iVOD / 162116

Field Value
IVOD_ID 162116
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162116
日期 2025-06-02
會議資料.會議代碼 委員會-11-3-36-19
會議資料.會議代碼:str 第11屆第3會期司法及法制委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第3會期司法及法制委員會第19次全體委員會議
影片種類 Clip
開始時間 2025-06-02T10:31:09+08:00
結束時間 2025-06-02T10:45:09+08:00
影片長度 00:14:00
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f1b1c5cbef0f6d9e580bb8cfe299067c52232a9b15fab92f821bb1a47d55fe3eed2a50a6791172355ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅智強
委員發言時間 10:31:09 - 10:45:09
會議時間 2025-06-02T09:00:00+08:00
會議名稱 立法院第11屆第3會期司法及法制委員會第19次全體委員會議(事由:邀請監察院秘書長、審計部審計長、司法院副秘書長、法務部部長、法務部調查局局長、法務部廉政署署長、銓敘部、公務人員保障暨培訓委員會、行政院人事行政總處、行政院主計總處、內政部警政署率所屬相關單位列席就「如何落實清廉政府及公務員瀆職之態樣與防制」進行專題報告,並備質詢。 【6月2日、4日及5日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 8.28284375
transcript.pyannote[0].end 12.34971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 13.04159375
transcript.pyannote[1].end 14.86409375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 15.53909375
transcript.pyannote[2].end 19.23471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 19.79159375
transcript.pyannote[3].end 24.83721875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 23.65596875
transcript.pyannote[4].end 23.89221875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 23.89221875
transcript.pyannote[5].end 23.90909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 24.90471875
transcript.pyannote[6].end 25.30971875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 26.65971875
transcript.pyannote[7].end 28.65096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 29.07284375
transcript.pyannote[8].end 29.95034375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 30.91221875
transcript.pyannote[9].end 40.58159375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 40.90221875
transcript.pyannote[10].end 56.95034375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 57.42284375
transcript.pyannote[11].end 73.43721875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 74.56784375
transcript.pyannote[12].end 77.89221875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 78.56721875
transcript.pyannote[13].end 79.74846875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 79.79909375
transcript.pyannote[14].end 80.74409375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 80.00159375
transcript.pyannote[15].end 81.94221875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 81.62159375
transcript.pyannote[16].end 86.34659375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 86.70096875
transcript.pyannote[17].end 90.14346875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 90.14346875
transcript.pyannote[18].end 91.44284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 92.13471875
transcript.pyannote[19].end 93.24846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 93.80534375
transcript.pyannote[20].end 96.84284375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 96.97784375
transcript.pyannote[21].end 98.10846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 98.32784375
transcript.pyannote[22].end 102.79971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 98.80034375
transcript.pyannote[23].end 99.30659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 102.79971875
transcript.pyannote[24].end 102.81659375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 102.81659375
transcript.pyannote[25].end 102.83346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 102.83346875
transcript.pyannote[26].end 103.79534375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 103.79534375
transcript.pyannote[27].end 103.81221875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 103.81221875
transcript.pyannote[28].end 103.96409375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 103.96409375
transcript.pyannote[29].end 107.27159375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 105.53346875
transcript.pyannote[30].end 106.05659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 107.92971875
transcript.pyannote[31].end 114.62909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 115.06784375
transcript.pyannote[32].end 117.10971875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 118.35846875
transcript.pyannote[33].end 121.15971875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 121.59846875
transcript.pyannote[34].end 122.00346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 122.59409375
transcript.pyannote[35].end 124.51784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 125.53034375
transcript.pyannote[36].end 131.03159375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 131.87534375
transcript.pyannote[37].end 140.29596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 140.63346875
transcript.pyannote[38].end 144.97034375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 145.39221875
transcript.pyannote[39].end 151.82159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 153.15471875
transcript.pyannote[40].end 168.51096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 168.93284375
transcript.pyannote[41].end 177.06659375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 178.12971875
transcript.pyannote[42].end 180.74534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 182.38221875
transcript.pyannote[43].end 183.22596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 183.22596875
transcript.pyannote[44].end 184.37346875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 185.13284375
transcript.pyannote[45].end 197.19846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 197.83971875
transcript.pyannote[46].end 214.29284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 214.79909375
transcript.pyannote[47].end 217.49909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 219.69284375
transcript.pyannote[48].end 228.80534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 229.26096875
transcript.pyannote[49].end 230.35784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 230.79659375
transcript.pyannote[50].end 250.18596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 250.33784375
transcript.pyannote[51].end 251.36721875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 250.96221875
transcript.pyannote[52].end 252.63284375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 252.63284375
transcript.pyannote[53].end 255.33284375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 256.39596875
transcript.pyannote[54].end 257.03721875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 257.03721875
transcript.pyannote[55].end 257.64471875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 258.58971875
transcript.pyannote[56].end 258.60659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 258.60659375
transcript.pyannote[57].end 258.64034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 258.64034375
transcript.pyannote[58].end 258.65721875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 258.65721875
transcript.pyannote[59].end 259.36596875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 261.22221875
transcript.pyannote[60].end 263.80409375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 263.80409375
transcript.pyannote[61].end 267.22971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 267.88784375
transcript.pyannote[62].end 270.72284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 272.98409375
transcript.pyannote[63].end 281.47221875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 280.00409375
transcript.pyannote[64].end 280.49346875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 281.47221875
transcript.pyannote[65].end 284.20596875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 281.60721875
transcript.pyannote[66].end 281.64096875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 284.45909375
transcript.pyannote[67].end 287.61471875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 287.61471875
transcript.pyannote[68].end 290.66909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 289.04909375
transcript.pyannote[69].end 290.28096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 291.91784375
transcript.pyannote[70].end 306.53159375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 306.90284375
transcript.pyannote[71].end 313.12971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 313.33221875
transcript.pyannote[72].end 319.17096875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 319.22159375
transcript.pyannote[73].end 320.03159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 320.84159375
transcript.pyannote[74].end 330.35909375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 330.83159375
transcript.pyannote[75].end 334.47659375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 335.28659375
transcript.pyannote[76].end 343.21784375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 343.45409375
transcript.pyannote[77].end 349.22534375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 349.73159375
transcript.pyannote[78].end 353.41034375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 354.42284375
transcript.pyannote[79].end 363.77159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 358.43909375
transcript.pyannote[80].end 358.81034375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 363.11346875
transcript.pyannote[81].end 363.43409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 363.77159375
transcript.pyannote[82].end 363.80534375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 363.80534375
transcript.pyannote[83].end 363.87284375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 363.87284375
transcript.pyannote[84].end 366.85971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 367.50096875
transcript.pyannote[85].end 382.33409375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 382.92471875
transcript.pyannote[86].end 390.92346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 391.29471875
transcript.pyannote[87].end 415.20659375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 415.29096875
transcript.pyannote[88].end 419.62784375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 420.33659375
transcript.pyannote[89].end 422.12534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 422.54721875
transcript.pyannote[90].end 422.96909375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 423.40784375
transcript.pyannote[91].end 424.75784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 425.48346875
transcript.pyannote[92].end 427.81221875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 428.45346875
transcript.pyannote[93].end 428.90909375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 430.05659375
transcript.pyannote[94].end 430.76534375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 431.54159375
transcript.pyannote[95].end 435.05159375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 435.69284375
transcript.pyannote[96].end 445.09221875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 445.19346875
transcript.pyannote[97].end 451.85909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 452.98971875
transcript.pyannote[98].end 458.25471875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 458.72721875
transcript.pyannote[99].end 462.42284375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 462.57471875
transcript.pyannote[100].end 468.70034375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 469.59471875
transcript.pyannote[101].end 472.81784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 473.15534375
transcript.pyannote[102].end 475.78784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 476.29409375
transcript.pyannote[103].end 478.60596875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 479.06159375
transcript.pyannote[104].end 480.64784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 480.81659375
transcript.pyannote[105].end 483.75284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 485.00159375
transcript.pyannote[106].end 497.79284375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 499.04159375
transcript.pyannote[107].end 502.63596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 503.20971875
transcript.pyannote[108].end 505.01534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 505.33596875
transcript.pyannote[109].end 509.25096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 509.62221875
transcript.pyannote[110].end 511.00596875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 512.52471875
transcript.pyannote[111].end 517.35096875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 517.72221875
transcript.pyannote[112].end 519.10596875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 519.10596875
transcript.pyannote[113].end 519.13971875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 520.38846875
transcript.pyannote[114].end 520.40534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 520.40534375
transcript.pyannote[115].end 521.70471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 522.41346875
transcript.pyannote[116].end 526.98659375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 527.54346875
transcript.pyannote[117].end 535.37346875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 535.57596875
transcript.pyannote[118].end 536.09909375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 537.12846875
transcript.pyannote[119].end 538.24221875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 538.37721875
transcript.pyannote[120].end 542.95034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 540.82409375
transcript.pyannote[121].end 541.56659375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 543.03471875
transcript.pyannote[122].end 543.79409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 544.41846875
transcript.pyannote[123].end 552.48471875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 553.68284375
transcript.pyannote[124].end 560.88846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 562.03596875
transcript.pyannote[125].end 570.70971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 571.31721875
transcript.pyannote[126].end 582.31971875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 582.94409375
transcript.pyannote[127].end 586.87596875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 587.21346875
transcript.pyannote[128].end 590.41971875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 591.24659375
transcript.pyannote[129].end 595.06034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 595.83659375
transcript.pyannote[130].end 598.24971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 599.36346875
transcript.pyannote[131].end 603.71721875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 604.57784375
transcript.pyannote[132].end 609.25221875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 609.42096875
transcript.pyannote[133].end 613.87596875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 610.73721875
transcript.pyannote[134].end 611.26034375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 613.87596875
transcript.pyannote[135].end 616.00221875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 613.90971875
transcript.pyannote[136].end 614.29784375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 617.09909375
transcript.pyannote[137].end 622.24596875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 623.20784375
transcript.pyannote[138].end 626.41409375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 627.59534375
transcript.pyannote[139].end 635.05409375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 635.81346875
transcript.pyannote[140].end 645.24659375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 647.13659375
transcript.pyannote[141].end 651.87846875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 652.30034375
transcript.pyannote[142].end 655.33784375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 655.75971875
transcript.pyannote[143].end 658.32471875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 658.32471875
transcript.pyannote[144].end 661.17659375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 658.51034375
transcript.pyannote[145].end 659.52284375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 660.65346875
transcript.pyannote[146].end 664.61909375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 663.57284375
transcript.pyannote[147].end 665.56409375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 666.77909375
transcript.pyannote[148].end 668.14596875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 668.77034375
transcript.pyannote[149].end 672.53346875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 671.43659375
transcript.pyannote[150].end 674.13659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 674.55846875
transcript.pyannote[151].end 684.00846875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 686.08409375
transcript.pyannote[152].end 687.02909375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 688.24409375
transcript.pyannote[153].end 688.58159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 689.17221875
transcript.pyannote[154].end 690.20159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 691.07909375
transcript.pyannote[155].end 694.21784375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 694.92659375
transcript.pyannote[156].end 697.66034375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 696.41159375
transcript.pyannote[157].end 719.26034375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 717.87659375
transcript.pyannote[158].end 723.27659375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 723.59721875
transcript.pyannote[159].end 725.85846875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 726.76971875
transcript.pyannote[160].end 732.82784375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 733.46909375
transcript.pyannote[161].end 742.17659375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 742.83471875
transcript.pyannote[162].end 746.95221875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 747.98159375
transcript.pyannote[163].end 760.38471875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 761.44784375
transcript.pyannote[164].end 767.37096875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 768.78846875
transcript.pyannote[165].end 772.65284375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 774.71159375
transcript.pyannote[166].end 778.55909375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 779.80784375
transcript.pyannote[167].end 786.32159375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 786.81096875
transcript.pyannote[168].end 788.92034375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 789.03846875
transcript.pyannote[169].end 792.71721875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 792.95346875
transcript.pyannote[170].end 795.40034375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 795.95721875
transcript.pyannote[171].end 796.36221875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 796.68284375
transcript.pyannote[172].end 806.82471875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 807.22971875
transcript.pyannote[173].end 809.71034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 809.94659375
transcript.pyannote[174].end 812.22471875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 812.57909375
transcript.pyannote[175].end 816.74721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 817.08471875
transcript.pyannote[176].end 820.78034375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 821.38784375
transcript.pyannote[177].end 828.62721875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 829.01534375
transcript.pyannote[178].end 837.48659375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 839.20784375
transcript.pyannote[179].end 840.96284375
transcript.whisperx[0].start 8.328
transcript.whisperx[0].end 28.223
transcript.whisperx[0].text 主席有請這個法務部長還有廉政署署長好 麻煩法務部長 廉政署署長羅委員 那個立委是要監督官員不是護航我現在咳嗽 不要讓我笑好 請教一下這個
transcript.whisperx[1].start 31.153
transcript.whisperx[1].end 52.841
transcript.whisperx[1].text 監察院的李敬義秘書長他用公務車接送愛泉美容還把公務車當成Uber E-way自駕送餐那他用一句思慮不周然後本來想交代過去啦但看火越燒越大不敢到立法院接受質詢就坦誠有負職務廉潔標準然後匆匆請辭秘書長
transcript.whisperx[2].start 57.483
transcript.whisperx[2].end 77.481
transcript.whisperx[2].text 那我剛剛也看到前面有多位委員針對公務車使用的部分 大家有很多的一些意見跟看法那我想請教一下 部長跟署長你們都有配公務車嘛 對不對有然後請問一下 那個 先請問署長好了請問您會把公務車拿去送愛泉美容嗎
transcript.whisperx[3].start 78.609
transcript.whisperx[3].end 106.843
transcript.whisperx[3].text 我也沒有養狗沒有養狗不會做私人的事情不會做私人事那所以也不會把公務車拿去當Uber E-way自家送餐嗎我們完全遵照行政院辦的車輛使用規定不可能的事情對不對 部長這應該不用問你們這兩件事都不可能在你身上發生吧我沒有養狗你就算有養狗有養寵物也不會發生這種事吧這個我也不會這樣對嘛 不可能嘛
transcript.whisperx[4].start 108.427
transcript.whisperx[4].end 130.798
transcript.whisperx[4].text 我跟各位講 剛剛不管是藍綠的委員 白的委員 都有講標準問題但有些東西就是真的是離譜嘛把公務車拿去送愛犬去美容 把公務車拿來當Uber E我也當過 我也有派過公務車啊我在總務府當副秘書長的時候 這也不可能發生的事情啊
transcript.whisperx[5].start 131.94
transcript.whisperx[5].end 151.176
transcript.whisperx[5].text 那我不知道為什麼我們的偉大的李俊逸就會發生這種事情但是沒有關係 他個人的行為我們今天問的是法律的問題事實上過去很多關於公務車使用的一些案例那我們來看看他的法律的結果是什麼我來請教兩位首長
transcript.whisperx[6].start 153.206
transcript.whisperx[6].end 180.408
transcript.whisperx[6].text 我想請教一下剛兩位都說你們不會把公務車拿來做私人的使用當作私人汽車使用不會嘛對不對那你知道雲林縣2021年有一位戴姓的消防局長他被指將局長坐車當作私人汽車使用遭監察院彈劾那你知道最後法律的結果是什麼嗎他面臨什麼樣法律的結果請問部長知道嗎
transcript.whisperx[7].start 182.646
transcript.whisperx[7].end 194.862
transcript.whisperx[7].text 這個我不清楚我告訴你懲戒法院判他休職兩年刑事部分依公務員假借職務上機會犯背信罪判刑一年緩刑三年這是這個案例的結果
transcript.whisperx[8].start 197.918
transcript.whisperx[8].end 217.098
transcript.whisperx[8].text 那2021年也發生一個台北市警局交通分隊的歐姓小隊長騎公務車 機車與友人參與後 又騎車返家休息那我想請問署長 你知道他最後的法律結果是什麼嗎
transcript.whisperx[9].start 219.901
transcript.whisperx[9].end 247.466
transcript.whisperx[9].text 檢察官認為他涉犯公務員假借植物機會背信罪那因為認罪無前科啦所以給予還起訴一年然後再來2021年台南市政府民族事務委員會主委汪志敏因為搭乘公務車前往大學進修參加婚宴、壽宴、私人餐敘我想請教一下請問那個署長你會搭公務車到
transcript.whisperx[10].start 248.346
transcript.whisperx[10].end 252.589
transcript.whisperx[10].text 參加大學進修嗎會去參加婚宴嗎搭公務車原則上不會部長會嗎這個要看那個業務的性質有點模糊空間啦會搭公務車去參加壽宴嗎
transcript.whisperx[11].start 273.278
transcript.whisperx[11].end 289.307
transcript.whisperx[11].text 這個就是要看業務性質如果是這個這個受驗的話這個屬於那個機關業務聯繫有關的這些的話那當然那會搭公務車參加私人餐敘嗎私人餐敘這個不會搭公務車當私人餐敘那你也要看這餐敘的性質對不對
transcript.whisperx[12].start 291.974
transcript.whisperx[12].end 319.65
transcript.whisperx[12].text 部長我跟你講我沒有價值判斷這些行為到底是該不該當所謂的一個形式的一個犯罪所以我才問說兩位你們處理的規則是什麼那很明顯不會搭公共車去大學進修嘛 對不對不會啦 就算有這個進修的機會也不會搭公共車去大學進修嘛但是婚宴 壽宴 私人參許那可能就要看業務性質屬性了嘛 對不對但是
transcript.whisperx[13].start 320.899
transcript.whisperx[13].end 326.563
transcript.whisperx[13].text 台南地檢署是以背信罪提起公訴這件事情 然後判處20萬罰金再來 2022年屏東縣警察局
transcript.whisperx[14].start 335.696
transcript.whisperx[14].end 353.017
transcript.whisperx[14].text 莊信芬局長在休假期間駕駛公務車到南投縣等地訪友及採購物品我想請問一下署長你會在休假期間駕著公務車去外縣市訪友然後採購物品嗎
transcript.whisperx[15].start 355.851
transcript.whisperx[15].end 381.836
transcript.whisperx[15].text 市議上我上下班都是自己開車啦我們的公務車的部分運用上我們會嚴守用公務的部分來判斷非常謝謝 部長呢也是嘛 不會嘛 對不對不會嘛然後他也被拔官移送地檢署偵辦然後2023年基隆市警察局無信保防科長使用公務車接送七小兩位會用公務車接送七小嗎
transcript.whisperx[16].start 382.984
transcript.whisperx[16].end 410.426
transcript.whisperx[16].text 不會啦 對不對不會嘛 對不對所以這個也是一條線嘛那他也被依詐欺罪移送基隆地檢署偵辦2024年監察院通過彈劾金房部林姓參謀長因為他讓到金門遊玩的親友搭公務車你會讓你的親友出去玩搭公務車嗎也不會嘛連問都不用問嘛 對不對這不可能的事嘛他公器私用被彈劾啦
transcript.whisperx[17].start 411.167
transcript.whisperx[17].end 428.802
transcript.whisperx[17].text 然後今年1月 松山分局的張姓袁景 開公務車繞道送蛋糕給過生日的女友然後想請問 會開公務車繞道送蛋糕給夫人嗎 會不會 也不會嘛 也不會嘛 對不對 會嗎 也不會嘛 對不對
transcript.whisperx[18].start 435.745
transcript.whisperx[18].end 457.602
transcript.whisperx[18].text 那可是呢 這個行為就遭到台北地檢署 依公務員違背職務損害他人利益等罪 給予緩起訴處分 需繳酷一萬元我跟你講 這太多啦 我講不完啦 我講不完啦可是今天為什麼我要講這件事情我跟部長 跟我們的署長講 確實我承認啦 剛剛前面有幾位委員也有講到
transcript.whisperx[19].start 458.806
transcript.whisperx[19].end 483.161
transcript.whisperx[19].text 他有一些標準的問題 好比方你剛剛講參敘那跟參敘到底跟你的業務關聯度是如何可能他有點模糊地帶要釐清對不對可是這零零總總我跟你講我沒有看到比載愛犬去美容把車 公務車當Uber E大概在所有攤檔裡面 這兩個我們禮具最扯欸 沒錯吧
transcript.whisperx[20].start 485.049
transcript.whisperx[20].end 510.76
transcript.whisperx[20].text 你去參敘齁 你還可以講說這參敘跟我業務也有關係啊 對不對那你參加婚宴 壽宴我也可以說跟我業務也有關係啊 對不對部長你可能也覺得說這個可能跟業務有關係啊可是你把你的愛犬拿去用公車去美容我想要請問署長囉按照這些通通被判刑 通通被法辦的標準你今天要不要被判啊
transcript.whisperx[21].start 512.66
transcript.whisperx[21].end 535.737
transcript.whisperx[21].text 委員報告 目前這幾個案件都有告發到台北地檢署會不會偵辦我真的就是要看著啦因為太離譜嘛確實我剛才還是強調前面很多的委員在講公車使用有每個地方的標準規則可能不一樣但是沒有一個地方會跟你講說我可以帶著愛犬去美容啦應該沒有這個標準吧署長
transcript.whisperx[22].start 537.162
transcript.whisperx[22].end 560.094
transcript.whisperx[22].text 不會有這個標準吧標準就是要符合公務啦就是跟公務有關對啊 所以我今天在這邊我要跟部長說外界確實在看著這件事情你有些邊緣地帶大家還要再去觀察一下因為這還要釐清比如釐清餐敘的性質 釐清活動的性質 對不對
transcript.whisperx[23].start 562.199
transcript.whisperx[23].end 589.758
transcript.whisperx[23].text 送狗 送牠的愛犬去美容把車子 公務車當Uber E來去用我看也不用去釐清什麼性質啦純粹就是公器私用如果別的人公器私用都沒事 我覺得那是一回事但是很抱歉 我剛剛念了那麼多還沒念完咧那麼多的案例裡面我就要問到底李俊逸這個我們這個是怎麼樣他是把這個
transcript.whisperx[24].start 591.291
transcript.whisperx[24].end 615.895
transcript.whisperx[24].text 把這個他家的愛犬也當成監察委員了嗎也當成是在去經辦業務嗎所以因此在這邊我們是要看看到底我們今天我們的檢方啊現在已經告發了嘛 廉政署這邊也接到告發了嘛對不對沒有 那是民眾 就是直接民代直接到北檢去告發對啊 所以大家就等著看啦
transcript.whisperx[25].start 617.168
transcript.whisperx[25].end 644.93
transcript.whisperx[25].text 如果我剛剛念的這些都有事情的話我真的就要等著看李靜韻到底有沒有事情啊不是持官就了事 沒錯吧請問部長這種法律的刑事問題不是持官就結束的嘛那這個就是由檢察官來做了解調查對不對 我想問署長如果犯了所謂的不連結貪污或者是背信一些刑事上的一些公務員獨職的問題辭職就可以 責任就結束了嗎
transcript.whisperx[26].start 647.886
transcript.whisperx[26].end 667.828
transcript.whisperx[26].text 它的案件調查其實要看構成要件因為在之前有很多的案子其實是有移送然後判刑也有一些沒有移送它的標準你完全講到重點了完全的標準就是說它有一個用點我告訴你你完全講到重點了那標準真的浮動啊
transcript.whisperx[27].start 668.803
transcript.whisperx[27].end 693.997
transcript.whisperx[27].text 不是 跟委員講就是他其中有一個我來跟你講我剛剛有一個我們有問的2018年時任移民署長就中央級官員然後帶著妻子搭乘公務車旅遊你知道他的結果是什麼就辭職而已 對不對所以我就要講同樣的情形在地方的時候他就判刑
transcript.whisperx[28].start 694.98
transcript.whisperx[28].end 722.351
transcript.whisperx[28].text 那中央好像奇怪啦 就沒事啦跟委員報告一下 他那個在車輛使用上他有首長的一個用車的一個部分還有一般派遣的部分那派遣的部分會有派車單跟油料的一個問題那所以說在這個部分上會比較牽涉到那個就相關我們剛剛談到的那個部分當然首長的部分也必須要去觀察啦是不是有公務人員的違法我當然知道啦 我就說過齁如果有些派讓齁
transcript.whisperx[29].start 723.672
transcript.whisperx[29].end 746.63
transcript.whisperx[29].text 就像我剛剛講餐巿、壽宴、婚宴那中間到底他算跟你業務的關聯度如何啊那是有各樣的去釐清啦這一點我也認同啦可是就像剛剛前面兩位講的嘛我們在質詢過程當中不用再為禁慾再去找任何的一些緩狹的空間了啦這兩件事情就赤裸裸的公器私用已經是踩到底了啦
transcript.whisperx[30].start 748.035
transcript.whisperx[30].end 772.276
transcript.whisperx[30].text 我跟你講我還是那句話我剛念那麼多的案例沒有比他更離譜的啦有嗎有哪個比送狗去美容離譜的哪一個有比送狗去美容離譜的把車子當Uber Eats離譜的有一個警察也就是騎著車拎個蛋糕去給女朋友就有事啦他有像我們李靖鈺帶著狗去美容嗎
transcript.whisperx[31].start 774.741
transcript.whisperx[31].end 793.847
transcript.whisperx[31].text 他是繞個路送個蛋糕去 也有事啊所以不要說今天這公務車當然標準 說真的 大家好好去想想標準不一致的問題也是個問題可是有些核心的地帶就是明顯有 按照過去這些判準判例我真的拜託啦 檢查機關
transcript.whisperx[32].start 796.818
transcript.whisperx[32].end 812.785
transcript.whisperx[32].text 不要讓大家覺得說好像又遇到民進黨的要員李靜韻是民進黨的要員喔大佬喔遇到民進黨的要員又沒事了重點是今天質詢完因為辦案還需要時間啦對不對辦辦辦一個月兩個月半年之後一年之後發現風頭過了悄悄悄悄又沒事了
transcript.whisperx[33].start 821.548
transcript.whisperx[33].end 836.937
transcript.whisperx[33].text 這是我們經常會有人覺得說今天辦案標準不一致讓大家會對司法沒有信心的原因所以拜託啦 努力一點好不好這是請署長跟部長能夠去看看社會大眾的期待 以上 謝謝