 2595.393
transcript.whisperx[38].text 大概占60%的因素所以這個確實是一個符合普遍認知啦就是低薪會造成缺工對可是這個缺工的是因為廠商都不願意提高顧主不願意提高薪水所以大家就不願意去從事這是一個惡性循環所以我說對這個就是說我們這個還是要有對策啊缺工的對策之一是希望薪資提高
transcript.whisperx[39].start 2596.033
transcript.whisperx[39].end 2616.407
transcript.whisperx[39].text 然後又發國人出來工作的意願就是說你們對於缺工的這個行業有一所謂就業獎勵計畫那主要是鼓勵失業者盡量能夠到缺工的那個行業裡面去求職這個是一個最好的狀況那目前對於製造業、營建工程業住宿餐飲業甚至醫療服務業看起來都有這個獎勵可是請部長看這個數字
transcript.whisperx[40].start 2619.269
transcript.whisperx[40].end 2639.248
transcript.whisperx[40].text 目前看起來效果有限,為什麼我們這樣講呢?尤其製造業跟醫療社會服務業,你看你越讓他急,他數字越來越嚴重,就是他的缺工數是一直在增加的,所以這個就業獎勵計畫那個效果沒有呈現,還在惡化,所以是不是只靠補助?
transcript.whisperx[41].start 2640.29
transcript.whisperx[41].end 2662.597
transcript.whisperx[41].text 有用嗎?是不是該去調查我認為可以調查年輕人他就業他找工作的時候他在意的點是什麼?除了薪水那是不是還有生活品質休假天數啦時數啦或是職場環境等等是不是勞動部要從比較多方面的方向去著手?你看越補助就越民眾啊數字越難看啊
transcript.whisperx[42].start 2663.917
transcript.whisperx[42].end 2683.489
transcript.whisperx[42].text 不過委員就是這個就業獎勵像莊高麟在跟婦女方面是非常有幫助欸對那麼可能青年方面的績效比較小這確實這我們來檢討好嗎好如果說有一些世俗群是有幫忙的那還是要再做檢討一種的數字看起來就是傻逼
transcript.whisperx[43].start 2684.489
transcript.whisperx[43].end 2701.336
transcript.whisperx[43].text 沒有用啊﹖撒幣沒看到效果那像部長在反映這件事之前許部長的時候我也跟他提過這樣的事情成大醫院曾經多次發生這個壓榨護理師強迫他們加班拒絕加班的護理師就被調動職位有一位迄今還在冷凍庫
transcript.whisperx[44].start 2703.283
transcript.whisperx[44].end 2715.011
transcript.whisperx[44].text 當他們向勞工局反映的時候又變成黑名單囉這個新聞好多次了我最近又收到申請成大護理師向我反映那他們要上系統去填寫加班經費的時候系統會顯示經費不足然後直接鎖起來連申請加班都沒辦法你覺得這樣合情合理嗎
transcript.whisperx[45].start 2725.614
transcript.whisperx[45].end 2738.663
transcript.whisperx[45].text 我請我署長當然不合理當然不合理這是成功大學附設醫院成功大學附設醫院他已經進入前五大收入最高的醫院大概一年有17多億的營養院他們這樣對待護理師嗎
transcript.whisperx[46].start 2741.687
transcript.whisperx[46].end 2744.85
transcript.whisperx[46].text 我要再談兩點,等一下勞動部說清楚每次護理師鼓起勇氣向臺南勞工局檢舉的時候勞檢的前幾天突然這個系統又修復了又可以上去填加班費根據勞動檢查法基本上勞檢是不能夠事先通知的
transcript.whisperx[47].start 2760.523
transcript.whisperx[47].end 2774.029
transcript.whisperx[47].text 但是這樣做法好像已經不止一次了所以我們就會懷疑是不是內神通外鬼啊是不是說那個台南勞工局他就事先通知院方說好我們現在去勞檢了所以你所有系統都要恢復正常這樣子的做法這個
transcript.whisperx[48].start 2775.615
transcript.whisperx[48].end 2788.781
transcript.whisperx[48].text 已經好多次了這個我們有檢查處分過 台南市勞工局檢查處分 這個處分是地方衛生市勞工局但是你們要去看處分罰錢多少錢 罰錢多少錢 署長請說你罰多少錢
transcript.whisperx[49].start 2794.267
transcript.whisperx[49].end 2813.613
transcript.whisperx[49].text 兩萬塊啦跟委員報告齁 這個陳艾醫院確實是臺灣市政府勞工局的一個首要的對象之一因為他們最近幾年的勞資爭議跟申訴案就是一直都有所以我們對檢查當然一定是不會通知檢查 第一個你一定要守住 然後申訴案的話我們會依照 第二個你為什麼罰兩萬塊呢 我想你在這邊的年資比那個何部長還深嘛 你應該了解 罰兩萬塊像話嗎 一個一年有十多億的
transcript.whisperx[50].start 2822.975
transcript.whisperx[50].end 2826.056
transcript.whisperx[50].text 謝謝陳昭志委員的發言謝謝部長的回應下一位我們請林月琴的委員發言
transcript.whisperx[51].start 2856.737
transcript.whisperx[51].end 2858.658
transcript.whisperx[51].text 113年我們的缺工人數到了6.6萬人
transcript.whisperx[52].start 2874.468
transcript.whisperx[52].end 2898.91
transcript.whisperx[52].text 那同期失業的人口也大概41萬人了那依數據來看的話這兩個數據對起來有點特別就待業人數大於需求人數一直在講缺工可是事實上需求蠻高的差了那個6.2倍所以特別是缺工最嚴重的事實上是製造業跟批發零售業那這兩個產業的特性技術背景
transcript.whisperx[53].start 2899.31
transcript.whisperx[53].end 2917.53
transcript.whisperx[53].text 不同概念講說中間的人事實上就是比較缺可是問題是我們需求的人要工作的也蠻多的所以勞動部就業服務的做法相較於現在自己有引發人才的資源中心主動出擊的做法
transcript.whisperx[54].start 2918.371
transcript.whisperx[54].end 2934.535
transcript.whisperx[54].text 看起來事實上比較被動的所以本席之一勞動部使用的求職手段到底有沒有接地氣你們了解各年凌晨獲得求職資訊的習慣嗎為什麼這樣問因為我從教育部的研究可以看出來
transcript.whisperx[55].start 2935.155
transcript.whisperx[55].end 2935.516
transcript.whisperx[55].text 我請署長答覆
transcript.whisperx[56].start 2956.65
transcript.whisperx[56].end 2982.959
transcript.whisperx[56].text 跟委員報告青年求職這個確實它有它的一個習性第一個就是說網路的求財這個資訊其實他們在運用上確實會比較偏多那很多透過人力銀行但是我們在臺灣就業通的這個服務其實有人力銀行沒有辦法做到因為我們是結合線下像職業訓練創業輔導跟一些相關的一些實體諮詢這個部分其實是我們目前在就業通以外我們有銜接外部的資源
transcript.whisperx[57].start 2983.439
transcript.whisperx[57].end 2988.243
transcript.whisperx[57].text 新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞新聞
transcript.whisperx[58].start 3006.796
transcript.whisperx[58].end 3031.537
transcript.whisperx[58].text 你剛剛講說你沒有其他連結可是還是效果不彰而且求職成功率更低只有25.33所以感覺上看起來從數據來看求職者是不愛用的所以政府的這種公共就業服務資源效果不好民眾如果不愛用的話那想問這持續這樣下滑的趨勢來看的話有沒有什麼
transcript.whisperx[59].start 3032.137
transcript.whisperx[59].end 3049.037
transcript.whisperx[59].text 平井可以突破也就是說我剛剛有提過就是說你們的銀髮人才就業服務在新北市雙河地區去主動主動找職缺的做法然後而且勞動部是不是可以主動下鄉到全國的368個鄉鎮招商徵才
transcript.whisperx[60].start 3052.08
transcript.whisperx[60].end 3067.237
transcript.whisperx[60].text 然後要嘛就是你要握住人力找廠商要嘛就是像是握住廠商找人力再媒合起來來完成這個聘戶關係那話被動為主動我不知道勞動部部長對這個看法是
transcript.whisperx[61].start 3068.297
transcript.whisperx[61].end 3097.199
transcript.whisperx[61].text 好當然委員這個建議非常好我想我們需要更綿密的去到基層然後直接去掌握這雙邊的這樣子的一個因為你們已經有一個成功經驗了為什麼不是去擴散然後只等著被動的一個平台讓人家上門來找這是非常好的model是把業主找出來把這些他們的需求找出來之後再去做搭配我覺得這會是比較好的
transcript.whisperx[62].start 3097.839
transcript.whisperx[62].end 3123.281
transcript.whisperx[62].text 那缺工有沒有去想過非勞動的人力是不是你要主要的來的對象因為最根究底少子高齡化本來這樣的趨勢下缺工就是一種常態了所以整個就業服務你應該是更積極啊所以我說是不是要去盤點我們的有些閒置的勞動力那比如說就學他可能
transcript.whisperx[63].start 3123.821
transcript.whisperx[63].end 3123.861
transcript.whisperx[63].text 獲得獎金
transcript.whisperx[64].start 3139.104
transcript.whisperx[64].end 3158.439
transcript.whisperx[64].text ﹚議員
transcript.whisperx[65].start 3158.679
transcript.whisperx[65].end 3179.573
transcript.whisperx[65].text 沒辦法撐住我們現在的需求所以閒置人力我現在用兩個觀念來談第一個就是是不是針對於我們現在有一些移工在轉換雇主許可的移工平均一個月大概看你的數據從你們勞動部要到的是新增4500人然後轉換期間受臨時安置的大概是30人
transcript.whisperx[66].start 3183.656
transcript.whisperx[66].end 3212.154
transcript.whisperx[66].text 那未接受政府安置的人就有僱主﹖或者是仲介代替僱主來安置﹖安置期間是不可以工作的所以那移工只要一天未能順利轉出的話你不管事實上政府還是僱主你都要花成本結果這個人空在那邊你沒有善加運用這些勞動力所以想問一下部長說當下有多少的移工正等待新僱主的承接有多少因為我們現在得到的數據只有9月份我請署長回答
transcript.whisperx[67].start 3214.871
transcript.whisperx[67].end 3243.17
transcript.whisperx[67].text 跟委員報告我們其實現在對待轉換的移工大概目前我們的安置中心每年大概我們的安置人數大概將近都大概兩三千人所以這兩三千人是不是一個很好的你讓他盡快的可是有沒有那再問等待的時間有多久安置的時間有多久跟委員報告因為大部分的案件因為比較單純就只是勞資爭議一旦勞資爭議地方政府確認之後聘用關係終止我們就馬上協助轉換
transcript.whisperx[68].start 3245.672
transcript.whisperx[68].end 3263.351
transcript.whisperx[68].text 這個馬上的時間還有有沒有等待一年或半年跟委員保一般半年一年是屬於刑事案件有時候是人身傷害一些相關的一些刑事的訴訟因為必須要等到司法警察機關的一些確認這個會稍微久一點不過這個我們也會跟司法機關來充分的合作
transcript.whisperx[69].start 3263.931
transcript.whisperx[69].end 3282.398
transcript.whisperx[69].text 可是這就是成本齁所以我覺得社會成本因為這個案子你們是要付費的嘛齁就是要付好那所以勞動部不應該因為這個牽涉到修法就是說你那個提前解約的你要讓他轉轉僱主轉業就是轉換行業我現在不允許
transcript.whisperx[70].start 3283.158
transcript.whisperx[70].end 3300.551
transcript.whisperx[70].text 所以我們真的要去考慮一下否則的話又一直在講缺工可是我們就看到有些人力事實上是代用的狀態裡面而且你要付出成本因為這些安置期間你們是要付費的所以製造業跟社福業都在缺工所以這種
transcript.whisperx[71].start 3301.892
transcript.whisperx[71].end 3315.87
transcript.whisperx[71].text 移工全域的產業不在少數所以這群接受等待安置的那都是你可能可以考慮的一些對象所以可不可以優先境內承接再境外招募利用境內的這集戰力來紓解
transcript.whisperx[72].start 3317.792
transcript.whisperx[72].end 3319.453
transcript.whisperx[72].text 請勞動部一個月提出說明
transcript.whisperx[73].start 3347.632
transcript.whisperx[73].end 3370.429
transcript.whisperx[73].text 不好意思再讓我一點時間現在目前我們的身心障礙者大概也是一個所謂的就業服務的孤兒為什麼這樣講我們大概15歲以上的身心障礙工作大概是25.4萬人比例大概21%其中接受政府就業推薦成功的大概28000人那佔25萬就業的大概只有12%所以
transcript.whisperx[74].start 3377.946
transcript.whisperx[74].end 3405.767
transcript.whisperx[74].text 想問一下部長這邊因為經過職業推介的這28000人9月大多數還是去公務體系去工作是嗎因為我現在收到數據是這樣結果你們自己處理轉介反而結果進入到的還是比較以公務家體系為優先那而且這個只有占到12%還有很多事實上也在開發的人力
transcript.whisperx[75].start 3407.813
transcript.whisperx[75].end 3432.963
transcript.whisperx[75].text 好 這個也請署長回答一下委員跟委員報告我們現在身心障礙我們大概依照他的情況大概有三種服務模式一般有PU性就業資金又跟一般性的就業大部分因為委員可能公報公部門確實有部分但其實到私部門其實還是很多因為很多私部門他必須要符合定額禁用所以他會尋求我們的協助推介這部分也在努力
transcript.whisperx[76].start 3433.223
transcript.whisperx[76].end 3460.854
transcript.whisperx[76].text 可是你現在25萬的原來25萬的工作的一個身心障礙者看起來還是靠自己去找工作還是一樣就回來你們的這樣的就業服務事實上缺工可是你有沒有辦法幫雇主那需求我有要工作需求可是你也是沒辦法滿足我所以我們的身心障礙者工作促進政策已經推動幾十年了如果只有這樣成效真的是蠻弱的
transcript.whisperx[77].start 3461.734
transcript.whisperx[77].end 3486.456
transcript.whisperx[77].text 所以最後就是希望你們盤點我們的閒置的勞動人力主動下鄉,剛剛部長已經有承諾就是說你可以發掘那個職缺用你們的在中永和辦的那樣子的一個方式我們的銀髮人才的資源中心這樣做法來促進雙方媒合,還有把我們的閒置人力能夠都帶回來充分就業,再麻煩部長
transcript.whisperx[78].start 3488.636
transcript.whisperx[78].end 3489.957
transcript.whisperx[78].text 昨天其實我們觀光署對
transcript.whisperx[79].start 3515.933
transcript.whisperx[79].end 3531.113
transcript.whisperx[79].text 好昨天我們觀光署有講到說他們本來啊今年希望可以達到1000萬的人次因為在疫情前我們是有到1200萬但希望今年可以衝到1000萬結果到昨天他們很悲觀的認為
transcript.whisperx[80].start 3532.655
transcript.whisperx[80].end 3554.787
transcript.whisperx[80].text 達到750萬下修了他們的目標啊那這個是賴總統在競選的時候曾經講到的他希望部部有觀光他希望部部有觀光各地有觀光來發展觀光的主流化來搶救我國的觀光產業這個也是部長剛剛口頭報告的時候有講到我們很需要中階的人才
transcript.whisperx[81].start 3556.148
transcript.whisperx[81].end 3572.346
transcript.whisperx[81].text 呃旅宿其中之一所以我也想請問您部部有觀光勞動部這邊可以做什麼呢因為這個昨天是一個蠻大的新聞所有相關產業的人都很關注當然旅宿觀光業喔
transcript.whisperx[82].start 3575.168
transcript.whisperx[82].end 3589.295
transcript.whisperx[82].text 確實一直以來他們都在訴求這個問題昨天我在跟服務業的座談裡面旅宿觀光業他們也再度提出可是跟委員報告我們在這部分已經初步先開放橋外生中階人力
transcript.whisperx[83].start 3590.075
transcript.whisperx[83].end 3594.819
transcript.whisperx[83].text 可以從事旅宿的房屋上禮拜你說司機也是在研擬橋外生其實還沒開始已經開放了已經有多少你們現在覺得可以有多少的進展關於司機還有旅宿業都想要一定知道其實政策才剛開始
transcript.whisperx[84].start 3612.074
transcript.whisperx[84].end 3633.053
transcript.whisperx[84].text 就是還沒有統計的數據還沒有真正就是才剛通過有人來申請了嗎應該才剛通過而已禮數我們是8月開放那8月開放因為他關公署有一些相關的細節規定資格所以現在目前還在一個規劃期那已經開放那目前還在
transcript.whisperx[85].start 3634.274
transcript.whisperx[85].end 3655.611
transcript.whisperx[85].text 一些宣導的過程目前還沒有來提出申請那至於剛剛委員提到我們其他開放的司機員還有一些客運貨運等等這個目前已經確定會開放那我們現在正在跟部會確認一些法制作業當中但是還沒開始申請司機這邊還沒開始不過你們已經確定開放了那除了這個旅宿業以外您覺得勞動部還可以在觀光產業上貢獻哪些事嗎
transcript.whisperx[86].start 3662.567
transcript.whisperx[86].end 3683.267
transcript.whisperx[86].text 我們要先幫他解決這個勞動力匱乏的問題我們也鼓勵業者在中高齡跟婦女這方面應該要多多來利用包括我們的義後缺工改善方案其實就是為了觀光業合作的可是他們在媒合人力上那你的這個高齡跟婦女有什麼
transcript.whisperx[87].start 3684.528
transcript.whisperx[87].end 3690.21
transcript.whisperx[87].text 獎勵的措施可以讓他們:他們除了我們原有的這種55plus婦女在就業獎勵以外觀光署也有給他們補助在這方面所以是兩個部會合起來補助他們對可是目前就用人力上擦牆人意這個方案所以這也牽涉到
transcript.whisperx[88].start 3706.036
transcript.whisperx[88].end 3721.733
transcript.whisperx[88].text 這一個有沒有這一個期待跟就是說這個這個落差的問題啦對我們能提供的人力跟他能要使用的這樣的人力落差的問題這也是我們進一步要跟呂樹葉我們可以來跟他來再度來更精進來討論對
transcript.whisperx[89].start 3724.075
transcript.whisperx[89].end 3753.315
transcript.whisperx[89].text 再來我想請教部長的是這是去年行政院八月通過的優化跨國勞動力聘僱管理制度他是一個一年期的專案這專案其實花蠻多錢的有五億多那您當時有三個項目覺得很重要所以把它列為專案的計劃第一個是流用中階技術人力要變多這剛剛您已經講了第二是針對失蹤不明比例過高的引進移工來台國外仲介公司辦理暫停
transcript.whisperx[90].start 3753.815
transcript.whisperx[90].end 3772.899
transcript.whisperx[90].text 那第三呢是要服務顧主以及家事移工並提供入境移工的指引好但是我們到今年現在已經快要11月了吧我們你已經花掉了5億2997萬其中的2億3009萬所以其實你現在還剩下一半多的經費喔超過50%總共是56%的經費那你要我想知道你再來要怎麼做你是要兩個月大傻逼嗎
transcript.whisperx[91].start 3783.701
transcript.whisperx[91].end 3806.5
transcript.whisperx[91].text 還是怎麼做?這個我可以請署長來回應一下跟委員報告,因為這個預算大部分是提供各部位在執行這個移工的評估管理的一些做法那因為他們有一些經費的核銷上的一個期程上每年大概都是這樣那年底前他們會大概整個核銷的進度都會完成執行率大概都可以提高到我們的相關的預算
transcript.whisperx[92].start 3807.389
transcript.whisperx[92].end 3815.708
transcript.whisperx[92].text 所以你的意思是說其實他們只是因為核銷的進度比較慢所以你到12月其實你這個一年期的計畫就會結束了
transcript.whisperx[93].start 3818.355
transcript.whisperx[93].end 3837.846
transcript.whisperx[93].text 對嗎這個我們這個其實是每年的例行在辦理的一些相關的工作可以那我們來看一下你的這個執行率吼第一個我覺得中階技術人力累積許可人數OK因為有達到你的KPI我記得你們本來是設定兩萬五嗎對那比較匪夷所思的地方就是
transcript.whisperx[94].start 3838.846
transcript.whisperx[94].end 3851.937
transcript.whisperx[94].text 你針對逃逸比較多的仲介公司確保外國仲介品質是0%你一家都沒有一家都沒有抓到一家都沒有發現這樣是為什麼委員那個他有三家有三家被停權目前有三家被停權你講一下
transcript.whisperx[95].start 3860.459
transcript.whisperx[95].end 3873.179
transcript.whisperx[95].text 委員報告這個規定我們實施之後我們就落實現在越南因為他因為失聯的問題我們大概有應該有3家已經被我們停選掉你的報告你要更新一下嗎是這個我們再更新
transcript.whisperx[96].start 3874.008
transcript.whisperx[96].end 3898.424
transcript.whisperx[96].text 那我跟你補充一下數據齁我們去年的8月失聯移工是84,339人去年等於100位移工就有11.3位是失聯最新呢113年9月是88,881人所以我們一年多了快5000人逃逸的移工4500那你現在做了這個一年期的專案啊花了5億
transcript.whisperx[97].start 3900.151
transcript.whisperx[97].end 3927.609
transcript.whisperx[97].text 花了5億你覺得你抓到3家外國仲介公司這個有符合你原本幫自己設定的KPI嗎?委員這一個部分應該主要是查緝的工作查緝收容事實上我們今年還要花9千萬吧給移民署讓他去收容擴大收容這一個逃逸移工數這個部分我們
transcript.whisperx[98].start 3928.951
transcript.whisperx[98].end 3943.805
transcript.whisperx[98].text 對可是剛剛才你目標應該是希望他不要逃逸啊而不是做大收容委員其實我們現在比起疫情期間失聯率已經下降了現在才2%嘛對那之前疫情期間都是3到4%
transcript.whisperx[99].start 3945.206
transcript.whisperx[99].end 3967.607
transcript.whisperx[99].text 之後我也希望可以看到你們這個一年期的專案的結案報告因為如果說你抓到了這三家結果他們逃逸的數目遠遠跟我們這一年的差距其實是很大的那就不太合理啊是吧不然我也想問你們是怎麼去追查到這三家的你們不是應該是救人數嗎
transcript.whisperx[100].start 3969.571
transcript.whisperx[100].end 3993.858
transcript.whisperx[100].text 你們不是應該是定多少人數以上的國外仲介公司所以你們才會去找嗎對他是用人數來看的那你講的出來這三家你覺得他們佔了多少比例嗎我跟委員報告因為我們現在是每三個月就會去集合所有這個國外仲介那就是依照他的引進人數跟失聯人數有一個比例只要達到這樣的一個警戒值我們就予以停權這個比例是
transcript.whisperx[101].start 3995.419
transcript.whisperx[101].end 4022.147
transcript.whisperx[101].text 那個比例大概我們是有一個估算是不是會後我們再提供給委員就有設定一個比例法令上明定謝謝之後我也很期待看到你們這個一年期專案的結案報告因為你們有三次查核還有最後一次還沒做對我還有兩分鐘好下一個因為這是上禮拜很多委員會在討論的大家在討論是不是應該要新增一些國定假日可以幫我播一下影片
transcript.whisperx[102].start 4026.435
transcript.whisperx[102].end 4033.896
transcript.whisperx[102].text 這是吳斯亞委員的說法我也想知道我們勞動部部長的看法如何因為當然之前這才對嘛
transcript.whisperx[103].start 4057.817
transcript.whisperx[103].end 4079.289
transcript.whisperx[103].text 我想問部長因為我知道您以前是勞工運動出身的但是後來您也在勞基法的修法的時候有一個特別的角色啦所以我想知道說因為現在這個很多人關注這個新聞我們是不是應該要增加我們的國定假日不管是幾天一天兩天三天或是七天不知道您的看法是怎麼樣
transcript.whisperx[104].start 4081.215
transcript.whisperx[104].end 4108.475
transcript.whisperx[104].text 委員我想勞動部的立場在當時勞基法一例一休修法之後我們增加的休假日週休二日我們落實週休二日增加的這個休假日大概就是全年的總休假日是116天那麼當時為什麼會拿掉那7天國定假日是因為要一致化的問題
transcript.whisperx[105].start 4109.616
transcript.whisperx[105].end 4109.956
transcript.whisperx[105].text 對但是我們可以再更進步了嗎現在又過了好幾年
transcript.whisperx[106].start 4134.096
transcript.whisperx[106].end 4159.656
transcript.whisperx[106].text 所以這個之後本席還會在花時間跟您詳細的討論一下不過現在國際的趨勢這個國定假日加上特休日我們都是比別的亞洲國家差的不管是韓國或是日本或是新加坡新加坡的國定假日跟我們是一樣11 12天可是他們做滿三個月六個月他的特休日是比我們多很多的
transcript.whisperx[107].start 4160.296
transcript.whisperx[107].end 4179.056
transcript.whisperx[107].text 那現在臺灣的工時也是OECD國家裡面第4高全世界第4高亞洲第二高那這個是一個趨勢所以我也想知道部長對於這樣子的趨勢的看法還是你覺得我們從勞基法修法至今可以不需要做調整
transcript.whisperx[108].start 4180.157
transcript.whisperx[108].end 4201.858
transcript.whisperx[108].text 我想當時201616年的一例一休的修法那到今天目前為止我當時其實特休也都是增加的委員當時對出入職場的勞工甚至那特休六個月以上就增加到三天這也在全世界也是排名前面的這裡這裡對
transcript.whisperx[109].start 4206
transcript.whisperx[109].end 4222.328
transcript.whisperx[109].text 我跟您報告一下這個是我們跟其他國家特休的比較在我們這邊人力銀行統計起來臺灣的勞工平均12到15個月就要換工作可是我們要工作滿一年才可以有7天
transcript.whisperx[110].start 4223.982
transcript.whisperx[110].end 4243.039
transcript.whisperx[110].text 新加坡跟我們一樣老公只要工作3個月第一年就會有7天可是我們要工作到半年以上才可以日本的話只要出席總日數達到8成以上就可以10天的特休所以我不知道部長口中我們比較進步是跟哪一些國家來比這個我也想知道
transcript.whisperx[111].start 4244.588
transcript.whisperx[111].end 4260.506
transcript.whisperx[111].text 嗯我在想我們出入職場的6個月以上每年就有3天的特休這個部分啦是跟其他國家比比較好當然相對也是算是前面的啦前段班好沒關係謝謝主席我們之後再來討論謝謝好謝謝曾經為委員發言那接下來請盧憲一委員發言
transcript.whisperx[112].start 4272.403
transcript.whisperx[112].end 4283.228
transcript.whisperx[112].text 主席有請部長。呃,何部長。委員好。部長早。之前我有問過你一個問題,也就是說就針對112年民族就業的狀況調查,你有沒有跟我們委員會去討論?
transcript.whisperx[113].start 4292.297
transcript.whisperx[113].end 4312.258
transcript.whisperx[113].text 我希望知道說你們是每個月有討論還是一季有一次還是半年有一次我想知道你們的頻率我們之間有平台對口不定期都有那就針對我們的結論我們上次講到我們原住民在25到54歲原住民族的勞參率比全體民眾低
transcript.whisperx[114].start 4314.44
transcript.whisperx[114].end 4329.425
transcript.whisperx[114].text 第2個也就是我們的從事的工作有營建工程業製造業及住宿及餐飲業然後再看到我們的非典型工作高於非原住民地區那就針對這個問題我想問一下就是說現在職業再設計我們勞動部有補助10萬元
transcript.whisperx[115].start 4337.546
transcript.whisperx[115].end 4366.741
transcript.whisperx[115].text 那就針對我們原住民族比較多的營建工程業、製造業及住宿產業有沒有相對應的有做這方面的設計?有我請署長來跟你解釋可以舉例嗎?其實原住民在目前植物袋的使用其實是跟我們一般都完全一樣因為我們目前植物袋就是基於他一些工作一些職能需要做一些改善所以大概主要就是在中高齡跟這個身心障礙者所以原住民如果符合這種情況之下其實是一體可以使用
transcript.whisperx[116].start 4367.321
transcript.whisperx[116].end 4381.077
transcript.whisperx[116].text 可以嗎?可以適用那第二個就是說我們初次循職的青年他有個最高補助45000元那我想請問一下如果說我們原住民25我們要改善這個25到54歲比較低於全體國民的話你們這方面有沒有一個設計
transcript.whisperx[117].start 4386.403
transcript.whisperx[117].end 4398.199
transcript.whisperx[117].text 看是不是也可以沿用這方面的一個經驗因為你這個只有到15到29歲可是我們原住民是29到54歲比較低你可以做這方面的一個修正或者說計劃嗎
transcript.whisperx[118].start 4401.07
transcript.whisperx[118].end 4401.991
transcript.whisperx[118].text 好,我請署長回答好嗎?
transcript.whisperx[119].start 4426.661
transcript.whisperx[119].end 4443.729
transcript.whisperx[119].text 那我想請問就是現在有一個就業服務法第12條主管機關的試業務需要如果說有些縣市他的人口打到2萬人以上可以設置公立就業服務機構那我想知道你們目前的設置的情形我也請署長回答
transcript.whisperx[120].start 4445.339
transcript.whisperx[120].end 4446.36
transcript.whisperx[120].text 目前已經有6個縣市包含這一個
transcript.whisperx[121].start 4467.182
transcript.whisperx[121].end 4472.527
transcript.whisperx[121].text 臺北、新北、還有桃園、台中、高雄、屏東6個縣市已經設了原住民專屬的社會福利據點。
transcript.whisperx[122].start 4482.978
transcript.whisperx[122].end 4501.024
transcript.whisperx[122].text 跟我們主要就是請我們原住民的就業部員因為他有他的一個專屬性所以我們是請地方的優先是以原住民來提供這樣的服務那人力的補助大概依照我們目前的這個人力的大概就是業務輔導員大概3萬每個月都要3萬7左右以上
transcript.whisperx[123].start 4501.664
transcript.whisperx[123].end 4518.537
transcript.whisperx[123].text 那我想請問哈就現在已經在錄用的就是同意這邊有寫同意補助3名業務督導員25名業務輔導員我想知道他怎麼禁用的是用考試還是用什麼基本上這個是由地方政府他們有一些人員的禁用的程序那目前大部分都是禁用原住民身份
transcript.whisperx[124].start 4518.928
transcript.whisperx[124].end 4543.865
transcript.whisperx[124].text 我知道,可是我想知道他的經驗方式因為上次我們研究民主委員會被質疑他們的族群委員全部都是他們民進黨的黨工不然就是民進黨的公職人員沒有選上的然後變成族群委員我想知道這個現在這個業務督導員跟25名的輔導員他的經驗方式到最後一查又是他們競選的他們對他們有功勞的人
transcript.whisperx[125].start 4544.545
transcript.whisperx[125].end 4549.518
transcript.whisperx[125].text 那我想說是不是有一個考試的平台還是經營的方式?你們可以有一個規範嗎?
transcript.whisperx[126].start 4553.571
transcript.whisperx[126].end 4578.499
transcript.whisperx[126].text 我們會提醒地方政府因為地方政府用人的程序他有個人員的甄選希望是專業優先而不是用類似像另外的一種酬庸的方式你放心我們都是讓地方政府公平公正公開去處理的其實現在地方政府多數都是在野黨執政不是因為我在屏東 屏東是民進黨執政
transcript.whisperx[127].start 4579.719
transcript.whisperx[127].end 4601.277
transcript.whisperx[127].text 你知道我們的趙服務員有些工作還是去幫收紅白包的而且是在那邊收禮台的他都是在做服務民進黨的事情好不好好謝謝好就針對移工來說我們希望因為我們常常跟移工的工作是性質是接近的所以我想說是不是有一個平台可以跟原民會溝通
transcript.whisperx[128].start 4603.179
transcript.whisperx[128].end 4621.137
transcript.whisperx[128].text 跟人民會溝通移工嗎當然其實委員其實我們在開放移工的時候我們也會邀請人民會來跟我們跨國力勞動力政策諮詢小組一起討論的我的意思就是說我們的工作可能也會被移工搶走所以這個部分在原來上面
transcript.whisperx[129].start 4624.841
transcript.whisperx[129].end 4638.871
transcript.whisperx[129].text 福利方面的移工一直我們都很謹慎就是這個因素我們有考慮原住民的這邊就業的問題是我想還有一個是我想知道是針對老化的這個過程裡面有沒有什麼一些新的想法
transcript.whisperx[130].start 4641.364
transcript.whisperx[130].end 4666.894
transcript.whisperx[130].text 現在中高齡就業是我們主推的項目那麼我們也預計希望在每年增加10萬的中高齡勞動力人口這個是我們現在的工作目標我昨天看一些新聞有看到我們現在連炸雞丁都找不到人已經月薪到6萬之前都講說缺工是在傳統產業現在連服務業也缺工那你有沒有什麼對策
transcript.whisperx[131].start 4667.97
transcript.whisperx[131].end 4697.154
transcript.whisperx[131].text 市委員我今天的報告就是也跟您就是希望跟委員會報告就是說事實上現在所謂的缺工是缺什麼樣的工我們要弄清楚那我們這次做的缺工統計呈現的就是說所謂服務業的缺工也是中階技術人力比較缺啦那中階技術人力他是要有一定技術能力的他也不是那種基層體力工缺所以在這方面我們會加強禁用中階技術的人才包括對本國
transcript.whisperx[132].start 4697.984
transcript.whisperx[132].end 4719.418
transcript.whisperx[132].text 以及我們針對這個像橋外生這樣的中間技術的問題我先問一下就是關於廢棄物的處理的工作有沒有禁用移工的一個可能性有我們已經通過了9月的時候開放新增處理業等三個資源回收行業這樣的移工
transcript.whisperx[133].start 4719.918
transcript.whisperx[133].end 4722.179
transcript.whisperx[133].text 謝謝盧憲一委員發言接下來請王育明委員發言
transcript.whisperx[134].start 4752.981
transcript.whisperx[134].end 4754.201
transcript.whisperx[134].text 臺灣缺工問題嚴不嚴重?臺灣現在缺工的人數是多少?
transcript.whisperx[135].start 4778.14
transcript.whisperx[135].end 4793.554
transcript.whisperx[135].text 在我的今年7月底就是今天發布給這個委員會的報告裡面我們現在的真正空缺6個月找不到人就是6.6萬人那我提供你另外一個數據就是我們現在開缺出來的數據臺灣缺工是超過24萬人這個也是統計報告這是主總的統計對
transcript.whisperx[136].start 4800.8
transcript.whisperx[136].end 4813.376
transcript.whisperx[136].text 那你們的數據跟主計總署的數據落差非常的大 這個高達三倍之多 那我請問你如果媒體今天要報導說臺灣的缺工人數是多少 是24萬還是6.6萬
transcript.whisperx[137].start 4816.74
transcript.whisperx[137].end 4824.929
transcript.whisperx[137].text 我必須澄清主總的詢問方式跟我們是不一樣的那我就問你嘛這個可能媒體會困擾啊如果今天媒體要下一個標說臺灣的缺工人數請問這個數字是要填24萬還是6.6萬
transcript.whisperx[138].start 4833.703
transcript.whisperx[138].end 4854.225
transcript.whisperx[138].text 如果根據我勞動部的統計我會我會認為應該是6.6萬這比較精確我是指過去6個月真的那你要去跟主席總部說你的數據是錯了麻煩你依照我勞動部的6.6萬我們也要跟主總溝通這件事就是我們其實已經在跟他溝通就是因為他詢問的是職缺數
transcript.whisperx[139].start 4855.026
transcript.whisperx[139].end 4855.587
transcript.whisperx[139].text 但是部長你知道嗎?從去年112年這個主計數的統計是23萬的缺工數
transcript.whisperx[140].start 4873.104
transcript.whisperx[140].end 4889.689
transcript.whisperx[140].text 到現在第二季是超過24萬的缺工數這個趨勢根本就沒有改變如果按照部長剛剛的說法應該是會大幅的改善才對但是如果他有補足人不可能他現在開出來的缺工數還是達到24萬
transcript.whisperx[141].start 4891.65
transcript.whisperx[141].end 4914.972
transcript.whisperx[141].text 我覺得這個是一個最根本的就是說政府的統計數據不能有兩個數字讓民眾搞不清楚那另外一個我要強調的是誠實的面對問題才能解決問題我可不可以就是再補充一下就是為什麼我會做這個調查這也是勞動部第一次自己做缺工統計調查因為我是避免誤判
transcript.whisperx[142].start 4916.073
transcript.whisperx[142].end 4917.953
transcript.whisperx[142].text 所以你說全台灣真正找不到人的缺工的數據只有6.6萬
transcript.whisperx[143].start 4946.258
transcript.whisperx[143].end 4963.074
transcript.whisperx[143].text 現在目前目前是6.6萬然後你是每一家企業去調查我們調查4000家企業那能代表全部嗎那當然它是有一個樣本數的限制啦那這樣子你這個6.6萬的代表性是什麼
transcript.whisperx[144].start 4964.599
transcript.whisperx[144].end 4965.299
transcript.whisperx[144].text 是,我們是針對所有的行業,抽樣的
transcript.whisperx[145].start 4988.033
transcript.whisperx[145].end 4997.06
transcript.whisperx[145].text 那你這個抽樣可以代表整個的群體嗎?可以推估嗎?是可以推估母體的所以你這個數據那如果按照你這個數據其實我們缺工沒有那麼嚴重啊?
transcript.whisperx[146].start 5001.804
transcript.whisperx[146].end 5025.62
transcript.whisperx[146].text 事實上24萬跟6.6萬6.6萬也不少啦6.6萬也不少只是24萬是一個就是說它是比較定義不精確的數字這樣我會很難做決策好本席要求這個勞動部你們要做出一個檢討你們跟主席總署就是全台灣只需要一個真相跟一個數據我們不需要兩個數據到底台灣的缺工是24萬還是是你講的6.6萬你們兩個單位
transcript.whisperx[147].start 5029.443
transcript.whisperx[147].end 5047.244
transcript.whisperx[147].text 可不可以在這個一個月之內把你們的統計數據就頂掉未來發布的臺灣的缺工數據不應該是勞動部講勞動部的主計處講主計處這樣可以嗎一個月之內你們整合出一個版本好不好另外一個我要檢視你們的專案的成效
transcript.whisperx[148].start 5047.805
transcript.whisperx[148].end 5074.584
transcript.whisperx[148].text 就是你有一個役後改善缺工擴大就業方案你們從112年5月一直到今年的6月30日為止然後你們的事辦要投入10億促進2萬名的這個勞工就業但是這個你們提供的資料你們自己真正的合發人數才1078人如果占2萬人的裡面你的達成率大概是6%
transcript.whisperx[149].start 5075.845
transcript.whisperx[149].end 5104.992
transcript.whisperx[149].text 就是這個部分成效其實很不好那這個部長可以告訴大家為什麼嗎你明明編了實役也要想要給大家要去改善這個役後的缺工的情況但是改善下來的結果特別是針對旅宿餐飲業那為什麼改善下來的成效這麼差是委員這個其實就是針對旅宿餐飲是他們現在缺工還是很嚴重啊你明明有方案啊那為什麼就是沒有辦法銜接上
transcript.whisperx[150].start 5107.221
transcript.whisperx[150].end 5116.721
transcript.whisperx[150].text 對,因為這個你們檢討的結果是什麼?到底問題出在哪?我想業者的期待他們都希望更便宜
transcript.whisperx[151].start 5118.294
transcript.whisperx[151].end 5146.588
transcript.whisperx[151].text 對可是對國人的就業期待都希望薪資要合理這個就是兩個之間永恆的拔河跟落差所以他們達不到你們的獎勵標準或是你的誘因不足他也不想來沒有我誘因足可是他不想開那個價錢請人啊他一直希望更便宜這就是為什麼那你們要怎麼檢討跟改善這就是我也要跟您報告我們有這個方案也沒有用業者還希望我開移工因為移工比這個更便宜
transcript.whisperx[152].start 5147.814
transcript.whisperx[152].end 5168.21
transcript.whisperx[152].text 這就是我當今的困境可是我們能這麼做嗎是所以你的改善方案是什麼在中高齡跟婦女就業這是大宗我們在有1.4萬的中高齡跟婦女在這裡面在旅宿業裡對本期要了解的是你針對這個執行的成效不彰只有6%那請問勞動部你後續的因應
transcript.whisperx[153].start 5171.232
transcript.whisperx[153].end 5181.601
transcript.whisperx[153].text 跟調整跟你的改善你的檢討到底是什麼我要來跟觀光署我們來跟交通部一起來會商我要求也是一個月這個要交你們的檢討報告還有一樣也是成效很差齁這個營建業產業缺工專案的成效喔這個你們推動這樣的一個專案結果有七成三根本不知道這個專案
transcript.whisperx[154].start 5195.232
transcript.whisperx[154].end 5197.074
transcript.whisperx[154].text 8成根本沒有參與過這個的徵採活動你實際的核發數從110年到112年總共只有152人而且聽說已經停辦
transcript.whisperx[155].start 5208.287
transcript.whisperx[155].end 5231.956
transcript.whisperx[155].text 委員這個什麼時候就結束了這個方案結束了就是成效不佳嘛結束了是是是阿所以去年112年我們開了12000的營建業移工所以你就是用移工來替代了就是說本國的部分沒有辦法了所以你就不要再推動了嘛對不對就是就是用移工替代了是好那
transcript.whisperx[156].start 5232.951
transcript.whisperx[156].end 5237.793
transcript.whisperx[156].text 今天這個招委牌這樣的一個專案我想我們要討論的就是這些缺工的問題到底應該要怎麼改善那本期就要求剛剛我講的你疫後的這一個編了10億要找2萬人結果只有6%1000多人
transcript.whisperx[157].start 5249.799
transcript.whisperx[157].end 5268.473
transcript.whisperx[157].text 這個專案他成效不佳那未來你的檢討跟因應跟調整會是什麼因為今天開這個專案我想主要就是針對缺工的問題要有所改善嘛那如果部長其實不同意再開放移工的話那就要轉向是如何去改善這個職場環境然後勞動部怎麼樣去調整你的獎勵措施然後從本
transcript.whisperx[158].start 5274.638
transcript.whisperx[158].end 5275.359
transcript.whisperx[158].text 謝謝王育民委員接下來請邱振軍委員發言
transcript.whisperx[159].start 5308.503
transcript.whisperx[159].end 5310.051
transcript.whisperx[159].text 主席好,我們一樣也請何部長請何部長
transcript.whisperx[160].start 5314.563
transcript.whisperx[160].end 5339.873
transcript.whisperx[160].text 部長好,我想根據這個月的勞動統計的通報,截至7月,我們全國事業單位缺工數有6萬6千個,是這樣嗎?是,這是我部內的統計。我看了一次就是說,看了一下就是說,這第一次採用懸缺半年才列為缺工。對,這是我的利益。跟以往不太一樣。對對對。為什麼要這樣子?
transcript.whisperx[161].start 5341.987
transcript.whisperx[161].end 5362.603
transcript.whisperx[161].text 是比較好看還是怎麼樣?是為了精確掌握缺工的真正的樣態也就是說他一個月沒有工作兩個月沒工作不代表失業了?這不是失業這是針對廠商全缺六個月的調查是針對廠商的調查那一兩三個月也不算啊?
transcript.whisperx[162].start 5363.727
transcript.whisperx[162].end 5383.592
transcript.whisperx[162].text 對那不叫缺工所以現在是改變缺工的定義就對了以前不是這樣記嗎就是缺工就是在一般的過去像組總的調查他是調查說你當下缺不缺啦你今天缺不缺那可是事實上你可能馬上就可以補進來那是一個流動性的那如果兩三個月來為什麼要定在六個月
transcript.whisperx[163].start 5386.293
transcript.whisperx[163].end 5396.477
transcript.whisperx[163].text 所以以後我個人是這樣覺得就不論是一個月還是六個月其實對我們業者來講他還是缺工還是缺工吧實際的數字希望大家還是要誠實一點好不好
transcript.whisperx[164].start 5402.49
transcript.whisperx[164].end 5416.616
transcript.whisperx[164].text 委員我絕對誠實那我再問你明年最低的工資條幅已經訂了嘛就是最低工資月薪為28590元時薪漲至190元那不過但外界還認為說這沒有辦法解決缺工的問題反而會助長這個長缺工那部長知不知道這為什麼
transcript.whisperx[165].start 5429.703
transcript.whisperx[165].end 5446.809
transcript.whisperx[165].text 這個其實我在最低工資調整的時候我有一再強調這是保障邊際勞工而不是解決缺工委員今天我的缺工調查你看一下這個表就是說我有計算過就是說同樣都是要勞建都有勞建勞保嘛
transcript.whisperx[166].start 5447.549
transcript.whisperx[166].end 5457.166
transcript.whisperx[166].text 那領時薪者多兼幾份差每個月工作22天他每天工作8個小時他其實就可以領到33,440元
transcript.whisperx[167].start 5460.449
transcript.whisperx[167].end 5483.809
transcript.whisperx[167].text 還有8天可以運用對照全時職位的月薪只有28,590元換算回來每個小時只有119元元少於時薪部長我想請問一下制定這樣的時薪計算是不是鼓勵大家都要去做時薪工作而不要做月薪
transcript.whisperx[168].start 5484.249
transcript.whisperx[168].end 5499.922
transcript.whisperx[168].text 啊委員就是確實我們這次最低工資審議的時候也有委員在認為說時薪的那個條幅你這樣反而讓這個業者都找不到功能對那是因為有過去歷史的因素我們在過去很過去10年間啊你不要講說過去那你現在發現有問題是不是就要改
transcript.whisperx[169].start 5503.725
transcript.whisperx[169].end 5529.461
transcript.whisperx[169].text 有,這裡是最低工資條幅已經都把它拉齊了有拉齊了,但算起來還是差很多啊甚至還比較低,我們的月薪條幅是4.8如果是你,你要領哪一種?我當然是領10薪啊對不對,我時間調配比較好調配嘛對不對這就是現在年輕人的心態難怪我們現在年輕人失業他那個數字都一直起不來啊而且你沒有辦法去解決真正的問題嘛
transcript.whisperx[170].start 5532.233
transcript.whisperx[170].end 5548.862
transcript.whisperx[170].text 那我在請問部長你有沒有出去外面訂過這個去外面吃飯訂餐去別的餐廳吃飯當然是有吃有沒有看到餐廳裡面有時候明明就像現在座位很多但他就跟你說他沒辦法接就是為什麼你會這樣你知道嗎
transcript.whisperx[171].start 5551.708
transcript.whisperx[171].end 5575.865
transcript.whisperx[171].text 就因為人力不足嘛 對不對請時薪然後後來就變成什麼我們常常看到現在餐廳現在都是機器人在跑對不對送餐的那為什麼這是業者他自己會轉變就是說你今天要減少失業率你這些問題都沒解決的時候那業者自然會想出他一個生存的辦法對不對但是這個時間久了
transcript.whisperx[172].start 5577.826
transcript.whisperx[172].end 5598.591
transcript.whisperx[172].text 時間久了就會造成我們這個失業率居高不下因為到時候都是請機器人啊比較划得來嘛我請時薪的划不來對不對這真的所以我說這個缺工啊不是當然不等於是因為低薪的問題要對症下藥啦好不好對這個缺工的問題才有幫助
transcript.whisperx[173].start 5601.932
transcript.whisperx[173].end 5622.299
transcript.whisperx[173].text 就是我一直覺得缺工也不能只靠移工來解決,像自動化也是一個很重要的因為有很多啦,就是說我們可能說製造業是改善環境嘛,增加我們移工數,其他服務業缺工也一樣那健保及社會工作也很缺人啦,那針對這個部分部長有什麼想法嗎?
transcript.whisperx[174].start 5623.174
transcript.whisperx[174].end 5644.286
transcript.whisperx[174].text 市委員我們其實也是針對就是我在講的你剛才講到就是各行各業裡面像醫療保健我們現在就開了醫院互助讓橋外省中階技術人力也可以來從事就是這些我看到昨天商總有提個三項建議就是提引進移工擴大引進橋外生產
transcript.whisperx[175].start 5645.547
transcript.whisperx[175].end 5657.639
transcript.whisperx[175].text 產學合作以及變形工時等方式來改善缺工那我想他要求我們呼籲說我們年底前給答案那部長什麼時候會有結論
transcript.whisperx[176].start 5659.284
transcript.whisperx[176].end 5683.883
transcript.whisperx[176].text 委員其實他昨天這一些訴求我們部分都已經在處理而且事宜都已經在處理了像包括僑外生我們已經開放您也了解那麼我們甚至要進一步修僑外生的個人工作許可讓僑外生可以自由掌控服務業這個部分他還要培訓準備所以我希望說業者也希望我們這邊盡快給答案
transcript.whisperx[177].start 5684.503
transcript.whisperx[177].end 5703.343
transcript.whisperx[177].text 您是指服務業移工嗎?服務業缺工的問題也是有不同層次我今天的報告的重點就是其實連服務業裡面缺的都是中階技術人力比較缺勞資雙方希望全國來開這個缺工的會議那部長什麼時候會開?
transcript.whisperx[178].start 5704.731
transcript.whisperx[178].end 5727.151
transcript.whisperx[178].text 全國聚會會議不是我能開的那必須我如果有需要的話你相信政院報告了沒有這因為我們這個要看政院這邊的那你反映了沒有還是要先看日子要看黃曆看哪一天日子比較好這個對我想政院會有他全盤的考慮是
transcript.whisperx[179].start 5728.274
transcript.whisperx[179].end 5743.01
transcript.whisperx[179].text 不是,這個有什麼全盤考慮的,這個本來就是缺工就是事實啊,要考慮什麼?該開的會該盡快解決的不是就馬上就要處理嗎?委員我們昨天是先請取我們服務業部門的這樣的朋友的意見啦,是,對。
transcript.whisperx[180].start 5746.813
transcript.whisperx[180].end 5768.145
transcript.whisperx[180].text 臺灣未來9年會有378萬人要退休45個月出生率低於死亡率這種生不如死的狀況我發現15到20歲的青年失業率一直在創新高20歲到34歲的失業率也一直上升這個年齡層又是最有機會結婚生子的年齡
transcript.whisperx[181].start 5769.105
transcript.whisperx[181].end 5795.867
transcript.whisperx[181].text 現在年輕人有錢都不太願意生小孩了。沒有工作更不用說。所以針對這個部分,勞動部這邊有沒有什麼因應的措施?您是指青年失業嗎?青年失業我們推了非常多的行政措施。包括投資青年就業方案。包括鼓勵青年的中階人力禁用。我們行政措施、獎勵措施非常的多。
transcript.whisperx[182].start 5797.308
transcript.whisperx[182].end 5799.209
transcript.whisperx[182].text 謝謝邱政軍委員接下來請蘇清泉委員發言
transcript.whisperx[183].start 5843.975
transcript.whisperx[183].end 5865.965
transcript.whisperx[183].text 謝謝主席謝謝我請部長請何部長你們9月份在屏東離港有做一個徵才那廠商有提供了280個工作機會那部長還有署長到最後的媒合成功率是多少我寫署長回答好不好
transcript.whisperx[184].start 5872.84
transcript.whisperx[184].end 5899.758
transcript.whisperx[184].text 委員因為這個我可能再進一步再瞭解再提好因為我看有一些大田啦科隆啦橋本生醫啦等等這些齁是他們提出來兩百多個職缺但是我看那個情緒都很假啦嗯然後三萬上下齁嗯那你看我現在要看的就是像大疆生醫齁是他也提結果是到底
transcript.whisperx[185].start 5900.859
transcript.whisperx[185].end 5919.81
transcript.whisperx[185].text 有先講阿母啦是我們趕快來確認這一個媒合數字對提供給委員因為這個很重要啦這個不然的話你收職缺那麼多然後還有人找不到工作是自己的心態的問題本位的問題還是真的工作不適合他
transcript.whisperx[186].start 5921.506
transcript.whisperx[186].end 5946.864
transcript.whisperx[186].text 我覺得齁其實就像您看到的多半薪資都偏低這個就是大問題啦那我們國人就是希望有合理薪資啦那你現在合理薪資到底是多少對這就是雙方之間的這個的落差所以這個一直在這部分我覺得落差挺大的這個也是當今缺工的主要原因啦是
transcript.whisperx[187].start 5947.932
transcript.whisperx[187].end 5970.201
transcript.whisperx[187].text 我們原住民的朋友在山上每天都是由一個一個一個公投然後開著鄉行車就把他們的好朋友都帶到都會區有的是駕無幫的電無幫的有的是駕鐵的綁鐵的他們一天都可以拿到兩萬一天拿到兩千六
transcript.whisperx[188].start 5973.322
transcript.whisperx[188].end 5999.614
transcript.whisperx[188].text 生疏會是2200那如果比較成熟3000塊都有是是是我們要請電話班的請不了一天2800找不到人然後他們都跑去台積電在高鐵旁邊的台積電台積電那邊一天是4500但是他們很嚴格都是要蓋安全帶什麼什麼就看
transcript.whisperx[189].start 6001.195
transcript.whisperx[189].end 6021.21
transcript.whisperx[189].text 他不容許出什麼意外那他變成他在挑工啦他在挑工那我們這邊民間的如果要找模板工、鐵工就是要等他們有放假所以我是覺得欠人欠到土水的欠
transcript.whisperx[190].start 6024.773
transcript.whisperx[190].end 6034.939
transcript.whisperx[190].text 每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。每天都會選擇。
transcript.whisperx[191].start 6042.843
transcript.whisperx[191].end 6048.428
transcript.whisperx[191].text 委員您講的像這個營建業的部分我跟您報告去年開了一萬兩千人嘛到現在實際進來的只有七八千人實際進來喔那後來我們有去跟營建署檢討是為什麼
transcript.whisperx[192].start 6061.724
transcript.whisperx[192].end 6080.478
transcript.whisperx[192].text 那原來就是說因為當時在訂那一個招聘許可的時候有一個一年的期限那營建署也把那個一年的期限比同製造業這樣來訂所以那就會導致他的空缺就懸在那裡一直不用所以其實
transcript.whisperx[193].start 6081.579
transcript.whisperx[193].end 6097.991
transcript.whisperx[193].text 在營建院的移工還有七八千人可以補進來都還沒補這個就是您講的剛才就是營建工地的問題其實這部分也是一個大問題所以我們現在請營建署要趕快把那個等待期縮短趕快禁用讓他們進來這樣子所以勞動彈性化
transcript.whisperx[194].start 6102.475
transcript.whisperx[194].end 6120.37
transcript.whisperx[194].text 職業技能深化跟轉弦這個是很重要那你們有在輔導嗎?譬如說你們的執訊所有在蓋空調給他們給他們科技及證照這樣他們也能修就比較多有有有這有在做吧?
transcript.whisperx[195].start 6121.15
transcript.whisperx[195].end 6146.385
transcript.whisperx[195].text 有就是委員像冷凍空調確實很缺昨天服務業的這個工會也在講那麼可是就是說我們像中高齡跟婦女也有在關於他的部分工時我們都還有獎勵的還有植物再設計也都有獎勵其實中高齡跟婦女在這部分的那一個績效是不錯的就是我們的獎勵措施落實的績效可是比較不好的大概就是青年這一塊對是
transcript.whisperx[196].start 6148.226
transcript.whisperx[196].end 6167.872
transcript.whisperx[196].text 那第二個就是像護理人力他現在一年進入職場差不多4到5千人但是這個都是20到24歲啦專畢業跟大學畢業然後考上進入職場一年差不多4千到5千很高興啦但對不起30到35歲每年離職的有4千到5千
transcript.whisperx[197].start 6173.121
transcript.whisperx[197].end 6198.601
transcript.whisperx[197].text 所以剛才...剛才just make剛才哭哭啦那衛部發一個豪語說我們到2030年要補7萬人8萬人的護理我看那是胡說八道他沒有什麼配套然後啦配套又很低那人家搞不清現在的護理人員為什麼不進入主場
transcript.whisperx[198].start 6200.379
transcript.whisperx[198].end 6213.776
transcript.whisperx[198].text 不僅是廚藏事務的原因,不是說你給他帶,這副律師在病房都很高了捏,那帶ICU的要不要更高啦,像我們ICU的副律師一年可以拿到90萬到100萬以上啦
transcript.whisperx[199].start 6217.054
transcript.whisperx[199].end 6227.143
transcript.whisperx[199].text 不過那是醫院委員的經營理念是善待員工所以這個護理的職很薄你沒在插?不是沒在插我那個醫院副主已經開放讓喬外森可以做就是喬外森可以來當副主他們也可以接受訓練當照護員
transcript.whisperx[200].start 6243.794
transcript.whisperx[200].end 6258.6
transcript.whisperx[200].text 趙副委員還不行也可以也可以我們一般要請到那個副總我們都希望他有趙副委員有有有可以有受訓還有科企現在考試是比試還有技能考都考現在也蠻嚴格的
transcript.whisperx[201].start 6260.08
transcript.whisperx[201].end 6287.513
transcript.whisperx[201].text 所以我其實建議可以跟計職或護理學校這個應該就是建議業者就是我們醫院的經營者啦是不是可以跟護理學校這些計職學校大家把這一個就綁起來包括我們本土的或是橋外生現在中大型醫院都到學校去找人從比如說專科就從專二專三就開始綁了是是是是一個補他一萬塊的生活津貼對對對然後一年12萬然後
transcript.whisperx[202].start 6289.994
transcript.whisperx[202].end 6315.713
transcript.whisperx[202].text 綁三年將來要服務三年服務三年是心碎交給喔還是只有拔那個拔那個三年這樣所以有點像公會生那種感覺半公會生所以醫療院所可以做的他們都很努力在做是我們也希望跟教育部來擴大這方面的那你勞動部這邊好像也沒什麼誘因你應該砸錢啊你錢那麼多你基金那麼多
transcript.whisperx[203].start 6318.035
transcript.whisperx[203].end 6333.788
transcript.whisperx[203].text 醫療院所補一份你會給他補一份嗎?要不要?你是指那一個比如說像這個橋外生,本地生的,或者是橋外生的有點像棄作,種田的棄作,這個叫棄業嘛我們醫療院所借一萬,你也一萬給他
transcript.whisperx[204].start 6337.935
transcript.whisperx[204].end 6365.102
transcript.whisperx[204].text 其實我們有一個雙軌計劃本來就是這個可以考慮啦這個真的可以考慮我們來研究好不好你綁不住啊然後30到35歲的你要離職的你也要用心啊這為什麼會離職我是不是要結婚之後要顧孩子啦衝生啦一直不來我跟你講現在的醫療是日清夜異我們在醫院上班的護理人員如果請個一年假請個半年請個一年甚至是要兩年兩年之後他要回來他會怕捏
transcript.whisperx[205].start 6366.946
transcript.whisperx[205].end 6376.335
transcript.whisperx[205].text 會怕捏 因為他已經改了又改 改了幾個版本了 健保署什麼都沒辦法做 每天就在那裏不當不曬 現在來電腦看不到了 跟不上了 他要恐慌所以他要回來病房照顧病人在ICU 那更不用講了 他嚇壞了 所以這個一定要搞到這樣嗎 我就講健保署
transcript.whisperx[206].start 6391.585
transcript.whisperx[206].end 6410.33
transcript.whisperx[206].text 幾乎每一季都在有新的新的怪招又來了所以醫療院所疲於奔命那這些護理人員最好是罐頭給他點一點罐頭的資訊讓他點是最好不然說你要叫他寫要叫他照顧病人要就是家屬的柔韌沒人打得掉
transcript.whisperx[207].start 6411.334
transcript.whisperx[207].end 6431.143
transcript.whisperx[207].text 所以這個你要跟衛生部這邊好好來考量二度就業的婦女我們最care二度就業為什麼進不來為什麼不敢來是不是有歧視或者是你的職場對他不友善這個都很重要的事情所以你來看深入的
transcript.whisperx[208].start 6431.863
transcript.whisperx[208].end 6431.883
transcript.whisperx[208].text 謝謝委員 謝謝
transcript.whisperx[209].start 6460.025
transcript.whisperx[209].end 6480.822
transcript.whisperx[209].text 謝謝蘇清泉委員那等一下在政策前委員發言完畢之後休息10分鐘好我們請王振旭委員發言謝謝主席我們還是有請何部長
transcript.whisperx[210].start 6484.771
transcript.whisperx[210].end 6507.883
transcript.whisperx[210].text 部長好部長好謝謝早上您提供的這些簡報的資料讓我們知道目前台灣缺工的狀況我們到底是缺勞工或者是缺低薪的勞工這個可能裡面有很多的內涵還可以持續的討論那早上很多委員也提供很多意見給部長這邊參考我就針對於即將到來的颱風
transcript.whisperx[211].start 6512.246
transcript.whisperx[211].end 6536.882
transcript.whisperx[211].text 大家其實都蠻關心的到底颱風架要怎麼放對勞工朋友的權益勞動權有沒有受到什麼影響這部分也先來跟部長跟市長來請教一下其實我們期待的就是針對於這個勞工朋友當他碰到颱風的時候上一次三拓颱風的經驗會讓大家很擔心
transcript.whisperx[212].start 6539.784
transcript.whisperx[212].end 6558.258
transcript.whisperx[212].text 到底怎麼樣精進我們這個天氣颱風這樣的天災對臺灣的影響的同時那針對於在出勤的時候勞工要不要出勤應該是以安全為索要這一部分部長其實也講得非常的清楚這是在9月30日的新聞稿
transcript.whisperx[213].start 6558.938
transcript.whisperx[213].end 6584.759
transcript.whisperx[213].text 提供非常明確的一些期許或者是類似指引讓企業主或者是所有的勞動朋友有好的瞭解針對這部分應該怎麼樣來處理不過我們也知道其實公務人員碰到颱風當天如果沒有出錢的話依照規定可以不出錢的時候信奉是會照給這是目前我們知道這個公務人員有這樣的保障
transcript.whisperx[214].start 6586.7
transcript.whisperx[214].end 6611.099
transcript.whisperx[214].text 勞動朋友如果沒有出勤的時候能不能夠比照類似的方法或者是研議盡量往這邊來有比較靠攏的機會這部分不知道部長目前有沒有一些想法或者是如何能夠讓勞動朋友在碰到颱風尤其是有安全考量之下有沒有這樣方面的勞動權的一些維護
transcript.whisperx[215].start 6612.139
transcript.whisperx[215].end 6633.529
transcript.whisperx[215].text 是,二委員其實您看喔,就是陳文林所說我這只要颱風一來馬上就發新聞稿然後提醒僱主不宜扣當日薪資對,就是其實就是說我現在是沒這個要立法強制規定比較難可是我現在就是也是都暗示僱主這是指引啦
transcript.whisperx[216].start 6633.889
transcript.whisperx[216].end 6633.909
transcript.whisperx[216].text 是。
transcript.whisperx[217].start 6656.459
transcript.whisperx[217].end 6677.21
transcript.whisperx[217].text ⋯⋯⋯
transcript.whisperx[218].start 6677.61
transcript.whisperx[218].end 6698.017
transcript.whisperx[218].text 他覺得你應該來的而沒來這樣子啦是可是這也是我們整體縣市長們在決定放假的時候的決策是好那另外一個問題就是說當然颱風當天是可以比照類似的辦理沒問題可是如果是輪大夜班或者是三班制的話就有一些困擾
transcript.whisperx[219].start 6700.499
transcript.whisperx[219].end 6717.134
transcript.whisperx[219].text 這大業怎麼辦?那在隔一天就是放假當天的隔一天早上如何能夠因應這部分齁其實也都有相當多的困難這個都可以很容易可以理解可以了解在規範上是有它困難的地方
transcript.whisperx[220].start 6717.814
transcript.whisperx[220].end 6732.321
transcript.whisperx[220].text 那如果在這種比較極端或者是不是那麼可以掌握的情況之下那僱主如果要求出勤或者是要做一些因應的話那勞工可以依法來因應這樣的
transcript.whisperx[221].start 6735.113
transcript.whisperx[221].end 6750.483
transcript.whisperx[221].text 臺風假的前一天或後一天碰到相對比較困難的情形之下那這邊不曉得部長這邊有沒有哪一些可以提供的指引或是可以提供的一些準則給僱主或是給勞動朋友們做一個參考
transcript.whisperx[222].start 6751.568
transcript.whisperx[222].end 6767.63
transcript.whisperx[222].text 是我們其實也有建議就是說不建議啦這其實也是指引啦就是說你如果遇到這種輪班的你一定要去可是你又遇到那麼大的風雨對不對這個可以透過勞資協商
transcript.whisperx[223].start 6769.832
transcript.whisperx[223].end 6784.244
transcript.whisperx[223].text 公會或者是勞資會議那當然如果沒有勞資會議的你至少是勞僱雙方要講嘛對那你如果沒有講的話就又一定要求你要來這勞工也是可以跟勞動局投訴的
transcript.whisperx[224].start 6786.646
transcript.whisperx[224].end 6802.087
transcript.whisperx[224].text 所以如果說部裡面有出類似的職員的話那相對來講他們做勞資協商的時候就有一個我們來多宣導其實每次颱風一來我們都有宣導告訴他說颱風雨很大這你不可以隨便要求勞工一定要出勤
transcript.whisperx[225].start 6802.547
transcript.whisperx[225].end 6817.904
transcript.whisperx[225].text 因為我們下面看到一個數據這個是透過我們行政院人事行政總署提供的一個資料過去20幾年來我們看到這個各個縣市因為所在的
transcript.whisperx[226].start 6818.985
transcript.whisperx[226].end 6819.005
transcript.whisperx[226].text 移籃
transcript.whisperx[227].start 6837.901
transcript.whisperx[227].end 6863.749
transcript.whisperx[227].text 他們這些企業主或是勞工朋友們碰到比較多的颱風下他們的營運模式這邊不曉得部長或是部裡面有沒有針對這樣的這些影響多去了解看看因為這個會制定到未來政策的部分可能會隨著這些不同地方去掌握了解的話也許對於部裡面制定相關的準則會有一些幫助
transcript.whisperx[228].start 6864.609
transcript.whisperx[228].end 6888.758
transcript.whisperx[228].text 好,我們來研究看看,好嗎?是,好的,我們來研究看。好,那再過來的部分就是,即使我們經歷過一次非常嚴重的這些疫情,那以後我們也希望能夠改善這個缺工的狀況,所以就有一個擴大方案。那個擴大方案裡面,勞動部所需要掌握的職長就是去
transcript.whisperx[229].start 6889.338
transcript.whisperx[229].end 6917.705
transcript.whisperx[229].text 做這個專案的徵才還有如何能夠去把信任的內容可以做得比較好那這在那個時候是在2023年就是去年的4月27號頒布了這個就業方案那這個就業方案執行到目前為止我們看到的就是要事辦一年投入10億元促進兩萬人就業當初定立的這個目標是這個樣子那其中有兩大的計畫
transcript.whisperx[230].start 6919.305
transcript.whisperx[230].end 6947.416
transcript.whisperx[230].text 獎勵計劃一個就是缺工專案的就業一個是缺工專案的參訓獎勵計劃那我們看到的目前的成果部長可以參考一下在參訓的獎勵計劃的部分到目前為止其實執行的好像需要再加強那這個加強本身當然是繼續努力的同時那是不是當初在訂政策或者是執行內容是有需要麻煩部裡面再做檢討的
transcript.whisperx[231].start 6948.564
transcript.whisperx[231].end 6964.221
transcript.whisperx[231].text 是委員我剛剛其實之前王玉敏委員也是問這個問題我也報告過就是顧主的期待跟勞工的期待之間的落差很大就是我們的尤其這個都是針對旅宿觀光業
transcript.whisperx[232].start 6965.282
transcript.whisperx[232].end 6985.802
transcript.whisperx[232].text 是針對旅宿觀光業的缺工而去處理的那他們都希望要薪水要更低啦可是我們來這邊的勞工朋友他們對這樣的還都希望薪資要更合理一點啦所以這中間的落差很大那麼所以旅宿業他才會希望我們要開移工因為移工可以薪水更低
transcript.whisperx[233].start 6986.483
transcript.whisperx[233].end 7009.405
transcript.whisperx[233].text 可是這也不是我們覺得合理的方向啦對所以這個就是我為什麼議會改善缺工擴大就業方案我要再來跟交通部好好的討論因為如果這個方案實在是也沒有很好的成效我們要怎麼來改進讓誘因更增加這是我們要來跟交通部一起共同努力的
transcript.whisperx[234].start 7010.457
transcript.whisperx[234].end 7032.511
transcript.whisperx[234].text 麻煩部長可以再跟跨部會的這些研議讓政策落實可以有機會做得更好最後一部分就是今天的主題有關於我們如何針對於全國缺工尤其是這個全時的部分那其實昨天好像部長也出席了商總他們辦的這個相關的會議
transcript.whisperx[235].start 7036.233
transcript.whisperx[235].end 7056.504
transcript.whisperx[235].text 什麼時候有機會來舉辦這種比較屬於全國性的跨部會性的這些缺工會議已經有沒有定了期程或者是成績會到哪裡那會預計有多少的部會的參與範圍那這部分各位部長也可以有一個簡單的說明
transcript.whisperx[236].start 7058.449
transcript.whisperx[236].end 7084.76
transcript.whisperx[236].text 跟委員報告其實全國缺工會議並不是我這邊的想法跟規劃啦這當然是民間的期待啦這原來其實也是商總朋友們的期待不過因為昨天我們已經初步有聽取了商總的會員們包括這個各個服務業的各行各業的代表們的意見啦我想我們先來就這部分來好好的來探討跟處理
transcript.whisperx[237].start 7085.16
transcript.whisperx[237].end 7111.233
transcript.whisperx[237].text 那麼至於是不是要有全國缺工會議這是行政院層級的事情對那麼也是有代院方的想法啦對這我目前我這邊沒有任何主動規劃的想法對了解所以如果有參與的話就麻煩部長能夠針對我們這個勞動的權益也能夠針對您的職長來多加以在會議當中可以跟各部會來討論是是是好那就謝謝謝謝謝謝
transcript.whisperx[238].start 7113.975
transcript.whisperx[238].end 7119.039
transcript.whisperx[238].text 謝謝王振旭委員發言接下來請徐巧欣委員發言謝謝主席那我們有請部長請何部長
transcript.whisperx[239].start 7136.557
transcript.whisperx[239].end 7157.66
transcript.whisperx[239].text 部長好,那我今天要質詢的議題其實跟我自己本委員會的國防部有關那我也在國防部問過了但因為跟勞動部也有關所以我也要拿這個議題來跟你詢問那主要就是關於節日休假的這個問題其實我們可以看在國防部裡面我們看一下這個表格
transcript.whisperx[240].start 7158.66
transcript.whisperx[240].end 7183.314
transcript.whisperx[240].text 國防部有分成軍職人員跟文職人員還有聘僱人員好那我們可以看一下就是他們現在就是有在放五一勞動節跟九三軍人節的你可以看到就是說呢因為九三軍人節是針對這個我們軍職人員能夠放的假那所以說軍職的國防部人員他當然他放的是九三軍人節的假他不放五一勞動節的假
transcript.whisperx[241].start 7184.855
transcript.whisperx[241].end 7213.642
transcript.whisperx[241].text 那我們在文職人員的部分呢因為他不是屬於軍職他可能比方說他是內勤任務他可能是這個比如說秘書啊或者是說傳送公文啊等等他並不是軍人的身份可是因為我們的這個規定上面那比方說他這個假設他比如說我們問了有傳送專委科長針對監察院或立法院然後協助跑公文的這個是國防部的文職人員
transcript.whisperx[242].start 7214.662
transcript.whisperx[242].end 7233.275
transcript.whisperx[242].text 那他本身並不具備軍職身份他不是軍人但他也可以放9393軍人節的假因為配合機關好配合機關這個我們也沒有意見哦因為我們覺得大家都工作很辛苦可以放假可是到我們約聘僱人員的時候就非常尷尬了約聘僱人員那個部長應該是屬於
transcript.whisperx[243].start 7237.477
transcript.whisperx[243].end 7263.026
transcript.whisperx[243].text 勞基法規定對不對來我先看前一頁軍職人員跟文職人員他們都是屬於公務人員對吧對公務人員只是軍職他應該是有93軍人節的假可以放那文職人員他是因為配合機關所以才放的93軍人節的假因為他不是軍人對吧好但是聘僱人員他不一樣他是屬於勞基法所管理的我們看下一張
transcript.whisperx[244].start 7264.166
transcript.whisperx[244].end 7285.385
transcript.whisperx[244].text 所以你看我特別走到這邊這個是國防部的公務人員出行的注意事項他說公務人員也就是我剛講文職的這一塊他是配合本部軍職人員所以才在軍人節放假的所以他不是軍人但他可以在軍人節放假是因為配合我們的這個公務人員的部分
transcript.whisperx[245].start 7285.945
transcript.whisperx[245].end 7311.947
transcript.whisperx[245].text 但是我們在約聘僱人員的部分呢他只能在九三軍人節跟五一勞動節之間二選一所以我們回到上一章來看就是變成是說我們的約聘僱人員他們就比較辛苦因為呢他不應該是二選一因為呢他如果說我們是認為好比方說你看文職人員他是配合機關休假那約聘僱人員他也應該要能夠配合機關休假
transcript.whisperx[246].start 7312.608
transcript.whisperx[246].end 7327.285
transcript.whisperx[246].text 但他同時他是勞工他也沒有像我們的公務人員有這麼多的相關保障所以照理來說我們希望爭取的就是說約聘僱人員他們可以同時按照我們的勞基法能夠放五一勞動節的勞基法的假期
transcript.whisperx[247].start 7327.825
transcript.whisperx[247].end 7349.758
transcript.whisperx[247].text 那同時那是不是能夠配合九三軍人節的機關也能夠放假那又或者是他可以選一天我們看一下下一張我們的國軍聘僱人員的請休假規定喔他五一勞動節裡面寫說跟九三軍人節呢他只能擇一休假所以呢他會被變成是有強迫換假的這個情況出現喔
transcript.whisperx[248].start 7352.58
transcript.whisperx[248].end 7363.966
transcript.whisperx[248].text 那所以說這個你今天五一勞動節跟九三軍人節二則已休我想要問一下勞動部的部長這個有沒有違反相關的勞基法的規定
transcript.whisperx[249].start 7365.787
transcript.whisperx[249].end 7390.225
transcript.whisperx[249].text 沒有耶委員因為:請說明對他這個就是說他五一勞動節那他五一勞動節如果要上班的話那他需要提供額外的薪資嗎這些月聘僱人員他是勞基他不是公務人員唷他除非他同意換那他如果那天沒有放他那天如果有那個的話要不要提供薪資
transcript.whisperx[250].start 7391.7
transcript.whisperx[250].end 7420.148
transcript.whisperx[250].text 要提供薪資那可是他那天沒有放假而去上班你懂嗎所以部長您懂我意思嗎就是說他五一勞動節跟九三軍人節是折一休假但他如果其實是在五一勞動節休假的話那是他對他如果沒有在五一勞動節休假的話應該他要有額外的薪資對不對可是在我們國防部的聘僱人員請假規定裡面是沒有給予額外薪資的因為他告訴你說你可以折一休假
transcript.whisperx[251].start 7421.71
transcript.whisperx[251].end 7449.129
transcript.whisperx[251].text 所以這個情況我想要問一下勞動部要怎麼解決就是說我們能不能夠去跟國防部我已經跟國防部問過這個問題但他們感覺對於勞動條件因為這是屬於約聘僱不是屬於就是公職人員所以他們不是這麼清楚所以我今天才來帶這個問題來請教你說是不是能夠跟國防部這裡來協調就不要讓我們的約聘僱人員他五一沒有放到的時候他沒有得到他應該要有的勞動條件
transcript.whisperx[252].start 7450.47
transcript.whisperx[252].end 7478.425
transcript.whisperx[252].text 是當然這個委員我來跟國防部來討論看看好因為我上次跟國防部談的時候他聽不太懂我的問題因為他們只知道就是說公務人員的部分怎麼處理在約聘僱的這個部分那最後我再強調一下我的訴求就是說呢我們希望就是當然最好啦九三軍人節配合機關休假五一勞動節因為他是約聘僱人員能夠休假那假設說他只能選一的話那五一他是因為他是他是
transcript.whisperx[253].start 7478.905
transcript.whisperx[253].end 7480.967
transcript.whisperx[253].text 我們主動跟國防部關心一下
transcript.whisperx[254].start 7504.195
transcript.whisperx[254].end 7512.119
transcript.whisperx[254].text 好謝謝徐巧欣委員接下來請鄭正前委員鄭正前委員鄭正前委員不在好那我們現在先休息10分鐘
transcript.whisperx[255].start 7557.056
transcript.whisperx[255].end 7558.422
transcript.whisperx[255].text 響鐘
transcript.whisperx[256].start 8154.718
transcript.whisperx[256].end 8156.801
transcript.whisperx[256].text 主席謝謝麻煩請何部長請何部長
transcript.whisperx[257].start 8174.8
transcript.whisperx[257].end 8190.281
transcript.whisperx[257].text 好部長好部長今天全時職位缺工的狀況我想臺灣這兩年缺工狀況確實大家各行各業都有感受到但是我看到勞動部今天的一個報告缺工數說只有多少6萬6千
transcript.whisperx[258].start 8192.183
transcript.whisperx[258].end 8212.976
transcript.whisperx[258].text 這是我們自己部內的調查對這是會不會太美化數字了委員感覺好像各行各業大家都哀鴻遍野找不到人但是你在講6萬6千那你又講說我們全全台灣勞動人口有多少目前一千多萬一千不止吧沒有那麼多吧勞動人口
transcript.whisperx[259].start 8215.39
transcript.whisperx[259].end 8233.399
transcript.whisperx[259].text 就你的缺工原因分析 對不對你的缺工原因分析到2070年我國工作年齡人口只剩696萬那平均少了18萬人換言之你這樣子的意思就是說現在勞動人口差不多700多萬嗎
transcript.whisperx[260].start 8234.66
transcript.whisperx[260].end 8244.713
transcript.whisperx[260].text 是不是是啊那我現在講是說那我們既然朝委會排這個案件這個專案討論那我們的缺工到底實質的狀況是多少
transcript.whisperx[261].start 8245.953
transcript.whisperx[261].end 8263.864
transcript.whisperx[261].text 委員我跟您報告這個主要是我們詢問的定義是你過去6個月這個職位一直空著真的找不到人主要是定義不一樣啦所以他得出來的數字會不一樣是啦那所以我們現在掌握勞動部掌握我們台灣現在缺工的人數
transcript.whisperx[262].start 8265.901
transcript.whisperx[262].end 8293.199
transcript.whisperx[262].text 對,委員就是我自己的調查到7月底這個是正確的6個月找不到是6.6萬那我們大家需要的人數到底有多少你一定是先有缺口我們才先了解原因我們才能想方設法解決啊委員會內的調查就是6.6萬的缺口所以會不會太美化數字啊這不是美化數字6.6萬也不少的也是蠻大的也是蠻龐大的但是跟我們部長
transcript.whisperx[263].start 8295.1
transcript.whisperx[263].end 8318.343
transcript.whisperx[263].text 本席如果說連一開始我們都沒有辦法推進的話我很難跟你實質討論欸因為實際上召委會排這個案件我覺得很好啊我們都關心啊我們現在只是想要找出什麼樣的問題來解決啊因為你今天給我們的部分除了媒合之前都在做以外我覺得看到比較創新的地方是可能外籍的引進移工的部分會更加的鬆綁
transcript.whisperx[264].start 8319.304
transcript.whisperx[264].end 8321.847
transcript.whisperx[264].text 是是是所以你預計現在除了服務業以外啦主管機關送案可能都會放寬行業別來使用移工
transcript.whisperx[265].start 8338.288
transcript.whisperx[265].end 8366.296
transcript.whisperx[265].text 甚至包括我之前在交通委員會有詢問過連公車駕駛大貨車駕駛可能都會開放是不是我們現在是先開放橋外生中階人力是的部分我們預計可能會開放多少橋外生橋外生其實沒有人數的限制只要他願意來這個我們都會歡迎的所以預計他是人才的概念是所以預計這樣子開放之後會補足多少的缺工的人力
transcript.whisperx[266].start 8366.687
transcript.whisperx[266].end 8391.267
transcript.whisperx[266].text 你是指公車嗎是公車或者是說你們現在來做一個分配因為現在喬外生之前我們也講過喬外生來到臺灣能夠鬆綁那有多少因為現在公車業者的人力的不足駕駛人力的不足其實他以某種程度上他還不是說真的缺工的問題因為臺灣有大貨車跟大客車駕照的人數比現在實際服務的人數多
transcript.whisperx[267].start 8394.85
transcript.whisperx[267].end 8418.371
transcript.whisperx[267].text 但很多人他有那個駕照但他不願意投入這個行業是因為因為勞動條件是啊所以你今天如果說即便是開放僑外生他可能開放了多少人他也不一定能夠投入這樣的行業嗎是沒錯接下來你們還要做其他的業別要做所謂的這個移工的一個開放那我們想要問到底這是不是真的能夠解決我們現在國內缺工的問題啊
transcript.whisperx[268].start 8419.144
transcript.whisperx[268].end 8446.791
transcript.whisperx[268].text 委員這個就是我先跟您報告關於您剛才詢問的橋外生的部分會有多少空間現在留在臺灣的讀書的橋外生有一萬三千人一年那我們大概普遍留下來去年是七千那麼我們現在把配額全部打開希望一萬三千人都能留下來可是這個就是我們的業者要去創造條件把他們創造一個吸引他們留下來的條件這個就是最主要的問題了
transcript.whisperx[269].start 8447.931
transcript.whisperx[269].end 8469.408
transcript.whisperx[269].text 對那麼所以我開了也要看我們雇主這邊的配合啦對這樣才有辦法有效的去吸引這一個海橋外生進來這樣是您提到重點我在比較線說來講因為不管是客運駕駛或者是說相關的大貨車的一個駕駛都應該要有相關的這個
transcript.whisperx[270].start 8471.123
transcript.whisperx[270].end 8487.204
transcript.whisperx[270].text 的一個提升嗎?包括說的當然會覺得是說客運司機應該要取得駕照員能力業者提供薪資應該高於五萬塊以上然後甚至倉儲隨車助理要求要取得起重機駕照等執照等等嘛對不對那這一些的要求勒?
transcript.whisperx[271].start 8488.438
transcript.whisperx[271].end 8488.458
transcript.whisperx[271].text 好﹗
transcript.whisperx[272].start 8516.423
transcript.whisperx[272].end 8545.033
transcript.whisperx[272].text 本席這邊還是會再一次來要求啦就說相關勞動部我還是一樣回過頭來就說其實你今天講說缺工數計6.6萬是這說實在話這真的是跟我們現在行業大家的普遍的感覺這是有落差如果說你講是說我們台灣現在700萬的勞動人口結果只有缺工6.6萬那平均不到1%欸你等於是我們現在缺工不到1%但是你真的問各行各業真的是這樣子嗎
transcript.whisperx[273].start 8546.093
transcript.whisperx[273].end 8565.108
transcript.whisperx[273].text 我說實在話大家每一個委員都已經聽得到每一個行業真的都是找不到工作那所以如果說沒有真的面對問題來解決問題的話我覺得用這種美化的數字確實感覺勞動部還是跟我們一般的民眾生活是不同的一個平清時空
transcript.whisperx[274].start 8566.113
transcript.whisperx[274].end 8567.174
transcript.whisperx[274].text 謝謝主席有請我們部長請何部長
transcript.whisperx[275].start 8597.222
transcript.whisperx[275].end 8613.382
transcript.whisperx[275].text 委員好部長早我想部長一定知道今年是龍年嘛那如果依照我們這個國人的習俗來講龍年大家都希望生個龍子但是部長知不知道我們今年的持續的新生兒還是一個下降的狀態
transcript.whisperx[276].start 8614.943
transcript.whisperx[276].end 8639.251
transcript.whisperx[276].text 對就是顯然這個就表示說未來在勞動力的部分恐怕無法期待有太充足的所謂人力資源那麼我們湊過移工來協助這個部分大概已經成為了一個全球的趨勢了以我們現在國內15到29的勞工人口近10年大概就減少了16萬那麼言下之意這個缺工
transcript.whisperx[277].start 8639.831
transcript.whisperx[277].end 8645.717
transcript.whisperx[277].text 恐怕它就是一個臺灣接下來必須要面臨的問題那麼本席今天在這裡就想要請問你才剛剛昨天出席了全國服務業缺工的會議那麼請問面對部長怎麼來看這個趨勢以及勞動部是不是有先未雨綢繆那麼在昨天的會議當中到底得到一個什麼樣的結論跟想法呢
transcript.whisperx[278].start 8660.888
transcript.whisperx[278].end 8681.425
transcript.whisperx[278].text 是跟委員報告就是當然缺工是一個目前我們當今面臨的嚴峻的問題那麼服務業的朋友們他們反映的當然也反映了服務業的缺工的現況那主要其實我們大概歸納分析起來當然他的基層的那種體力工他是一塊
transcript.whisperx[279].start 8682.225
transcript.whisperx[279].end 8698.142
transcript.whisperx[279].text 可是其實他的中階技術人員的缺乏也是佔其中的大概三分之一有所以其實這也吻合我們今天的統計調查啦就是我們現在其實最缺的是中階技術人力
transcript.whisperx[280].start 8699.042
transcript.whisperx[280].end 8724.638
transcript.whisperx[280].text 而不是在那一種最基層的體力工那部分其實我們大概能開的大概已經都開放了所以如果這樣的話我們會強化引進中階技術人才尤其在我們本土的中階技術人力的培育包括產學訓的合作跟技職學生的這樣子的鼓勵還有包括我們引進外籍
transcript.whisperx[281].start 8725.538
transcript.whisperx[281].end 8753.859
transcript.whisperx[281].text 中階技術人才包括橋外生甚至未來也許考慮進一步銜接技術移民這樣子的制度來做其實講到技術移民當然技術有非常多包括連語文可能也是一個技術那本席其實今天要跟部長來研究的這個題目就是說在外國的這個中階技術人才當中如何留下這些我們已經跟他有做配合比如說像本席來講我們這種
transcript.whisperx[282].start 8755.52
transcript.whisperx[282].end 8764.628
transcript.whisperx[282].text 處於上有這個高堂那下有一些必須要照顧的這種中間三名字然後我們又是雙薪家庭的時候那麼進入家庭中協助我們做不論是看護或是照護甚至於幫傭都是非常重要的那麼
transcript.whisperx[283].start 8774.497
transcript.whisperx[283].end 8793.235
transcript.whisperx[283].text 能夠跟在地的溝通或了解台灣的文化尤其重要那麼我們來看一下以現在日本或者是印度或日本或者是泰國或是其他鄰近的這些國家以這個我手上的資料來講日本他6月通過了育成就業的法案嘛
transcript.whisperx[284].start 8793.615
transcript.whisperx[284].end 8804.903
transcript.whisperx[284].text 就是一定的移工進入到他們的國家之後一兩年他可能就甚至於他是可以永久取得簽證的延伸那韓國為了解決他們農業的問題2024年也增加開放給留學生的家屬6個月的短期簽證那加上韓國的工資日本的工資都比台灣高那麼像日韓
transcript.whisperx[285].start 8817.833
transcript.whisperx[285].end 8834.864
transcript.whisperx[285].text 在跟我們搶工的時候我們如何來給予更多讓這些已經熟識台灣的環境然後可以在家中的輔助者我知道在總質詢的時候卓院長也說了有關於家庭幫庸這個部分他要放寬但是本席今天要談的問題不是放寬的問題而是
transcript.whisperx[286].start 8838.286
transcript.whisperx[286].end 8838.827
transcript.whisperx[286].text 但是家庭幫庸沒有
transcript.whisperx[287].start 8858.365
transcript.whisperx[287].end 8862.647
transcript.whisperx[287].text 了解但是本就覺得很奇怪啊為什麼家庭幫傭會被排除在家庭看護或機構看護之外他們所處理的問題其實不會比較簡單那同樣的他要進入家庭的時候尤其是他進入一個家庭裡面做幫傭的時候他了解這個家庭的需求
transcript.whisperx[288].start 8879.076
transcript.whisperx[288].end 8903.564
transcript.whisperx[288].text 然後語文又可以適用那麼有沒有可能他可以跟機構看護或家庭看護一樣因為我知道啦2023年只有1891人2024也只有2171人人數不多可是他對於我們這種三明治家庭或者是職業婦女或雙薪家庭其實是非常重要的一個支柱那麼這個部分有沒有可能做一些檢討或改進又或者放寬
transcript.whisperx[289].start 8905.905
transcript.whisperx[289].end 8930.985
transcript.whisperx[289].text 委員當時我們在移工流財久用方案其實曾經跟衛福部討論過關於家庭幫傭也讓他留用的問題不過那時候衛福部是反對主要是主管機關是衛福部那麼他是為了所謂育兒成長階段問題的考慮當然這跟他反對但是問題是他既然可以來這個家庭他可以來這個家庭但是時間到了反而不能
transcript.whisperx[290].start 8933.507
transcript.whisperx[290].end 8949.696
transcript.whisperx[290].text 留用那這個部分沒關係如果是主管機關衛福部我會追因為我想部長你也了解嗎一個家庭當中今天一個家庭幫傭你說他幫了一段時間之後因為孩子長大就沒有需要了嗎
transcript.whisperx[291].start 8950.776
transcript.whisperx[291].end 8951.036
transcript.whisperx[291].text 部長同意
transcript.whisperx[292].start 8978.803
transcript.whisperx[292].end 8983.508
transcript.whisperx[292].text 同意同意我們來跟衛福部一起會商好嗎好謝謝謝謝部長謝謝好謝謝林楚英委員接下來請陳庭菲委員發言謝謝主席我們請部長請何部長
transcript.whisperx[293].start 9004.854
transcript.whisperx[293].end 9026.92
transcript.whisperx[293].text 部長好我想我們現在遇到最大的問題就是說一方面有人沒有投入然後一方面是有老闆請不到工那這當中到底為什麼會有這樣的一個差別這個所謂的一個學用落差的問題還是因為
transcript.whisperx[294].start 9029.65
transcript.whisperx[294].end 9029.73
transcript.whisperx[294].text 是﹝有﹞
transcript.whisperx[295].start 9039.662
transcript.whisperx[295].end 9064.194
transcript.whisperx[295].text 那到底是什麼原因?這是您講的都是原因學用落差就是一個很嚴重的問題學用落差然後還有勞動力我們年輕一輩的不願意進入然後如果有技術面的問題我們現在都缺技術面是這樣嗎好那重點是我們即將又有378萬的人要退休了
transcript.whisperx[296].start 9065.017
transcript.whisperx[296].end 9084.992
transcript.whisperx[296].text 那這些如果退了之後其實很多技術人員說真的他們現在都被重聘回來為什麼要重聘回來沒有技術員可以去指導啊然後所有的公司或是工廠的一個延續性延續不下去嘛
transcript.whisperx[297].start 9085.836
transcript.whisperx[297].end 9112.327
transcript.whisperx[297].text 那重點是好我們現在目前一些剛退休的我們還可以拼回來可是如果在10年後呢在10年後呢所以這個問題現在的缺工從工業面工業面缺工3600人這都是我們勞動部的資料喔工業就缺了3600人好你說我們的勞動力
transcript.whisperx[298].start 9114.38
transcript.whisperx[298].end 9121.305
transcript.whisperx[298].text 比較辛苦的勞動力不願意進入到我們的工業那好我們看到服務業也缺了35600人連服務業喔也缺了35600人
transcript.whisperx[299].start 9128.243
transcript.whisperx[299].end 9149.296
transcript.whisperx[299].text 所以這個問題已經到了你沒有去把它變成是一個上位各部會去討論的說真的很難解決已經很難解決了我們所看到的說現在目前失業率可能依照比例當中雖然我們現在總計是3.43%
transcript.whisperx[300].start 9153.138
transcript.whisperx[300].end 9175.943
transcript.whisperx[300].text 可是我們看到一個區塊很大區塊就是15到24歲就是我們剛畢業的這個區塊那奇怪了剛畢業的這個區塊我們再看往前光服務業不要說工業啦工業你說因為有一些勞動然後有一些年輕人可能技術面沒有辦法可是光服務業
transcript.whisperx[301].start 9177.483
transcript.whisperx[301].end 9177.523
transcript.whisperx[301].text 好,部長。
transcript.whisperx[302].start 9187.797
transcript.whisperx[302].end 9212.006
transcript.whisperx[302].text 這怎麼辦是這就是委員在15到24歲11趴的這樣的失業率這代表一個學用落差真的很嚴重就是另外一個是新型態的平台經濟的勞動型態也吸引了很多年輕人所以讓他們也不願意去投入這種傳統的勞動領域甚至包括服務業都是
transcript.whisperx[303].start 9212.526
transcript.whisperx[303].end 9239.044
transcript.whisperx[303].text 所以這那包服可是呢我們服務業的部門呢他又普遍低薪這也是一個大問題對那部長這怎麼辦這個我們都知道整個新型態服務的一些改變讓年輕人寧可進入到新型態的一個服務勞動然後不願意進入到這比較實質面實體面的一些服務勞動
transcript.whisperx[304].start 9241.005
transcript.whisperx[304].end 9259.92
transcript.whisperx[304].text 我們就認為在這個區塊那怎麼辦因為平台總是有一些空間而已嘛並不是全部都可以進入到這裡當它飽和的時候還是要回歸到一個現實面那這怎麼辦我們現在就是要強化青年
transcript.whisperx[305].start 9262.121
transcript.whisperx[305].end 9281.117
transcript.whisperx[305].text 這個包括他的執訓還有包括他的中階技術人力的培育因為長期以來說解決學用落差就是我們現在要也是要跟教育部經濟部一起來合作來處理的就是這個學訓用的整合要真的要趕快再強化對那我們部長這個問題大概從五六年前我們發現從一直講一直講講到現在
transcript.whisperx[306].start 9288.603
transcript.whisperx[306].end 9308.851
transcript.whisperx[306].text 學用落差當時候最夯的就是博士去賣雞排那個當時候哇大家一片的震驚但是現在稀鬆平常現在是稀鬆平常所以我們反而一直在講不但沒有解決問題反而問題更大
transcript.whisperx[307].start 9311.345
transcript.whisperx[307].end 9328.121
transcript.whisperx[307].text 那表示到底是我們的勞動部教育部我們相關的單單位沒有整合起來或是並沒有真正針對問題去做解決還是甚至我們這樣的一個平台我們不是固定都有開相關會議嗎有
transcript.whisperx[308].start 9330.003
transcript.whisperx[308].end 9349.862
transcript.whisperx[308].text 我們有三部會的平台會議可是平安心講這真的要檢討就是這相關的學訓用整合計畫目前落實都不好對啊那為什麼落實不好部長你都會感覺落實不好了那為什麼會落實不好
transcript.whisperx[309].start 9351.764
transcript.whisperx[309].end 9371.235
transcript.whisperx[309].text 這個問題明明就就部長我相信在五六年前那個新聞大家非常震驚說哇你看博士去賣雞排現在大家是覺得正常哇這是變成大家心態改變了不是政府改變了是大家內心深處的心態改變了這是有問題所以你看我們這個所謂跨部會的平台會議我們已經幾年了
transcript.whisperx[310].start 9383.382
transcript.whisperx[310].end 9409.3
transcript.whisperx[310].text 幾年了?對啊,四五年了這個平台就是在當時候這個新聞出來大家覺得太嚴重了不是浪費我們整個教育資源而已是一個博士生欸一個博士所以我們認為說這四五年來不但沒有改變更加嚴重
transcript.whisperx[311].start 9411.547
transcript.whisperx[311].end 9429.277
transcript.whisperx[311].text 部長怎麼辦在你們依照你們在第一線的這個勞動力的一個評估跟看法對委員跟委員報告其實就是產業的需求似乎在我們學訓用整合的這一個銜接上一直都有落差
transcript.whisperx[312].start 9430.097
transcript.whisperx[312].end 9456.764
transcript.whisperx[312].text 就是你找了學生來可是呢企業在哪裡就是企業也未必願意來先把這些學生先可是部長你如果問教育部教育部就跟你講說有啊我們都有在做盤整啊然後我們也都有符合我們資訊我們技職學校都有在開課啊
transcript.whisperx[313].start 9458.364
transcript.whisperx[313].end 9478.515
transcript.whisperx[313].text 問題就來了就是技職學校所開的課並不是現在產業所需要的那現在產業需要什麼你們是不是要彙整你們勞動部跟經濟部是這是我們現在要去彙整的重點你們要去彙整啊你們勞動部跟經濟部你們需求是什麼你們的要求是什麼
transcript.whisperx[314].start 9479.815
transcript.whisperx[314].end 9505.273
transcript.whisperx[314].text 這樣才能真正在教育部的體系當中在執系或是在技職的一個系所裡面有他發揮的空間嘛對不對那這個到底什麼時候部長你可不可以給我們時間我每次如果沒有壓時間好像今天講完之後就不見了是不是這個檢討是不是可以一個月給我們知道說到底經濟部跟勞動部現在盤整出來
transcript.whisperx[315].start 9506.374
transcript.whisperx[315].end 9506.514
transcript.whisperx[315].text 接下來請吳宗憲委員發言
transcript.whisperx[316].start 9539.35
transcript.whisperx[316].end 9541.975
transcript.whisperx[316].text 謝謝主席那我們請部長請何部長部長早安
transcript.whisperx[317].start 9550.322
transcript.whisperx[317].end 9571.987
transcript.whisperx[317].text 今天剛好說有一個颱風馬上要過來嘛那今天早上已經那抗疫颱風已經說已經轉成強度颱風嘛那我想說因為也有氣象專家預估說接下來可能這兩天會可能會放颱風架會有這個狀況所以我想說因為這是一個大家很關心的議題啦所以我想跟部長就教一下這個部分
transcript.whisperx[318].start 9573.587
transcript.whisperx[318].end 9590.525
transcript.whisperx[318].text 當然是說法律並沒有颱風架這個名詞嘛對不對這應該是這樣沒有錯啦所以這颱風架到底算不算架期這部長算不算架期啊不算架啊所以大家說的那個颱風架其實是一個天然災害發生就是那個
transcript.whisperx[319].start 9591.994
transcript.whisperx[319].end 9595.676
transcript.whisperx[319].text 那我想請教一下地方首長他宣布停班停課地方首長的這個宣布的這個效力有約束民間企業的效力嗎
transcript.whisperx[320].start 9614.628
transcript.whisperx[320].end 9639.93
transcript.whisperx[320].text 沒有欸他是約束機關跟學校對對所以呢就是簡單來說其實很多企業他跟著政府放這個假其實是體恤員工怕他上班危險嘛也就是其實這個要點我要強調這個要點因為他沒有到達法律的位階他是要點所以說對於企業也沒有什麼拘束力嘛那還有你剛剛所提到的其實這個所謂颱風假他不是假
transcript.whisperx[321].start 9641.271
transcript.whisperx[321].end 9655.076
transcript.whisperx[321].text 他根本就不是一個休假概念所以沒有法制化的現狀會發生一個狀況就是說我這邊要大概整理一下第一個就是假設今天公務員在放颱風架我以公務員來說好了公務員在放颱風架的話
transcript.whisperx[322].start 9657.126
transcript.whisperx[322].end 9682.325
transcript.whisperx[322].text 民間企業的人可能會遇到第一個老闆要正常上班像記者這邊很多記者就是這樣老闆會叫他正常上班那第二個呢老闆也可能跟他說那你就不要來上班了可是他就沒有錢當天就沒有錢那第三個就是如果是上班到中午下午放颱風架那也有可能像剛剛那兩個狀況一個是老闆叫你回去沒有錢另外一個是繼續叫你上班上到下班為止
transcript.whisperx[323].start 9683.266
transcript.whisperx[323].end 9707.756
transcript.whisperx[323].text 那因為我們剛剛提到的那個是要點並沒有到法律位階所以勞動部這幾年我看到的對外的說法都是說希望僱主多多照顧跟體系員工宜多給錢宜不扣薪水或提供交通這個宜的意思我想說法律上面就是得嘛那得的意思就是可以要也可以不要所以到最後變成是
transcript.whisperx[324].start 9708.736
transcript.whisperx[324].end 9735.459
transcript.whisperx[324].text 員工在賭運氣看會不會遇到好的老闆那像我知道像記者的他們的體系就是颱風架他還是要上班只是老闆可能會給他補修如果是公務員的話是你沒有上班颱風架放兩天三天他一樣也是領月薪他沒有受影響所以這個我們對於勞工是不是有一點點比較不公平既然颱風天不是
transcript.whisperx[325].start 9736.688
transcript.whisperx[325].end 9752.508
transcript.whisperx[325].text 屬於國定假日那業主要求勞工上班而且沒有那個補假或加班費部長您知道這個嗎當然我們這個就是是我們指引就是勸部主不可以這麼做的
transcript.whisperx[326].start 9754.008
transcript.whisperx[326].end 9768.33
transcript.whisperx[326].text 可是如果只是勸雇主的話對雇主沒有任何拘束力啊那其實委員現在的雇主多半真的都會都會給報告部長我們不能用多半
transcript.whisperx[327].start 9775.516
transcript.whisperx[327].end 9784.964
transcript.whisperx[327].text 政府不是天使組成,人類也不是天使所組成的,所以很多時候做事情不可能像我們完美的思考那個方向去走,一定會有很多雇主
transcript.whisperx[328].start 9785.845
transcript.whisperx[328].end 9813.524
transcript.whisperx[328].text 很難搞我自己以前學分時代打工也遇過很難搞的雇主好那我們看一下就是說其實台風天上班遇到的那個風險是蠻多的其實這個例子太多了我也不細說啦就台風天上班之後出狀況或是上班正常出勤下出狀況的人其實不少所以說這麼多年來政府尤其是我們的現在的執政黨一直說最保障勞工啊
transcript.whisperx[329].start 9814.244
transcript.whisperx[329].end 9833.985
transcript.whisperx[329].text 那是不是說應該要把它從法制化的方向去走而不是留在要點?部裡面可不可以思考這個問題?就是你問那個員工是碰運氣嗎?部長?各位委員報告主要是考慮臺灣的產業特性我們那個中小企業實在太多了各行各業又太那個
transcript.whisperx[330].start 9834.705
transcript.whisperx[330].end 9861.906
transcript.whisperx[330].text 所以你如果用法律其實世界各國也沒有說在用法律規範天災假或是颱風假這樣的東西所以它法制化有一定程度的就是說各國沒有潛力可援引第二個是我們在國內的民情適用上恐怕會有點自愛難寫您想想看連縣市首長放颱風假都會遇到很多抱怨更何況是邏輯法規規定
transcript.whisperx[331].start 9863.988
transcript.whisperx[331].end 9891.629
transcript.whisperx[331].text 我跟部長報告一個點就是說本期這邊建議還是要朝向法治化的方式因為每一個員工他都是一個家庭我們應該保障每一個人真的公務員受盡了保障我幹了24年的公務員排工假放假有薪水照領沒有炒過一毛錢但是勞工很辛苦卻沒有這樣子的對待是不是政府可以把他朝向法治化的方向去走就像您說的大部分的老闆都會
transcript.whisperx[332].start 9892.93
transcript.whisperx[332].end 9893.95
transcript.whisperx[332].text 謝謝吳宗憲委員接下來請鍾嘉斌委員發言
transcript.whisperx[333].start 9925.659
transcript.whisperx[333].end 9950.877
transcript.whisperx[333].text 主席:在黨委員先進:立法院第11屆第2會期社會福利及衛生環境委員會長工作夥伴媒體記者女士先生有請我們何部長請何部長我也好部長好今天我們大家都關心我們的缺工都說全職的缺工對不對好我們看一個部長你知道嗎那個我們不只是勞碌命而且我們有一個部分的特別要跟你講
transcript.whisperx[334].start 9953.021
transcript.whisperx[334].end 9979.819
transcript.whisperx[334].text 我們的部分工時的勞動參與比率很低其實部長你對於全職參與勞動跟部分工時參與勞動你認為有什麼差別其實委員臺灣的所謂什麼總工時場是確實我們不用問總工時場我想部分工時對我們部分工時參與率是比較低的好那你覺得這是僱主不願意給全職工作還是勞工不想做全職的工作
transcript.whisperx[335].start 9980.846
transcript.whisperx[335].end 9998.974
transcript.whisperx[335].text 我們部分工時的參與率低是其實是正面的耶因為其實等於是說等等等等這句話我有一個保留我先問你我沒有說哪正面或負面我說部分工時參與率低是因為僱主不願意提供全職工作還是勞工不想做全職工作
transcript.whisperx[336].start 10001.041
transcript.whisperx[336].end 10025.504
transcript.whisperx[336].text 部分工時差異率低是意味著部份工時的職缺少是老闆不想顧全職還是員工不想做全職我的花了30秒了那聽懂了齁好來講啦我再講更直白一點啦以前人都是結婚啦但是現在說結婚率下降為什麼因為同居就好了啊
transcript.whisperx[337].start 10026.468
transcript.whisperx[337].end 10049.895
transcript.whisperx[337].text 前景國家都這樣子啊可以要結婚啊因為結婚就彼此的什麼權利義務啊同居呢就有同居的一個幸福但是可能彼此沒有約束我用這個方式來說明過去的勞工希望跟僱主有一個從一而終就是包括我們日本的永聘制對不對但是終身僱用制但是現在呢好像勞工對於
transcript.whisperx[338].start 10051.505
transcript.whisperx[338].end 10079.843
transcript.whisperx[338].text 只被一個僱主綁住他所有的時間他不能去做其他兼差可能不一樣像現在副本人都很流行你覺得這個觀念是不是有些不一樣了是當然這個確實清新的勞動的彈性形態這個是現在年輕人而且勞動部現在推銀髮族中高齡就業促進也希望能夠多製造一些部分工時的職缺讓這些中高齡者來參與對不對是不是這樣所以我們說嘛
transcript.whisperx[339].start 10081.684
transcript.whisperx[339].end 10108.417
transcript.whisperx[339].text 產業是不是一定要全職勞工?勞動部要做一個思考就是要問我們勞工需要什麼樣的職缺勞工有的需要全職的職缺有的需要他喜歡部分工時的職缺是不是這樣?是所以我們來勞動部與其問老闆說你需要全職工嗎?我們是否反過來問勞工你希望什麼樣的彈性的工作方式你同不同意?
transcript.whisperx[340].start 10108.737
transcript.whisperx[340].end 10132.137
transcript.whisperx[340].text 同意同意,因為我們在中高齡的這個就業途徑上就是採用這個方式所以其實不只中高齡啊,很多的年輕的不同世代勞動力他也有,他可能一天他寧可把8小時用來兼三份差他不想幫一個老闆做8個小時的工,你覺得有沒有可能?有可能嘛,所以現在的整個工作的概念是認為說過去勞工必要有一個雇主
transcript.whisperx[341].start 10132.938
transcript.whisperx[341].end 10133.258
transcript.whisperx[341].text 其實這是一個趨勢啦
transcript.whisperx[342].start 10158.86
transcript.whisperx[342].end 10185.907
transcript.whisperx[342].text 好 所以這是個趨勢您說對了所以因為這樣的趨勢我們應該先做一個調查瞭解現在勞動力勞工他需求的方向然後呢我們再回過來看產業的需求我前不久在交通部問過客運業啊他們現在缺司機願意做全天8小時的全職的駕駛呢都是中高齡所以不得不交通部延長到68歲那新的年輕的人呢他不想要一天綁8小時
transcript.whisperx[343].start 10187.347
transcript.whisperx[343].end 10210.08
transcript.whisperx[343].text 因此他們就說那我們在尖峰時間我們會顧那些已經退休的回來做兩個小時或者年輕人他就來做兩個小時你支持產業這樣的做法嗎就是他用這個方式來應付他尖峰時間客運業他的尖峰時間需要量很大但是他為了尖峰時間的需求他僱用一堆人不見得顧得住
transcript.whisperx[344].start 10211.36
transcript.whisperx[344].end 10233.97
transcript.whisperx[344].text 所以我問一下客運業的聘僱臨時人力有沒有法令上的限制我記得那時候你好像告訴我說沒有沒有沒有很好所以我們就要思考那如果沒有法令上的限制那為什麼僱主跟勞工他們沒有辦法去媒合達成說我想打工的就來打工僱主說你想打工的我就有這個監察的工作給你我們來看一下下一個
transcript.whisperx[345].start 10235.394
transcript.whisperx[345].end 10252.702
transcript.whisperx[345].text 農業需要什麼樣的勞動力?現在農業缺工對不對?有季節性的缺工有常態性的缺工但是呢我們看到一個新聞啊他說你請外籍移工啊寫來做阿公啊為什麼?我農忙的時候我請了外籍移工但是我農協的時候他在做阿公啊你有沒有了解到這個情況?
transcript.whisperx[346].start 10253.632
transcript.whisperx[346].end 10271.653
transcript.whisperx[346].text 我知道所以為什麼農業部門會有這個情況呢因為農業生產跟工業生產不同工業生產機器一開24小時你全天一週七天一個月30天一年360天你要隨時都可以農業要看老天爺啊是
transcript.whisperx[347].start 10272.233
transcript.whisperx[347].end 10272.933
transcript.whisperx[347].text 你覺得可不可以?
transcript.whisperx[348].start 10295.492
transcript.whisperx[348].end 10295.972
transcript.whisperx[348].text 其實農閒上學農忙下田
transcript.whisperx[349].start 10320.865
transcript.whisperx[349].end 10328.259
transcript.whisperx[349].text 這裡面就是叫教育部、農業部跟勞動部共同來設計不然的話你知道現在農裡面雇用的
transcript.whisperx[350].start 10329.864
transcript.whisperx[350].end 10355.762
transcript.whisperx[350].text 得到的額外補充勞動力都是產工都是移工他們是8點上班5點下班中間還出來4點就來打工然後8點來打工這個對外籍移工賺錢好但是對他的身體勞動權不好所以我們認為與其用外籍勞工不如用外籍的什麼農學工過去我們再往下看有一種叫教育部的做法你看透過PD勞動力我們客運車的業者可以做這樣的事情那但是他會缺乏什麼保障
transcript.whisperx[351].start 10356.837
transcript.whisperx[351].end 10384.426
transcript.whisperx[351].text 他會缺乏他可能職災的保障有沒有啊他的一個退休準備的保障有沒有啊這個勞動部要去幫忙享受啊包括你現在在支持的外送平台很多外送平台他不想要跟僱主成為全職的勞僱關係但他也不能接受這個承攬關係僱主完全對他沒有義務那有沒有可能在這兩者之間我們找出一個類勞工的方式來保障這些兼職人員部分工時人員他跟僱主之間的關係而且他們彼此的權益可以這樣嗎
transcript.whisperx[352].start 10385.643
transcript.whisperx[352].end 10415.009
transcript.whisperx[352].text 我們來研究好嗎好那最後呢我要告訴你來你要看往下往前跳最後一個你好往前往前不是學校的學工學校的學助往下一頁這個就是教育部那時候出來的大概在8年前那些大學的研究生他有領錢所以呢學校就請他工作研究室的助理會幫學校做行政工作後來教育部呢有研究生反映啊我領你6000領你8000我是研究生碩博生結果呢我的勞動權利在哪裡
transcript.whisperx[353].start 10416.029
transcript.whisperx[353].end 10434.265
transcript.whisperx[353].text 勞動部那時候出面了就有一個專科以上學校兼任助理勞動權益保障的指導原則這是勞動部出面的有沒有還沒印象在座的官員有嘛對不對所以那時候分成什麼分成兩種一種叫學習型的一種叫行政型的學習型的他的參與是基於學習的目的
transcript.whisperx[354].start 10434.966
transcript.whisperx[354].end 10447.426
transcript.whisperx[354].text 但是如果是行政型的不是學習型的他就比較強調他勞動的部分給予他保障學校對這兩種型的助理學生助理是給予不同的條件有沒有印象
transcript.whisperx[355].start 10449.377
transcript.whisperx[355].end 10450.037
transcript.whisperx[355].text 最後一題
transcript.whisperx[356].start 10477.072
transcript.whisperx[356].end 10479.934
transcript.whisperx[356].text 謝謝總嘉賓委員接下來請楊瓊英委員發言
transcript.whisperx[357].start 10505.615
transcript.whisperx[357].end 10508.753
transcript.whisperx[357].text 謝謝主席 楊瓊一發言 邀請部長請何部長
transcript.whisperx[358].start 10513.13
transcript.whisperx[358].end 10541.117
transcript.whisperx[358].text 委員好部長好我們來針對於缺工的問題來討論因為我們看到未來9年那麼我們所迎來的是378萬人的這個退休那也是史上到目前為止最大的退休潮的逼近那又加上少子化那導致我們整個在製造交通營建服務跟醫療等等的各行業普遍的在缺工尤其特別是3K
transcript.whisperx[359].start 10542.037
transcript.whisperx[359].end 10559.99
transcript.whisperx[359].text 所謂的3K是什麼危險辛苦骯髒這3K的辛苦特定製造製成的產業缺工特別特別的嚴重那所以呢我們又看到你的統計在11年來15到29歲的青年勞動力人口是減少了16萬人而國防會推估我們臺灣勞動力人口缺口會在2030年會達到
transcript.whisperx[360].start 10569.336
transcript.whisperx[360].end 10587.714
transcript.whisperx[360].text 在這樣的一個情況之下他不僅會影響到我們整個的就業市場影響到經濟的一個衝擊所以本期要在這邊請教部長賴清德總統在2017年的時候他擔任行政院長有一句口號讓我很很撼動他曾經提出了流財攬財還有什麼
transcript.whisperx[361].start 10590.296
transcript.whisperx[361].end 10590.496
transcript.whisperx[361].text 請做說明
transcript.whisperx[362].start 10615.604
transcript.whisperx[362].end 10634.65
transcript.whisperx[362].text 市委員我想今天的報告案我們也呈現出說在這裡面其實最缺的是中階技術人力對那怎麼辦你怎麼因應委員我們現在在本土的中階技術人才培育上面也希望能夠強化學訓用的跟教育部經濟部一起來整合這三方的這樣子的
transcript.whisperx[363].start 10639.332
transcript.whisperx[363].end 10641.854
transcript.whisperx[363].text 你剛才所做的回答我相信如果以目前你現在所做的書面資料跟回答
transcript.whisperx[364].start 10656.966
transcript.whisperx[364].end 10674.367
transcript.whisperx[364].text 你的答案還是一樣一個字就是山越來越低越來越低他不是流他不是藍他不是玉所以我希望你還是針對目前我們所面臨到的這一切困境你再去做一個精準的一個盤點到底要怎麼做
transcript.whisperx[365].start 10674.887
transcript.whisperx[365].end 10692.039
transcript.whisperx[365].text 好不好?到底要怎麼做?因為你剛剛針對本土的我們目前就是這樣做數字就是不好看那你剛剛要提到的一個外籍的部分我繼續來跟你討論因為我緊張這一個外籍的你如果所有的政策都依照這樣子那我們台灣的國力要怎麼辦?
transcript.whisperx[366].start 10692.819
transcript.whisperx[366].end 10710.759
transcript.whisperx[366].text 待會我們繼續來討論那所以我用你實質目前在做的我們在去年因應旅宿還有餐飲這都最堅強的在這樣的情況之下你推出了義後改善缺工擴大就業方案對不對你推出了從勞工端
transcript.whisperx[367].start 10711.46
transcript.whisperx[367].end 10730.35
transcript.whisperx[367].text 及顧主端來找手協助受疫情衝擊的造成疫後缺工的產業來補食人力。到目前為止,到今年6月底,你協助了2900人來就業。所以本席要在這邊請教,你勞動部對這個數字你滿意嗎?
transcript.whisperx[368].start 10733.711
transcript.whisperx[368].end 10760.694
transcript.whisperx[368].text 這當然是偏低偏低嘛那為什麼會偏低是政策錯誤還是執行無力還是社會面向不夠還是怎麼樣因為既然連你自己推出的政策你都認為是偏低那我要再繼續跟你討論因為你願意承認你這個政策的執行率是不到位的所以在這樣的情況之下你要如何的來提高就業率你針對於缺工你還有什麼方案
transcript.whisperx[369].start 10761.394
transcript.whisperx[369].end 10777.829
transcript.whisperx[369].text 你現在所提出在做的你認為是偏低那怎麼辦專案來做到偏低那怎麼辦呢我以為你是只針對旅宿餐廳對對對也是因為這樣所以我們又擴大開放的橋外生可以來從事旅宿業的中階工作請你在精準方案好不好
transcript.whisperx[370].start 10778.73
transcript.whisperx[370].end 10793.858
transcript.whisperx[370].text 你答案還是下一題本席要跟你討論的請你再就針對剛才本席所提出你專案的債輔導只有2900元是偏低的請你再去精準方案如果你的政策方案是不對檔的
transcript.whisperx[371].start 10795.559
transcript.whisperx[371].end 10815.11
transcript.whisperx[371].text 對不對是不正確的那你應該去從內部去討論而不是都只有給我一個答案我們從外籍工因為你第一個提問我本席第一個提問跟第二個提問你都是給我回答這個所以我會中斷你的回答請你去精準精準你的方案告訴本席好不好
transcript.whisperx[372].start 10818.753
transcript.whisperx[372].end 10834.609
transcript.whisperx[372].text 第3個我實質跟你討論從2024年9月份我們的失聯外籍移工的部分來台的部分已經失聯的80萬人那你比去年同期你增加了5萬人也是歷史新高近7年來最高
transcript.whisperx[373].start 10835.47
transcript.whisperx[373].end 10861.213
transcript.whisperx[373].text 那在這樣的情況下你告訴我開放了資深移工轉任中階技術人力你開放了橋外剛才你回答橋外生轉任中階人力的業別國際勞動力勢必你不斷的不斷的在增加所以包括現在經濟部長告訴我們你勞動部最近要持續放寬包括了印度的移工對不對
transcript.whisperx[374].start 10861.974
transcript.whisperx[374].end 10880.463
transcript.whisperx[374].text 所以換句話說本席告訴你如果依照你目前的政策你到2028年會突破多少百萬移工大關會突破百萬移工是不是有可能所以我們的方向看法是一致的所以本席要請教依照救福法的規定
transcript.whisperx[375].start 10881.864
transcript.whisperx[375].end 10896.256
transcript.whisperx[375].text 蘭嶺移工每一年可以引進多少的總人數這個是舊法裡面規定依照外籍勞工聘僱警戒指標的訂定到今天為止你還沒有訂所以你就開了一個大口
transcript.whisperx[376].start 10896.977
transcript.whisperx[376].end 10922.171
transcript.whisperx[376].text 大管道在這裡所以呢勞動部你是不是要怎麼樣解決我們的移工的問題在你必須要有外籍移工進來的時候你的相關法律的一個人數跟你要怎麼樣去調整這是目前我們必須要做的請做說明我們有定警戒指標了喔那我也一直在重申不能用開放移工來解決啦
transcript.whisperx[377].start 10926.533
transcript.whisperx[377].end 10934.426
transcript.whisperx[377].text 那你竟然結論給我回答這個我本期問你的第一題跟第二題你都是運用外籍移工的但是我也沒有時間跟我講
transcript.whisperx[378].start 10937.578
transcript.whisperx[378].end 10962.733
transcript.whisperx[378].text 不是好好的問題而且這個是社會面向的問題因為你這個如果沒有管抗也會影響到本級的勞工當然我非常同意到目前為止他要兩個禮拜做的事情他現在可能五天就做好因為逃跑的外籍移工全部加入在這樣的情況你都清楚這些事情你為什麼沒有方法去研讀
transcript.whisperx[379].start 10964.076
transcript.whisperx[379].end 10984.635
transcript.whisperx[379].text 那怎麼辦本期所說的社會面向你都說是對那你應該要好好的應對你所認識的台灣目前的困境去做調整好不好你怎麼去做調整多久時間告訴我方案好我們一個月內給委員一個月內好不好因為數字真的很難看好不好一個月內加油好謝謝
transcript.whisperx[380].start 10986.701
transcript.whisperx[380].end 11011.002
transcript.whisperx[380].text 好謝謝楊瓊英委員那今天沒有臨時提案所以我們繼續發言接下來請廖偉祥委員發言謝謝主席有請我們何部長請何部長
transcript.whisperx[381].start 11017.128
transcript.whisperx[381].end 11017.251
transcript.whisperx[381].text 您好
transcript.whisperx[382].start 11017.83
transcript.whisperx[382].end 11046.861
transcript.whisperx[382].text 部長辛苦喔那其實今天連報告也有寫到啊就是說缺工的幾個主要原因當然小子話嘛後面還有包含就是那個福利啊或是待遇不符合嘛好那我就簡單從一個小的地方切入喔我想要問一下部長依照這個職工福利金的條例那職工福利金的保管動用應由這個依法組織的工會跟各工廠或是礦場或其他企業組織共同設置
transcript.whisperx[383].start 11047.701
transcript.whisperx[383].end 11060.876
transcript.whisperx[383].text 職工福利委員會負責辦理那我想要請教部長的是說職工福利金的動資內容有無限制有有嘛對不對對那請教部長你認為健康檢查費用應該由誰負擔
transcript.whisperx[384].start 11066.797
transcript.whisperx[384].end 11092.827
transcript.whisperx[384].text 顧主負擔反正當顧主依照職業安全衛生法的第20條以及勞工健康保護規則第17條反正就是顧主要負擔但是實務上常常面臨一種情況其實我們在房間也有聽到就是顧主會要求或協議要由職工福利金的這個負擔員工的減減費用請教部長這是否已經違法
transcript.whisperx[385].start 11094.685
transcript.whisperx[385].end 11123.423
transcript.whisperx[385].text 對嘛違法是違法是違法吼好對那部長有鑑於實務上還是有部分公司他可能是對法令不熟悉是好所以本席在這裡所以他就去拗這個職工福利金去負擔員工的健檢費用喔所以我在想這部分是不是可以請勞動部可否再發函公告就是再發函提醒對再提醒然後當然要提醒他們雇主不要觸法然後你們後續再檢查部分這個部分應該也要再再再加強吼好好
transcript.whisperx[386].start 11124.514
transcript.whisperx[386].end 11151.988
transcript.whisperx[386].text 好那部長再來就是這個大缺工潮已經來臨了那並且從這個人口結構來看未來問題只會越來越嚴重嘛那個其實那個報告都有寫我就不再重複那現階段我想你們也是應該有共識就是說提高各年齡層的勞參率啊是不是對不對會是一個相對比較主要的方式但是根據這個主技處的人力運用調查
transcript.whisperx[387].start 11152.868
transcript.whisperx[387].end 11171.329
transcript.whisperx[387].text 其中為就業原因中有五個項目五個項目是女性高於男性我想請教部長你認為什麼因素導致女性的勞產率偏低因為女性要照顧啊不論是育兒或照顧老對謝謝部長你分析的很好就是基本上
transcript.whisperx[388].start 11171.929
transcript.whisperx[388].end 11185.692
transcript.whisperx[388].text 分別是照顧子女、照顧年長家屬、照顧失能家屬、做家事、身心障礙等,也就是照顧及家務分工會導致損害女性的工作權及經濟獨立的重要原因。
transcript.whisperx[389].start 11186.687
transcript.whisperx[389].end 11204.775
transcript.whisperx[389].text 那當然這個部分就會衍生出我們女性的時間的貧窮財務的貧窮甚至公共參與率低等等的問題那所以基本上我覺得她的問題就是女性不願意這就是不是她不願意就業而是這些前半跟這些責任
transcript.whisperx[390].start 11205.555
transcript.whisperx[390].end 11221.742
transcript.whisperx[390].text 那無法就業的結果就是經濟無法獨立他經濟沒辦法獨立那他可能會落入不好的循環那男性呢退休之後他可能有這個勞保啦有勞退啦但女性若沒有工作就不行嘛好所以簡單來講這是女性的困境啊
transcript.whisperx[391].start 11222.222
transcript.whisperx[391].end 11239.328
transcript.whisperx[391].text 那部長我們面對這樣的照顧責任跟家務分工涉及家內的這個分工的部分是不是並非是用公權力或制度設計可以解決但是政府可以在幾個方面上面去努力分別是這個看一下簡報政府整體服務供給的供給之承諾還有國家
transcript.whisperx[392].start 11243.149
transcript.whisperx[392].end 11265.365
transcript.whisperx[392].text 對於育兒有兒童之家庭的承諾還有公共化兒童照顧服務的普及程度還有對老年人提供的照顧服務這是四大方向政府可以做的部分雖然這幾年我想政府也是大力在發展這個長照或者是說0到6歲國家一起養的政策但我看還是有限部長知道原因嗎
transcript.whisperx[393].start 11266.809
transcript.whisperx[393].end 11292.196
transcript.whisperx[393].text 嗯當然這個可能提供的服務他的可禁用性也許這也是一個很有不友善這是雖然說就是對沒錯雖然說就是含有政策方向但是實際執行上面還是有很多問題會讓很多政策變成看得到吃不到或者不好用很難用比如說今年你們勞動部推出的這個彈性育嬰的留職停薪的事辦計劃是
transcript.whisperx[394].start 11293.436
transcript.whisperx[394].end 11300.731
transcript.whisperx[394].text 是不是成效是不是那個背後的概念很好背後概念但是實際辦理成效是不是很差
transcript.whisperx[395].start 11302.847
transcript.whisperx[395].end 11330.386
transcript.whisperx[395].text 對 那是事辦7乘6的事辦單位掛鈴嘛對不對部長原因是什麼我想請教一下其實這個台灣的企業的特性齁他在這一種就是說因為他是以日跟小時為單位啦他就是替代尤其在現在缺工嘛他的替代人力難找啦那如果是像快狀的育嬰留庭就6個月的喔那個倒是成效很好而且那個男性的申請也是達到薪金
transcript.whisperx[396].start 11330.786
transcript.whisperx[396].end 11341.114
transcript.whisperx[396].text 所以我剛剛說這個計劃本身蠻糟糕的對不對就是說成效啊是不是很差就是你們自己統計嘛報紙都沒有嘛對不對好啦簡單來講沒關係簡單來講這個狀況就是說基本上會去用這個事辦計劃的員工就是沒有請這個比較長的育嬰假的對不對那他又已經回到職場了嘛對不對所以
transcript.whisperx[397].start 11352.862
transcript.whisperx[397].end 11381.385
transcript.whisperx[397].text 他們會需要用那種短期育嬰流子停薪的員工其實就是比較少數啦那再來是小孩剛上幼兒園或是到托兒所之後其實因為他環境的差異啦或是其實有時候都會有臨時的突發狀況他可能會需要比較有請假的需求所以我在想的是是不是應該要把這種短期的談心的育嬰假適用對象因為本來是0到3嘛我們應該要把它擴大到6歲是不是比較符合家長的需求部長
transcript.whisperx[398].start 11382.125
transcript.whisperx[398].end 11395.603
transcript.whisperx[398].text 因為既然0到6歲國家一起養那是否也應該在彈性育嬰假的上面擴大到0到6歲我原是指彈性育嬰假擴大0到6歲可是彈性育嬰假我知道這個部分就要涉及修法
transcript.whisperx[399].start 11397.313
transcript.whisperx[399].end 11417.032
transcript.whisperx[399].text 性平法對對不對這要涉及到修法這就是我後面要講的所以它涉及到修法我只是想說因為你畢竟你的政策目的你就是希望可以打造我剛剛說的這四大方向嘛這四大方向嘛所以這個修法我倒覺得是不是應該要可以去討論也就是去修性別平等工作法的第16條從3歲放寬到6歲
transcript.whisperx[400].start 11420.508
transcript.whisperx[400].end 11443.761
transcript.whisperx[400].text 本席有跟其他委員有這樣的修法提案我是想要請教部長這部分是不是可以請開始評估說性平法16條的放寬年齡的事宜因為其實這樣子是站在家長的角度這樣是比較適用的吧我以為我們來評估好不好對啊我就是我的要求是說是不是可以請你們評估那請問你們大概要多久的時間評估兩個月給您
transcript.whisperx[401].start 11444.99
transcript.whisperx[401].end 11457.036
transcript.whisperx[401].text 兩個月評估可以給你說可不可以這樣做對不對好兩個兩個月我是覺得兩個月有點久欸一個月可以嗎這應該是蠻快的事情啊因為我們是希望幫這個我們的這些家長來推動啊
transcript.whisperx[402].start 11460.828
transcript.whisperx[402].end 11473.117
transcript.whisperx[402].text 我們這個社會共識真的也是要凝聚一下因為彈性育嬰留庭那個意見就很多了那家中育有小孩的也是希望說家庭照顧假可以延長或是放寬這個彈性工時但這個比較複雜但是我還是想要請教部長有沒有可能家庭照顧假也從7天放寬到14天
transcript.whisperx[403].start 11485.765
transcript.whisperx[403].end 11513.646
transcript.whisperx[403].text 因為其實這跟沒有這跟我們喊那些就是其他國家不同這是有需求的喔你可以你可以有這樣的放寬可是委員指的這個家庭照顧價是顧是簡單來講我做一個小結啦好不好我剛講的部分就是請你們去一並評估一並評估好不好就是說無論是育嬰價或是就是談心育嬰價其實最重要的還有這個家庭照顧價就是剛講的嘛我前面就講的這些數據跟你講這些東西其實部長你也都知道
transcript.whisperx[404].start 11514.454
transcript.whisperx[404].end 11538.063
transcript.whisperx[404].text 你也都知道嘛但是你就是有沒有再去更細的去做或是去站在他們角度去思考嘛所以你們站在家長的角度去思考這個政策所以性別平等法的第16條的育嬰留職停薪從3歲放緩到6歲第20條的家庭照顧假如果從7天放緩到14天其實我覺得整體來講他是符合現行國家的這個0到6歲國家一起養的政策
transcript.whisperx[405].start 11538.703
transcript.whisperx[405].end 11554.044
transcript.whisperx[405].text 更可以減輕這個父母職的照顧責任所以這一開始我在講這女性的部分那同時也是可以讓女性的勞動力釋放的好方法所以你前面不是也說嗎你們就是希望各年齡層或者個性別的這種勞產率可以提高
transcript.whisperx[406].start 11555.045
transcript.whisperx[406].end 11575.452
transcript.whisperx[406].text 這是我們我在提的這個概念就是這樣這是有脈絡的所以我覺得這部分是不是可以請勞動部盡速評估這個可行性而且也希望說是不是可以提報這個行政院的版本可以以示我們行政部門的決心就是評估之後因為我覺得這個東西我們就是站在這個女性參與剛剛前面都講得很清楚
transcript.whisperx[407].start 11576.252
transcript.whisperx[407].end 11602.354
transcript.whisperx[407].text 好然後再來最後一個產假的部分也是啊因為我們都圍繞著這個主題在講嘛我們也知道現在剛剛前面我有說你今天的報告有講少子化是缺工一個很大的原因嘛那基本上少子化這長期以來也都是國安的問題啊所以我想要問一下如果你認為這個部長如果產假啦育嬰假啦家庭照顧假增加他是不是可以比較一條龍的照顧可以更好呢
transcript.whisperx[408].start 11604.865
transcript.whisperx[408].end 11629.583
transcript.whisperx[408].text 這個部分是不是也可以並評估一條龍您是就是說剛剛產價運價家庭照顧價這個是不是一起進去去思考的我們並評估給您好嗎對啊因為我覺得這是這不是我們國家的有先例其實其他國家在應對小子化都有這個部分所以爭取這個產價並不是隨口說說之前有好幾次專報也都說我們是還有之前也有一份報告也將近六成女性覺得說這個運價不夠對不對
transcript.whisperx[409].start 11632.745
transcript.whisperx[409].end 11654.385
transcript.whisperx[409].text 所以其實我也要說以往都覺得要對標歐美國家我現在也給你看一個新聞嘛其實這個連我們旁邊的臨近中國大陸都有感於這個人口漸漸邁入老化他們在推所謂三胎啊那我想要講的是這個連他們都在講說他們的全境產價是98天起跳那北上廣山大都市是98加60是158天喔
transcript.whisperx[410].start 11657.248
transcript.whisperx[410].end 11679.126
transcript.whisperx[410].text 那廣東省全金是98加80是178所以我要提的就是說我剛剛講的這些訴求我不是隨便亂喊其實很多人在做這件事情所以我就想說如果你們這麼消極會讓我們覺得說你是不是真的沒有這麼想要改善我們的生育率我想請問部長怎麼看我是希望這個是不是可以好好的評估其實我們一起來評估好嗎
transcript.whisperx[411].start 11682.526
transcript.whisperx[411].end 11683.287
transcript.whisperx[411].text 接下來請張雅玲委員發言
transcript.whisperx[412].start 11712.191
transcript.whisperx[412].end 11717.79
transcript.whisperx[412].text 請何部長謝謝委員好等一下我的投影片沒有出來
transcript.whisperx[413].start 11721.246
transcript.whisperx[413].end 11748.978
transcript.whisperx[413].text 那我想就是說今天其實我要講的題目也是就要講女性的勞參率就是說因為其實在非常多的研究我想部長也非常清楚就是我們必須要支持女性她才有可能回到職場那整體的友善職場就會變成一個非常重要的目標所以剛剛其實前面的委員也有提到有關於我們的彈性育嬰假的這個事辦計畫那我也可以理解我們的利益是良善的但是事實上我們的確就是實際上只有21家的勞工
transcript.whisperx[414].start 11750.979
transcript.whisperx[414].end 11773.481
transcript.whisperx[414].text 有來申請等於超過7成6的事辦單位都是沒有人申請的那剛剛部長其實也有講一下這個原因但是我自己從網路上面其實也大概google當然我也有收到一些陳情就是說我們當時是希望讓父母可以兼顧家庭與工作但是呢我收到的意見是說他們會覺得說這個第一個家退保程序太過繁複
transcript.whisperx[415].start 11774.562
transcript.whisperx[415].end 11800.545
transcript.whisperx[415].text 也就是說因為可以領到相關的補助所以必須要去辦理相關的程序但是依據我們的事辦計劃現在出來了但是依據我們事辦計劃原則的第8點受僱者於參加彈性育嬰流執停薪事辦期間是可以繼續參加原有的社會保險並且可以依據相關的規定請領育嬰流執停薪的相關津貼跟補助那既然可以參加原有保險
transcript.whisperx[416].start 11801.566
transcript.whisperx[416].end 11826.895
transcript.whisperx[416].text 這一點應該不會是問題才對但是怎麼請領相關的津貼就可能會是一個問題所以這個部分可能要請勞動部來提出相關的解決辦法第二個部分就是說我們有聽到家長是有說當他去請的時候可能就會被關切就是說你要不要考慮一下這可能會影響老闆對你的評價你可能會影響到我們其他同事的對你的看法等等可能會影響到其他人工作
transcript.whisperx[417].start 11827.515
transcript.whisperx[417].end 11843.623
transcript.whisperx[417].text 當然我知道我們的計畫上是不得已拒絕但是就是有這樣子的情況發生所以我想請教部長就是針對這兩點我們有什麼樣子因應的措施嗎委員我是不是可以請我的那個調評司司長我們先來回覆一下那個加退保
transcript.whisperx[418].start 11844.601
transcript.whisperx[418].end 11868.771
transcript.whisperx[418].text 報告那現在有關那個加退保其實那個並不是說讓他退是說做一個註記的通報因為他是預應留庭後面要關連到他的那個津貼的發放的問題所以他要做通報現在已經可以線上通報沒有問題那第二個是說有關那個潛規則的這件事情其實我們大概期中座談有跟這些廠商來去做了解
transcript.whisperx[419].start 11869.759
transcript.whisperx[419].end 11892.555
transcript.whisperx[419].text 有些他有來參與但是他沒有員工申請大概有一個原因是因為他的天氣我們這是開放到比較低的這個天氣比較短那有的員工他是認為說他已經可以用他現在有優於法令的一些價有的用特休有的公司他願意來參加他是比較有意願的公司他會有比較優於法令的一些家庭照顧價等等
transcript.whisperx[420].start 11892.935
transcript.whisperx[420].end 11912.481
transcript.whisperx[420].text 他會優先用了那個假所以那個短天期的需求不見得每一個人都有這樣需求那我想先確認第一個問題就是說剛剛是說要做註記嘛那我想問一下這個東西到底現在在企業企業執行瞭解說可以用註記的方式的之後我們的參與的程度有提高嗎
transcript.whisperx[421].start 11913.521
transcript.whisperx[421].end 11930.403
transcript.whisperx[421].text 這個部分我們都有再一次跟那個所有的事業單位說明因為他通報的話作為一個註記那勞保局那邊的話就是會連結到這個勞工要給他這個育嬰留職停薪的津貼那我們大概相關的程序的話那個流程的話我們會跟勞保局這邊來去再更加的優惠
transcript.whisperx[422].start 11930.623
transcript.whisperx[422].end 11931.524
transcript.whisperx[422].text 議員提供更精進的配套措施.
transcript.whisperx[423].start 11952.116
transcript.whisperx[423].end 11968.204
transcript.whisperx[423].text 我們為什麼今天需要這個彈性暈暈流停?我們來看看家庭照顧假怎麼一個月請完?就是說如果一個小孩子在3月2日早上收到通報藏病毒他就會被學校請他帶回去嗎?
transcript.whisperx[424].start 11970.587
transcript.whisperx[424].end 11984.632
transcript.whisperx[424].text 所以這個就是需要請7天那家長會各請3到5天然後如果呢3月11號恢復上課了又有小孩確診他又要停課所以等於他只要一個月內他就會把他所有的家庭照顧假都請完
transcript.whisperx[425].start 11985.952
transcript.whisperx[425].end 12014.464
transcript.whisperx[425].text 所以為什麼我們今天會非常非常需要這個彈性育嬰的政策因為的確就像剛剛前面的委員也有說其實是真的是非常的不足啦所以剛剛也有提到說要去這個性平法的第16條去修法因為其實到3到6歲這一塊現在目前是沒有被寒跨的可是其實幼兒園停課的規定是寒跨到6歲所以這個部分剛有提供提供說會提供給前面的委員這個報告也希望可以到時候一併提供給我那再來第二個部分啊
transcript.whisperx[426].start 12017.37
transcript.whisperx[426].end 12019.476
transcript.whisperx[426].text 說:「抱歉,我們下夜好了,直接下,因為時間可能會不夠。」
transcript.whisperx[427].start 12020.523
transcript.whisperx[427].end 12045.578
transcript.whisperx[427].text 好就是說其實我們看到非常多的報告不管是中研院或是經濟學院今年都一直在講說如何去講究這個生育率那其實他們都在講就是說撒錢不一定有用因為觀念轉變年輕的女孩子不願意再拼命生育小孩現金補貼對於中低收入戶的家庭還是有一些短暫的適應力但是中等家庭比起育兒更重視自己家庭的生活所以我們就發現說其實從各國的研究來看
transcript.whisperx[428].start 12046.599
transcript.whisperx[428].end 12070.266
transcript.whisperx[428].text 撒錢不一定有用但是撒錢還是非常需要那同時還有一件事情也非常非常重要就是說我們從北歐的一個觀點一個成果來看他其實有做一個1980年代他提出了一個相關友善的措施也就是一個產假他總共一年有480天的親子假
transcript.whisperx[429].start 12071.466
transcript.whisperx[429].end 12098.442
transcript.whisperx[429].text 他可以猜成月周日甚至小時來使用來結合一個更完善的兒童托育的政策所以出生率開始有小幅度的上升那其實我也想分享一個我們台灣的產價很少這件事情我想已經是這麼多年來有非常多的倡議團體一直不停的在爭取但是我們真的是太少了因為相比剛講的中國14週日本14週韓國90天新加坡甚至到16週我們這個8週的部分是不是還有可能可以來去提升
transcript.whisperx[430].start 12099.122
transcript.whisperx[430].end 12119.349
transcript.whisperx[430].text 因為其實可以讓女性可以得到一個更好的一個休息的品質那更好的去支持她那這樣子未來才有可能有機會有機會去提升我們的生育率才有可能有機會去讓我們有更多的小孩這個部分是不是也可以一起來去思考呢提升我們的產價的部分
transcript.whisperx[431].start 12120.526
transcript.whisperx[431].end 12120.546
transcript.whisperx[431].text 謝謝部長
transcript.whisperx[432].start 12139.676
transcript.whisperx[432].end 12140.377
transcript.whisperx[432].text 謝謝主席,有請部長。請何部長。
transcript.whisperx[433].start 12167.116
transcript.whisperx[433].end 12192.102
transcript.whisperx[433].text 委員好部長好今天早上我有看到工商時報有一則新聞標題就是為了今天勞動部的業報我們的缺工專報那您提到說解決缺工要對症下藥不能只靠開放移工壓抑勞動條件等等我覺得您講的很有道理因為跟我心裡想的也一樣那為什麼我這樣說我們來看一下
transcript.whisperx[434].start 12194.463
transcript.whisperx[434].end 12206.767
transcript.whisperx[434].text 主計總署一百一十二年的人力資源調查我們可以看到原住民族的勞動力參與率跟全體國人的平均看一下64.1%對59.2%
transcript.whisperx[435].start 12211.889
transcript.whisperx[435].end 12232.102
transcript.whisperx[435].text 我可以說2.5%的原住民族人對於我國的勞動其實是很有貢獻的那我們進一步來看他說原住民從事的前五大行業營建製造餐飲住宿批發零售醫療保健及社工服務
transcript.whisperx[436].start 12233.223
transcript.whisperx[436].end 12248.401
transcript.whisperx[436].text 尤其是營建工程原住民的參與率是18.01%高於全體國人的7.99%那相對的我們也來看一下我們提出的勞動部的專報裡面他說產業缺工的概況
transcript.whisperx[437].start 12252.766
transcript.whisperx[437].end 12269.516
transcript.whisperx[437].text 製造業批發零售營建工程住宿餐飲醫療保健系社會工作服務業部長你看到這邊會不會覺得怎麼恰恰原住民從事的前五大行業跟我們勞動部說的缺工的五大
transcript.whisperx[438].start 12270.376
transcript.whisperx[438].end 12297.902
transcript.whisperx[438].text 好像一模一樣所以在這個當中我就是今天想要請教一下部長是不是應該針對促進原住民就業來去做一個專案為什麼我這樣問因為我們看一下勞發署他有一個缺工就業獎勵這個其中你看一下身領的資格第一項他說受雇於同意3K產業雇主連續達30天以上
transcript.whisperx[439].start 12300.6
transcript.whisperx[439].end 12321.455
transcript.whisperx[439].text 我想要跟部長說其實我們的族人看得到吃不到因為他不利於營造業其實我們都很清楚這一些族人營造業的工人他其實是跟著僱主走他不是跟著僱主走他是跟著工頭走所以他沒有辦法連續達30日以上
transcript.whisperx[440].start 12323.752
transcript.whisperx[440].end 12352.671
transcript.whisperx[440].text 第2個他提到說每週工時達35小時以上一樣的概念他不是不想做工啊是因為沒有工可以給他做所以這個第一點跟第二點他比較類似坐在辦公室的那一種工作其實是不利於我們這些所謂的原住民投入的五大行業所以我為什麼要特別講就是原住民很願意工作對國家也很有貢獻
transcript.whisperx[441].start 12353.932
transcript.whisperx[441].end 12372.302
transcript.whisperx[441].text 可是我們會發現好像針對他的獎勵沒有給他沒有給他那我們再看一下這個部分雖然如此齁你看雖然我們的勞動參與率就業率都比一般高了可是你看一下薪資薪資的差距卻高達將近一萬塊錢
transcript.whisperx[442].start 12374.203
transcript.whisperx[442].end 12396.437
transcript.whisperx[442].text 所以我在這裡其實可能部長你已經清楚我想要講什麼就是針對工作時數未滿35小時的原住民就業者其實我們看一下他有將近一半的人他都說我有意願增加工時啊但是我們做這種工不見得天天都有工第二個這一些人又高達93%
transcript.whisperx[443].start 12398.939
transcript.whisperx[443].end 12427.022
transcript.whisperx[443].text 他說原因是什麼當然是為了增加收入啊所以原住民其實是很願意工作很願意投入勞動力但是他們也很希望他們的收入可以增加所以我才會在這個地方就這個問題來請部長可不可以幫個忙就是原住民有這種工時不足非典型勞動的形態那怎麼樣透過這種缺工獎勵讓我們的原住民族人願意投入更多的勞力這是
transcript.whisperx[444].start 12427.962
transcript.whisperx[444].end 12430.724
transcript.whisperx[444].text 謝謝委員的提醒您看到的缺工獎勵是針對製造業當然我們原住民的朋友在投入營造業方面是比較激動的、彈性的這個我們來檢討、調整看能不能給他們誘因
transcript.whisperx[445].start 12447.796
transcript.whisperx[445].end 12447.876
transcript.whisperx[445].text 是是是
transcript.whisperx[446].start 12463.158
transcript.whisperx[446].end 12488.098
transcript.whisperx[446].text 就是逐年趨緩然後現在趨於一致那也特別謝謝勞動部就是願意來催生公立的原住民族就業服務中心目前已經有6個縣市參與那這個部分呢其實原民會他們也願意漸漸的救他們過去因為沒有公立的原住民救福中心所以原民會呢有用就業貸金轉過來的就業基金他們有去辦一個所謂的救福員的服務人員
transcript.whisperx[447].start 12492.682
transcript.whisperx[447].end 12507.871
transcript.whisperx[447].text 那目前有75名他們說他們現在是欲缺不補那因為他們希望未來能夠把這個兩股人力給他整病有更好的一個就業的一個體制那我也一直關心這個部分
transcript.whisperx[448].start 12508.331
transcript.whisperx[448].end 12534.984
transcript.whisperx[448].text 所以我只是說讓部長知道一表達感謝二我們希望讓我們的整個救福的這個輔導的人力工作未來能夠跟原民會趨於穩定讓他走向制度化那也有一個就業保障也能夠確實的針對原住民來去做就業服務的工作媒合那最後就是剛才我提的部長也已經回答是不是一個月內可以針對剛才我提的
transcript.whisperx[449].start 12536.545
transcript.whisperx[449].end 12537.246
transcript.whisperx[449].text 接下來請林淑芬委員發言
transcript.whisperx[450].start 12568.945
transcript.whisperx[450].end 12570.708
transcript.whisperx[450].text 主席 各位大家午安 順順還是請我們何部長
transcript.whisperx[451].start 12576.826
transcript.whisperx[451].end 12587.334
transcript.whisperx[451].text 委員好部長我想這幾天的媒體做了很多缺工的這個專題那當然最驚悚的是說這個未來9年就是65歲以上要退出職場的有378萬人這樣的一個標題但是同時他也說到過去10年15到29歲投入這個勞動力市場的這10年裡面跟過去相比少了16萬人總的來說就是年紀高的人要退出職場
transcript.whisperx[452].start 12606.749
transcript.whisperx[452].end 12622.568
transcript.whisperx[452].text ﹏﹏
transcript.whisperx[453].start 12623.689
transcript.whisperx[453].end 12631.394
transcript.whisperx[453].text 說他有沒有再回流但是如果根據中時的這一份報導他裡面我比較感興趣的是臺灣10月人才缺口最大前五大產業他這個人數統計我不曉得怎麼統計來的我就不說姑且不說了他是104銀行但是呢我們可以從產業別來看缺口最大的住宿餐飲服務業再來是批發零售傳播這個直銷業
transcript.whisperx[454].start 12652.407
transcript.whisperx[454].end 12672.478
transcript.whisperx[454].text 那再來也有一般製造業還有建築營造業然後呢他是講今年10月那如果從2021到2030年他用勞發署去推估的他平均每年需求人數前五大職業勞發署署長知道是什麼工作嗎不知道好沒關係不知道你要看報紙報紙都替你登了你還不看
transcript.whisperx[455].start 12682.472
transcript.whisperx[455].end 12696.235
transcript.whisperx[455].text 你們在這裡是商業及行政助理專業人員、銷售及展示工作人員、採礦、營建、製造、運輸、勞動力、個人服務工作人員等等那我同時啊為什麼要講這個講這個喔講這個的問題要先來看說奇怪了如果按照104104同時還有一份調查他這個調查是這樣子的為什麼我看一下那份資料
transcript.whisperx[456].start 12712.162
transcript.whisperx[456].end 12729.297
transcript.whisperx[456].text 一零四人力銀行一零四玩數據他們去發現幾十萬的年輕人的求職裡面他們在求職裡面發現他們最想要的工作其實他們最想要的工作就是忠實報導的這幾個行業別和職業別產業別為什麼
transcript.whisperx[457].start 12736.711
transcript.whisperx[457].end 12736.731
transcript.whisperx[457].text 為什麼?
transcript.whisperx[458].start 12736.731
transcript.whisperx[458].end 12737.432
transcript.whisperx[458].text 這個現象是什麼意思?
transcript.whisperx[459].start 12737.432
transcript.whisperx[459].end 12737.633
transcript.whisperx[459].text 你可以告訴我嗎?
transcript.whisperx[460].start 12750.53
transcript.whisperx[460].end 12778.303
transcript.whisperx[460].text 委員這個是民間的這個人力難道民間的數據毫無參考性嗎?完全都不值得一看嗎?我現在在問你的是為什麼同樣是104他們根據他們求職上網百萬的求職的人去統計年輕人他們求職意願最想要從事的工作登記最多的就是中國時報在講的人才缺口最大的這幾個
transcript.whisperx[461].start 12780.592
transcript.whisperx[461].end 12805.192
transcript.whisperx[461].text 嗯都是低技術的對這兩種現象同時存在是什麼意思你可以可以假設是大概是什麼狀況嗎我我想喔民間他們在調查的詢問方法你的意思是說人家他們問的有問題我現在告訴你是說因為這一類的產業你講不出來我就試著替你解讀啦我覺得你一直在規避問題說民間的調查方法有問題或是他們問的這個
transcript.whisperx[462].start 12810.436
transcript.whisperx[462].end 12837.535
transcript.whisperx[462].text 引導性不一樣但我現在我看到的不是這樣子我看到的是這幾類的產業低技術性服務業住宿餐飲批發零售行政助理這種低技術性年輕人入這個門檻最低而且最容易入手就有工作因為他缺工缺很大馬上有工作但是因為待遇太低了所以做不久就會流動
transcript.whisperx[463].start 12839.673
transcript.whisperx[463].end 12849.201
transcript.whisperx[463].text 看到的現象就是這樣子所以他們在這一直在缺工可是年輕人最容易上手馬上要找工作就找找這一類馬上有你懂嗎那這種問題要怎麼處理這是什麼意思部長您這個結論我也同意啊對啊你剛才講不出來啊你同一個屁啊同
transcript.whisperx[464].start 12861.811
transcript.whisperx[464].end 12865.74
transcript.whisperx[464].text 你為什麼不能講得好好的講一下呢?那我現在問你說這個現象這個問題要怎麼處理?
transcript.whisperx[465].start 12870.573
transcript.whisperx[465].end 12894.08
transcript.whisperx[465].text 對委員這就是我剛剛也有回答前面委員的你剛剛說的整個早上我聽起來你就說你看我都撐住了我沒有繼續開放外籍移工我連警戒指標都定出來了我不會讓雇主要尋求低薪可是你還是要解決問題啊非典型工作人數逐年上升你知道去年上升到部分工時者上升到幾萬人嗎非典型工作20.6萬人
transcript.whisperx[466].start 12899.963
transcript.whisperx[466].end 12916.172
transcript.whisperx[466].text 我想部分工時者非典工作者我們現在統計有80.6萬部分工時者因為非典還包括臨時性和人力派遣我不要講臨時性跟人力派遣我就問你部分工時者一個禮拜做不到30小時的人請委員指示
transcript.whisperx[467].start 12921.345
transcript.whisperx[467].end 12928.069
transcript.whisperx[467].text 當然嘛請委員只是我告訴你為什麼這個東西很重要因為呢這種部分工時者去年已經到43.3萬人占總就業人口數3.76可是你知道2022年是多少嗎41.5萬人一年成長多少人嗎將近兩萬人為什麼大家會變成是主動的想要成為部分工時者還是被動的
transcript.whisperx[468].start 12950.08
transcript.whisperx[468].end 12954.345
transcript.whisperx[468].text 那如果再講說現在這一些非典型就業年輕人有沒有可能我們總的勞動力退出的很多新進的已經很少了而年輕人新進到這個職場裡面他選擇的不一定是要全職工作為什麼你知道嗎
transcript.whisperx[469].start 12972.084
transcript.whisperx[469].end 12981.691
transcript.whisperx[469].text 對阿 人家還有很多選擇阿 你以零工經濟或是斜槓經濟來講 那是很大的選擇欸可是從外國來看喔 歐盟來看喔 零工經濟 我不願意當一個全職的工作者 他有可能有四種類型欸
transcript.whisperx[470].start 12991.533
transcript.whisperx[470].end 13012.131
transcript.whisperx[470].text 第一種積極型的第二種臨時性勞工第三型的是勉強型的零工零工經驗第4種叫財務緊張型的零工你是不得不被迫去從事零工的他想要做全職卻做不到可是我要跟你講是積極型的零工
transcript.whisperx[471].start 13013.132
transcript.whisperx[471].end 13014.633
transcript.whisperx[471].text 外國已經走在前面給我們看了而我們都還不曉得要怎麼處理
transcript.whisperx[472].start 13033.476
transcript.whisperx[472].end 13034.157
transcript.whisperx[472].text 在英國有400萬人
transcript.whisperx[473].start 13049.096
transcript.whisperx[473].end 13054.178
transcript.whisperx[473].text 全體勞動力的32%我們的部分工時者只有3.76%英國是32%德國29%有600萬人法國有29%有400萬人西班牙有26%瑞典有33%
transcript.whisperx[474].start 13066.926
transcript.whisperx[474].end 13080.732
transcript.whisperx[474].text 我是要跟你講部分工時者占全體勞工的比例在日本是29.93%在英國是23.18%在德國是22%在荷蘭37.3%在澳洲是25%這個數據代表什麼意義你可不可以在這裡告訴我你從這個數據看到什麼危機或是看到什麼未來
transcript.whisperx[475].start 13095.226
transcript.whisperx[475].end 13113.757
transcript.whisperx[475].text 當然先進國家其實在這部分的比例都比我們高這是這是沒有錯的可是說真的部分工時的這樣的人數多是不是一個好的現象這是一個值得探討我現在就在問你說這未來是會變成什麼狀況我就問你啊我沒有說這是好的勒
transcript.whisperx[476].start 13115.017
transcript.whisperx[476].end 13132.869
transcript.whisperx[476].text 我沒有肯定這種現象餒但我剛剛就問你這麼多的部分工時的比例高比例對未來如果我們以此為鑑我們應該要採取因應的政策是什麼而對台灣如果從3.76上升到5.76到6.76而這樣的狀況對台灣本來勞動力因為少子化就缺口這麼大的狀況影響會是什麼
transcript.whisperx[477].start 13144.978
transcript.whisperx[477].end 13157.248
transcript.whisperx[477].text 當然我們會... 你都沒有評估 沒有政策上的看到未來10年20年後 你現在不提出因應的策略 你在這裡只告訴大家 我不會繼續開放大量開放外勞 外籍移工 這樣搞不搞 你的眼光要看在哪裡啦
transcript.whisperx[478].start 13165.595
transcript.whisperx[478].end 13175.517
transcript.whisperx[478].text 那如果再話再講回來這些非典型工作部分工時者人數逐年上升年輕人為什麼要這樣子你可以告訴我嗎
transcript.whisperx[479].start 13177.998
transcript.whisperx[479].end 13194.816
transcript.whisperx[479].text 我剛剛講的數據你回答不出來說從這裡看到什麼危機產業的危機勞動力的危機當然他也帶另一種產業也是一種心機可是呢我從勞動力不足這個角度切入你來告訴我要怎麼因應會有什麼問題
transcript.whisperx[480].start 13199.796
transcript.whisperx[480].end 13218.168
transcript.whisperx[480].text 當然年輕人他們現在比較比較會往這個方向移動這也是事實啦所以當然我們也可以因應這個新的新興的這樣的林宮經濟的勞動型態我們也必須去研擬相關的這樣子的一個如果從我剛剛講如果從這個
transcript.whisperx[481].start 13221.85
transcript.whisperx[481].end 13231.317
transcript.whisperx[481].text 四十三點三萬部分工時者那大幅增加到六十萬七十萬如果是零工經濟不是因為財務緊迫或是雇主遏止而是大家主動年輕人有能力的年輕人他主動積極型的他這種零工經濟的勞工自顧者他不是勞工抱歉他可能是獨立工作者和自顧者
transcript.whisperx[482].start 13247.492
transcript.whisperx[482].end 13252.496
transcript.whisperx[482].text 年輕人作為一個獨立工作者和自顧者的比例大幅上升我想這是整個典範轉移的問題我現在就要提醒你這個問題啊新的經濟模式還有新的勞動模式形式的轉換了那你的因應的策略是什麼
transcript.whisperx[483].start 13276.226
transcript.whisperx[483].end 13277.287
transcript.whisperx[483].text 您就這樣抽象的一句話,年輕人為什麼覺得躺平有道理?
transcript.whisperx[484].start 13295.806
transcript.whisperx[484].end 13299.528
transcript.whisperx[484].text 還有這個yes123yes123人家這個求職網都大數據在那裡剛剛講的104也是大數據在那裡你老是要挑戰104跟123民間的調查數據跟你們不一樣你老是要這麼說人家是大數據分析耶yes123求職網他們調查發現
transcript.whisperx[485].start 13318.997
transcript.whisperx[485].end 13324.598
transcript.whisperx[485].text 上班族認為有跨產業職場經歷的跨產業兩種以上產業的就就業保證他認為比較有就業保證的是66.1%跨領域技能的他們會得到就業保證的他們認為有79.1%再來講說對台灣的上班族來說想成為主修零工經濟學的斜槓勞工比例有多高你知道嗎
transcript.whisperx[486].start 13346.623
transcript.whisperx[486].end 13371.264
transcript.whisperx[486].text 從ES123的求職網調查顯示.有高達九成三.92.6%的人表示.有成為斜槓族.同時有兩種職務支撐的意願.多於2022年的91.2%.更創下6年以來的新高啊這是事實.已經正在發生的事實
transcript.whisperx[487].start 13372.864
transcript.whisperx[487].end 13390.956
transcript.whisperx[487].text 而為什麼年輕人覺得躺平是有道理的因為來自歐洲國家的研究他們覺得降低工時真的會增加快樂的程度啊很多人都覺得年輕人找工作都嫌工時太長啊輪班加班的我不做啦工作太勞累的我不做可是你還看到
transcript.whisperx[488].start 13392.356
transcript.whisperx[488].end 13415.534
transcript.whisperx[488].text 這些人為什麼他們寧可選擇兼職工作不接受長工時因為我們要有更多的時間和自由要陪伴家人除非你帶給我的報酬是相當於你的高工時是付出是有代價有回報的而你知道你剛才講這麼多你都還停留在這個低薪的狀況本來勞動力的供給少於
transcript.whisperx[489].start 13418.957
transcript.whisperx[489].end 13447.79
transcript.whisperx[489].text 那個勞動力的需求價格是應該上升的上升不上去而現在如果上升不上去我何必為了多一千多兩千然後在那裡賣我的肝呢所以呢在這種狀況裡面就牽扯到工時也牽扯到薪低薪在這種狀況裡面低薪的正職長工時加班賺那幾百元人家不要了
transcript.whisperx[490].start 13449.048
transcript.whisperx[490].end 13464.746
transcript.whisperx[490].text 所以我們需要正面去看待年輕人排斥高工時的工作這件事情還有要低薪就是年輕人不婚不生然後少子女化的原因主因之一啊而你現在嫁
transcript.whisperx[491].start 13465.487
transcript.whisperx[491].end 13479.266
transcript.whisperx[491].text 又給了少修工時又長所以他更不願意所以現在更缺工因為少子化更缺工陷入惡性循環很核心的一個業務都在你這裡工時、價、薪資
transcript.whisperx[492].start 13482.831
transcript.whisperx[492].end 13495.841
transcript.whisperx[492].text 都是你主責的我今天要講這個然後我問你你講的好像我不開放即便我跟大家講開放更多的外籍移工就可以解決這個結構性的問題嗎主委可以嗎部長抱歉開放大量的移工更多的人你不要在這裡說你擋住了你沒有擋住你就可以解決這個問題嗎
transcript.whisperx[493].start 13514.741
transcript.whisperx[493].end 13516.044
transcript.whisperx[493].text 流用就可以解決了嗎?
transcript.whisperx[494].start 13516.044
transcript.whisperx[494].end 13516.225
transcript.whisperx[494].text 部長可以嗎?
transcript.whisperx[495].start 13522.179
transcript.whisperx[495].end 13538.15
transcript.whisperx[495].text 我現在告訴你日韓也在搶外籍移工當然有人講日韓因應搶工大潮日本修法以優厚的條件吸引移工日本政府在2019年終於承認他們勞動力不足修正了移民法未來他們要在當時要預計5年要引進34萬人但是當然現在事實上5年過去了沒有辦法馬上引進這麼多人
transcript.whisperx[496].start 13552.159
transcript.whisperx[496].end 13581.158
transcript.whisperx[496].text 但是他們修了什麼?他們修了移工要跟日本國民相同的最低工資介於16到20萬日元現在可能更高了所以新台幣是4到5萬元基本工資比我們高耶工作滿5年以後通過語言技能檢測就可以申請永久居留權還可以帶家人來同住還可以自由轉換雇主
transcript.whisperx[497].start 13582.179
transcript.whisperx[497].end 13598.798
transcript.whisperx[497].text 人家韓國政府也一直在修正欸以前這個韓國跟我們一樣太早依賴人力仲介然後也引進的時候沒有任何的訓練語言訓練也沒有就直接這樣子然後不當的剝削仲介不當的剝削層出不窮
transcript.whisperx[498].start 13601.201
transcript.whisperx[498].end 13623.234
transcript.whisperx[498].text 所以他們在2003年修正了他們從2003年就採取了國對國的職聘模式外籍移工也跟本國的韓國的勞工享有同等的勞動保護而且政府職聘也降低了移工輸出國的移工的費用
transcript.whisperx[499].start 13624.531
transcript.whisperx[499].end 13637.542
transcript.whisperx[499].text 所以人家有動機往日本韓國前進我們移工逃跑率最高的越南現在是日本最大宗的外籍族群
transcript.whisperx[500].start 13638.854
transcript.whisperx[500].end 13651.257
transcript.whisperx[500].text 而且國際移工零付費這種狀況我們真的會有遠遠不絕的外籍移工可以輸入臺灣嗎?逃走如果被逼下去人們優先要去日本、韓國要不要優先來吃嗎?你以為在找印度就可以遠遠不絕嗎?
transcript.whisperx[501].start 13661.982
transcript.whisperx[501].end 13672.732
transcript.whisperx[501].text 開放移工是解決的方法嗎?即便開放移工難道你的移工管理政策法律面制度面都不用再檢討嗎?
transcript.whisperx[502].start 13675.885
transcript.whisperx[502].end 13694.74
transcript.whisperx[502].text 我們的成年大家成科講了幾遍又幾遍的都不用嗎?好最後我再講一點啦我再講一點我一直說女性勞動參與率提高也可以解決這個勞動力缺口的問題而主計處他主計已經做了一個統計了
transcript.whisperx[503].start 13696.221
transcript.whisperx[503].end 13699.683
transcript.whisperx[503].text 我剛剛講說啊這個失業失業41.2萬人當中有15.8萬人曾遇有可以工作的機會卻沒有就業主因待遇不符而期望而我現在在這裡25到64歲
transcript.whisperx[504].start 13714.292
transcript.whisperx[504].end 13726.219
transcript.whisperx[504].text 主要工作年齡的非勞動力中仍然有就業意願的有幾萬人你知道嗎你說我們缺工6.6萬你知道25到64歲有就業意願的人有幾萬你知道嗎主席出了統計喔幾萬你知道嗎部長你知道嗎不知道書長你知道嗎不知道
transcript.whisperx[505].start 13737.513
transcript.whisperx[505].end 13739.494
transcript.whisperx[505].text 這個是主席處的統計資料你也看一下人有就業意願的有18.8萬人你缺工6.6萬台灣有18.8萬的25到64歲的人他還想要就業
transcript.whisperx[506].start 13754.827
transcript.whisperx[506].end 13759.51
transcript.whisperx[506].text 而沒有就業意願的286萬人當中女性占了72%她的沒有就業意願是因為她被綁在照顧家人不管是老的、失能的或小的
transcript.whisperx[507].start 13776.505
transcript.whisperx[507].end 13784.696
transcript.whisperx[507].text 所以這個國家把女性的勞參率解決一下把老的跟小的托老托幼的顧失能的國家扛起這個責任
transcript.whisperx[508].start 13793.647
transcript.whisperx[508].end 13808.278
transcript.whisperx[508].text 我們的勞動力缺口,這裡可以補很多,補很大,我已經講過N次了,您就直接跟他說,我不會開放大量的外籍移工進來,這是正本清源的方法嗎?問題還是仍然存在,白天找不到,會有的沒人要送,對不對?
transcript.whisperx[509].start 13815.081
transcript.whisperx[509].end 13816.842
transcript.whisperx[509].text 謝謝林淑芬委員 接下來請羅廷偉委員發言
transcript.whisperx[510].start 13850.713
transcript.whisperx[510].end 13866.029
transcript.whisperx[510].text 謝謝主席有請部長請何部長部長請問全時職位缺工的原因啊歸納起因你可不可以跟大家分享一下有哪些
transcript.whisperx[511].start 13869.037
transcript.whisperx[511].end 13876.664
transcript.whisperx[511].text 當然缺工的原因很多啦是請說沒關係就你所知的你所說就好昨天在參與這個會議的時候我也分析過包括我們新興的勞動型態嘛當然各個產業我們的產業結構包括他的薪資待遇跟勞動條件
transcript.whisperx[512].start 13892.218
transcript.whisperx[512].end 13911.47
transcript.whisperx[512].text 還有這個我們的整個役後的全球的搶工潮這些都是問題啦好那我想點出一個問題我們大家一起來探討為什麼年輕人都選擇做part-time做兼職你連領時薪也不願意做全職至114年1月1日起基本工資月薪調升28590好時薪調升190
transcript.whisperx[513].start 13918.137
transcript.whisperx[513].end 13940.747
transcript.whisperx[513].text 本席跟部長說基本工資就是元兇之一今天我要分兩個層次來跟部長來探討這個全時職位缺工的一個事情第一個層次明年起基本工資的月薪是28590元若領時薪制的人來而言一天工作8個小時一個月我們工作大概22天他的月薪是
transcript.whisperx[514].start 13943.328
transcript.whisperx[514].end 13955.516
transcript.whisperx[514].text 1908個小時22天相乘之下是33440元對吧在領月薪的概念下正值的月薪是28590兼值的可以來到33440如果是你會選擇哪一個
transcript.whisperx[515].start 13958.74
transcript.whisperx[515].end 13975.433
transcript.whisperx[515].text 是委員那個部分工時就是這個時薪啦時薪的這樣子的一個調升當然現在的幅度我們今年也有把它就是調整到月薪是同等的甚至稍低一點
transcript.whisperx[516].start 13976.414
transcript.whisperx[516].end 13990.472
transcript.whisperx[516].text 這樣的狀況是其實這是因為過去累積十幾年來累積的成的的問題啊過去會想要幫部分公使者加薪過去的政策上有這樣的傾向啦所以確實時薪不斷的調
transcript.whisperx[517].start 13992.975
transcript.whisperx[517].end 13997.983
transcript.whisperx[517].text 甚至有的時候調的都比月薪還要高對沒關係那你現在說到是這樣的問題可是我就跟你講114年1月1號開始我們看到的一個問題狀況已經產生了這個數據有這樣子的一個明顯的差距那第二個層次把加單費加進去呢
transcript.whisperx[518].start 14008.274
transcript.whisperx[518].end 14023.321
transcript.whisperx[518].text 所以明年基本工資28590這金額是把例假日國定假日工資都納進去喔勞基法規定是工作時數單週是40個小時所以兩者都換算下來正常的勞工時薪
transcript.whisperx[519].start 14024.4
transcript.whisperx[519].end 14038.399
transcript.whisperx[519].text 月薪領月薪的這些人他換算時薪以後是119元所以部分工作的工作者這個最低時薪190元跟這個時薪假不包含例假日國定假日
transcript.whisperx[520].start 14039.38
transcript.whisperx[520].end 14066.639
transcript.whisperx[520].text 所以我一直在講這個層次第一層次第二層次拉出來講我們看到這個問題這個數據兩者若把加班費都算進去月薪制的時薪119元乘以加班的前兩小時1.34或者是後兩小時的1.67以及時薪制的1.9對不起190元乘以1.34或者是1.67兩者相較加班費更多所以部長若是你你會選擇前哪一個比較多
transcript.whisperx[521].start 14067.941
transcript.whisperx[521].end 14089.537
transcript.whisperx[521].text 確實那個就是時薪的這樣子的一個他的一個狀況會不會導致部分公司跟零工經濟的更盛行對啊這是一個原因所以剛剛有委員提出數據嘛那如果一些數據一直在不斷的拉高不過這有時候是這樣啊 雞生蛋誕生雞因為現在就是剛剛有講嘛那個那個你現在的年輕人
transcript.whisperx[522].start 14093.5
transcript.whisperx[522].end 14105.748
transcript.whisperx[522].text 但我們需要找到一個平衡點我不是說一定就是說馬上要拉到什麼程度就可以抑制或者就馬上就回升不可能但是我要點出一個問題我們去稍幅度的去做改善對
transcript.whisperx[523].start 14109.241
transcript.whisperx[523].end 14134.733
transcript.whisperx[523].text 面對現在的工作型態年輕人不喜歡我們要引入其他什麼樣的剛剛有說的可能是婦女可能是外籍移工這些部分我們要再多加的去做一個配套而不是說我全部的都擋住外籍移工而不是說我去忽略了女性想要從事工作那我們應該要加大力度應該鼓勵女性來參與這些工作
transcript.whisperx[524].start 14135.373
transcript.whisperx[524].end 14163.948
transcript.whisperx[524].text 所以我覺得這些配套我今天點出來的是問題之一絕對不是問題的全貌所以我想說難怪正職沒有人做因為大家都去做兼職了因為是勞動部所造成的一個這個很直覺數字問題薪水的一個問題我想你們應該就像你剛剛有說的你有提到你有部分去做調整盡量把它拉近可是我現在所提出的數據我希望你也要正視這樣子一個問題為這群年輕人他們有時候是為了
transcript.whisperx[525].start 14164.729
transcript.whisperx[525].end 14175.13
transcript.whisperx[525].text 這樣子的一個很簡單的數字問題他們只希望領到更高的薪水所以部長從哪一年開始月薪跟時薪就開始永遠會有落差你有去調查嗎
transcript.whisperx[526].start 14176.358
transcript.whisperx[526].end 14203.07
transcript.whisperx[526].text 應該是2012年就開始了已經十年了十幾年了所以是不是由您開始來想辦法我今年其實已經都把它拉起了對你已經盡量拉起了再來我們也是會盡量要把它兩者要拉起啦對好所以對於我們今天的建議您是認同的是會去做改善認同認同是當然我們最低工資審議委員會也一直在討論這個問題
transcript.whisperx[527].start 14204.17
transcript.whisperx[527].end 14229.324
transcript.whisperx[527].text 也是我們討論的核心那當然後面我想我從一開始就有問你喔不管是移工的一個問題那現在我們又要引入這個有簽這個NOU嘛印度的部分那國人都很關心不管是社會的衝擊還有到底他的一個時序表還有他有沒有一個概況到底是印度的哪一個省是我們未來要NOU最主要合作的一個對象這部分勞動部有規劃出來了嗎
transcript.whisperx[528].start 14230.475
transcript.whisperx[528].end 14255.058
transcript.whisperx[528].text 我們已經有最新邀請對方的工作小組會議已經要開始了要開始了?你剛剛講的好像都已經確定了是確定要開始了?還是內容已經確定了?我們已經要開始對接就是工作邀請對方已經過來什麼時候可以開始?什麼時候可以確認?可不可以給我一個時間表?我們下個月他就會過來了嗎?還是這個月?
transcript.whisperx[529].start 14257.153
transcript.whisperx[529].end 14282.374
transcript.whisperx[529].text 是你們要過去還是他要過來不好意思應方過來已經確定了12月11月就會有一個討論的討論的主軸就會開始出來了那當然社會的衝擊或者是社會民意的一個態度對於這個到底認不認同我現在有待溝通其實我們這個範圍很小啦初期是那個規模很小的
transcript.whisperx[530].start 14283.014
transcript.whisperx[530].end 14283.475
transcript.whisperx[530].text 接下來請李博毅委員發言
transcript.whisperx[531].start 14312.168
transcript.whisperx[531].end 14332.893
transcript.whisperx[531].text 有請何部長。請何部長。委員好。謝謝部長。辛苦了。我想今天的命題有點會讓人家很容易跳進。今天的命題叫做全時職位缺工概況。我看每一個委員問的都是
transcript.whisperx[532].start 14335.27
transcript.whisperx[532].end 14353.205
transcript.whisperx[532].text 全職人員跟部分工時明明就在講全職職位缺工概況那原因是什麼原因就是說是不是有大量的全職跑到部分工時所以造成我們今天要來討論這個全職職工缺工的概況
transcript.whisperx[533].start 14357.669
transcript.whisperx[533].end 14383.877
transcript.whisperx[533].text 所以剛剛所有的委員很多大部分也都講得很清楚新型的這個就業形態確實會讓很多人去選擇很多原因我不贊成去直接去說現在的年輕人會這樣做我比較傾向說很多原因會造成現在的這些部分公司的人增加那甚至其他這些包含這些
transcript.whisperx[534].start 14386.458
transcript.whisperx[534].end 14408.384
transcript.whisperx[534].text 包括民間夜市123人力104等等的這些數據的統計的結果跟我們主計總署統計的結果確實有一點落差那跟我們一般其實我們在民間訪談所聽到的這些狀況正在發生的狀況也都不一樣那我直接講最後一頁
transcript.whisperx[535].start 14410.97
transcript.whisperx[535].end 14425.249
transcript.whisperx[535].text 就是也很多人在講比如說餐飲業如果我選擇的是部分工時那跟全職的人員的薪水落差會有多少可能選部分工時的這個條件會比較好
transcript.whisperx[536].start 14425.97
transcript.whisperx[536].end 14445.071
transcript.whisperx[536].text 空間會比較好生活會比較快樂那導覽部可能的給僱主的意見就說按你可能可以增加這些全職工時的薪水好可以增加那可能餐飲就餐飲費用就會增加所以整個社會的包含這些未來的生活指數可能會
transcript.whisperx[537].start 14446.152
transcript.whisperx[537].end 14467.708
transcript.whisperx[537].text 越來越高等等的跟我們的一些工時就跟我們的最低工資跟我們希望雇主提升全職工時的這些顧問人員的薪水要高一點都有關係啦那所以說怎麼樣取得一些平衡部長我跟你說有一群受困的人跟
transcript.whisperx[538].start 14468.789
transcript.whisperx[538].end 14479.184
transcript.whisperx[538].text 比如說台灣現在便利商店的加盟業者是有要求你加盟的時候你這個加盟者你可能要負責每個禮拜要工作幾個小時
transcript.whisperx[539].start 14482.369
transcript.whisperx[539].end 14511.749
transcript.whisperx[539].text 那很多結果都變成這些加盟者都在顧大夜班大夜班請不到人然後再來也正在發生的我就碰到好多件加盟者已經必須要去跟他的這個加盟公司解約要賠大量的金錢為什麼他說我的健康還是比較重要所以開始有一些加盟便利商店的加盟者已經正在發生解約這件事情還有
transcript.whisperx[540].start 14512.729
transcript.whisperx[540].end 14522.515
transcript.whisperx[540].text 有些咖啡店已經決定原本營業到晚上9點10點的都已經決定到6點為什麼其實也跟這一些
transcript.whisperx[541].start 14524.793
transcript.whisperx[541].end 14548.164
transcript.whisperx[541].text 全職人員的工作時間不穩定全職人員的比較難找大部分都不分工時造成整個人員調度不穩定所以部長正在台灣社會發生的這些問題這些都跟工時都跟部分工時以及全職的薪水正相關正在發生所以小老闆們
transcript.whisperx[542].start 14549.284
transcript.whisperx[542].end 14575.196
transcript.whisperx[542].text 小老闆們我講的是開咖啡店的我講的是餐飲店的小老闆們非常的痛苦那我們應該要怎麼樣去協助他們這是正在發生的事情所以藉由今天這一個報告我想在這邊大家也都有看到社會的一個方向很多人轉向部分工時那轉向部分工時那勢必有很多產業必須要做一些轉型
transcript.whisperx[543].start 14577.011
transcript.whisperx[543].end 14599.346
transcript.whisperx[543].text 就是說這一杯咖啡可能賣60塊的或者是晚上6點以後營業的會漸漸少了那這些餐飲可能也會漸漸調有一些不一樣的這些轉向所以在這邊其實國人都愛去日本旅遊那我們現在去日本的便利商店最大的特色是什麼都是外籍
transcript.whisperx[544].start 14600.623
transcript.whisperx[544].end 14605.192
transcript.whisperx[544].text 我的意思不是要外籍移工進來在我們就業服務法第46條裡面針對
transcript.whisperx[545].start 14609.293
transcript.whisperx[545].end 14631.273
transcript.whisperx[545].text 外國人在中華民國境內工作還有第50條針對外國學生他還是有一些限制跟條件那我覺得這些都是可以進入一些實質討論的方向的規劃那也有很多電子業已經跟學校因為少子化學校學生也不夠嘛
transcript.whisperx[546].start 14631.914
transcript.whisperx[546].end 14652.449
transcript.whisperx[546].text 那經由跟學校的合作已經開放逐漸有一些這些救福法46條裡面可以納入的範圍尤其第9項看護工作這個確實也是在整個台灣社會非常欠缺的我希望勞動部可以就這個方向去研擬鼓勵學校鼓勵
transcript.whisperx[547].start 14654.17
transcript.whisperx[547].end 14683.057
transcript.whisperx[547].text 跟這些包含看護行業包含著便利商店小老闆們小餐飲業者們等等找出臺灣新型的消費形態要怎麼走好謝謝委員因為其實橋外生我們是一個現在很鼓勵的領域就是他的項目其實還限制很多我相信可以慢慢的去開放我們可以鬆綁更多其實現在橋外生我們要進一步開放他個人工作許可就是以後他可以做任何行業
transcript.whisperx[548].start 14684.077
transcript.whisperx[548].end 14685.177
transcript.whisperx[548].text 謝謝李博弈委員我們現在先休息10分鐘
transcript.whisperx[549].start 14868.148
transcript.whisperx[549].end 14868.354
transcript.whisperx[549].text 本集完
transcript.whisperx[550].start 15354.537
transcript.whisperx[550].end 15371.481
transcript.whisperx[550].text 好,我們繼續開會。接下來請圖全級委員,圖全級委員,圖全級委員不在。請嚴匡委員,嚴匡委員,嚴匡委員不在。請戴世保委員,戴世保委員,戴世保委員不在。請吳春城委員,吳春城委員,吳春城委員不在。請黃修亮召委。謝謝主席,我們請何部長。來,請部長。
transcript.whisperx[551].start 15383.524
transcript.whisperx[551].end 15410.772
transcript.whisperx[551].text 部長好今天從早上到現在其實很多委員關心的就不論是全職的這個工作或者是部分工時的工作那其實我們講缺工的問題確實還蠻大的那尤其是這個製造業製造業的這個缺工更大因為像彰化這一邊中小企業非常的多那他們也會反映就是說他們一個工作就像部長你們今天的這個報告
transcript.whisperx[552].start 15412.132
transcript.whisperx[552].end 15435.9
transcript.whisperx[552].text 有6.6萬個職位這個懸缺超過半年找不到人那確實這個是真的在我們的地方確實是這樣子的狀況那很多這個製造業他們也希望說能夠聘請臺灣就是臺灣的這個勞工畢竟臺灣的勞工第一個語言可以溝通那第二個他也不需要去
transcript.whisperx[553].start 15436.34
transcript.whisperx[553].end 15438.382
transcript.whisperx[553].text 一般的這個傳製造業他們第一個優先還是希望所有台灣的勞工來應徵嗎那非不得已的話他們就會在
transcript.whisperx[554].start 15456.563
transcript.whisperx[554].end 15479.162
transcript.whisperx[554].text 請眾屆可能就引進這個外籍移工進來那我今天想要知道就是說勞動部也針對這個缺工的原因你們也有做一些分析嗎那怎麼解決原因有兩個第一個可能就是說這個薪資跟原本這個勞工的這個期待有一些落差那另外一個就是說工作年齡的人口逐年減少
transcript.whisperx[555].start 15480.763
transcript.whisperx[555].end 15505.07
transcript.whisperx[555].text 這兩個主要原因那你們也有提出一些因應的方案比如說可能就是跨部會的這個合作機制啊有些媒合國人就業那還有一個就是說這個職業訓練培訓產業人才接下來才是這個加強這個推動中階技術人力流財的政策那我想請教就是說
transcript.whisperx[556].start 15506.212
transcript.whisperx[556].end 15529.121
transcript.whisperx[556].text 其實你們提出了這些解決的方案那比如說這個跨部會的合作機制優先媒合本國人就業那這個還有另外一個是職業訓練培訓產業所需要的人才那因為製造業確實缺工的問題非常的多那你們有這樣的一個機制培訓的這個機制那到底
transcript.whisperx[557].start 15530.241
transcript.whisperx[557].end 15552.001
transcript.whisperx[557].text 這個培訓的課程培訓完之後他真正投入到這個產業到底有多少那確定可以解決這樣子的一個缺工的問題到底有多少上次我記得我有問過這樣的議題就是說你們是不是有做一個統計那今天我再問一下就是說你們針對這一部分就是說你們做執訓完之後那確實投入這個產業
transcript.whisperx[558].start 15553.642
transcript.whisperx[558].end 15565.068
transcript.whisperx[558].text 也解決了少部分的這個缺工的議題這個問題那你們到底有沒有做一個統計有委員那個我們製造業的部分去年訓練10242人訓後就業率有82%到9月今年9月底有訓練到8366人是那像營建業的部分去年訓練3920人
transcript.whisperx[559].start 15583.118
transcript.whisperx[559].end 15583.478
transcript.whisperx[559].text 新聞新聞新聞新聞新聞
transcript.whisperx[560].start 15606.017
transcript.whisperx[560].end 15632.192
transcript.whisperx[560].text 為什麼地方尤其是製造業製造業缺工的這個議題真的是很多企業他們在反映就是缺工嗎就是缺工所以我也知道就是說你們在地方都有做這樣的一個培訓執訓的一個課程那照剛剛部長講的投入投入到職場的也有七八十百分之七八十那算也也不低啦那為什麼還是有
transcript.whisperx[561].start 15633.976
transcript.whisperx[561].end 15659.541
transcript.whisperx[561].text 不夠啦。就是還不夠。對啊。所以就是說畢竟真的少子化啦。就缺工的這個議題。對。這個真的整體的人還是少的嘛。整體的人少了說真的我們就算訓練再多投入再多那個整體的供給可能確實還是不夠的。那就是我們講的就是說好那供給不夠缺工這個議題應該
transcript.whisperx[562].start 15662.001
transcript.whisperx[562].end 15689.221
transcript.whisperx[562].text 從一開始我們就一直在討論這個缺工的議題嘛齁那這個也是勞動部應該要這個積極去解決的問題那我想請 委員跟您報告喔那個彰化地區向我們工業區廠商聯合會我們跟他們溝通他也是我們最低工資審議委員我們跟他溝通非常密切他們也是有在反映所以我們現在也會針對我們所謂的3K5極致啦這個禁用比例40%
transcript.whisperx[563].start 15690.882
transcript.whisperx[563].end 15699.488
transcript.whisperx[563].text 有沒有可能有一些調整?我們這個已經有跟他們密切的溝通討論會檢討調整第三個你們有說加強推動中階技術人才的這個留任的政策
transcript.whisperx[564].start 15709.514
transcript.whisperx[564].end 15729.394
transcript.whisperx[564].text ﹚議員
transcript.whisperx[565].start 15730.635
transcript.whisperx[565].end 15743.24
transcript.whisperx[565].text 初步我看到從事旅宿業.可能就是房屋、清潔、訂房、接待.餐廳外廠的工作.初次受聘的薪資門檻為3萬.續聘是3.3萬.之前部長也在這邊有講說.3萬或3.1萬、3萬1千.這個算是低薪.
transcript.whisperx[566].start 15755.606
transcript.whisperx[566].end 15774.928
transcript.whisperx[566].text 上次部長有這樣講,那如果說我們針對畢業的橋外生從事這樣的工作,就是說可能一開始是初次受聘就3萬,然後續聘是3萬3,那部長你覺得這樣子的話可以確實讓這些人願意留下來嗎?
transcript.whisperx[567].start 15777.24
transcript.whisperx[567].end 15798.449
transcript.whisperx[567].text 這確實是問題啊 這個也是為什麼我即便開放的喬外森是這樣中間人才來從事 那喬外森也是會挑工作啦 是對那這樣的薪資又因足不足以又使他們留下來是問號 這也是呂樹葉的問題 因為他在怎麼他們開出來的薪資水準就是這樣 是對那這個是主管機關
transcript.whisperx[568].start 15799.77
transcript.whisperx[568].end 15800.331
transcript.whisperx[568].text 我國全時職位缺工概況
transcript.whisperx[569].start 15815.186
transcript.whisperx[569].end 15836.598
transcript.whisperx[569].text 比如說協調也好或是溝通也好我覺得如果說照這樣子的話你剛剛講的這三個機制可能跨部會合作機制優先媒合本國人就業那第二個就是說這個做職業培訓職業訓練那第三可能就是中階技術人才的這個留才
transcript.whisperx[570].start 15837.478
transcript.whisperx[570].end 15867.063
transcript.whisperx[570].text 那如果說你中階技術人員的這個流財的政策如果他開出來的薪資還是這樣的話我不認為他們會願意留在這邊工作就像剛剛很多委員講的可能我們鄰近的國家他開出來的薪資都比臺灣的薪資還好那怎麼樣讓這些人願意留下來我覺得這是一個很重要也很大的一個問題我跟委員報告就是含包括義後缺工獎勵方案為什麼這個質詢率不好也是這個因素
transcript.whisperx[571].start 15867.683
transcript.whisperx[571].end 15892.424
transcript.whisperx[571].text 所以我們就是說希望企業界要有一個認知這已經不是低薪的時代了無論是對本國人或者是移工都是一樣的因為我們也在跟國際搶工這是最大的問題的根源很像喬外森就像您剛剛講的陳孫林剛剛講的但也是在國際搶工潮裡面他們都是可以留向任何國家的未必要留在我們這裡
transcript.whisperx[572].start 15893.345
transcript.whisperx[572].end 15917.101
transcript.whisperx[572].text 所以我覺得這應該也要去跨部會或者是也要跟這個企業或者是跟工業區竟然就是說我覺得我們部會可能也要跟地方的工會或者是地方的這些場協會可能也要有一些溝通啦對對或者是商總我覺得應該要有一些溝通他們應該也要如果有賺錢應該也要願意跟所有的勞工一起分享
transcript.whisperx[573].start 15918.402
transcript.whisperx[573].end 15938.801
transcript.whisperx[573].text 最後一個我想請教就是昨天院長在那個院會的時候因為有委員質詢那有特別提到就是說這個家庭幫傭這個議題我想請教部長就是說昨天我聽到院長有說這個可能在年底的時候會
transcript.whisperx[574].start 15940.883
transcript.whisperx[574].end 15960.635
transcript.whisperx[574].text 可能會做一個決定那我想請教就是說針對我們講的說第一個要優先媒合這個國人就業那再來才是如果真的缺工可能就是開放移工或者是其他的這個政策那我想請教關於這個家庭幫傭
transcript.whisperx[575].start 15964.497
transcript.whisperx[575].end 15991.887
transcript.whisperx[575].text 家庭幫庸他未來如果說你們開放之後那是不是也要協助這個育兒的這種工作可能就是照顧孩子小孩的這樣的一個工作我覺得這個可能這個議題可能會牽涉到很多層面那這個議題也是很多人關心的對委員就是家庭幫庸開放的議題我們必須衛福部一起來處理那衛福部在這方面目前都還很保留
transcript.whisperx[576].start 15992.347
transcript.whisperx[576].end 16005.164
transcript.whisperx[576].text 是,那當然...如果照昨天院長這樣講的話他講的好像是說這個年底就會有一個決定那我現在已經10月底了
transcript.whisperx[577].start 16006.178
transcript.whisperx[577].end 16032.735
transcript.whisperx[577].text 距離年年底可能剩下一兩個月我相信你們應該也自己有一個副案那我想要提醒就是說這個議題會牽涉到的層面非常的多那可能就是保姆的這個我們國人的保姆的就業機會可能也會受到衝擊所以我覺得說這個如果要做一個決定應該也要很審慎的去做一個評估是這我們必須跨部會溝通是而且確實成如您講的這個我們
transcript.whisperx[578].start 16034.796
transcript.whisperx[578].end 16034.996
transcript.whisperx[578].text 當然當然,謝謝委員
transcript.whisperx[579].start 16076.109
transcript.whisperx[579].end 16103.586
transcript.whisperx[579].text 接下來請葉元芝委員葉元芝委員葉元芝委員不在接下來請劉建國委員發言好謝謝昭偉我就接續昭偉剛剛徐育群部長的題目好不好何部長部長剛剛也答呼黃少偉講的台灣的環境現在早已不是這個低薪的環境那勞動部知道這個狀況那勞動部要扮演的
transcript.whisperx[580].start 16105.309
transcript.whisperx[580].end 16119.984
transcript.whisperx[580].text 去改善這樣的一個情況的角色會著重在什麼地方?委員就是說應缺工當然我們在報告裡面也提就是說包括
transcript.whisperx[581].start 16121.178
transcript.whisperx[581].end 16139.53
transcript.whisperx[581].text 提醒培訓國人然後這一個引進外籍大概不脫離這些方式可是我們也必須去因應現在的整個勞動形態的變化那還有包括現在的產業形態的變化我們如何跟產業之間進一步的來討論怎麼樣才是一個你願意
transcript.whisperx[582].start 16145.515
transcript.whisperx[582].end 16162.392
transcript.whisperx[582].text 你願意付出的然後又可以引進這個你需要的勞動力然後是搭配你願意付出的薪水所以這就是我們要在勞動力的供給端跟這個需求端我們要去幫他們撮合的一個滿艱鉅的工作
transcript.whisperx[583].start 16169.164
transcript.whisperx[583].end 16171.789
transcript.whisperx[583].text 我還在消化部長講的
transcript.whisperx[584].start 16177.763
transcript.whisperx[584].end 16199.682
transcript.whisperx[584].text 臺灣已經不是一個低薪的環境基本上基本上很多的很多的很多的類別啦才略別來講他也不見得有多低薪喔甚至高薪的還蠻多的然後包含包含包含包含包含剛從大學畢業的
transcript.whisperx[585].start 16201.224
transcript.whisperx[585].end 16202.705
transcript.whisperx[585].text 在台北市的服務業平均薪資也不算低
transcript.whisperx[586].start 16222.822
transcript.whisperx[586].end 16223.323
transcript.whisperx[586].text 委員會主席
transcript.whisperx[587].start 16238.079
transcript.whisperx[587].end 16254.149
transcript.whisperx[587].text 更堅強的這個角色不過他還是會連動到相關的部會這個我們都清楚嘛那不曉得你可以看一下就是說這個是你們的報告嘛6.6萬6.6萬的職缺這個是超過半年補不到人的嘛對不對這是勞動部的資料綜合統計結果綜合的分析
transcript.whisperx[588].start 16256.93
transcript.whisperx[588].end 16275.084
transcript.whisperx[588].text 主席處剛剛部長有回問其他委員就是說他一個事業能力雇用調查的這個報告則是112年8月底工業及服務業的職缺數是在23.7萬然後他會叫同年的2月增加2.1萬因為他是8月2月8月這樣在計算
transcript.whisperx[589].start 16277.486
transcript.whisperx[589].end 16288.232
transcript.whisperx[589].text 那或許這23.7萬的職缺就成了部長答覆的可能你們在統計的方式不太一樣他應該是不是就不是缺過這個缺超過6個月的啦您這個是組總的調查吧沒有組計總處下一張對他這個就是職缺調查
transcript.whisperx[590].start 16299.552
transcript.whisperx[590].end 16314.6
transcript.whisperx[590].text 對這個是主計總署的調查沒錯對嗎我說你們你們是半年你們的6.6萬是超過半年補不到人的嘛對不對那主計總署或許就是不是超過6個月的一個統計嘛對應該是這麼講他可能現在缺而已
transcript.whisperx[591].start 16315.94
transcript.whisperx[591].end 16330.385
transcript.whisperx[591].text 現在缺而已但是你去年8月對照2月主計總署的統計一個表格是增加2.1萬這是主計處我不曉得你怎麼解讀這個那部長你再看下一個數據
transcript.whisperx[592].start 16332.587
transcript.whisperx[592].end 16351.245
transcript.whisperx[592].text 103一直到112這個是主計的資料他是每年就這樣公布如果他公布這個數據是有問題的那就很嚴重了因為105是明晚開始執政那你看我們在105到109左右平均都在22萬以下
transcript.whisperx[593].start 16353.407
transcript.whisperx[593].end 16373.695
transcript.whisperx[593].text 10月110疫情的一些狀況有增加但是到了11年到112年我們還是維持在23萬以上不是以下這個我就要請教部長有沒有機會有沒有什麼做法有什麼精進的作為可以壓低回到105到109這個區間22萬左右有嗎
transcript.whisperx[594].start 16378.337
transcript.whisperx[594].end 16403.206
transcript.whisperx[594].text 委員我想因為歷經3年的疫情啦他這個是有一個爆發式的經濟需求存在其實這個喔112年23.7那當然慢慢的也許他也有可能緩和下來啦這也是有可能的那可是你說我有沒有這個能耐把他要回到105年
transcript.whisperx[595].start 16405.488
transcript.whisperx[595].end 16422.304
transcript.whisperx[595].text 我沒有用能耐兩個字來形容部長我是說有沒有想到用什麼樣的方法可以把他壓到22萬當然我們現在正是要努力但是如果部長要願意這樣努力達成這個目標但是你們今天報告又會被挑戰
transcript.whisperx[596].start 16423.385
transcript.whisperx[596].end 16445.993
transcript.whisperx[596].text 你們的報告你們報告裡面寫這樣每年協助求職者就約50萬人其中在112年就協助服務部門僱用44.8萬包含住宿、餐飲13萬、批發及零售業11.3萬顯然這個老花署每年都有這樣成效但是你看那個缺工還是持續在惡化
transcript.whisperx[597].start 16447.552
transcript.whisperx[597].end 16473.008
transcript.whisperx[597].text 報告裡面 寫得也非常清楚就缺工缺工的原因以這個待遇不符合期望比率最高這部長剛剛在答詢的過程裡面也一直提到那行政院總署也有這樣的一個資料就人力運用調查統計資料顯示失業者曾遇過工作機會曾遇有工作機會而未就業原因中以待遇不符合期望佔比最高62%其實什麼地點
transcript.whisperx[598].start 16475.489
transcript.whisperx[598].end 16488.473
transcript.whisperx[598].text 對理想工作環境不良等等等比例還算是偏低嘛那我現在是現在就是說那勞動部在沒有這些工作的時候有沒有再去做這樣的一個統計他留在這個職場的時間有嗎
transcript.whisperx[599].start 16493.515
transcript.whisperx[599].end 16505.704
transcript.whisperx[599].text 我請署長講好請署長跟委員報告我們一般就會追蹤至少三個月會持續做追蹤至少三個月以上對以下以下因為有些像兆福園這一部分我們甚至到一年
transcript.whisperx[600].start 16507.649
transcript.whisperx[600].end 16522.269
transcript.whisperx[600].text 不同列比的追蹤的時間所以你這樣的統計數字有點奇怪我這邊有一個民間的統計數字你看一下他根據民間的統計大概約有25%到4%的先進員工他在半年內就離開了就離職了
transcript.whisperx[601].start 16525.197
transcript.whisperx[601].end 16551.306
transcript.whisperx[601].text 這樣如果你套在你們老花鼠每年每盒50萬也就是說你們一旦每盒50萬不到三個月半年他就跑了就離子12.5萬到20萬左右嘛就半年內離子啦我們講半年內為一個週期來講這個是這個數據這樣推估如果統計起來等於老花鼠在做這些事情好像在做白工
transcript.whisperx[602].start 16553.231
transcript.whisperx[602].end 16559.219
transcript.whisperx[602].text 我們來檢討好嗎我們現在大家檢討嘛 我想想這樣檢討就對了待遇不符合期望又高達62%部長講的臺灣就已經不是一個地心的環境嘛
transcript.whisperx[603].start 16564.972
transcript.whisperx[603].end 16583.43
transcript.whisperx[603].text 他這個待遇不合期期望到底是雇主不願意去提高薪資還是還是還是從事這個職業的人他覺得這個薪資沒有達到他要的這個我們不曉得你們有沒有去做相關的一些調查
transcript.whisperx[604].start 16585.629
transcript.whisperx[604].end 16596.634
transcript.whisperx[604].text 因為我覺得他是要細究的啦他絕對不是只有單純說平均薪資怎樣怎樣這樣我們也要調了啊你看明年我們的明年最低的基本工資是28590塊嘛對不對時薪就來到190嘛其實你們都有在做嘛民進黨執政的這89年已經提了9次了嘛
transcript.whisperx[605].start 16605.257
transcript.whisperx[605].end 16631.928
transcript.whisperx[605].text 所以我是覺得說然後你再看喔你們報告就寫你6.6萬的缺工數與中階技術層次最多占59.7嘛對不對那同時較高層次占32高階技術占32.7排序在第二嘛然後你們有一個叫做後續強化精進做法是要把橋外生拿來補嘛
transcript.whisperx[606].start 16633.288
transcript.whisperx[606].end 16636.009
transcript.whisperx[606].text 喬外森本來是一個補充能力那你現在把他放在中階這一塊那喬外森就不會跟你講說心思不符合期望
transcript.whisperx[607].start 16654.208
transcript.whisperx[607].end 16672.666
transcript.whisperx[607].text 他也會啊對啊我要跟您報告齁其實現在我們對強化衛生的政策已經逐漸不是把它看成補充他是已經把它當人才啦好啊我們甚至還要搭配國防會的修法攬財的專法的修法你既然把它當人才希望能夠把它銜接技術移民對對對這樣問題又更嚴重了
transcript.whisperx[608].start 16675.359
transcript.whisperx[608].end 16704.742
transcript.whisperx[608].text 對不對待遇不符期望那蕎麥生沒有這個問題有他有他也有這樣的問題啊他所有蕎麥生可能比例會比62%更高那你們怎麼處理待遇不符期望對啊對啊對啊是這樣啦所以蕎麥生進來他會是做他這個臺灣就是說我們現在看那個產業裡面他有需求的高就是說薪水有一定程度以上的而真的找不到人啊
transcript.whisperx[609].start 16705.662
transcript.whisperx[609].end 16727.474
transcript.whisperx[609].text 這個才是我要開中階的目的嘛比如像我昨天在我在服務業的那個座談裡面測會繪圖的那種技術人員他的薪水可能比如說四五萬以上的可是你的腿他就找不到人而他是需要專業的那這一種我就是吸引我就是用這種中階橋外生來希望能讓他們來進入這裡這樣子啦
transcript.whisperx[610].start 16732.465
transcript.whisperx[610].end 16748.676
transcript.whisperx[610].text 你這樣打呼我 我覺得怪怪的就台灣我們就自己找不到了你期待中階這一塊從喬外森找然後你又不擔心他們有這個待遇不符合期望的狀況就沒辦法衝突衝突了
transcript.whisperx[611].start 16749.485
transcript.whisperx[611].end 16766.436
transcript.whisperx[611].text 不是委員我現在有個概念大家要弄清楚就是中階的是人力他不是for低薪行業的移工啦這是兩個是喔中階的人力他是真的要來補人力的不足而他是一定薪水以上的喔
transcript.whisperx[612].start 16767.837
transcript.whisperx[612].end 16789.738
transcript.whisperx[612].text 會有薪資門檻的 這就是為什麼旅宿的中階橋外生他還要限制薪資門檻3萬3以上你如果是在臺灣的旅宿業都會低到2萬7、2萬8這樣子而已所以這個是中階人力是有薪資門檻以上要來補人力不足的而
transcript.whisperx[613].start 16793.092
transcript.whisperx[613].end 16809.297
transcript.whisperx[613].text 所以他不會去他也會向上提升薪水啦我的意思是這樣就我的理解現在不要說中階連低階的薪資門檻都有在提高如果說你對僑外生有中階的這個勞工需求的薪資門檻的這樣的一個設定那對國人怎麼又沒有
transcript.whisperx[614].start 16819.332
transcript.whisperx[614].end 16822.596
transcript.whisperx[614].text 我們對國人也是那就是希望要提高薪資啊
transcript.whisperx[615].start 16823.761
transcript.whisperx[615].end 16852.589
transcript.whisperx[615].text 對啊你你這邊講門檻這邊是提高薪資那個那個做法上就會為什麼我們要限要要對中階有薪資門檻就是怕他拉低國人薪資啊所以我們才會有薪資門檻的限制因為他不是移工這就是為什麼我不開服務業移工的原因因為服務業移工太低嘛你一進來又不是不是我們要弄清楚一件事情你對你對喬艾森的中階的這個部分有一個門檻的提高對不對那你對國人的中階的部分有沒有做這樣處理沒有
transcript.whisperx[616].start 16853.61
transcript.whisperx[616].end 16875.457
transcript.whisperx[616].text 國人的中階甚至都會更高啦因為國人本身在薪資水準上都是時間的關係啦我們再來對啦最後一個我再提醒我還是希望你那個精進的報告可能要再詳細一點好不好不然你那個老花鼠這麼辛苦真的我感覺好像都是在做白工什麼原因這麼快就離開這個職場
transcript.whisperx[617].start 16878.177
transcript.whisperx[617].end 16898.724
transcript.whisperx[617].text 是不是只有單純的待遇不符合期望的62%我覺得這個是可以討論的空間啦我最後再提醒老花鼠好不好你們喔現在我們就全台在講缺工趙薇今天也排這個專案嘛那你看老花鼠在辦理工作崗位訓練有這個叫做先顧後訓然後每訓練一年每月有補助1.2萬喔
transcript.whisperx[618].start 16900.525
transcript.whisperx[618].end 16915.973
transcript.whisperx[618].text 對不對特定區域你又提高到每個月1.5萬我想這是一個好的政策力量善嘛你的網站怎麼又這樣特定缺工產業先顧後勸課程查詢馬上查詢兩則課程你又發言了八個
transcript.whisperx[619].start 16926.229
transcript.whisperx[619].end 16926.869
transcript.whisperx[619].text 接下來請楊耀委員發言
transcript.whisperx[620].start 16968.472
transcript.whisperx[620].end 16970.385
transcript.whisperx[620].text 謝謝主席 主席請到何部長請何部長
transcript.whisperx[621].start 16976.15
transcript.whisperx[621].end 16997.624
transcript.whisperx[621].text 部長好,我們今天討論全時職缺工的問題所以有一個問題我想要先釐清一下就是我看我們最低工資長期以來就是時薪高於月薪有沒有辦法把月薪提高到時薪的總和
transcript.whisperx[622].start 16999.545
transcript.whisperx[622].end 17023.179
transcript.whisperx[622].text 怎麼算呢?就是10星乘以8再乘以22天來當作最低工資因為我覺得這個問題不解決全職的職缺缺工不會改善因為我用part-time領的錢
transcript.whisperx[623].start 17025.936
transcript.whisperx[623].end 17053.041
transcript.whisperx[623].text 一樣的工時是比最低工資高的 這個可能很多人會不願意投入全職的職缺 這個部長有什麼看法?是 非常同意委員的提醒 這也是我們最低工資審議委員我們今年有很熱烈的討論這個問題 那沒有成功的原因是什麼?你們講很熱烈的討論
transcript.whisperx[624].start 17055.241
transcript.whisperx[624].end 17083.582
transcript.whisperx[624].text 因為明年明年都已經公佈了嗎?還是有一定的差距嗎?倒是我們現在再慢慢把它拉齊啦。你明年可能要差到4千7百多。是就是因為我們今年的幅度我們就把它拉到跟那個甚至稍低一點比那個月薪的條幅稍低一點我們再來慢慢的往會拉齊這兩邊。不是
transcript.whisperx[625].start 17085.865
transcript.whisperx[625].end 17096.337
transcript.whisperx[625].text 剛剛劉建國委員也提到就是求職者不願意倒職的因素裡面有超過60%是對待遇有意見
transcript.whisperx[626].start 17102.259
transcript.whisperx[626].end 17128.297
transcript.whisperx[626].text 為什麼是把時薪的條幅拉低而不是把月薪的條幅拉高部長剛剛講的是你們討論的時候想要讓他趨近接近嘛那有兩個方法你們為什麼會選擇拉低時薪的條幅而不是拉高月薪的條幅
transcript.whisperx[627].start 17131.955
transcript.whisperx[627].end 17141.427
transcript.whisperx[627].text 這個就是光是部長這樣子的回答就表示臺灣的要脫離地心的環境非常非常的困難
transcript.whisperx[628].start 17143.131
transcript.whisperx[628].end 17170.399
transcript.whisperx[628].text 不是委員這可能我要再解釋更清楚一點這個是我們整體會去調高最低工資會逐漸的往上調的一定都是往上調可是呢月薪的部分他能不能一次就去拉超過這麼高這是一個最低工資審議委員會必須討論的問題也不是我能決定的這個要整個大家有共識才行啦
transcript.whisperx[629].start 17170.839
transcript.whisperx[629].end 17197.281
transcript.whisperx[629].text 而他條:如果是那個幅度一下子太高喔整個社會能不能承受也是問題對企業主可能沒有辦法承受這個我可以接受我現在是說為什麼審議委員會有意識到全職的最低工資跟時薪是有差距的那在審議的時候
transcript.whisperx[630].start 17199.122
transcript.whisperx[630].end 17219.182
transcript.whisperx[630].text 是把時薪的條幅降低而不是把全薪的條幅拉高懂我意思嗎?因為這個是部長剛剛回答的喔是是是委員我剛剛要再跟您補充你聊口誤你就說口誤沒有關係我是可以接受的
transcript.whisperx[631].start 17220.062
transcript.whisperx[631].end 17229.967
transcript.whisperx[631].text 當然啦我實習那個部分的條幅其實是去掉尾數啦他倒並不是說我刻意去把它降低啦因為台灣的薪資確實是
transcript.whisperx[632].start 17236.284
transcript.whisperx[632].end 17252.038
transcript.whisperx[632].text 是偏低啦 也因為偏低所以才我們今天才討論這個問題啦 是是是 按照勞動部最新的調查就是到今年7月底全國缺工長達半年找不到職缺的有6.6萬 是
transcript.whisperx[633].start 17256.633
transcript.whisperx[633].end 17278.161
transcript.whisperx[633].text 按照行業別,長達半年找不到的依序有製造業、批發業、批發零售業、營建、旅宿業、社會工作服務業。請問部長,上述業別增才半年沒有辦法補足的主要原因是什麼?
transcript.whisperx[634].start 17279.929
transcript.whisperx[634].end 17299.756
transcript.whisperx[634].text 嗯對其實當然他這裡是超過半年啦齁超過半年都一直沒有辦法待遇跟勞動條件都是原因啦一定都是主要原因好那對所以您去看齁那我就直接問那你你們到底有沒有解決的方案
transcript.whisperx[635].start 17301.818
transcript.whisperx[635].end 17322.025
transcript.whisperx[635].text 我看部長在回答原因的時候速度很快那你們有沒有因應的方案?懂我意思嗎?因為你們肩負著全國勞工的工作環境工作條件等等的照顧這是勞動部成立最大的種子
transcript.whisperx[636].start 17322.945
transcript.whisperx[636].end 17335.188
transcript.whisperx[636].text 包括職業訓練讓他在職場上可以一直精進讓他取得更好的薪資這個都是你們的工作那原因你知道你有沒有因應的方案
transcript.whisperx[637].start 17338.322
transcript.whisperx[637].end 17358.806
transcript.whisperx[637].text 對我因應的方案當然委員就是我現在最大的困難我想是我們會發生在產業端這邊對所以我們必須要有效的跨部會整合然後看能不能把這個我們比如我們現在主動在做學校部長我的理解我這樣子講就是說產業界那邊應該要比較顧慮的是經濟部
transcript.whisperx[638].start 17364.12
transcript.whisperx[638].end 17384.942
transcript.whisperx[638].text 是經濟部那我現在是說你站在勞動部的立場你怎麼因應長期缺工然後低薪的現象因為跨部會整合就是這樣子嘛勞動部有勞動部維護勞工權益的政策方向
transcript.whisperx[639].start 17386.636
transcript.whisperx[639].end 17391.346
transcript.whisperx[639].text 經濟部有經濟部扶植並且確保產業持續發展的
transcript.whisperx[640].start 17395.987
transcript.whisperx[640].end 17397.908
transcript.whisperx[640].text 我現在是問你﹖你們有沒有這一方面的政策﹖
transcript.whisperx[641].start 17423.371
transcript.whisperx[641].end 17431.476
transcript.whisperx[641].text 是我們就是當然我們比如我們訓練人我們執訓人你們執訓人你們部長你知道參加政府辦理的執訓的參與人數也逐年在下降你知道嗎
transcript.whisperx[642].start 17441.121
transcript.whisperx[642].end 17454.074
transcript.whisperx[642].text 是沒錯,那個疫情期間下降蠻多的疫情過了這一兩年跟疫情前有回升嗎?有回升到疫情前嗎?有嗎?
transcript.whisperx[643].start 17458.55
transcript.whisperx[643].end 17474.324
transcript.whisperx[643].text 好跟委員報告我們現在因為疫情我這個就已經跳過好多題了是是是跟委員報告我們現在職業訓練現在就是說對於這個重點產業跟部位跟地方我們在合作現在訓練其實每年逐年在增加一直在增加
transcript.whisperx[644].start 17475.064
transcript.whisperx[644].end 17491.793
transcript.whisperx[644].text 第2個就是剛剛委員提到就是說我們對於那個很多這個長期缺工這一個部分我們其實現在在應對這樣的一個議題上其實我們就是為他們也現在有做一些量身的訂做就是一些專案的一些沒有的機制那針對他的一個條件上我們也提供相關的時間時間的關係我問一個問題這個訓練增加
transcript.whisperx[645].start 17498.112
transcript.whisperx[645].end 17524.617
transcript.whisperx[645].text 來接受質詢的人增加到底對於投入就業市場之間有沒有成正比?懂我意思嗎?你們會去做後續的追蹤嗎?跟委員報告我們追蹤有三個指標第一個就訓弄就業率第二個是關聯性第三個是他的薪資條件有沒有提升這三個我們大概都會有相關的評估
transcript.whisperx[646].start 17525.814
transcript.whisperx[646].end 17553.581
transcript.whisperx[646].text 那我現在是問有沒有效果阿你這三個指標倒是下的不錯啦齁只是說到底來訓練跟他的就業之間有沒有正面的提升阿委員報告這個我們其實在訓後就業率其實每年都有在提升有在成長那這部分其實我們也可以提供給委員參考訓後就業率有在成長那署長
transcript.whisperx[647].start 17555.101
transcript.whisperx[647].end 17562.286
transcript.whisperx[647].text 應該也要去關心看看就是就業了以後有沒有因為參加勞動部的質詢 薪資獲得滿足啦好不好好謝謝部長謝謝主席謝謝楊耀委員接下來請陳英委員發言
transcript.whisperx[648].start 17587.464
transcript.whisperx[648].end 17587.625
transcript.whisperx[648].text 委員好
transcript.whisperx[649].start 17600.219
transcript.whisperx[649].end 17604.242
transcript.whisperx[649].text 我國全時職位缺工概況勞動參與率是不是一項衡量缺工的指標?不是
transcript.whisperx[650].start 17621.109
transcript.whisperx[650].end 17645.398
transcript.whisperx[650].text 你認為不是齁好這樣其實這樣講也沒錯啦那這個勞動參與率齁他是有區隔不同年齡層的那我們25到29歲的這個參與率大概是多少百分比我這邊不好意思我是其實我們已經也幫忙整理出來就是91.4%
transcript.whisperx[651].start 17650.801
transcript.whisperx[651].end 17679.398
transcript.whisperx[651].text 百分之九十一點四好那這個這個媒書長我再請教就是勞動參與率的定義你們那個分母是什麼分子是什麼可不可以跟大家講一下勞動參與率的分母就是15歲以上的民間人口然後分子就是勞動力好那在這個分母的部分學生是否有算進有沒有算進去
transcript.whisperx[652].start 17680.492
transcript.whisperx[652].end 17696.695
transcript.whisperx[652].text 有他就是15歲以上的民間人口學生有算進去那打工的學生也也算在裡面嗎對對對都有算你確定喔對對對好好哎這個這個但是你們資料看起來好像是
transcript.whisperx[653].start 17699.002
transcript.whisperx[653].end 17705.425
transcript.whisperx[653].text 你覺得說這20年來的這個勞參率的變化很大嗎?其實勞參率近年都是在上升雖然整體的對都都在上升你的上升如果但我是問你大不大嗎變化大不大
transcript.whisperx[654].start 17729.412
transcript.whisperx[654].end 17745.576
transcript.whisperx[654].text 就比例來看應該還好還好好就是我們也幫大家統計了嗎就是從9393年到現在一百一十二到一百一十二年統計也差不多兩個百分點而已好謝謝那你請回座那個可以請回座你第一次來備詢是不是
transcript.whisperx[655].start 17756.052
transcript.whisperx[655].end 17777.038
transcript.whisperx[655].text 好下次表情可以柔和一點對不用那麼緊張好那個署長勞動參與率高他不代表就不會缺工那但是就是參與率低對於像我們臺灣這樣子的經濟持續成長的國家就非常有可能會缺工這樣你是同意的吧同意
transcript.whisperx[656].start 17778.259
transcript.whisperx[656].end 17790.152
transcript.whisperx[656].text 我要提醒你們一點就是缺工它有沒有這個行職業的差異有沒有季節性的這些差異那你這個從這個勞動參與率這個數字能告訴大家嗎?
transcript.whisperx[657].start 17799.603
transcript.whisperx[657].end 17824.026
transcript.whisperx[657].text 跟委員報告,勞參率因為它只是一個工級勞動力工級但是缺工有時候會產生在那個需求的改變所以很多產業的屬性的不同其他跟這個勞參率有時候沒有必然的關聯那剛剛大概提出說如果目前以製造業像製造業確實因為它有些因為我們是以出口導向有時候是外貿有時候有季節性的一些訂單的因素
transcript.whisperx[658].start 17825.967
transcript.whisperx[658].end 17845.141
transcript.whisperx[658].text 所以這個勞參率是沒有辦法告訴我們的啦那本席還要再問喔就是發展署目前的這個主要作為是在解決國內勞動參與率不高的問題還是在解決各行各業缺工的問題你覺得哪一個比較符合你們的職長還是哪一個比較困難
transcript.whisperx[659].start 17847.639
transcript.whisperx[659].end 17876.879
transcript.whisperx[659].text 跟文報其實兩個都蠻困難我們勞參率因為現在集中在大概以目前的分析主要是青年勞參率中高齡跟婦女勞參率那這裡面因為他的影響的成因其實非常多這也是我們在努力那至於說缺工因為缺工又會涉及到整個產業的一個發展未來他在整個產業能夠提供的一些條件待遇還有一些他的工作型態比如說現在外界也在關心是不是透過一些自動化等等
transcript.whisperx[660].start 17877.339
transcript.whisperx[660].end 17890.733
transcript.whisperx[660].text 那這個又跟產業的主管計劃有關對你這樣講是都沒錯然後甚至的參與率因為這個牽扯到生育率勞動力人口多少的問題你也沒有辦法去幫人家生孩子所以這個又更困難
transcript.whisperx[661].start 17893.115
transcript.whisperx[661].end 17909.963
transcript.whisperx[661].text 你們有沒有比較分析說現在年輕人的初就業的年齡是幾歲那相較於這個5年前或者是10年前大概延遲了多少時間還有這個不同學歷還有科系是不是差異之間差異是很大的
transcript.whisperx[662].start 17911.113
transcript.whisperx[662].end 17937.814
transcript.whisperx[662].text 因為確實因為我們國內其實很多年還是就是升學主義所以大學畢業很多就是以這個升學為主剛剛大概委員提到的因為大概以目前我們在分析大部分大學22歲畢業以後大部分他可能沒有馬上積極性的尋職那這裡面可能確實會拖一段時間尤其可能我們也在努力就那個初次尋職這個部分我們盡量來協作
transcript.whisperx[663].start 17939.735
transcript.whisperx[663].end 17949.101
transcript.whisperx[663].text 所以你們現在就是說你們的那個發展署裡面有這樣的資料嗎我們有資料有相關資料但算齊全嗎
transcript.whisperx[664].start 17951.144
transcript.whisperx[664].end 17978.115
transcript.whisperx[664].text 我們現在目前跟委員我們大概有分析就是說目前的這個15到29歲大概他的初次尋職的這個年齡層這個有第二個就是說他畢業之後到他找到第一份工作的那個那個間隔大概我們也曾經所以我剛剛有特別點到了還有不同學歷不同科系等等這些你們可能還要再做更細部的研究調查好不好好因為你們發端署裡面應該有這些這些資料
transcript.whisperx[665].start 17979.736
transcript.whisperx[665].end 17997.316
transcript.whisperx[665].text 那年輕人剛出道的時候剛出社會的時候起薪大概多少這些資訊是不是應該就是要很正確無誤的還有以及非常及時的來發布那也就是說也
transcript.whisperx[666].start 17998.891
transcript.whisperx[666].end 18020.583
transcript.whisperx[666].text 也要了解就是說為什麼現在大家不想早一點去工作當然早期一直鼓勵讀書是一個原因啦那我大概就點出這些那如果就是說你們對於這個缺工的行業行職業他們的職缺然後縣市地區工作內容及起薪就是說
transcript.whisperx[667].start 18021.483
transcript.whisperx[667].end 18043.853
transcript.whisperx[667].text 如果都沒有掌握清楚的話那自然就是說你們就沒有辦法去引導勞動力的移動嘛然後也沒有辦法去健全我們的勞動市場了那所以關鍵在於說資訊缺乏以及這個不透明造成的問題的誤判那我們就會落於就是說一直用過去的這個方式想要解決現在跟未來的問題啊
transcript.whisperx[668].start 18044.913
transcript.whisperx[668].end 18072.403
transcript.whisperx[668].text 那例如說像現在Uber Eats就好像沒有什麼缺工的問題那雖然它一來門檻低再來是非常的透明連那個人到哪裡了多少錢都非常清清楚楚的那你們這個你們發展署的人力還有這個經費其實都是非常充裕的而且在勞動部裡面都還有統計處還有這個勞動及職業安全衛生研究所也有這個勞動市場研究組
transcript.whisperx[669].start 18073.203
transcript.whisperx[669].end 18088.461
transcript.whisperx[669].text 那為什麼你們不聯合這些單位一起來合作呢而是就是說去捨禁求援甚至說要多花錢多花錢去指定外面的教授來做針對你們想要的答案做研究
transcript.whisperx[670].start 18092.151
transcript.whisperx[670].end 18117.749
transcript.whisperx[670].text 我這樣提醒是,署長你可以回頭去盤點一下是不是由我剛剛講的那個狀況還是我亂講的我覺得我們這個應該跟穩的方向是一致而且你們以後好好就近利用一下這個研究所嘛他們在那裡應該敞開大門等你們來啊對,我們就跟他們一起合作
transcript.whisperx[671].start 18118.137
transcript.whisperx[671].end 18145.378
transcript.whisperx[671].text 那接下來就是我要請部長上來因為上個禮拜老研所發布了一個淨零檢探的報告那重點就是明年2025年的時候因為這個淨零政策可能造成上萬人的失業環境部非常積極馬上就增加他們說會增加兩萬多的人次的這個就業機會
transcript.whisperx[672].start 18147.359
transcript.whisperx[672].end 18173.313
transcript.whisperx[672].text 就非常積極的弄了一個這樣子的平台就是彭部長他特別表示說會透過綠領平台來推動就業那我想要請教何部長那個彭部長有找你討論過這件事情嗎您有沒有清楚說這個平台的內容是什麼因為看起來有點像是媒合就業你覺得可行性如何
transcript.whisperx[673].start 18175.305
transcript.whisperx[673].end 18203.163
transcript.whisperx[673].text 我們在發布報告之後彭部長有找我討論當然我們通過電話我也指派我的長賜跟環境部對口那我們先環境部、勞動部、經濟部成立一個三部會的平台所以他發布之後你們才聚在一起是,我們也沒有聚在一起電話討論至少有聚在一起了那如果說我們真的但你覺得可行嗎
transcript.whisperx[674].start 18204.684
transcript.whisperx[674].end 18217.512
transcript.whisperx[674].text 當然如果就綠領喔綠領的形態的工作相信環境部會比我們清楚太多啦所以由他們來整合這一個部分的就是針對勞工轉型啦他針對綠領的訓練啦好看起來是一個好像還蠻不錯的一個創舉是是是是
transcript.whisperx[675].start 18226.417
transcript.whisperx[675].end 18247.085
transcript.whisperx[675].text 如果說未來真的可以透過這樣的平台可以達到特定職類就業媒合的目的那你們未來其他的類別有沒有可能比照辦理委員他有沒有下到職類媒合這我也不了解也不是不了解我還不確定因為他才剛開始開過第一次平台會議而已
transcript.whisperx[676].start 18256.229
transcript.whisperx[676].end 18266.353
transcript.whisperx[676].text 我同意部長的感覺因為我們也是從不是很清楚知道這個平台要做什麼到不知道這個平台能發揮多少的效益
transcript.whisperx[677].start 18268.094
transcript.whisperx[677].end 18292.206
transcript.whisperx[677].text 我就是有點擔心啦因為第一光是有這個需要讓人家知道而且會使用這個平台其實就是一個大工程了至少就說你們開過一次會大家也還是有很多不清楚的概念喔那而且就算真的沒合到合適的職缺那接下來喔勞動權益的保障也不是彭啟明環境部部長他可以負責的
transcript.whisperx[678].start 18293.646
transcript.whisperx[678].end 18318.246
transcript.whisperx[678].text 好所以我就講到這樣這個應該很明顯吧勞動權益因為他創了這個所以才是三部會的平台對所以總而言之好缺工的問題他是需要跨部會一起來整合來合作那發展署也不能說只靠引進外勞來解決問題當然當然那所以讓民眾了解
transcript.whisperx[679].start 18319.65
transcript.whisperx[679].end 18319.83
transcript.whisperx[679].text 我相信就是說﹖
transcript.whisperx[680].start 18335.447
transcript.whisperx[680].end 18335.467
transcript.whisperx[680].text 謝謝委員謝謝
transcript.whisperx[681].start 18358.86
transcript.whisperx[681].end 18385.128
transcript.whisperx[681].text 謝謝陳盈委員那今天的會議詢答全部結束委員吳春成委員圖圈及所提書面質詢列入記錄刊登公報現在做以下決定報告及詢答完畢委員質詢未及答覆或請補充資料者請相關機關於兩週內以書面答覆委員另要求期限者從其所定本院會議到此結束現在休息星期四上午九點繼續開會
transcript.whisperx[682].start 18393.96
transcript.whisperx[682].end 18399.811
transcript.whisperx[682].text 謝謝我知道我知道我知道我知道我知道我知道我知道我知道我知道我知道
transcript.whisperx[683].start 18429.037
transcript.whisperx[683].end 18429.878
transcript.whisperx[683].text 請問下禮拜
transcript.whisperx[684].start 18456.598
transcript.whisperx[684].end 18457.62
transcript.whisperx[684].text 委員會主席