iVOD / 16205

Field Value
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/16eb79f0bb3b77db5998180c4b1e7cf46c0396a52a6677966059d4d42a7fce214ff1acb6144906fa5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-10-24T09:00:00+08:00
會議名稱 立法院第11屆第2會期經濟委員會第8次全體委員會議(事由:一、邀請國家發展委員會主任委員、衛生福利部首長、教育部首長、勞動部首長就「我國少子女化現況及對策計畫成效,暨我國與亞鄰國家之留才攬才政策競爭力比較」進行報告,並備質詢。 二、邀請國家發展委員會主任委員、行政院人事行政總處首長就「我國少子女化對策主管單位與主要國家做法之比較,暨我國參採改制之可行性」進行報告,並備質詢。)
委員名稱 完整會議
影片長度 21164
委員發言時間 08:31:16 - 14:24:00
transcript.pyannote[0].speaker SPEAKER_30
transcript.pyannote[0].start 1727.22096875
transcript.pyannote[0].end 1727.52471875
transcript.pyannote[1].speaker SPEAKER_30
transcript.pyannote[1].start 1728.03096875
transcript.pyannote[1].end 1730.59596875
transcript.pyannote[2].speaker SPEAKER_30
transcript.pyannote[2].start 1731.35534375
transcript.pyannote[2].end 1734.30846875
transcript.pyannote[3].speaker SPEAKER_30
transcript.pyannote[3].start 1734.79784375
transcript.pyannote[3].end 1738.00409375
transcript.pyannote[4].speaker SPEAKER_23
transcript.pyannote[4].start 1738.64534375
transcript.pyannote[4].end 1753.34346875
transcript.pyannote[5].speaker SPEAKER_23
transcript.pyannote[5].start 1753.71471875
transcript.pyannote[5].end 1756.39784375
transcript.pyannote[6].speaker SPEAKER_23
transcript.pyannote[6].start 1756.66784375
transcript.pyannote[6].end 1762.67534375
transcript.pyannote[7].speaker SPEAKER_23
transcript.pyannote[7].start 1762.86096875
transcript.pyannote[7].end 1764.91971875
transcript.pyannote[8].speaker SPEAKER_23
transcript.pyannote[8].start 1765.27409375
transcript.pyannote[8].end 1768.39596875
transcript.pyannote[9].speaker SPEAKER_23
transcript.pyannote[9].start 1768.64909375
transcript.pyannote[9].end 1771.45034375
transcript.pyannote[10].speaker SPEAKER_23
transcript.pyannote[10].start 1771.72034375
transcript.pyannote[10].end 1781.27159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 1775.93909375
transcript.pyannote[11].end 1775.98971875
transcript.pyannote[12].speaker SPEAKER_25
transcript.pyannote[12].start 1775.98971875
transcript.pyannote[12].end 1776.20909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 1776.20909375
transcript.pyannote[13].end 1776.61409375
transcript.pyannote[14].speaker SPEAKER_25
transcript.pyannote[14].start 1776.61409375
transcript.pyannote[14].end 1776.68159375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 1776.68159375
transcript.pyannote[15].end 1776.91784375
transcript.pyannote[16].speaker SPEAKER_25
transcript.pyannote[16].start 1776.91784375
transcript.pyannote[16].end 1777.76159375
transcript.pyannote[17].speaker SPEAKER_23
transcript.pyannote[17].start 1781.69346875
transcript.pyannote[17].end 1783.73534375
transcript.pyannote[18].speaker SPEAKER_23
transcript.pyannote[18].start 1784.76471875
transcript.pyannote[18].end 1799.83409375
transcript.pyannote[19].speaker SPEAKER_23
transcript.pyannote[19].start 1800.10409375
transcript.pyannote[19].end 1804.52534375
transcript.pyannote[20].speaker SPEAKER_23
transcript.pyannote[20].start 1804.98096875
transcript.pyannote[20].end 1812.35534375
transcript.pyannote[21].speaker SPEAKER_23
transcript.pyannote[21].start 1812.65909375
transcript.pyannote[21].end 1817.40096875
transcript.pyannote[22].speaker SPEAKER_23
transcript.pyannote[22].start 1817.92409375
transcript.pyannote[22].end 1819.15596875
transcript.pyannote[23].speaker SPEAKER_30
transcript.pyannote[23].start 1820.37096875
transcript.pyannote[23].end 1820.69159375
transcript.pyannote[24].speaker SPEAKER_30
transcript.pyannote[24].start 1820.94471875
transcript.pyannote[24].end 1822.95284375
transcript.pyannote[25].speaker SPEAKER_30
transcript.pyannote[25].start 1823.27346875
transcript.pyannote[25].end 1825.02846875
transcript.pyannote[26].speaker SPEAKER_23
transcript.pyannote[26].start 1825.72034375
transcript.pyannote[26].end 1842.40971875
transcript.pyannote[27].speaker SPEAKER_23
transcript.pyannote[27].start 1842.61221875
transcript.pyannote[27].end 1846.54409375
transcript.pyannote[28].speaker SPEAKER_23
transcript.pyannote[28].start 1847.47221875
transcript.pyannote[28].end 1850.99909375
transcript.pyannote[29].speaker SPEAKER_23
transcript.pyannote[29].start 1851.42096875
transcript.pyannote[29].end 1860.85409375
transcript.pyannote[30].speaker SPEAKER_30
transcript.pyannote[30].start 1861.52909375
transcript.pyannote[30].end 1862.22096875
transcript.pyannote[31].speaker SPEAKER_30
transcript.pyannote[31].start 1862.45721875
transcript.pyannote[31].end 1868.31284375
transcript.pyannote[32].speaker SPEAKER_30
transcript.pyannote[32].start 1868.73471875
transcript.pyannote[32].end 1871.63721875
transcript.pyannote[33].speaker SPEAKER_30
transcript.pyannote[33].start 1872.19409375
transcript.pyannote[33].end 1874.89409375
transcript.pyannote[34].speaker SPEAKER_30
transcript.pyannote[34].start 1875.61971875
transcript.pyannote[34].end 1876.61534375
transcript.pyannote[35].speaker SPEAKER_30
transcript.pyannote[35].start 1877.10471875
transcript.pyannote[35].end 1878.35346875
transcript.pyannote[36].speaker SPEAKER_30
transcript.pyannote[36].start 1878.57284375
transcript.pyannote[36].end 1879.18034375
transcript.pyannote[37].speaker SPEAKER_30
transcript.pyannote[37].start 1879.61909375
transcript.pyannote[37].end 1880.90159375
transcript.pyannote[38].speaker SPEAKER_30
transcript.pyannote[38].start 1882.33596875
transcript.pyannote[38].end 1884.59721875
transcript.pyannote[39].speaker SPEAKER_30
transcript.pyannote[39].start 1885.03596875
transcript.pyannote[39].end 1885.79534375
transcript.pyannote[40].speaker SPEAKER_30
transcript.pyannote[40].start 1886.35221875
transcript.pyannote[40].end 1886.95971875
transcript.pyannote[41].speaker SPEAKER_30
transcript.pyannote[41].start 1887.43221875
transcript.pyannote[41].end 1888.52909375
transcript.pyannote[42].speaker SPEAKER_30
transcript.pyannote[42].start 1889.27159375
transcript.pyannote[42].end 1889.69346875
transcript.pyannote[43].speaker SPEAKER_30
transcript.pyannote[43].start 1890.01409375
transcript.pyannote[43].end 1890.87471875
transcript.pyannote[44].speaker SPEAKER_30
transcript.pyannote[44].start 1891.75221875
transcript.pyannote[44].end 1892.54534375
transcript.pyannote[45].speaker SPEAKER_30
transcript.pyannote[45].start 1892.96721875
transcript.pyannote[45].end 1895.73471875
transcript.pyannote[46].speaker SPEAKER_30
transcript.pyannote[46].start 1896.76409375
transcript.pyannote[46].end 1901.11784375
transcript.pyannote[47].speaker SPEAKER_30
transcript.pyannote[47].start 1901.94471875
transcript.pyannote[47].end 1902.56909375
transcript.pyannote[48].speaker SPEAKER_30
transcript.pyannote[48].start 1904.30721875
transcript.pyannote[48].end 1908.18846875
transcript.pyannote[49].speaker SPEAKER_30
transcript.pyannote[49].start 1908.71159375
transcript.pyannote[49].end 1912.13721875
transcript.pyannote[50].speaker SPEAKER_30
transcript.pyannote[50].start 1912.57596875
transcript.pyannote[50].end 1919.00534375
transcript.pyannote[51].speaker SPEAKER_30
transcript.pyannote[51].start 1919.24159375
transcript.pyannote[51].end 1924.74284375
transcript.pyannote[52].speaker SPEAKER_30
transcript.pyannote[52].start 1925.14784375
transcript.pyannote[52].end 1927.25721875
transcript.pyannote[53].speaker SPEAKER_30
transcript.pyannote[53].start 1927.79721875
transcript.pyannote[53].end 1930.86846875
transcript.pyannote[54].speaker SPEAKER_30
transcript.pyannote[54].start 1931.15534375
transcript.pyannote[54].end 1934.17596875
transcript.pyannote[55].speaker SPEAKER_30
transcript.pyannote[55].start 1934.61471875
transcript.pyannote[55].end 1936.92659375
transcript.pyannote[56].speaker SPEAKER_30
transcript.pyannote[56].start 1937.12909375
transcript.pyannote[56].end 1937.90534375
transcript.pyannote[57].speaker SPEAKER_20
transcript.pyannote[57].start 1949.81909375
transcript.pyannote[57].end 1950.17346875
transcript.pyannote[58].speaker SPEAKER_20
transcript.pyannote[58].start 1950.59534375
transcript.pyannote[58].end 1951.20284375
transcript.pyannote[59].speaker SPEAKER_20
transcript.pyannote[59].start 1951.69221875
transcript.pyannote[59].end 1953.04221875
transcript.pyannote[60].speaker SPEAKER_20
transcript.pyannote[60].start 1953.36284375
transcript.pyannote[60].end 1977.27471875
transcript.pyannote[61].speaker SPEAKER_20
transcript.pyannote[61].start 1977.56159375
transcript.pyannote[61].end 1981.35846875
transcript.pyannote[62].speaker SPEAKER_20
transcript.pyannote[62].start 1981.78034375
transcript.pyannote[62].end 1985.56034375
transcript.pyannote[63].speaker SPEAKER_20
transcript.pyannote[63].start 1986.11721875
transcript.pyannote[63].end 1993.66034375
transcript.pyannote[64].speaker SPEAKER_20
transcript.pyannote[64].start 1993.98096875
transcript.pyannote[64].end 2003.92034375
transcript.pyannote[65].speaker SPEAKER_20
transcript.pyannote[65].start 2004.47721875
transcript.pyannote[65].end 2010.23159375
transcript.pyannote[66].speaker SPEAKER_20
transcript.pyannote[66].start 2010.34971875
transcript.pyannote[66].end 2019.98534375
transcript.pyannote[67].speaker SPEAKER_20
transcript.pyannote[67].start 2020.35659375
transcript.pyannote[67].end 2050.91721875
transcript.pyannote[68].speaker SPEAKER_20
transcript.pyannote[68].start 2051.59221875
transcript.pyannote[68].end 2054.20784375
transcript.pyannote[69].speaker SPEAKER_20
transcript.pyannote[69].start 2054.91659375
transcript.pyannote[69].end 2055.35534375
transcript.pyannote[70].speaker SPEAKER_20
transcript.pyannote[70].start 2055.65909375
transcript.pyannote[70].end 2084.21159375
transcript.pyannote[71].speaker SPEAKER_20
transcript.pyannote[71].start 2084.71784375
transcript.pyannote[71].end 2085.47721875
transcript.pyannote[72].speaker SPEAKER_20
transcript.pyannote[72].start 2086.00034375
transcript.pyannote[72].end 2094.69096875
transcript.pyannote[73].speaker SPEAKER_20
transcript.pyannote[73].start 2094.99471875
transcript.pyannote[73].end 2100.31034375
transcript.pyannote[74].speaker SPEAKER_20
transcript.pyannote[74].start 2100.79971875
transcript.pyannote[74].end 2108.83221875
transcript.pyannote[75].speaker SPEAKER_20
transcript.pyannote[75].start 2109.47346875
transcript.pyannote[75].end 2117.05034375
transcript.pyannote[76].speaker SPEAKER_20
transcript.pyannote[76].start 2117.38784375
transcript.pyannote[76].end 2140.52346875
transcript.pyannote[77].speaker SPEAKER_20
transcript.pyannote[77].start 2140.57409375
transcript.pyannote[77].end 2143.72971875
transcript.pyannote[78].speaker SPEAKER_20
transcript.pyannote[78].start 2143.94909375
transcript.pyannote[78].end 2147.00346875
transcript.pyannote[79].speaker SPEAKER_20
transcript.pyannote[79].start 2147.32409375
transcript.pyannote[79].end 2147.84721875
transcript.pyannote[80].speaker SPEAKER_20
transcript.pyannote[80].start 2148.33659375
transcript.pyannote[80].end 2158.27596875
transcript.pyannote[81].speaker SPEAKER_20
transcript.pyannote[81].start 2158.46159375
transcript.pyannote[81].end 2170.56096875
transcript.pyannote[82].speaker SPEAKER_20
transcript.pyannote[82].start 2171.06721875
transcript.pyannote[82].end 2203.38284375
transcript.pyannote[83].speaker SPEAKER_20
transcript.pyannote[83].start 2203.51784375
transcript.pyannote[83].end 2203.99034375
transcript.pyannote[84].speaker SPEAKER_20
transcript.pyannote[84].start 2204.44596875
transcript.pyannote[84].end 2236.55909375
transcript.pyannote[85].speaker SPEAKER_20
transcript.pyannote[85].start 2236.81221875
transcript.pyannote[85].end 2237.40284375
transcript.pyannote[86].speaker SPEAKER_20
transcript.pyannote[86].start 2237.75721875
transcript.pyannote[86].end 2239.83284375
transcript.pyannote[87].speaker SPEAKER_20
transcript.pyannote[87].start 2240.18721875
transcript.pyannote[87].end 2252.47221875
transcript.pyannote[88].speaker SPEAKER_20
transcript.pyannote[88].start 2252.59034375
transcript.pyannote[88].end 2257.16346875
transcript.pyannote[89].speaker SPEAKER_20
transcript.pyannote[89].start 2257.56846875
transcript.pyannote[89].end 2267.92971875
transcript.pyannote[90].speaker SPEAKER_20
transcript.pyannote[90].start 2268.06471875
transcript.pyannote[90].end 2274.88221875
transcript.pyannote[91].speaker SPEAKER_20
transcript.pyannote[91].start 2275.20284375
transcript.pyannote[91].end 2287.35284375
transcript.pyannote[92].speaker SPEAKER_20
transcript.pyannote[92].start 2287.74096875
transcript.pyannote[92].end 2303.48534375
transcript.pyannote[93].speaker SPEAKER_20
transcript.pyannote[93].start 2303.63721875
transcript.pyannote[93].end 2324.07284375
transcript.pyannote[94].speaker SPEAKER_20
transcript.pyannote[94].start 2324.44409375
transcript.pyannote[94].end 2346.11159375
transcript.pyannote[95].speaker SPEAKER_20
transcript.pyannote[95].start 2346.51659375
transcript.pyannote[95].end 2358.21096875
transcript.pyannote[96].speaker SPEAKER_20
transcript.pyannote[96].start 2358.68346875
transcript.pyannote[96].end 2358.98721875
transcript.pyannote[97].speaker SPEAKER_20
transcript.pyannote[97].start 2359.27409375
transcript.pyannote[97].end 2445.60659375
transcript.pyannote[98].speaker SPEAKER_20
transcript.pyannote[98].start 2446.23096875
transcript.pyannote[98].end 2501.56409375
transcript.pyannote[99].speaker SPEAKER_20
transcript.pyannote[99].start 2501.85096875
transcript.pyannote[99].end 2513.56221875
transcript.pyannote[100].speaker SPEAKER_20
transcript.pyannote[100].start 2513.74784375
transcript.pyannote[100].end 2542.62096875
transcript.pyannote[101].speaker SPEAKER_20
transcript.pyannote[101].start 2543.51534375
transcript.pyannote[101].end 2546.31659375
transcript.pyannote[102].speaker SPEAKER_20
transcript.pyannote[102].start 2546.63721875
transcript.pyannote[102].end 2565.92534375
transcript.pyannote[103].speaker SPEAKER_20
transcript.pyannote[103].start 2566.63409375
transcript.pyannote[103].end 2568.96284375
transcript.pyannote[104].speaker SPEAKER_20
transcript.pyannote[104].start 2569.16534375
transcript.pyannote[104].end 2602.07159375
transcript.pyannote[105].speaker SPEAKER_20
transcript.pyannote[105].start 2602.18971875
transcript.pyannote[105].end 2603.77596875
transcript.pyannote[106].speaker SPEAKER_20
transcript.pyannote[106].start 2604.07971875
transcript.pyannote[106].end 2623.60409375
transcript.pyannote[107].speaker SPEAKER_20
transcript.pyannote[107].start 2624.09346875
transcript.pyannote[107].end 2688.20159375
transcript.pyannote[108].speaker SPEAKER_20
transcript.pyannote[108].start 2688.45471875
transcript.pyannote[108].end 2699.28846875
transcript.pyannote[109].speaker SPEAKER_20
transcript.pyannote[109].start 2699.55846875
transcript.pyannote[109].end 2712.11346875
transcript.pyannote[110].speaker SPEAKER_20
transcript.pyannote[110].start 2712.53534375
transcript.pyannote[110].end 2733.32534375
transcript.pyannote[111].speaker SPEAKER_20
transcript.pyannote[111].start 2733.51096875
transcript.pyannote[111].end 2739.02909375
transcript.pyannote[112].speaker SPEAKER_20
transcript.pyannote[112].start 2739.11346875
transcript.pyannote[112].end 2744.05784375
transcript.pyannote[113].speaker SPEAKER_20
transcript.pyannote[113].start 2744.26034375
transcript.pyannote[113].end 2744.69909375
transcript.pyannote[114].speaker SPEAKER_20
transcript.pyannote[114].start 2746.28534375
transcript.pyannote[114].end 2746.31909375
transcript.pyannote[115].speaker SPEAKER_30
transcript.pyannote[115].start 2746.31909375
transcript.pyannote[115].end 2748.88409375
transcript.pyannote[116].speaker SPEAKER_30
transcript.pyannote[116].start 2749.64346875
transcript.pyannote[116].end 2750.35221875
transcript.pyannote[117].speaker SPEAKER_30
transcript.pyannote[117].start 2750.92596875
transcript.pyannote[117].end 2757.13596875
transcript.pyannote[118].speaker SPEAKER_30
transcript.pyannote[118].start 2757.52409375
transcript.pyannote[118].end 2758.43534375
transcript.pyannote[119].speaker SPEAKER_30
transcript.pyannote[119].start 2759.14409375
transcript.pyannote[119].end 2760.47721875
transcript.pyannote[120].speaker SPEAKER_30
transcript.pyannote[120].start 2761.05096875
transcript.pyannote[120].end 2762.08034375
transcript.pyannote[121].speaker SPEAKER_30
transcript.pyannote[121].start 2762.19846875
transcript.pyannote[121].end 2764.24034375
transcript.pyannote[122].speaker SPEAKER_30
transcript.pyannote[122].start 2764.52721875
transcript.pyannote[122].end 2765.92784375
transcript.pyannote[123].speaker SPEAKER_30
transcript.pyannote[123].start 2766.38346875
transcript.pyannote[123].end 2769.75846875
transcript.pyannote[124].speaker SPEAKER_30
transcript.pyannote[124].start 2770.46721875
transcript.pyannote[124].end 2771.78346875
transcript.pyannote[125].speaker SPEAKER_30
transcript.pyannote[125].start 2772.10409375
transcript.pyannote[125].end 2773.80846875
transcript.pyannote[126].speaker SPEAKER_30
transcript.pyannote[126].start 2774.17971875
transcript.pyannote[126].end 2774.83784375
transcript.pyannote[127].speaker SPEAKER_12
transcript.pyannote[127].start 2789.36721875
transcript.pyannote[127].end 2791.96596875
transcript.pyannote[128].speaker SPEAKER_12
transcript.pyannote[128].start 2792.35409375
transcript.pyannote[128].end 2794.66596875
transcript.pyannote[129].speaker SPEAKER_12
transcript.pyannote[129].start 2794.73346875
transcript.pyannote[129].end 2797.48409375
transcript.pyannote[130].speaker SPEAKER_12
transcript.pyannote[130].start 2797.65284375
transcript.pyannote[130].end 2798.73284375
transcript.pyannote[131].speaker SPEAKER_12
transcript.pyannote[131].start 2798.78346875
transcript.pyannote[131].end 2822.05409375
transcript.pyannote[132].speaker SPEAKER_12
transcript.pyannote[132].start 2822.12159375
transcript.pyannote[132].end 2872.56096875
transcript.pyannote[133].speaker SPEAKER_12
transcript.pyannote[133].start 2873.25284375
transcript.pyannote[133].end 2919.91221875
transcript.pyannote[134].speaker SPEAKER_12
transcript.pyannote[134].start 2919.94596875
transcript.pyannote[134].end 2954.86034375
transcript.pyannote[135].speaker SPEAKER_12
transcript.pyannote[135].start 2954.91096875
transcript.pyannote[135].end 2955.75471875
transcript.pyannote[136].speaker SPEAKER_12
transcript.pyannote[136].start 2956.21034375
transcript.pyannote[136].end 2959.63596875
transcript.pyannote[137].speaker SPEAKER_12
transcript.pyannote[137].start 2960.44596875
transcript.pyannote[137].end 2961.96471875
transcript.pyannote[138].speaker SPEAKER_12
transcript.pyannote[138].start 2962.13346875
transcript.pyannote[138].end 2978.09721875
transcript.pyannote[139].speaker SPEAKER_12
transcript.pyannote[139].start 2978.38409375
transcript.pyannote[139].end 2992.49159375
transcript.pyannote[140].speaker SPEAKER_12
transcript.pyannote[140].start 2992.79534375
transcript.pyannote[140].end 2998.83659375
transcript.pyannote[141].speaker SPEAKER_12
transcript.pyannote[141].start 2999.03909375
transcript.pyannote[141].end 3001.13159375
transcript.pyannote[142].speaker SPEAKER_12
transcript.pyannote[142].start 3001.43534375
transcript.pyannote[142].end 3007.13909375
transcript.pyannote[143].speaker SPEAKER_12
transcript.pyannote[143].start 3007.34159375
transcript.pyannote[143].end 3008.32034375
transcript.pyannote[144].speaker SPEAKER_12
transcript.pyannote[144].start 3008.50596875
transcript.pyannote[144].end 3009.61971875
transcript.pyannote[145].speaker SPEAKER_12
transcript.pyannote[145].start 3010.12596875
transcript.pyannote[145].end 3010.54784375
transcript.pyannote[146].speaker SPEAKER_12
transcript.pyannote[146].start 3010.76721875
transcript.pyannote[146].end 3013.41659375
transcript.pyannote[147].speaker SPEAKER_12
transcript.pyannote[147].start 3014.32784375
transcript.pyannote[147].end 3020.67284375
transcript.pyannote[148].speaker SPEAKER_12
transcript.pyannote[148].start 3020.68971875
transcript.pyannote[148].end 3026.30909375
transcript.pyannote[149].speaker SPEAKER_12
transcript.pyannote[149].start 3026.52846875
transcript.pyannote[149].end 3027.16971875
transcript.pyannote[150].speaker SPEAKER_12
transcript.pyannote[150].start 3027.62534375
transcript.pyannote[150].end 3058.79346875
transcript.pyannote[151].speaker SPEAKER_12
transcript.pyannote[151].start 3058.96221875
transcript.pyannote[151].end 3059.72159375
transcript.pyannote[152].speaker SPEAKER_12
transcript.pyannote[152].start 3060.09284375
transcript.pyannote[152].end 3062.05034375
transcript.pyannote[153].speaker SPEAKER_12
transcript.pyannote[153].start 3062.32034375
transcript.pyannote[153].end 3063.04596875
transcript.pyannote[154].speaker SPEAKER_12
transcript.pyannote[154].start 3063.31596875
transcript.pyannote[154].end 3064.86846875
transcript.pyannote[155].speaker SPEAKER_12
transcript.pyannote[155].start 3065.00346875
transcript.pyannote[155].end 3067.34909375
transcript.pyannote[156].speaker SPEAKER_12
transcript.pyannote[156].start 3067.50096875
transcript.pyannote[156].end 3068.61471875
transcript.pyannote[157].speaker SPEAKER_12
transcript.pyannote[157].start 3068.91846875
transcript.pyannote[157].end 3070.31909375
transcript.pyannote[158].speaker SPEAKER_12
transcript.pyannote[158].start 3070.48784375
transcript.pyannote[158].end 3070.84221875
transcript.pyannote[159].speaker SPEAKER_12
transcript.pyannote[159].start 3071.26409375
transcript.pyannote[159].end 3075.65159375
transcript.pyannote[160].speaker SPEAKER_12
transcript.pyannote[160].start 3075.87096875
transcript.pyannote[160].end 3076.34346875
transcript.pyannote[161].speaker SPEAKER_12
transcript.pyannote[161].start 3076.59659375
transcript.pyannote[161].end 3079.68471875
transcript.pyannote[162].speaker SPEAKER_12
transcript.pyannote[162].start 3079.93784375
transcript.pyannote[162].end 3081.03471875
transcript.pyannote[163].speaker SPEAKER_12
transcript.pyannote[163].start 3081.25409375
transcript.pyannote[163].end 3081.28784375
transcript.pyannote[164].speaker SPEAKER_30
transcript.pyannote[164].start 3081.28784375
transcript.pyannote[164].end 3083.56596875
transcript.pyannote[165].speaker SPEAKER_30
transcript.pyannote[165].start 3084.19034375
transcript.pyannote[165].end 3087.78471875
transcript.pyannote[166].speaker SPEAKER_30
transcript.pyannote[166].start 3092.49284375
transcript.pyannote[166].end 3092.50971875
transcript.pyannote[167].speaker SPEAKER_22
transcript.pyannote[167].start 3092.50971875
transcript.pyannote[167].end 3096.81284375
transcript.pyannote[168].speaker SPEAKER_22
transcript.pyannote[168].start 3097.04909375
transcript.pyannote[168].end 3102.80346875
transcript.pyannote[169].speaker SPEAKER_22
transcript.pyannote[169].start 3102.92159375
transcript.pyannote[169].end 3152.56784375
transcript.pyannote[170].speaker SPEAKER_22
transcript.pyannote[170].start 3153.46221875
transcript.pyannote[170].end 3167.72159375
transcript.pyannote[171].speaker SPEAKER_22
transcript.pyannote[171].start 3167.90721875
transcript.pyannote[171].end 3177.64409375
transcript.pyannote[172].speaker SPEAKER_22
transcript.pyannote[172].start 3178.04909375
transcript.pyannote[172].end 3179.66909375
transcript.pyannote[173].speaker SPEAKER_22
transcript.pyannote[173].start 3179.85471875
transcript.pyannote[173].end 3198.90659375
transcript.pyannote[174].speaker SPEAKER_22
transcript.pyannote[174].start 3199.29471875
transcript.pyannote[174].end 3204.01971875
transcript.pyannote[175].speaker SPEAKER_22
transcript.pyannote[175].start 3204.20534375
transcript.pyannote[175].end 3205.18409375
transcript.pyannote[176].speaker SPEAKER_22
transcript.pyannote[176].start 3205.79159375
transcript.pyannote[176].end 3209.38596875
transcript.pyannote[177].speaker SPEAKER_22
transcript.pyannote[177].start 3209.89221875
transcript.pyannote[177].end 3214.61721875
transcript.pyannote[178].speaker SPEAKER_22
transcript.pyannote[178].start 3215.25846875
transcript.pyannote[178].end 3219.52784375
transcript.pyannote[179].speaker SPEAKER_22
transcript.pyannote[179].start 3219.84846875
transcript.pyannote[179].end 3222.63284375
transcript.pyannote[180].speaker SPEAKER_22
transcript.pyannote[180].start 3223.12221875
transcript.pyannote[180].end 3239.49096875
transcript.pyannote[181].speaker SPEAKER_22
transcript.pyannote[181].start 3239.89596875
transcript.pyannote[181].end 3244.87409375
transcript.pyannote[182].speaker SPEAKER_22
transcript.pyannote[182].start 3245.24534375
transcript.pyannote[182].end 3284.20971875
transcript.pyannote[183].speaker SPEAKER_22
transcript.pyannote[183].start 3284.80034375
transcript.pyannote[183].end 3306.61971875
transcript.pyannote[184].speaker SPEAKER_22
transcript.pyannote[184].start 3306.80534375
transcript.pyannote[184].end 3307.26096875
transcript.pyannote[185].speaker SPEAKER_22
transcript.pyannote[185].start 3307.66596875
transcript.pyannote[185].end 3312.61034375
transcript.pyannote[186].speaker SPEAKER_22
transcript.pyannote[186].start 3312.96471875
transcript.pyannote[186].end 3316.69409375
transcript.pyannote[187].speaker SPEAKER_22
transcript.pyannote[187].start 3316.91346875
transcript.pyannote[187].end 3320.82846875
transcript.pyannote[188].speaker SPEAKER_22
transcript.pyannote[188].start 3321.13221875
transcript.pyannote[188].end 3346.63034375
transcript.pyannote[189].speaker SPEAKER_22
transcript.pyannote[189].start 3346.76534375
transcript.pyannote[189].end 3356.89034375
transcript.pyannote[190].speaker SPEAKER_30
transcript.pyannote[190].start 3359.10096875
transcript.pyannote[190].end 3361.56471875
transcript.pyannote[191].speaker SPEAKER_30
transcript.pyannote[191].start 3362.18909375
transcript.pyannote[191].end 3362.76284375
transcript.pyannote[192].speaker SPEAKER_30
transcript.pyannote[192].start 3363.40409375
transcript.pyannote[192].end 3365.22659375
transcript.pyannote[193].speaker SPEAKER_30
transcript.pyannote[193].start 3365.56409375
transcript.pyannote[193].end 3366.77909375
transcript.pyannote[194].speaker SPEAKER_30
transcript.pyannote[194].start 3367.33596875
transcript.pyannote[194].end 3367.97721875
transcript.pyannote[195].speaker SPEAKER_15
transcript.pyannote[195].start 3374.08596875
transcript.pyannote[195].end 3375.85784375
transcript.pyannote[196].speaker SPEAKER_15
transcript.pyannote[196].start 3376.26284375
transcript.pyannote[196].end 3378.23721875
transcript.pyannote[197].speaker SPEAKER_15
transcript.pyannote[197].start 3378.65909375
transcript.pyannote[197].end 3379.90784375
transcript.pyannote[198].speaker SPEAKER_15
transcript.pyannote[198].start 3380.39721875
transcript.pyannote[198].end 3384.95346875
transcript.pyannote[199].speaker SPEAKER_15
transcript.pyannote[199].start 3385.25721875
transcript.pyannote[199].end 3386.97846875
transcript.pyannote[200].speaker SPEAKER_15
transcript.pyannote[200].start 3387.29909375
transcript.pyannote[200].end 3389.15534375
transcript.pyannote[201].speaker SPEAKER_15
transcript.pyannote[201].start 3389.64471875
transcript.pyannote[201].end 3392.86784375
transcript.pyannote[202].speaker SPEAKER_15
transcript.pyannote[202].start 3393.27284375
transcript.pyannote[202].end 3403.63409375
transcript.pyannote[203].speaker SPEAKER_15
transcript.pyannote[203].start 3404.12346875
transcript.pyannote[203].end 3406.31721875
transcript.pyannote[204].speaker SPEAKER_15
transcript.pyannote[204].start 3406.60409375
transcript.pyannote[204].end 3410.62034375
transcript.pyannote[205].speaker SPEAKER_15
transcript.pyannote[205].start 3411.02534375
transcript.pyannote[205].end 3413.18534375
transcript.pyannote[206].speaker SPEAKER_15
transcript.pyannote[206].start 3413.28659375
transcript.pyannote[206].end 3415.88534375
transcript.pyannote[207].speaker SPEAKER_15
transcript.pyannote[207].start 3416.34096875
transcript.pyannote[207].end 3418.06221875
transcript.pyannote[208].speaker SPEAKER_15
transcript.pyannote[208].start 3418.38284375
transcript.pyannote[208].end 3421.74096875
transcript.pyannote[209].speaker SPEAKER_15
transcript.pyannote[209].start 3422.29784375
transcript.pyannote[209].end 3425.65596875
transcript.pyannote[210].speaker SPEAKER_15
transcript.pyannote[210].start 3426.11159375
transcript.pyannote[210].end 3430.19534375
transcript.pyannote[211].speaker SPEAKER_15
transcript.pyannote[211].start 3430.54971875
transcript.pyannote[211].end 3437.01284375
transcript.pyannote[212].speaker SPEAKER_15
transcript.pyannote[212].start 3437.36721875
transcript.pyannote[212].end 3444.11721875
transcript.pyannote[213].speaker SPEAKER_15
transcript.pyannote[213].start 3444.91034375
transcript.pyannote[213].end 3447.96471875
transcript.pyannote[214].speaker SPEAKER_15
transcript.pyannote[214].start 3448.42034375
transcript.pyannote[214].end 3451.50846875
transcript.pyannote[215].speaker SPEAKER_15
transcript.pyannote[215].start 3451.74471875
transcript.pyannote[215].end 3455.22096875
transcript.pyannote[216].speaker SPEAKER_15
transcript.pyannote[216].start 3455.60909375
transcript.pyannote[216].end 3457.70159375
transcript.pyannote[217].speaker SPEAKER_15
transcript.pyannote[217].start 3458.17409375
transcript.pyannote[217].end 3461.04284375
transcript.pyannote[218].speaker SPEAKER_15
transcript.pyannote[218].start 3462.83159375
transcript.pyannote[218].end 3467.06721875
transcript.pyannote[219].speaker SPEAKER_15
transcript.pyannote[219].start 3467.30346875
transcript.pyannote[219].end 3468.61971875
transcript.pyannote[220].speaker SPEAKER_15
transcript.pyannote[220].start 3469.36221875
transcript.pyannote[220].end 3474.37409375
transcript.pyannote[221].speaker SPEAKER_15
transcript.pyannote[221].start 3474.88034375
transcript.pyannote[221].end 3477.63096875
transcript.pyannote[222].speaker SPEAKER_15
transcript.pyannote[222].start 3478.05284375
transcript.pyannote[222].end 3480.12846875
transcript.pyannote[223].speaker SPEAKER_15
transcript.pyannote[223].start 3480.24659375
transcript.pyannote[223].end 3485.12346875
transcript.pyannote[224].speaker SPEAKER_15
transcript.pyannote[224].start 3486.00096875
transcript.pyannote[224].end 3488.66721875
transcript.pyannote[225].speaker SPEAKER_15
transcript.pyannote[225].start 3489.25784375
transcript.pyannote[225].end 3492.41346875
transcript.pyannote[226].speaker SPEAKER_15
transcript.pyannote[226].start 3492.85221875
transcript.pyannote[226].end 3496.19346875
transcript.pyannote[227].speaker SPEAKER_15
transcript.pyannote[227].start 3496.66596875
transcript.pyannote[227].end 3500.17596875
transcript.pyannote[228].speaker SPEAKER_15
transcript.pyannote[228].start 3500.56409375
transcript.pyannote[228].end 3503.34846875
transcript.pyannote[229].speaker SPEAKER_15
transcript.pyannote[229].start 3503.75346875
transcript.pyannote[229].end 3506.92596875
transcript.pyannote[230].speaker SPEAKER_15
transcript.pyannote[230].start 3507.49971875
transcript.pyannote[230].end 3511.92096875
transcript.pyannote[231].speaker SPEAKER_15
transcript.pyannote[231].start 3512.68034375
transcript.pyannote[231].end 3514.90784375
transcript.pyannote[232].speaker SPEAKER_15
transcript.pyannote[232].start 3515.53221875
transcript.pyannote[232].end 3521.89409375
transcript.pyannote[233].speaker SPEAKER_15
transcript.pyannote[233].start 3522.18096875
transcript.pyannote[233].end 3525.48846875
transcript.pyannote[234].speaker SPEAKER_15
transcript.pyannote[234].start 3525.74159375
transcript.pyannote[234].end 3527.71596875
transcript.pyannote[235].speaker SPEAKER_15
transcript.pyannote[235].start 3528.25596875
transcript.pyannote[235].end 3530.98971875
transcript.pyannote[236].speaker SPEAKER_15
transcript.pyannote[236].start 3531.22596875
transcript.pyannote[236].end 3532.10346875
transcript.pyannote[237].speaker SPEAKER_15
transcript.pyannote[237].start 3532.35659375
transcript.pyannote[237].end 3535.81596875
transcript.pyannote[238].speaker SPEAKER_15
transcript.pyannote[238].start 3536.33909375
transcript.pyannote[238].end 3540.11909375
transcript.pyannote[239].speaker SPEAKER_15
transcript.pyannote[239].start 3541.24971875
transcript.pyannote[239].end 3544.48971875
transcript.pyannote[240].speaker SPEAKER_15
transcript.pyannote[240].start 3544.89471875
transcript.pyannote[240].end 3546.04221875
transcript.pyannote[241].speaker SPEAKER_15
transcript.pyannote[241].start 3546.26159375
transcript.pyannote[241].end 3547.22346875
transcript.pyannote[242].speaker SPEAKER_15
transcript.pyannote[242].start 3547.37534375
transcript.pyannote[242].end 3549.06284375
transcript.pyannote[243].speaker SPEAKER_15
transcript.pyannote[243].start 3549.50159375
transcript.pyannote[243].end 3555.13784375
transcript.pyannote[244].speaker SPEAKER_15
transcript.pyannote[244].start 3555.42471875
transcript.pyannote[244].end 3557.66909375
transcript.pyannote[245].speaker SPEAKER_15
transcript.pyannote[245].start 3558.17534375
transcript.pyannote[245].end 3560.53784375
transcript.pyannote[246].speaker SPEAKER_15
transcript.pyannote[246].start 3561.21284375
transcript.pyannote[246].end 3563.25471875
transcript.pyannote[247].speaker SPEAKER_15
transcript.pyannote[247].start 3563.59221875
transcript.pyannote[247].end 3564.87471875
transcript.pyannote[248].speaker SPEAKER_15
transcript.pyannote[248].start 3565.11096875
transcript.pyannote[248].end 3567.84471875
transcript.pyannote[249].speaker SPEAKER_15
transcript.pyannote[249].start 3568.01346875
transcript.pyannote[249].end 3570.20721875
transcript.pyannote[250].speaker SPEAKER_30
transcript.pyannote[250].start 3572.08034375
transcript.pyannote[250].end 3574.13909375
transcript.pyannote[251].speaker SPEAKER_30
transcript.pyannote[251].start 3574.74659375
transcript.pyannote[251].end 3579.70784375
transcript.pyannote[252].speaker SPEAKER_30
transcript.pyannote[252].start 3580.38284375
transcript.pyannote[252].end 3582.47534375
transcript.pyannote[253].speaker SPEAKER_30
transcript.pyannote[253].start 3583.03221875
transcript.pyannote[253].end 3583.70721875
transcript.pyannote[254].speaker SPEAKER_30
transcript.pyannote[254].start 3585.49596875
transcript.pyannote[254].end 3591.33471875
transcript.pyannote[255].speaker SPEAKER_30
transcript.pyannote[255].start 3591.72284375
transcript.pyannote[255].end 3592.78596875
transcript.pyannote[256].speaker SPEAKER_30
transcript.pyannote[256].start 3594.22034375
transcript.pyannote[256].end 3597.98346875
transcript.pyannote[257].speaker SPEAKER_30
transcript.pyannote[257].start 3598.16909375
transcript.pyannote[257].end 3602.53971875
transcript.pyannote[258].speaker SPEAKER_30
transcript.pyannote[258].start 3603.02909375
transcript.pyannote[258].end 3608.12534375
transcript.pyannote[259].speaker SPEAKER_30
transcript.pyannote[259].start 3608.56409375
transcript.pyannote[259].end 3617.22096875
transcript.pyannote[260].speaker SPEAKER_30
transcript.pyannote[260].start 3617.69346875
transcript.pyannote[260].end 3626.04659375
transcript.pyannote[261].speaker SPEAKER_30
transcript.pyannote[261].start 3626.75534375
transcript.pyannote[261].end 3629.99534375
transcript.pyannote[262].speaker SPEAKER_30
transcript.pyannote[262].start 3630.43409375
transcript.pyannote[262].end 3630.63659375
transcript.pyannote[263].speaker SPEAKER_30
transcript.pyannote[263].start 3631.22721875
transcript.pyannote[263].end 3633.87659375
transcript.pyannote[264].speaker SPEAKER_05
transcript.pyannote[264].start 3638.41596875
transcript.pyannote[264].end 3639.31034375
transcript.pyannote[265].speaker SPEAKER_30
transcript.pyannote[265].start 3639.86721875
transcript.pyannote[265].end 3641.16659375
transcript.pyannote[266].speaker SPEAKER_20
transcript.pyannote[266].start 3649.16534375
transcript.pyannote[266].end 3649.85721875
transcript.pyannote[267].speaker SPEAKER_05
transcript.pyannote[267].start 3649.85721875
transcript.pyannote[267].end 3651.59534375
transcript.pyannote[268].speaker SPEAKER_05
transcript.pyannote[268].start 3652.18596875
transcript.pyannote[268].end 3659.89784375
transcript.pyannote[269].speaker SPEAKER_05
transcript.pyannote[269].start 3660.50534375
transcript.pyannote[269].end 3666.86721875
transcript.pyannote[270].speaker SPEAKER_05
transcript.pyannote[270].start 3667.18784375
transcript.pyannote[270].end 3669.60096875
transcript.pyannote[271].speaker SPEAKER_05
transcript.pyannote[271].start 3669.92159375
transcript.pyannote[271].end 3670.76534375
transcript.pyannote[272].speaker SPEAKER_05
transcript.pyannote[272].start 3670.96784375
transcript.pyannote[272].end 3672.35159375
transcript.pyannote[273].speaker SPEAKER_05
transcript.pyannote[273].start 3672.68909375
transcript.pyannote[273].end 3676.01346875
transcript.pyannote[274].speaker SPEAKER_05
transcript.pyannote[274].start 3677.24534375
transcript.pyannote[274].end 3682.27409375
transcript.pyannote[275].speaker SPEAKER_05
transcript.pyannote[275].start 3682.71284375
transcript.pyannote[275].end 3685.90221875
transcript.pyannote[276].speaker SPEAKER_05
transcript.pyannote[276].start 3686.54346875
transcript.pyannote[276].end 3688.33221875
transcript.pyannote[277].speaker SPEAKER_05
transcript.pyannote[277].start 3688.72034375
transcript.pyannote[277].end 3692.21346875
transcript.pyannote[278].speaker SPEAKER_05
transcript.pyannote[278].start 3692.56784375
transcript.pyannote[278].end 3698.18721875
transcript.pyannote[279].speaker SPEAKER_05
transcript.pyannote[279].start 3698.67659375
transcript.pyannote[279].end 3706.52346875
transcript.pyannote[280].speaker SPEAKER_05
transcript.pyannote[280].start 3706.75971875
transcript.pyannote[280].end 3716.24346875
transcript.pyannote[281].speaker SPEAKER_05
transcript.pyannote[281].start 3716.39534375
transcript.pyannote[281].end 3724.88346875
transcript.pyannote[282].speaker SPEAKER_05
transcript.pyannote[282].start 3725.28846875
transcript.pyannote[282].end 3734.23221875
transcript.pyannote[283].speaker SPEAKER_05
transcript.pyannote[283].start 3734.65409375
transcript.pyannote[283].end 3743.88471875
transcript.pyannote[284].speaker SPEAKER_05
transcript.pyannote[284].start 3745.20096875
transcript.pyannote[284].end 3745.60596875
transcript.pyannote[285].speaker SPEAKER_20
transcript.pyannote[285].start 3746.16284375
transcript.pyannote[285].end 3757.80659375
transcript.pyannote[286].speaker SPEAKER_05
transcript.pyannote[286].start 3757.92471875
transcript.pyannote[286].end 3759.08909375
transcript.pyannote[287].speaker SPEAKER_20
transcript.pyannote[287].start 3759.37596875
transcript.pyannote[287].end 3762.90284375
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 3761.72159375
transcript.pyannote[288].end 3763.69596875
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 3764.01659375
transcript.pyannote[289].end 3765.02909375
transcript.pyannote[290].speaker SPEAKER_20
transcript.pyannote[290].start 3765.46784375
transcript.pyannote[290].end 3766.64909375
transcript.pyannote[291].speaker SPEAKER_20
transcript.pyannote[291].start 3766.76721875
transcript.pyannote[291].end 3771.67784375
transcript.pyannote[292].speaker SPEAKER_20
transcript.pyannote[292].start 3771.71159375
transcript.pyannote[292].end 3771.72846875
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 3771.72846875
transcript.pyannote[293].end 3774.20909375
transcript.pyannote[294].speaker SPEAKER_20
transcript.pyannote[294].start 3773.85471875
transcript.pyannote[294].end 3775.20471875
transcript.pyannote[295].speaker SPEAKER_20
transcript.pyannote[295].start 3775.52534375
transcript.pyannote[295].end 3776.31846875
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 3776.62221875
transcript.pyannote[296].end 3783.59159375
transcript.pyannote[297].speaker SPEAKER_05
transcript.pyannote[297].start 3783.70971875
transcript.pyannote[297].end 3784.03034375
transcript.pyannote[298].speaker SPEAKER_05
transcript.pyannote[298].start 3784.41846875
transcript.pyannote[298].end 3787.89471875
transcript.pyannote[299].speaker SPEAKER_05
transcript.pyannote[299].start 3788.16471875
transcript.pyannote[299].end 3790.40909375
transcript.pyannote[300].speaker SPEAKER_05
transcript.pyannote[300].start 3790.69596875
transcript.pyannote[300].end 3792.53534375
transcript.pyannote[301].speaker SPEAKER_20
transcript.pyannote[301].start 3793.24409375
transcript.pyannote[301].end 3794.03721875
transcript.pyannote[302].speaker SPEAKER_05
transcript.pyannote[302].start 3794.39159375
transcript.pyannote[302].end 3796.01159375
transcript.pyannote[303].speaker SPEAKER_20
transcript.pyannote[303].start 3796.01159375
transcript.pyannote[303].end 3796.02846875
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 3796.61909375
transcript.pyannote[304].end 3798.28971875
transcript.pyannote[305].speaker SPEAKER_05
transcript.pyannote[305].start 3798.82971875
transcript.pyannote[305].end 3805.56284375
transcript.pyannote[306].speaker SPEAKER_05
transcript.pyannote[306].start 3806.08596875
transcript.pyannote[306].end 3844.89846875
transcript.pyannote[307].speaker SPEAKER_00
transcript.pyannote[307].start 3825.05346875
transcript.pyannote[307].end 3825.79596875
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 3845.48909375
transcript.pyannote[308].end 3847.76721875
transcript.pyannote[309].speaker SPEAKER_05
transcript.pyannote[309].start 3848.18909375
transcript.pyannote[309].end 3853.69034375
transcript.pyannote[310].speaker SPEAKER_05
transcript.pyannote[310].start 3854.16284375
transcript.pyannote[310].end 3858.90471875
transcript.pyannote[311].speaker SPEAKER_05
transcript.pyannote[311].start 3859.44471875
transcript.pyannote[311].end 3865.50284375
transcript.pyannote[312].speaker SPEAKER_05
transcript.pyannote[312].start 3865.68846875
transcript.pyannote[312].end 3883.27221875
transcript.pyannote[313].speaker SPEAKER_05
transcript.pyannote[313].start 3884.01471875
transcript.pyannote[313].end 3885.09471875
transcript.pyannote[314].speaker SPEAKER_05
transcript.pyannote[314].start 3885.60096875
transcript.pyannote[314].end 3897.07596875
transcript.pyannote[315].speaker SPEAKER_05
transcript.pyannote[315].start 3897.37971875
transcript.pyannote[315].end 3899.26971875
transcript.pyannote[316].speaker SPEAKER_05
transcript.pyannote[316].start 3899.45534375
transcript.pyannote[316].end 3907.69034375
transcript.pyannote[317].speaker SPEAKER_05
transcript.pyannote[317].start 3908.43284375
transcript.pyannote[317].end 3919.63784375
transcript.pyannote[318].speaker SPEAKER_20
transcript.pyannote[318].start 3919.78971875
transcript.pyannote[318].end 3923.21534375
transcript.pyannote[319].speaker SPEAKER_20
transcript.pyannote[319].start 3923.72159375
transcript.pyannote[319].end 3927.23159375
transcript.pyannote[320].speaker SPEAKER_20
transcript.pyannote[320].start 3927.68721875
transcript.pyannote[320].end 3928.31159375
transcript.pyannote[321].speaker SPEAKER_05
transcript.pyannote[321].start 3927.70409375
transcript.pyannote[321].end 3928.88534375
transcript.pyannote[322].speaker SPEAKER_20
transcript.pyannote[322].start 3928.88534375
transcript.pyannote[322].end 3929.34096875
transcript.pyannote[323].speaker SPEAKER_05
transcript.pyannote[323].start 3929.42534375
transcript.pyannote[323].end 3929.72909375
transcript.pyannote[324].speaker SPEAKER_20
transcript.pyannote[324].start 3929.72909375
transcript.pyannote[324].end 3930.47159375
transcript.pyannote[325].speaker SPEAKER_05
transcript.pyannote[325].start 3929.76284375
transcript.pyannote[325].end 3931.33221875
transcript.pyannote[326].speaker SPEAKER_20
transcript.pyannote[326].start 3931.07909375
transcript.pyannote[326].end 3931.48409375
transcript.pyannote[327].speaker SPEAKER_05
transcript.pyannote[327].start 3931.56846875
transcript.pyannote[327].end 3939.71909375
transcript.pyannote[328].speaker SPEAKER_05
transcript.pyannote[328].start 3939.76971875
transcript.pyannote[328].end 3939.78659375
transcript.pyannote[329].speaker SPEAKER_05
transcript.pyannote[329].start 3939.87096875
transcript.pyannote[329].end 3940.63034375
transcript.pyannote[330].speaker SPEAKER_05
transcript.pyannote[330].start 3941.86221875
transcript.pyannote[330].end 3945.10221875
transcript.pyannote[331].speaker SPEAKER_20
transcript.pyannote[331].start 3943.39784375
transcript.pyannote[331].end 3943.71846875
transcript.pyannote[332].speaker SPEAKER_20
transcript.pyannote[332].start 3945.11909375
transcript.pyannote[332].end 3958.23096875
transcript.pyannote[333].speaker SPEAKER_05
transcript.pyannote[333].start 3956.76284375
transcript.pyannote[333].end 3961.13346875
transcript.pyannote[334].speaker SPEAKER_20
transcript.pyannote[334].start 3959.29409375
transcript.pyannote[334].end 3959.32784375
transcript.pyannote[335].speaker SPEAKER_20
transcript.pyannote[335].start 3959.64846875
transcript.pyannote[335].end 3960.03659375
transcript.pyannote[336].speaker SPEAKER_20
transcript.pyannote[336].start 3960.49221875
transcript.pyannote[336].end 3963.79971875
transcript.pyannote[337].speaker SPEAKER_05
transcript.pyannote[337].start 3963.02346875
transcript.pyannote[337].end 3964.72784375
transcript.pyannote[338].speaker SPEAKER_20
transcript.pyannote[338].start 3964.72784375
transcript.pyannote[338].end 3966.48284375
transcript.pyannote[339].speaker SPEAKER_05
transcript.pyannote[339].start 3965.94284375
transcript.pyannote[339].end 3967.10721875
transcript.pyannote[340].speaker SPEAKER_20
transcript.pyannote[340].start 3967.36034375
transcript.pyannote[340].end 3970.29659375
transcript.pyannote[341].speaker SPEAKER_05
transcript.pyannote[341].start 3969.99284375
transcript.pyannote[341].end 3983.79659375
transcript.pyannote[342].speaker SPEAKER_20
transcript.pyannote[342].start 3970.51596875
transcript.pyannote[342].end 3970.83659375
transcript.pyannote[343].speaker SPEAKER_05
transcript.pyannote[343].start 3983.99909375
transcript.pyannote[343].end 4000.09784375
transcript.pyannote[344].speaker SPEAKER_05
transcript.pyannote[344].start 4000.35096875
transcript.pyannote[344].end 4008.87284375
transcript.pyannote[345].speaker SPEAKER_05
transcript.pyannote[345].start 4009.10909375
transcript.pyannote[345].end 4014.18846875
transcript.pyannote[346].speaker SPEAKER_05
transcript.pyannote[346].start 4014.79596875
transcript.pyannote[346].end 4019.74034375
transcript.pyannote[347].speaker SPEAKER_05
transcript.pyannote[347].start 4020.11159375
transcript.pyannote[347].end 4023.52034375
transcript.pyannote[348].speaker SPEAKER_05
transcript.pyannote[348].start 4023.79034375
transcript.pyannote[348].end 4029.91596875
transcript.pyannote[349].speaker SPEAKER_05
transcript.pyannote[349].start 4030.30409375
transcript.pyannote[349].end 4058.31659375
transcript.pyannote[350].speaker SPEAKER_05
transcript.pyannote[350].start 4058.77221875
transcript.pyannote[350].end 4070.04471875
transcript.pyannote[351].speaker SPEAKER_05
transcript.pyannote[351].start 4070.63534375
transcript.pyannote[351].end 4078.95471875
transcript.pyannote[352].speaker SPEAKER_05
transcript.pyannote[352].start 4079.15721875
transcript.pyannote[352].end 4081.01346875
transcript.pyannote[353].speaker SPEAKER_05
transcript.pyannote[353].start 4081.57034375
transcript.pyannote[353].end 4087.57784375
transcript.pyannote[354].speaker SPEAKER_05
transcript.pyannote[354].start 4087.94909375
transcript.pyannote[354].end 4120.88909375
transcript.pyannote[355].speaker SPEAKER_05
transcript.pyannote[355].start 4121.78346875
transcript.pyannote[355].end 4128.61784375
transcript.pyannote[356].speaker SPEAKER_05
transcript.pyannote[356].start 4128.70221875
transcript.pyannote[356].end 4129.32659375
transcript.pyannote[357].speaker SPEAKER_05
transcript.pyannote[357].start 4129.98471875
transcript.pyannote[357].end 4132.54971875
transcript.pyannote[358].speaker SPEAKER_05
transcript.pyannote[358].start 4133.51159375
transcript.pyannote[358].end 4142.40471875
transcript.pyannote[359].speaker SPEAKER_05
transcript.pyannote[359].start 4142.52284375
transcript.pyannote[359].end 4159.54971875
transcript.pyannote[360].speaker SPEAKER_05
transcript.pyannote[360].start 4159.61721875
transcript.pyannote[360].end 4179.98534375
transcript.pyannote[361].speaker SPEAKER_20
transcript.pyannote[361].start 4179.98534375
transcript.pyannote[361].end 4180.72784375
transcript.pyannote[362].speaker SPEAKER_05
transcript.pyannote[362].start 4180.37346875
transcript.pyannote[362].end 4181.16659375
transcript.pyannote[363].speaker SPEAKER_20
transcript.pyannote[363].start 4181.80784375
transcript.pyannote[363].end 4186.38096875
transcript.pyannote[364].speaker SPEAKER_05
transcript.pyannote[364].start 4186.58346875
transcript.pyannote[364].end 4187.54534375
transcript.pyannote[365].speaker SPEAKER_20
transcript.pyannote[365].start 4187.46096875
transcript.pyannote[365].end 4188.03471875
transcript.pyannote[366].speaker SPEAKER_30
transcript.pyannote[366].start 4188.03471875
transcript.pyannote[366].end 4188.74346875
transcript.pyannote[367].speaker SPEAKER_20
transcript.pyannote[367].start 4188.74346875
transcript.pyannote[367].end 4188.77721875
transcript.pyannote[368].speaker SPEAKER_05
transcript.pyannote[368].start 4188.77721875
transcript.pyannote[368].end 4189.68846875
transcript.pyannote[369].speaker SPEAKER_30
transcript.pyannote[369].start 4190.09346875
transcript.pyannote[369].end 4192.70909375
transcript.pyannote[370].speaker SPEAKER_30
transcript.pyannote[370].start 4194.39659375
transcript.pyannote[370].end 4196.28659375
transcript.pyannote[371].speaker SPEAKER_13
transcript.pyannote[371].start 4211.79471875
transcript.pyannote[371].end 4214.37659375
transcript.pyannote[372].speaker SPEAKER_30
transcript.pyannote[372].start 4214.54534375
transcript.pyannote[372].end 4215.77721875
transcript.pyannote[373].speaker SPEAKER_13
transcript.pyannote[373].start 4221.64971875
transcript.pyannote[373].end 4221.95346875
transcript.pyannote[374].speaker SPEAKER_13
transcript.pyannote[374].start 4222.99971875
transcript.pyannote[374].end 4230.30659375
transcript.pyannote[375].speaker SPEAKER_26
transcript.pyannote[375].start 4223.11784375
transcript.pyannote[375].end 4223.15159375
transcript.pyannote[376].speaker SPEAKER_30
transcript.pyannote[376].start 4223.15159375
transcript.pyannote[376].end 4223.60721875
transcript.pyannote[377].speaker SPEAKER_25
transcript.pyannote[377].start 4223.60721875
transcript.pyannote[377].end 4223.64096875
transcript.pyannote[378].speaker SPEAKER_13
transcript.pyannote[378].start 4230.69471875
transcript.pyannote[378].end 4233.22596875
transcript.pyannote[379].speaker SPEAKER_13
transcript.pyannote[379].start 4233.47909375
transcript.pyannote[379].end 4237.51221875
transcript.pyannote[380].speaker SPEAKER_13
transcript.pyannote[380].start 4237.71471875
transcript.pyannote[380].end 4239.95909375
transcript.pyannote[381].speaker SPEAKER_13
transcript.pyannote[381].start 4240.46534375
transcript.pyannote[381].end 4242.38909375
transcript.pyannote[382].speaker SPEAKER_25
transcript.pyannote[382].start 4241.44409375
transcript.pyannote[382].end 4242.79409375
transcript.pyannote[383].speaker SPEAKER_13
transcript.pyannote[383].start 4242.79409375
transcript.pyannote[383].end 4243.24971875
transcript.pyannote[384].speaker SPEAKER_13
transcript.pyannote[384].start 4243.92471875
transcript.pyannote[384].end 4244.29596875
transcript.pyannote[385].speaker SPEAKER_13
transcript.pyannote[385].start 4244.51534375
transcript.pyannote[385].end 4251.02909375
transcript.pyannote[386].speaker SPEAKER_13
transcript.pyannote[386].start 4251.09659375
transcript.pyannote[386].end 4256.91846875
transcript.pyannote[387].speaker SPEAKER_13
transcript.pyannote[387].start 4257.30659375
transcript.pyannote[387].end 4260.20909375
transcript.pyannote[388].speaker SPEAKER_20
transcript.pyannote[388].start 4260.34409375
transcript.pyannote[388].end 4263.53346875
transcript.pyannote[389].speaker SPEAKER_13
transcript.pyannote[389].start 4263.53346875
transcript.pyannote[389].end 4266.13221875
transcript.pyannote[390].speaker SPEAKER_20
transcript.pyannote[390].start 4264.83284375
transcript.pyannote[390].end 4265.44034375
transcript.pyannote[391].speaker SPEAKER_20
transcript.pyannote[391].start 4265.52471875
transcript.pyannote[391].end 4266.19971875
transcript.pyannote[392].speaker SPEAKER_20
transcript.pyannote[392].start 4267.11096875
transcript.pyannote[392].end 4269.13596875
transcript.pyannote[393].speaker SPEAKER_20
transcript.pyannote[393].start 4269.65909375
transcript.pyannote[393].end 4269.77721875
transcript.pyannote[394].speaker SPEAKER_13
transcript.pyannote[394].start 4269.74346875
transcript.pyannote[394].end 4270.04721875
transcript.pyannote[395].speaker SPEAKER_13
transcript.pyannote[395].start 4270.40159375
transcript.pyannote[395].end 4271.12721875
transcript.pyannote[396].speaker SPEAKER_13
transcript.pyannote[396].start 4271.53221875
transcript.pyannote[396].end 4274.08034375
transcript.pyannote[397].speaker SPEAKER_13
transcript.pyannote[397].start 4274.94096875
transcript.pyannote[397].end 4280.10471875
transcript.pyannote[398].speaker SPEAKER_13
transcript.pyannote[398].start 4280.50971875
transcript.pyannote[398].end 4281.08346875
transcript.pyannote[399].speaker SPEAKER_13
transcript.pyannote[399].start 4281.58971875
transcript.pyannote[399].end 4290.12846875
transcript.pyannote[400].speaker SPEAKER_13
transcript.pyannote[400].start 4290.41534375
transcript.pyannote[400].end 4294.53284375
transcript.pyannote[401].speaker SPEAKER_13
transcript.pyannote[401].start 4295.05596875
transcript.pyannote[401].end 4301.06346875
transcript.pyannote[402].speaker SPEAKER_13
transcript.pyannote[402].start 4301.26596875
transcript.pyannote[402].end 4306.93596875
transcript.pyannote[403].speaker SPEAKER_20
transcript.pyannote[403].start 4306.31159375
transcript.pyannote[403].end 4333.10909375
transcript.pyannote[404].speaker SPEAKER_00
transcript.pyannote[404].start 4326.02159375
transcript.pyannote[404].end 4326.13971875
transcript.pyannote[405].speaker SPEAKER_20
transcript.pyannote[405].start 4333.73346875
transcript.pyannote[405].end 4337.44596875
transcript.pyannote[406].speaker SPEAKER_20
transcript.pyannote[406].start 4337.85096875
transcript.pyannote[406].end 4346.33909375
transcript.pyannote[407].speaker SPEAKER_13
transcript.pyannote[407].start 4342.47471875
transcript.pyannote[407].end 4346.13659375
transcript.pyannote[408].speaker SPEAKER_13
transcript.pyannote[408].start 4346.33909375
transcript.pyannote[408].end 4348.49909375
transcript.pyannote[409].speaker SPEAKER_20
transcript.pyannote[409].start 4348.49909375
transcript.pyannote[409].end 4348.60034375
transcript.pyannote[410].speaker SPEAKER_13
transcript.pyannote[410].start 4349.00534375
transcript.pyannote[410].end 4350.72659375
transcript.pyannote[411].speaker SPEAKER_13
transcript.pyannote[411].start 4350.94596875
transcript.pyannote[411].end 4359.85596875
transcript.pyannote[412].speaker SPEAKER_23
transcript.pyannote[412].start 4358.23596875
transcript.pyannote[412].end 4358.35409375
transcript.pyannote[413].speaker SPEAKER_13
transcript.pyannote[413].start 4360.27784375
transcript.pyannote[413].end 4362.28596875
transcript.pyannote[414].speaker SPEAKER_13
transcript.pyannote[414].start 4362.72471875
transcript.pyannote[414].end 4366.08284375
transcript.pyannote[415].speaker SPEAKER_13
transcript.pyannote[415].start 4366.48784375
transcript.pyannote[415].end 4376.32596875
transcript.pyannote[416].speaker SPEAKER_13
transcript.pyannote[416].start 4376.37659375
transcript.pyannote[416].end 4380.47721875
transcript.pyannote[417].speaker SPEAKER_13
transcript.pyannote[417].start 4380.89909375
transcript.pyannote[417].end 4388.88096875
transcript.pyannote[418].speaker SPEAKER_13
transcript.pyannote[418].start 4389.42096875
transcript.pyannote[418].end 4390.51784375
transcript.pyannote[419].speaker SPEAKER_13
transcript.pyannote[419].start 4390.78784375
transcript.pyannote[419].end 4391.96909375
transcript.pyannote[420].speaker SPEAKER_13
transcript.pyannote[420].start 4392.44159375
transcript.pyannote[420].end 4398.02721875
transcript.pyannote[421].speaker SPEAKER_20
transcript.pyannote[421].start 4393.80846875
transcript.pyannote[421].end 4394.19659375
transcript.pyannote[422].speaker SPEAKER_20
transcript.pyannote[422].start 4398.61784375
transcript.pyannote[422].end 4399.07346875
transcript.pyannote[423].speaker SPEAKER_13
transcript.pyannote[423].start 4399.22534375
transcript.pyannote[423].end 4400.33909375
transcript.pyannote[424].speaker SPEAKER_13
transcript.pyannote[424].start 4400.81159375
transcript.pyannote[424].end 4405.73909375
transcript.pyannote[425].speaker SPEAKER_13
transcript.pyannote[425].start 4406.31284375
transcript.pyannote[425].end 4410.24471875
transcript.pyannote[426].speaker SPEAKER_13
transcript.pyannote[426].start 4410.56534375
transcript.pyannote[426].end 4411.76346875
transcript.pyannote[427].speaker SPEAKER_20
transcript.pyannote[427].start 4410.58221875
transcript.pyannote[427].end 4411.37534375
transcript.pyannote[428].speaker SPEAKER_20
transcript.pyannote[428].start 4411.42596875
transcript.pyannote[428].end 4415.10471875
transcript.pyannote[429].speaker SPEAKER_13
transcript.pyannote[429].start 4414.54784375
transcript.pyannote[429].end 4417.70346875
transcript.pyannote[430].speaker SPEAKER_20
transcript.pyannote[430].start 4415.99909375
transcript.pyannote[430].end 4417.85534375
transcript.pyannote[431].speaker SPEAKER_13
transcript.pyannote[431].start 4418.41221875
transcript.pyannote[431].end 4419.81284375
transcript.pyannote[432].speaker SPEAKER_13
transcript.pyannote[432].start 4420.47096875
transcript.pyannote[432].end 4422.49596875
transcript.pyannote[433].speaker SPEAKER_13
transcript.pyannote[433].start 4422.76596875
transcript.pyannote[433].end 4424.82471875
transcript.pyannote[434].speaker SPEAKER_13
transcript.pyannote[434].start 4425.21284375
transcript.pyannote[434].end 4425.63471875
transcript.pyannote[435].speaker SPEAKER_13
transcript.pyannote[435].start 4426.07346875
transcript.pyannote[435].end 4427.76096875
transcript.pyannote[436].speaker SPEAKER_20
transcript.pyannote[436].start 4428.19971875
transcript.pyannote[436].end 4430.91659375
transcript.pyannote[437].speaker SPEAKER_13
transcript.pyannote[437].start 4428.21659375
transcript.pyannote[437].end 4429.39784375
transcript.pyannote[438].speaker SPEAKER_13
transcript.pyannote[438].start 4430.57909375
transcript.pyannote[438].end 4435.38846875
transcript.pyannote[439].speaker SPEAKER_13
transcript.pyannote[439].start 4436.02971875
transcript.pyannote[439].end 4438.51034375
transcript.pyannote[440].speaker SPEAKER_13
transcript.pyannote[440].start 4438.88159375
transcript.pyannote[440].end 4439.59034375
transcript.pyannote[441].speaker SPEAKER_13
transcript.pyannote[441].start 4440.09659375
transcript.pyannote[441].end 4446.27284375
transcript.pyannote[442].speaker SPEAKER_13
transcript.pyannote[442].start 4446.62721875
transcript.pyannote[442].end 4455.03096875
transcript.pyannote[443].speaker SPEAKER_13
transcript.pyannote[443].start 4455.23346875
transcript.pyannote[443].end 4455.87471875
transcript.pyannote[444].speaker SPEAKER_25
transcript.pyannote[444].start 4455.35159375
transcript.pyannote[444].end 4455.89159375
transcript.pyannote[445].speaker SPEAKER_25
transcript.pyannote[445].start 4457.05596875
transcript.pyannote[445].end 4457.29221875
transcript.pyannote[446].speaker SPEAKER_13
transcript.pyannote[446].start 4457.15721875
transcript.pyannote[446].end 4458.01784375
transcript.pyannote[447].speaker SPEAKER_13
transcript.pyannote[447].start 4458.62534375
transcript.pyannote[447].end 4462.67534375
transcript.pyannote[448].speaker SPEAKER_13
transcript.pyannote[448].start 4462.86096875
transcript.pyannote[448].end 4464.97034375
transcript.pyannote[449].speaker SPEAKER_25
transcript.pyannote[449].start 4464.37971875
transcript.pyannote[449].end 4464.70034375
transcript.pyannote[450].speaker SPEAKER_13
transcript.pyannote[450].start 4465.37534375
transcript.pyannote[450].end 4472.44596875
transcript.pyannote[451].speaker SPEAKER_13
transcript.pyannote[451].start 4472.61471875
transcript.pyannote[451].end 4477.17096875
transcript.pyannote[452].speaker SPEAKER_13
transcript.pyannote[452].start 4477.44096875
transcript.pyannote[452].end 4478.87534375
transcript.pyannote[453].speaker SPEAKER_13
transcript.pyannote[453].start 4479.09471875
transcript.pyannote[453].end 4480.09034375
transcript.pyannote[454].speaker SPEAKER_30
transcript.pyannote[454].start 4480.22534375
transcript.pyannote[454].end 4484.62971875
transcript.pyannote[455].speaker SPEAKER_13
transcript.pyannote[455].start 4482.40221875
transcript.pyannote[455].end 4484.17409375
transcript.pyannote[456].speaker SPEAKER_13
transcript.pyannote[456].start 4485.00096875
transcript.pyannote[456].end 4487.73471875
transcript.pyannote[457].speaker SPEAKER_13
transcript.pyannote[457].start 4489.10159375
transcript.pyannote[457].end 4489.77659375
transcript.pyannote[458].speaker SPEAKER_13
transcript.pyannote[458].start 4489.96221875
transcript.pyannote[458].end 4496.66159375
transcript.pyannote[459].speaker SPEAKER_13
transcript.pyannote[459].start 4496.98221875
transcript.pyannote[459].end 4502.31471875
transcript.pyannote[460].speaker SPEAKER_13
transcript.pyannote[460].start 4502.63534375
transcript.pyannote[460].end 4516.82721875
transcript.pyannote[461].speaker SPEAKER_13
transcript.pyannote[461].start 4517.41784375
transcript.pyannote[461].end 4517.73846875
transcript.pyannote[462].speaker SPEAKER_13
transcript.pyannote[462].start 4518.31221875
transcript.pyannote[462].end 4519.83096875
transcript.pyannote[463].speaker SPEAKER_13
transcript.pyannote[463].start 4519.99971875
transcript.pyannote[463].end 4525.56846875
transcript.pyannote[464].speaker SPEAKER_13
transcript.pyannote[464].start 4526.44596875
transcript.pyannote[464].end 4527.94784375
transcript.pyannote[465].speaker SPEAKER_13
transcript.pyannote[465].start 4528.63971875
transcript.pyannote[465].end 4532.01471875
transcript.pyannote[466].speaker SPEAKER_13
transcript.pyannote[466].start 4532.20034375
transcript.pyannote[466].end 4533.28034375
transcript.pyannote[467].speaker SPEAKER_13
transcript.pyannote[467].start 4533.60096875
transcript.pyannote[467].end 4540.14846875
transcript.pyannote[468].speaker SPEAKER_13
transcript.pyannote[468].start 4540.55346875
transcript.pyannote[468].end 4544.70471875
transcript.pyannote[469].speaker SPEAKER_13
transcript.pyannote[469].start 4545.12659375
transcript.pyannote[469].end 4549.29471875
transcript.pyannote[470].speaker SPEAKER_22
transcript.pyannote[470].start 4548.97409375
transcript.pyannote[470].end 4550.84721875
transcript.pyannote[471].speaker SPEAKER_13
transcript.pyannote[471].start 4549.56471875
transcript.pyannote[471].end 4550.22284375
transcript.pyannote[472].speaker SPEAKER_13
transcript.pyannote[472].start 4551.64034375
transcript.pyannote[472].end 4553.34471875
transcript.pyannote[473].speaker SPEAKER_13
transcript.pyannote[473].start 4553.91846875
transcript.pyannote[473].end 4555.33596875
transcript.pyannote[474].speaker SPEAKER_13
transcript.pyannote[474].start 4556.55096875
transcript.pyannote[474].end 4559.28471875
transcript.pyannote[475].speaker SPEAKER_13
transcript.pyannote[475].start 4559.53784375
transcript.pyannote[475].end 4561.15784375
transcript.pyannote[476].speaker SPEAKER_13
transcript.pyannote[476].start 4561.78221875
transcript.pyannote[476].end 4567.77284375
transcript.pyannote[477].speaker SPEAKER_13
transcript.pyannote[477].start 4568.56596875
transcript.pyannote[477].end 4572.02534375
transcript.pyannote[478].speaker SPEAKER_13
transcript.pyannote[478].start 4572.88596875
transcript.pyannote[478].end 4575.11346875
transcript.pyannote[479].speaker SPEAKER_13
transcript.pyannote[479].start 4575.97409375
transcript.pyannote[479].end 4577.22284375
transcript.pyannote[480].speaker SPEAKER_13
transcript.pyannote[480].start 4577.71221875
transcript.pyannote[480].end 4581.49221875
transcript.pyannote[481].speaker SPEAKER_13
transcript.pyannote[481].start 4582.57221875
transcript.pyannote[481].end 4585.98096875
transcript.pyannote[482].speaker SPEAKER_13
transcript.pyannote[482].start 4587.28034375
transcript.pyannote[482].end 4594.01346875
transcript.pyannote[483].speaker SPEAKER_13
transcript.pyannote[483].start 4594.19909375
transcript.pyannote[483].end 4595.75159375
transcript.pyannote[484].speaker SPEAKER_13
transcript.pyannote[484].start 4596.25784375
transcript.pyannote[484].end 4602.14721875
transcript.pyannote[485].speaker SPEAKER_13
transcript.pyannote[485].start 4602.23159375
transcript.pyannote[485].end 4603.00784375
transcript.pyannote[486].speaker SPEAKER_13
transcript.pyannote[486].start 4604.56034375
transcript.pyannote[486].end 4605.92721875
transcript.pyannote[487].speaker SPEAKER_13
transcript.pyannote[487].start 4607.39534375
transcript.pyannote[487].end 4607.88471875
transcript.pyannote[488].speaker SPEAKER_13
transcript.pyannote[488].start 4608.42471875
transcript.pyannote[488].end 4612.22159375
transcript.pyannote[489].speaker SPEAKER_13
transcript.pyannote[489].start 4612.79534375
transcript.pyannote[489].end 4615.54596875
transcript.pyannote[490].speaker SPEAKER_13
transcript.pyannote[490].start 4615.90034375
transcript.pyannote[490].end 4625.38409375
transcript.pyannote[491].speaker SPEAKER_13
transcript.pyannote[491].start 4625.99159375
transcript.pyannote[491].end 4629.97409375
transcript.pyannote[492].speaker SPEAKER_13
transcript.pyannote[492].start 4630.37909375
transcript.pyannote[492].end 4633.77096875
transcript.pyannote[493].speaker SPEAKER_13
transcript.pyannote[493].start 4634.02409375
transcript.pyannote[493].end 4639.25534375
transcript.pyannote[494].speaker SPEAKER_13
transcript.pyannote[494].start 4639.84596875
transcript.pyannote[494].end 4640.58846875
transcript.pyannote[495].speaker SPEAKER_22
transcript.pyannote[495].start 4640.87534375
transcript.pyannote[495].end 4663.36971875
transcript.pyannote[496].speaker SPEAKER_13
transcript.pyannote[496].start 4662.71159375
transcript.pyannote[496].end 4666.81221875
transcript.pyannote[497].speaker SPEAKER_22
transcript.pyannote[497].start 4666.35659375
transcript.pyannote[497].end 4668.48284375
transcript.pyannote[498].speaker SPEAKER_13
transcript.pyannote[498].start 4668.61784375
transcript.pyannote[498].end 4671.11534375
transcript.pyannote[499].speaker SPEAKER_13
transcript.pyannote[499].start 4671.35159375
transcript.pyannote[499].end 4674.64221875
transcript.pyannote[500].speaker SPEAKER_13
transcript.pyannote[500].start 4674.79409375
transcript.pyannote[500].end 4676.09346875
transcript.pyannote[501].speaker SPEAKER_25
transcript.pyannote[501].start 4675.58721875
transcript.pyannote[501].end 4676.53221875
transcript.pyannote[502].speaker SPEAKER_13
transcript.pyannote[502].start 4676.27909375
transcript.pyannote[502].end 4687.33221875
transcript.pyannote[503].speaker SPEAKER_25
transcript.pyannote[503].start 4679.46846875
transcript.pyannote[503].end 4679.94096875
transcript.pyannote[504].speaker SPEAKER_25
transcript.pyannote[504].start 4685.20596875
transcript.pyannote[504].end 4685.64471875
transcript.pyannote[505].speaker SPEAKER_25
transcript.pyannote[505].start 4687.21409375
transcript.pyannote[505].end 4687.26471875
transcript.pyannote[506].speaker SPEAKER_25
transcript.pyannote[506].start 4687.33221875
transcript.pyannote[506].end 4687.53471875
transcript.pyannote[507].speaker SPEAKER_13
transcript.pyannote[507].start 4687.53471875
transcript.pyannote[507].end 4701.43971875
transcript.pyannote[508].speaker SPEAKER_22
transcript.pyannote[508].start 4698.40221875
transcript.pyannote[508].end 4698.92534375
transcript.pyannote[509].speaker SPEAKER_22
transcript.pyannote[509].start 4701.33846875
transcript.pyannote[509].end 4719.79971875
transcript.pyannote[510].speaker SPEAKER_13
transcript.pyannote[510].start 4719.69846875
transcript.pyannote[510].end 4737.34971875
transcript.pyannote[511].speaker SPEAKER_13
transcript.pyannote[511].start 4737.82221875
transcript.pyannote[511].end 4746.09096875
transcript.pyannote[512].speaker SPEAKER_13
transcript.pyannote[512].start 4746.71534375
transcript.pyannote[512].end 4747.47471875
transcript.pyannote[513].speaker SPEAKER_13
transcript.pyannote[513].start 4747.72784375
transcript.pyannote[513].end 4756.68846875
transcript.pyannote[514].speaker SPEAKER_13
transcript.pyannote[514].start 4756.84034375
transcript.pyannote[514].end 4757.71784375
transcript.pyannote[515].speaker SPEAKER_13
transcript.pyannote[515].start 4757.97096875
transcript.pyannote[515].end 4758.66284375
transcript.pyannote[516].speaker SPEAKER_30
transcript.pyannote[516].start 4758.91596875
transcript.pyannote[516].end 4761.24471875
transcript.pyannote[517].speaker SPEAKER_30
transcript.pyannote[517].start 4762.15596875
transcript.pyannote[517].end 4763.32034375
transcript.pyannote[518].speaker SPEAKER_30
transcript.pyannote[518].start 4764.11346875
transcript.pyannote[518].end 4765.21034375
transcript.pyannote[519].speaker SPEAKER_30
transcript.pyannote[519].start 4765.76721875
transcript.pyannote[519].end 4767.33659375
transcript.pyannote[520].speaker SPEAKER_30
transcript.pyannote[520].start 4768.31534375
transcript.pyannote[520].end 4768.65284375
transcript.pyannote[521].speaker SPEAKER_30
transcript.pyannote[521].start 4769.44596875
transcript.pyannote[521].end 4771.50471875
transcript.pyannote[522].speaker SPEAKER_02
transcript.pyannote[522].start 4777.41096875
transcript.pyannote[522].end 4778.92971875
transcript.pyannote[523].speaker SPEAKER_30
transcript.pyannote[523].start 4779.11534375
transcript.pyannote[523].end 4780.26284375
transcript.pyannote[524].speaker SPEAKER_20
transcript.pyannote[524].start 4787.24909375
transcript.pyannote[524].end 4787.75534375
transcript.pyannote[525].speaker SPEAKER_02
transcript.pyannote[525].start 4787.95784375
transcript.pyannote[525].end 4788.36284375
transcript.pyannote[526].speaker SPEAKER_02
transcript.pyannote[526].start 4788.75096875
transcript.pyannote[526].end 4790.84346875
transcript.pyannote[527].speaker SPEAKER_02
transcript.pyannote[527].start 4791.07971875
transcript.pyannote[527].end 4799.58471875
transcript.pyannote[528].speaker SPEAKER_02
transcript.pyannote[528].start 4799.77034375
transcript.pyannote[528].end 4800.49596875
transcript.pyannote[529].speaker SPEAKER_02
transcript.pyannote[529].start 4801.25534375
transcript.pyannote[529].end 4801.71096875
transcript.pyannote[530].speaker SPEAKER_02
transcript.pyannote[530].start 4802.40284375
transcript.pyannote[530].end 4810.51971875
transcript.pyannote[531].speaker SPEAKER_02
transcript.pyannote[531].start 4810.63784375
transcript.pyannote[531].end 4829.33534375
transcript.pyannote[532].speaker SPEAKER_02
transcript.pyannote[532].start 4829.53784375
transcript.pyannote[532].end 4886.62596875
transcript.pyannote[533].speaker SPEAKER_02
transcript.pyannote[533].start 4886.84534375
transcript.pyannote[533].end 4888.76909375
transcript.pyannote[534].speaker SPEAKER_02
transcript.pyannote[534].start 4889.08971875
transcript.pyannote[534].end 4889.61284375
transcript.pyannote[535].speaker SPEAKER_20
transcript.pyannote[535].start 4890.50721875
transcript.pyannote[535].end 4902.70784375
transcript.pyannote[536].speaker SPEAKER_02
transcript.pyannote[536].start 4903.07909375
transcript.pyannote[536].end 4925.99534375
transcript.pyannote[537].speaker SPEAKER_20
transcript.pyannote[537].start 4926.40034375
transcript.pyannote[537].end 4926.78846875
transcript.pyannote[538].speaker SPEAKER_20
transcript.pyannote[538].start 4927.26096875
transcript.pyannote[538].end 4935.98534375
transcript.pyannote[539].speaker SPEAKER_20
transcript.pyannote[539].start 4936.03596875
transcript.pyannote[539].end 4937.65596875
transcript.pyannote[540].speaker SPEAKER_20
transcript.pyannote[540].start 4938.12846875
transcript.pyannote[540].end 4942.34721875
transcript.pyannote[541].speaker SPEAKER_02
transcript.pyannote[541].start 4943.19096875
transcript.pyannote[541].end 4959.99846875
transcript.pyannote[542].speaker SPEAKER_02
transcript.pyannote[542].start 4960.74096875
transcript.pyannote[542].end 4992.43221875
transcript.pyannote[543].speaker SPEAKER_20
transcript.pyannote[543].start 4992.88784375
transcript.pyannote[543].end 5008.91909375
transcript.pyannote[544].speaker SPEAKER_02
transcript.pyannote[544].start 5008.31159375
transcript.pyannote[544].end 5010.26909375
transcript.pyannote[545].speaker SPEAKER_20
transcript.pyannote[545].start 5009.23971875
transcript.pyannote[545].end 5013.71159375
transcript.pyannote[546].speaker SPEAKER_02
transcript.pyannote[546].start 5011.21409375
transcript.pyannote[546].end 5011.73721875
transcript.pyannote[547].speaker SPEAKER_02
transcript.pyannote[547].start 5012.12534375
transcript.pyannote[547].end 5023.34721875
transcript.pyannote[548].speaker SPEAKER_20
transcript.pyannote[548].start 5013.89721875
transcript.pyannote[548].end 5014.38659375
transcript.pyannote[549].speaker SPEAKER_20
transcript.pyannote[549].start 5014.90971875
transcript.pyannote[549].end 5015.43284375
transcript.pyannote[550].speaker SPEAKER_20
transcript.pyannote[550].start 5017.84596875
transcript.pyannote[550].end 5019.92159375
transcript.pyannote[551].speaker SPEAKER_19
transcript.pyannote[551].start 5019.92159375
transcript.pyannote[551].end 5019.93846875
transcript.pyannote[552].speaker SPEAKER_20
transcript.pyannote[552].start 5019.93846875
transcript.pyannote[552].end 5019.97221875
transcript.pyannote[553].speaker SPEAKER_02
transcript.pyannote[553].start 5023.88721875
transcript.pyannote[553].end 5024.32596875
transcript.pyannote[554].speaker SPEAKER_02
transcript.pyannote[554].start 5024.62971875
transcript.pyannote[554].end 5028.84846875
transcript.pyannote[555].speaker SPEAKER_19
transcript.pyannote[555].start 5025.96284375
transcript.pyannote[555].end 5026.26659375
transcript.pyannote[556].speaker SPEAKER_02
transcript.pyannote[556].start 5029.27034375
transcript.pyannote[556].end 5034.72096875
transcript.pyannote[557].speaker SPEAKER_20
transcript.pyannote[557].start 5033.69159375
transcript.pyannote[557].end 5036.22284375
transcript.pyannote[558].speaker SPEAKER_02
transcript.pyannote[558].start 5035.78409375
transcript.pyannote[558].end 5040.76221875
transcript.pyannote[559].speaker SPEAKER_20
transcript.pyannote[559].start 5038.68659375
transcript.pyannote[559].end 5039.22659375
transcript.pyannote[560].speaker SPEAKER_20
transcript.pyannote[560].start 5040.47534375
transcript.pyannote[560].end 5049.62159375
transcript.pyannote[561].speaker SPEAKER_20
transcript.pyannote[561].start 5050.21221875
transcript.pyannote[561].end 5051.30909375
transcript.pyannote[562].speaker SPEAKER_02
transcript.pyannote[562].start 5050.68471875
transcript.pyannote[562].end 5052.11909375
transcript.pyannote[563].speaker SPEAKER_20
transcript.pyannote[563].start 5052.11909375
transcript.pyannote[563].end 5055.59534375
transcript.pyannote[564].speaker SPEAKER_02
transcript.pyannote[564].start 5055.94971875
transcript.pyannote[564].end 5057.14784375
transcript.pyannote[565].speaker SPEAKER_20
transcript.pyannote[565].start 5057.45159375
transcript.pyannote[565].end 5057.51909375
transcript.pyannote[566].speaker SPEAKER_02
transcript.pyannote[566].start 5057.60346875
transcript.pyannote[566].end 5066.36159375
transcript.pyannote[567].speaker SPEAKER_02
transcript.pyannote[567].start 5066.88471875
transcript.pyannote[567].end 5069.06159375
transcript.pyannote[568].speaker SPEAKER_02
transcript.pyannote[568].start 5069.41596875
transcript.pyannote[568].end 5103.77346875
transcript.pyannote[569].speaker SPEAKER_20
transcript.pyannote[569].start 5104.27971875
transcript.pyannote[569].end 5108.73471875
transcript.pyannote[570].speaker SPEAKER_20
transcript.pyannote[570].start 5109.44346875
transcript.pyannote[570].end 5110.91159375
transcript.pyannote[571].speaker SPEAKER_20
transcript.pyannote[571].start 5111.33346875
transcript.pyannote[571].end 5118.84284375
transcript.pyannote[572].speaker SPEAKER_02
transcript.pyannote[572].start 5117.35784375
transcript.pyannote[572].end 5130.95909375
transcript.pyannote[573].speaker SPEAKER_20
transcript.pyannote[573].start 5119.21409375
transcript.pyannote[573].end 5119.28159375
transcript.pyannote[574].speaker SPEAKER_20
transcript.pyannote[574].start 5120.64846875
transcript.pyannote[574].end 5121.10409375
transcript.pyannote[575].speaker SPEAKER_30
transcript.pyannote[575].start 5126.33534375
transcript.pyannote[575].end 5126.70659375
transcript.pyannote[576].speaker SPEAKER_02
transcript.pyannote[576].start 5131.19534375
transcript.pyannote[576].end 5131.34721875
transcript.pyannote[577].speaker SPEAKER_30
transcript.pyannote[577].start 5131.34721875
transcript.pyannote[577].end 5132.62971875
transcript.pyannote[578].speaker SPEAKER_02
transcript.pyannote[578].start 5135.38034375
transcript.pyannote[578].end 5143.78409375
transcript.pyannote[579].speaker SPEAKER_22
transcript.pyannote[579].start 5141.26971875
transcript.pyannote[579].end 5141.60721875
transcript.pyannote[580].speaker SPEAKER_22
transcript.pyannote[580].start 5144.12159375
transcript.pyannote[580].end 5154.55034375
transcript.pyannote[581].speaker SPEAKER_02
transcript.pyannote[581].start 5154.04409375
transcript.pyannote[581].end 5155.24221875
transcript.pyannote[582].speaker SPEAKER_22
transcript.pyannote[582].start 5155.32659375
transcript.pyannote[582].end 5157.82409375
transcript.pyannote[583].speaker SPEAKER_02
transcript.pyannote[583].start 5157.90846875
transcript.pyannote[583].end 5158.53284375
transcript.pyannote[584].speaker SPEAKER_22
transcript.pyannote[584].start 5158.48221875
transcript.pyannote[584].end 5158.81971875
transcript.pyannote[585].speaker SPEAKER_02
transcript.pyannote[585].start 5158.78596875
transcript.pyannote[585].end 5159.79846875
transcript.pyannote[586].speaker SPEAKER_22
transcript.pyannote[586].start 5160.70971875
transcript.pyannote[586].end 5160.74346875
transcript.pyannote[587].speaker SPEAKER_22
transcript.pyannote[587].start 5161.51971875
transcript.pyannote[587].end 5165.16471875
transcript.pyannote[588].speaker SPEAKER_02
transcript.pyannote[588].start 5164.47284375
transcript.pyannote[588].end 5164.60784375
transcript.pyannote[589].speaker SPEAKER_02
transcript.pyannote[589].start 5164.72596875
transcript.pyannote[589].end 5176.90971875
transcript.pyannote[590].speaker SPEAKER_22
transcript.pyannote[590].start 5175.08721875
transcript.pyannote[590].end 5179.03596875
transcript.pyannote[591].speaker SPEAKER_02
transcript.pyannote[591].start 5177.43284375
transcript.pyannote[591].end 5223.88971875
transcript.pyannote[592].speaker SPEAKER_22
transcript.pyannote[592].start 5181.26346875
transcript.pyannote[592].end 5181.28034375
transcript.pyannote[593].speaker SPEAKER_22
transcript.pyannote[593].start 5181.29721875
transcript.pyannote[593].end 5181.31409375
transcript.pyannote[594].speaker SPEAKER_25
transcript.pyannote[594].start 5210.67659375
transcript.pyannote[594].end 5210.87909375
transcript.pyannote[595].speaker SPEAKER_02
transcript.pyannote[595].start 5224.46346875
transcript.pyannote[595].end 5232.36096875
transcript.pyannote[596].speaker SPEAKER_22
transcript.pyannote[596].start 5233.06971875
transcript.pyannote[596].end 5256.61034375
transcript.pyannote[597].speaker SPEAKER_02
transcript.pyannote[597].start 5247.32909375
transcript.pyannote[597].end 5247.73409375
transcript.pyannote[598].speaker SPEAKER_02
transcript.pyannote[598].start 5248.74659375
transcript.pyannote[598].end 5249.01659375
transcript.pyannote[599].speaker SPEAKER_02
transcript.pyannote[599].start 5252.20596875
transcript.pyannote[599].end 5252.67846875
transcript.pyannote[600].speaker SPEAKER_02
transcript.pyannote[600].start 5255.80034375
transcript.pyannote[600].end 5295.03471875
transcript.pyannote[601].speaker SPEAKER_00
transcript.pyannote[601].start 5267.79846875
transcript.pyannote[601].end 5268.18659375
transcript.pyannote[602].speaker SPEAKER_00
transcript.pyannote[602].start 5274.19409375
transcript.pyannote[602].end 5274.97034375
transcript.pyannote[603].speaker SPEAKER_00
transcript.pyannote[603].start 5282.98596875
transcript.pyannote[603].end 5283.03659375
transcript.pyannote[604].speaker SPEAKER_25
transcript.pyannote[604].start 5283.03659375
transcript.pyannote[604].end 5283.17159375
transcript.pyannote[605].speaker SPEAKER_00
transcript.pyannote[605].start 5283.17159375
transcript.pyannote[605].end 5283.22221875
transcript.pyannote[606].speaker SPEAKER_22
transcript.pyannote[606].start 5294.83221875
transcript.pyannote[606].end 5300.94096875
transcript.pyannote[607].speaker SPEAKER_02
transcript.pyannote[607].start 5300.35034375
transcript.pyannote[607].end 5300.38409375
transcript.pyannote[608].speaker SPEAKER_30
transcript.pyannote[608].start 5300.38409375
transcript.pyannote[608].end 5301.05909375
transcript.pyannote[609].speaker SPEAKER_30
transcript.pyannote[609].start 5301.91971875
transcript.pyannote[609].end 5302.40909375
transcript.pyannote[610].speaker SPEAKER_30
transcript.pyannote[610].start 5302.93221875
transcript.pyannote[610].end 5305.46346875
transcript.pyannote[611].speaker SPEAKER_30
transcript.pyannote[611].start 5305.80096875
transcript.pyannote[611].end 5306.17221875
transcript.pyannote[612].speaker SPEAKER_30
transcript.pyannote[612].start 5308.36596875
transcript.pyannote[612].end 5311.35284375
transcript.pyannote[613].speaker SPEAKER_17
transcript.pyannote[613].start 5334.64034375
transcript.pyannote[613].end 5335.65284375
transcript.pyannote[614].speaker SPEAKER_17
transcript.pyannote[614].start 5336.80034375
transcript.pyannote[614].end 5337.74534375
transcript.pyannote[615].speaker SPEAKER_17
transcript.pyannote[615].start 5345.65971875
transcript.pyannote[615].end 5346.19971875
transcript.pyannote[616].speaker SPEAKER_17
transcript.pyannote[616].start 5346.35159375
transcript.pyannote[616].end 5347.02659375
transcript.pyannote[617].speaker SPEAKER_17
transcript.pyannote[617].start 5347.53284375
transcript.pyannote[617].end 5349.67596875
transcript.pyannote[618].speaker SPEAKER_17
transcript.pyannote[618].start 5350.80659375
transcript.pyannote[618].end 5355.10971875
transcript.pyannote[619].speaker SPEAKER_17
transcript.pyannote[619].start 5356.13909375
transcript.pyannote[619].end 5359.24409375
transcript.pyannote[620].speaker SPEAKER_17
transcript.pyannote[620].start 5360.17221875
transcript.pyannote[620].end 5361.77534375
transcript.pyannote[621].speaker SPEAKER_17
transcript.pyannote[621].start 5362.11284375
transcript.pyannote[621].end 5362.60221875
transcript.pyannote[622].speaker SPEAKER_17
transcript.pyannote[622].start 5363.51346875
transcript.pyannote[622].end 5364.27284375
transcript.pyannote[623].speaker SPEAKER_17
transcript.pyannote[623].start 5364.66096875
transcript.pyannote[623].end 5367.90096875
transcript.pyannote[624].speaker SPEAKER_17
transcript.pyannote[624].start 5368.17096875
transcript.pyannote[624].end 5369.48721875
transcript.pyannote[625].speaker SPEAKER_17
transcript.pyannote[625].start 5369.82471875
transcript.pyannote[625].end 5372.76096875
transcript.pyannote[626].speaker SPEAKER_17
transcript.pyannote[626].start 5373.35159375
transcript.pyannote[626].end 5375.00534375
transcript.pyannote[627].speaker SPEAKER_25
transcript.pyannote[627].start 5376.06846875
transcript.pyannote[627].end 5376.28784375
transcript.pyannote[628].speaker SPEAKER_21
transcript.pyannote[628].start 5376.28784375
transcript.pyannote[628].end 5376.32159375
transcript.pyannote[629].speaker SPEAKER_17
transcript.pyannote[629].start 5376.82784375
transcript.pyannote[629].end 5379.54471875
transcript.pyannote[630].speaker SPEAKER_17
transcript.pyannote[630].start 5379.88221875
transcript.pyannote[630].end 5380.42221875
transcript.pyannote[631].speaker SPEAKER_17
transcript.pyannote[631].start 5381.13096875
transcript.pyannote[631].end 5382.61596875
transcript.pyannote[632].speaker SPEAKER_17
transcript.pyannote[632].start 5384.33721875
transcript.pyannote[632].end 5385.75471875
transcript.pyannote[633].speaker SPEAKER_17
transcript.pyannote[633].start 5386.27784375
transcript.pyannote[633].end 5387.03721875
transcript.pyannote[634].speaker SPEAKER_17
transcript.pyannote[634].start 5388.01596875
transcript.pyannote[634].end 5388.15096875
transcript.pyannote[635].speaker SPEAKER_17
transcript.pyannote[635].start 5388.31971875
transcript.pyannote[635].end 5390.31096875
transcript.pyannote[636].speaker SPEAKER_17
transcript.pyannote[636].start 5391.20534375
transcript.pyannote[636].end 5392.28534375
transcript.pyannote[637].speaker SPEAKER_17
transcript.pyannote[637].start 5392.55534375
transcript.pyannote[637].end 5392.75784375
transcript.pyannote[638].speaker SPEAKER_17
transcript.pyannote[638].start 5392.90971875
transcript.pyannote[638].end 5393.43284375
transcript.pyannote[639].speaker SPEAKER_17
transcript.pyannote[639].start 5393.60159375
transcript.pyannote[639].end 5395.50846875
transcript.pyannote[640].speaker SPEAKER_17
transcript.pyannote[640].start 5395.69409375
transcript.pyannote[640].end 5396.92596875
transcript.pyannote[641].speaker SPEAKER_17
transcript.pyannote[641].start 5397.26346875
transcript.pyannote[641].end 5398.19159375
transcript.pyannote[642].speaker SPEAKER_17
transcript.pyannote[642].start 5398.73159375
transcript.pyannote[642].end 5400.48659375
transcript.pyannote[643].speaker SPEAKER_17
transcript.pyannote[643].start 5400.94221875
transcript.pyannote[643].end 5402.69721875
transcript.pyannote[644].speaker SPEAKER_17
transcript.pyannote[644].start 5403.13596875
transcript.pyannote[644].end 5406.12284375
transcript.pyannote[645].speaker SPEAKER_17
transcript.pyannote[645].start 5406.66284375
transcript.pyannote[645].end 5407.97909375
transcript.pyannote[646].speaker SPEAKER_17
transcript.pyannote[646].start 5408.50221875
transcript.pyannote[646].end 5409.91971875
transcript.pyannote[647].speaker SPEAKER_17
transcript.pyannote[647].start 5410.64534375
transcript.pyannote[647].end 5412.85596875
transcript.pyannote[648].speaker SPEAKER_17
transcript.pyannote[648].start 5413.31159375
transcript.pyannote[648].end 5414.30721875
transcript.pyannote[649].speaker SPEAKER_17
transcript.pyannote[649].start 5415.57284375
transcript.pyannote[649].end 5418.00284375
transcript.pyannote[650].speaker SPEAKER_20
transcript.pyannote[650].start 5417.59784375
transcript.pyannote[650].end 5427.50346875
transcript.pyannote[651].speaker SPEAKER_17
transcript.pyannote[651].start 5427.50346875
transcript.pyannote[651].end 5428.26284375
transcript.pyannote[652].speaker SPEAKER_20
transcript.pyannote[652].start 5427.85784375
transcript.pyannote[652].end 5428.21221875
transcript.pyannote[653].speaker SPEAKER_20
transcript.pyannote[653].start 5428.26284375
transcript.pyannote[653].end 5432.98784375
transcript.pyannote[654].speaker SPEAKER_17
transcript.pyannote[654].start 5432.68409375
transcript.pyannote[654].end 5435.83971875
transcript.pyannote[655].speaker SPEAKER_17
transcript.pyannote[655].start 5436.36284375
transcript.pyannote[655].end 5438.23596875
transcript.pyannote[656].speaker SPEAKER_20
transcript.pyannote[656].start 5438.23596875
transcript.pyannote[656].end 5438.69159375
transcript.pyannote[657].speaker SPEAKER_17
transcript.pyannote[657].start 5438.69159375
transcript.pyannote[657].end 5440.19346875
transcript.pyannote[658].speaker SPEAKER_20
transcript.pyannote[658].start 5438.72534375
transcript.pyannote[658].end 5439.36659375
transcript.pyannote[659].speaker SPEAKER_17
transcript.pyannote[659].start 5440.32846875
transcript.pyannote[659].end 5441.77971875
transcript.pyannote[660].speaker SPEAKER_17
transcript.pyannote[660].start 5441.93159375
transcript.pyannote[660].end 5446.25159375
transcript.pyannote[661].speaker SPEAKER_17
transcript.pyannote[661].start 5446.48784375
transcript.pyannote[661].end 5451.85409375
transcript.pyannote[662].speaker SPEAKER_20
transcript.pyannote[662].start 5448.91784375
transcript.pyannote[662].end 5449.18784375
transcript.pyannote[663].speaker SPEAKER_20
transcript.pyannote[663].start 5451.41534375
transcript.pyannote[663].end 5466.18096875
transcript.pyannote[664].speaker SPEAKER_17
transcript.pyannote[664].start 5461.89471875
transcript.pyannote[664].end 5461.91159375
transcript.pyannote[665].speaker SPEAKER_19
transcript.pyannote[665].start 5461.91159375
transcript.pyannote[665].end 5462.02971875
transcript.pyannote[666].speaker SPEAKER_17
transcript.pyannote[666].start 5462.02971875
transcript.pyannote[666].end 5462.92409375
transcript.pyannote[667].speaker SPEAKER_17
transcript.pyannote[667].start 5466.18096875
transcript.pyannote[667].end 5466.72096875
transcript.pyannote[668].speaker SPEAKER_20
transcript.pyannote[668].start 5466.60284375
transcript.pyannote[668].end 5466.61971875
transcript.pyannote[669].speaker SPEAKER_20
transcript.pyannote[669].start 5466.72096875
transcript.pyannote[669].end 5466.78846875
transcript.pyannote[670].speaker SPEAKER_17
transcript.pyannote[670].start 5466.78846875
transcript.pyannote[670].end 5466.97409375
transcript.pyannote[671].speaker SPEAKER_20
transcript.pyannote[671].start 5466.97409375
transcript.pyannote[671].end 5467.02471875
transcript.pyannote[672].speaker SPEAKER_17
transcript.pyannote[672].start 5467.02471875
transcript.pyannote[672].end 5470.31534375
transcript.pyannote[673].speaker SPEAKER_20
transcript.pyannote[673].start 5470.31534375
transcript.pyannote[673].end 5474.95596875
transcript.pyannote[674].speaker SPEAKER_17
transcript.pyannote[674].start 5470.85534375
transcript.pyannote[674].end 5471.49659375
transcript.pyannote[675].speaker SPEAKER_17
transcript.pyannote[675].start 5474.21346875
transcript.pyannote[675].end 5474.56784375
transcript.pyannote[676].speaker SPEAKER_17
transcript.pyannote[676].start 5474.80409375
transcript.pyannote[676].end 5479.93409375
transcript.pyannote[677].speaker SPEAKER_20
transcript.pyannote[677].start 5480.13659375
transcript.pyannote[677].end 5480.17034375
transcript.pyannote[678].speaker SPEAKER_17
transcript.pyannote[678].start 5480.17034375
transcript.pyannote[678].end 5480.44034375
transcript.pyannote[679].speaker SPEAKER_17
transcript.pyannote[679].start 5481.14909375
transcript.pyannote[679].end 5483.52846875
transcript.pyannote[680].speaker SPEAKER_17
transcript.pyannote[680].start 5483.84909375
transcript.pyannote[680].end 5485.14846875
transcript.pyannote[681].speaker SPEAKER_17
transcript.pyannote[681].start 5485.85721875
transcript.pyannote[681].end 5486.83596875
transcript.pyannote[682].speaker SPEAKER_17
transcript.pyannote[682].start 5487.27471875
transcript.pyannote[682].end 5489.08034375
transcript.pyannote[683].speaker SPEAKER_17
transcript.pyannote[683].start 5489.38409375
transcript.pyannote[683].end 5492.33721875
transcript.pyannote[684].speaker SPEAKER_17
transcript.pyannote[684].start 5493.43409375
transcript.pyannote[684].end 5494.96971875
transcript.pyannote[685].speaker SPEAKER_25
transcript.pyannote[685].start 5495.35784375
transcript.pyannote[685].end 5495.62784375
transcript.pyannote[686].speaker SPEAKER_17
transcript.pyannote[686].start 5495.62784375
transcript.pyannote[686].end 5496.99471875
transcript.pyannote[687].speaker SPEAKER_25
transcript.pyannote[687].start 5495.66159375
transcript.pyannote[687].end 5495.72909375
transcript.pyannote[688].speaker SPEAKER_17
transcript.pyannote[688].start 5497.19721875
transcript.pyannote[688].end 5499.15471875
transcript.pyannote[689].speaker SPEAKER_17
transcript.pyannote[689].start 5499.37409375
transcript.pyannote[689].end 5501.73659375
transcript.pyannote[690].speaker SPEAKER_17
transcript.pyannote[690].start 5502.14159375
transcript.pyannote[690].end 5503.20471875
transcript.pyannote[691].speaker SPEAKER_17
transcript.pyannote[691].start 5503.37346875
transcript.pyannote[691].end 5504.92596875
transcript.pyannote[692].speaker SPEAKER_17
transcript.pyannote[692].start 5506.20846875
transcript.pyannote[692].end 5506.71471875
transcript.pyannote[693].speaker SPEAKER_17
transcript.pyannote[693].start 5507.18721875
transcript.pyannote[693].end 5507.96346875
transcript.pyannote[694].speaker SPEAKER_20
transcript.pyannote[694].start 5507.96346875
transcript.pyannote[694].end 5508.03096875
transcript.pyannote[695].speaker SPEAKER_17
transcript.pyannote[695].start 5508.03096875
transcript.pyannote[695].end 5508.94221875
transcript.pyannote[696].speaker SPEAKER_20
transcript.pyannote[696].start 5508.94221875
transcript.pyannote[696].end 5508.95909375
transcript.pyannote[697].speaker SPEAKER_20
transcript.pyannote[697].start 5509.33034375
transcript.pyannote[697].end 5509.34721875
transcript.pyannote[698].speaker SPEAKER_17
transcript.pyannote[698].start 5509.34721875
transcript.pyannote[698].end 5509.97159375
transcript.pyannote[699].speaker SPEAKER_20
transcript.pyannote[699].start 5509.97159375
transcript.pyannote[699].end 5510.03909375
transcript.pyannote[700].speaker SPEAKER_17
transcript.pyannote[700].start 5510.03909375
transcript.pyannote[700].end 5510.96721875
transcript.pyannote[701].speaker SPEAKER_20
transcript.pyannote[701].start 5510.96721875
transcript.pyannote[701].end 5511.03471875
transcript.pyannote[702].speaker SPEAKER_17
transcript.pyannote[702].start 5511.03471875
transcript.pyannote[702].end 5511.27096875
transcript.pyannote[703].speaker SPEAKER_17
transcript.pyannote[703].start 5511.28784375
transcript.pyannote[703].end 5511.32159375
transcript.pyannote[704].speaker SPEAKER_20
transcript.pyannote[704].start 5511.32159375
transcript.pyannote[704].end 5511.33846875
transcript.pyannote[705].speaker SPEAKER_25
transcript.pyannote[705].start 5511.33846875
transcript.pyannote[705].end 5511.45659375
transcript.pyannote[706].speaker SPEAKER_20
transcript.pyannote[706].start 5511.45659375
transcript.pyannote[706].end 5511.52409375
transcript.pyannote[707].speaker SPEAKER_20
transcript.pyannote[707].start 5511.74346875
transcript.pyannote[707].end 5511.77721875
transcript.pyannote[708].speaker SPEAKER_17
transcript.pyannote[708].start 5511.77721875
transcript.pyannote[708].end 5511.96284375
transcript.pyannote[709].speaker SPEAKER_20
transcript.pyannote[709].start 5511.96284375
transcript.pyannote[709].end 5512.03034375
transcript.pyannote[710].speaker SPEAKER_17
transcript.pyannote[710].start 5512.03034375
transcript.pyannote[710].end 5513.29596875
transcript.pyannote[711].speaker SPEAKER_17
transcript.pyannote[711].start 5514.88221875
transcript.pyannote[711].end 5516.78909375
transcript.pyannote[712].speaker SPEAKER_17
transcript.pyannote[712].start 5517.93659375
transcript.pyannote[712].end 5519.25284375
transcript.pyannote[713].speaker SPEAKER_17
transcript.pyannote[713].start 5520.04596875
transcript.pyannote[713].end 5521.75034375
transcript.pyannote[714].speaker SPEAKER_20
transcript.pyannote[714].start 5522.17221875
transcript.pyannote[714].end 5522.40846875
transcript.pyannote[715].speaker SPEAKER_20
transcript.pyannote[715].start 5523.31971875
transcript.pyannote[715].end 5528.36534375
transcript.pyannote[716].speaker SPEAKER_17
transcript.pyannote[716].start 5523.50534375
transcript.pyannote[716].end 5524.56846875
transcript.pyannote[717].speaker SPEAKER_20
transcript.pyannote[717].start 5528.44971875
transcript.pyannote[717].end 5530.72784375
transcript.pyannote[718].speaker SPEAKER_17
transcript.pyannote[718].start 5528.58471875
transcript.pyannote[718].end 5528.83784375
transcript.pyannote[719].speaker SPEAKER_17
transcript.pyannote[719].start 5530.99784375
transcript.pyannote[719].end 5533.27596875
transcript.pyannote[720].speaker SPEAKER_17
transcript.pyannote[720].start 5533.47846875
transcript.pyannote[720].end 5534.18721875
transcript.pyannote[721].speaker SPEAKER_17
transcript.pyannote[721].start 5534.74409375
transcript.pyannote[721].end 5535.97596875
transcript.pyannote[722].speaker SPEAKER_17
transcript.pyannote[722].start 5537.17409375
transcript.pyannote[722].end 5538.10221875
transcript.pyannote[723].speaker SPEAKER_20
transcript.pyannote[723].start 5538.10221875
transcript.pyannote[723].end 5549.17221875
transcript.pyannote[724].speaker SPEAKER_17
transcript.pyannote[724].start 5546.74221875
transcript.pyannote[724].end 5552.37846875
transcript.pyannote[725].speaker SPEAKER_20
transcript.pyannote[725].start 5549.62784375
transcript.pyannote[725].end 5550.01596875
transcript.pyannote[726].speaker SPEAKER_17
transcript.pyannote[726].start 5553.13784375
transcript.pyannote[726].end 5554.16721875
transcript.pyannote[727].speaker SPEAKER_17
transcript.pyannote[727].start 5554.47096875
transcript.pyannote[727].end 5555.73659375
transcript.pyannote[728].speaker SPEAKER_17
transcript.pyannote[728].start 5556.37784375
transcript.pyannote[728].end 5557.27221875
transcript.pyannote[729].speaker SPEAKER_17
transcript.pyannote[729].start 5560.15784375
transcript.pyannote[729].end 5565.76034375
transcript.pyannote[730].speaker SPEAKER_17
transcript.pyannote[730].start 5566.72221875
transcript.pyannote[730].end 5568.12284375
transcript.pyannote[731].speaker SPEAKER_17
transcript.pyannote[731].start 5569.15221875
transcript.pyannote[731].end 5570.36721875
transcript.pyannote[732].speaker SPEAKER_17
transcript.pyannote[732].start 5571.41346875
transcript.pyannote[732].end 5572.22346875
transcript.pyannote[733].speaker SPEAKER_17
transcript.pyannote[733].start 5572.91534375
transcript.pyannote[733].end 5573.87721875
transcript.pyannote[734].speaker SPEAKER_17
transcript.pyannote[734].start 5574.87284375
transcript.pyannote[734].end 5574.88971875
transcript.pyannote[735].speaker SPEAKER_20
transcript.pyannote[735].start 5574.88971875
transcript.pyannote[735].end 5575.04159375
transcript.pyannote[736].speaker SPEAKER_20
transcript.pyannote[736].start 5575.21034375
transcript.pyannote[736].end 5575.29471875
transcript.pyannote[737].speaker SPEAKER_17
transcript.pyannote[737].start 5575.29471875
transcript.pyannote[737].end 5575.96971875
transcript.pyannote[738].speaker SPEAKER_20
transcript.pyannote[738].start 5575.96971875
transcript.pyannote[738].end 5582.80409375
transcript.pyannote[739].speaker SPEAKER_17
transcript.pyannote[739].start 5581.79159375
transcript.pyannote[739].end 5598.63284375
transcript.pyannote[740].speaker SPEAKER_20
transcript.pyannote[740].start 5587.66409375
transcript.pyannote[740].end 5588.15346875
transcript.pyannote[741].speaker SPEAKER_20
transcript.pyannote[741].start 5588.87909375
transcript.pyannote[741].end 5589.99284375
transcript.pyannote[742].speaker SPEAKER_20
transcript.pyannote[742].start 5593.72221875
transcript.pyannote[742].end 5594.26221875
transcript.pyannote[743].speaker SPEAKER_25
transcript.pyannote[743].start 5594.26221875
transcript.pyannote[743].end 5594.27909375
transcript.pyannote[744].speaker SPEAKER_20
transcript.pyannote[744].start 5594.27909375
transcript.pyannote[744].end 5594.53221875
transcript.pyannote[745].speaker SPEAKER_17
transcript.pyannote[745].start 5600.01659375
transcript.pyannote[745].end 5607.37409375
transcript.pyannote[746].speaker SPEAKER_20
transcript.pyannote[746].start 5605.53471875
transcript.pyannote[746].end 5613.41534375
transcript.pyannote[747].speaker SPEAKER_17
transcript.pyannote[747].start 5609.33159375
transcript.pyannote[747].end 5609.53409375
transcript.pyannote[748].speaker SPEAKER_20
transcript.pyannote[748].start 5613.88784375
transcript.pyannote[748].end 5618.51159375
transcript.pyannote[749].speaker SPEAKER_17
transcript.pyannote[749].start 5617.71846875
transcript.pyannote[749].end 5620.95846875
transcript.pyannote[750].speaker SPEAKER_17
transcript.pyannote[750].start 5621.78534375
transcript.pyannote[750].end 5632.07909375
transcript.pyannote[751].speaker SPEAKER_22
transcript.pyannote[751].start 5626.24034375
transcript.pyannote[751].end 5628.02909375
transcript.pyannote[752].speaker SPEAKER_28
transcript.pyannote[752].start 5628.02909375
transcript.pyannote[752].end 5628.73784375
transcript.pyannote[753].speaker SPEAKER_22
transcript.pyannote[753].start 5628.73784375
transcript.pyannote[753].end 5628.78846875
transcript.pyannote[754].speaker SPEAKER_17
transcript.pyannote[754].start 5632.19721875
transcript.pyannote[754].end 5634.91409375
transcript.pyannote[755].speaker SPEAKER_17
transcript.pyannote[755].start 5635.23471875
transcript.pyannote[755].end 5637.15846875
transcript.pyannote[756].speaker SPEAKER_17
transcript.pyannote[756].start 5637.95159375
transcript.pyannote[756].end 5639.33534375
transcript.pyannote[757].speaker SPEAKER_17
transcript.pyannote[757].start 5640.02721875
transcript.pyannote[757].end 5642.92971875
transcript.pyannote[758].speaker SPEAKER_17
transcript.pyannote[758].start 5643.46971875
transcript.pyannote[758].end 5644.53284375
transcript.pyannote[759].speaker SPEAKER_17
transcript.pyannote[759].start 5645.47784375
transcript.pyannote[759].end 5645.96721875
transcript.pyannote[760].speaker SPEAKER_17
transcript.pyannote[760].start 5647.33409375
transcript.pyannote[760].end 5649.76409375
transcript.pyannote[761].speaker SPEAKER_17
transcript.pyannote[761].start 5650.20284375
transcript.pyannote[761].end 5660.27721875
transcript.pyannote[762].speaker SPEAKER_17
transcript.pyannote[762].start 5661.18846875
transcript.pyannote[762].end 5661.69471875
transcript.pyannote[763].speaker SPEAKER_17
transcript.pyannote[763].start 5662.33596875
transcript.pyannote[763].end 5663.78721875
transcript.pyannote[764].speaker SPEAKER_17
transcript.pyannote[764].start 5664.66471875
transcript.pyannote[764].end 5666.18346875
transcript.pyannote[765].speaker SPEAKER_17
transcript.pyannote[765].start 5666.97659375
transcript.pyannote[765].end 5670.26721875
transcript.pyannote[766].speaker SPEAKER_17
transcript.pyannote[766].start 5670.60471875
transcript.pyannote[766].end 5671.41471875
transcript.pyannote[767].speaker SPEAKER_17
transcript.pyannote[767].start 5672.00534375
transcript.pyannote[767].end 5673.49034375
transcript.pyannote[768].speaker SPEAKER_17
transcript.pyannote[768].start 5674.11471875
transcript.pyannote[768].end 5674.89096875
transcript.pyannote[769].speaker SPEAKER_17
transcript.pyannote[769].start 5675.65034375
transcript.pyannote[769].end 5677.86096875
transcript.pyannote[770].speaker SPEAKER_17
transcript.pyannote[770].start 5677.94534375
transcript.pyannote[770].end 5679.54846875
transcript.pyannote[771].speaker SPEAKER_17
transcript.pyannote[771].start 5680.02096875
transcript.pyannote[771].end 5680.93221875
transcript.pyannote[772].speaker SPEAKER_17
transcript.pyannote[772].start 5681.55659375
transcript.pyannote[772].end 5682.36659375
transcript.pyannote[773].speaker SPEAKER_17
transcript.pyannote[773].start 5683.17659375
transcript.pyannote[773].end 5684.03721875
transcript.pyannote[774].speaker SPEAKER_17
transcript.pyannote[774].start 5684.57721875
transcript.pyannote[774].end 5687.59784375
transcript.pyannote[775].speaker SPEAKER_17
transcript.pyannote[775].start 5689.26846875
transcript.pyannote[775].end 5689.92659375
transcript.pyannote[776].speaker SPEAKER_17
transcript.pyannote[776].start 5690.04471875
transcript.pyannote[776].end 5690.43284375
transcript.pyannote[777].speaker SPEAKER_17
transcript.pyannote[777].start 5690.71971875
transcript.pyannote[777].end 5691.31034375
transcript.pyannote[778].speaker SPEAKER_17
transcript.pyannote[778].start 5693.21721875
transcript.pyannote[778].end 5694.78659375
transcript.pyannote[779].speaker SPEAKER_17
transcript.pyannote[779].start 5695.73159375
transcript.pyannote[779].end 5697.18284375
transcript.pyannote[780].speaker SPEAKER_17
transcript.pyannote[780].start 5699.52846875
transcript.pyannote[780].end 5705.38409375
transcript.pyannote[781].speaker SPEAKER_17
transcript.pyannote[781].start 5705.65409375
transcript.pyannote[781].end 5706.29534375
transcript.pyannote[782].speaker SPEAKER_17
transcript.pyannote[782].start 5707.05471875
transcript.pyannote[782].end 5707.98284375
transcript.pyannote[783].speaker SPEAKER_17
transcript.pyannote[783].start 5708.74221875
transcript.pyannote[783].end 5709.16409375
transcript.pyannote[784].speaker SPEAKER_17
transcript.pyannote[784].start 5709.40034375
transcript.pyannote[784].end 5711.00346875
transcript.pyannote[785].speaker SPEAKER_17
transcript.pyannote[785].start 5711.39159375
transcript.pyannote[785].end 5718.15846875
transcript.pyannote[786].speaker SPEAKER_17
transcript.pyannote[786].start 5718.56346875
transcript.pyannote[786].end 5722.56284375
transcript.pyannote[787].speaker SPEAKER_20
transcript.pyannote[787].start 5722.56284375
transcript.pyannote[787].end 5732.29971875
transcript.pyannote[788].speaker SPEAKER_17
transcript.pyannote[788].start 5728.30034375
transcript.pyannote[788].end 5728.72221875
transcript.pyannote[789].speaker SPEAKER_17
transcript.pyannote[789].start 5732.29971875
transcript.pyannote[789].end 5741.34471875
transcript.pyannote[790].speaker SPEAKER_20
transcript.pyannote[790].start 5732.62034375
transcript.pyannote[790].end 5732.80596875
transcript.pyannote[791].speaker SPEAKER_17
transcript.pyannote[791].start 5742.44159375
transcript.pyannote[791].end 5745.32721875
transcript.pyannote[792].speaker SPEAKER_17
transcript.pyannote[792].start 5746.55909375
transcript.pyannote[792].end 5747.43659375
transcript.pyannote[793].speaker SPEAKER_17
transcript.pyannote[793].start 5748.29721875
transcript.pyannote[793].end 5749.41096875
transcript.pyannote[794].speaker SPEAKER_17
transcript.pyannote[794].start 5749.98471875
transcript.pyannote[794].end 5756.56596875
transcript.pyannote[795].speaker SPEAKER_17
transcript.pyannote[795].start 5756.95409375
transcript.pyannote[795].end 5757.89909375
transcript.pyannote[796].speaker SPEAKER_17
transcript.pyannote[796].start 5758.72596875
transcript.pyannote[796].end 5759.46846875
transcript.pyannote[797].speaker SPEAKER_17
transcript.pyannote[797].start 5760.31221875
transcript.pyannote[797].end 5761.39221875
transcript.pyannote[798].speaker SPEAKER_17
transcript.pyannote[798].start 5762.91096875
transcript.pyannote[798].end 5764.12596875
transcript.pyannote[799].speaker SPEAKER_17
transcript.pyannote[799].start 5764.29471875
transcript.pyannote[799].end 5765.77971875
transcript.pyannote[800].speaker SPEAKER_17
transcript.pyannote[800].start 5767.18034375
transcript.pyannote[800].end 5768.95221875
transcript.pyannote[801].speaker SPEAKER_17
transcript.pyannote[801].start 5769.77909375
transcript.pyannote[801].end 5770.85909375
transcript.pyannote[802].speaker SPEAKER_17
transcript.pyannote[802].start 5771.58471875
transcript.pyannote[802].end 5772.58034375
transcript.pyannote[803].speaker SPEAKER_17
transcript.pyannote[803].start 5773.66034375
transcript.pyannote[803].end 5774.26784375
transcript.pyannote[804].speaker SPEAKER_17
transcript.pyannote[804].start 5774.97659375
transcript.pyannote[804].end 5776.25909375
transcript.pyannote[805].speaker SPEAKER_17
transcript.pyannote[805].start 5776.63034375
transcript.pyannote[805].end 5777.62596875
transcript.pyannote[806].speaker SPEAKER_17
transcript.pyannote[806].start 5778.13221875
transcript.pyannote[806].end 5778.89159375
transcript.pyannote[807].speaker SPEAKER_17
transcript.pyannote[807].start 5779.49909375
transcript.pyannote[807].end 5780.66346875
transcript.pyannote[808].speaker SPEAKER_17
transcript.pyannote[808].start 5781.70971875
transcript.pyannote[808].end 5783.24534375
transcript.pyannote[809].speaker SPEAKER_17
transcript.pyannote[809].start 5784.67971875
transcript.pyannote[809].end 5785.43909375
transcript.pyannote[810].speaker SPEAKER_17
transcript.pyannote[810].start 5786.06346875
transcript.pyannote[810].end 5786.89034375
transcript.pyannote[811].speaker SPEAKER_17
transcript.pyannote[811].start 5787.81846875
transcript.pyannote[811].end 5788.67909375
transcript.pyannote[812].speaker SPEAKER_17
transcript.pyannote[812].start 5789.55659375
transcript.pyannote[812].end 5790.95721875
transcript.pyannote[813].speaker SPEAKER_17
transcript.pyannote[813].start 5791.64909375
transcript.pyannote[813].end 5795.22659375
transcript.pyannote[814].speaker SPEAKER_17
transcript.pyannote[814].start 5795.51346875
transcript.pyannote[814].end 5796.28971875
transcript.pyannote[815].speaker SPEAKER_17
transcript.pyannote[815].start 5796.66096875
transcript.pyannote[815].end 5797.55534375
transcript.pyannote[816].speaker SPEAKER_17
transcript.pyannote[816].start 5797.67346875
transcript.pyannote[816].end 5798.41596875
transcript.pyannote[817].speaker SPEAKER_17
transcript.pyannote[817].start 5799.69846875
transcript.pyannote[817].end 5800.35659375
transcript.pyannote[818].speaker SPEAKER_17
transcript.pyannote[818].start 5802.04409375
transcript.pyannote[818].end 5803.05659375
transcript.pyannote[819].speaker SPEAKER_17
transcript.pyannote[819].start 5803.56284375
transcript.pyannote[819].end 5805.38534375
transcript.pyannote[820].speaker SPEAKER_17
transcript.pyannote[820].start 5805.58784375
transcript.pyannote[820].end 5808.69284375
transcript.pyannote[821].speaker SPEAKER_17
transcript.pyannote[821].start 5810.21159375
transcript.pyannote[821].end 5810.85284375
transcript.pyannote[822].speaker SPEAKER_17
transcript.pyannote[822].start 5811.67971875
transcript.pyannote[822].end 5812.65846875
transcript.pyannote[823].speaker SPEAKER_17
transcript.pyannote[823].start 5813.62034375
transcript.pyannote[823].end 5815.47659375
transcript.pyannote[824].speaker SPEAKER_17
transcript.pyannote[824].start 5815.67909375
transcript.pyannote[824].end 5816.77596875
transcript.pyannote[825].speaker SPEAKER_17
transcript.pyannote[825].start 5817.40034375
transcript.pyannote[825].end 5819.25659375
transcript.pyannote[826].speaker SPEAKER_17
transcript.pyannote[826].start 5819.86409375
transcript.pyannote[826].end 5820.55596875
transcript.pyannote[827].speaker SPEAKER_17
transcript.pyannote[827].start 5821.58534375
transcript.pyannote[827].end 5823.12096875
transcript.pyannote[828].speaker SPEAKER_17
transcript.pyannote[828].start 5823.71159375
transcript.pyannote[828].end 5824.84221875
transcript.pyannote[829].speaker SPEAKER_17
transcript.pyannote[829].start 5826.04034375
transcript.pyannote[829].end 5827.79534375
transcript.pyannote[830].speaker SPEAKER_17
transcript.pyannote[830].start 5828.97659375
transcript.pyannote[830].end 5834.19096875
transcript.pyannote[831].speaker SPEAKER_20
transcript.pyannote[831].start 5831.87909375
transcript.pyannote[831].end 5843.53971875
transcript.pyannote[832].speaker SPEAKER_17
transcript.pyannote[832].start 5843.53971875
transcript.pyannote[832].end 5843.70846875
transcript.pyannote[833].speaker SPEAKER_20
transcript.pyannote[833].start 5843.70846875
transcript.pyannote[833].end 5857.52909375
transcript.pyannote[834].speaker SPEAKER_17
transcript.pyannote[834].start 5843.86034375
transcript.pyannote[834].end 5844.61971875
transcript.pyannote[835].speaker SPEAKER_17
transcript.pyannote[835].start 5849.85096875
transcript.pyannote[835].end 5851.23471875
transcript.pyannote[836].speaker SPEAKER_17
transcript.pyannote[836].start 5855.99346875
transcript.pyannote[836].end 5862.54096875
transcript.pyannote[837].speaker SPEAKER_20
transcript.pyannote[837].start 5857.79909375
transcript.pyannote[837].end 5858.81159375
transcript.pyannote[838].speaker SPEAKER_20
transcript.pyannote[838].start 5861.98409375
transcript.pyannote[838].end 5862.45659375
transcript.pyannote[839].speaker SPEAKER_30
transcript.pyannote[839].start 5862.45659375
transcript.pyannote[839].end 5862.91221875
transcript.pyannote[840].speaker SPEAKER_17
transcript.pyannote[840].start 5862.89534375
transcript.pyannote[840].end 5865.69659375
transcript.pyannote[841].speaker SPEAKER_17
transcript.pyannote[841].start 5865.94971875
transcript.pyannote[841].end 5867.70471875
transcript.pyannote[842].speaker SPEAKER_17
transcript.pyannote[842].start 5868.68346875
transcript.pyannote[842].end 5869.18971875
transcript.pyannote[843].speaker SPEAKER_17
transcript.pyannote[843].start 5869.69596875
transcript.pyannote[843].end 5871.94034375
transcript.pyannote[844].speaker SPEAKER_17
transcript.pyannote[844].start 5873.08784375
transcript.pyannote[844].end 5873.45909375
transcript.pyannote[845].speaker SPEAKER_17
transcript.pyannote[845].start 5873.56034375
transcript.pyannote[845].end 5875.66971875
transcript.pyannote[846].speaker SPEAKER_17
transcript.pyannote[846].start 5875.95659375
transcript.pyannote[846].end 5876.47971875
transcript.pyannote[847].speaker SPEAKER_17
transcript.pyannote[847].start 5877.77909375
transcript.pyannote[847].end 5879.14596875
transcript.pyannote[848].speaker SPEAKER_17
transcript.pyannote[848].start 5879.43284375
transcript.pyannote[848].end 5880.68159375
transcript.pyannote[849].speaker SPEAKER_17
transcript.pyannote[849].start 5881.13721875
transcript.pyannote[849].end 5883.11159375
transcript.pyannote[850].speaker SPEAKER_17
transcript.pyannote[850].start 5884.00596875
transcript.pyannote[850].end 5886.72284375
transcript.pyannote[851].speaker SPEAKER_17
transcript.pyannote[851].start 5886.94221875
transcript.pyannote[851].end 5889.97971875
transcript.pyannote[852].speaker SPEAKER_17
transcript.pyannote[852].start 5890.94159375
transcript.pyannote[852].end 5892.86534375
transcript.pyannote[853].speaker SPEAKER_17
transcript.pyannote[853].start 5893.35471875
transcript.pyannote[853].end 5896.74659375
transcript.pyannote[854].speaker SPEAKER_17
transcript.pyannote[854].start 5897.10096875
transcript.pyannote[854].end 5900.12159375
transcript.pyannote[855].speaker SPEAKER_17
transcript.pyannote[855].start 5900.69534375
transcript.pyannote[855].end 5902.04534375
transcript.pyannote[856].speaker SPEAKER_30
transcript.pyannote[856].start 5901.40409375
transcript.pyannote[856].end 5903.19284375
transcript.pyannote[857].speaker SPEAKER_17
transcript.pyannote[857].start 5902.43346875
transcript.pyannote[857].end 5907.41159375
transcript.pyannote[858].speaker SPEAKER_17
transcript.pyannote[858].start 5907.74909375
transcript.pyannote[858].end 5911.91721875
transcript.pyannote[859].speaker SPEAKER_17
transcript.pyannote[859].start 5913.30096875
transcript.pyannote[859].end 5913.63846875
transcript.pyannote[860].speaker SPEAKER_17
transcript.pyannote[860].start 5914.51596875
transcript.pyannote[860].end 5916.59159375
transcript.pyannote[861].speaker SPEAKER_17
transcript.pyannote[861].start 5917.38471875
transcript.pyannote[861].end 5938.34346875
transcript.pyannote[862].speaker SPEAKER_00
transcript.pyannote[862].start 5923.13909375
transcript.pyannote[862].end 5925.83909375
transcript.pyannote[863].speaker SPEAKER_00
transcript.pyannote[863].start 5926.15971875
transcript.pyannote[863].end 5926.39596875
transcript.pyannote[864].speaker SPEAKER_30
transcript.pyannote[864].start 5926.39596875
transcript.pyannote[864].end 5926.56471875
transcript.pyannote[865].speaker SPEAKER_00
transcript.pyannote[865].start 5926.56471875
transcript.pyannote[865].end 5926.96971875
transcript.pyannote[866].speaker SPEAKER_30
transcript.pyannote[866].start 5926.96971875
transcript.pyannote[866].end 5927.42534375
transcript.pyannote[867].speaker SPEAKER_00
transcript.pyannote[867].start 5927.42534375
transcript.pyannote[867].end 5927.45909375
transcript.pyannote[868].speaker SPEAKER_17
transcript.pyannote[868].start 5938.63034375
transcript.pyannote[868].end 5942.62971875
transcript.pyannote[869].speaker SPEAKER_30
transcript.pyannote[869].start 5939.38971875
transcript.pyannote[869].end 5940.21659375
transcript.pyannote[870].speaker SPEAKER_30
transcript.pyannote[870].start 5942.35971875
transcript.pyannote[870].end 5942.57909375
transcript.pyannote[871].speaker SPEAKER_30
transcript.pyannote[871].start 5942.62971875
transcript.pyannote[871].end 5942.95034375
transcript.pyannote[872].speaker SPEAKER_17
transcript.pyannote[872].start 5943.40596875
transcript.pyannote[872].end 5947.59096875
transcript.pyannote[873].speaker SPEAKER_30
transcript.pyannote[873].start 5947.23659375
transcript.pyannote[873].end 5949.97034375
transcript.pyannote[874].speaker SPEAKER_17
transcript.pyannote[874].start 5948.01284375
transcript.pyannote[874].end 5950.40909375
transcript.pyannote[875].speaker SPEAKER_30
transcript.pyannote[875].start 5950.40909375
transcript.pyannote[875].end 5950.42596875
transcript.pyannote[876].speaker SPEAKER_17
transcript.pyannote[876].start 5951.37096875
transcript.pyannote[876].end 5951.40471875
transcript.pyannote[877].speaker SPEAKER_30
transcript.pyannote[877].start 5951.40471875
transcript.pyannote[877].end 5952.02909375
transcript.pyannote[878].speaker SPEAKER_30
transcript.pyannote[878].start 5952.24846875
transcript.pyannote[878].end 5952.58596875
transcript.pyannote[879].speaker SPEAKER_30
transcript.pyannote[879].start 5961.58034375
transcript.pyannote[879].end 5964.33096875
transcript.pyannote[880].speaker SPEAKER_04
transcript.pyannote[880].start 5967.16596875
transcript.pyannote[880].end 5968.66784375
transcript.pyannote[881].speaker SPEAKER_30
transcript.pyannote[881].start 5969.32596875
transcript.pyannote[881].end 5970.57471875
transcript.pyannote[882].speaker SPEAKER_04
transcript.pyannote[882].start 5974.10159375
transcript.pyannote[882].end 5975.13096875
transcript.pyannote[883].speaker SPEAKER_20
transcript.pyannote[883].start 5976.95346875
transcript.pyannote[883].end 5977.79721875
transcript.pyannote[884].speaker SPEAKER_04
transcript.pyannote[884].start 5978.64096875
transcript.pyannote[884].end 6062.59409375
transcript.pyannote[885].speaker SPEAKER_04
transcript.pyannote[885].start 6063.13409375
transcript.pyannote[885].end 6072.19596875
transcript.pyannote[886].speaker SPEAKER_04
transcript.pyannote[886].start 6073.07346875
transcript.pyannote[886].end 6074.64284375
transcript.pyannote[887].speaker SPEAKER_04
transcript.pyannote[887].start 6075.73971875
transcript.pyannote[887].end 6079.31721875
transcript.pyannote[888].speaker SPEAKER_20
transcript.pyannote[888].start 6078.81096875
transcript.pyannote[888].end 6096.61409375
transcript.pyannote[889].speaker SPEAKER_20
transcript.pyannote[889].start 6097.08659375
transcript.pyannote[889].end 6103.97159375
transcript.pyannote[890].speaker SPEAKER_04
transcript.pyannote[890].start 6101.87909375
transcript.pyannote[890].end 6113.20221875
transcript.pyannote[891].speaker SPEAKER_20
transcript.pyannote[891].start 6104.52846875
transcript.pyannote[891].end 6104.84909375
transcript.pyannote[892].speaker SPEAKER_20
transcript.pyannote[892].start 6106.45221875
transcript.pyannote[892].end 6108.69659375
transcript.pyannote[893].speaker SPEAKER_20
transcript.pyannote[893].start 6109.57409375
transcript.pyannote[893].end 6112.74659375
transcript.pyannote[894].speaker SPEAKER_20
transcript.pyannote[894].start 6112.88159375
transcript.pyannote[894].end 6120.30659375
transcript.pyannote[895].speaker SPEAKER_04
transcript.pyannote[895].start 6116.49284375
transcript.pyannote[895].end 6117.20159375
transcript.pyannote[896].speaker SPEAKER_04
transcript.pyannote[896].start 6119.73284375
transcript.pyannote[896].end 6123.22596875
transcript.pyannote[897].speaker SPEAKER_20
transcript.pyannote[897].start 6121.26846875
transcript.pyannote[897].end 6124.77846875
transcript.pyannote[898].speaker SPEAKER_04
transcript.pyannote[898].start 6124.37346875
transcript.pyannote[898].end 6126.85409375
transcript.pyannote[899].speaker SPEAKER_20
transcript.pyannote[899].start 6125.58846875
transcript.pyannote[899].end 6129.30096875
transcript.pyannote[900].speaker SPEAKER_04
transcript.pyannote[900].start 6127.34346875
transcript.pyannote[900].end 6128.06909375
transcript.pyannote[901].speaker SPEAKER_04
transcript.pyannote[901].start 6128.64284375
transcript.pyannote[901].end 6130.71846875
transcript.pyannote[902].speaker SPEAKER_20
transcript.pyannote[902].start 6129.45284375
transcript.pyannote[902].end 6132.30471875
transcript.pyannote[903].speaker SPEAKER_04
transcript.pyannote[903].start 6131.74784375
transcript.pyannote[903].end 6136.64159375
transcript.pyannote[904].speaker SPEAKER_04
transcript.pyannote[904].start 6136.96221875
transcript.pyannote[904].end 6147.93096875
transcript.pyannote[905].speaker SPEAKER_25
transcript.pyannote[905].start 6146.24346875
transcript.pyannote[905].end 6147.22221875
transcript.pyannote[906].speaker SPEAKER_04
transcript.pyannote[906].start 6148.53846875
transcript.pyannote[906].end 6175.40346875
transcript.pyannote[907].speaker SPEAKER_04
transcript.pyannote[907].start 6175.87596875
transcript.pyannote[907].end 6175.90971875
transcript.pyannote[908].speaker SPEAKER_20
transcript.pyannote[908].start 6175.90971875
transcript.pyannote[908].end 6189.15659375
transcript.pyannote[909].speaker SPEAKER_04
transcript.pyannote[909].start 6175.92659375
transcript.pyannote[909].end 6176.92221875
transcript.pyannote[910].speaker SPEAKER_20
transcript.pyannote[910].start 6189.29159375
transcript.pyannote[910].end 6194.21909375
transcript.pyannote[911].speaker SPEAKER_04
transcript.pyannote[911].start 6189.73034375
transcript.pyannote[911].end 6201.13784375
transcript.pyannote[912].speaker SPEAKER_20
transcript.pyannote[912].start 6201.39096875
transcript.pyannote[912].end 6207.01034375
transcript.pyannote[913].speaker SPEAKER_04
transcript.pyannote[913].start 6203.90534375
transcript.pyannote[913].end 6206.89221875
transcript.pyannote[914].speaker SPEAKER_04
transcript.pyannote[914].start 6207.48284375
transcript.pyannote[914].end 6215.07659375
transcript.pyannote[915].speaker SPEAKER_20
transcript.pyannote[915].start 6215.44784375
transcript.pyannote[915].end 6220.37534375
transcript.pyannote[916].speaker SPEAKER_04
transcript.pyannote[916].start 6217.70909375
transcript.pyannote[916].end 6225.38721875
transcript.pyannote[917].speaker SPEAKER_20
transcript.pyannote[917].start 6225.96096875
transcript.pyannote[917].end 6241.58721875
transcript.pyannote[918].speaker SPEAKER_04
transcript.pyannote[918].start 6241.16534375
transcript.pyannote[918].end 6243.74721875
transcript.pyannote[919].speaker SPEAKER_20
transcript.pyannote[919].start 6242.02596875
transcript.pyannote[919].end 6242.46471875
transcript.pyannote[920].speaker SPEAKER_20
transcript.pyannote[920].start 6244.45596875
transcript.pyannote[920].end 6272.36721875
transcript.pyannote[921].speaker SPEAKER_09
transcript.pyannote[921].start 6269.39721875
transcript.pyannote[921].end 6269.46471875
transcript.pyannote[922].speaker SPEAKER_09
transcript.pyannote[922].start 6269.48159375
transcript.pyannote[922].end 6269.58284375
transcript.pyannote[923].speaker SPEAKER_20
transcript.pyannote[923].start 6272.60346875
transcript.pyannote[923].end 6285.02346875
transcript.pyannote[924].speaker SPEAKER_00
transcript.pyannote[924].start 6277.81784375
transcript.pyannote[924].end 6277.85159375
transcript.pyannote[925].speaker SPEAKER_04
transcript.pyannote[925].start 6277.85159375
transcript.pyannote[925].end 6298.62471875
transcript.pyannote[926].speaker SPEAKER_21
transcript.pyannote[926].start 6285.02346875
transcript.pyannote[926].end 6285.05721875
transcript.pyannote[927].speaker SPEAKER_20
transcript.pyannote[927].start 6285.05721875
transcript.pyannote[927].end 6285.07409375
transcript.pyannote[928].speaker SPEAKER_00
transcript.pyannote[928].start 6295.13159375
transcript.pyannote[928].end 6295.19909375
transcript.pyannote[929].speaker SPEAKER_00
transcript.pyannote[929].start 6295.33409375
transcript.pyannote[929].end 6295.36784375
transcript.pyannote[930].speaker SPEAKER_25
transcript.pyannote[930].start 6295.36784375
transcript.pyannote[930].end 6296.97096875
transcript.pyannote[931].speaker SPEAKER_00
transcript.pyannote[931].start 6296.97096875
transcript.pyannote[931].end 6297.59534375
transcript.pyannote[932].speaker SPEAKER_04
transcript.pyannote[932].start 6298.92846875
transcript.pyannote[932].end 6369.73596875
transcript.pyannote[933].speaker SPEAKER_04
transcript.pyannote[933].start 6370.36034375
transcript.pyannote[933].end 6371.27159375
transcript.pyannote[934].speaker SPEAKER_20
transcript.pyannote[934].start 6371.37284375
transcript.pyannote[934].end 6373.44846875
transcript.pyannote[935].speaker SPEAKER_20
transcript.pyannote[935].start 6373.54971875
transcript.pyannote[935].end 6382.71284375
transcript.pyannote[936].speaker SPEAKER_04
transcript.pyannote[936].start 6382.15596875
transcript.pyannote[936].end 6395.58846875
transcript.pyannote[937].speaker SPEAKER_20
transcript.pyannote[937].start 6383.03346875
transcript.pyannote[937].end 6384.63659375
transcript.pyannote[938].speaker SPEAKER_04
transcript.pyannote[938].start 6396.17909375
transcript.pyannote[938].end 6411.28221875
transcript.pyannote[939].speaker SPEAKER_20
transcript.pyannote[939].start 6411.21471875
transcript.pyannote[939].end 6417.42471875
transcript.pyannote[940].speaker SPEAKER_04
transcript.pyannote[940].start 6414.72471875
transcript.pyannote[940].end 6416.29409375
transcript.pyannote[941].speaker SPEAKER_04
transcript.pyannote[941].start 6416.96909375
transcript.pyannote[941].end 6422.45346875
transcript.pyannote[942].speaker SPEAKER_20
transcript.pyannote[942].start 6420.66471875
transcript.pyannote[942].end 6421.00221875
transcript.pyannote[943].speaker SPEAKER_04
transcript.pyannote[943].start 6423.09471875
transcript.pyannote[943].end 6426.58784375
transcript.pyannote[944].speaker SPEAKER_20
transcript.pyannote[944].start 6427.07721875
transcript.pyannote[944].end 6438.99096875
transcript.pyannote[945].speaker SPEAKER_04
transcript.pyannote[945].start 6434.50221875
transcript.pyannote[945].end 6435.68346875
transcript.pyannote[946].speaker SPEAKER_04
transcript.pyannote[946].start 6437.80971875
transcript.pyannote[946].end 6446.55096875
transcript.pyannote[947].speaker SPEAKER_20
transcript.pyannote[947].start 6439.59846875
transcript.pyannote[947].end 6440.05409375
transcript.pyannote[948].speaker SPEAKER_20
transcript.pyannote[948].start 6441.01596875
transcript.pyannote[948].end 6444.81284375
transcript.pyannote[949].speaker SPEAKER_20
transcript.pyannote[949].start 6446.61846875
transcript.pyannote[949].end 6459.13971875
transcript.pyannote[950].speaker SPEAKER_04
transcript.pyannote[950].start 6454.36409375
transcript.pyannote[950].end 6489.44721875
transcript.pyannote[951].speaker SPEAKER_30
transcript.pyannote[951].start 6489.58221875
transcript.pyannote[951].end 6489.61596875
transcript.pyannote[952].speaker SPEAKER_20
transcript.pyannote[952].start 6489.61596875
transcript.pyannote[952].end 6490.61159375
transcript.pyannote[953].speaker SPEAKER_30
transcript.pyannote[953].start 6490.61159375
transcript.pyannote[953].end 6490.62846875
transcript.pyannote[954].speaker SPEAKER_20
transcript.pyannote[954].start 6491.53971875
transcript.pyannote[954].end 6492.06284375
transcript.pyannote[955].speaker SPEAKER_20
transcript.pyannote[955].start 6494.64471875
transcript.pyannote[955].end 6496.41659375
transcript.pyannote[956].speaker SPEAKER_30
transcript.pyannote[956].start 6496.41659375
transcript.pyannote[956].end 6496.53471875
transcript.pyannote[957].speaker SPEAKER_20
transcript.pyannote[957].start 6496.53471875
transcript.pyannote[957].end 6496.72034375
transcript.pyannote[958].speaker SPEAKER_04
transcript.pyannote[958].start 6496.66971875
transcript.pyannote[958].end 6498.61034375
transcript.pyannote[959].speaker SPEAKER_30
transcript.pyannote[959].start 6496.72034375
transcript.pyannote[959].end 6496.80471875
transcript.pyannote[960].speaker SPEAKER_30
transcript.pyannote[960].start 6497.61471875
transcript.pyannote[960].end 6497.64846875
transcript.pyannote[961].speaker SPEAKER_20
transcript.pyannote[961].start 6497.64846875
transcript.pyannote[961].end 6497.68221875
transcript.pyannote[962].speaker SPEAKER_30
transcript.pyannote[962].start 6497.68221875
transcript.pyannote[962].end 6497.73284375
transcript.pyannote[963].speaker SPEAKER_30
transcript.pyannote[963].start 6498.13784375
transcript.pyannote[963].end 6498.18846875
transcript.pyannote[964].speaker SPEAKER_20
transcript.pyannote[964].start 6498.18846875
transcript.pyannote[964].end 6498.22221875
transcript.pyannote[965].speaker SPEAKER_30
transcript.pyannote[965].start 6498.22221875
transcript.pyannote[965].end 6498.64409375
transcript.pyannote[966].speaker SPEAKER_20
transcript.pyannote[966].start 6498.61034375
transcript.pyannote[966].end 6498.66096875
transcript.pyannote[967].speaker SPEAKER_30
transcript.pyannote[967].start 6498.66096875
transcript.pyannote[967].end 6498.67784375
transcript.pyannote[968].speaker SPEAKER_20
transcript.pyannote[968].start 6498.67784375
transcript.pyannote[968].end 6499.03221875
transcript.pyannote[969].speaker SPEAKER_30
transcript.pyannote[969].start 6499.03221875
transcript.pyannote[969].end 6501.54659375
transcript.pyannote[970].speaker SPEAKER_30
transcript.pyannote[970].start 6501.66471875
transcript.pyannote[970].end 6502.66034375
transcript.pyannote[971].speaker SPEAKER_30
transcript.pyannote[971].start 6503.53784375
transcript.pyannote[971].end 6506.03534375
transcript.pyannote[972].speaker SPEAKER_30
transcript.pyannote[972].start 6506.38971875
transcript.pyannote[972].end 6509.08971875
transcript.pyannote[973].speaker SPEAKER_30
transcript.pyannote[973].start 6509.95034375
transcript.pyannote[973].end 6513.32534375
transcript.pyannote[974].speaker SPEAKER_01
transcript.pyannote[974].start 6523.19721875
transcript.pyannote[974].end 6525.72846875
transcript.pyannote[975].speaker SPEAKER_01
transcript.pyannote[975].start 6525.89721875
transcript.pyannote[975].end 6526.36971875
transcript.pyannote[976].speaker SPEAKER_30
transcript.pyannote[976].start 6527.16284375
transcript.pyannote[976].end 6528.46221875
transcript.pyannote[977].speaker SPEAKER_20
transcript.pyannote[977].start 6534.67221875
transcript.pyannote[977].end 6535.19534375
transcript.pyannote[978].speaker SPEAKER_01
transcript.pyannote[978].start 6535.21221875
transcript.pyannote[978].end 6535.68471875
transcript.pyannote[979].speaker SPEAKER_01
transcript.pyannote[979].start 6535.95471875
transcript.pyannote[979].end 6536.79846875
transcript.pyannote[980].speaker SPEAKER_01
transcript.pyannote[980].start 6537.10221875
transcript.pyannote[980].end 6539.97096875
transcript.pyannote[981].speaker SPEAKER_01
transcript.pyannote[981].start 6540.37596875
transcript.pyannote[981].end 6545.23596875
transcript.pyannote[982].speaker SPEAKER_01
transcript.pyannote[982].start 6545.42159375
transcript.pyannote[982].end 6550.65284375
transcript.pyannote[983].speaker SPEAKER_01
transcript.pyannote[983].start 6551.29409375
transcript.pyannote[983].end 6553.99409375
transcript.pyannote[984].speaker SPEAKER_01
transcript.pyannote[984].start 6554.26409375
transcript.pyannote[984].end 6557.28471875
transcript.pyannote[985].speaker SPEAKER_01
transcript.pyannote[985].start 6557.53784375
transcript.pyannote[985].end 6563.32596875
transcript.pyannote[986].speaker SPEAKER_01
transcript.pyannote[986].start 6563.68034375
transcript.pyannote[986].end 6565.23284375
transcript.pyannote[987].speaker SPEAKER_01
transcript.pyannote[987].start 6565.41846875
transcript.pyannote[987].end 6567.20721875
transcript.pyannote[988].speaker SPEAKER_01
transcript.pyannote[988].start 6567.88221875
transcript.pyannote[988].end 6573.99096875
transcript.pyannote[989].speaker SPEAKER_01
transcript.pyannote[989].start 6574.31159375
transcript.pyannote[989].end 6576.84284375
transcript.pyannote[990].speaker SPEAKER_01
transcript.pyannote[990].start 6577.87221875
transcript.pyannote[990].end 6588.50346875
transcript.pyannote[991].speaker SPEAKER_01
transcript.pyannote[991].start 6588.82409375
transcript.pyannote[991].end 6589.31346875
transcript.pyannote[992].speaker SPEAKER_01
transcript.pyannote[992].start 6589.73534375
transcript.pyannote[992].end 6593.17784375
transcript.pyannote[993].speaker SPEAKER_01
transcript.pyannote[993].start 6593.66721875
transcript.pyannote[993].end 6596.36721875
transcript.pyannote[994].speaker SPEAKER_01
transcript.pyannote[994].start 6596.90721875
transcript.pyannote[994].end 6598.37534375
transcript.pyannote[995].speaker SPEAKER_01
transcript.pyannote[995].start 6598.57784375
transcript.pyannote[995].end 6601.90221875
transcript.pyannote[996].speaker SPEAKER_25
transcript.pyannote[996].start 6601.90221875
transcript.pyannote[996].end 6601.93596875
transcript.pyannote[997].speaker SPEAKER_25
transcript.pyannote[997].start 6601.96971875
transcript.pyannote[997].end 6602.00346875
transcript.pyannote[998].speaker SPEAKER_01
transcript.pyannote[998].start 6602.02034375
transcript.pyannote[998].end 6608.44971875
transcript.pyannote[999].speaker SPEAKER_01
transcript.pyannote[999].start 6608.87159375
transcript.pyannote[999].end 6614.32221875
transcript.pyannote[1000].speaker SPEAKER_01
transcript.pyannote[1000].start 6614.98034375
transcript.pyannote[1000].end 6615.55409375
transcript.pyannote[1001].speaker SPEAKER_01
transcript.pyannote[1001].start 6615.97596875
transcript.pyannote[1001].end 6620.26221875
transcript.pyannote[1002].speaker SPEAKER_01
transcript.pyannote[1002].start 6621.44346875
transcript.pyannote[1002].end 6622.38846875
transcript.pyannote[1003].speaker SPEAKER_01
transcript.pyannote[1003].start 6623.65409375
transcript.pyannote[1003].end 6630.16784375
transcript.pyannote[1004].speaker SPEAKER_01
transcript.pyannote[1004].start 6630.58971875
transcript.pyannote[1004].end 6633.72846875
transcript.pyannote[1005].speaker SPEAKER_01
transcript.pyannote[1005].start 6634.01534375
transcript.pyannote[1005].end 6637.72784375
transcript.pyannote[1006].speaker SPEAKER_01
transcript.pyannote[1006].start 6638.57159375
transcript.pyannote[1006].end 6640.03971875
transcript.pyannote[1007].speaker SPEAKER_01
transcript.pyannote[1007].start 6640.34346875
transcript.pyannote[1007].end 6641.22096875
transcript.pyannote[1008].speaker SPEAKER_01
transcript.pyannote[1008].start 6642.35159375
transcript.pyannote[1008].end 6645.05159375
transcript.pyannote[1009].speaker SPEAKER_01
transcript.pyannote[1009].start 6645.18659375
transcript.pyannote[1009].end 6653.08409375
transcript.pyannote[1010].speaker SPEAKER_01
transcript.pyannote[1010].start 6654.19784375
transcript.pyannote[1010].end 6657.80909375
transcript.pyannote[1011].speaker SPEAKER_01
transcript.pyannote[1011].start 6658.19721875
transcript.pyannote[1011].end 6660.28971875
transcript.pyannote[1012].speaker SPEAKER_01
transcript.pyannote[1012].start 6660.47534375
transcript.pyannote[1012].end 6662.71971875
transcript.pyannote[1013].speaker SPEAKER_01
transcript.pyannote[1013].start 6663.24284375
transcript.pyannote[1013].end 6666.02721875
transcript.pyannote[1014].speaker SPEAKER_01
transcript.pyannote[1014].start 6666.34784375
transcript.pyannote[1014].end 6667.12409375
transcript.pyannote[1015].speaker SPEAKER_01
transcript.pyannote[1015].start 6667.69784375
transcript.pyannote[1015].end 6672.70971875
transcript.pyannote[1016].speaker SPEAKER_01
transcript.pyannote[1016].start 6673.19909375
transcript.pyannote[1016].end 6674.00909375
transcript.pyannote[1017].speaker SPEAKER_01
transcript.pyannote[1017].start 6675.05534375
transcript.pyannote[1017].end 6677.56971875
transcript.pyannote[1018].speaker SPEAKER_31
transcript.pyannote[1018].start 6675.96659375
transcript.pyannote[1018].end 6676.52346875
transcript.pyannote[1019].speaker SPEAKER_01
transcript.pyannote[1019].start 6678.12659375
transcript.pyannote[1019].end 6680.50596875
transcript.pyannote[1020].speaker SPEAKER_01
transcript.pyannote[1020].start 6680.74221875
transcript.pyannote[1020].end 6682.39596875
transcript.pyannote[1021].speaker SPEAKER_01
transcript.pyannote[1021].start 6682.98659375
transcript.pyannote[1021].end 6684.97784375
transcript.pyannote[1022].speaker SPEAKER_01
transcript.pyannote[1022].start 6686.00721875
transcript.pyannote[1022].end 6688.67346875
transcript.pyannote[1023].speaker SPEAKER_01
transcript.pyannote[1023].start 6688.96034375
transcript.pyannote[1023].end 6694.10721875
transcript.pyannote[1024].speaker SPEAKER_01
transcript.pyannote[1024].start 6694.42784375
transcript.pyannote[1024].end 6696.68909375
transcript.pyannote[1025].speaker SPEAKER_01
transcript.pyannote[1025].start 6698.12346875
transcript.pyannote[1025].end 6698.71409375
transcript.pyannote[1026].speaker SPEAKER_01
transcript.pyannote[1026].start 6699.76034375
transcript.pyannote[1026].end 6700.38471875
transcript.pyannote[1027].speaker SPEAKER_01
transcript.pyannote[1027].start 6700.57034375
transcript.pyannote[1027].end 6701.83596875
transcript.pyannote[1028].speaker SPEAKER_01
transcript.pyannote[1028].start 6703.00034375
transcript.pyannote[1028].end 6704.26596875
transcript.pyannote[1029].speaker SPEAKER_01
transcript.pyannote[1029].start 6705.41346875
transcript.pyannote[1029].end 6707.06721875
transcript.pyannote[1030].speaker SPEAKER_01
transcript.pyannote[1030].start 6708.21471875
transcript.pyannote[1030].end 6712.41659375
transcript.pyannote[1031].speaker SPEAKER_01
transcript.pyannote[1031].start 6713.41221875
transcript.pyannote[1031].end 6717.39471875
transcript.pyannote[1032].speaker SPEAKER_01
transcript.pyannote[1032].start 6717.69846875
transcript.pyannote[1032].end 6720.44909375
transcript.pyannote[1033].speaker SPEAKER_01
transcript.pyannote[1033].start 6721.15784375
transcript.pyannote[1033].end 6724.46534375
transcript.pyannote[1034].speaker SPEAKER_01
transcript.pyannote[1034].start 6724.80284375
transcript.pyannote[1034].end 6727.87409375
transcript.pyannote[1035].speaker SPEAKER_01
transcript.pyannote[1035].start 6729.02159375
transcript.pyannote[1035].end 6733.64534375
transcript.pyannote[1036].speaker SPEAKER_01
transcript.pyannote[1036].start 6733.91534375
transcript.pyannote[1036].end 6736.07534375
transcript.pyannote[1037].speaker SPEAKER_01
transcript.pyannote[1037].start 6736.41284375
transcript.pyannote[1037].end 6738.48846875
transcript.pyannote[1038].speaker SPEAKER_01
transcript.pyannote[1038].start 6739.11284375
transcript.pyannote[1038].end 6739.87221875
transcript.pyannote[1039].speaker SPEAKER_01
transcript.pyannote[1039].start 6740.26034375
transcript.pyannote[1039].end 6742.36971875
transcript.pyannote[1040].speaker SPEAKER_00
transcript.pyannote[1040].start 6740.32784375
transcript.pyannote[1040].end 6740.34471875
transcript.pyannote[1041].speaker SPEAKER_25
transcript.pyannote[1041].start 6740.34471875
transcript.pyannote[1041].end 6741.03659375
transcript.pyannote[1042].speaker SPEAKER_05
transcript.pyannote[1042].start 6741.03659375
transcript.pyannote[1042].end 6741.32346875
transcript.pyannote[1043].speaker SPEAKER_01
transcript.pyannote[1043].start 6742.92659375
transcript.pyannote[1043].end 6744.04034375
transcript.pyannote[1044].speaker SPEAKER_01
transcript.pyannote[1044].start 6744.78284375
transcript.pyannote[1044].end 6749.05221875
transcript.pyannote[1045].speaker SPEAKER_01
transcript.pyannote[1045].start 6749.52471875
transcript.pyannote[1045].end 6754.19909375
transcript.pyannote[1046].speaker SPEAKER_01
transcript.pyannote[1046].start 6754.90784375
transcript.pyannote[1046].end 6759.27846875
transcript.pyannote[1047].speaker SPEAKER_01
transcript.pyannote[1047].start 6759.75096875
transcript.pyannote[1047].end 6761.20221875
transcript.pyannote[1048].speaker SPEAKER_01
transcript.pyannote[1048].start 6762.45096875
transcript.pyannote[1048].end 6763.85159375
transcript.pyannote[1049].speaker SPEAKER_01
transcript.pyannote[1049].start 6764.40846875
transcript.pyannote[1049].end 6765.43784375
transcript.pyannote[1050].speaker SPEAKER_01
transcript.pyannote[1050].start 6765.91034375
transcript.pyannote[1050].end 6768.79596875
transcript.pyannote[1051].speaker SPEAKER_01
transcript.pyannote[1051].start 6769.25159375
transcript.pyannote[1051].end 6771.96846875
transcript.pyannote[1052].speaker SPEAKER_20
transcript.pyannote[1052].start 6773.23409375
transcript.pyannote[1052].end 6773.58846875
transcript.pyannote[1053].speaker SPEAKER_01
transcript.pyannote[1053].start 6773.58846875
transcript.pyannote[1053].end 6774.95534375
transcript.pyannote[1054].speaker SPEAKER_01
transcript.pyannote[1054].start 6776.28846875
transcript.pyannote[1054].end 6778.66784375
transcript.pyannote[1055].speaker SPEAKER_01
transcript.pyannote[1055].start 6779.93346875
transcript.pyannote[1055].end 6780.67596875
transcript.pyannote[1056].speaker SPEAKER_01
transcript.pyannote[1056].start 6781.24971875
transcript.pyannote[1056].end 6785.41784375
transcript.pyannote[1057].speaker SPEAKER_01
transcript.pyannote[1057].start 6786.32909375
transcript.pyannote[1057].end 6788.15159375
transcript.pyannote[1058].speaker SPEAKER_01
transcript.pyannote[1058].start 6788.57346875
transcript.pyannote[1058].end 6791.23971875
transcript.pyannote[1059].speaker SPEAKER_01
transcript.pyannote[1059].start 6791.54346875
transcript.pyannote[1059].end 6793.68659375
transcript.pyannote[1060].speaker SPEAKER_01
transcript.pyannote[1060].start 6793.97346875
transcript.pyannote[1060].end 6800.47034375
transcript.pyannote[1061].speaker SPEAKER_01
transcript.pyannote[1061].start 6800.77409375
transcript.pyannote[1061].end 6804.50346875
transcript.pyannote[1062].speaker SPEAKER_01
transcript.pyannote[1062].start 6805.00971875
transcript.pyannote[1062].end 6806.44409375
transcript.pyannote[1063].speaker SPEAKER_01
transcript.pyannote[1063].start 6807.82784375
transcript.pyannote[1063].end 6809.38034375
transcript.pyannote[1064].speaker SPEAKER_01
transcript.pyannote[1064].start 6810.91596875
transcript.pyannote[1064].end 6811.65846875
transcript.pyannote[1065].speaker SPEAKER_01
transcript.pyannote[1065].start 6812.13096875
transcript.pyannote[1065].end 6814.39221875
transcript.pyannote[1066].speaker SPEAKER_01
transcript.pyannote[1066].start 6814.59471875
transcript.pyannote[1066].end 6816.60284375
transcript.pyannote[1067].speaker SPEAKER_01
transcript.pyannote[1067].start 6818.30721875
transcript.pyannote[1067].end 6819.79221875
transcript.pyannote[1068].speaker SPEAKER_01
transcript.pyannote[1068].start 6820.77096875
transcript.pyannote[1068].end 6821.64846875
transcript.pyannote[1069].speaker SPEAKER_01
transcript.pyannote[1069].start 6822.37409375
transcript.pyannote[1069].end 6823.96034375
transcript.pyannote[1070].speaker SPEAKER_01
transcript.pyannote[1070].start 6824.39909375
transcript.pyannote[1070].end 6825.14159375
transcript.pyannote[1071].speaker SPEAKER_01
transcript.pyannote[1071].start 6825.25971875
transcript.pyannote[1071].end 6826.77846875
transcript.pyannote[1072].speaker SPEAKER_01
transcript.pyannote[1072].start 6826.99784375
transcript.pyannote[1072].end 6829.49534375
transcript.pyannote[1073].speaker SPEAKER_01
transcript.pyannote[1073].start 6829.51221875
transcript.pyannote[1073].end 6831.31784375
transcript.pyannote[1074].speaker SPEAKER_01
transcript.pyannote[1074].start 6831.46971875
transcript.pyannote[1074].end 6832.97159375
transcript.pyannote[1075].speaker SPEAKER_01
transcript.pyannote[1075].start 6834.43971875
transcript.pyannote[1075].end 6834.91221875
transcript.pyannote[1076].speaker SPEAKER_01
transcript.pyannote[1076].start 6835.89096875
transcript.pyannote[1076].end 6836.39721875
transcript.pyannote[1077].speaker SPEAKER_01
transcript.pyannote[1077].start 6837.25784375
transcript.pyannote[1077].end 6838.10159375
transcript.pyannote[1078].speaker SPEAKER_01
transcript.pyannote[1078].start 6839.13096875
transcript.pyannote[1078].end 6839.99159375
transcript.pyannote[1079].speaker SPEAKER_20
transcript.pyannote[1079].start 6840.49784375
transcript.pyannote[1079].end 6842.42159375
transcript.pyannote[1080].speaker SPEAKER_20
transcript.pyannote[1080].start 6843.09659375
transcript.pyannote[1080].end 6846.06659375
transcript.pyannote[1081].speaker SPEAKER_20
transcript.pyannote[1081].start 6846.91034375
transcript.pyannote[1081].end 6847.90596875
transcript.pyannote[1082].speaker SPEAKER_01
transcript.pyannote[1082].start 6846.94409375
transcript.pyannote[1082].end 6848.78346875
transcript.pyannote[1083].speaker SPEAKER_20
transcript.pyannote[1083].start 6848.22659375
transcript.pyannote[1083].end 6859.41471875
transcript.pyannote[1084].speaker SPEAKER_20
transcript.pyannote[1084].start 6859.56659375
transcript.pyannote[1084].end 6861.33846875
transcript.pyannote[1085].speaker SPEAKER_01
transcript.pyannote[1085].start 6859.60034375
transcript.pyannote[1085].end 6862.53659375
transcript.pyannote[1086].speaker SPEAKER_20
transcript.pyannote[1086].start 6862.38471875
transcript.pyannote[1086].end 6862.70534375
transcript.pyannote[1087].speaker SPEAKER_01
transcript.pyannote[1087].start 6862.55346875
transcript.pyannote[1087].end 6866.26596875
transcript.pyannote[1088].speaker SPEAKER_22
transcript.pyannote[1088].start 6862.70534375
transcript.pyannote[1088].end 6862.75596875
transcript.pyannote[1089].speaker SPEAKER_22
transcript.pyannote[1089].start 6863.90346875
transcript.pyannote[1089].end 6863.95409375
transcript.pyannote[1090].speaker SPEAKER_20
transcript.pyannote[1090].start 6863.95409375
transcript.pyannote[1090].end 6864.03846875
transcript.pyannote[1091].speaker SPEAKER_22
transcript.pyannote[1091].start 6864.03846875
transcript.pyannote[1091].end 6864.37596875
transcript.pyannote[1092].speaker SPEAKER_22
transcript.pyannote[1092].start 6866.35034375
transcript.pyannote[1092].end 6866.68784375
transcript.pyannote[1093].speaker SPEAKER_01
transcript.pyannote[1093].start 6866.75534375
transcript.pyannote[1093].end 6874.01159375
transcript.pyannote[1094].speaker SPEAKER_22
transcript.pyannote[1094].start 6872.62784375
transcript.pyannote[1094].end 6872.91471875
transcript.pyannote[1095].speaker SPEAKER_01
transcript.pyannote[1095].start 6874.45034375
transcript.pyannote[1095].end 6879.05721875
transcript.pyannote[1096].speaker SPEAKER_25
transcript.pyannote[1096].start 6877.16721875
transcript.pyannote[1096].end 6877.65659375
transcript.pyannote[1097].speaker SPEAKER_01
transcript.pyannote[1097].start 6879.74909375
transcript.pyannote[1097].end 6883.22534375
transcript.pyannote[1098].speaker SPEAKER_25
transcript.pyannote[1098].start 6882.02721875
transcript.pyannote[1098].end 6882.34784375
transcript.pyannote[1099].speaker SPEAKER_22
transcript.pyannote[1099].start 6882.34784375
transcript.pyannote[1099].end 6882.36471875
transcript.pyannote[1100].speaker SPEAKER_25
transcript.pyannote[1100].start 6883.07346875
transcript.pyannote[1100].end 6883.41096875
transcript.pyannote[1101].speaker SPEAKER_25
transcript.pyannote[1101].start 6883.47846875
transcript.pyannote[1101].end 6883.54596875
transcript.pyannote[1102].speaker SPEAKER_01
transcript.pyannote[1102].start 6883.54596875
transcript.pyannote[1102].end 6885.31784375
transcript.pyannote[1103].speaker SPEAKER_25
transcript.pyannote[1103].start 6883.69784375
transcript.pyannote[1103].end 6884.15346875
transcript.pyannote[1104].speaker SPEAKER_22
transcript.pyannote[1104].start 6884.15346875
transcript.pyannote[1104].end 6884.17034375
transcript.pyannote[1105].speaker SPEAKER_01
transcript.pyannote[1105].start 6885.73971875
transcript.pyannote[1105].end 6887.84909375
transcript.pyannote[1106].speaker SPEAKER_01
transcript.pyannote[1106].start 6888.15284375
transcript.pyannote[1106].end 6890.90346875
transcript.pyannote[1107].speaker SPEAKER_01
transcript.pyannote[1107].start 6891.29159375
transcript.pyannote[1107].end 6892.77659375
transcript.pyannote[1108].speaker SPEAKER_01
transcript.pyannote[1108].start 6892.87784375
transcript.pyannote[1108].end 6894.86909375
transcript.pyannote[1109].speaker SPEAKER_01
transcript.pyannote[1109].start 6895.56096875
transcript.pyannote[1109].end 6899.02034375
transcript.pyannote[1110].speaker SPEAKER_01
transcript.pyannote[1110].start 6899.57721875
transcript.pyannote[1110].end 6901.23096875
transcript.pyannote[1111].speaker SPEAKER_22
transcript.pyannote[1111].start 6899.59409375
transcript.pyannote[1111].end 6900.15096875
transcript.pyannote[1112].speaker SPEAKER_22
transcript.pyannote[1112].start 6900.75846875
transcript.pyannote[1112].end 6901.21409375
transcript.pyannote[1113].speaker SPEAKER_22
transcript.pyannote[1113].start 6901.23096875
transcript.pyannote[1113].end 6901.24784375
transcript.pyannote[1114].speaker SPEAKER_01
transcript.pyannote[1114].start 6901.46721875
transcript.pyannote[1114].end 6908.62221875
transcript.pyannote[1115].speaker SPEAKER_01
transcript.pyannote[1115].start 6908.92596875
transcript.pyannote[1115].end 6910.47846875
transcript.pyannote[1116].speaker SPEAKER_19
transcript.pyannote[1116].start 6910.47846875
transcript.pyannote[1116].end 6910.78221875
transcript.pyannote[1117].speaker SPEAKER_01
transcript.pyannote[1117].start 6911.30534375
transcript.pyannote[1117].end 6913.06034375
transcript.pyannote[1118].speaker SPEAKER_01
transcript.pyannote[1118].start 6913.38096875
transcript.pyannote[1118].end 6917.98784375
transcript.pyannote[1119].speaker SPEAKER_01
transcript.pyannote[1119].start 6918.67971875
transcript.pyannote[1119].end 6919.06784375
transcript.pyannote[1120].speaker SPEAKER_01
transcript.pyannote[1120].start 6920.04659375
transcript.pyannote[1120].end 6920.73846875
transcript.pyannote[1121].speaker SPEAKER_01
transcript.pyannote[1121].start 6921.00846875
transcript.pyannote[1121].end 6922.74659375
transcript.pyannote[1122].speaker SPEAKER_01
transcript.pyannote[1122].start 6924.14721875
transcript.pyannote[1122].end 6938.71034375
transcript.pyannote[1123].speaker SPEAKER_01
transcript.pyannote[1123].start 6939.38534375
transcript.pyannote[1123].end 6941.52846875
transcript.pyannote[1124].speaker SPEAKER_01
transcript.pyannote[1124].start 6941.71409375
transcript.pyannote[1124].end 6942.86159375
transcript.pyannote[1125].speaker SPEAKER_25
transcript.pyannote[1125].start 6941.74784375
transcript.pyannote[1125].end 6941.96721875
transcript.pyannote[1126].speaker SPEAKER_00
transcript.pyannote[1126].start 6941.96721875
transcript.pyannote[1126].end 6942.06846875
transcript.pyannote[1127].speaker SPEAKER_01
transcript.pyannote[1127].start 6943.01346875
transcript.pyannote[1127].end 6948.49784375
transcript.pyannote[1128].speaker SPEAKER_01
transcript.pyannote[1128].start 6948.71721875
transcript.pyannote[1128].end 6952.58159375
transcript.pyannote[1129].speaker SPEAKER_22
transcript.pyannote[1129].start 6952.75034375
transcript.pyannote[1129].end 6953.12159375
transcript.pyannote[1130].speaker SPEAKER_01
transcript.pyannote[1130].start 6952.96971875
transcript.pyannote[1130].end 6961.99784375
transcript.pyannote[1131].speaker SPEAKER_22
transcript.pyannote[1131].start 6956.76659375
transcript.pyannote[1131].end 6957.13784375
transcript.pyannote[1132].speaker SPEAKER_20
transcript.pyannote[1132].start 6957.13784375
transcript.pyannote[1132].end 6957.15471875
transcript.pyannote[1133].speaker SPEAKER_20
transcript.pyannote[1133].start 6961.17096875
transcript.pyannote[1133].end 6962.95971875
transcript.pyannote[1134].speaker SPEAKER_01
transcript.pyannote[1134].start 6962.85846875
transcript.pyannote[1134].end 6964.47846875
transcript.pyannote[1135].speaker SPEAKER_01
transcript.pyannote[1135].start 6964.69784375
transcript.pyannote[1135].end 6966.40221875
transcript.pyannote[1136].speaker SPEAKER_01
transcript.pyannote[1136].start 6966.68909375
transcript.pyannote[1136].end 6968.96721875
transcript.pyannote[1137].speaker SPEAKER_01
transcript.pyannote[1137].start 6969.59159375
transcript.pyannote[1137].end 6971.73471875
transcript.pyannote[1138].speaker SPEAKER_01
transcript.pyannote[1138].start 6972.37596875
transcript.pyannote[1138].end 6973.11846875
transcript.pyannote[1139].speaker SPEAKER_00
transcript.pyannote[1139].start 6972.49409375
transcript.pyannote[1139].end 6972.56159375
transcript.pyannote[1140].speaker SPEAKER_01
transcript.pyannote[1140].start 6973.47284375
transcript.pyannote[1140].end 6979.02471875
transcript.pyannote[1141].speaker SPEAKER_01
transcript.pyannote[1141].start 6979.17659375
transcript.pyannote[1141].end 6980.61096875
transcript.pyannote[1142].speaker SPEAKER_01
transcript.pyannote[1142].start 6981.13409375
transcript.pyannote[1142].end 6983.88471875
transcript.pyannote[1143].speaker SPEAKER_01
transcript.pyannote[1143].start 6984.35721875
transcript.pyannote[1143].end 6987.47909375
transcript.pyannote[1144].speaker SPEAKER_20
transcript.pyannote[1144].start 6987.47909375
transcript.pyannote[1144].end 6990.51659375
transcript.pyannote[1145].speaker SPEAKER_01
transcript.pyannote[1145].start 6990.39846875
transcript.pyannote[1145].end 6991.17471875
transcript.pyannote[1146].speaker SPEAKER_20
transcript.pyannote[1146].start 6990.75284375
transcript.pyannote[1146].end 6997.41846875
transcript.pyannote[1147].speaker SPEAKER_01
transcript.pyannote[1147].start 6997.19909375
transcript.pyannote[1147].end 7000.40534375
transcript.pyannote[1148].speaker SPEAKER_20
transcript.pyannote[1148].start 6999.93284375
transcript.pyannote[1148].end 7005.80534375
transcript.pyannote[1149].speaker SPEAKER_01
transcript.pyannote[1149].start 7006.02471875
transcript.pyannote[1149].end 7008.99471875
transcript.pyannote[1150].speaker SPEAKER_20
transcript.pyannote[1150].start 7007.50971875
transcript.pyannote[1150].end 7008.50534375
transcript.pyannote[1151].speaker SPEAKER_01
transcript.pyannote[1151].start 7009.34909375
transcript.pyannote[1151].end 7022.24159375
transcript.pyannote[1152].speaker SPEAKER_20
transcript.pyannote[1152].start 7014.86721875
transcript.pyannote[1152].end 7015.67721875
transcript.pyannote[1153].speaker SPEAKER_20
transcript.pyannote[1153].start 7020.31784375
transcript.pyannote[1153].end 7034.12159375
transcript.pyannote[1154].speaker SPEAKER_01
transcript.pyannote[1154].start 7032.18096875
transcript.pyannote[1154].end 7035.62346875
transcript.pyannote[1155].speaker SPEAKER_01
transcript.pyannote[1155].start 7035.65721875
transcript.pyannote[1155].end 7050.99659375
transcript.pyannote[1156].speaker SPEAKER_20
transcript.pyannote[1156].start 7039.77471875
transcript.pyannote[1156].end 7040.21346875
transcript.pyannote[1157].speaker SPEAKER_20
transcript.pyannote[1157].start 7041.41159375
transcript.pyannote[1157].end 7045.30971875
transcript.pyannote[1158].speaker SPEAKER_01
transcript.pyannote[1158].start 7051.43534375
transcript.pyannote[1158].end 7061.94846875
transcript.pyannote[1159].speaker SPEAKER_00
transcript.pyannote[1159].start 7051.65471875
transcript.pyannote[1159].end 7052.00909375
transcript.pyannote[1160].speaker SPEAKER_00
transcript.pyannote[1160].start 7052.51534375
transcript.pyannote[1160].end 7052.95409375
transcript.pyannote[1161].speaker SPEAKER_22
transcript.pyannote[1161].start 7054.92846875
transcript.pyannote[1161].end 7055.33346875
transcript.pyannote[1162].speaker SPEAKER_22
transcript.pyannote[1162].start 7056.07596875
transcript.pyannote[1162].end 7056.46409375
transcript.pyannote[1163].speaker SPEAKER_22
transcript.pyannote[1163].start 7057.08846875
transcript.pyannote[1163].end 7057.62846875
transcript.pyannote[1164].speaker SPEAKER_22
transcript.pyannote[1164].start 7059.58596875
transcript.pyannote[1164].end 7060.00784375
transcript.pyannote[1165].speaker SPEAKER_22
transcript.pyannote[1165].start 7060.85159375
transcript.pyannote[1165].end 7061.05409375
transcript.pyannote[1166].speaker SPEAKER_22
transcript.pyannote[1166].start 7061.94846875
transcript.pyannote[1166].end 7062.33659375
transcript.pyannote[1167].speaker SPEAKER_20
transcript.pyannote[1167].start 7062.33659375
transcript.pyannote[1167].end 7062.35346875
transcript.pyannote[1168].speaker SPEAKER_01
transcript.pyannote[1168].start 7062.37034375
transcript.pyannote[1168].end 7069.20471875
transcript.pyannote[1169].speaker SPEAKER_22
transcript.pyannote[1169].start 7063.75409375
transcript.pyannote[1169].end 7064.96909375
transcript.pyannote[1170].speaker SPEAKER_20
transcript.pyannote[1170].start 7064.96909375
transcript.pyannote[1170].end 7066.75784375
transcript.pyannote[1171].speaker SPEAKER_20
transcript.pyannote[1171].start 7067.17971875
transcript.pyannote[1171].end 7068.58034375
transcript.pyannote[1172].speaker SPEAKER_20
transcript.pyannote[1172].start 7069.20471875
transcript.pyannote[1172].end 7071.41534375
transcript.pyannote[1173].speaker SPEAKER_01
transcript.pyannote[1173].start 7069.37346875
transcript.pyannote[1173].end 7069.39034375
transcript.pyannote[1174].speaker SPEAKER_01
transcript.pyannote[1174].start 7070.79096875
transcript.pyannote[1174].end 7082.04659375
transcript.pyannote[1175].speaker SPEAKER_20
transcript.pyannote[1175].start 7077.25409375
transcript.pyannote[1175].end 7077.76034375
transcript.pyannote[1176].speaker SPEAKER_01
transcript.pyannote[1176].start 7082.06346875
transcript.pyannote[1176].end 7086.61971875
transcript.pyannote[1177].speaker SPEAKER_25
transcript.pyannote[1177].start 7086.61971875
transcript.pyannote[1177].end 7087.51409375
transcript.pyannote[1178].speaker SPEAKER_01
transcript.pyannote[1178].start 7087.15971875
transcript.pyannote[1178].end 7087.24409375
transcript.pyannote[1179].speaker SPEAKER_01
transcript.pyannote[1179].start 7087.51409375
transcript.pyannote[1179].end 7102.43159375
transcript.pyannote[1180].speaker SPEAKER_25
transcript.pyannote[1180].start 7087.53096875
transcript.pyannote[1180].end 7087.54784375
transcript.pyannote[1181].speaker SPEAKER_25
transcript.pyannote[1181].start 7088.50971875
transcript.pyannote[1181].end 7090.31534375
transcript.pyannote[1182].speaker SPEAKER_25
transcript.pyannote[1182].start 7095.91784375
transcript.pyannote[1182].end 7096.12034375
transcript.pyannote[1183].speaker SPEAKER_30
transcript.pyannote[1183].start 7101.35159375
transcript.pyannote[1183].end 7101.90846875
transcript.pyannote[1184].speaker SPEAKER_25
transcript.pyannote[1184].start 7101.90846875
transcript.pyannote[1184].end 7101.97596875
transcript.pyannote[1185].speaker SPEAKER_30
transcript.pyannote[1185].start 7101.97596875
transcript.pyannote[1185].end 7102.02659375
transcript.pyannote[1186].speaker SPEAKER_25
transcript.pyannote[1186].start 7102.02659375
transcript.pyannote[1186].end 7102.26284375
transcript.pyannote[1187].speaker SPEAKER_30
transcript.pyannote[1187].start 7102.26284375
transcript.pyannote[1187].end 7102.34721875
transcript.pyannote[1188].speaker SPEAKER_25
transcript.pyannote[1188].start 7102.34721875
transcript.pyannote[1188].end 7102.36409375
transcript.pyannote[1189].speaker SPEAKER_25
transcript.pyannote[1189].start 7102.43159375
transcript.pyannote[1189].end 7102.44846875
transcript.pyannote[1190].speaker SPEAKER_01
transcript.pyannote[1190].start 7102.95471875
transcript.pyannote[1190].end 7105.90784375
transcript.pyannote[1191].speaker SPEAKER_30
transcript.pyannote[1191].start 7104.27096875
transcript.pyannote[1191].end 7108.74284375
transcript.pyannote[1192].speaker SPEAKER_30
transcript.pyannote[1192].start 7111.62846875
transcript.pyannote[1192].end 7114.02471875
transcript.pyannote[1193].speaker SPEAKER_30
transcript.pyannote[1193].start 7114.64909375
transcript.pyannote[1193].end 7114.88534375
transcript.pyannote[1194].speaker SPEAKER_30
transcript.pyannote[1194].start 7115.02034375
transcript.pyannote[1194].end 7115.27346875
transcript.pyannote[1195].speaker SPEAKER_29
transcript.pyannote[1195].start 7128.09846875
transcript.pyannote[1195].end 7128.87471875
transcript.pyannote[1196].speaker SPEAKER_29
transcript.pyannote[1196].start 7128.97596875
transcript.pyannote[1196].end 7130.62971875
transcript.pyannote[1197].speaker SPEAKER_29
transcript.pyannote[1197].start 7131.27096875
transcript.pyannote[1197].end 7132.08096875
transcript.pyannote[1198].speaker SPEAKER_29
transcript.pyannote[1198].start 7132.51971875
transcript.pyannote[1198].end 7133.58284375
transcript.pyannote[1199].speaker SPEAKER_29
transcript.pyannote[1199].start 7133.83596875
transcript.pyannote[1199].end 7135.96221875
transcript.pyannote[1200].speaker SPEAKER_30
transcript.pyannote[1200].start 7135.96221875
transcript.pyannote[1200].end 7136.21534375
transcript.pyannote[1201].speaker SPEAKER_29
transcript.pyannote[1201].start 7137.07596875
transcript.pyannote[1201].end 7137.10971875
transcript.pyannote[1202].speaker SPEAKER_30
transcript.pyannote[1202].start 7137.10971875
transcript.pyannote[1202].end 7138.59471875
transcript.pyannote[1203].speaker SPEAKER_30
transcript.pyannote[1203].start 7139.89409375
transcript.pyannote[1203].end 7141.02471875
transcript.pyannote[1204].speaker SPEAKER_29
transcript.pyannote[1204].start 7141.02471875
transcript.pyannote[1204].end 7142.29034375
transcript.pyannote[1205].speaker SPEAKER_29
transcript.pyannote[1205].start 7144.28159375
transcript.pyannote[1205].end 7145.36159375
transcript.pyannote[1206].speaker SPEAKER_29
transcript.pyannote[1206].start 7146.23909375
transcript.pyannote[1206].end 7147.48784375
transcript.pyannote[1207].speaker SPEAKER_29
transcript.pyannote[1207].start 7147.55534375
transcript.pyannote[1207].end 7149.41159375
transcript.pyannote[1208].speaker SPEAKER_29
transcript.pyannote[1208].start 7150.45784375
transcript.pyannote[1208].end 7151.04846875
transcript.pyannote[1209].speaker SPEAKER_29
transcript.pyannote[1209].start 7152.17909375
transcript.pyannote[1209].end 7152.87096875
transcript.pyannote[1210].speaker SPEAKER_29
transcript.pyannote[1210].start 7153.51221875
transcript.pyannote[1210].end 7154.59221875
transcript.pyannote[1211].speaker SPEAKER_29
transcript.pyannote[1211].start 7154.79471875
transcript.pyannote[1211].end 7156.19534375
transcript.pyannote[1212].speaker SPEAKER_29
transcript.pyannote[1212].start 7156.68471875
transcript.pyannote[1212].end 7157.24159375
transcript.pyannote[1213].speaker SPEAKER_29
transcript.pyannote[1213].start 7158.15284375
transcript.pyannote[1213].end 7159.94159375
transcript.pyannote[1214].speaker SPEAKER_29
transcript.pyannote[1214].start 7160.58284375
transcript.pyannote[1214].end 7160.97096875
transcript.pyannote[1215].speaker SPEAKER_29
transcript.pyannote[1215].start 7162.16909375
transcript.pyannote[1215].end 7164.66659375
transcript.pyannote[1216].speaker SPEAKER_29
transcript.pyannote[1216].start 7165.62846875
transcript.pyannote[1216].end 7172.20971875
transcript.pyannote[1217].speaker SPEAKER_29
transcript.pyannote[1217].start 7173.12096875
transcript.pyannote[1217].end 7175.01096875
transcript.pyannote[1218].speaker SPEAKER_29
transcript.pyannote[1218].start 7176.34409375
transcript.pyannote[1218].end 7177.03596875
transcript.pyannote[1219].speaker SPEAKER_29
transcript.pyannote[1219].start 7177.23846875
transcript.pyannote[1219].end 7178.79096875
transcript.pyannote[1220].speaker SPEAKER_29
transcript.pyannote[1220].start 7179.70221875
transcript.pyannote[1220].end 7180.41096875
transcript.pyannote[1221].speaker SPEAKER_29
transcript.pyannote[1221].start 7180.96784375
transcript.pyannote[1221].end 7182.72284375
transcript.pyannote[1222].speaker SPEAKER_29
transcript.pyannote[1222].start 7183.65096875
transcript.pyannote[1222].end 7185.77721875
transcript.pyannote[1223].speaker SPEAKER_29
transcript.pyannote[1223].start 7187.11034375
transcript.pyannote[1223].end 7187.61659375
transcript.pyannote[1224].speaker SPEAKER_29
transcript.pyannote[1224].start 7188.20721875
transcript.pyannote[1224].end 7188.46034375
transcript.pyannote[1225].speaker SPEAKER_29
transcript.pyannote[1225].start 7189.37159375
transcript.pyannote[1225].end 7190.06346875
transcript.pyannote[1226].speaker SPEAKER_29
transcript.pyannote[1226].start 7191.44721875
transcript.pyannote[1226].end 7192.07159375
transcript.pyannote[1227].speaker SPEAKER_29
transcript.pyannote[1227].start 7192.56096875
transcript.pyannote[1227].end 7193.77596875
transcript.pyannote[1228].speaker SPEAKER_29
transcript.pyannote[1228].start 7194.56909375
transcript.pyannote[1228].end 7196.20596875
transcript.pyannote[1229].speaker SPEAKER_29
transcript.pyannote[1229].start 7197.04971875
transcript.pyannote[1229].end 7198.87221875
transcript.pyannote[1230].speaker SPEAKER_29
transcript.pyannote[1230].start 7200.23909375
transcript.pyannote[1230].end 7201.18409375
transcript.pyannote[1231].speaker SPEAKER_29
transcript.pyannote[1231].start 7201.47096875
transcript.pyannote[1231].end 7202.90534375
transcript.pyannote[1232].speaker SPEAKER_29
transcript.pyannote[1232].start 7203.32721875
transcript.pyannote[1232].end 7203.96846875
transcript.pyannote[1233].speaker SPEAKER_29
transcript.pyannote[1233].start 7205.11596875
transcript.pyannote[1233].end 7205.68971875
transcript.pyannote[1234].speaker SPEAKER_29
transcript.pyannote[1234].start 7207.42784375
transcript.pyannote[1234].end 7209.82409375
transcript.pyannote[1235].speaker SPEAKER_29
transcript.pyannote[1235].start 7210.07721875
transcript.pyannote[1235].end 7215.66284375
transcript.pyannote[1236].speaker SPEAKER_29
transcript.pyannote[1236].start 7216.50659375
transcript.pyannote[1236].end 7219.35846875
transcript.pyannote[1237].speaker SPEAKER_29
transcript.pyannote[1237].start 7220.20221875
transcript.pyannote[1237].end 7222.37909375
transcript.pyannote[1238].speaker SPEAKER_29
transcript.pyannote[1238].start 7222.90221875
transcript.pyannote[1238].end 7224.45471875
transcript.pyannote[1239].speaker SPEAKER_29
transcript.pyannote[1239].start 7225.29846875
transcript.pyannote[1239].end 7225.63596875
transcript.pyannote[1240].speaker SPEAKER_29
transcript.pyannote[1240].start 7226.42909375
transcript.pyannote[1240].end 7228.20096875
transcript.pyannote[1241].speaker SPEAKER_29
transcript.pyannote[1241].start 7229.12909375
transcript.pyannote[1241].end 7230.42846875
transcript.pyannote[1242].speaker SPEAKER_29
transcript.pyannote[1242].start 7231.03596875
transcript.pyannote[1242].end 7232.74034375
transcript.pyannote[1243].speaker SPEAKER_29
transcript.pyannote[1243].start 7233.51659375
transcript.pyannote[1243].end 7234.78221875
transcript.pyannote[1244].speaker SPEAKER_29
transcript.pyannote[1244].start 7235.28846875
transcript.pyannote[1244].end 7237.95471875
transcript.pyannote[1245].speaker SPEAKER_29
transcript.pyannote[1245].start 7238.24159375
transcript.pyannote[1245].end 7238.49471875
transcript.pyannote[1246].speaker SPEAKER_29
transcript.pyannote[1246].start 7239.37221875
transcript.pyannote[1246].end 7241.43096875
transcript.pyannote[1247].speaker SPEAKER_29
transcript.pyannote[1247].start 7241.85284375
transcript.pyannote[1247].end 7244.04659375
transcript.pyannote[1248].speaker SPEAKER_29
transcript.pyannote[1248].start 7245.26159375
transcript.pyannote[1248].end 7245.49784375
transcript.pyannote[1249].speaker SPEAKER_29
transcript.pyannote[1249].start 7246.30784375
transcript.pyannote[1249].end 7247.53971875
transcript.pyannote[1250].speaker SPEAKER_29
transcript.pyannote[1250].start 7247.82659375
transcript.pyannote[1250].end 7250.86409375
transcript.pyannote[1251].speaker SPEAKER_29
transcript.pyannote[1251].start 7251.80909375
transcript.pyannote[1251].end 7252.95659375
transcript.pyannote[1252].speaker SPEAKER_29
transcript.pyannote[1252].start 7253.39534375
transcript.pyannote[1252].end 7254.71159375
transcript.pyannote[1253].speaker SPEAKER_29
transcript.pyannote[1253].start 7255.47096875
transcript.pyannote[1253].end 7256.58471875
transcript.pyannote[1254].speaker SPEAKER_29
transcript.pyannote[1254].start 7256.98971875
transcript.pyannote[1254].end 7258.15409375
transcript.pyannote[1255].speaker SPEAKER_29
transcript.pyannote[1255].start 7259.20034375
transcript.pyannote[1255].end 7261.27596875
transcript.pyannote[1256].speaker SPEAKER_29
transcript.pyannote[1256].start 7262.49096875
transcript.pyannote[1256].end 7262.76096875
transcript.pyannote[1257].speaker SPEAKER_29
transcript.pyannote[1257].start 7263.41909375
transcript.pyannote[1257].end 7264.44846875
transcript.pyannote[1258].speaker SPEAKER_29
transcript.pyannote[1258].start 7264.97159375
transcript.pyannote[1258].end 7268.51534375
transcript.pyannote[1259].speaker SPEAKER_29
transcript.pyannote[1259].start 7269.15659375
transcript.pyannote[1259].end 7270.10159375
transcript.pyannote[1260].speaker SPEAKER_29
transcript.pyannote[1260].start 7270.28721875
transcript.pyannote[1260].end 7271.92409375
transcript.pyannote[1261].speaker SPEAKER_29
transcript.pyannote[1261].start 7272.90284375
transcript.pyannote[1261].end 7273.83096875
transcript.pyannote[1262].speaker SPEAKER_29
transcript.pyannote[1262].start 7274.37096875
transcript.pyannote[1262].end 7277.64471875
transcript.pyannote[1263].speaker SPEAKER_29
transcript.pyannote[1263].start 7278.57284375
transcript.pyannote[1263].end 7279.60221875
transcript.pyannote[1264].speaker SPEAKER_29
transcript.pyannote[1264].start 7280.51346875
transcript.pyannote[1264].end 7281.59346875
transcript.pyannote[1265].speaker SPEAKER_29
transcript.pyannote[1265].start 7282.16721875
transcript.pyannote[1265].end 7283.92221875
transcript.pyannote[1266].speaker SPEAKER_29
transcript.pyannote[1266].start 7284.20909375
transcript.pyannote[1266].end 7285.67721875
transcript.pyannote[1267].speaker SPEAKER_29
transcript.pyannote[1267].start 7285.86284375
transcript.pyannote[1267].end 7287.65159375
transcript.pyannote[1268].speaker SPEAKER_29
transcript.pyannote[1268].start 7288.12409375
transcript.pyannote[1268].end 7290.18284375
transcript.pyannote[1269].speaker SPEAKER_29
transcript.pyannote[1269].start 7291.04346875
transcript.pyannote[1269].end 7293.57471875
transcript.pyannote[1270].speaker SPEAKER_29
transcript.pyannote[1270].start 7294.90784375
transcript.pyannote[1270].end 7295.75159375
transcript.pyannote[1271].speaker SPEAKER_29
transcript.pyannote[1271].start 7297.25346875
transcript.pyannote[1271].end 7299.80159375
transcript.pyannote[1272].speaker SPEAKER_29
transcript.pyannote[1272].start 7300.45971875
transcript.pyannote[1272].end 7303.27784375
transcript.pyannote[1273].speaker SPEAKER_29
transcript.pyannote[1273].start 7305.70784375
transcript.pyannote[1273].end 7305.97784375
transcript.pyannote[1274].speaker SPEAKER_29
transcript.pyannote[1274].start 7306.56846875
transcript.pyannote[1274].end 7308.07034375
transcript.pyannote[1275].speaker SPEAKER_29
transcript.pyannote[1275].start 7309.01534375
transcript.pyannote[1275].end 7309.72409375
transcript.pyannote[1276].speaker SPEAKER_29
transcript.pyannote[1276].start 7310.60159375
transcript.pyannote[1276].end 7312.40721875
transcript.pyannote[1277].speaker SPEAKER_29
transcript.pyannote[1277].start 7313.23409375
transcript.pyannote[1277].end 7313.60534375
transcript.pyannote[1278].speaker SPEAKER_29
transcript.pyannote[1278].start 7313.84159375
transcript.pyannote[1278].end 7314.44909375
transcript.pyannote[1279].speaker SPEAKER_29
transcript.pyannote[1279].start 7315.74846875
transcript.pyannote[1279].end 7317.08159375
transcript.pyannote[1280].speaker SPEAKER_29
transcript.pyannote[1280].start 7317.25034375
transcript.pyannote[1280].end 7319.39346875
transcript.pyannote[1281].speaker SPEAKER_29
transcript.pyannote[1281].start 7320.11909375
transcript.pyannote[1281].end 7322.02596875
transcript.pyannote[1282].speaker SPEAKER_29
transcript.pyannote[1282].start 7322.31284375
transcript.pyannote[1282].end 7323.00471875
transcript.pyannote[1283].speaker SPEAKER_29
transcript.pyannote[1283].start 7325.75534375
transcript.pyannote[1283].end 7326.66659375
transcript.pyannote[1284].speaker SPEAKER_29
transcript.pyannote[1284].start 7327.25721875
transcript.pyannote[1284].end 7327.96596875
transcript.pyannote[1285].speaker SPEAKER_29
transcript.pyannote[1285].start 7327.99971875
transcript.pyannote[1285].end 7328.86034375
transcript.pyannote[1286].speaker SPEAKER_29
transcript.pyannote[1286].start 7330.51409375
transcript.pyannote[1286].end 7332.30284375
transcript.pyannote[1287].speaker SPEAKER_29
transcript.pyannote[1287].start 7333.68659375
transcript.pyannote[1287].end 7334.24346875
transcript.pyannote[1288].speaker SPEAKER_29
transcript.pyannote[1288].start 7335.34034375
transcript.pyannote[1288].end 7337.98971875
transcript.pyannote[1289].speaker SPEAKER_29
transcript.pyannote[1289].start 7338.81659375
transcript.pyannote[1289].end 7340.18346875
transcript.pyannote[1290].speaker SPEAKER_29
transcript.pyannote[1290].start 7342.30971875
transcript.pyannote[1290].end 7343.62596875
transcript.pyannote[1291].speaker SPEAKER_29
transcript.pyannote[1291].start 7344.72284375
transcript.pyannote[1291].end 7345.00971875
transcript.pyannote[1292].speaker SPEAKER_29
transcript.pyannote[1292].start 7345.19534375
transcript.pyannote[1292].end 7346.51159375
transcript.pyannote[1293].speaker SPEAKER_29
transcript.pyannote[1293].start 7347.45659375
transcript.pyannote[1293].end 7348.01346875
transcript.pyannote[1294].speaker SPEAKER_29
transcript.pyannote[1294].start 7348.41846875
transcript.pyannote[1294].end 7349.29596875
transcript.pyannote[1295].speaker SPEAKER_29
transcript.pyannote[1295].start 7349.95409375
transcript.pyannote[1295].end 7350.66284375
transcript.pyannote[1296].speaker SPEAKER_29
transcript.pyannote[1296].start 7351.57409375
transcript.pyannote[1296].end 7352.35034375
transcript.pyannote[1297].speaker SPEAKER_29
transcript.pyannote[1297].start 7353.17721875
transcript.pyannote[1297].end 7354.79721875
transcript.pyannote[1298].speaker SPEAKER_29
transcript.pyannote[1298].start 7356.40034375
transcript.pyannote[1298].end 7356.95721875
transcript.pyannote[1299].speaker SPEAKER_29
transcript.pyannote[1299].start 7357.12596875
transcript.pyannote[1299].end 7357.64909375
transcript.pyannote[1300].speaker SPEAKER_29
transcript.pyannote[1300].start 7357.91909375
transcript.pyannote[1300].end 7361.20971875
transcript.pyannote[1301].speaker SPEAKER_29
transcript.pyannote[1301].start 7362.54284375
transcript.pyannote[1301].end 7363.28534375
transcript.pyannote[1302].speaker SPEAKER_29
transcript.pyannote[1302].start 7363.89284375
transcript.pyannote[1302].end 7364.53409375
transcript.pyannote[1303].speaker SPEAKER_29
transcript.pyannote[1303].start 7365.63096875
transcript.pyannote[1303].end 7367.99346875
transcript.pyannote[1304].speaker SPEAKER_29
transcript.pyannote[1304].start 7368.80346875
transcript.pyannote[1304].end 7369.69784375
transcript.pyannote[1305].speaker SPEAKER_29
transcript.pyannote[1305].start 7370.94659375
transcript.pyannote[1305].end 7371.26721875
transcript.pyannote[1306].speaker SPEAKER_29
transcript.pyannote[1306].start 7371.40221875
transcript.pyannote[1306].end 7373.10659375
transcript.pyannote[1307].speaker SPEAKER_29
transcript.pyannote[1307].start 7373.95034375
transcript.pyannote[1307].end 7374.70971875
transcript.pyannote[1308].speaker SPEAKER_29
transcript.pyannote[1308].start 7375.50284375
transcript.pyannote[1308].end 7376.21159375
transcript.pyannote[1309].speaker SPEAKER_29
transcript.pyannote[1309].start 7376.75159375
transcript.pyannote[1309].end 7378.60784375
transcript.pyannote[1310].speaker SPEAKER_29
transcript.pyannote[1310].start 7379.51909375
transcript.pyannote[1310].end 7379.80596875
transcript.pyannote[1311].speaker SPEAKER_29
transcript.pyannote[1311].start 7380.46409375
transcript.pyannote[1311].end 7380.93659375
transcript.pyannote[1312].speaker SPEAKER_29
transcript.pyannote[1312].start 7381.76346875
transcript.pyannote[1312].end 7383.48471875
transcript.pyannote[1313].speaker SPEAKER_29
transcript.pyannote[1313].start 7384.66596875
transcript.pyannote[1313].end 7385.93159375
transcript.pyannote[1314].speaker SPEAKER_29
transcript.pyannote[1314].start 7387.39971875
transcript.pyannote[1314].end 7387.85534375
transcript.pyannote[1315].speaker SPEAKER_29
transcript.pyannote[1315].start 7388.78346875
transcript.pyannote[1315].end 7392.95159375
transcript.pyannote[1316].speaker SPEAKER_29
transcript.pyannote[1316].start 7394.25096875
transcript.pyannote[1316].end 7396.44471875
transcript.pyannote[1317].speaker SPEAKER_29
transcript.pyannote[1317].start 7397.76096875
transcript.pyannote[1317].end 7397.96346875
transcript.pyannote[1318].speaker SPEAKER_29
transcript.pyannote[1318].start 7398.38534375
transcript.pyannote[1318].end 7399.56659375
transcript.pyannote[1319].speaker SPEAKER_29
transcript.pyannote[1319].start 7400.00534375
transcript.pyannote[1319].end 7401.64221875
transcript.pyannote[1320].speaker SPEAKER_29
transcript.pyannote[1320].start 7401.77721875
transcript.pyannote[1320].end 7402.82346875
transcript.pyannote[1321].speaker SPEAKER_29
transcript.pyannote[1321].start 7403.56596875
transcript.pyannote[1321].end 7404.30846875
transcript.pyannote[1322].speaker SPEAKER_29
transcript.pyannote[1322].start 7405.60784375
transcript.pyannote[1322].end 7406.02971875
transcript.pyannote[1323].speaker SPEAKER_29
transcript.pyannote[1323].start 7407.97034375
transcript.pyannote[1323].end 7410.88971875
transcript.pyannote[1324].speaker SPEAKER_29
transcript.pyannote[1324].start 7411.66596875
transcript.pyannote[1324].end 7413.58971875
transcript.pyannote[1325].speaker SPEAKER_29
transcript.pyannote[1325].start 7414.55159375
transcript.pyannote[1325].end 7415.93534375
transcript.pyannote[1326].speaker SPEAKER_29
transcript.pyannote[1326].start 7416.17159375
transcript.pyannote[1326].end 7416.89721875
transcript.pyannote[1327].speaker SPEAKER_29
transcript.pyannote[1327].start 7417.63971875
transcript.pyannote[1327].end 7418.02784375
transcript.pyannote[1328].speaker SPEAKER_29
transcript.pyannote[1328].start 7418.14596875
transcript.pyannote[1328].end 7421.06534375
transcript.pyannote[1329].speaker SPEAKER_29
transcript.pyannote[1329].start 7421.70659375
transcript.pyannote[1329].end 7421.99346875
transcript.pyannote[1330].speaker SPEAKER_29
transcript.pyannote[1330].start 7422.68534375
transcript.pyannote[1330].end 7424.28846875
transcript.pyannote[1331].speaker SPEAKER_29
transcript.pyannote[1331].start 7425.48659375
transcript.pyannote[1331].end 7425.90846875
transcript.pyannote[1332].speaker SPEAKER_29
transcript.pyannote[1332].start 7426.24596875
transcript.pyannote[1332].end 7427.30909375
transcript.pyannote[1333].speaker SPEAKER_29
transcript.pyannote[1333].start 7428.27096875
transcript.pyannote[1333].end 7428.77721875
transcript.pyannote[1334].speaker SPEAKER_29
transcript.pyannote[1334].start 7428.79409375
transcript.pyannote[1334].end 7431.02159375
transcript.pyannote[1335].speaker SPEAKER_29
transcript.pyannote[1335].start 7431.51096875
transcript.pyannote[1335].end 7432.97909375
transcript.pyannote[1336].speaker SPEAKER_29
transcript.pyannote[1336].start 7433.55284375
transcript.pyannote[1336].end 7436.15159375
transcript.pyannote[1337].speaker SPEAKER_29
transcript.pyannote[1337].start 7437.18096875
transcript.pyannote[1337].end 7437.40034375
transcript.pyannote[1338].speaker SPEAKER_29
transcript.pyannote[1338].start 7438.29471875
transcript.pyannote[1338].end 7441.61909375
transcript.pyannote[1339].speaker SPEAKER_29
transcript.pyannote[1339].start 7442.22659375
transcript.pyannote[1339].end 7443.81284375
transcript.pyannote[1340].speaker SPEAKER_29
transcript.pyannote[1340].start 7444.20096875
transcript.pyannote[1340].end 7446.34409375
transcript.pyannote[1341].speaker SPEAKER_29
transcript.pyannote[1341].start 7446.91784375
transcript.pyannote[1341].end 7448.92596875
transcript.pyannote[1342].speaker SPEAKER_29
transcript.pyannote[1342].start 7449.85409375
transcript.pyannote[1342].end 7450.66409375
transcript.pyannote[1343].speaker SPEAKER_29
transcript.pyannote[1343].start 7451.03534375
transcript.pyannote[1343].end 7453.06034375
transcript.pyannote[1344].speaker SPEAKER_29
transcript.pyannote[1344].start 7453.75221875
transcript.pyannote[1344].end 7454.86596875
transcript.pyannote[1345].speaker SPEAKER_29
transcript.pyannote[1345].start 7455.50721875
transcript.pyannote[1345].end 7458.02159375
transcript.pyannote[1346].speaker SPEAKER_29
transcript.pyannote[1346].start 7459.79346875
transcript.pyannote[1346].end 7460.21534375
transcript.pyannote[1347].speaker SPEAKER_29
transcript.pyannote[1347].start 7462.35846875
transcript.pyannote[1347].end 7462.78034375
transcript.pyannote[1348].speaker SPEAKER_29
transcript.pyannote[1348].start 7463.25284375
transcript.pyannote[1348].end 7463.48909375
transcript.pyannote[1349].speaker SPEAKER_29
transcript.pyannote[1349].start 7463.75909375
transcript.pyannote[1349].end 7464.50159375
transcript.pyannote[1350].speaker SPEAKER_29
transcript.pyannote[1350].start 7464.63659375
transcript.pyannote[1350].end 7466.74596875
transcript.pyannote[1351].speaker SPEAKER_29
transcript.pyannote[1351].start 7466.81346875
transcript.pyannote[1351].end 7468.02846875
transcript.pyannote[1352].speaker SPEAKER_29
transcript.pyannote[1352].start 7468.83846875
transcript.pyannote[1352].end 7470.01971875
transcript.pyannote[1353].speaker SPEAKER_29
transcript.pyannote[1353].start 7470.61034375
transcript.pyannote[1353].end 7471.67346875
transcript.pyannote[1354].speaker SPEAKER_29
transcript.pyannote[1354].start 7472.55096875
transcript.pyannote[1354].end 7475.43659375
transcript.pyannote[1355].speaker SPEAKER_29
transcript.pyannote[1355].start 7477.22534375
transcript.pyannote[1355].end 7477.49534375
transcript.pyannote[1356].speaker SPEAKER_29
transcript.pyannote[1356].start 7478.57534375
transcript.pyannote[1356].end 7478.99721875
transcript.pyannote[1357].speaker SPEAKER_29
transcript.pyannote[1357].start 7480.16159375
transcript.pyannote[1357].end 7481.66346875
transcript.pyannote[1358].speaker SPEAKER_29
transcript.pyannote[1358].start 7483.90784375
transcript.pyannote[1358].end 7485.88221875
transcript.pyannote[1359].speaker SPEAKER_29
transcript.pyannote[1359].start 7486.89471875
transcript.pyannote[1359].end 7487.18159375
transcript.pyannote[1360].speaker SPEAKER_29
transcript.pyannote[1360].start 7488.49784375
transcript.pyannote[1360].end 7489.05471875
transcript.pyannote[1361].speaker SPEAKER_29
transcript.pyannote[1361].start 7490.26971875
transcript.pyannote[1361].end 7491.33284375
transcript.pyannote[1362].speaker SPEAKER_29
transcript.pyannote[1362].start 7492.00784375
transcript.pyannote[1362].end 7494.92721875
transcript.pyannote[1363].speaker SPEAKER_29
transcript.pyannote[1363].start 7495.88909375
transcript.pyannote[1363].end 7496.63159375
transcript.pyannote[1364].speaker SPEAKER_29
transcript.pyannote[1364].start 7497.62721875
transcript.pyannote[1364].end 7498.92659375
transcript.pyannote[1365].speaker SPEAKER_29
transcript.pyannote[1365].start 7499.43284375
transcript.pyannote[1365].end 7501.20471875
transcript.pyannote[1366].speaker SPEAKER_29
transcript.pyannote[1366].start 7502.03159375
transcript.pyannote[1366].end 7502.89221875
transcript.pyannote[1367].speaker SPEAKER_29
transcript.pyannote[1367].start 7503.53346875
transcript.pyannote[1367].end 7503.82034375
transcript.pyannote[1368].speaker SPEAKER_29
transcript.pyannote[1368].start 7505.45721875
transcript.pyannote[1368].end 7508.05596875
transcript.pyannote[1369].speaker SPEAKER_29
transcript.pyannote[1369].start 7508.51159375
transcript.pyannote[1369].end 7509.81096875
transcript.pyannote[1370].speaker SPEAKER_29
transcript.pyannote[1370].start 7510.31721875
transcript.pyannote[1370].end 7511.39721875
transcript.pyannote[1371].speaker SPEAKER_29
transcript.pyannote[1371].start 7512.20721875
transcript.pyannote[1371].end 7514.14784375
transcript.pyannote[1372].speaker SPEAKER_29
transcript.pyannote[1372].start 7515.17721875
transcript.pyannote[1372].end 7517.96159375
transcript.pyannote[1373].speaker SPEAKER_29
transcript.pyannote[1373].start 7519.05846875
transcript.pyannote[1373].end 7519.75034375
transcript.pyannote[1374].speaker SPEAKER_29
transcript.pyannote[1374].start 7520.67846875
transcript.pyannote[1374].end 7521.82596875
transcript.pyannote[1375].speaker SPEAKER_29
transcript.pyannote[1375].start 7522.48409375
transcript.pyannote[1375].end 7524.00284375
transcript.pyannote[1376].speaker SPEAKER_29
transcript.pyannote[1376].start 7524.81284375
transcript.pyannote[1376].end 7525.55534375
transcript.pyannote[1377].speaker SPEAKER_29
transcript.pyannote[1377].start 7527.58034375
transcript.pyannote[1377].end 7528.50846875
transcript.pyannote[1378].speaker SPEAKER_29
transcript.pyannote[1378].start 7528.82909375
transcript.pyannote[1378].end 7529.89221875
transcript.pyannote[1379].speaker SPEAKER_29
transcript.pyannote[1379].start 7530.44909375
transcript.pyannote[1379].end 7531.63034375
transcript.pyannote[1380].speaker SPEAKER_29
transcript.pyannote[1380].start 7532.82846875
transcript.pyannote[1380].end 7534.17846875
transcript.pyannote[1381].speaker SPEAKER_29
transcript.pyannote[1381].start 7534.88721875
transcript.pyannote[1381].end 7536.86159375
transcript.pyannote[1382].speaker SPEAKER_29
transcript.pyannote[1382].start 7537.70534375
transcript.pyannote[1382].end 7538.02596875
transcript.pyannote[1383].speaker SPEAKER_29
transcript.pyannote[1383].start 7538.46471875
transcript.pyannote[1383].end 7540.50659375
transcript.pyannote[1384].speaker SPEAKER_29
transcript.pyannote[1384].start 7541.13096875
transcript.pyannote[1384].end 7541.51909375
transcript.pyannote[1385].speaker SPEAKER_29
transcript.pyannote[1385].start 7542.04221875
transcript.pyannote[1385].end 7543.15596875
transcript.pyannote[1386].speaker SPEAKER_29
transcript.pyannote[1386].start 7543.62846875
transcript.pyannote[1386].end 7545.40034375
transcript.pyannote[1387].speaker SPEAKER_29
transcript.pyannote[1387].start 7545.88971875
transcript.pyannote[1387].end 7547.49284375
transcript.pyannote[1388].speaker SPEAKER_29
transcript.pyannote[1388].start 7549.82159375
transcript.pyannote[1388].end 7554.63096875
transcript.pyannote[1389].speaker SPEAKER_29
transcript.pyannote[1389].start 7556.21721875
transcript.pyannote[1389].end 7556.67284375
transcript.pyannote[1390].speaker SPEAKER_29
transcript.pyannote[1390].start 7557.09471875
transcript.pyannote[1390].end 7558.09034375
transcript.pyannote[1391].speaker SPEAKER_29
transcript.pyannote[1391].start 7559.47409375
transcript.pyannote[1391].end 7560.63846875
transcript.pyannote[1392].speaker SPEAKER_29
transcript.pyannote[1392].start 7561.31346875
transcript.pyannote[1392].end 7561.73534375
transcript.pyannote[1393].speaker SPEAKER_29
transcript.pyannote[1393].start 7562.62971875
transcript.pyannote[1393].end 7563.33846875
transcript.pyannote[1394].speaker SPEAKER_29
transcript.pyannote[1394].start 7564.08096875
transcript.pyannote[1394].end 7565.27909375
transcript.pyannote[1395].speaker SPEAKER_29
transcript.pyannote[1395].start 7565.68409375
transcript.pyannote[1395].end 7566.76409375
transcript.pyannote[1396].speaker SPEAKER_29
transcript.pyannote[1396].start 7567.97909375
transcript.pyannote[1396].end 7568.85659375
transcript.pyannote[1397].speaker SPEAKER_29
transcript.pyannote[1397].start 7569.37971875
transcript.pyannote[1397].end 7570.91534375
transcript.pyannote[1398].speaker SPEAKER_29
transcript.pyannote[1398].start 7571.55659375
transcript.pyannote[1398].end 7573.24409375
transcript.pyannote[1399].speaker SPEAKER_29
transcript.pyannote[1399].start 7573.53096875
transcript.pyannote[1399].end 7574.30721875
transcript.pyannote[1400].speaker SPEAKER_29
transcript.pyannote[1400].start 7575.06659375
transcript.pyannote[1400].end 7576.56846875
transcript.pyannote[1401].speaker SPEAKER_29
transcript.pyannote[1401].start 7578.79596875
transcript.pyannote[1401].end 7581.25971875
transcript.pyannote[1402].speaker SPEAKER_29
transcript.pyannote[1402].start 7582.62659375
transcript.pyannote[1402].end 7582.98096875
transcript.pyannote[1403].speaker SPEAKER_29
transcript.pyannote[1403].start 7583.08221875
transcript.pyannote[1403].end 7584.76971875
transcript.pyannote[1404].speaker SPEAKER_29
transcript.pyannote[1404].start 7585.34346875
transcript.pyannote[1404].end 7587.53721875
transcript.pyannote[1405].speaker SPEAKER_29
transcript.pyannote[1405].start 7588.31346875
transcript.pyannote[1405].end 7589.00534375
transcript.pyannote[1406].speaker SPEAKER_29
transcript.pyannote[1406].start 7589.83221875
transcript.pyannote[1406].end 7589.96721875
transcript.pyannote[1407].speaker SPEAKER_29
transcript.pyannote[1407].start 7590.01784375
transcript.pyannote[1407].end 7591.31721875
transcript.pyannote[1408].speaker SPEAKER_29
transcript.pyannote[1408].start 7591.75596875
transcript.pyannote[1408].end 7592.16096875
transcript.pyannote[1409].speaker SPEAKER_29
transcript.pyannote[1409].start 7592.53221875
transcript.pyannote[1409].end 7594.55721875
transcript.pyannote[1410].speaker SPEAKER_29
transcript.pyannote[1410].start 7595.19846875
transcript.pyannote[1410].end 7598.05034375
transcript.pyannote[1411].speaker SPEAKER_29
transcript.pyannote[1411].start 7598.77596875
transcript.pyannote[1411].end 7600.02471875
transcript.pyannote[1412].speaker SPEAKER_29
transcript.pyannote[1412].start 7600.39596875
transcript.pyannote[1412].end 7601.94846875
transcript.pyannote[1413].speaker SPEAKER_29
transcript.pyannote[1413].start 7602.28596875
transcript.pyannote[1413].end 7603.90596875
transcript.pyannote[1414].speaker SPEAKER_29
transcript.pyannote[1414].start 7605.05346875
transcript.pyannote[1414].end 7607.65221875
transcript.pyannote[1415].speaker SPEAKER_29
transcript.pyannote[1415].start 7608.37784375
transcript.pyannote[1415].end 7609.37346875
transcript.pyannote[1416].speaker SPEAKER_29
transcript.pyannote[1416].start 7610.20034375
transcript.pyannote[1416].end 7611.73596875
transcript.pyannote[1417].speaker SPEAKER_29
transcript.pyannote[1417].start 7611.98909375
transcript.pyannote[1417].end 7612.68096875
transcript.pyannote[1418].speaker SPEAKER_29
transcript.pyannote[1418].start 7613.13659375
transcript.pyannote[1418].end 7614.40221875
transcript.pyannote[1419].speaker SPEAKER_29
transcript.pyannote[1419].start 7614.67221875
transcript.pyannote[1419].end 7615.29659375
transcript.pyannote[1420].speaker SPEAKER_29
transcript.pyannote[1420].start 7615.71846875
transcript.pyannote[1420].end 7617.84471875
transcript.pyannote[1421].speaker SPEAKER_29
transcript.pyannote[1421].start 7618.53659375
transcript.pyannote[1421].end 7619.92034375
transcript.pyannote[1422].speaker SPEAKER_29
transcript.pyannote[1422].start 7620.74721875
transcript.pyannote[1422].end 7624.71284375
transcript.pyannote[1423].speaker SPEAKER_29
transcript.pyannote[1423].start 7625.15159375
transcript.pyannote[1423].end 7626.14721875
transcript.pyannote[1424].speaker SPEAKER_29
transcript.pyannote[1424].start 7626.56909375
transcript.pyannote[1424].end 7627.27784375
transcript.pyannote[1425].speaker SPEAKER_29
transcript.pyannote[1425].start 7627.75034375
transcript.pyannote[1425].end 7628.98221875
transcript.pyannote[1426].speaker SPEAKER_29
transcript.pyannote[1426].start 7629.43784375
transcript.pyannote[1426].end 7633.48784375
transcript.pyannote[1427].speaker SPEAKER_29
transcript.pyannote[1427].start 7635.74909375
transcript.pyannote[1427].end 7641.18284375
transcript.pyannote[1428].speaker SPEAKER_25
transcript.pyannote[1428].start 7641.18284375
transcript.pyannote[1428].end 7641.21659375
transcript.pyannote[1429].speaker SPEAKER_29
transcript.pyannote[1429].start 7641.89159375
transcript.pyannote[1429].end 7643.39346875
transcript.pyannote[1430].speaker SPEAKER_29
transcript.pyannote[1430].start 7643.83221875
transcript.pyannote[1430].end 7648.48971875
transcript.pyannote[1431].speaker SPEAKER_29
transcript.pyannote[1431].start 7649.36721875
transcript.pyannote[1431].end 7651.07159375
transcript.pyannote[1432].speaker SPEAKER_25
transcript.pyannote[1432].start 7651.07159375
transcript.pyannote[1432].end 7651.08846875
transcript.pyannote[1433].speaker SPEAKER_29
transcript.pyannote[1433].start 7651.08846875
transcript.pyannote[1433].end 7651.10534375
transcript.pyannote[1434].speaker SPEAKER_25
transcript.pyannote[1434].start 7651.10534375
transcript.pyannote[1434].end 7651.42596875
transcript.pyannote[1435].speaker SPEAKER_29
transcript.pyannote[1435].start 7651.69596875
transcript.pyannote[1435].end 7652.70846875
transcript.pyannote[1436].speaker SPEAKER_29
transcript.pyannote[1436].start 7652.96159375
transcript.pyannote[1436].end 7654.71659375
transcript.pyannote[1437].speaker SPEAKER_29
transcript.pyannote[1437].start 7655.29034375
transcript.pyannote[1437].end 7655.81346875
transcript.pyannote[1438].speaker SPEAKER_29
transcript.pyannote[1438].start 7656.52221875
transcript.pyannote[1438].end 7657.61909375
transcript.pyannote[1439].speaker SPEAKER_29
transcript.pyannote[1439].start 7658.17596875
transcript.pyannote[1439].end 7658.81721875
transcript.pyannote[1440].speaker SPEAKER_29
transcript.pyannote[1440].start 7659.00284375
transcript.pyannote[1440].end 7662.74909375
transcript.pyannote[1441].speaker SPEAKER_29
transcript.pyannote[1441].start 7663.64346875
transcript.pyannote[1441].end 7663.91346875
transcript.pyannote[1442].speaker SPEAKER_29
transcript.pyannote[1442].start 7664.85846875
transcript.pyannote[1442].end 7665.95534375
transcript.pyannote[1443].speaker SPEAKER_29
transcript.pyannote[1443].start 7666.74846875
transcript.pyannote[1443].end 7667.33909375
transcript.pyannote[1444].speaker SPEAKER_29
transcript.pyannote[1444].start 7667.87909375
transcript.pyannote[1444].end 7669.65096875
transcript.pyannote[1445].speaker SPEAKER_29
transcript.pyannote[1445].start 7670.19096875
transcript.pyannote[1445].end 7671.35534375
transcript.pyannote[1446].speaker SPEAKER_29
transcript.pyannote[1446].start 7671.52409375
transcript.pyannote[1446].end 7672.06409375
transcript.pyannote[1447].speaker SPEAKER_29
transcript.pyannote[1447].start 7672.77284375
transcript.pyannote[1447].end 7673.65034375
transcript.pyannote[1448].speaker SPEAKER_29
transcript.pyannote[1448].start 7674.13971875
transcript.pyannote[1448].end 7675.81034375
transcript.pyannote[1449].speaker SPEAKER_29
transcript.pyannote[1449].start 7677.10971875
transcript.pyannote[1449].end 7678.34159375
transcript.pyannote[1450].speaker SPEAKER_29
transcript.pyannote[1450].start 7679.21909375
transcript.pyannote[1450].end 7682.54346875
transcript.pyannote[1451].speaker SPEAKER_29
transcript.pyannote[1451].start 7683.33659375
transcript.pyannote[1451].end 7683.57284375
transcript.pyannote[1452].speaker SPEAKER_29
transcript.pyannote[1452].start 7683.91034375
transcript.pyannote[1452].end 7685.17596875
transcript.pyannote[1453].speaker SPEAKER_29
transcript.pyannote[1453].start 7686.00284375
transcript.pyannote[1453].end 7687.06596875
transcript.pyannote[1454].speaker SPEAKER_29
transcript.pyannote[1454].start 7687.90971875
transcript.pyannote[1454].end 7688.19659375
transcript.pyannote[1455].speaker SPEAKER_29
transcript.pyannote[1455].start 7689.69846875
transcript.pyannote[1455].end 7692.61784375
transcript.pyannote[1456].speaker SPEAKER_29
transcript.pyannote[1456].start 7693.09034375
transcript.pyannote[1456].end 7694.59221875
transcript.pyannote[1457].speaker SPEAKER_29
transcript.pyannote[1457].start 7695.33471875
transcript.pyannote[1457].end 7698.86159375
transcript.pyannote[1458].speaker SPEAKER_29
transcript.pyannote[1458].start 7699.77284375
transcript.pyannote[1458].end 7701.17346875
transcript.pyannote[1459].speaker SPEAKER_29
transcript.pyannote[1459].start 7701.79784375
transcript.pyannote[1459].end 7703.13096875
transcript.pyannote[1460].speaker SPEAKER_29
transcript.pyannote[1460].start 7704.05909375
transcript.pyannote[1460].end 7706.92784375
transcript.pyannote[1461].speaker SPEAKER_29
transcript.pyannote[1461].start 7707.53534375
transcript.pyannote[1461].end 7708.61534375
transcript.pyannote[1462].speaker SPEAKER_29
transcript.pyannote[1462].start 7708.68284375
transcript.pyannote[1462].end 7709.59409375
transcript.pyannote[1463].speaker SPEAKER_29
transcript.pyannote[1463].start 7710.23534375
transcript.pyannote[1463].end 7710.50534375
transcript.pyannote[1464].speaker SPEAKER_29
transcript.pyannote[1464].start 7711.11284375
transcript.pyannote[1464].end 7713.03659375
transcript.pyannote[1465].speaker SPEAKER_29
transcript.pyannote[1465].start 7714.04909375
transcript.pyannote[1465].end 7716.39471875
transcript.pyannote[1466].speaker SPEAKER_29
transcript.pyannote[1466].start 7717.03596875
transcript.pyannote[1466].end 7718.18346875
transcript.pyannote[1467].speaker SPEAKER_29
transcript.pyannote[1467].start 7718.77409375
transcript.pyannote[1467].end 7720.12409375
transcript.pyannote[1468].speaker SPEAKER_29
transcript.pyannote[1468].start 7720.37721875
transcript.pyannote[1468].end 7720.98471875
transcript.pyannote[1469].speaker SPEAKER_29
transcript.pyannote[1469].start 7721.69346875
transcript.pyannote[1469].end 7722.25034375
transcript.pyannote[1470].speaker SPEAKER_22
transcript.pyannote[1470].start 7722.25034375
transcript.pyannote[1470].end 7722.28409375
transcript.pyannote[1471].speaker SPEAKER_29
transcript.pyannote[1471].start 7722.85784375
transcript.pyannote[1471].end 7723.97159375
transcript.pyannote[1472].speaker SPEAKER_22
transcript.pyannote[1472].start 7723.97159375
transcript.pyannote[1472].end 7732.69596875
transcript.pyannote[1473].speaker SPEAKER_29
transcript.pyannote[1473].start 7725.03471875
transcript.pyannote[1473].end 7725.23721875
transcript.pyannote[1474].speaker SPEAKER_29
transcript.pyannote[1474].start 7730.38409375
transcript.pyannote[1474].end 7732.67909375
transcript.pyannote[1475].speaker SPEAKER_29
transcript.pyannote[1475].start 7732.69596875
transcript.pyannote[1475].end 7734.28221875
transcript.pyannote[1476].speaker SPEAKER_22
transcript.pyannote[1476].start 7734.28221875
transcript.pyannote[1476].end 7744.59284375
transcript.pyannote[1477].speaker SPEAKER_29
transcript.pyannote[1477].start 7743.61409375
transcript.pyannote[1477].end 7747.69784375
transcript.pyannote[1478].speaker SPEAKER_22
transcript.pyannote[1478].start 7747.69784375
transcript.pyannote[1478].end 7761.02909375
transcript.pyannote[1479].speaker SPEAKER_29
transcript.pyannote[1479].start 7747.98471875
transcript.pyannote[1479].end 7749.46971875
transcript.pyannote[1480].speaker SPEAKER_29
transcript.pyannote[1480].start 7758.02534375
transcript.pyannote[1480].end 7758.70034375
transcript.pyannote[1481].speaker SPEAKER_29
transcript.pyannote[1481].start 7759.79721875
transcript.pyannote[1481].end 7760.47221875
transcript.pyannote[1482].speaker SPEAKER_29
transcript.pyannote[1482].start 7761.02909375
transcript.pyannote[1482].end 7766.85096875
transcript.pyannote[1483].speaker SPEAKER_22
transcript.pyannote[1483].start 7763.79659375
transcript.pyannote[1483].end 7764.30284375
transcript.pyannote[1484].speaker SPEAKER_29
transcript.pyannote[1484].start 7767.57659375
transcript.pyannote[1484].end 7768.31909375
transcript.pyannote[1485].speaker SPEAKER_29
transcript.pyannote[1485].start 7768.69034375
transcript.pyannote[1485].end 7770.47909375
transcript.pyannote[1486].speaker SPEAKER_29
transcript.pyannote[1486].start 7771.42409375
transcript.pyannote[1486].end 7774.24221875
transcript.pyannote[1487].speaker SPEAKER_29
transcript.pyannote[1487].start 7774.88346875
transcript.pyannote[1487].end 7776.35159375
transcript.pyannote[1488].speaker SPEAKER_25
transcript.pyannote[1488].start 7776.62159375
transcript.pyannote[1488].end 7777.12784375
transcript.pyannote[1489].speaker SPEAKER_29
transcript.pyannote[1489].start 7777.88721875
transcript.pyannote[1489].end 7779.32159375
transcript.pyannote[1490].speaker SPEAKER_29
transcript.pyannote[1490].start 7779.38909375
transcript.pyannote[1490].end 7786.03784375
transcript.pyannote[1491].speaker SPEAKER_30
transcript.pyannote[1491].start 7785.14346875
transcript.pyannote[1491].end 7786.08846875
transcript.pyannote[1492].speaker SPEAKER_29
transcript.pyannote[1492].start 7786.08846875
transcript.pyannote[1492].end 7787.72534375
transcript.pyannote[1493].speaker SPEAKER_30
transcript.pyannote[1493].start 7786.91534375
transcript.pyannote[1493].end 7788.19784375
transcript.pyannote[1494].speaker SPEAKER_30
transcript.pyannote[1494].start 7789.05846875
transcript.pyannote[1494].end 7790.56034375
transcript.pyannote[1495].speaker SPEAKER_30
transcript.pyannote[1495].start 7790.83034375
transcript.pyannote[1495].end 7791.16784375
transcript.pyannote[1496].speaker SPEAKER_30
transcript.pyannote[1496].start 7791.42096875
transcript.pyannote[1496].end 7792.21409375
transcript.pyannote[1497].speaker SPEAKER_30
transcript.pyannote[1497].start 7792.46721875
transcript.pyannote[1497].end 7792.75409375
transcript.pyannote[1498].speaker SPEAKER_30
transcript.pyannote[1498].start 7793.41221875
transcript.pyannote[1498].end 7794.57659375
transcript.pyannote[1499].speaker SPEAKER_30
transcript.pyannote[1499].start 7794.86346875
transcript.pyannote[1499].end 7796.06159375
transcript.pyannote[1500].speaker SPEAKER_30
transcript.pyannote[1500].start 7796.28096875
transcript.pyannote[1500].end 7797.31034375
transcript.pyannote[1501].speaker SPEAKER_30
transcript.pyannote[1501].start 7798.30596875
transcript.pyannote[1501].end 7798.40721875
transcript.pyannote[1502].speaker SPEAKER_30
transcript.pyannote[1502].start 7799.09909375
transcript.pyannote[1502].end 7799.94284375
transcript.pyannote[1503].speaker SPEAKER_30
transcript.pyannote[1503].start 7800.09471875
transcript.pyannote[1503].end 7801.68096875
transcript.pyannote[1504].speaker SPEAKER_30
transcript.pyannote[1504].start 7802.08596875
transcript.pyannote[1504].end 7803.31784375
transcript.pyannote[1505].speaker SPEAKER_30
transcript.pyannote[1505].start 7803.68909375
transcript.pyannote[1505].end 7804.87034375
transcript.pyannote[1506].speaker SPEAKER_30
transcript.pyannote[1506].start 8229.61409375
transcript.pyannote[1506].end 8230.67721875
transcript.pyannote[1507].speaker SPEAKER_30
transcript.pyannote[1507].start 8233.14096875
transcript.pyannote[1507].end 8233.86659375
transcript.pyannote[1508].speaker SPEAKER_30
transcript.pyannote[1508].start 8233.98471875
transcript.pyannote[1508].end 8236.11096875
transcript.pyannote[1509].speaker SPEAKER_16
transcript.pyannote[1509].start 8266.45221875
transcript.pyannote[1509].end 8269.32096875
transcript.pyannote[1510].speaker SPEAKER_16
transcript.pyannote[1510].start 8269.67534375
transcript.pyannote[1510].end 8270.72159375
transcript.pyannote[1511].speaker SPEAKER_30
transcript.pyannote[1511].start 8269.96221875
transcript.pyannote[1511].end 8270.56971875
transcript.pyannote[1512].speaker SPEAKER_30
transcript.pyannote[1512].start 8270.72159375
transcript.pyannote[1512].end 8270.78909375
transcript.pyannote[1513].speaker SPEAKER_16
transcript.pyannote[1513].start 8270.78909375
transcript.pyannote[1513].end 8270.80596875
transcript.pyannote[1514].speaker SPEAKER_30
transcript.pyannote[1514].start 8270.80596875
transcript.pyannote[1514].end 8270.82284375
transcript.pyannote[1515].speaker SPEAKER_16
transcript.pyannote[1515].start 8270.82284375
transcript.pyannote[1515].end 8270.85659375
transcript.pyannote[1516].speaker SPEAKER_16
transcript.pyannote[1516].start 8271.07596875
transcript.pyannote[1516].end 8274.07971875
transcript.pyannote[1517].speaker SPEAKER_30
transcript.pyannote[1517].start 8273.57346875
transcript.pyannote[1517].end 8275.48034375
transcript.pyannote[1518].speaker SPEAKER_16
transcript.pyannote[1518].start 8279.51346875
transcript.pyannote[1518].end 8280.44159375
transcript.pyannote[1519].speaker SPEAKER_16
transcript.pyannote[1519].start 8281.08284375
transcript.pyannote[1519].end 8289.38534375
transcript.pyannote[1520].speaker SPEAKER_20
transcript.pyannote[1520].start 8289.53721875
transcript.pyannote[1520].end 8289.85784375
transcript.pyannote[1521].speaker SPEAKER_16
transcript.pyannote[1521].start 8290.54971875
transcript.pyannote[1521].end 8291.03909375
transcript.pyannote[1522].speaker SPEAKER_20
transcript.pyannote[1522].start 8291.29221875
transcript.pyannote[1522].end 8291.61284375
transcript.pyannote[1523].speaker SPEAKER_20
transcript.pyannote[1523].start 8292.05159375
transcript.pyannote[1523].end 8292.08534375
transcript.pyannote[1524].speaker SPEAKER_16
transcript.pyannote[1524].start 8292.08534375
transcript.pyannote[1524].end 8292.11909375
transcript.pyannote[1525].speaker SPEAKER_20
transcript.pyannote[1525].start 8292.11909375
transcript.pyannote[1525].end 8292.20346875
transcript.pyannote[1526].speaker SPEAKER_16
transcript.pyannote[1526].start 8292.20346875
transcript.pyannote[1526].end 8292.23721875
transcript.pyannote[1527].speaker SPEAKER_20
transcript.pyannote[1527].start 8292.23721875
transcript.pyannote[1527].end 8293.40159375
transcript.pyannote[1528].speaker SPEAKER_16
transcript.pyannote[1528].start 8293.82346875
transcript.pyannote[1528].end 8326.54409375
transcript.pyannote[1529].speaker SPEAKER_16
transcript.pyannote[1529].start 8327.06721875
transcript.pyannote[1529].end 8330.57721875
transcript.pyannote[1530].speaker SPEAKER_16
transcript.pyannote[1530].start 8330.98221875
transcript.pyannote[1530].end 8342.91284375
transcript.pyannote[1531].speaker SPEAKER_16
transcript.pyannote[1531].start 8343.57096875
transcript.pyannote[1531].end 8360.74971875
transcript.pyannote[1532].speaker SPEAKER_16
transcript.pyannote[1532].start 8361.81284375
transcript.pyannote[1532].end 8365.42409375
transcript.pyannote[1533].speaker SPEAKER_16
transcript.pyannote[1533].start 8366.01471875
transcript.pyannote[1533].end 8368.39409375
transcript.pyannote[1534].speaker SPEAKER_16
transcript.pyannote[1534].start 8369.45721875
transcript.pyannote[1534].end 8370.03096875
transcript.pyannote[1535].speaker SPEAKER_20
transcript.pyannote[1535].start 8370.03096875
transcript.pyannote[1535].end 8370.94221875
transcript.pyannote[1536].speaker SPEAKER_20
transcript.pyannote[1536].start 8371.49909375
transcript.pyannote[1536].end 8377.72596875
transcript.pyannote[1537].speaker SPEAKER_20
transcript.pyannote[1537].start 8378.29971875
transcript.pyannote[1537].end 8379.95346875
transcript.pyannote[1538].speaker SPEAKER_16
transcript.pyannote[1538].start 8380.40909375
transcript.pyannote[1538].end 8383.37909375
transcript.pyannote[1539].speaker SPEAKER_20
transcript.pyannote[1539].start 8384.12159375
transcript.pyannote[1539].end 8386.19721875
transcript.pyannote[1540].speaker SPEAKER_20
transcript.pyannote[1540].start 8386.78784375
transcript.pyannote[1540].end 8395.78221875
transcript.pyannote[1541].speaker SPEAKER_16
transcript.pyannote[1541].start 8395.78221875
transcript.pyannote[1541].end 8417.55096875
transcript.pyannote[1542].speaker SPEAKER_16
transcript.pyannote[1542].start 8417.88846875
transcript.pyannote[1542].end 8425.60034375
transcript.pyannote[1543].speaker SPEAKER_16
transcript.pyannote[1543].start 8426.39346875
transcript.pyannote[1543].end 8428.90784375
transcript.pyannote[1544].speaker SPEAKER_16
transcript.pyannote[1544].start 8429.68409375
transcript.pyannote[1544].end 8430.51096875
transcript.pyannote[1545].speaker SPEAKER_16
transcript.pyannote[1545].start 8430.98346875
transcript.pyannote[1545].end 8435.84346875
transcript.pyannote[1546].speaker SPEAKER_16
transcript.pyannote[1546].start 8436.19784375
transcript.pyannote[1546].end 8436.82221875
transcript.pyannote[1547].speaker SPEAKER_16
transcript.pyannote[1547].start 8437.59846875
transcript.pyannote[1547].end 8438.13846875
transcript.pyannote[1548].speaker SPEAKER_16
transcript.pyannote[1548].start 8439.55596875
transcript.pyannote[1548].end 8439.85971875
transcript.pyannote[1549].speaker SPEAKER_16
transcript.pyannote[1549].start 8439.96096875
transcript.pyannote[1549].end 8450.69346875
transcript.pyannote[1550].speaker SPEAKER_16
transcript.pyannote[1550].start 8451.03096875
transcript.pyannote[1550].end 8452.44846875
transcript.pyannote[1551].speaker SPEAKER_16
transcript.pyannote[1551].start 8454.38909375
transcript.pyannote[1551].end 8454.40596875
transcript.pyannote[1552].speaker SPEAKER_20
transcript.pyannote[1552].start 8454.40596875
transcript.pyannote[1552].end 8454.47346875
transcript.pyannote[1553].speaker SPEAKER_16
transcript.pyannote[1553].start 8454.47346875
transcript.pyannote[1553].end 8454.70971875
transcript.pyannote[1554].speaker SPEAKER_20
transcript.pyannote[1554].start 8456.63346875
transcript.pyannote[1554].end 8462.37096875
transcript.pyannote[1555].speaker SPEAKER_16
transcript.pyannote[1555].start 8461.84784375
transcript.pyannote[1555].end 8466.03284375
transcript.pyannote[1556].speaker SPEAKER_20
transcript.pyannote[1556].start 8466.74159375
transcript.pyannote[1556].end 8471.66909375
transcript.pyannote[1557].speaker SPEAKER_16
transcript.pyannote[1557].start 8471.58471875
transcript.pyannote[1557].end 8503.73159375
transcript.pyannote[1558].speaker SPEAKER_16
transcript.pyannote[1558].start 8503.93409375
transcript.pyannote[1558].end 8514.56534375
transcript.pyannote[1559].speaker SPEAKER_16
transcript.pyannote[1559].start 8515.24034375
transcript.pyannote[1559].end 8515.59471875
transcript.pyannote[1560].speaker SPEAKER_16
transcript.pyannote[1560].start 8517.06284375
transcript.pyannote[1560].end 8523.77909375
transcript.pyannote[1561].speaker SPEAKER_16
transcript.pyannote[1561].start 8524.18409375
transcript.pyannote[1561].end 8525.51721875
transcript.pyannote[1562].speaker SPEAKER_16
transcript.pyannote[1562].start 8526.86721875
transcript.pyannote[1562].end 8526.90096875
transcript.pyannote[1563].speaker SPEAKER_20
transcript.pyannote[1563].start 8526.90096875
transcript.pyannote[1563].end 8543.06721875
transcript.pyannote[1564].speaker SPEAKER_16
transcript.pyannote[1564].start 8537.05971875
transcript.pyannote[1564].end 8540.33346875
transcript.pyannote[1565].speaker SPEAKER_16
transcript.pyannote[1565].start 8543.06721875
transcript.pyannote[1565].end 8544.40034375
transcript.pyannote[1566].speaker SPEAKER_16
transcript.pyannote[1566].start 8546.03721875
transcript.pyannote[1566].end 8546.81346875
transcript.pyannote[1567].speaker SPEAKER_16
transcript.pyannote[1567].start 8546.88096875
transcript.pyannote[1567].end 8568.64971875
transcript.pyannote[1568].speaker SPEAKER_16
transcript.pyannote[1568].start 8569.13909375
transcript.pyannote[1568].end 8570.52284375
transcript.pyannote[1569].speaker SPEAKER_16
transcript.pyannote[1569].start 8570.91096875
transcript.pyannote[1569].end 8573.50971875
transcript.pyannote[1570].speaker SPEAKER_16
transcript.pyannote[1570].start 8574.85971875
transcript.pyannote[1570].end 8575.85534375
transcript.pyannote[1571].speaker SPEAKER_16
transcript.pyannote[1571].start 8576.42909375
transcript.pyannote[1571].end 8587.21221875
transcript.pyannote[1572].speaker SPEAKER_20
transcript.pyannote[1572].start 8588.24159375
transcript.pyannote[1572].end 8590.65471875
transcript.pyannote[1573].speaker SPEAKER_20
transcript.pyannote[1573].start 8591.43096875
transcript.pyannote[1573].end 8595.97034375
transcript.pyannote[1574].speaker SPEAKER_16
transcript.pyannote[1574].start 8595.97034375
transcript.pyannote[1574].end 8604.66096875
transcript.pyannote[1575].speaker SPEAKER_16
transcript.pyannote[1575].start 8604.79596875
transcript.pyannote[1575].end 8610.78659375
transcript.pyannote[1576].speaker SPEAKER_16
transcript.pyannote[1576].start 8611.14096875
transcript.pyannote[1576].end 8622.26159375
transcript.pyannote[1577].speaker SPEAKER_22
transcript.pyannote[1577].start 8623.17284375
transcript.pyannote[1577].end 8623.24034375
transcript.pyannote[1578].speaker SPEAKER_22
transcript.pyannote[1578].start 8623.35846875
transcript.pyannote[1578].end 8623.96596875
transcript.pyannote[1579].speaker SPEAKER_22
transcript.pyannote[1579].start 8625.83909375
transcript.pyannote[1579].end 8626.48034375
transcript.pyannote[1580].speaker SPEAKER_16
transcript.pyannote[1580].start 8627.25659375
transcript.pyannote[1580].end 8628.70784375
transcript.pyannote[1581].speaker SPEAKER_16
transcript.pyannote[1581].start 8629.68659375
transcript.pyannote[1581].end 8630.02409375
transcript.pyannote[1582].speaker SPEAKER_22
transcript.pyannote[1582].start 8630.02409375
transcript.pyannote[1582].end 8630.19284375
transcript.pyannote[1583].speaker SPEAKER_16
transcript.pyannote[1583].start 8630.19284375
transcript.pyannote[1583].end 8630.58096875
transcript.pyannote[1584].speaker SPEAKER_22
transcript.pyannote[1584].start 8630.58096875
transcript.pyannote[1584].end 8630.63159375
transcript.pyannote[1585].speaker SPEAKER_16
transcript.pyannote[1585].start 8630.91846875
transcript.pyannote[1585].end 8631.57659375
transcript.pyannote[1586].speaker SPEAKER_22
transcript.pyannote[1586].start 8632.53846875
transcript.pyannote[1586].end 8636.08221875
transcript.pyannote[1587].speaker SPEAKER_16
transcript.pyannote[1587].start 8636.08221875
transcript.pyannote[1587].end 8637.66846875
transcript.pyannote[1588].speaker SPEAKER_22
transcript.pyannote[1588].start 8636.09909375
transcript.pyannote[1588].end 8636.11596875
transcript.pyannote[1589].speaker SPEAKER_16
transcript.pyannote[1589].start 8638.03971875
transcript.pyannote[1589].end 8638.61346875
transcript.pyannote[1590].speaker SPEAKER_16
transcript.pyannote[1590].start 8638.88346875
transcript.pyannote[1590].end 8655.31971875
transcript.pyannote[1591].speaker SPEAKER_16
transcript.pyannote[1591].start 8655.42096875
transcript.pyannote[1591].end 8657.00721875
transcript.pyannote[1592].speaker SPEAKER_16
transcript.pyannote[1592].start 8657.51346875
transcript.pyannote[1592].end 8661.98534375
transcript.pyannote[1593].speaker SPEAKER_16
transcript.pyannote[1593].start 8662.20471875
transcript.pyannote[1593].end 8668.43159375
transcript.pyannote[1594].speaker SPEAKER_16
transcript.pyannote[1594].start 8669.61284375
transcript.pyannote[1594].end 8671.70534375
transcript.pyannote[1595].speaker SPEAKER_22
transcript.pyannote[1595].start 8669.69721875
transcript.pyannote[1595].end 8714.33159375
transcript.pyannote[1596].speaker SPEAKER_00
transcript.pyannote[1596].start 8678.03346875
transcript.pyannote[1596].end 8678.37096875
transcript.pyannote[1597].speaker SPEAKER_16
transcript.pyannote[1597].start 8690.75721875
transcript.pyannote[1597].end 8692.96784375
transcript.pyannote[1598].speaker SPEAKER_00
transcript.pyannote[1598].start 8692.96784375
transcript.pyannote[1598].end 8693.64284375
transcript.pyannote[1599].speaker SPEAKER_21
transcript.pyannote[1599].start 8704.47659375
transcript.pyannote[1599].end 8704.69596875
transcript.pyannote[1600].speaker SPEAKER_16
transcript.pyannote[1600].start 8710.48409375
transcript.pyannote[1600].end 8747.18721875
transcript.pyannote[1601].speaker SPEAKER_22
transcript.pyannote[1601].start 8714.90534375
transcript.pyannote[1601].end 8715.10784375
transcript.pyannote[1602].speaker SPEAKER_00
transcript.pyannote[1602].start 8718.87096875
transcript.pyannote[1602].end 8720.13659375
transcript.pyannote[1603].speaker SPEAKER_00
transcript.pyannote[1603].start 8720.69346875
transcript.pyannote[1603].end 8722.00971875
transcript.pyannote[1604].speaker SPEAKER_16
transcript.pyannote[1604].start 8748.03096875
transcript.pyannote[1604].end 8751.05159375
transcript.pyannote[1605].speaker SPEAKER_16
transcript.pyannote[1605].start 8752.57034375
transcript.pyannote[1605].end 8752.94159375
transcript.pyannote[1606].speaker SPEAKER_22
transcript.pyannote[1606].start 8753.46471875
transcript.pyannote[1606].end 8754.52784375
transcript.pyannote[1607].speaker SPEAKER_16
transcript.pyannote[1607].start 8753.46471875
transcript.pyannote[1607].end 8756.35034375
transcript.pyannote[1608].speaker SPEAKER_16
transcript.pyannote[1608].start 8756.68784375
transcript.pyannote[1608].end 8757.39659375
transcript.pyannote[1609].speaker SPEAKER_16
transcript.pyannote[1609].start 8757.68346875
transcript.pyannote[1609].end 8772.21284375
transcript.pyannote[1610].speaker SPEAKER_16
transcript.pyannote[1610].start 8772.61784375
transcript.pyannote[1610].end 8778.49034375
transcript.pyannote[1611].speaker SPEAKER_16
transcript.pyannote[1611].start 8778.59159375
transcript.pyannote[1611].end 8792.71596875
transcript.pyannote[1612].speaker SPEAKER_16
transcript.pyannote[1612].start 8793.39096875
transcript.pyannote[1612].end 8794.18409375
transcript.pyannote[1613].speaker SPEAKER_22
transcript.pyannote[1613].start 8794.18409375
transcript.pyannote[1613].end 8795.50034375
transcript.pyannote[1614].speaker SPEAKER_16
transcript.pyannote[1614].start 8795.50034375
transcript.pyannote[1614].end 8795.60159375
transcript.pyannote[1615].speaker SPEAKER_22
transcript.pyannote[1615].start 8795.60159375
transcript.pyannote[1615].end 8795.66909375
transcript.pyannote[1616].speaker SPEAKER_22
transcript.pyannote[1616].start 8796.25971875
transcript.pyannote[1616].end 8812.94909375
transcript.pyannote[1617].speaker SPEAKER_25
transcript.pyannote[1617].start 8802.33471875
transcript.pyannote[1617].end 8802.35159375
transcript.pyannote[1618].speaker SPEAKER_00
transcript.pyannote[1618].start 8802.45284375
transcript.pyannote[1618].end 8802.75659375
transcript.pyannote[1619].speaker SPEAKER_16
transcript.pyannote[1619].start 8811.78471875
transcript.pyannote[1619].end 8812.02096875
transcript.pyannote[1620].speaker SPEAKER_16
transcript.pyannote[1620].start 8812.51034375
transcript.pyannote[1620].end 8820.55971875
transcript.pyannote[1621].speaker SPEAKER_30
transcript.pyannote[1621].start 8819.49659375
transcript.pyannote[1621].end 8821.47096875
transcript.pyannote[1622].speaker SPEAKER_30
transcript.pyannote[1622].start 8821.69034375
transcript.pyannote[1622].end 8825.62221875
transcript.pyannote[1623].speaker SPEAKER_30
transcript.pyannote[1623].start 8826.85409375
transcript.pyannote[1623].end 8827.15784375
transcript.pyannote[1624].speaker SPEAKER_30
transcript.pyannote[1624].start 8827.49534375
transcript.pyannote[1624].end 8828.71034375
transcript.pyannote[1625].speaker SPEAKER_30
transcript.pyannote[1625].start 8832.89534375
transcript.pyannote[1625].end 8834.49846875
transcript.pyannote[1626].speaker SPEAKER_18
transcript.pyannote[1626].start 8839.47659375
transcript.pyannote[1626].end 8841.65346875
transcript.pyannote[1627].speaker SPEAKER_18
transcript.pyannote[1627].start 8842.04159375
transcript.pyannote[1627].end 8843.23971875
transcript.pyannote[1628].speaker SPEAKER_18
transcript.pyannote[1628].start 8849.41596875
transcript.pyannote[1628].end 8850.09096875
transcript.pyannote[1629].speaker SPEAKER_18
transcript.pyannote[1629].start 8850.36096875
transcript.pyannote[1629].end 8881.95096875
transcript.pyannote[1630].speaker SPEAKER_25
transcript.pyannote[1630].start 8850.41159375
transcript.pyannote[1630].end 8850.91784375
transcript.pyannote[1631].speaker SPEAKER_27
transcript.pyannote[1631].start 8850.91784375
transcript.pyannote[1631].end 8850.93471875
transcript.pyannote[1632].speaker SPEAKER_27
transcript.pyannote[1632].start 8853.49971875
transcript.pyannote[1632].end 8853.61784375
transcript.pyannote[1633].speaker SPEAKER_18
transcript.pyannote[1633].start 8882.65971875
transcript.pyannote[1633].end 8882.67659375
transcript.pyannote[1634].speaker SPEAKER_20
transcript.pyannote[1634].start 8882.67659375
transcript.pyannote[1634].end 8892.34596875
transcript.pyannote[1635].speaker SPEAKER_18
transcript.pyannote[1635].start 8892.34596875
transcript.pyannote[1635].end 8902.11659375
transcript.pyannote[1636].speaker SPEAKER_18
transcript.pyannote[1636].start 8902.36971875
transcript.pyannote[1636].end 8906.77409375
transcript.pyannote[1637].speaker SPEAKER_18
transcript.pyannote[1637].start 8907.16221875
transcript.pyannote[1637].end 8908.88346875
transcript.pyannote[1638].speaker SPEAKER_20
transcript.pyannote[1638].start 8909.33909375
transcript.pyannote[1638].end 8909.37284375
transcript.pyannote[1639].speaker SPEAKER_18
transcript.pyannote[1639].start 8909.37284375
transcript.pyannote[1639].end 8909.96346875
transcript.pyannote[1640].speaker SPEAKER_20
transcript.pyannote[1640].start 8909.96346875
transcript.pyannote[1640].end 8910.03096875
transcript.pyannote[1641].speaker SPEAKER_18
transcript.pyannote[1641].start 8910.03096875
transcript.pyannote[1641].end 8910.04784375
transcript.pyannote[1642].speaker SPEAKER_20
transcript.pyannote[1642].start 8910.23346875
transcript.pyannote[1642].end 8914.19909375
transcript.pyannote[1643].speaker SPEAKER_20
transcript.pyannote[1643].start 8914.72221875
transcript.pyannote[1643].end 8922.50159375
transcript.pyannote[1644].speaker SPEAKER_20
transcript.pyannote[1644].start 8923.07534375
transcript.pyannote[1644].end 8927.85096875
transcript.pyannote[1645].speaker SPEAKER_18
transcript.pyannote[1645].start 8926.65284375
transcript.pyannote[1645].end 8928.28971875
transcript.pyannote[1646].speaker SPEAKER_20
transcript.pyannote[1646].start 8928.28971875
transcript.pyannote[1646].end 8929.26846875
transcript.pyannote[1647].speaker SPEAKER_18
transcript.pyannote[1647].start 8928.88034375
transcript.pyannote[1647].end 8931.10784375
transcript.pyannote[1648].speaker SPEAKER_20
transcript.pyannote[1648].start 8930.38221875
transcript.pyannote[1648].end 8949.09659375
transcript.pyannote[1649].speaker SPEAKER_18
transcript.pyannote[1649].start 8948.43846875
transcript.pyannote[1649].end 9007.95659375
transcript.pyannote[1650].speaker SPEAKER_20
transcript.pyannote[1650].start 8964.09846875
transcript.pyannote[1650].end 8964.97596875
transcript.pyannote[1651].speaker SPEAKER_25
transcript.pyannote[1651].start 8964.97596875
transcript.pyannote[1651].end 8965.75221875
transcript.pyannote[1652].speaker SPEAKER_00
transcript.pyannote[1652].start 8985.27659375
transcript.pyannote[1652].end 8986.27221875
transcript.pyannote[1653].speaker SPEAKER_29
transcript.pyannote[1653].start 8998.42221875
transcript.pyannote[1653].end 8998.54034375
transcript.pyannote[1654].speaker SPEAKER_26
transcript.pyannote[1654].start 8998.54034375
transcript.pyannote[1654].end 8998.62471875
transcript.pyannote[1655].speaker SPEAKER_29
transcript.pyannote[1655].start 8998.62471875
transcript.pyannote[1655].end 8998.67534375
transcript.pyannote[1656].speaker SPEAKER_26
transcript.pyannote[1656].start 8998.67534375
transcript.pyannote[1656].end 8998.69221875
transcript.pyannote[1657].speaker SPEAKER_18
transcript.pyannote[1657].start 9008.22659375
transcript.pyannote[1657].end 9020.49471875
transcript.pyannote[1658].speaker SPEAKER_18
transcript.pyannote[1658].start 9020.84909375
transcript.pyannote[1658].end 9027.27846875
transcript.pyannote[1659].speaker SPEAKER_18
transcript.pyannote[1659].start 9027.68346875
transcript.pyannote[1659].end 9031.22721875
transcript.pyannote[1660].speaker SPEAKER_18
transcript.pyannote[1660].start 9031.96971875
transcript.pyannote[1660].end 9032.56034375
transcript.pyannote[1661].speaker SPEAKER_20
transcript.pyannote[1661].start 9032.56034375
transcript.pyannote[1661].end 9040.30596875
transcript.pyannote[1662].speaker SPEAKER_20
transcript.pyannote[1662].start 9040.45784375
transcript.pyannote[1662].end 9043.15784375
transcript.pyannote[1663].speaker SPEAKER_20
transcript.pyannote[1663].start 9043.56284375
transcript.pyannote[1663].end 9063.89721875
transcript.pyannote[1664].speaker SPEAKER_22
transcript.pyannote[1664].start 9054.34596875
transcript.pyannote[1664].end 9054.97034375
transcript.pyannote[1665].speaker SPEAKER_00
transcript.pyannote[1665].start 9054.97034375
transcript.pyannote[1665].end 9055.05471875
transcript.pyannote[1666].speaker SPEAKER_18
transcript.pyannote[1666].start 9064.09971875
transcript.pyannote[1666].end 9064.11659375
transcript.pyannote[1667].speaker SPEAKER_20
transcript.pyannote[1667].start 9064.11659375
transcript.pyannote[1667].end 9064.13346875
transcript.pyannote[1668].speaker SPEAKER_18
transcript.pyannote[1668].start 9064.13346875
transcript.pyannote[1668].end 9086.35784375
transcript.pyannote[1669].speaker SPEAKER_22
transcript.pyannote[1669].start 9080.48534375
transcript.pyannote[1669].end 9081.05909375
transcript.pyannote[1670].speaker SPEAKER_18
transcript.pyannote[1670].start 9086.66159375
transcript.pyannote[1670].end 9089.53034375
transcript.pyannote[1671].speaker SPEAKER_18
transcript.pyannote[1671].start 9089.80034375
transcript.pyannote[1671].end 9099.36846875
transcript.pyannote[1672].speaker SPEAKER_18
transcript.pyannote[1672].start 9099.52034375
transcript.pyannote[1672].end 9101.34284375
transcript.pyannote[1673].speaker SPEAKER_18
transcript.pyannote[1673].start 9101.74784375
transcript.pyannote[1673].end 9114.64034375
transcript.pyannote[1674].speaker SPEAKER_20
transcript.pyannote[1674].start 9113.56034375
transcript.pyannote[1674].end 9115.14659375
transcript.pyannote[1675].speaker SPEAKER_18
transcript.pyannote[1675].start 9114.84284375
transcript.pyannote[1675].end 9136.03784375
transcript.pyannote[1676].speaker SPEAKER_22
transcript.pyannote[1676].start 9115.14659375
transcript.pyannote[1676].end 9115.21409375
transcript.pyannote[1677].speaker SPEAKER_20
transcript.pyannote[1677].start 9136.03784375
transcript.pyannote[1677].end 9136.30784375
transcript.pyannote[1678].speaker SPEAKER_18
transcript.pyannote[1678].start 9136.30784375
transcript.pyannote[1678].end 9136.35846875
transcript.pyannote[1679].speaker SPEAKER_20
transcript.pyannote[1679].start 9136.35846875
transcript.pyannote[1679].end 9136.44284375
transcript.pyannote[1680].speaker SPEAKER_18
transcript.pyannote[1680].start 9136.44284375
transcript.pyannote[1680].end 9136.49346875
transcript.pyannote[1681].speaker SPEAKER_20
transcript.pyannote[1681].start 9136.49346875
transcript.pyannote[1681].end 9136.66221875
transcript.pyannote[1682].speaker SPEAKER_18
transcript.pyannote[1682].start 9136.66221875
transcript.pyannote[1682].end 9136.96596875
transcript.pyannote[1683].speaker SPEAKER_20
transcript.pyannote[1683].start 9136.96596875
transcript.pyannote[1683].end 9142.72034375
transcript.pyannote[1684].speaker SPEAKER_20
transcript.pyannote[1684].start 9142.85534375
transcript.pyannote[1684].end 9142.88909375
transcript.pyannote[1685].speaker SPEAKER_18
transcript.pyannote[1685].start 9142.88909375
transcript.pyannote[1685].end 9187.57409375
transcript.pyannote[1686].speaker SPEAKER_18
transcript.pyannote[1686].start 9187.69221875
transcript.pyannote[1686].end 9226.45409375
transcript.pyannote[1687].speaker SPEAKER_18
transcript.pyannote[1687].start 9227.06159375
transcript.pyannote[1687].end 9249.42096875
transcript.pyannote[1688].speaker SPEAKER_20
transcript.pyannote[1688].start 9238.01346875
transcript.pyannote[1688].end 9240.20721875
transcript.pyannote[1689].speaker SPEAKER_17
transcript.pyannote[1689].start 9249.79221875
transcript.pyannote[1689].end 9249.89346875
transcript.pyannote[1690].speaker SPEAKER_18
transcript.pyannote[1690].start 9249.89346875
transcript.pyannote[1690].end 9251.09159375
transcript.pyannote[1691].speaker SPEAKER_17
transcript.pyannote[1691].start 9249.91034375
transcript.pyannote[1691].end 9250.04534375
transcript.pyannote[1692].speaker SPEAKER_18
transcript.pyannote[1692].start 9251.39534375
transcript.pyannote[1692].end 9286.51221875
transcript.pyannote[1693].speaker SPEAKER_25
transcript.pyannote[1693].start 9259.73159375
transcript.pyannote[1693].end 9259.76534375
transcript.pyannote[1694].speaker SPEAKER_27
transcript.pyannote[1694].start 9259.76534375
transcript.pyannote[1694].end 9259.95096875
transcript.pyannote[1695].speaker SPEAKER_25
transcript.pyannote[1695].start 9259.95096875
transcript.pyannote[1695].end 9259.98471875
transcript.pyannote[1696].speaker SPEAKER_18
transcript.pyannote[1696].start 9286.73159375
transcript.pyannote[1696].end 9288.26721875
transcript.pyannote[1697].speaker SPEAKER_18
transcript.pyannote[1697].start 9288.43596875
transcript.pyannote[1697].end 9294.78096875
transcript.pyannote[1698].speaker SPEAKER_22
transcript.pyannote[1698].start 9294.78096875
transcript.pyannote[1698].end 9295.59096875
transcript.pyannote[1699].speaker SPEAKER_18
transcript.pyannote[1699].start 9295.59096875
transcript.pyannote[1699].end 9316.97159375
transcript.pyannote[1700].speaker SPEAKER_18
transcript.pyannote[1700].start 9317.17409375
transcript.pyannote[1700].end 9322.40534375
transcript.pyannote[1701].speaker SPEAKER_18
transcript.pyannote[1701].start 9323.41784375
transcript.pyannote[1701].end 9344.22471875
transcript.pyannote[1702].speaker SPEAKER_18
transcript.pyannote[1702].start 9344.47784375
transcript.pyannote[1702].end 9344.49471875
transcript.pyannote[1703].speaker SPEAKER_20
transcript.pyannote[1703].start 9344.49471875
transcript.pyannote[1703].end 9344.64659375
transcript.pyannote[1704].speaker SPEAKER_20
transcript.pyannote[1704].start 9344.71409375
transcript.pyannote[1704].end 9345.18659375
transcript.pyannote[1705].speaker SPEAKER_18
transcript.pyannote[1705].start 9345.28784375
transcript.pyannote[1705].end 9350.36721875
transcript.pyannote[1706].speaker SPEAKER_20
transcript.pyannote[1706].start 9350.36721875
transcript.pyannote[1706].end 9352.49346875
transcript.pyannote[1707].speaker SPEAKER_18
transcript.pyannote[1707].start 9352.49346875
transcript.pyannote[1707].end 9355.64909375
transcript.pyannote[1708].speaker SPEAKER_20
transcript.pyannote[1708].start 9352.56096875
transcript.pyannote[1708].end 9354.31596875
transcript.pyannote[1709].speaker SPEAKER_30
transcript.pyannote[1709].start 9354.31596875
transcript.pyannote[1709].end 9354.33284375
transcript.pyannote[1710].speaker SPEAKER_20
transcript.pyannote[1710].start 9354.33284375
transcript.pyannote[1710].end 9354.34971875
transcript.pyannote[1711].speaker SPEAKER_30
transcript.pyannote[1711].start 9354.34971875
transcript.pyannote[1711].end 9354.38346875
transcript.pyannote[1712].speaker SPEAKER_20
transcript.pyannote[1712].start 9354.38346875
transcript.pyannote[1712].end 9354.43409375
transcript.pyannote[1713].speaker SPEAKER_30
transcript.pyannote[1713].start 9355.64909375
transcript.pyannote[1713].end 9357.25221875
transcript.pyannote[1714].speaker SPEAKER_18
transcript.pyannote[1714].start 9356.67846875
transcript.pyannote[1714].end 9356.69534375
transcript.pyannote[1715].speaker SPEAKER_30
transcript.pyannote[1715].start 9358.23096875
transcript.pyannote[1715].end 9360.23909375
transcript.pyannote[1716].speaker SPEAKER_30
transcript.pyannote[1716].start 9360.40784375
transcript.pyannote[1716].end 9360.98159375
transcript.pyannote[1717].speaker SPEAKER_30
transcript.pyannote[1717].start 9361.28534375
transcript.pyannote[1717].end 9361.50471875
transcript.pyannote[1718].speaker SPEAKER_30
transcript.pyannote[1718].start 9362.85471875
transcript.pyannote[1718].end 9363.83346875
transcript.pyannote[1719].speaker SPEAKER_30
transcript.pyannote[1719].start 9364.79534375
transcript.pyannote[1719].end 9366.56721875
transcript.pyannote[1720].speaker SPEAKER_26
transcript.pyannote[1720].start 9367.27596875
transcript.pyannote[1720].end 9369.16596875
transcript.pyannote[1721].speaker SPEAKER_30
transcript.pyannote[1721].start 9395.13659375
transcript.pyannote[1721].end 9397.51596875
transcript.pyannote[1722].speaker SPEAKER_30
transcript.pyannote[1722].start 9397.63409375
transcript.pyannote[1722].end 9397.98846875
transcript.pyannote[1723].speaker SPEAKER_09
transcript.pyannote[1723].start 9407.80971875
transcript.pyannote[1723].end 9410.98221875
transcript.pyannote[1724].speaker SPEAKER_30
transcript.pyannote[1724].start 9411.15096875
transcript.pyannote[1724].end 9412.06221875
transcript.pyannote[1725].speaker SPEAKER_09
transcript.pyannote[1725].start 9412.38284375
transcript.pyannote[1725].end 9412.60221875
transcript.pyannote[1726].speaker SPEAKER_09
transcript.pyannote[1726].start 9413.20971875
transcript.pyannote[1726].end 9413.63159375
transcript.pyannote[1727].speaker SPEAKER_30
transcript.pyannote[1727].start 9414.71159375
transcript.pyannote[1727].end 9415.92659375
transcript.pyannote[1728].speaker SPEAKER_30
transcript.pyannote[1728].start 9421.27596875
transcript.pyannote[1728].end 9421.29284375
transcript.pyannote[1729].speaker SPEAKER_20
transcript.pyannote[1729].start 9421.29284375
transcript.pyannote[1729].end 9421.83284375
transcript.pyannote[1730].speaker SPEAKER_09
transcript.pyannote[1730].start 9422.10284375
transcript.pyannote[1730].end 9423.72284375
transcript.pyannote[1731].speaker SPEAKER_09
transcript.pyannote[1731].start 9424.17846875
transcript.pyannote[1731].end 9426.37221875
transcript.pyannote[1732].speaker SPEAKER_09
transcript.pyannote[1732].start 9426.70971875
transcript.pyannote[1732].end 9428.32971875
transcript.pyannote[1733].speaker SPEAKER_09
transcript.pyannote[1733].start 9428.73471875
transcript.pyannote[1733].end 9430.65846875
transcript.pyannote[1734].speaker SPEAKER_09
transcript.pyannote[1734].start 9431.50221875
transcript.pyannote[1734].end 9432.04221875
transcript.pyannote[1735].speaker SPEAKER_09
transcript.pyannote[1735].start 9432.36284375
transcript.pyannote[1735].end 9434.21909375
transcript.pyannote[1736].speaker SPEAKER_09
transcript.pyannote[1736].start 9434.45534375
transcript.pyannote[1736].end 9438.23534375
transcript.pyannote[1737].speaker SPEAKER_09
transcript.pyannote[1737].start 9438.62346875
transcript.pyannote[1737].end 9439.06221875
transcript.pyannote[1738].speaker SPEAKER_09
transcript.pyannote[1738].start 9439.78784375
transcript.pyannote[1738].end 9440.80034375
transcript.pyannote[1739].speaker SPEAKER_09
transcript.pyannote[1739].start 9441.27284375
transcript.pyannote[1739].end 9450.48659375
transcript.pyannote[1740].speaker SPEAKER_09
transcript.pyannote[1740].start 9451.21221875
transcript.pyannote[1740].end 9455.31284375
transcript.pyannote[1741].speaker SPEAKER_09
transcript.pyannote[1741].start 9455.53221875
transcript.pyannote[1741].end 9457.72596875
transcript.pyannote[1742].speaker SPEAKER_09
transcript.pyannote[1742].start 9459.05909375
transcript.pyannote[1742].end 9460.20659375
transcript.pyannote[1743].speaker SPEAKER_22
transcript.pyannote[1743].start 9461.05034375
transcript.pyannote[1743].end 9464.56034375
transcript.pyannote[1744].speaker SPEAKER_22
transcript.pyannote[1744].start 9464.72909375
transcript.pyannote[1744].end 9480.33846875
transcript.pyannote[1745].speaker SPEAKER_09
transcript.pyannote[1745].start 9480.33846875
transcript.pyannote[1745].end 9483.44346875
transcript.pyannote[1746].speaker SPEAKER_22
transcript.pyannote[1746].start 9483.39284375
transcript.pyannote[1746].end 9483.74721875
transcript.pyannote[1747].speaker SPEAKER_09
transcript.pyannote[1747].start 9483.74721875
transcript.pyannote[1747].end 9505.65096875
transcript.pyannote[1748].speaker SPEAKER_25
transcript.pyannote[1748].start 9500.77409375
transcript.pyannote[1748].end 9501.17909375
transcript.pyannote[1749].speaker SPEAKER_25
transcript.pyannote[1749].start 9505.44846875
transcript.pyannote[1749].end 9505.76909375
transcript.pyannote[1750].speaker SPEAKER_09
transcript.pyannote[1750].start 9505.76909375
transcript.pyannote[1750].end 9542.86034375
transcript.pyannote[1751].speaker SPEAKER_09
transcript.pyannote[1751].start 9543.68721875
transcript.pyannote[1751].end 9546.69096875
transcript.pyannote[1752].speaker SPEAKER_09
transcript.pyannote[1752].start 9547.02846875
transcript.pyannote[1752].end 9556.25909375
transcript.pyannote[1753].speaker SPEAKER_22
transcript.pyannote[1753].start 9555.68534375
transcript.pyannote[1753].end 9591.94971875
transcript.pyannote[1754].speaker SPEAKER_09
transcript.pyannote[1754].start 9591.34221875
transcript.pyannote[1754].end 9592.65846875
transcript.pyannote[1755].speaker SPEAKER_22
transcript.pyannote[1755].start 9592.86096875
transcript.pyannote[1755].end 9593.18159375
transcript.pyannote[1756].speaker SPEAKER_09
transcript.pyannote[1756].start 9593.06346875
transcript.pyannote[1756].end 9599.25659375
transcript.pyannote[1757].speaker SPEAKER_25
transcript.pyannote[1757].start 9599.59409375
transcript.pyannote[1757].end 9599.91471875
transcript.pyannote[1758].speaker SPEAKER_09
transcript.pyannote[1758].start 9599.93159375
transcript.pyannote[1758].end 9604.15034375
transcript.pyannote[1759].speaker SPEAKER_25
transcript.pyannote[1759].start 9601.72034375
transcript.pyannote[1759].end 9601.73721875
transcript.pyannote[1760].speaker SPEAKER_26
transcript.pyannote[1760].start 9601.73721875
transcript.pyannote[1760].end 9602.31096875
transcript.pyannote[1761].speaker SPEAKER_26
transcript.pyannote[1761].start 9604.26846875
transcript.pyannote[1761].end 9618.10596875
transcript.pyannote[1762].speaker SPEAKER_09
transcript.pyannote[1762].start 9608.87534375
transcript.pyannote[1762].end 9608.94284375
transcript.pyannote[1763].speaker SPEAKER_09
transcript.pyannote[1763].start 9616.03034375
transcript.pyannote[1763].end 9629.42909375
transcript.pyannote[1764].speaker SPEAKER_26
transcript.pyannote[1764].start 9624.72096875
transcript.pyannote[1764].end 9626.76284375
transcript.pyannote[1765].speaker SPEAKER_26
transcript.pyannote[1765].start 9627.84284375
transcript.pyannote[1765].end 9645.00471875
transcript.pyannote[1766].speaker SPEAKER_09
transcript.pyannote[1766].start 9630.20534375
transcript.pyannote[1766].end 9632.21346875
transcript.pyannote[1767].speaker SPEAKER_26
transcript.pyannote[1767].start 9645.47721875
transcript.pyannote[1767].end 9648.17721875
transcript.pyannote[1768].speaker SPEAKER_26
transcript.pyannote[1768].start 9648.91971875
transcript.pyannote[1768].end 9651.51846875
transcript.pyannote[1769].speaker SPEAKER_09
transcript.pyannote[1769].start 9650.91096875
transcript.pyannote[1769].end 9653.02034375
transcript.pyannote[1770].speaker SPEAKER_26
transcript.pyannote[1770].start 9651.75471875
transcript.pyannote[1770].end 9651.87284375
transcript.pyannote[1771].speaker SPEAKER_09
transcript.pyannote[1771].start 9653.42534375
transcript.pyannote[1771].end 9654.75846875
transcript.pyannote[1772].speaker SPEAKER_26
transcript.pyannote[1772].start 9654.75846875
transcript.pyannote[1772].end 9658.84221875
transcript.pyannote[1773].speaker SPEAKER_09
transcript.pyannote[1773].start 9657.88034375
transcript.pyannote[1773].end 9699.00471875
transcript.pyannote[1774].speaker SPEAKER_26
transcript.pyannote[1774].start 9659.93909375
transcript.pyannote[1774].end 9662.36909375
transcript.pyannote[1775].speaker SPEAKER_26
transcript.pyannote[1775].start 9668.91659375
transcript.pyannote[1775].end 9668.95034375
transcript.pyannote[1776].speaker SPEAKER_03
transcript.pyannote[1776].start 9668.95034375
transcript.pyannote[1776].end 9668.98409375
transcript.pyannote[1777].speaker SPEAKER_25
transcript.pyannote[1777].start 9668.98409375
transcript.pyannote[1777].end 9669.28784375
transcript.pyannote[1778].speaker SPEAKER_26
transcript.pyannote[1778].start 9678.02909375
transcript.pyannote[1778].end 9679.48034375
transcript.pyannote[1779].speaker SPEAKER_26
transcript.pyannote[1779].start 9681.15096875
transcript.pyannote[1779].end 9683.24346875
transcript.pyannote[1780].speaker SPEAKER_03
transcript.pyannote[1780].start 9689.36909375
transcript.pyannote[1780].end 9689.43659375
transcript.pyannote[1781].speaker SPEAKER_22
transcript.pyannote[1781].start 9692.98034375
transcript.pyannote[1781].end 9693.90846875
transcript.pyannote[1782].speaker SPEAKER_22
transcript.pyannote[1782].start 9694.68471875
transcript.pyannote[1782].end 9695.15721875
transcript.pyannote[1783].speaker SPEAKER_22
transcript.pyannote[1783].start 9699.03846875
transcript.pyannote[1783].end 9704.87721875
transcript.pyannote[1784].speaker SPEAKER_09
transcript.pyannote[1784].start 9705.06284375
transcript.pyannote[1784].end 9705.82221875
transcript.pyannote[1785].speaker SPEAKER_09
transcript.pyannote[1785].start 9706.54784375
transcript.pyannote[1785].end 9706.83471875
transcript.pyannote[1786].speaker SPEAKER_09
transcript.pyannote[1786].start 9707.20596875
transcript.pyannote[1786].end 9708.89346875
transcript.pyannote[1787].speaker SPEAKER_30
transcript.pyannote[1787].start 9710.41221875
transcript.pyannote[1787].end 9711.39096875
transcript.pyannote[1788].speaker SPEAKER_09
transcript.pyannote[1788].start 9718.86659375
transcript.pyannote[1788].end 9723.37221875
transcript.pyannote[1789].speaker SPEAKER_09
transcript.pyannote[1789].start 9724.43534375
transcript.pyannote[1789].end 9725.92034375
transcript.pyannote[1790].speaker SPEAKER_20
transcript.pyannote[1790].start 9725.92034375
transcript.pyannote[1790].end 9726.35909375
transcript.pyannote[1791].speaker SPEAKER_20
transcript.pyannote[1791].start 9728.04659375
transcript.pyannote[1791].end 9728.94096875
transcript.pyannote[1792].speaker SPEAKER_09
transcript.pyannote[1792].start 9730.81409375
transcript.pyannote[1792].end 9735.13409375
transcript.pyannote[1793].speaker SPEAKER_09
transcript.pyannote[1793].start 9735.20159375
transcript.pyannote[1793].end 9736.97346875
transcript.pyannote[1794].speaker SPEAKER_15
transcript.pyannote[1794].start 9737.47971875
transcript.pyannote[1794].end 9737.49659375
transcript.pyannote[1795].speaker SPEAKER_20
transcript.pyannote[1795].start 9737.49659375
transcript.pyannote[1795].end 9737.51346875
transcript.pyannote[1796].speaker SPEAKER_15
transcript.pyannote[1796].start 9737.51346875
transcript.pyannote[1796].end 9737.86784375
transcript.pyannote[1797].speaker SPEAKER_20
transcript.pyannote[1797].start 9739.13346875
transcript.pyannote[1797].end 9739.60596875
transcript.pyannote[1798].speaker SPEAKER_20
transcript.pyannote[1798].start 9739.96034375
transcript.pyannote[1798].end 9742.35659375
transcript.pyannote[1799].speaker SPEAKER_09
transcript.pyannote[1799].start 9742.18784375
transcript.pyannote[1799].end 9744.93846875
transcript.pyannote[1800].speaker SPEAKER_09
transcript.pyannote[1800].start 9744.95534375
transcript.pyannote[1800].end 9745.03971875
transcript.pyannote[1801].speaker SPEAKER_09
transcript.pyannote[1801].start 9745.34346875
transcript.pyannote[1801].end 9746.33909375
transcript.pyannote[1802].speaker SPEAKER_09
transcript.pyannote[1802].start 9746.40659375
transcript.pyannote[1802].end 9748.34721875
transcript.pyannote[1803].speaker SPEAKER_20
transcript.pyannote[1803].start 9748.06034375
transcript.pyannote[1803].end 9754.91159375
transcript.pyannote[1804].speaker SPEAKER_09
transcript.pyannote[1804].start 9754.21971875
transcript.pyannote[1804].end 9764.59784375
transcript.pyannote[1805].speaker SPEAKER_20
transcript.pyannote[1805].start 9764.07471875
transcript.pyannote[1805].end 9764.47971875
transcript.pyannote[1806].speaker SPEAKER_20
transcript.pyannote[1806].start 9764.91846875
transcript.pyannote[1806].end 9768.12471875
transcript.pyannote[1807].speaker SPEAKER_09
transcript.pyannote[1807].start 9766.43721875
transcript.pyannote[1807].end 9769.13721875
transcript.pyannote[1808].speaker SPEAKER_09
transcript.pyannote[1808].start 9769.82909375
transcript.pyannote[1808].end 9771.33096875
transcript.pyannote[1809].speaker SPEAKER_09
transcript.pyannote[1809].start 9775.43159375
transcript.pyannote[1809].end 9777.94596875
transcript.pyannote[1810].speaker SPEAKER_09
transcript.pyannote[1810].start 9778.62096875
transcript.pyannote[1810].end 9779.26221875
transcript.pyannote[1811].speaker SPEAKER_09
transcript.pyannote[1811].start 9779.68409375
transcript.pyannote[1811].end 9781.48971875
transcript.pyannote[1812].speaker SPEAKER_09
transcript.pyannote[1812].start 9781.79346875
transcript.pyannote[1812].end 9787.75034375
transcript.pyannote[1813].speaker SPEAKER_09
transcript.pyannote[1813].start 9788.49284375
transcript.pyannote[1813].end 9797.90909375
transcript.pyannote[1814].speaker SPEAKER_09
transcript.pyannote[1814].start 9798.80346875
transcript.pyannote[1814].end 9810.12659375
transcript.pyannote[1815].speaker SPEAKER_09
transcript.pyannote[1815].start 9810.46409375
transcript.pyannote[1815].end 9818.71596875
transcript.pyannote[1816].speaker SPEAKER_09
transcript.pyannote[1816].start 9819.03659375
transcript.pyannote[1816].end 9822.41159375
transcript.pyannote[1817].speaker SPEAKER_20
transcript.pyannote[1817].start 9823.79534375
transcript.pyannote[1817].end 9839.79284375
transcript.pyannote[1818].speaker SPEAKER_25
transcript.pyannote[1818].start 9839.79284375
transcript.pyannote[1818].end 9840.11346875
transcript.pyannote[1819].speaker SPEAKER_20
transcript.pyannote[1819].start 9840.09659375
transcript.pyannote[1819].end 9863.02971875
transcript.pyannote[1820].speaker SPEAKER_25
transcript.pyannote[1820].start 9858.37221875
transcript.pyannote[1820].end 9858.81096875
transcript.pyannote[1821].speaker SPEAKER_20
transcript.pyannote[1821].start 9863.14784375
transcript.pyannote[1821].end 9865.81409375
transcript.pyannote[1822].speaker SPEAKER_20
transcript.pyannote[1822].start 9866.47221875
transcript.pyannote[1822].end 9879.07784375
transcript.pyannote[1823].speaker SPEAKER_20
transcript.pyannote[1823].start 9879.34784375
transcript.pyannote[1823].end 9880.71471875
transcript.pyannote[1824].speaker SPEAKER_09
transcript.pyannote[1824].start 9879.51659375
transcript.pyannote[1824].end 9894.92346875
transcript.pyannote[1825].speaker SPEAKER_09
transcript.pyannote[1825].start 9895.26096875
transcript.pyannote[1825].end 9898.14659375
transcript.pyannote[1826].speaker SPEAKER_09
transcript.pyannote[1826].start 9898.60221875
transcript.pyannote[1826].end 9899.46284375
transcript.pyannote[1827].speaker SPEAKER_09
transcript.pyannote[1827].start 9899.54721875
transcript.pyannote[1827].end 9901.72409375
transcript.pyannote[1828].speaker SPEAKER_09
transcript.pyannote[1828].start 9901.99409375
transcript.pyannote[1828].end 9902.97284375
transcript.pyannote[1829].speaker SPEAKER_20
transcript.pyannote[1829].start 9903.05721875
transcript.pyannote[1829].end 9911.49471875
transcript.pyannote[1830].speaker SPEAKER_15
transcript.pyannote[1830].start 9908.50784375
transcript.pyannote[1830].end 9908.52471875
transcript.pyannote[1831].speaker SPEAKER_09
transcript.pyannote[1831].start 9908.52471875
transcript.pyannote[1831].end 9908.92971875
transcript.pyannote[1832].speaker SPEAKER_15
transcript.pyannote[1832].start 9908.92971875
transcript.pyannote[1832].end 9908.94659375
transcript.pyannote[1833].speaker SPEAKER_20
transcript.pyannote[1833].start 9911.86596875
transcript.pyannote[1833].end 9912.82784375
transcript.pyannote[1834].speaker SPEAKER_20
transcript.pyannote[1834].start 9913.03034375
transcript.pyannote[1834].end 9914.00909375
transcript.pyannote[1835].speaker SPEAKER_15
transcript.pyannote[1835].start 9914.00909375
transcript.pyannote[1835].end 9923.59409375
transcript.pyannote[1836].speaker SPEAKER_15
transcript.pyannote[1836].start 9923.72909375
transcript.pyannote[1836].end 9926.15909375
transcript.pyannote[1837].speaker SPEAKER_15
transcript.pyannote[1837].start 9926.46284375
transcript.pyannote[1837].end 9934.14096875
transcript.pyannote[1838].speaker SPEAKER_09
transcript.pyannote[1838].start 9934.14096875
transcript.pyannote[1838].end 9941.02596875
transcript.pyannote[1839].speaker SPEAKER_15
transcript.pyannote[1839].start 9934.15784375
transcript.pyannote[1839].end 9935.10284375
transcript.pyannote[1840].speaker SPEAKER_15
transcript.pyannote[1840].start 9938.71409375
transcript.pyannote[1840].end 9939.16971875
transcript.pyannote[1841].speaker SPEAKER_09
transcript.pyannote[1841].start 9941.05971875
transcript.pyannote[1841].end 9959.63909375
transcript.pyannote[1842].speaker SPEAKER_30
transcript.pyannote[1842].start 9958.22159375
transcript.pyannote[1842].end 9958.59284375
transcript.pyannote[1843].speaker SPEAKER_30
transcript.pyannote[1843].start 9959.50409375
transcript.pyannote[1843].end 9959.85846875
transcript.pyannote[1844].speaker SPEAKER_09
transcript.pyannote[1844].start 9959.80784375
transcript.pyannote[1844].end 9960.49971875
transcript.pyannote[1845].speaker SPEAKER_30
transcript.pyannote[1845].start 9960.71909375
transcript.pyannote[1845].end 9962.28846875
transcript.pyannote[1846].speaker SPEAKER_30
transcript.pyannote[1846].start 9962.96346875
transcript.pyannote[1846].end 9964.73534375
transcript.pyannote[1847].speaker SPEAKER_30
transcript.pyannote[1847].start 9965.96721875
transcript.pyannote[1847].end 9968.11034375
transcript.pyannote[1848].speaker SPEAKER_00
transcript.pyannote[1848].start 9977.20596875
transcript.pyannote[1848].end 9978.23534375
transcript.pyannote[1849].speaker SPEAKER_00
transcript.pyannote[1849].start 9978.99471875
transcript.pyannote[1849].end 9980.85096875
transcript.pyannote[1850].speaker SPEAKER_00
transcript.pyannote[1850].start 9981.10409375
transcript.pyannote[1850].end 9982.47096875
transcript.pyannote[1851].speaker SPEAKER_00
transcript.pyannote[1851].start 9990.90846875
transcript.pyannote[1851].end 9991.21221875
transcript.pyannote[1852].speaker SPEAKER_00
transcript.pyannote[1852].start 9991.46534375
transcript.pyannote[1852].end 9993.89534375
transcript.pyannote[1853].speaker SPEAKER_00
transcript.pyannote[1853].start 9994.48596875
transcript.pyannote[1853].end 9995.09346875
transcript.pyannote[1854].speaker SPEAKER_00
transcript.pyannote[1854].start 9995.16096875
transcript.pyannote[1854].end 10002.58596875
transcript.pyannote[1855].speaker SPEAKER_00
transcript.pyannote[1855].start 10003.56471875
transcript.pyannote[1855].end 10005.89346875
transcript.pyannote[1856].speaker SPEAKER_00
transcript.pyannote[1856].start 10006.39971875
transcript.pyannote[1856].end 10010.34846875
transcript.pyannote[1857].speaker SPEAKER_00
transcript.pyannote[1857].start 10011.56346875
transcript.pyannote[1857].end 10011.96846875
transcript.pyannote[1858].speaker SPEAKER_20
transcript.pyannote[1858].start 10011.96846875
transcript.pyannote[1858].end 10013.80784375
transcript.pyannote[1859].speaker SPEAKER_20
transcript.pyannote[1859].start 10014.39846875
transcript.pyannote[1859].end 10014.98909375
transcript.pyannote[1860].speaker SPEAKER_20
transcript.pyannote[1860].start 10015.54596875
transcript.pyannote[1860].end 10069.00596875
transcript.pyannote[1861].speaker SPEAKER_25
transcript.pyannote[1861].start 10056.53534375
transcript.pyannote[1861].end 10057.02471875
transcript.pyannote[1862].speaker SPEAKER_00
transcript.pyannote[1862].start 10066.05284375
transcript.pyannote[1862].end 10067.72346875
transcript.pyannote[1863].speaker SPEAKER_00
transcript.pyannote[1863].start 10069.00596875
transcript.pyannote[1863].end 10070.50784375
transcript.pyannote[1864].speaker SPEAKER_20
transcript.pyannote[1864].start 10070.71034375
transcript.pyannote[1864].end 10070.72721875
transcript.pyannote[1865].speaker SPEAKER_00
transcript.pyannote[1865].start 10070.72721875
transcript.pyannote[1865].end 10071.18284375
transcript.pyannote[1866].speaker SPEAKER_00
transcript.pyannote[1866].start 10071.41909375
transcript.pyannote[1866].end 10077.81471875
transcript.pyannote[1867].speaker SPEAKER_00
transcript.pyannote[1867].start 10078.59096875
transcript.pyannote[1867].end 10080.63284375
transcript.pyannote[1868].speaker SPEAKER_00
transcript.pyannote[1868].start 10080.86909375
transcript.pyannote[1868].end 10090.57221875
transcript.pyannote[1869].speaker SPEAKER_00
transcript.pyannote[1869].start 10090.72409375
transcript.pyannote[1869].end 10092.47909375
transcript.pyannote[1870].speaker SPEAKER_00
transcript.pyannote[1870].start 10092.74909375
transcript.pyannote[1870].end 10096.15784375
transcript.pyannote[1871].speaker SPEAKER_00
transcript.pyannote[1871].start 10096.91721875
transcript.pyannote[1871].end 10104.03846875
transcript.pyannote[1872].speaker SPEAKER_00
transcript.pyannote[1872].start 10104.13971875
transcript.pyannote[1872].end 10105.67534375
transcript.pyannote[1873].speaker SPEAKER_00
transcript.pyannote[1873].start 10106.24909375
transcript.pyannote[1873].end 10109.03346875
transcript.pyannote[1874].speaker SPEAKER_00
transcript.pyannote[1874].start 10109.37096875
transcript.pyannote[1874].end 10109.79284375
transcript.pyannote[1875].speaker SPEAKER_00
transcript.pyannote[1875].start 10109.97846875
transcript.pyannote[1875].end 10110.58596875
transcript.pyannote[1876].speaker SPEAKER_00
transcript.pyannote[1876].start 10110.80534375
transcript.pyannote[1876].end 10112.50971875
transcript.pyannote[1877].speaker SPEAKER_00
transcript.pyannote[1877].start 10113.06659375
transcript.pyannote[1877].end 10119.64784375
transcript.pyannote[1878].speaker SPEAKER_00
transcript.pyannote[1878].start 10120.27221875
transcript.pyannote[1878].end 10121.95971875
transcript.pyannote[1879].speaker SPEAKER_00
transcript.pyannote[1879].start 10122.78659375
transcript.pyannote[1879].end 10126.83659375
transcript.pyannote[1880].speaker SPEAKER_00
transcript.pyannote[1880].start 10127.66346875
transcript.pyannote[1880].end 10129.87409375
transcript.pyannote[1881].speaker SPEAKER_00
transcript.pyannote[1881].start 10129.99221875
transcript.pyannote[1881].end 10133.33346875
transcript.pyannote[1882].speaker SPEAKER_00
transcript.pyannote[1882].start 10134.05909375
transcript.pyannote[1882].end 10135.57784375
transcript.pyannote[1883].speaker SPEAKER_00
transcript.pyannote[1883].start 10136.01659375
transcript.pyannote[1883].end 10137.43409375
transcript.pyannote[1884].speaker SPEAKER_00
transcript.pyannote[1884].start 10138.09221875
transcript.pyannote[1884].end 10140.62346875
transcript.pyannote[1885].speaker SPEAKER_00
transcript.pyannote[1885].start 10141.18034375
transcript.pyannote[1885].end 10142.68221875
transcript.pyannote[1886].speaker SPEAKER_00
transcript.pyannote[1886].start 10143.15471875
transcript.pyannote[1886].end 10146.04034375
transcript.pyannote[1887].speaker SPEAKER_00
transcript.pyannote[1887].start 10146.34409375
transcript.pyannote[1887].end 10148.04846875
transcript.pyannote[1888].speaker SPEAKER_00
transcript.pyannote[1888].start 10149.46596875
transcript.pyannote[1888].end 10154.05596875
transcript.pyannote[1889].speaker SPEAKER_00
transcript.pyannote[1889].start 10154.25846875
transcript.pyannote[1889].end 10157.58284375
transcript.pyannote[1890].speaker SPEAKER_00
transcript.pyannote[1890].start 10158.35909375
transcript.pyannote[1890].end 10162.91534375
transcript.pyannote[1891].speaker SPEAKER_00
transcript.pyannote[1891].start 10163.45534375
transcript.pyannote[1891].end 10166.91471875
transcript.pyannote[1892].speaker SPEAKER_00
transcript.pyannote[1892].start 10167.99471875
transcript.pyannote[1892].end 10171.96034375
transcript.pyannote[1893].speaker SPEAKER_00
transcript.pyannote[1893].start 10172.09534375
transcript.pyannote[1893].end 10174.37346875
transcript.pyannote[1894].speaker SPEAKER_00
transcript.pyannote[1894].start 10174.40721875
transcript.pyannote[1894].end 10174.42409375
transcript.pyannote[1895].speaker SPEAKER_00
transcript.pyannote[1895].start 10174.59284375
transcript.pyannote[1895].end 10178.22096875
transcript.pyannote[1896].speaker SPEAKER_00
transcript.pyannote[1896].start 10178.81159375
transcript.pyannote[1896].end 10179.92534375
transcript.pyannote[1897].speaker SPEAKER_00
transcript.pyannote[1897].start 10180.66784375
transcript.pyannote[1897].end 10182.67596875
transcript.pyannote[1898].speaker SPEAKER_00
transcript.pyannote[1898].start 10182.92909375
transcript.pyannote[1898].end 10196.15909375
transcript.pyannote[1899].speaker SPEAKER_00
transcript.pyannote[1899].start 10196.56409375
transcript.pyannote[1899].end 10219.04159375
transcript.pyannote[1900].speaker SPEAKER_00
transcript.pyannote[1900].start 10219.29471875
transcript.pyannote[1900].end 10220.71221875
transcript.pyannote[1901].speaker SPEAKER_00
transcript.pyannote[1901].start 10221.38721875
transcript.pyannote[1901].end 10223.85096875
transcript.pyannote[1902].speaker SPEAKER_00
transcript.pyannote[1902].start 10224.44159375
transcript.pyannote[1902].end 10227.10784375
transcript.pyannote[1903].speaker SPEAKER_00
transcript.pyannote[1903].start 10227.51284375
transcript.pyannote[1903].end 10228.42409375
transcript.pyannote[1904].speaker SPEAKER_00
transcript.pyannote[1904].start 10228.96409375
transcript.pyannote[1904].end 10242.59909375
transcript.pyannote[1905].speaker SPEAKER_00
transcript.pyannote[1905].start 10242.86909375
transcript.pyannote[1905].end 10246.21034375
transcript.pyannote[1906].speaker SPEAKER_00
transcript.pyannote[1906].start 10246.91909375
transcript.pyannote[1906].end 10250.02409375
transcript.pyannote[1907].speaker SPEAKER_00
transcript.pyannote[1907].start 10250.14221875
transcript.pyannote[1907].end 10253.77034375
transcript.pyannote[1908].speaker SPEAKER_00
transcript.pyannote[1908].start 10254.14159375
transcript.pyannote[1908].end 10256.68971875
transcript.pyannote[1909].speaker SPEAKER_00
transcript.pyannote[1909].start 10256.92596875
transcript.pyannote[1909].end 10257.98909375
transcript.pyannote[1910].speaker SPEAKER_20
transcript.pyannote[1910].start 10257.98909375
transcript.pyannote[1910].end 10258.00596875
transcript.pyannote[1911].speaker SPEAKER_20
transcript.pyannote[1911].start 10261.31346875
transcript.pyannote[1911].end 10262.19096875
transcript.pyannote[1912].speaker SPEAKER_20
transcript.pyannote[1912].start 10262.54534375
transcript.pyannote[1912].end 10283.33534375
transcript.pyannote[1913].speaker SPEAKER_00
transcript.pyannote[1913].start 10277.46284375
transcript.pyannote[1913].end 10278.64409375
transcript.pyannote[1914].speaker SPEAKER_00
transcript.pyannote[1914].start 10279.15034375
transcript.pyannote[1914].end 10280.23034375
transcript.pyannote[1915].speaker SPEAKER_00
transcript.pyannote[1915].start 10283.33534375
transcript.pyannote[1915].end 10287.26721875
transcript.pyannote[1916].speaker SPEAKER_00
transcript.pyannote[1916].start 10287.99284375
transcript.pyannote[1916].end 10289.00534375
transcript.pyannote[1917].speaker SPEAKER_20
transcript.pyannote[1917].start 10289.61284375
transcript.pyannote[1917].end 10289.96721875
transcript.pyannote[1918].speaker SPEAKER_20
transcript.pyannote[1918].start 10290.16971875
transcript.pyannote[1918].end 10290.18659375
transcript.pyannote[1919].speaker SPEAKER_00
transcript.pyannote[1919].start 10290.18659375
transcript.pyannote[1919].end 10291.38471875
transcript.pyannote[1920].speaker SPEAKER_21
transcript.pyannote[1920].start 10291.13159375
transcript.pyannote[1920].end 10291.33409375
transcript.pyannote[1921].speaker SPEAKER_21
transcript.pyannote[1921].start 10291.38471875
transcript.pyannote[1921].end 10291.82346875
transcript.pyannote[1922].speaker SPEAKER_00
transcript.pyannote[1922].start 10291.82346875
transcript.pyannote[1922].end 10291.94159375
transcript.pyannote[1923].speaker SPEAKER_21
transcript.pyannote[1923].start 10291.94159375
transcript.pyannote[1923].end 10291.95846875
transcript.pyannote[1924].speaker SPEAKER_00
transcript.pyannote[1924].start 10291.95846875
transcript.pyannote[1924].end 10291.97534375
transcript.pyannote[1925].speaker SPEAKER_21
transcript.pyannote[1925].start 10291.97534375
transcript.pyannote[1925].end 10292.04284375
transcript.pyannote[1926].speaker SPEAKER_00
transcript.pyannote[1926].start 10292.04284375
transcript.pyannote[1926].end 10292.05971875
transcript.pyannote[1927].speaker SPEAKER_00
transcript.pyannote[1927].start 10292.22846875
transcript.pyannote[1927].end 10294.38846875
transcript.pyannote[1928].speaker SPEAKER_00
transcript.pyannote[1928].start 10294.96221875
transcript.pyannote[1928].end 10297.10534375
transcript.pyannote[1929].speaker SPEAKER_00
transcript.pyannote[1929].start 10297.37534375
transcript.pyannote[1929].end 10299.51846875
transcript.pyannote[1930].speaker SPEAKER_00
transcript.pyannote[1930].start 10300.44659375
transcript.pyannote[1930].end 10302.23534375
transcript.pyannote[1931].speaker SPEAKER_00
transcript.pyannote[1931].start 10303.01159375
transcript.pyannote[1931].end 10304.51346875
transcript.pyannote[1932].speaker SPEAKER_00
transcript.pyannote[1932].start 10304.90159375
transcript.pyannote[1932].end 10307.98971875
transcript.pyannote[1933].speaker SPEAKER_00
transcript.pyannote[1933].start 10308.71534375
transcript.pyannote[1933].end 10311.48284375
transcript.pyannote[1934].speaker SPEAKER_00
transcript.pyannote[1934].start 10312.20846875
transcript.pyannote[1934].end 10319.38034375
transcript.pyannote[1935].speaker SPEAKER_00
transcript.pyannote[1935].start 10319.63346875
transcript.pyannote[1935].end 10322.51909375
transcript.pyannote[1936].speaker SPEAKER_00
transcript.pyannote[1936].start 10322.92409375
transcript.pyannote[1936].end 10324.39221875
transcript.pyannote[1937].speaker SPEAKER_00
transcript.pyannote[1937].start 10325.42159375
transcript.pyannote[1937].end 10326.13034375
transcript.pyannote[1938].speaker SPEAKER_00
transcript.pyannote[1938].start 10326.68721875
transcript.pyannote[1938].end 10328.07096875
transcript.pyannote[1939].speaker SPEAKER_00
transcript.pyannote[1939].start 10328.66159375
transcript.pyannote[1939].end 10340.10284375
transcript.pyannote[1940].speaker SPEAKER_00
transcript.pyannote[1940].start 10340.57534375
transcript.pyannote[1940].end 10341.82409375
transcript.pyannote[1941].speaker SPEAKER_00
transcript.pyannote[1941].start 10342.38096875
transcript.pyannote[1941].end 10344.79409375
transcript.pyannote[1942].speaker SPEAKER_00
transcript.pyannote[1942].start 10345.08096875
transcript.pyannote[1942].end 10349.53596875
transcript.pyannote[1943].speaker SPEAKER_00
transcript.pyannote[1943].start 10350.22784375
transcript.pyannote[1943].end 10354.27784375
transcript.pyannote[1944].speaker SPEAKER_00
transcript.pyannote[1944].start 10354.66596875
transcript.pyannote[1944].end 10357.06221875
transcript.pyannote[1945].speaker SPEAKER_00
transcript.pyannote[1945].start 10358.02409375
transcript.pyannote[1945].end 10360.45409375
transcript.pyannote[1946].speaker SPEAKER_00
transcript.pyannote[1946].start 10361.77034375
transcript.pyannote[1946].end 10368.41909375
transcript.pyannote[1947].speaker SPEAKER_00
transcript.pyannote[1947].start 10368.85784375
transcript.pyannote[1947].end 10373.66721875
transcript.pyannote[1948].speaker SPEAKER_00
transcript.pyannote[1948].start 10374.19034375
transcript.pyannote[1948].end 10385.44596875
transcript.pyannote[1949].speaker SPEAKER_00
transcript.pyannote[1949].start 10386.13784375
transcript.pyannote[1949].end 10387.30221875
transcript.pyannote[1950].speaker SPEAKER_00
transcript.pyannote[1950].start 10388.01096875
transcript.pyannote[1950].end 10389.20909375
transcript.pyannote[1951].speaker SPEAKER_00
transcript.pyannote[1951].start 10389.58034375
transcript.pyannote[1951].end 10392.55034375
transcript.pyannote[1952].speaker SPEAKER_00
transcript.pyannote[1952].start 10393.05659375
transcript.pyannote[1952].end 10396.38096875
transcript.pyannote[1953].speaker SPEAKER_00
transcript.pyannote[1953].start 10396.73534375
transcript.pyannote[1953].end 10399.18221875
transcript.pyannote[1954].speaker SPEAKER_00
transcript.pyannote[1954].start 10400.38034375
transcript.pyannote[1954].end 10402.89471875
transcript.pyannote[1955].speaker SPEAKER_21
transcript.pyannote[1955].start 10404.05909375
transcript.pyannote[1955].end 10412.20971875
transcript.pyannote[1956].speaker SPEAKER_21
transcript.pyannote[1956].start 10412.56409375
transcript.pyannote[1956].end 10414.09971875
transcript.pyannote[1957].speaker SPEAKER_00
transcript.pyannote[1957].start 10414.40346875
transcript.pyannote[1957].end 10415.44971875
transcript.pyannote[1958].speaker SPEAKER_21
transcript.pyannote[1958].start 10416.34409375
transcript.pyannote[1958].end 10417.89659375
transcript.pyannote[1959].speaker SPEAKER_00
transcript.pyannote[1959].start 10417.89659375
transcript.pyannote[1959].end 10421.69346875
transcript.pyannote[1960].speaker SPEAKER_21
transcript.pyannote[1960].start 10417.91346875
transcript.pyannote[1960].end 10418.67284375
transcript.pyannote[1961].speaker SPEAKER_21
transcript.pyannote[1961].start 10422.11534375
transcript.pyannote[1961].end 10430.46846875
transcript.pyannote[1962].speaker SPEAKER_00
transcript.pyannote[1962].start 10430.75534375
transcript.pyannote[1962].end 10434.97409375
transcript.pyannote[1963].speaker SPEAKER_21
transcript.pyannote[1963].start 10435.56471875
transcript.pyannote[1963].end 10443.02346875
transcript.pyannote[1964].speaker SPEAKER_00
transcript.pyannote[1964].start 10443.02346875
transcript.pyannote[1964].end 10444.01909375
transcript.pyannote[1965].speaker SPEAKER_00
transcript.pyannote[1965].start 10444.57596875
transcript.pyannote[1965].end 10452.06846875
transcript.pyannote[1966].speaker SPEAKER_00
transcript.pyannote[1966].start 10452.76034375
transcript.pyannote[1966].end 10455.46034375
transcript.pyannote[1967].speaker SPEAKER_00
transcript.pyannote[1967].start 10456.21971875
transcript.pyannote[1967].end 10459.66221875
transcript.pyannote[1968].speaker SPEAKER_00
transcript.pyannote[1968].start 10460.69159375
transcript.pyannote[1968].end 10460.70846875
transcript.pyannote[1969].speaker SPEAKER_21
transcript.pyannote[1969].start 10460.70846875
transcript.pyannote[1969].end 10467.50909375
transcript.pyannote[1970].speaker SPEAKER_00
transcript.pyannote[1970].start 10466.91846875
transcript.pyannote[1970].end 10470.83346875
transcript.pyannote[1971].speaker SPEAKER_21
transcript.pyannote[1971].start 10467.89721875
transcript.pyannote[1971].end 10468.31909375
transcript.pyannote[1972].speaker SPEAKER_21
transcript.pyannote[1972].start 10468.84221875
transcript.pyannote[1972].end 10469.24721875
transcript.pyannote[1973].speaker SPEAKER_21
transcript.pyannote[1973].start 10469.75346875
transcript.pyannote[1973].end 10471.03596875
transcript.pyannote[1974].speaker SPEAKER_00
transcript.pyannote[1974].start 10471.01909375
transcript.pyannote[1974].end 10475.11971875
transcript.pyannote[1975].speaker SPEAKER_00
transcript.pyannote[1975].start 10475.54159375
transcript.pyannote[1975].end 10476.08159375
transcript.pyannote[1976].speaker SPEAKER_00
transcript.pyannote[1976].start 10476.77346875
transcript.pyannote[1976].end 10477.41471875
transcript.pyannote[1977].speaker SPEAKER_00
transcript.pyannote[1977].start 10478.10659375
transcript.pyannote[1977].end 10478.62971875
transcript.pyannote[1978].speaker SPEAKER_00
transcript.pyannote[1978].start 10479.72659375
transcript.pyannote[1978].end 10482.00471875
transcript.pyannote[1979].speaker SPEAKER_00
transcript.pyannote[1979].start 10482.84846875
transcript.pyannote[1979].end 10492.01159375
transcript.pyannote[1980].speaker SPEAKER_00
transcript.pyannote[1980].start 10492.60221875
transcript.pyannote[1980].end 10510.33784375
transcript.pyannote[1981].speaker SPEAKER_00
transcript.pyannote[1981].start 10510.70909375
transcript.pyannote[1981].end 10513.96596875
transcript.pyannote[1982].speaker SPEAKER_00
transcript.pyannote[1982].start 10514.28659375
transcript.pyannote[1982].end 10517.88096875
transcript.pyannote[1983].speaker SPEAKER_22
transcript.pyannote[1983].start 10517.94846875
transcript.pyannote[1983].end 10518.37034375
transcript.pyannote[1984].speaker SPEAKER_00
transcript.pyannote[1984].start 10518.37034375
transcript.pyannote[1984].end 10521.84659375
transcript.pyannote[1985].speaker SPEAKER_00
transcript.pyannote[1985].start 10522.15034375
transcript.pyannote[1985].end 10525.66034375
transcript.pyannote[1986].speaker SPEAKER_00
transcript.pyannote[1986].start 10526.04846875
transcript.pyannote[1986].end 10528.10721875
transcript.pyannote[1987].speaker SPEAKER_00
transcript.pyannote[1987].start 10528.74846875
transcript.pyannote[1987].end 10532.52846875
transcript.pyannote[1988].speaker SPEAKER_00
transcript.pyannote[1988].start 10533.13596875
transcript.pyannote[1988].end 10534.72221875
transcript.pyannote[1989].speaker SPEAKER_00
transcript.pyannote[1989].start 10535.53221875
transcript.pyannote[1989].end 10537.10159375
transcript.pyannote[1990].speaker SPEAKER_00
transcript.pyannote[1990].start 10537.38846875
transcript.pyannote[1990].end 10541.72534375
transcript.pyannote[1991].speaker SPEAKER_00
transcript.pyannote[1991].start 10541.96159375
transcript.pyannote[1991].end 10543.90221875
transcript.pyannote[1992].speaker SPEAKER_00
transcript.pyannote[1992].start 10544.54346875
transcript.pyannote[1992].end 10546.55159375
transcript.pyannote[1993].speaker SPEAKER_00
transcript.pyannote[1993].start 10547.20971875
transcript.pyannote[1993].end 10548.82971875
transcript.pyannote[1994].speaker SPEAKER_00
transcript.pyannote[1994].start 10549.20096875
transcript.pyannote[1994].end 10551.86721875
transcript.pyannote[1995].speaker SPEAKER_00
transcript.pyannote[1995].start 10552.22159375
transcript.pyannote[1995].end 10554.22971875
transcript.pyannote[1996].speaker SPEAKER_00
transcript.pyannote[1996].start 10554.87096875
transcript.pyannote[1996].end 10556.35596875
transcript.pyannote[1997].speaker SPEAKER_25
transcript.pyannote[1997].start 10556.64284375
transcript.pyannote[1997].end 10556.86221875
transcript.pyannote[1998].speaker SPEAKER_00
transcript.pyannote[1998].start 10556.86221875
transcript.pyannote[1998].end 10559.30909375
transcript.pyannote[1999].speaker SPEAKER_00
transcript.pyannote[1999].start 10559.49471875
transcript.pyannote[1999].end 10565.83971875
transcript.pyannote[2000].speaker SPEAKER_00
transcript.pyannote[2000].start 10566.27846875
transcript.pyannote[2000].end 10566.56534375
transcript.pyannote[2001].speaker SPEAKER_00
transcript.pyannote[2001].start 10567.67909375
transcript.pyannote[2001].end 10567.71284375
transcript.pyannote[2002].speaker SPEAKER_30
transcript.pyannote[2002].start 10567.71284375
transcript.pyannote[2002].end 10569.26534375
transcript.pyannote[2003].speaker SPEAKER_30
transcript.pyannote[2003].start 10569.83909375
transcript.pyannote[2003].end 10571.35784375
transcript.pyannote[2004].speaker SPEAKER_30
transcript.pyannote[2004].start 10572.65721875
transcript.pyannote[2004].end 10572.89346875
transcript.pyannote[2005].speaker SPEAKER_30
transcript.pyannote[2005].start 10573.85534375
transcript.pyannote[2005].end 10574.14221875
transcript.pyannote[2006].speaker SPEAKER_30
transcript.pyannote[2006].start 10574.51346875
transcript.pyannote[2006].end 10575.59346875
transcript.pyannote[2007].speaker SPEAKER_30
transcript.pyannote[2007].start 10576.09971875
transcript.pyannote[2007].end 10578.19221875
transcript.pyannote[2008].speaker SPEAKER_03
transcript.pyannote[2008].start 10586.25846875
transcript.pyannote[2008].end 10590.57846875
transcript.pyannote[2009].speaker SPEAKER_26
transcript.pyannote[2009].start 10590.76409375
transcript.pyannote[2009].end 10591.00034375
transcript.pyannote[2010].speaker SPEAKER_26
transcript.pyannote[2010].start 10591.45596875
transcript.pyannote[2010].end 10592.45159375
transcript.pyannote[2011].speaker SPEAKER_26
transcript.pyannote[2011].start 10592.97471875
transcript.pyannote[2011].end 10593.02534375
transcript.pyannote[2012].speaker SPEAKER_26
transcript.pyannote[2012].start 10594.96596875
transcript.pyannote[2012].end 10595.28659375
transcript.pyannote[2013].speaker SPEAKER_26
transcript.pyannote[2013].start 10596.02909375
transcript.pyannote[2013].end 10596.06284375
transcript.pyannote[2014].speaker SPEAKER_21
transcript.pyannote[2014].start 10596.06284375
transcript.pyannote[2014].end 10599.80909375
transcript.pyannote[2015].speaker SPEAKER_03
transcript.pyannote[2015].start 10601.95221875
transcript.pyannote[2015].end 10602.39096875
transcript.pyannote[2016].speaker SPEAKER_03
transcript.pyannote[2016].start 10602.74534375
transcript.pyannote[2016].end 10604.07846875
transcript.pyannote[2017].speaker SPEAKER_03
transcript.pyannote[2017].start 10604.55096875
transcript.pyannote[2017].end 10608.76971875
transcript.pyannote[2018].speaker SPEAKER_03
transcript.pyannote[2018].start 10609.24221875
transcript.pyannote[2018].end 10623.36659375
transcript.pyannote[2019].speaker SPEAKER_03
transcript.pyannote[2019].start 10623.73784375
transcript.pyannote[2019].end 10625.86409375
transcript.pyannote[2020].speaker SPEAKER_03
transcript.pyannote[2020].start 10626.16784375
transcript.pyannote[2020].end 10629.49221875
transcript.pyannote[2021].speaker SPEAKER_03
transcript.pyannote[2021].start 10629.84659375
transcript.pyannote[2021].end 10637.74409375
transcript.pyannote[2022].speaker SPEAKER_03
transcript.pyannote[2022].start 10638.09846875
transcript.pyannote[2022].end 10640.44409375
transcript.pyannote[2023].speaker SPEAKER_03
transcript.pyannote[2023].start 10640.96721875
transcript.pyannote[2023].end 10643.00909375
transcript.pyannote[2024].speaker SPEAKER_03
transcript.pyannote[2024].start 10644.29159375
transcript.pyannote[2024].end 10646.14784375
transcript.pyannote[2025].speaker SPEAKER_03
transcript.pyannote[2025].start 10647.02534375
transcript.pyannote[2025].end 10648.76346875
transcript.pyannote[2026].speaker SPEAKER_20
transcript.pyannote[2026].start 10647.04221875
transcript.pyannote[2026].end 10647.61596875
transcript.pyannote[2027].speaker SPEAKER_20
transcript.pyannote[2027].start 10648.76346875
transcript.pyannote[2027].end 10657.80846875
transcript.pyannote[2028].speaker SPEAKER_02
transcript.pyannote[2028].start 10655.29409375
transcript.pyannote[2028].end 10657.96034375
transcript.pyannote[2029].speaker SPEAKER_20
transcript.pyannote[2029].start 10658.23034375
transcript.pyannote[2029].end 10667.46096875
transcript.pyannote[2030].speaker SPEAKER_20
transcript.pyannote[2030].start 10667.81534375
transcript.pyannote[2030].end 10680.72471875
transcript.pyannote[2031].speaker SPEAKER_03
transcript.pyannote[2031].start 10678.36221875
transcript.pyannote[2031].end 10678.80096875
transcript.pyannote[2032].speaker SPEAKER_03
transcript.pyannote[2032].start 10679.98221875
transcript.pyannote[2032].end 10680.87659375
transcript.pyannote[2033].speaker SPEAKER_03
transcript.pyannote[2033].start 10681.34909375
transcript.pyannote[2033].end 10683.01971875
transcript.pyannote[2034].speaker SPEAKER_03
transcript.pyannote[2034].start 10683.76221875
transcript.pyannote[2034].end 10687.76159375
transcript.pyannote[2035].speaker SPEAKER_03
transcript.pyannote[2035].start 10688.62221875
transcript.pyannote[2035].end 10690.30971875
transcript.pyannote[2036].speaker SPEAKER_03
transcript.pyannote[2036].start 10690.88346875
transcript.pyannote[2036].end 10693.80284375
transcript.pyannote[2037].speaker SPEAKER_03
transcript.pyannote[2037].start 10694.41034375
transcript.pyannote[2037].end 10694.98409375
transcript.pyannote[2038].speaker SPEAKER_03
transcript.pyannote[2038].start 10696.90784375
transcript.pyannote[2038].end 10700.94096875
transcript.pyannote[2039].speaker SPEAKER_25
transcript.pyannote[2039].start 10697.44784375
transcript.pyannote[2039].end 10698.54471875
transcript.pyannote[2040].speaker SPEAKER_03
transcript.pyannote[2040].start 10701.39659375
transcript.pyannote[2040].end 10703.87721875
transcript.pyannote[2041].speaker SPEAKER_25
transcript.pyannote[2041].start 10703.87721875
transcript.pyannote[2041].end 10704.18096875
transcript.pyannote[2042].speaker SPEAKER_03
transcript.pyannote[2042].start 10704.18096875
transcript.pyannote[2042].end 10713.31034375
transcript.pyannote[2043].speaker SPEAKER_25
transcript.pyannote[2043].start 10704.19784375
transcript.pyannote[2043].end 10704.23159375
transcript.pyannote[2044].speaker SPEAKER_25
transcript.pyannote[2044].start 10704.24846875
transcript.pyannote[2044].end 10704.85596875
transcript.pyannote[2045].speaker SPEAKER_25
transcript.pyannote[2045].start 10709.34471875
transcript.pyannote[2045].end 10710.84659375
transcript.pyannote[2046].speaker SPEAKER_03
transcript.pyannote[2046].start 10713.74909375
transcript.pyannote[2046].end 10714.52534375
transcript.pyannote[2047].speaker SPEAKER_03
transcript.pyannote[2047].start 10714.64346875
transcript.pyannote[2047].end 10716.70221875
transcript.pyannote[2048].speaker SPEAKER_03
transcript.pyannote[2048].start 10717.20846875
transcript.pyannote[2048].end 10723.26659375
transcript.pyannote[2049].speaker SPEAKER_20
transcript.pyannote[2049].start 10722.47346875
transcript.pyannote[2049].end 10722.65909375
transcript.pyannote[2050].speaker SPEAKER_20
transcript.pyannote[2050].start 10723.26659375
transcript.pyannote[2050].end 10733.17221875
transcript.pyannote[2051].speaker SPEAKER_03
transcript.pyannote[2051].start 10732.83471875
transcript.pyannote[2051].end 10734.16784375
transcript.pyannote[2052].speaker SPEAKER_20
transcript.pyannote[2052].start 10733.61096875
transcript.pyannote[2052].end 10735.21409375
transcript.pyannote[2053].speaker SPEAKER_03
transcript.pyannote[2053].start 10734.85971875
transcript.pyannote[2053].end 10738.42034375
transcript.pyannote[2054].speaker SPEAKER_20
transcript.pyannote[2054].start 10735.45034375
transcript.pyannote[2054].end 10735.77096875
transcript.pyannote[2055].speaker SPEAKER_20
transcript.pyannote[2055].start 10737.47534375
transcript.pyannote[2055].end 10739.82096875
transcript.pyannote[2056].speaker SPEAKER_03
transcript.pyannote[2056].start 10738.84221875
transcript.pyannote[2056].end 10741.32284375
transcript.pyannote[2057].speaker SPEAKER_20
transcript.pyannote[2057].start 10740.19221875
transcript.pyannote[2057].end 10762.93971875
transcript.pyannote[2058].speaker SPEAKER_03
transcript.pyannote[2058].start 10762.87221875
transcript.pyannote[2058].end 10769.43659375
transcript.pyannote[2059].speaker SPEAKER_03
transcript.pyannote[2059].start 10769.70659375
transcript.pyannote[2059].end 10779.88221875
transcript.pyannote[2060].speaker SPEAKER_20
transcript.pyannote[2060].start 10776.40596875
transcript.pyannote[2060].end 10777.43534375
transcript.pyannote[2061].speaker SPEAKER_20
transcript.pyannote[2061].start 10780.43909375
transcript.pyannote[2061].end 10781.08034375
transcript.pyannote[2062].speaker SPEAKER_03
transcript.pyannote[2062].start 10781.08034375
transcript.pyannote[2062].end 10781.26596875
transcript.pyannote[2063].speaker SPEAKER_20
transcript.pyannote[2063].start 10781.26596875
transcript.pyannote[2063].end 10790.93534375
transcript.pyannote[2064].speaker SPEAKER_03
transcript.pyannote[2064].start 10781.28284375
transcript.pyannote[2064].end 10781.50221875
transcript.pyannote[2065].speaker SPEAKER_20
transcript.pyannote[2065].start 10791.30659375
transcript.pyannote[2065].end 10795.79534375
transcript.pyannote[2066].speaker SPEAKER_03
transcript.pyannote[2066].start 10795.52534375
transcript.pyannote[2066].end 10799.42346875
transcript.pyannote[2067].speaker SPEAKER_20
transcript.pyannote[2067].start 10799.42346875
transcript.pyannote[2067].end 10800.06471875
transcript.pyannote[2068].speaker SPEAKER_03
transcript.pyannote[2068].start 10799.45721875
transcript.pyannote[2068].end 10799.50784375
transcript.pyannote[2069].speaker SPEAKER_03
transcript.pyannote[2069].start 10799.62596875
transcript.pyannote[2069].end 10801.36409375
transcript.pyannote[2070].speaker SPEAKER_03
transcript.pyannote[2070].start 10801.98846875
transcript.pyannote[2070].end 10803.77721875
transcript.pyannote[2071].speaker SPEAKER_25
transcript.pyannote[2071].start 10803.23721875
transcript.pyannote[2071].end 10804.03034375
transcript.pyannote[2072].speaker SPEAKER_03
transcript.pyannote[2072].start 10804.21596875
transcript.pyannote[2072].end 10805.58284375
transcript.pyannote[2073].speaker SPEAKER_03
transcript.pyannote[2073].start 10805.66721875
transcript.pyannote[2073].end 10811.05034375
transcript.pyannote[2074].speaker SPEAKER_03
transcript.pyannote[2074].start 10811.23596875
transcript.pyannote[2074].end 10821.88409375
transcript.pyannote[2075].speaker SPEAKER_20
transcript.pyannote[2075].start 10820.43284375
transcript.pyannote[2075].end 10839.24846875
transcript.pyannote[2076].speaker SPEAKER_03
transcript.pyannote[2076].start 10822.40721875
transcript.pyannote[2076].end 10822.74471875
transcript.pyannote[2077].speaker SPEAKER_03
transcript.pyannote[2077].start 10824.24659375
transcript.pyannote[2077].end 10825.07346875
transcript.pyannote[2078].speaker SPEAKER_03
transcript.pyannote[2078].start 10833.20721875
transcript.pyannote[2078].end 10834.25346875
transcript.pyannote[2079].speaker SPEAKER_03
transcript.pyannote[2079].start 10836.76784375
transcript.pyannote[2079].end 10839.36659375
transcript.pyannote[2080].speaker SPEAKER_03
transcript.pyannote[2080].start 10840.00784375
transcript.pyannote[2080].end 10841.30721875
transcript.pyannote[2081].speaker SPEAKER_03
transcript.pyannote[2081].start 10841.71221875
transcript.pyannote[2081].end 10842.85971875
transcript.pyannote[2082].speaker SPEAKER_03
transcript.pyannote[2082].start 10843.51784375
transcript.pyannote[2082].end 10846.62284375
transcript.pyannote[2083].speaker SPEAKER_03
transcript.pyannote[2083].start 10846.67346875
transcript.pyannote[2083].end 10846.72409375
transcript.pyannote[2084].speaker SPEAKER_03
transcript.pyannote[2084].start 10846.80846875
transcript.pyannote[2084].end 10857.06846875
transcript.pyannote[2085].speaker SPEAKER_19
transcript.pyannote[2085].start 10846.92659375
transcript.pyannote[2085].end 10847.07846875
transcript.pyannote[2086].speaker SPEAKER_19
transcript.pyannote[2086].start 10847.29784375
transcript.pyannote[2086].end 10847.82096875
transcript.pyannote[2087].speaker SPEAKER_19
transcript.pyannote[2087].start 10848.86721875
transcript.pyannote[2087].end 10849.22159375
transcript.pyannote[2088].speaker SPEAKER_03
transcript.pyannote[2088].start 10857.13596875
transcript.pyannote[2088].end 10862.09721875
transcript.pyannote[2089].speaker SPEAKER_15
transcript.pyannote[2089].start 10865.08409375
transcript.pyannote[2089].end 10865.89409375
transcript.pyannote[2090].speaker SPEAKER_15
transcript.pyannote[2090].start 10866.50159375
transcript.pyannote[2090].end 10868.37471875
transcript.pyannote[2091].speaker SPEAKER_03
transcript.pyannote[2091].start 10867.83471875
transcript.pyannote[2091].end 10868.61096875
transcript.pyannote[2092].speaker SPEAKER_03
transcript.pyannote[2092].start 10869.06659375
transcript.pyannote[2092].end 10870.21409375
transcript.pyannote[2093].speaker SPEAKER_03
transcript.pyannote[2093].start 10870.90596875
transcript.pyannote[2093].end 10873.30221875
transcript.pyannote[2094].speaker SPEAKER_24
transcript.pyannote[2094].start 10873.30221875
transcript.pyannote[2094].end 10873.33596875
transcript.pyannote[2095].speaker SPEAKER_03
transcript.pyannote[2095].start 10873.33596875
transcript.pyannote[2095].end 10873.35284375
transcript.pyannote[2096].speaker SPEAKER_24
transcript.pyannote[2096].start 10873.40346875
transcript.pyannote[2096].end 10896.79221875
transcript.pyannote[2097].speaker SPEAKER_03
transcript.pyannote[2097].start 10897.24784375
transcript.pyannote[2097].end 10921.05846875
transcript.pyannote[2098].speaker SPEAKER_03
transcript.pyannote[2098].start 10921.39596875
transcript.pyannote[2098].end 10939.35096875
transcript.pyannote[2099].speaker SPEAKER_03
transcript.pyannote[2099].start 10940.11034375
transcript.pyannote[2099].end 10960.07346875
transcript.pyannote[2100].speaker SPEAKER_03
transcript.pyannote[2100].start 10960.14096875
transcript.pyannote[2100].end 10973.42159375
transcript.pyannote[2101].speaker SPEAKER_20
transcript.pyannote[2101].start 10974.67034375
transcript.pyannote[2101].end 10982.85471875
transcript.pyannote[2102].speaker SPEAKER_03
transcript.pyannote[2102].start 10978.18034375
transcript.pyannote[2102].end 10980.15471875
transcript.pyannote[2103].speaker SPEAKER_03
transcript.pyannote[2103].start 10980.69471875
transcript.pyannote[2103].end 10980.99846875
transcript.pyannote[2104].speaker SPEAKER_03
transcript.pyannote[2104].start 10982.85471875
transcript.pyannote[2104].end 10989.57096875
transcript.pyannote[2105].speaker SPEAKER_03
transcript.pyannote[2105].start 10990.06034375
transcript.pyannote[2105].end 10994.80221875
transcript.pyannote[2106].speaker SPEAKER_03
transcript.pyannote[2106].start 10995.47721875
transcript.pyannote[2106].end 11006.07471875
transcript.pyannote[2107].speaker SPEAKER_20
transcript.pyannote[2107].start 11007.08721875
transcript.pyannote[2107].end 11010.81659375
transcript.pyannote[2108].speaker SPEAKER_03
transcript.pyannote[2108].start 11010.44534375
transcript.pyannote[2108].end 11014.69784375
transcript.pyannote[2109].speaker SPEAKER_03
transcript.pyannote[2109].start 11015.60909375
transcript.pyannote[2109].end 11017.88721875
transcript.pyannote[2110].speaker SPEAKER_20
transcript.pyannote[2110].start 11018.61284375
transcript.pyannote[2110].end 11021.32971875
transcript.pyannote[2111].speaker SPEAKER_03
transcript.pyannote[2111].start 11020.21596875
transcript.pyannote[2111].end 11063.55096875
transcript.pyannote[2112].speaker SPEAKER_03
transcript.pyannote[2112].start 11064.10784375
transcript.pyannote[2112].end 11076.42659375
transcript.pyannote[2113].speaker SPEAKER_03
transcript.pyannote[2113].start 11077.21971875
transcript.pyannote[2113].end 11084.40846875
transcript.pyannote[2114].speaker SPEAKER_03
transcript.pyannote[2114].start 11085.55596875
transcript.pyannote[2114].end 11086.21409375
transcript.pyannote[2115].speaker SPEAKER_20
transcript.pyannote[2115].start 11086.46721875
transcript.pyannote[2115].end 11103.02159375
transcript.pyannote[2116].speaker SPEAKER_03
transcript.pyannote[2116].start 11102.49846875
transcript.pyannote[2116].end 11110.29471875
transcript.pyannote[2117].speaker SPEAKER_20
transcript.pyannote[2117].start 11103.52784375
transcript.pyannote[2117].end 11103.54471875
transcript.pyannote[2118].speaker SPEAKER_20
transcript.pyannote[2118].start 11103.69659375
transcript.pyannote[2118].end 11103.79784375
transcript.pyannote[2119].speaker SPEAKER_20
transcript.pyannote[2119].start 11110.66596875
transcript.pyannote[2119].end 11117.50034375
transcript.pyannote[2120].speaker SPEAKER_03
transcript.pyannote[2120].start 11117.43284375
transcript.pyannote[2120].end 11122.12409375
transcript.pyannote[2121].speaker SPEAKER_03
transcript.pyannote[2121].start 11122.54596875
transcript.pyannote[2121].end 11124.03096875
transcript.pyannote[2122].speaker SPEAKER_20
transcript.pyannote[2122].start 11123.50784375
transcript.pyannote[2122].end 11126.91659375
transcript.pyannote[2123].speaker SPEAKER_03
transcript.pyannote[2123].start 11124.82409375
transcript.pyannote[2123].end 11125.07721875
transcript.pyannote[2124].speaker SPEAKER_03
transcript.pyannote[2124].start 11125.38096875
transcript.pyannote[2124].end 11136.53534375
transcript.pyannote[2125].speaker SPEAKER_20
transcript.pyannote[2125].start 11126.95034375
transcript.pyannote[2125].end 11126.96721875
transcript.pyannote[2126].speaker SPEAKER_03
transcript.pyannote[2126].start 11136.72096875
transcript.pyannote[2126].end 11137.56471875
transcript.pyannote[2127].speaker SPEAKER_03
transcript.pyannote[2127].start 11137.81784375
transcript.pyannote[2127].end 11149.37721875
transcript.pyannote[2128].speaker SPEAKER_03
transcript.pyannote[2128].start 11149.69784375
transcript.pyannote[2128].end 11204.45721875
transcript.pyannote[2129].speaker SPEAKER_20
transcript.pyannote[2129].start 11204.55846875
transcript.pyannote[2129].end 11208.92909375
transcript.pyannote[2130].speaker SPEAKER_03
transcript.pyannote[2130].start 11205.55409375
transcript.pyannote[2130].end 11205.62159375
transcript.pyannote[2131].speaker SPEAKER_03
transcript.pyannote[2131].start 11207.12346875
transcript.pyannote[2131].end 11208.94596875
transcript.pyannote[2132].speaker SPEAKER_20
transcript.pyannote[2132].start 11208.94596875
transcript.pyannote[2132].end 11208.96284375
transcript.pyannote[2133].speaker SPEAKER_03
transcript.pyannote[2133].start 11208.96284375
transcript.pyannote[2133].end 11209.06409375
transcript.pyannote[2134].speaker SPEAKER_03
transcript.pyannote[2134].start 11209.24971875
transcript.pyannote[2134].end 11209.60409375
transcript.pyannote[2135].speaker SPEAKER_03
transcript.pyannote[2135].start 11209.95846875
transcript.pyannote[2135].end 11211.40971875
transcript.pyannote[2136].speaker SPEAKER_20
transcript.pyannote[2136].start 11212.32096875
transcript.pyannote[2136].end 11213.35034375
transcript.pyannote[2137].speaker SPEAKER_03
transcript.pyannote[2137].start 11213.19846875
transcript.pyannote[2137].end 11217.04596875
transcript.pyannote[2138].speaker SPEAKER_20
transcript.pyannote[2138].start 11217.26534375
transcript.pyannote[2138].end 11220.30284375
transcript.pyannote[2139].speaker SPEAKER_20
transcript.pyannote[2139].start 11220.60659375
transcript.pyannote[2139].end 11220.85971875
transcript.pyannote[2140].speaker SPEAKER_20
transcript.pyannote[2140].start 11221.36596875
transcript.pyannote[2140].end 11222.59784375
transcript.pyannote[2141].speaker SPEAKER_00
transcript.pyannote[2141].start 11227.15409375
transcript.pyannote[2141].end 11230.76534375
transcript.pyannote[2142].speaker SPEAKER_30
transcript.pyannote[2142].start 11235.86159375
transcript.pyannote[2142].end 11236.55346875
transcript.pyannote[2143].speaker SPEAKER_30
transcript.pyannote[2143].start 11237.07659375
transcript.pyannote[2143].end 11239.62471875
transcript.pyannote[2144].speaker SPEAKER_30
transcript.pyannote[2144].start 11240.83971875
transcript.pyannote[2144].end 11243.01659375
transcript.pyannote[2145].speaker SPEAKER_30
transcript.pyannote[2145].start 11247.13409375
transcript.pyannote[2145].end 11254.00221875
transcript.pyannote[2146].speaker SPEAKER_21
transcript.pyannote[2146].start 11250.86346875
transcript.pyannote[2146].end 11251.15034375
transcript.pyannote[2147].speaker SPEAKER_30
transcript.pyannote[2147].start 11254.57596875
transcript.pyannote[2147].end 11259.77346875
transcript.pyannote[2148].speaker SPEAKER_25
transcript.pyannote[2148].start 11259.77346875
transcript.pyannote[2148].end 11259.85784375
transcript.pyannote[2149].speaker SPEAKER_30
transcript.pyannote[2149].start 11259.85784375
transcript.pyannote[2149].end 11262.47346875
transcript.pyannote[2150].speaker SPEAKER_30
transcript.pyannote[2150].start 11263.08096875
transcript.pyannote[2150].end 11265.03846875
transcript.pyannote[2151].speaker SPEAKER_30
transcript.pyannote[2151].start 11266.15221875
transcript.pyannote[2151].end 11271.55221875
transcript.pyannote[2152].speaker SPEAKER_30
transcript.pyannote[2152].start 11271.94034375
transcript.pyannote[2152].end 11272.44659375
transcript.pyannote[2153].speaker SPEAKER_30
transcript.pyannote[2153].start 11272.46346875
transcript.pyannote[2153].end 11272.51409375
transcript.pyannote[2154].speaker SPEAKER_30
transcript.pyannote[2154].start 11273.61096875
transcript.pyannote[2154].end 11275.99034375
transcript.pyannote[2155].speaker SPEAKER_30
transcript.pyannote[2155].start 11277.20534375
transcript.pyannote[2155].end 11278.35284375
transcript.pyannote[2156].speaker SPEAKER_30
transcript.pyannote[2156].start 11279.16284375
transcript.pyannote[2156].end 11281.06971875
transcript.pyannote[2157].speaker SPEAKER_30
transcript.pyannote[2157].start 11281.81221875
transcript.pyannote[2157].end 11282.94284375
transcript.pyannote[2158].speaker SPEAKER_30
transcript.pyannote[2158].start 11283.09471875
transcript.pyannote[2158].end 11285.13659375
transcript.pyannote[2159].speaker SPEAKER_30
transcript.pyannote[2159].start 11285.89596875
transcript.pyannote[2159].end 11289.22034375
transcript.pyannote[2160].speaker SPEAKER_30
transcript.pyannote[2160].start 11289.62534375
transcript.pyannote[2160].end 11292.29159375
transcript.pyannote[2161].speaker SPEAKER_30
transcript.pyannote[2161].start 11292.93284375
transcript.pyannote[2161].end 11297.67471875
transcript.pyannote[2162].speaker SPEAKER_30
transcript.pyannote[2162].start 11298.19784375
transcript.pyannote[2162].end 11300.88096875
transcript.pyannote[2163].speaker SPEAKER_30
transcript.pyannote[2163].start 11301.50534375
transcript.pyannote[2163].end 11301.97784375
transcript.pyannote[2164].speaker SPEAKER_20
transcript.pyannote[2164].start 11301.97784375
transcript.pyannote[2164].end 11303.51346875
transcript.pyannote[2165].speaker SPEAKER_20
transcript.pyannote[2165].start 11304.23909375
transcript.pyannote[2165].end 11304.82971875
transcript.pyannote[2166].speaker SPEAKER_20
transcript.pyannote[2166].start 11305.69034375
transcript.pyannote[2166].end 11311.41096875
transcript.pyannote[2167].speaker SPEAKER_30
transcript.pyannote[2167].start 11310.02721875
transcript.pyannote[2167].end 11312.27159375
transcript.pyannote[2168].speaker SPEAKER_20
transcript.pyannote[2168].start 11312.71034375
transcript.pyannote[2168].end 11312.81159375
transcript.pyannote[2169].speaker SPEAKER_30
transcript.pyannote[2169].start 11312.81159375
transcript.pyannote[2169].end 11312.89596875
transcript.pyannote[2170].speaker SPEAKER_20
transcript.pyannote[2170].start 11312.89596875
transcript.pyannote[2170].end 11313.53721875
transcript.pyannote[2171].speaker SPEAKER_30
transcript.pyannote[2171].start 11313.53721875
transcript.pyannote[2171].end 11314.02659375
transcript.pyannote[2172].speaker SPEAKER_30
transcript.pyannote[2172].start 11314.81971875
transcript.pyannote[2172].end 11318.22846875
transcript.pyannote[2173].speaker SPEAKER_20
transcript.pyannote[2173].start 11314.97159375
transcript.pyannote[2173].end 11315.44409375
transcript.pyannote[2174].speaker SPEAKER_20
transcript.pyannote[2174].start 11316.43971875
transcript.pyannote[2174].end 11320.35471875
transcript.pyannote[2175].speaker SPEAKER_20
transcript.pyannote[2175].start 11320.86096875
transcript.pyannote[2175].end 11330.42909375
transcript.pyannote[2176].speaker SPEAKER_30
transcript.pyannote[2176].start 11329.73721875
transcript.pyannote[2176].end 11333.19659375
transcript.pyannote[2177].speaker SPEAKER_30
transcript.pyannote[2177].start 11333.46659375
transcript.pyannote[2177].end 11340.31784375
transcript.pyannote[2178].speaker SPEAKER_30
transcript.pyannote[2178].start 11340.46971875
transcript.pyannote[2178].end 11345.43096875
transcript.pyannote[2179].speaker SPEAKER_21
transcript.pyannote[2179].start 11340.57096875
transcript.pyannote[2179].end 11340.84096875
transcript.pyannote[2180].speaker SPEAKER_30
transcript.pyannote[2180].start 11345.73471875
transcript.pyannote[2180].end 11348.01284375
transcript.pyannote[2181].speaker SPEAKER_30
transcript.pyannote[2181].start 11348.83971875
transcript.pyannote[2181].end 11351.52284375
transcript.pyannote[2182].speaker SPEAKER_30
transcript.pyannote[2182].start 11353.04159375
transcript.pyannote[2182].end 11353.76721875
transcript.pyannote[2183].speaker SPEAKER_30
transcript.pyannote[2183].start 11354.00346875
transcript.pyannote[2183].end 11356.70346875
transcript.pyannote[2184].speaker SPEAKER_30
transcript.pyannote[2184].start 11357.00721875
transcript.pyannote[2184].end 11363.72346875
transcript.pyannote[2185].speaker SPEAKER_20
transcript.pyannote[2185].start 11364.36471875
transcript.pyannote[2185].end 11379.34971875
transcript.pyannote[2186].speaker SPEAKER_22
transcript.pyannote[2186].start 11378.94471875
transcript.pyannote[2186].end 11378.96159375
transcript.pyannote[2187].speaker SPEAKER_30
transcript.pyannote[2187].start 11378.96159375
transcript.pyannote[2187].end 11384.49659375
transcript.pyannote[2188].speaker SPEAKER_30
transcript.pyannote[2188].start 11384.74971875
transcript.pyannote[2188].end 11386.70721875
transcript.pyannote[2189].speaker SPEAKER_30
transcript.pyannote[2189].start 11387.17971875
transcript.pyannote[2189].end 11388.14159375
transcript.pyannote[2190].speaker SPEAKER_20
transcript.pyannote[2190].start 11387.33159375
transcript.pyannote[2190].end 11394.16596875
transcript.pyannote[2191].speaker SPEAKER_30
transcript.pyannote[2191].start 11393.55846875
transcript.pyannote[2191].end 11396.34284375
transcript.pyannote[2192].speaker SPEAKER_30
transcript.pyannote[2192].start 11396.74784375
transcript.pyannote[2192].end 11399.48159375
transcript.pyannote[2193].speaker SPEAKER_30
transcript.pyannote[2193].start 11399.66721875
transcript.pyannote[2193].end 11407.24409375
transcript.pyannote[2194].speaker SPEAKER_00
transcript.pyannote[2194].start 11402.33346875
transcript.pyannote[2194].end 11404.12221875
transcript.pyannote[2195].speaker SPEAKER_25
transcript.pyannote[2195].start 11404.12221875
transcript.pyannote[2195].end 11404.25721875
transcript.pyannote[2196].speaker SPEAKER_00
transcript.pyannote[2196].start 11404.25721875
transcript.pyannote[2196].end 11404.35846875
transcript.pyannote[2197].speaker SPEAKER_30
transcript.pyannote[2197].start 11407.75034375
transcript.pyannote[2197].end 11413.16721875
transcript.pyannote[2198].speaker SPEAKER_30
transcript.pyannote[2198].start 11414.02784375
transcript.pyannote[2198].end 11416.28909375
transcript.pyannote[2199].speaker SPEAKER_30
transcript.pyannote[2199].start 11417.20034375
transcript.pyannote[2199].end 11422.07721875
transcript.pyannote[2200].speaker SPEAKER_30
transcript.pyannote[2200].start 11422.71846875
transcript.pyannote[2200].end 11427.46034375
transcript.pyannote[2201].speaker SPEAKER_30
transcript.pyannote[2201].start 11428.37159375
transcript.pyannote[2201].end 11429.89034375
transcript.pyannote[2202].speaker SPEAKER_30
transcript.pyannote[2202].start 11430.93659375
transcript.pyannote[2202].end 11433.19784375
transcript.pyannote[2203].speaker SPEAKER_30
transcript.pyannote[2203].start 11433.99096875
transcript.pyannote[2203].end 11439.62721875
transcript.pyannote[2204].speaker SPEAKER_30
transcript.pyannote[2204].start 11440.28534375
transcript.pyannote[2204].end 11442.19221875
transcript.pyannote[2205].speaker SPEAKER_30
transcript.pyannote[2205].start 11443.05284375
transcript.pyannote[2205].end 11444.28471875
transcript.pyannote[2206].speaker SPEAKER_30
transcript.pyannote[2206].start 11444.87534375
transcript.pyannote[2206].end 11446.63034375
transcript.pyannote[2207].speaker SPEAKER_30
transcript.pyannote[2207].start 11446.90034375
transcript.pyannote[2207].end 11448.68909375
transcript.pyannote[2208].speaker SPEAKER_30
transcript.pyannote[2208].start 11450.08971875
transcript.pyannote[2208].end 11450.98409375
transcript.pyannote[2209].speaker SPEAKER_30
transcript.pyannote[2209].start 11451.72659375
transcript.pyannote[2209].end 11453.54909375
transcript.pyannote[2210].speaker SPEAKER_30
transcript.pyannote[2210].start 11453.88659375
transcript.pyannote[2210].end 11459.23596875
transcript.pyannote[2211].speaker SPEAKER_30
transcript.pyannote[2211].start 11459.64096875
transcript.pyannote[2211].end 11461.46346875
transcript.pyannote[2212].speaker SPEAKER_30
transcript.pyannote[2212].start 11462.03721875
transcript.pyannote[2212].end 11463.97784375
transcript.pyannote[2213].speaker SPEAKER_30
transcript.pyannote[2213].start 11465.19284375
transcript.pyannote[2213].end 11469.36096875
transcript.pyannote[2214].speaker SPEAKER_30
transcript.pyannote[2214].start 11470.01909375
transcript.pyannote[2214].end 11473.81596875
transcript.pyannote[2215].speaker SPEAKER_30
transcript.pyannote[2215].start 11475.16596875
transcript.pyannote[2215].end 11476.16159375
transcript.pyannote[2216].speaker SPEAKER_20
transcript.pyannote[2216].start 11476.16159375
transcript.pyannote[2216].end 11480.43096875
transcript.pyannote[2217].speaker SPEAKER_20
transcript.pyannote[2217].start 11480.76846875
transcript.pyannote[2217].end 11487.80534375
transcript.pyannote[2218].speaker SPEAKER_30
transcript.pyannote[2218].start 11487.21471875
transcript.pyannote[2218].end 11494.77471875
transcript.pyannote[2219].speaker SPEAKER_30
transcript.pyannote[2219].start 11495.36534375
transcript.pyannote[2219].end 11500.91721875
transcript.pyannote[2220].speaker SPEAKER_20
transcript.pyannote[2220].start 11495.43284375
transcript.pyannote[2220].end 11496.05721875
transcript.pyannote[2221].speaker SPEAKER_30
transcript.pyannote[2221].start 11500.96784375
transcript.pyannote[2221].end 11507.83596875
transcript.pyannote[2222].speaker SPEAKER_30
transcript.pyannote[2222].start 11508.91596875
transcript.pyannote[2222].end 11516.07096875
transcript.pyannote[2223].speaker SPEAKER_30
transcript.pyannote[2223].start 11516.44221875
transcript.pyannote[2223].end 11523.39471875
transcript.pyannote[2224].speaker SPEAKER_30
transcript.pyannote[2224].start 11524.37346875
transcript.pyannote[2224].end 11531.61284375
transcript.pyannote[2225].speaker SPEAKER_30
transcript.pyannote[2225].start 11532.82784375
transcript.pyannote[2225].end 11535.66284375
transcript.pyannote[2226].speaker SPEAKER_30
transcript.pyannote[2226].start 11535.91596875
transcript.pyannote[2226].end 11538.34596875
transcript.pyannote[2227].speaker SPEAKER_30
transcript.pyannote[2227].start 11538.56534375
transcript.pyannote[2227].end 11539.37534375
transcript.pyannote[2228].speaker SPEAKER_30
transcript.pyannote[2228].start 11540.47221875
transcript.pyannote[2228].end 11541.11346875
transcript.pyannote[2229].speaker SPEAKER_30
transcript.pyannote[2229].start 11541.23159375
transcript.pyannote[2229].end 11542.53096875
transcript.pyannote[2230].speaker SPEAKER_30
transcript.pyannote[2230].start 11543.52659375
transcript.pyannote[2230].end 11545.16346875
transcript.pyannote[2231].speaker SPEAKER_30
transcript.pyannote[2231].start 11545.56846875
transcript.pyannote[2231].end 11546.93534375
transcript.pyannote[2232].speaker SPEAKER_30
transcript.pyannote[2232].start 11547.20534375
transcript.pyannote[2232].end 11549.41596875
transcript.pyannote[2233].speaker SPEAKER_30
transcript.pyannote[2233].start 11549.60159375
transcript.pyannote[2233].end 11550.39471875
transcript.pyannote[2234].speaker SPEAKER_30
transcript.pyannote[2234].start 11550.63096875
transcript.pyannote[2234].end 11552.47034375
transcript.pyannote[2235].speaker SPEAKER_30
transcript.pyannote[2235].start 11553.49971875
transcript.pyannote[2235].end 11558.27534375
transcript.pyannote[2236].speaker SPEAKER_30
transcript.pyannote[2236].start 11559.08534375
transcript.pyannote[2236].end 11560.40159375
transcript.pyannote[2237].speaker SPEAKER_20
transcript.pyannote[2237].start 11560.40159375
transcript.pyannote[2237].end 11568.33284375
transcript.pyannote[2238].speaker SPEAKER_20
transcript.pyannote[2238].start 11568.43409375
transcript.pyannote[2238].end 11576.93909375
transcript.pyannote[2239].speaker SPEAKER_30
transcript.pyannote[2239].start 11574.15471875
transcript.pyannote[2239].end 11580.65159375
transcript.pyannote[2240].speaker SPEAKER_20
transcript.pyannote[2240].start 11577.29346875
transcript.pyannote[2240].end 11577.47909375
transcript.pyannote[2241].speaker SPEAKER_20
transcript.pyannote[2241].start 11578.25534375
transcript.pyannote[2241].end 11578.66034375
transcript.pyannote[2242].speaker SPEAKER_30
transcript.pyannote[2242].start 11580.97221875
transcript.pyannote[2242].end 11583.38534375
transcript.pyannote[2243].speaker SPEAKER_30
transcript.pyannote[2243].start 11583.90846875
transcript.pyannote[2243].end 11583.97596875
transcript.pyannote[2244].speaker SPEAKER_25
transcript.pyannote[2244].start 11583.97596875
transcript.pyannote[2244].end 11584.12784375
transcript.pyannote[2245].speaker SPEAKER_30
transcript.pyannote[2245].start 11584.12784375
transcript.pyannote[2245].end 11584.75221875
transcript.pyannote[2246].speaker SPEAKER_30
transcript.pyannote[2246].start 11585.19096875
transcript.pyannote[2246].end 11592.46409375
transcript.pyannote[2247].speaker SPEAKER_30
transcript.pyannote[2247].start 11593.03784375
transcript.pyannote[2247].end 11596.15971875
transcript.pyannote[2248].speaker SPEAKER_30
transcript.pyannote[2248].start 11596.80096875
transcript.pyannote[2248].end 11603.51721875
transcript.pyannote[2249].speaker SPEAKER_30
transcript.pyannote[2249].start 11604.83346875
transcript.pyannote[2249].end 11606.62221875
transcript.pyannote[2250].speaker SPEAKER_30
transcript.pyannote[2250].start 11606.97659375
transcript.pyannote[2250].end 11608.47846875
transcript.pyannote[2251].speaker SPEAKER_30
transcript.pyannote[2251].start 11608.83284375
transcript.pyannote[2251].end 11609.81159375
transcript.pyannote[2252].speaker SPEAKER_30
transcript.pyannote[2252].start 11610.26721875
transcript.pyannote[2252].end 11613.08534375
transcript.pyannote[2253].speaker SPEAKER_30
transcript.pyannote[2253].start 11613.38909375
transcript.pyannote[2253].end 11614.78971875
transcript.pyannote[2254].speaker SPEAKER_20
transcript.pyannote[2254].start 11615.07659375
transcript.pyannote[2254].end 11623.81784375
transcript.pyannote[2255].speaker SPEAKER_30
transcript.pyannote[2255].start 11622.61971875
transcript.pyannote[2255].end 11636.50784375
transcript.pyannote[2256].speaker SPEAKER_20
transcript.pyannote[2256].start 11624.10471875
transcript.pyannote[2256].end 11624.40846875
transcript.pyannote[2257].speaker SPEAKER_20
transcript.pyannote[2257].start 11624.96534375
transcript.pyannote[2257].end 11625.75846875
transcript.pyannote[2258].speaker SPEAKER_20
transcript.pyannote[2258].start 11626.85534375
transcript.pyannote[2258].end 11627.41221875
transcript.pyannote[2259].speaker SPEAKER_20
transcript.pyannote[2259].start 11634.53346875
transcript.pyannote[2259].end 11634.76971875
transcript.pyannote[2260].speaker SPEAKER_30
transcript.pyannote[2260].start 11639.39346875
transcript.pyannote[2260].end 11645.48534375
transcript.pyannote[2261].speaker SPEAKER_30
transcript.pyannote[2261].start 11646.24471875
transcript.pyannote[2261].end 11653.26471875
transcript.pyannote[2262].speaker SPEAKER_30
transcript.pyannote[2262].start 11654.04096875
transcript.pyannote[2262].end 11659.32284375
transcript.pyannote[2263].speaker SPEAKER_30
transcript.pyannote[2263].start 11660.28471875
transcript.pyannote[2263].end 11663.45721875
transcript.pyannote[2264].speaker SPEAKER_30
transcript.pyannote[2264].start 11664.38534375
transcript.pyannote[2264].end 11669.59971875
transcript.pyannote[2265].speaker SPEAKER_30
transcript.pyannote[2265].start 11670.10596875
transcript.pyannote[2265].end 11670.74721875
transcript.pyannote[2266].speaker SPEAKER_30
transcript.pyannote[2266].start 11671.43909375
transcript.pyannote[2266].end 11672.75534375
transcript.pyannote[2267].speaker SPEAKER_30
transcript.pyannote[2267].start 11673.32909375
transcript.pyannote[2267].end 11674.93221875
transcript.pyannote[2268].speaker SPEAKER_30
transcript.pyannote[2268].start 11677.04159375
transcript.pyannote[2268].end 11681.59784375
transcript.pyannote[2269].speaker SPEAKER_25
transcript.pyannote[2269].start 11681.59784375
transcript.pyannote[2269].end 11681.88471875
transcript.pyannote[2270].speaker SPEAKER_30
transcript.pyannote[2270].start 11681.88471875
transcript.pyannote[2270].end 11682.99846875
transcript.pyannote[2271].speaker SPEAKER_30
transcript.pyannote[2271].start 11683.36971875
transcript.pyannote[2271].end 11689.98471875
transcript.pyannote[2272].speaker SPEAKER_30
transcript.pyannote[2272].start 11691.58784375
transcript.pyannote[2272].end 11692.65096875
transcript.pyannote[2273].speaker SPEAKER_20
transcript.pyannote[2273].start 11693.61284375
transcript.pyannote[2273].end 11694.05159375
transcript.pyannote[2274].speaker SPEAKER_20
transcript.pyannote[2274].start 11694.64221875
transcript.pyannote[2274].end 11715.80346875
transcript.pyannote[2275].speaker SPEAKER_30
transcript.pyannote[2275].start 11707.99034375
transcript.pyannote[2275].end 11708.34471875
transcript.pyannote[2276].speaker SPEAKER_30
transcript.pyannote[2276].start 11708.86784375
transcript.pyannote[2276].end 11711.70284375
transcript.pyannote[2277].speaker SPEAKER_30
transcript.pyannote[2277].start 11715.80346875
transcript.pyannote[2277].end 11722.87409375
transcript.pyannote[2278].speaker SPEAKER_20
transcript.pyannote[2278].start 11716.10721875
transcript.pyannote[2278].end 11716.73159375
transcript.pyannote[2279].speaker SPEAKER_30
transcript.pyannote[2279].start 11723.68409375
transcript.pyannote[2279].end 11727.68346875
transcript.pyannote[2280].speaker SPEAKER_30
transcript.pyannote[2280].start 11728.30784375
transcript.pyannote[2280].end 11729.20221875
transcript.pyannote[2281].speaker SPEAKER_30
transcript.pyannote[2281].start 11729.38784375
transcript.pyannote[2281].end 11733.48846875
transcript.pyannote[2282].speaker SPEAKER_30
transcript.pyannote[2282].start 11734.41659375
transcript.pyannote[2282].end 11735.02409375
transcript.pyannote[2283].speaker SPEAKER_20
transcript.pyannote[2283].start 11734.55159375
transcript.pyannote[2283].end 11734.83846875
transcript.pyannote[2284].speaker SPEAKER_20
transcript.pyannote[2284].start 11735.02409375
transcript.pyannote[2284].end 11740.03596875
transcript.pyannote[2285].speaker SPEAKER_30
transcript.pyannote[2285].start 11735.26034375
transcript.pyannote[2285].end 11744.57534375
transcript.pyannote[2286].speaker SPEAKER_22
transcript.pyannote[2286].start 11740.03596875
transcript.pyannote[2286].end 11740.57596875
transcript.pyannote[2287].speaker SPEAKER_20
transcript.pyannote[2287].start 11740.57596875
transcript.pyannote[2287].end 11740.64346875
transcript.pyannote[2288].speaker SPEAKER_20
transcript.pyannote[2288].start 11742.33096875
transcript.pyannote[2288].end 11742.76971875
transcript.pyannote[2289].speaker SPEAKER_20
transcript.pyannote[2289].start 11743.86659375
transcript.pyannote[2289].end 11743.96784375
transcript.pyannote[2290].speaker SPEAKER_30
transcript.pyannote[2290].start 11745.50346875
transcript.pyannote[2290].end 11747.24159375
transcript.pyannote[2291].speaker SPEAKER_22
transcript.pyannote[2291].start 11747.44409375
transcript.pyannote[2291].end 11747.76471875
transcript.pyannote[2292].speaker SPEAKER_30
transcript.pyannote[2292].start 11749.13159375
transcript.pyannote[2292].end 11749.14846875
transcript.pyannote[2293].speaker SPEAKER_22
transcript.pyannote[2293].start 11749.14846875
transcript.pyannote[2293].end 11749.58721875
transcript.pyannote[2294].speaker SPEAKER_30
transcript.pyannote[2294].start 11749.58721875
transcript.pyannote[2294].end 11749.68846875
transcript.pyannote[2295].speaker SPEAKER_00
transcript.pyannote[2295].start 11756.92784375
transcript.pyannote[2295].end 11759.67846875
transcript.pyannote[2296].speaker SPEAKER_00
transcript.pyannote[2296].start 11759.88096875
transcript.pyannote[2296].end 11760.50534375
transcript.pyannote[2297].speaker SPEAKER_19
transcript.pyannote[2297].start 11767.91346875
transcript.pyannote[2297].end 11769.07784375
transcript.pyannote[2298].speaker SPEAKER_19
transcript.pyannote[2298].start 11769.16221875
transcript.pyannote[2298].end 11770.34346875
transcript.pyannote[2299].speaker SPEAKER_19
transcript.pyannote[2299].start 11778.61221875
transcript.pyannote[2299].end 11779.43909375
transcript.pyannote[2300].speaker SPEAKER_19
transcript.pyannote[2300].start 11780.18159375
transcript.pyannote[2300].end 11784.70409375
transcript.pyannote[2301].speaker SPEAKER_19
transcript.pyannote[2301].start 11784.97409375
transcript.pyannote[2301].end 11787.97784375
transcript.pyannote[2302].speaker SPEAKER_19
transcript.pyannote[2302].start 11788.29846875
transcript.pyannote[2302].end 11791.43721875
transcript.pyannote[2303].speaker SPEAKER_19
transcript.pyannote[2303].start 11791.80846875
transcript.pyannote[2303].end 11795.58846875
transcript.pyannote[2304].speaker SPEAKER_19
transcript.pyannote[2304].start 11796.06096875
transcript.pyannote[2304].end 11809.42596875
transcript.pyannote[2305].speaker SPEAKER_19
transcript.pyannote[2305].start 11810.06721875
transcript.pyannote[2305].end 11812.93596875
transcript.pyannote[2306].speaker SPEAKER_19
transcript.pyannote[2306].start 11813.34096875
transcript.pyannote[2306].end 11821.71096875
transcript.pyannote[2307].speaker SPEAKER_19
transcript.pyannote[2307].start 11822.35221875
transcript.pyannote[2307].end 11838.33284375
transcript.pyannote[2308].speaker SPEAKER_19
transcript.pyannote[2308].start 11839.90221875
transcript.pyannote[2308].end 11841.03284375
transcript.pyannote[2309].speaker SPEAKER_20
transcript.pyannote[2309].start 11840.08784375
transcript.pyannote[2309].end 11840.10471875
transcript.pyannote[2310].speaker SPEAKER_25
transcript.pyannote[2310].start 11840.10471875
transcript.pyannote[2310].end 11840.99909375
transcript.pyannote[2311].speaker SPEAKER_25
transcript.pyannote[2311].start 11841.03284375
transcript.pyannote[2311].end 11841.13409375
transcript.pyannote[2312].speaker SPEAKER_19
transcript.pyannote[2312].start 11841.37034375
transcript.pyannote[2312].end 11842.02846875
transcript.pyannote[2313].speaker SPEAKER_19
transcript.pyannote[2313].start 11842.45034375
transcript.pyannote[2313].end 11851.51221875
transcript.pyannote[2314].speaker SPEAKER_20
transcript.pyannote[2314].start 11851.51221875
transcript.pyannote[2314].end 11854.49909375
transcript.pyannote[2315].speaker SPEAKER_19
transcript.pyannote[2315].start 11854.49909375
transcript.pyannote[2315].end 11857.82346875
transcript.pyannote[2316].speaker SPEAKER_20
transcript.pyannote[2316].start 11854.51596875
transcript.pyannote[2316].end 11855.44409375
transcript.pyannote[2317].speaker SPEAKER_20
transcript.pyannote[2317].start 11856.16971875
transcript.pyannote[2317].end 11857.60409375
transcript.pyannote[2318].speaker SPEAKER_19
transcript.pyannote[2318].start 11857.99221875
transcript.pyannote[2318].end 11859.35909375
transcript.pyannote[2319].speaker SPEAKER_19
transcript.pyannote[2319].start 11859.56159375
transcript.pyannote[2319].end 11861.67096875
transcript.pyannote[2320].speaker SPEAKER_19
transcript.pyannote[2320].start 11861.83971875
transcript.pyannote[2320].end 11866.48034375
transcript.pyannote[2321].speaker SPEAKER_19
transcript.pyannote[2321].start 11867.10471875
transcript.pyannote[2321].end 11887.05096875
transcript.pyannote[2322].speaker SPEAKER_19
transcript.pyannote[2322].start 11887.33784375
transcript.pyannote[2322].end 11889.56534375
transcript.pyannote[2323].speaker SPEAKER_19
transcript.pyannote[2323].start 11889.85221875
transcript.pyannote[2323].end 11903.97659375
transcript.pyannote[2324].speaker SPEAKER_19
transcript.pyannote[2324].start 11904.21284375
transcript.pyannote[2324].end 11906.17034375
transcript.pyannote[2325].speaker SPEAKER_19
transcript.pyannote[2325].start 11906.65971875
transcript.pyannote[2325].end 11909.34284375
transcript.pyannote[2326].speaker SPEAKER_20
transcript.pyannote[2326].start 11909.34284375
transcript.pyannote[2326].end 11909.35971875
transcript.pyannote[2327].speaker SPEAKER_20
transcript.pyannote[2327].start 11910.50721875
transcript.pyannote[2327].end 11910.96284375
transcript.pyannote[2328].speaker SPEAKER_20
transcript.pyannote[2328].start 11911.04721875
transcript.pyannote[2328].end 11924.04096875
transcript.pyannote[2329].speaker SPEAKER_20
transcript.pyannote[2329].start 11924.24346875
transcript.pyannote[2329].end 11925.28971875
transcript.pyannote[2330].speaker SPEAKER_20
transcript.pyannote[2330].start 11925.62721875
transcript.pyannote[2330].end 11941.08471875
transcript.pyannote[2331].speaker SPEAKER_19
transcript.pyannote[2331].start 11936.03909375
transcript.pyannote[2331].end 11937.23721875
transcript.pyannote[2332].speaker SPEAKER_19
transcript.pyannote[2332].start 11937.81096875
transcript.pyannote[2332].end 11941.79346875
transcript.pyannote[2333].speaker SPEAKER_19
transcript.pyannote[2333].start 11942.11409375
transcript.pyannote[2333].end 11945.91096875
transcript.pyannote[2334].speaker SPEAKER_19
transcript.pyannote[2334].start 11946.36659375
transcript.pyannote[2334].end 11954.16284375
transcript.pyannote[2335].speaker SPEAKER_19
transcript.pyannote[2335].start 11954.98971875
transcript.pyannote[2335].end 11958.71909375
transcript.pyannote[2336].speaker SPEAKER_19
transcript.pyannote[2336].start 11959.84971875
transcript.pyannote[2336].end 11965.35096875
transcript.pyannote[2337].speaker SPEAKER_19
transcript.pyannote[2337].start 11966.02596875
transcript.pyannote[2337].end 11966.85284375
transcript.pyannote[2338].speaker SPEAKER_19
transcript.pyannote[2338].start 11968.03409375
transcript.pyannote[2338].end 11969.50221875
transcript.pyannote[2339].speaker SPEAKER_19
transcript.pyannote[2339].start 11970.61596875
transcript.pyannote[2339].end 11973.31596875
transcript.pyannote[2340].speaker SPEAKER_19
transcript.pyannote[2340].start 11973.67034375
transcript.pyannote[2340].end 11978.15909375
transcript.pyannote[2341].speaker SPEAKER_19
transcript.pyannote[2341].start 11978.54721875
transcript.pyannote[2341].end 11984.87534375
transcript.pyannote[2342].speaker SPEAKER_19
transcript.pyannote[2342].start 11985.44909375
transcript.pyannote[2342].end 11988.19971875
transcript.pyannote[2343].speaker SPEAKER_19
transcript.pyannote[2343].start 11988.70596875
transcript.pyannote[2343].end 11994.56159375
transcript.pyannote[2344].speaker SPEAKER_19
transcript.pyannote[2344].start 11994.81471875
transcript.pyannote[2344].end 12000.06284375
transcript.pyannote[2345].speaker SPEAKER_19
transcript.pyannote[2345].start 12000.45096875
transcript.pyannote[2345].end 12009.71534375
transcript.pyannote[2346].speaker SPEAKER_19
transcript.pyannote[2346].start 12010.01909375
transcript.pyannote[2346].end 12018.52409375
transcript.pyannote[2347].speaker SPEAKER_19
transcript.pyannote[2347].start 12019.80659375
transcript.pyannote[2347].end 12032.02409375
transcript.pyannote[2348].speaker SPEAKER_19
transcript.pyannote[2348].start 12032.29409375
transcript.pyannote[2348].end 12035.43284375
transcript.pyannote[2349].speaker SPEAKER_19
transcript.pyannote[2349].start 12036.79971875
transcript.pyannote[2349].end 12038.20034375
transcript.pyannote[2350].speaker SPEAKER_30
transcript.pyannote[2350].start 12038.92596875
transcript.pyannote[2350].end 12039.21284375
transcript.pyannote[2351].speaker SPEAKER_30
transcript.pyannote[2351].start 12039.43221875
transcript.pyannote[2351].end 12040.42784375
transcript.pyannote[2352].speaker SPEAKER_30
transcript.pyannote[2352].start 12040.91721875
transcript.pyannote[2352].end 12044.19096875
transcript.pyannote[2353].speaker SPEAKER_30
transcript.pyannote[2353].start 12045.55784375
transcript.pyannote[2353].end 12047.66721875
transcript.pyannote[2354].speaker SPEAKER_06
transcript.pyannote[2354].start 12054.53534375
transcript.pyannote[2354].end 12056.67846875
transcript.pyannote[2355].speaker SPEAKER_30
transcript.pyannote[2355].start 12056.96534375
transcript.pyannote[2355].end 12058.39971875
transcript.pyannote[2356].speaker SPEAKER_06
transcript.pyannote[2356].start 12057.03284375
transcript.pyannote[2356].end 12058.28159375
transcript.pyannote[2357].speaker SPEAKER_30
transcript.pyannote[2357].start 12058.48409375
transcript.pyannote[2357].end 12060.99846875
transcript.pyannote[2358].speaker SPEAKER_30
transcript.pyannote[2358].start 12061.92659375
transcript.pyannote[2358].end 12062.39909375
transcript.pyannote[2359].speaker SPEAKER_30
transcript.pyannote[2359].start 12065.95971875
transcript.pyannote[2359].end 12065.97659375
transcript.pyannote[2360].speaker SPEAKER_20
transcript.pyannote[2360].start 12065.97659375
transcript.pyannote[2360].end 12067.00596875
transcript.pyannote[2361].speaker SPEAKER_06
transcript.pyannote[2361].start 12067.03971875
transcript.pyannote[2361].end 12070.02659375
transcript.pyannote[2362].speaker SPEAKER_06
transcript.pyannote[2362].start 12070.29659375
transcript.pyannote[2362].end 12075.40971875
transcript.pyannote[2363].speaker SPEAKER_06
transcript.pyannote[2363].start 12075.94971875
transcript.pyannote[2363].end 12078.24471875
transcript.pyannote[2364].speaker SPEAKER_06
transcript.pyannote[2364].start 12078.43034375
transcript.pyannote[2364].end 12083.32409375
transcript.pyannote[2365].speaker SPEAKER_06
transcript.pyannote[2365].start 12083.77971875
transcript.pyannote[2365].end 12085.14659375
transcript.pyannote[2366].speaker SPEAKER_06
transcript.pyannote[2366].start 12085.66971875
transcript.pyannote[2366].end 12089.92221875
transcript.pyannote[2367].speaker SPEAKER_06
transcript.pyannote[2367].start 12090.22596875
transcript.pyannote[2367].end 12103.43909375
transcript.pyannote[2368].speaker SPEAKER_20
transcript.pyannote[2368].start 12105.95346875
transcript.pyannote[2368].end 12106.32471875
transcript.pyannote[2369].speaker SPEAKER_20
transcript.pyannote[2369].start 12107.10096875
transcript.pyannote[2369].end 12111.15096875
transcript.pyannote[2370].speaker SPEAKER_06
transcript.pyannote[2370].start 12111.15096875
transcript.pyannote[2370].end 12112.80471875
transcript.pyannote[2371].speaker SPEAKER_06
transcript.pyannote[2371].start 12112.88909375
transcript.pyannote[2371].end 12115.20096875
transcript.pyannote[2372].speaker SPEAKER_20
transcript.pyannote[2372].start 12112.99034375
transcript.pyannote[2372].end 12113.02409375
transcript.pyannote[2373].speaker SPEAKER_20
transcript.pyannote[2373].start 12114.50909375
transcript.pyannote[2373].end 12116.06159375
transcript.pyannote[2374].speaker SPEAKER_06
transcript.pyannote[2374].start 12115.55534375
transcript.pyannote[2374].end 12120.82034375
transcript.pyannote[2375].speaker SPEAKER_20
transcript.pyannote[2375].start 12120.73596875
transcript.pyannote[2375].end 12137.56034375
transcript.pyannote[2376].speaker SPEAKER_20
transcript.pyannote[2376].start 12137.93159375
transcript.pyannote[2376].end 12142.74096875
transcript.pyannote[2377].speaker SPEAKER_06
transcript.pyannote[2377].start 12143.14596875
transcript.pyannote[2377].end 12147.28034375
transcript.pyannote[2378].speaker SPEAKER_20
transcript.pyannote[2378].start 12143.17971875
transcript.pyannote[2378].end 12143.90534375
transcript.pyannote[2379].speaker SPEAKER_06
transcript.pyannote[2379].start 12147.44909375
transcript.pyannote[2379].end 12151.97159375
transcript.pyannote[2380].speaker SPEAKER_06
transcript.pyannote[2380].start 12152.96721875
transcript.pyannote[2380].end 12161.26971875
transcript.pyannote[2381].speaker SPEAKER_20
transcript.pyannote[2381].start 12161.59034375
transcript.pyannote[2381].end 12169.75784375
transcript.pyannote[2382].speaker SPEAKER_20
transcript.pyannote[2382].start 12169.97721875
transcript.pyannote[2382].end 12184.87784375
transcript.pyannote[2383].speaker SPEAKER_00
transcript.pyannote[2383].start 12177.87471875
transcript.pyannote[2383].end 12177.90846875
transcript.pyannote[2384].speaker SPEAKER_06
transcript.pyannote[2384].start 12177.90846875
transcript.pyannote[2384].end 12178.38096875
transcript.pyannote[2385].speaker SPEAKER_06
transcript.pyannote[2385].start 12184.69221875
transcript.pyannote[2385].end 12197.73659375
transcript.pyannote[2386].speaker SPEAKER_22
transcript.pyannote[2386].start 12196.53846875
transcript.pyannote[2386].end 12198.15846875
transcript.pyannote[2387].speaker SPEAKER_06
transcript.pyannote[2387].start 12198.07409375
transcript.pyannote[2387].end 12199.23846875
transcript.pyannote[2388].speaker SPEAKER_06
transcript.pyannote[2388].start 12200.08221875
transcript.pyannote[2388].end 12200.74034375
transcript.pyannote[2389].speaker SPEAKER_06
transcript.pyannote[2389].start 12200.84159375
transcript.pyannote[2389].end 12206.76471875
transcript.pyannote[2390].speaker SPEAKER_06
transcript.pyannote[2390].start 12206.98409375
transcript.pyannote[2390].end 12207.57471875
transcript.pyannote[2391].speaker SPEAKER_06
transcript.pyannote[2391].start 12208.04721875
transcript.pyannote[2391].end 12225.09096875
transcript.pyannote[2392].speaker SPEAKER_06
transcript.pyannote[2392].start 12225.96846875
transcript.pyannote[2392].end 12232.49909375
transcript.pyannote[2393].speaker SPEAKER_06
transcript.pyannote[2393].start 12241.64534375
transcript.pyannote[2393].end 12247.55159375
transcript.pyannote[2394].speaker SPEAKER_12
transcript.pyannote[2394].start 12248.00721875
transcript.pyannote[2394].end 12250.08284375
transcript.pyannote[2395].speaker SPEAKER_12
transcript.pyannote[2395].start 12250.21784375
transcript.pyannote[2395].end 12268.40909375
transcript.pyannote[2396].speaker SPEAKER_08
transcript.pyannote[2396].start 12260.22471875
transcript.pyannote[2396].end 12261.03471875
transcript.pyannote[2397].speaker SPEAKER_06
transcript.pyannote[2397].start 12261.03471875
transcript.pyannote[2397].end 12261.35534375
transcript.pyannote[2398].speaker SPEAKER_08
transcript.pyannote[2398].start 12261.35534375
transcript.pyannote[2398].end 12261.40596875
transcript.pyannote[2399].speaker SPEAKER_08
transcript.pyannote[2399].start 12262.26659375
transcript.pyannote[2399].end 12262.28346875
transcript.pyannote[2400].speaker SPEAKER_06
transcript.pyannote[2400].start 12262.28346875
transcript.pyannote[2400].end 12262.65471875
transcript.pyannote[2401].speaker SPEAKER_06
transcript.pyannote[2401].start 12268.40909375
transcript.pyannote[2401].end 12269.10096875
transcript.pyannote[2402].speaker SPEAKER_06
transcript.pyannote[2402].start 12269.52284375
transcript.pyannote[2402].end 12275.59784375
transcript.pyannote[2403].speaker SPEAKER_06
transcript.pyannote[2403].start 12276.69471875
transcript.pyannote[2403].end 12283.79909375
transcript.pyannote[2404].speaker SPEAKER_06
transcript.pyannote[2404].start 12283.93409375
transcript.pyannote[2404].end 12287.20784375
transcript.pyannote[2405].speaker SPEAKER_06
transcript.pyannote[2405].start 12287.91659375
transcript.pyannote[2405].end 12289.85721875
transcript.pyannote[2406].speaker SPEAKER_12
transcript.pyannote[2406].start 12292.70909375
transcript.pyannote[2406].end 12297.16409375
transcript.pyannote[2407].speaker SPEAKER_12
transcript.pyannote[2407].start 12297.21471875
transcript.pyannote[2407].end 12303.71159375
transcript.pyannote[2408].speaker SPEAKER_12
transcript.pyannote[2408].start 12303.79596875
transcript.pyannote[2408].end 12308.79096875
transcript.pyannote[2409].speaker SPEAKER_12
transcript.pyannote[2409].start 12309.14534375
transcript.pyannote[2409].end 12319.84409375
transcript.pyannote[2410].speaker SPEAKER_06
transcript.pyannote[2410].start 12320.14784375
transcript.pyannote[2410].end 12323.55659375
transcript.pyannote[2411].speaker SPEAKER_06
transcript.pyannote[2411].start 12323.97846875
transcript.pyannote[2411].end 12325.41284375
transcript.pyannote[2412].speaker SPEAKER_06
transcript.pyannote[2412].start 12325.75034375
transcript.pyannote[2412].end 12356.29409375
transcript.pyannote[2413].speaker SPEAKER_30
transcript.pyannote[2413].start 12352.39596875
transcript.pyannote[2413].end 12352.73346875
transcript.pyannote[2414].speaker SPEAKER_30
transcript.pyannote[2414].start 12356.32784375
transcript.pyannote[2414].end 12358.57221875
transcript.pyannote[2415].speaker SPEAKER_06
transcript.pyannote[2415].start 12358.06596875
transcript.pyannote[2415].end 12358.15034375
transcript.pyannote[2416].speaker SPEAKER_30
transcript.pyannote[2416].start 12359.23034375
transcript.pyannote[2416].end 12360.27659375
transcript.pyannote[2417].speaker SPEAKER_30
transcript.pyannote[2417].start 12360.76596875
transcript.pyannote[2417].end 12361.59284375
transcript.pyannote[2418].speaker SPEAKER_30
transcript.pyannote[2418].start 12362.68971875
transcript.pyannote[2418].end 12369.47346875
transcript.pyannote[2419].speaker SPEAKER_30
transcript.pyannote[2419].start 12369.81096875
transcript.pyannote[2419].end 12372.00471875
transcript.pyannote[2420].speaker SPEAKER_30
transcript.pyannote[2420].start 12372.76409375
transcript.pyannote[2420].end 12373.77659375
transcript.pyannote[2421].speaker SPEAKER_30
transcript.pyannote[2421].start 12373.99596875
transcript.pyannote[2421].end 12375.81846875
transcript.pyannote[2422].speaker SPEAKER_30
transcript.pyannote[2422].start 12376.27409375
transcript.pyannote[2422].end 12378.40034375
transcript.pyannote[2423].speaker SPEAKER_08
transcript.pyannote[2423].start 12382.36596875
transcript.pyannote[2423].end 12386.77034375
transcript.pyannote[2424].speaker SPEAKER_30
transcript.pyannote[2424].start 12386.68596875
transcript.pyannote[2424].end 12388.20471875
transcript.pyannote[2425].speaker SPEAKER_30
transcript.pyannote[2425].start 12388.39034375
transcript.pyannote[2425].end 12389.75721875
transcript.pyannote[2426].speaker SPEAKER_20
transcript.pyannote[2426].start 12393.63846875
transcript.pyannote[2426].end 12393.67221875
transcript.pyannote[2427].speaker SPEAKER_20
transcript.pyannote[2427].start 12394.26284375
transcript.pyannote[2427].end 12394.27971875
transcript.pyannote[2428].speaker SPEAKER_30
transcript.pyannote[2428].start 12394.27971875
transcript.pyannote[2428].end 12394.97159375
transcript.pyannote[2429].speaker SPEAKER_20
transcript.pyannote[2429].start 12394.97159375
transcript.pyannote[2429].end 12395.22471875
transcript.pyannote[2430].speaker SPEAKER_20
transcript.pyannote[2430].start 12395.25846875
transcript.pyannote[2430].end 12395.27534375
transcript.pyannote[2431].speaker SPEAKER_08
transcript.pyannote[2431].start 12395.27534375
transcript.pyannote[2431].end 12396.25409375
transcript.pyannote[2432].speaker SPEAKER_08
transcript.pyannote[2432].start 12396.49034375
transcript.pyannote[2432].end 12404.15159375
transcript.pyannote[2433].speaker SPEAKER_08
transcript.pyannote[2433].start 12404.37096875
transcript.pyannote[2433].end 12408.91034375
transcript.pyannote[2434].speaker SPEAKER_08
transcript.pyannote[2434].start 12409.23096875
transcript.pyannote[2434].end 12413.66909375
transcript.pyannote[2435].speaker SPEAKER_08
transcript.pyannote[2435].start 12414.04034375
transcript.pyannote[2435].end 12417.17909375
transcript.pyannote[2436].speaker SPEAKER_08
transcript.pyannote[2436].start 12417.53346875
transcript.pyannote[2436].end 12420.30096875
transcript.pyannote[2437].speaker SPEAKER_08
transcript.pyannote[2437].start 12420.53721875
transcript.pyannote[2437].end 12427.48971875
transcript.pyannote[2438].speaker SPEAKER_20
transcript.pyannote[2438].start 12427.59096875
transcript.pyannote[2438].end 12428.08034375
transcript.pyannote[2439].speaker SPEAKER_20
transcript.pyannote[2439].start 12428.90721875
transcript.pyannote[2439].end 12439.40346875
transcript.pyannote[2440].speaker SPEAKER_08
transcript.pyannote[2440].start 12430.98284375
transcript.pyannote[2440].end 12431.30346875
transcript.pyannote[2441].speaker SPEAKER_25
transcript.pyannote[2441].start 12431.30346875
transcript.pyannote[2441].end 12431.32034375
transcript.pyannote[2442].speaker SPEAKER_08
transcript.pyannote[2442].start 12435.48846875
transcript.pyannote[2442].end 12435.50534375
transcript.pyannote[2443].speaker SPEAKER_25
transcript.pyannote[2443].start 12435.50534375
transcript.pyannote[2443].end 12435.96096875
transcript.pyannote[2444].speaker SPEAKER_25
transcript.pyannote[2444].start 12437.54721875
transcript.pyannote[2444].end 12437.93534375
transcript.pyannote[2445].speaker SPEAKER_25
transcript.pyannote[2445].start 12439.40346875
transcript.pyannote[2445].end 12439.84221875
transcript.pyannote[2446].speaker SPEAKER_20
transcript.pyannote[2446].start 12439.62284375
transcript.pyannote[2446].end 12458.75909375
transcript.pyannote[2447].speaker SPEAKER_25
transcript.pyannote[2447].start 12445.81596875
transcript.pyannote[2447].end 12447.11534375
transcript.pyannote[2448].speaker SPEAKER_00
transcript.pyannote[2448].start 12447.11534375
transcript.pyannote[2448].end 12447.14909375
transcript.pyannote[2449].speaker SPEAKER_08
transcript.pyannote[2449].start 12456.27846875
transcript.pyannote[2449].end 12466.97721875
transcript.pyannote[2450].speaker SPEAKER_03
transcript.pyannote[2450].start 12466.97721875
transcript.pyannote[2450].end 12467.24721875
transcript.pyannote[2451].speaker SPEAKER_08
transcript.pyannote[2451].start 12467.24721875
transcript.pyannote[2451].end 12476.34284375
transcript.pyannote[2452].speaker SPEAKER_08
transcript.pyannote[2452].start 12476.59596875
transcript.pyannote[2452].end 12496.52534375
transcript.pyannote[2453].speaker SPEAKER_08
transcript.pyannote[2453].start 12496.84596875
transcript.pyannote[2453].end 12503.00534375
transcript.pyannote[2454].speaker SPEAKER_08
transcript.pyannote[2454].start 12503.37659375
transcript.pyannote[2454].end 12511.88159375
transcript.pyannote[2455].speaker SPEAKER_08
transcript.pyannote[2455].start 12512.18534375
transcript.pyannote[2455].end 12525.29721875
transcript.pyannote[2456].speaker SPEAKER_08
transcript.pyannote[2456].start 12525.51659375
transcript.pyannote[2456].end 12533.12721875
transcript.pyannote[2457].speaker SPEAKER_15
transcript.pyannote[2457].start 12533.32971875
transcript.pyannote[2457].end 12533.41409375
transcript.pyannote[2458].speaker SPEAKER_08
transcript.pyannote[2458].start 12533.41409375
transcript.pyannote[2458].end 12543.25221875
transcript.pyannote[2459].speaker SPEAKER_08
transcript.pyannote[2459].start 12543.52221875
transcript.pyannote[2459].end 12545.86784375
transcript.pyannote[2460].speaker SPEAKER_08
transcript.pyannote[2460].start 12546.10409375
transcript.pyannote[2460].end 12548.88846875
transcript.pyannote[2461].speaker SPEAKER_08
transcript.pyannote[2461].start 12549.44534375
transcript.pyannote[2461].end 12569.89784375
transcript.pyannote[2462].speaker SPEAKER_03
transcript.pyannote[2462].start 12569.89784375
transcript.pyannote[2462].end 12570.18471875
transcript.pyannote[2463].speaker SPEAKER_08
transcript.pyannote[2463].start 12570.16784375
transcript.pyannote[2463].end 12598.87221875
transcript.pyannote[2464].speaker SPEAKER_08
transcript.pyannote[2464].start 12599.02409375
transcript.pyannote[2464].end 12600.03659375
transcript.pyannote[2465].speaker SPEAKER_08
transcript.pyannote[2465].start 12600.34034375
transcript.pyannote[2465].end 12613.84034375
transcript.pyannote[2466].speaker SPEAKER_08
transcript.pyannote[2466].start 12614.38034375
transcript.pyannote[2466].end 12622.93596875
transcript.pyannote[2467].speaker SPEAKER_22
transcript.pyannote[2467].start 12623.54346875
transcript.pyannote[2467].end 12626.98596875
transcript.pyannote[2468].speaker SPEAKER_22
transcript.pyannote[2468].start 12627.59346875
transcript.pyannote[2468].end 12659.57159375
transcript.pyannote[2469].speaker SPEAKER_00
transcript.pyannote[2469].start 12632.87534375
transcript.pyannote[2469].end 12632.95971875
transcript.pyannote[2470].speaker SPEAKER_25
transcript.pyannote[2470].start 12632.95971875
transcript.pyannote[2470].end 12632.97659375
transcript.pyannote[2471].speaker SPEAKER_00
transcript.pyannote[2471].start 12632.97659375
transcript.pyannote[2471].end 12633.31409375
transcript.pyannote[2472].speaker SPEAKER_00
transcript.pyannote[2472].start 12643.11846875
transcript.pyannote[2472].end 12643.74284375
transcript.pyannote[2473].speaker SPEAKER_22
transcript.pyannote[2473].start 12660.16221875
transcript.pyannote[2473].end 12663.82409375
transcript.pyannote[2474].speaker SPEAKER_22
transcript.pyannote[2474].start 12664.16159375
transcript.pyannote[2474].end 12670.33784375
transcript.pyannote[2475].speaker SPEAKER_08
transcript.pyannote[2475].start 12667.82346875
transcript.pyannote[2475].end 12687.87096875
transcript.pyannote[2476].speaker SPEAKER_22
transcript.pyannote[2476].start 12672.02534375
transcript.pyannote[2476].end 12672.32909375
transcript.pyannote[2477].speaker SPEAKER_22
transcript.pyannote[2477].start 12682.04909375
transcript.pyannote[2477].end 12684.17534375
transcript.pyannote[2478].speaker SPEAKER_22
transcript.pyannote[2478].start 12687.24659375
transcript.pyannote[2478].end 12693.50721875
transcript.pyannote[2479].speaker SPEAKER_08
transcript.pyannote[2479].start 12688.20846875
transcript.pyannote[2479].end 12689.10284375
transcript.pyannote[2480].speaker SPEAKER_22
transcript.pyannote[2480].start 12694.40159375
transcript.pyannote[2480].end 12699.36284375
transcript.pyannote[2481].speaker SPEAKER_08
transcript.pyannote[2481].start 12698.82284375
transcript.pyannote[2481].end 12705.99471875
transcript.pyannote[2482].speaker SPEAKER_22
transcript.pyannote[2482].start 12705.28596875
transcript.pyannote[2482].end 12713.23409375
transcript.pyannote[2483].speaker SPEAKER_08
transcript.pyannote[2483].start 12707.41221875
transcript.pyannote[2483].end 12707.68221875
transcript.pyannote[2484].speaker SPEAKER_08
transcript.pyannote[2484].start 12708.07034375
transcript.pyannote[2484].end 12708.45846875
transcript.pyannote[2485].speaker SPEAKER_08
transcript.pyannote[2485].start 12711.74909375
transcript.pyannote[2485].end 12717.82409375
transcript.pyannote[2486].speaker SPEAKER_22
transcript.pyannote[2486].start 12714.16221875
transcript.pyannote[2486].end 12714.49971875
transcript.pyannote[2487].speaker SPEAKER_22
transcript.pyannote[2487].start 12716.05221875
transcript.pyannote[2487].end 12716.06909375
transcript.pyannote[2488].speaker SPEAKER_30
transcript.pyannote[2488].start 12716.06909375
transcript.pyannote[2488].end 12720.84471875
transcript.pyannote[2489].speaker SPEAKER_22
transcript.pyannote[2489].start 12717.82409375
transcript.pyannote[2489].end 12717.87471875
transcript.pyannote[2490].speaker SPEAKER_30
transcript.pyannote[2490].start 12721.31721875
transcript.pyannote[2490].end 12723.62909375
transcript.pyannote[2491].speaker SPEAKER_07
transcript.pyannote[2491].start 12732.48846875
transcript.pyannote[2491].end 12735.76221875
transcript.pyannote[2492].speaker SPEAKER_30
transcript.pyannote[2492].start 12735.76221875
transcript.pyannote[2492].end 12737.24721875
transcript.pyannote[2493].speaker SPEAKER_07
transcript.pyannote[2493].start 12743.37284375
transcript.pyannote[2493].end 12743.86221875
transcript.pyannote[2494].speaker SPEAKER_07
transcript.pyannote[2494].start 12744.46971875
transcript.pyannote[2494].end 12745.70159375
transcript.pyannote[2495].speaker SPEAKER_07
transcript.pyannote[2495].start 12745.92096875
transcript.pyannote[2495].end 12797.35596875
transcript.pyannote[2496].speaker SPEAKER_15
transcript.pyannote[2496].start 12798.16596875
transcript.pyannote[2496].end 12806.67096875
transcript.pyannote[2497].speaker SPEAKER_15
transcript.pyannote[2497].start 12807.26159375
transcript.pyannote[2497].end 12811.02471875
transcript.pyannote[2498].speaker SPEAKER_15
transcript.pyannote[2498].start 12811.21034375
transcript.pyannote[2498].end 12827.83221875
transcript.pyannote[2499].speaker SPEAKER_07
transcript.pyannote[2499].start 12826.95471875
transcript.pyannote[2499].end 12829.01346875
transcript.pyannote[2500].speaker SPEAKER_15
transcript.pyannote[2500].start 12828.52409375
transcript.pyannote[2500].end 12829.16534375
transcript.pyannote[2501].speaker SPEAKER_15
transcript.pyannote[2501].start 12829.65471875
transcript.pyannote[2501].end 12831.94971875
transcript.pyannote[2502].speaker SPEAKER_07
transcript.pyannote[2502].start 12831.94971875
transcript.pyannote[2502].end 12846.61409375
transcript.pyannote[2503].speaker SPEAKER_15
transcript.pyannote[2503].start 12832.00034375
transcript.pyannote[2503].end 12832.48971875
transcript.pyannote[2504].speaker SPEAKER_07
transcript.pyannote[2504].start 12847.54221875
transcript.pyannote[2504].end 12860.19846875
transcript.pyannote[2505].speaker SPEAKER_15
transcript.pyannote[2505].start 12861.39659375
transcript.pyannote[2505].end 12865.42971875
transcript.pyannote[2506].speaker SPEAKER_15
transcript.pyannote[2506].start 12865.95284375
transcript.pyannote[2506].end 12870.52596875
transcript.pyannote[2507].speaker SPEAKER_15
transcript.pyannote[2507].start 12870.74534375
transcript.pyannote[2507].end 12875.04846875
transcript.pyannote[2508].speaker SPEAKER_07
transcript.pyannote[2508].start 12871.04909375
transcript.pyannote[2508].end 12872.36534375
transcript.pyannote[2509].speaker SPEAKER_07
transcript.pyannote[2509].start 12875.04846875
transcript.pyannote[2509].end 12876.44909375
transcript.pyannote[2510].speaker SPEAKER_15
transcript.pyannote[2510].start 12876.11159375
transcript.pyannote[2510].end 12879.46971875
transcript.pyannote[2511].speaker SPEAKER_07
transcript.pyannote[2511].start 12877.98471875
transcript.pyannote[2511].end 12883.31721875
transcript.pyannote[2512].speaker SPEAKER_15
transcript.pyannote[2512].start 12883.31721875
transcript.pyannote[2512].end 12887.80596875
transcript.pyannote[2513].speaker SPEAKER_07
transcript.pyannote[2513].start 12883.35096875
transcript.pyannote[2513].end 12883.89096875
transcript.pyannote[2514].speaker SPEAKER_07
transcript.pyannote[2514].start 12887.80596875
transcript.pyannote[2514].end 12903.31409375
transcript.pyannote[2515].speaker SPEAKER_07
transcript.pyannote[2515].start 12904.07346875
transcript.pyannote[2515].end 12904.86659375
transcript.pyannote[2516].speaker SPEAKER_15
transcript.pyannote[2516].start 12904.12409375
transcript.pyannote[2516].end 12904.84971875
transcript.pyannote[2517].speaker SPEAKER_15
transcript.pyannote[2517].start 12904.86659375
transcript.pyannote[2517].end 12904.88346875
transcript.pyannote[2518].speaker SPEAKER_07
transcript.pyannote[2518].start 12904.88346875
transcript.pyannote[2518].end 12904.95096875
transcript.pyannote[2519].speaker SPEAKER_15
transcript.pyannote[2519].start 12904.95096875
transcript.pyannote[2519].end 12905.08596875
transcript.pyannote[2520].speaker SPEAKER_07
transcript.pyannote[2520].start 12905.08596875
transcript.pyannote[2520].end 12905.17034375
transcript.pyannote[2521].speaker SPEAKER_15
transcript.pyannote[2521].start 12905.17034375
transcript.pyannote[2521].end 12915.80159375
transcript.pyannote[2522].speaker SPEAKER_07
transcript.pyannote[2522].start 12915.80159375
transcript.pyannote[2522].end 12915.83534375
transcript.pyannote[2523].speaker SPEAKER_15
transcript.pyannote[2523].start 12916.24034375
transcript.pyannote[2523].end 12916.27409375
transcript.pyannote[2524].speaker SPEAKER_07
transcript.pyannote[2524].start 12916.27409375
transcript.pyannote[2524].end 12924.54284375
transcript.pyannote[2525].speaker SPEAKER_15
transcript.pyannote[2525].start 12921.15096875
transcript.pyannote[2525].end 12922.60221875
transcript.pyannote[2526].speaker SPEAKER_15
transcript.pyannote[2526].start 12924.54284375
transcript.pyannote[2526].end 12924.55971875
transcript.pyannote[2527].speaker SPEAKER_07
transcript.pyannote[2527].start 12924.55971875
transcript.pyannote[2527].end 12924.69471875
transcript.pyannote[2528].speaker SPEAKER_07
transcript.pyannote[2528].start 12924.74534375
transcript.pyannote[2528].end 12924.82971875
transcript.pyannote[2529].speaker SPEAKER_15
transcript.pyannote[2529].start 12924.82971875
transcript.pyannote[2529].end 12931.59659375
transcript.pyannote[2530].speaker SPEAKER_15
transcript.pyannote[2530].start 12931.83284375
transcript.pyannote[2530].end 12935.49471875
transcript.pyannote[2531].speaker SPEAKER_15
transcript.pyannote[2531].start 12935.84909375
transcript.pyannote[2531].end 12937.33409375
transcript.pyannote[2532].speaker SPEAKER_15
transcript.pyannote[2532].start 12937.63784375
transcript.pyannote[2532].end 12940.40534375
transcript.pyannote[2533].speaker SPEAKER_15
transcript.pyannote[2533].start 12940.79346875
transcript.pyannote[2533].end 12945.23159375
transcript.pyannote[2534].speaker SPEAKER_07
transcript.pyannote[2534].start 12945.19784375
transcript.pyannote[2534].end 12994.13534375
transcript.pyannote[2535].speaker SPEAKER_15
transcript.pyannote[2535].start 12950.85096875
transcript.pyannote[2535].end 12951.32346875
transcript.pyannote[2536].speaker SPEAKER_15
transcript.pyannote[2536].start 12994.13534375
transcript.pyannote[2536].end 12994.38846875
transcript.pyannote[2537].speaker SPEAKER_15
transcript.pyannote[2537].start 12994.72596875
transcript.pyannote[2537].end 13007.43284375
transcript.pyannote[2538].speaker SPEAKER_07
transcript.pyannote[2538].start 13002.52221875
transcript.pyannote[2538].end 13002.77534375
transcript.pyannote[2539].speaker SPEAKER_07
transcript.pyannote[2539].start 13005.37409375
transcript.pyannote[2539].end 13006.23471875
transcript.pyannote[2540].speaker SPEAKER_07
transcript.pyannote[2540].start 13006.89284375
transcript.pyannote[2540].end 13015.78596875
transcript.pyannote[2541].speaker SPEAKER_15
transcript.pyannote[2541].start 13010.55471875
transcript.pyannote[2541].end 13010.95971875
transcript.pyannote[2542].speaker SPEAKER_15
transcript.pyannote[2542].start 13012.79909375
transcript.pyannote[2542].end 13012.90034375
transcript.pyannote[2543].speaker SPEAKER_15
transcript.pyannote[2543].start 13014.18284375
transcript.pyannote[2543].end 13014.33471875
transcript.pyannote[2544].speaker SPEAKER_30
transcript.pyannote[2544].start 13015.98846875
transcript.pyannote[2544].end 13018.35096875
transcript.pyannote[2545].speaker SPEAKER_30
transcript.pyannote[2545].start 13018.94159375
transcript.pyannote[2545].end 13019.32971875
transcript.pyannote[2546].speaker SPEAKER_30
transcript.pyannote[2546].start 13019.58284375
transcript.pyannote[2546].end 13020.88221875
transcript.pyannote[2547].speaker SPEAKER_30
transcript.pyannote[2547].start 13021.60784375
transcript.pyannote[2547].end 13024.03784375
transcript.pyannote[2548].speaker SPEAKER_11
transcript.pyannote[2548].start 13031.61471875
transcript.pyannote[2548].end 13035.59721875
transcript.pyannote[2549].speaker SPEAKER_30
transcript.pyannote[2549].start 13035.22596875
transcript.pyannote[2549].end 13039.03971875
transcript.pyannote[2550].speaker SPEAKER_30
transcript.pyannote[2550].start 13041.90846875
transcript.pyannote[2550].end 13043.14034375
transcript.pyannote[2551].speaker SPEAKER_30
transcript.pyannote[2551].start 13044.70971875
transcript.pyannote[2551].end 13045.28346875
transcript.pyannote[2552].speaker SPEAKER_11
transcript.pyannote[2552].start 13045.89096875
transcript.pyannote[2552].end 13061.80409375
transcript.pyannote[2553].speaker SPEAKER_11
transcript.pyannote[2553].start 13062.07409375
transcript.pyannote[2553].end 13101.61221875
transcript.pyannote[2554].speaker SPEAKER_15
transcript.pyannote[2554].start 13102.11846875
transcript.pyannote[2554].end 13105.10534375
transcript.pyannote[2555].speaker SPEAKER_15
transcript.pyannote[2555].start 13105.29096875
transcript.pyannote[2555].end 13114.38659375
transcript.pyannote[2556].speaker SPEAKER_15
transcript.pyannote[2556].start 13114.47096875
transcript.pyannote[2556].end 13118.33534375
transcript.pyannote[2557].speaker SPEAKER_15
transcript.pyannote[2557].start 13118.63909375
transcript.pyannote[2557].end 13120.17471875
transcript.pyannote[2558].speaker SPEAKER_15
transcript.pyannote[2558].start 13120.32659375
transcript.pyannote[2558].end 13134.55221875
transcript.pyannote[2559].speaker SPEAKER_11
transcript.pyannote[2559].start 13133.03346875
transcript.pyannote[2559].end 13175.79471875
transcript.pyannote[2560].speaker SPEAKER_15
transcript.pyannote[2560].start 13135.37909375
transcript.pyannote[2560].end 13136.18909375
transcript.pyannote[2561].speaker SPEAKER_07
transcript.pyannote[2561].start 13148.67659375
transcript.pyannote[2561].end 13149.16596875
transcript.pyannote[2562].speaker SPEAKER_25
transcript.pyannote[2562].start 13149.16596875
transcript.pyannote[2562].end 13149.18284375
transcript.pyannote[2563].speaker SPEAKER_11
transcript.pyannote[2563].start 13176.67221875
transcript.pyannote[2563].end 13178.74784375
transcript.pyannote[2564].speaker SPEAKER_20
transcript.pyannote[2564].start 13179.72659375
transcript.pyannote[2564].end 13180.08096875
transcript.pyannote[2565].speaker SPEAKER_20
transcript.pyannote[2565].start 13180.40159375
transcript.pyannote[2565].end 13189.96971875
transcript.pyannote[2566].speaker SPEAKER_11
transcript.pyannote[2566].start 13189.96971875
transcript.pyannote[2566].end 13193.53034375
transcript.pyannote[2567].speaker SPEAKER_20
transcript.pyannote[2567].start 13193.96909375
transcript.pyannote[2567].end 13194.00284375
transcript.pyannote[2568].speaker SPEAKER_11
transcript.pyannote[2568].start 13194.00284375
transcript.pyannote[2568].end 13194.01971875
transcript.pyannote[2569].speaker SPEAKER_20
transcript.pyannote[2569].start 13194.01971875
transcript.pyannote[2569].end 13194.67784375
transcript.pyannote[2570].speaker SPEAKER_11
transcript.pyannote[2570].start 13194.67784375
transcript.pyannote[2570].end 13257.35159375
transcript.pyannote[2571].speaker SPEAKER_11
transcript.pyannote[2571].start 13257.50346875
transcript.pyannote[2571].end 13267.45971875
transcript.pyannote[2572].speaker SPEAKER_11
transcript.pyannote[2572].start 13268.03346875
transcript.pyannote[2572].end 13280.92596875
transcript.pyannote[2573].speaker SPEAKER_20
transcript.pyannote[2573].start 13282.20846875
transcript.pyannote[2573].end 13283.27159375
transcript.pyannote[2574].speaker SPEAKER_20
transcript.pyannote[2574].start 13283.82846875
transcript.pyannote[2574].end 13297.44659375
transcript.pyannote[2575].speaker SPEAKER_00
transcript.pyannote[2575].start 13295.50596875
transcript.pyannote[2575].end 13295.99534375
transcript.pyannote[2576].speaker SPEAKER_20
transcript.pyannote[2576].start 13297.76721875
transcript.pyannote[2576].end 13308.06096875
transcript.pyannote[2577].speaker SPEAKER_11
transcript.pyannote[2577].start 13308.12846875
transcript.pyannote[2577].end 13326.45471875
transcript.pyannote[2578].speaker SPEAKER_30
transcript.pyannote[2578].start 13324.48034375
transcript.pyannote[2578].end 13325.30721875
transcript.pyannote[2579].speaker SPEAKER_30
transcript.pyannote[2579].start 13326.53909375
transcript.pyannote[2579].end 13328.44596875
transcript.pyannote[2580].speaker SPEAKER_30
transcript.pyannote[2580].start 13328.71596875
transcript.pyannote[2580].end 13329.37409375
transcript.pyannote[2581].speaker SPEAKER_20
transcript.pyannote[2581].start 13329.37409375
transcript.pyannote[2581].end 13329.40784375
transcript.pyannote[2582].speaker SPEAKER_30
transcript.pyannote[2582].start 13329.40784375
transcript.pyannote[2582].end 13332.37784375
transcript.pyannote[2583].speaker SPEAKER_20
transcript.pyannote[2583].start 13329.93096875
transcript.pyannote[2583].end 13333.27221875
transcript.pyannote[2584].speaker SPEAKER_30
transcript.pyannote[2584].start 13333.52534375
transcript.pyannote[2584].end 13336.44471875
transcript.pyannote[2585].speaker SPEAKER_28
transcript.pyannote[2585].start 13347.64971875
transcript.pyannote[2585].end 13349.96159375
transcript.pyannote[2586].speaker SPEAKER_30
transcript.pyannote[2586].start 13350.21471875
transcript.pyannote[2586].end 13350.80534375
transcript.pyannote[2587].speaker SPEAKER_28
transcript.pyannote[2587].start 13350.38346875
transcript.pyannote[2587].end 13351.41284375
transcript.pyannote[2588].speaker SPEAKER_28
transcript.pyannote[2588].start 13359.15846875
transcript.pyannote[2588].end 13359.66471875
transcript.pyannote[2589].speaker SPEAKER_28
transcript.pyannote[2589].start 13360.23846875
transcript.pyannote[2589].end 13360.89659375
transcript.pyannote[2590].speaker SPEAKER_28
transcript.pyannote[2590].start 13360.96409375
transcript.pyannote[2590].end 13369.11471875
transcript.pyannote[2591].speaker SPEAKER_28
transcript.pyannote[2591].start 13369.58721875
transcript.pyannote[2591].end 13370.49846875
transcript.pyannote[2592].speaker SPEAKER_28
transcript.pyannote[2592].start 13371.20721875
transcript.pyannote[2592].end 13374.80159375
transcript.pyannote[2593].speaker SPEAKER_28
transcript.pyannote[2593].start 13375.42596875
transcript.pyannote[2593].end 13378.32846875
transcript.pyannote[2594].speaker SPEAKER_28
transcript.pyannote[2594].start 13378.75034375
transcript.pyannote[2594].end 13385.36534375
transcript.pyannote[2595].speaker SPEAKER_25
transcript.pyannote[2595].start 13378.91909375
transcript.pyannote[2595].end 13378.96971875
transcript.pyannote[2596].speaker SPEAKER_20
transcript.pyannote[2596].start 13385.97284375
transcript.pyannote[2596].end 13400.02971875
transcript.pyannote[2597].speaker SPEAKER_20
transcript.pyannote[2597].start 13400.04659375
transcript.pyannote[2597].end 13438.45409375
transcript.pyannote[2598].speaker SPEAKER_20
transcript.pyannote[2598].start 13438.89284375
transcript.pyannote[2598].end 13442.26784375
transcript.pyannote[2599].speaker SPEAKER_20
transcript.pyannote[2599].start 13442.95971875
transcript.pyannote[2599].end 13443.41534375
transcript.pyannote[2600].speaker SPEAKER_20
transcript.pyannote[2600].start 13443.85409375
transcript.pyannote[2600].end 13451.53221875
transcript.pyannote[2601].speaker SPEAKER_20
transcript.pyannote[2601].start 13451.90346875
transcript.pyannote[2601].end 13452.56159375
transcript.pyannote[2602].speaker SPEAKER_20
transcript.pyannote[2602].start 13452.94971875
transcript.pyannote[2602].end 13479.05534375
transcript.pyannote[2603].speaker SPEAKER_28
transcript.pyannote[2603].start 13455.61596875
transcript.pyannote[2603].end 13458.50159375
transcript.pyannote[2604].speaker SPEAKER_20
transcript.pyannote[2604].start 13479.20721875
transcript.pyannote[2604].end 13479.24096875
transcript.pyannote[2605].speaker SPEAKER_28
transcript.pyannote[2605].start 13479.24096875
transcript.pyannote[2605].end 13479.37596875
transcript.pyannote[2606].speaker SPEAKER_20
transcript.pyannote[2606].start 13479.37596875
transcript.pyannote[2606].end 13479.51096875
transcript.pyannote[2607].speaker SPEAKER_28
transcript.pyannote[2607].start 13479.51096875
transcript.pyannote[2607].end 13482.48096875
transcript.pyannote[2608].speaker SPEAKER_20
transcript.pyannote[2608].start 13483.27409375
transcript.pyannote[2608].end 13514.44221875
transcript.pyannote[2609].speaker SPEAKER_16
transcript.pyannote[2609].start 13494.98534375
transcript.pyannote[2609].end 13495.12034375
transcript.pyannote[2610].speaker SPEAKER_28
transcript.pyannote[2610].start 13512.61971875
transcript.pyannote[2610].end 13514.34096875
transcript.pyannote[2611].speaker SPEAKER_28
transcript.pyannote[2611].start 13514.44221875
transcript.pyannote[2611].end 13514.57721875
transcript.pyannote[2612].speaker SPEAKER_20
transcript.pyannote[2612].start 13514.57721875
transcript.pyannote[2612].end 13514.62784375
transcript.pyannote[2613].speaker SPEAKER_28
transcript.pyannote[2613].start 13514.62784375
transcript.pyannote[2613].end 13514.69534375
transcript.pyannote[2614].speaker SPEAKER_20
transcript.pyannote[2614].start 13514.69534375
transcript.pyannote[2614].end 13517.05784375
transcript.pyannote[2615].speaker SPEAKER_28
transcript.pyannote[2615].start 13514.74596875
transcript.pyannote[2615].end 13521.96846875
transcript.pyannote[2616].speaker SPEAKER_20
transcript.pyannote[2616].start 13521.76596875
transcript.pyannote[2616].end 13521.78284375
transcript.pyannote[2617].speaker SPEAKER_22
transcript.pyannote[2617].start 13521.78284375
transcript.pyannote[2617].end 13522.44096875
transcript.pyannote[2618].speaker SPEAKER_28
transcript.pyannote[2618].start 13522.30596875
transcript.pyannote[2618].end 13531.08096875
transcript.pyannote[2619].speaker SPEAKER_20
transcript.pyannote[2619].start 13531.95846875
transcript.pyannote[2619].end 13536.64971875
transcript.pyannote[2620].speaker SPEAKER_28
transcript.pyannote[2620].start 13532.24534375
transcript.pyannote[2620].end 13532.63346875
transcript.pyannote[2621].speaker SPEAKER_28
transcript.pyannote[2621].start 13534.97909375
transcript.pyannote[2621].end 13536.26159375
transcript.pyannote[2622].speaker SPEAKER_28
transcript.pyannote[2622].start 13536.54846875
transcript.pyannote[2622].end 13537.35846875
transcript.pyannote[2623].speaker SPEAKER_28
transcript.pyannote[2623].start 13537.76346875
transcript.pyannote[2623].end 13539.43409375
transcript.pyannote[2624].speaker SPEAKER_20
transcript.pyannote[2624].start 13539.43409375
transcript.pyannote[2624].end 13539.82221875
transcript.pyannote[2625].speaker SPEAKER_28
transcript.pyannote[2625].start 13539.94034375
transcript.pyannote[2625].end 13544.04096875
transcript.pyannote[2626].speaker SPEAKER_28
transcript.pyannote[2626].start 13544.24346875
transcript.pyannote[2626].end 13545.30659375
transcript.pyannote[2627].speaker SPEAKER_28
transcript.pyannote[2627].start 13545.49221875
transcript.pyannote[2627].end 13547.53409375
transcript.pyannote[2628].speaker SPEAKER_28
transcript.pyannote[2628].start 13548.41159375
transcript.pyannote[2628].end 13549.25534375
transcript.pyannote[2629].speaker SPEAKER_28
transcript.pyannote[2629].start 13550.43659375
transcript.pyannote[2629].end 13553.35596875
transcript.pyannote[2630].speaker SPEAKER_20
transcript.pyannote[2630].start 13552.17471875
transcript.pyannote[2630].end 13552.57971875
transcript.pyannote[2631].speaker SPEAKER_20
transcript.pyannote[2631].start 13553.35596875
transcript.pyannote[2631].end 13553.65971875
transcript.pyannote[2632].speaker SPEAKER_28
transcript.pyannote[2632].start 13553.65971875
transcript.pyannote[2632].end 13553.87909375
transcript.pyannote[2633].speaker SPEAKER_20
transcript.pyannote[2633].start 13553.87909375
transcript.pyannote[2633].end 13553.94659375
transcript.pyannote[2634].speaker SPEAKER_28
transcript.pyannote[2634].start 13553.94659375
transcript.pyannote[2634].end 13553.96346875
transcript.pyannote[2635].speaker SPEAKER_20
transcript.pyannote[2635].start 13553.96346875
transcript.pyannote[2635].end 13577.11596875
transcript.pyannote[2636].speaker SPEAKER_00
transcript.pyannote[2636].start 13565.96159375
transcript.pyannote[2636].end 13566.02909375
transcript.pyannote[2637].speaker SPEAKER_28
transcript.pyannote[2637].start 13566.02909375
transcript.pyannote[2637].end 13566.16409375
transcript.pyannote[2638].speaker SPEAKER_00
transcript.pyannote[2638].start 13566.16409375
transcript.pyannote[2638].end 13566.24846875
transcript.pyannote[2639].speaker SPEAKER_28
transcript.pyannote[2639].start 13575.24284375
transcript.pyannote[2639].end 13582.21221875
transcript.pyannote[2640].speaker SPEAKER_20
transcript.pyannote[2640].start 13579.73159375
transcript.pyannote[2640].end 13586.46471875
transcript.pyannote[2641].speaker SPEAKER_28
transcript.pyannote[2641].start 13584.16971875
transcript.pyannote[2641].end 13589.67096875
transcript.pyannote[2642].speaker SPEAKER_20
transcript.pyannote[2642].start 13587.44346875
transcript.pyannote[2642].end 13587.57846875
transcript.pyannote[2643].speaker SPEAKER_20
transcript.pyannote[2643].start 13589.67096875
transcript.pyannote[2643].end 13589.73846875
transcript.pyannote[2644].speaker SPEAKER_28
transcript.pyannote[2644].start 13589.73846875
transcript.pyannote[2644].end 13590.54846875
transcript.pyannote[2645].speaker SPEAKER_20
transcript.pyannote[2645].start 13590.24471875
transcript.pyannote[2645].end 13590.73409375
transcript.pyannote[2646].speaker SPEAKER_28
transcript.pyannote[2646].start 13590.88596875
transcript.pyannote[2646].end 13593.26534375
transcript.pyannote[2647].speaker SPEAKER_28
transcript.pyannote[2647].start 13594.07534375
transcript.pyannote[2647].end 13595.72909375
transcript.pyannote[2648].speaker SPEAKER_28
transcript.pyannote[2648].start 13596.08346875
transcript.pyannote[2648].end 13600.67346875
transcript.pyannote[2649].speaker SPEAKER_28
transcript.pyannote[2649].start 13600.89284375
transcript.pyannote[2649].end 13605.51659375
transcript.pyannote[2650].speaker SPEAKER_28
transcript.pyannote[2650].start 13605.56721875
transcript.pyannote[2650].end 13606.88346875
transcript.pyannote[2651].speaker SPEAKER_28
transcript.pyannote[2651].start 13607.18721875
transcript.pyannote[2651].end 13610.49471875
transcript.pyannote[2652].speaker SPEAKER_28
transcript.pyannote[2652].start 13610.98409375
transcript.pyannote[2652].end 13613.26221875
transcript.pyannote[2653].speaker SPEAKER_28
transcript.pyannote[2653].start 13613.70096875
transcript.pyannote[2653].end 13615.43909375
transcript.pyannote[2654].speaker SPEAKER_28
transcript.pyannote[2654].start 13616.29971875
transcript.pyannote[2654].end 13616.31659375
transcript.pyannote[2655].speaker SPEAKER_20
transcript.pyannote[2655].start 13616.31659375
transcript.pyannote[2655].end 13623.37034375
transcript.pyannote[2656].speaker SPEAKER_20
transcript.pyannote[2656].start 13623.89346875
transcript.pyannote[2656].end 13663.90409375
transcript.pyannote[2657].speaker SPEAKER_28
transcript.pyannote[2657].start 13659.56721875
transcript.pyannote[2657].end 13659.63471875
transcript.pyannote[2658].speaker SPEAKER_28
transcript.pyannote[2658].start 13664.15721875
transcript.pyannote[2658].end 13671.66659375
transcript.pyannote[2659].speaker SPEAKER_28
transcript.pyannote[2659].start 13671.93659375
transcript.pyannote[2659].end 13675.37909375
transcript.pyannote[2660].speaker SPEAKER_28
transcript.pyannote[2660].start 13675.93596875
transcript.pyannote[2660].end 13676.52659375
transcript.pyannote[2661].speaker SPEAKER_28
transcript.pyannote[2661].start 13677.47159375
transcript.pyannote[2661].end 13700.57346875
transcript.pyannote[2662].speaker SPEAKER_00
transcript.pyannote[2662].start 13681.85909375
transcript.pyannote[2662].end 13682.06159375
transcript.pyannote[2663].speaker SPEAKER_28
transcript.pyannote[2663].start 13700.80971875
transcript.pyannote[2663].end 13702.39596875
transcript.pyannote[2664].speaker SPEAKER_28
transcript.pyannote[2664].start 13702.63221875
transcript.pyannote[2664].end 13705.53471875
transcript.pyannote[2665].speaker SPEAKER_28
transcript.pyannote[2665].start 13705.60221875
transcript.pyannote[2665].end 13708.99409375
transcript.pyannote[2666].speaker SPEAKER_28
transcript.pyannote[2666].start 13709.56784375
transcript.pyannote[2666].end 13711.96409375
transcript.pyannote[2667].speaker SPEAKER_20
transcript.pyannote[2667].start 13711.96409375
transcript.pyannote[2667].end 13711.98096875
transcript.pyannote[2668].speaker SPEAKER_28
transcript.pyannote[2668].start 13711.98096875
transcript.pyannote[2668].end 13712.03159375
transcript.pyannote[2669].speaker SPEAKER_20
transcript.pyannote[2669].start 13712.03159375
transcript.pyannote[2669].end 13716.87471875
transcript.pyannote[2670].speaker SPEAKER_15
transcript.pyannote[2670].start 13718.08971875
transcript.pyannote[2670].end 13740.75284375
transcript.pyannote[2671].speaker SPEAKER_28
transcript.pyannote[2671].start 13740.09471875
transcript.pyannote[2671].end 13746.97971875
transcript.pyannote[2672].speaker SPEAKER_15
transcript.pyannote[2672].start 13742.44034375
transcript.pyannote[2672].end 13746.87846875
transcript.pyannote[2673].speaker SPEAKER_20
transcript.pyannote[2673].start 13746.87846875
transcript.pyannote[2673].end 13746.94596875
transcript.pyannote[2674].speaker SPEAKER_15
transcript.pyannote[2674].start 13746.94596875
transcript.pyannote[2674].end 13746.96284375
transcript.pyannote[2675].speaker SPEAKER_20
transcript.pyannote[2675].start 13746.97971875
transcript.pyannote[2675].end 13746.99659375
transcript.pyannote[2676].speaker SPEAKER_28
transcript.pyannote[2676].start 13746.99659375
transcript.pyannote[2676].end 13747.01346875
transcript.pyannote[2677].speaker SPEAKER_20
transcript.pyannote[2677].start 13747.01346875
transcript.pyannote[2677].end 13747.77284375
transcript.pyannote[2678].speaker SPEAKER_15
transcript.pyannote[2678].start 13747.77284375
transcript.pyannote[2678].end 13748.00909375
transcript.pyannote[2679].speaker SPEAKER_28
transcript.pyannote[2679].start 13748.00909375
transcript.pyannote[2679].end 13749.52784375
transcript.pyannote[2680].speaker SPEAKER_15
transcript.pyannote[2680].start 13748.68409375
transcript.pyannote[2680].end 13758.69096875
transcript.pyannote[2681].speaker SPEAKER_15
transcript.pyannote[2681].start 13759.58534375
transcript.pyannote[2681].end 13765.76159375
transcript.pyannote[2682].speaker SPEAKER_28
transcript.pyannote[2682].start 13766.26784375
transcript.pyannote[2682].end 13766.55471875
transcript.pyannote[2683].speaker SPEAKER_28
transcript.pyannote[2683].start 13767.09471875
transcript.pyannote[2683].end 13773.38909375
transcript.pyannote[2684].speaker SPEAKER_28
transcript.pyannote[2684].start 13773.79409375
transcript.pyannote[2684].end 13776.67971875
transcript.pyannote[2685].speaker SPEAKER_28
transcript.pyannote[2685].start 13777.05096875
transcript.pyannote[2685].end 13778.18159375
transcript.pyannote[2686].speaker SPEAKER_28
transcript.pyannote[2686].start 13778.55284375
transcript.pyannote[2686].end 13782.75471875
transcript.pyannote[2687].speaker SPEAKER_28
transcript.pyannote[2687].start 13783.36221875
transcript.pyannote[2687].end 13786.53471875
transcript.pyannote[2688].speaker SPEAKER_28
transcript.pyannote[2688].start 13786.93971875
transcript.pyannote[2688].end 13788.07034375
transcript.pyannote[2689].speaker SPEAKER_28
transcript.pyannote[2689].start 13789.03221875
transcript.pyannote[2689].end 13791.22596875
transcript.pyannote[2690].speaker SPEAKER_28
transcript.pyannote[2690].start 13791.47909375
transcript.pyannote[2690].end 13792.62659375
transcript.pyannote[2691].speaker SPEAKER_28
transcript.pyannote[2691].start 13792.66034375
transcript.pyannote[2691].end 13794.02721875
transcript.pyannote[2692].speaker SPEAKER_28
transcript.pyannote[2692].start 13794.28034375
transcript.pyannote[2692].end 13795.37721875
transcript.pyannote[2693].speaker SPEAKER_25
transcript.pyannote[2693].start 13795.57971875
transcript.pyannote[2693].end 13795.76534375
transcript.pyannote[2694].speaker SPEAKER_28
transcript.pyannote[2694].start 13795.96784375
transcript.pyannote[2694].end 13828.26659375
transcript.pyannote[2695].speaker SPEAKER_28
transcript.pyannote[2695].start 13828.51971875
transcript.pyannote[2695].end 13835.13471875
transcript.pyannote[2696].speaker SPEAKER_28
transcript.pyannote[2696].start 13835.69159375
transcript.pyannote[2696].end 13836.80534375
transcript.pyannote[2697].speaker SPEAKER_28
transcript.pyannote[2697].start 13836.97409375
transcript.pyannote[2697].end 13837.96971875
transcript.pyannote[2698].speaker SPEAKER_28
transcript.pyannote[2698].start 13838.34096875
transcript.pyannote[2698].end 13850.45721875
transcript.pyannote[2699].speaker SPEAKER_20
transcript.pyannote[2699].start 13850.45721875
transcript.pyannote[2699].end 13866.26909375
transcript.pyannote[2700].speaker SPEAKER_28
transcript.pyannote[2700].start 13866.55596875
transcript.pyannote[2700].end 13881.62534375
transcript.pyannote[2701].speaker SPEAKER_20
transcript.pyannote[2701].start 13866.67409375
transcript.pyannote[2701].end 13866.99471875
transcript.pyannote[2702].speaker SPEAKER_20
transcript.pyannote[2702].start 13869.59346875
transcript.pyannote[2702].end 13869.62721875
transcript.pyannote[2703].speaker SPEAKER_20
transcript.pyannote[2703].start 13871.16284375
transcript.pyannote[2703].end 13871.55096875
transcript.pyannote[2704].speaker SPEAKER_20
transcript.pyannote[2704].start 13878.03096875
transcript.pyannote[2704].end 13878.38534375
transcript.pyannote[2705].speaker SPEAKER_20
transcript.pyannote[2705].start 13881.10221875
transcript.pyannote[2705].end 13888.03784375
transcript.pyannote[2706].speaker SPEAKER_30
transcript.pyannote[2706].start 13888.03784375
transcript.pyannote[2706].end 13888.74659375
transcript.pyannote[2707].speaker SPEAKER_30
transcript.pyannote[2707].start 13890.73784375
transcript.pyannote[2707].end 13893.58971875
transcript.pyannote[2708].speaker SPEAKER_30
transcript.pyannote[2708].start 13894.04534375
transcript.pyannote[2708].end 13894.26471875
transcript.pyannote[2709].speaker SPEAKER_30
transcript.pyannote[2709].start 13895.51346875
transcript.pyannote[2709].end 13896.50909375
transcript.pyannote[2710].speaker SPEAKER_30
transcript.pyannote[2710].start 13897.97721875
transcript.pyannote[2710].end 13898.02784375
transcript.pyannote[2711].speaker SPEAKER_30
transcript.pyannote[2711].start 13899.25971875
transcript.pyannote[2711].end 13902.93846875
transcript.pyannote[2712].speaker SPEAKER_30
transcript.pyannote[2712].start 19724.77971875
transcript.pyannote[2712].end 19725.69096875
transcript.pyannote[2713].speaker SPEAKER_30
transcript.pyannote[2713].start 19726.50096875
transcript.pyannote[2713].end 19727.05784375
transcript.pyannote[2714].speaker SPEAKER_30
transcript.pyannote[2714].start 19727.83409375
transcript.pyannote[2714].end 19729.92659375
transcript.pyannote[2715].speaker SPEAKER_31
transcript.pyannote[2715].start 19742.75159375
transcript.pyannote[2715].end 19745.43471875
transcript.pyannote[2716].speaker SPEAKER_30
transcript.pyannote[2716].start 19745.43471875
transcript.pyannote[2716].end 19746.31221875
transcript.pyannote[2717].speaker SPEAKER_30
transcript.pyannote[2717].start 19753.56846875
transcript.pyannote[2717].end 19753.60221875
transcript.pyannote[2718].speaker SPEAKER_31
transcript.pyannote[2718].start 19753.60221875
transcript.pyannote[2718].end 19755.64409375
transcript.pyannote[2719].speaker SPEAKER_31
transcript.pyannote[2719].start 19756.08284375
transcript.pyannote[2719].end 19767.28784375
transcript.pyannote[2720].speaker SPEAKER_31
transcript.pyannote[2720].start 19767.94596875
transcript.pyannote[2720].end 19770.19034375
transcript.pyannote[2721].speaker SPEAKER_31
transcript.pyannote[2721].start 19770.74721875
transcript.pyannote[2721].end 19796.53221875
transcript.pyannote[2722].speaker SPEAKER_31
transcript.pyannote[2722].start 19797.08909375
transcript.pyannote[2722].end 19803.41721875
transcript.pyannote[2723].speaker SPEAKER_20
transcript.pyannote[2723].start 19804.05846875
transcript.pyannote[2723].end 19804.68284375
transcript.pyannote[2724].speaker SPEAKER_20
transcript.pyannote[2724].start 19804.90221875
transcript.pyannote[2724].end 19819.48221875
transcript.pyannote[2725].speaker SPEAKER_20
transcript.pyannote[2725].start 19819.61721875
transcript.pyannote[2725].end 19820.29221875
transcript.pyannote[2726].speaker SPEAKER_31
transcript.pyannote[2726].start 19819.75221875
transcript.pyannote[2726].end 19843.83284375
transcript.pyannote[2727].speaker SPEAKER_31
transcript.pyannote[2727].start 19844.15346875
transcript.pyannote[2727].end 19846.00971875
transcript.pyannote[2728].speaker SPEAKER_31
transcript.pyannote[2728].start 19846.41471875
transcript.pyannote[2728].end 19852.42221875
transcript.pyannote[2729].speaker SPEAKER_31
transcript.pyannote[2729].start 19852.57409375
transcript.pyannote[2729].end 19864.11659375
transcript.pyannote[2730].speaker SPEAKER_31
transcript.pyannote[2730].start 19864.50471875
transcript.pyannote[2730].end 19871.15346875
transcript.pyannote[2731].speaker SPEAKER_31
transcript.pyannote[2731].start 19871.38971875
transcript.pyannote[2731].end 19876.87409375
transcript.pyannote[2732].speaker SPEAKER_31
transcript.pyannote[2732].start 19877.09346875
transcript.pyannote[2732].end 19883.32034375
transcript.pyannote[2733].speaker SPEAKER_31
transcript.pyannote[2733].start 19883.72534375
transcript.pyannote[2733].end 19906.72596875
transcript.pyannote[2734].speaker SPEAKER_31
transcript.pyannote[2734].start 19906.75971875
transcript.pyannote[2734].end 19911.36659375
transcript.pyannote[2735].speaker SPEAKER_31
transcript.pyannote[2735].start 19911.61971875
transcript.pyannote[2735].end 19912.12596875
transcript.pyannote[2736].speaker SPEAKER_31
transcript.pyannote[2736].start 19912.17659375
transcript.pyannote[2736].end 19914.47159375
transcript.pyannote[2737].speaker SPEAKER_31
transcript.pyannote[2737].start 19914.60659375
transcript.pyannote[2737].end 19923.65159375
transcript.pyannote[2738].speaker SPEAKER_31
transcript.pyannote[2738].start 19923.95534375
transcript.pyannote[2738].end 19935.17721875
transcript.pyannote[2739].speaker SPEAKER_31
transcript.pyannote[2739].start 19937.10096875
transcript.pyannote[2739].end 19955.52846875
transcript.pyannote[2740].speaker SPEAKER_31
transcript.pyannote[2740].start 19956.32159375
transcript.pyannote[2740].end 19964.74221875
transcript.pyannote[2741].speaker SPEAKER_31
transcript.pyannote[2741].start 19965.23159375
transcript.pyannote[2741].end 19965.70409375
transcript.pyannote[2742].speaker SPEAKER_31
transcript.pyannote[2742].start 19966.42971875
transcript.pyannote[2742].end 19967.54346875
transcript.pyannote[2743].speaker SPEAKER_31
transcript.pyannote[2743].start 19967.86409375
transcript.pyannote[2743].end 19973.46659375
transcript.pyannote[2744].speaker SPEAKER_31
transcript.pyannote[2744].start 19973.93909375
transcript.pyannote[2744].end 19984.04721875
transcript.pyannote[2745].speaker SPEAKER_31
transcript.pyannote[2745].start 19984.31721875
transcript.pyannote[2745].end 19994.03721875
transcript.pyannote[2746].speaker SPEAKER_31
transcript.pyannote[2746].start 19994.29034375
transcript.pyannote[2746].end 20019.65346875
transcript.pyannote[2747].speaker SPEAKER_30
transcript.pyannote[2747].start 20016.51471875
transcript.pyannote[2747].end 20016.80159375
transcript.pyannote[2748].speaker SPEAKER_30
transcript.pyannote[2748].start 20019.65346875
transcript.pyannote[2748].end 20022.55596875
transcript.pyannote[2749].speaker SPEAKER_30
transcript.pyannote[2749].start 20022.89346875
transcript.pyannote[2749].end 20023.93971875
transcript.pyannote[2750].speaker SPEAKER_30
transcript.pyannote[2750].start 20025.08721875
transcript.pyannote[2750].end 20027.06159375
transcript.pyannote[2751].speaker SPEAKER_30
transcript.pyannote[2751].start 20027.68596875
transcript.pyannote[2751].end 20029.23846875
transcript.pyannote[2752].speaker SPEAKER_14
transcript.pyannote[2752].start 20038.23284375
transcript.pyannote[2752].end 20039.02596875
transcript.pyannote[2753].speaker SPEAKER_14
transcript.pyannote[2753].start 20039.16096875
transcript.pyannote[2753].end 20042.24909375
transcript.pyannote[2754].speaker SPEAKER_30
transcript.pyannote[2754].start 20042.58659375
transcript.pyannote[2754].end 20044.69596875
transcript.pyannote[2755].speaker SPEAKER_14
transcript.pyannote[2755].start 20047.37909375
transcript.pyannote[2755].end 20047.78409375
transcript.pyannote[2756].speaker SPEAKER_14
transcript.pyannote[2756].start 20048.00346875
transcript.pyannote[2756].end 20048.39159375
transcript.pyannote[2757].speaker SPEAKER_30
transcript.pyannote[2757].start 20049.92721875
transcript.pyannote[2757].end 20049.96096875
transcript.pyannote[2758].speaker SPEAKER_22
transcript.pyannote[2758].start 20049.96096875
transcript.pyannote[2758].end 20050.56846875
transcript.pyannote[2759].speaker SPEAKER_14
transcript.pyannote[2759].start 20051.00721875
transcript.pyannote[2759].end 20051.76659375
transcript.pyannote[2760].speaker SPEAKER_22
transcript.pyannote[2760].start 20051.86784375
transcript.pyannote[2760].end 20052.03659375
transcript.pyannote[2761].speaker SPEAKER_14
transcript.pyannote[2761].start 20052.66096875
transcript.pyannote[2761].end 20057.57159375
transcript.pyannote[2762].speaker SPEAKER_14
transcript.pyannote[2762].start 20057.99346875
transcript.pyannote[2762].end 20081.41596875
transcript.pyannote[2763].speaker SPEAKER_00
transcript.pyannote[2763].start 20059.61346875
transcript.pyannote[2763].end 20059.74846875
transcript.pyannote[2764].speaker SPEAKER_25
transcript.pyannote[2764].start 20059.74846875
transcript.pyannote[2764].end 20059.96784375
transcript.pyannote[2765].speaker SPEAKER_00
transcript.pyannote[2765].start 20059.96784375
transcript.pyannote[2765].end 20060.18721875
transcript.pyannote[2766].speaker SPEAKER_25
transcript.pyannote[2766].start 20060.50784375
transcript.pyannote[2766].end 20060.54159375
transcript.pyannote[2767].speaker SPEAKER_06
transcript.pyannote[2767].start 20060.54159375
transcript.pyannote[2767].end 20060.60909375
transcript.pyannote[2768].speaker SPEAKER_25
transcript.pyannote[2768].start 20060.60909375
transcript.pyannote[2768].end 20060.64284375
transcript.pyannote[2769].speaker SPEAKER_00
transcript.pyannote[2769].start 20060.64284375
transcript.pyannote[2769].end 20060.69346875
transcript.pyannote[2770].speaker SPEAKER_06
transcript.pyannote[2770].start 20060.69346875
transcript.pyannote[2770].end 20060.72721875
transcript.pyannote[2771].speaker SPEAKER_14
transcript.pyannote[2771].start 20081.68596875
transcript.pyannote[2771].end 20099.26971875
transcript.pyannote[2772].speaker SPEAKER_09
transcript.pyannote[2772].start 20085.16221875
transcript.pyannote[2772].end 20085.63471875
transcript.pyannote[2773].speaker SPEAKER_14
transcript.pyannote[2773].start 20099.60721875
transcript.pyannote[2773].end 20133.82971875
transcript.pyannote[2774].speaker SPEAKER_14
transcript.pyannote[2774].start 20134.15034375
transcript.pyannote[2774].end 20144.96721875
transcript.pyannote[2775].speaker SPEAKER_14
transcript.pyannote[2775].start 20145.35534375
transcript.pyannote[2775].end 20162.09534375
transcript.pyannote[2776].speaker SPEAKER_14
transcript.pyannote[2776].start 20162.65221875
transcript.pyannote[2776].end 20168.37284375
transcript.pyannote[2777].speaker SPEAKER_14
transcript.pyannote[2777].start 20169.23346875
transcript.pyannote[2777].end 20184.62346875
transcript.pyannote[2778].speaker SPEAKER_22
transcript.pyannote[2778].start 20169.25034375
transcript.pyannote[2778].end 20169.79034375
transcript.pyannote[2779].speaker SPEAKER_22
transcript.pyannote[2779].start 20169.90846875
transcript.pyannote[2779].end 20171.39346875
transcript.pyannote[2780].speaker SPEAKER_25
transcript.pyannote[2780].start 20171.39346875
transcript.pyannote[2780].end 20171.42721875
transcript.pyannote[2781].speaker SPEAKER_22
transcript.pyannote[2781].start 20176.91159375
transcript.pyannote[2781].end 20177.14784375
transcript.pyannote[2782].speaker SPEAKER_22
transcript.pyannote[2782].start 20180.75909375
transcript.pyannote[2782].end 20181.18096875
transcript.pyannote[2783].speaker SPEAKER_22
transcript.pyannote[2783].start 20182.39596875
transcript.pyannote[2783].end 20182.75034375
transcript.pyannote[2784].speaker SPEAKER_22
transcript.pyannote[2784].start 20184.23534375
transcript.pyannote[2784].end 20225.76471875
transcript.pyannote[2785].speaker SPEAKER_14
transcript.pyannote[2785].start 20186.10846875
transcript.pyannote[2785].end 20186.63159375
transcript.pyannote[2786].speaker SPEAKER_00
transcript.pyannote[2786].start 20194.74846875
transcript.pyannote[2786].end 20196.55409375
transcript.pyannote[2787].speaker SPEAKER_00
transcript.pyannote[2787].start 20215.80846875
transcript.pyannote[2787].end 20215.87596875
transcript.pyannote[2788].speaker SPEAKER_12
transcript.pyannote[2788].start 20215.87596875
transcript.pyannote[2788].end 20215.90971875
transcript.pyannote[2789].speaker SPEAKER_00
transcript.pyannote[2789].start 20215.90971875
transcript.pyannote[2789].end 20215.94346875
transcript.pyannote[2790].speaker SPEAKER_12
transcript.pyannote[2790].start 20215.94346875
transcript.pyannote[2790].end 20216.17971875
transcript.pyannote[2791].speaker SPEAKER_22
transcript.pyannote[2791].start 20226.00096875
transcript.pyannote[2791].end 20226.89534375
transcript.pyannote[2792].speaker SPEAKER_22
transcript.pyannote[2792].start 20227.14846875
transcript.pyannote[2792].end 20229.27471875
transcript.pyannote[2793].speaker SPEAKER_22
transcript.pyannote[2793].start 20229.40971875
transcript.pyannote[2793].end 20250.26721875
transcript.pyannote[2794].speaker SPEAKER_28
transcript.pyannote[2794].start 20250.97596875
transcript.pyannote[2794].end 20251.06034375
transcript.pyannote[2795].speaker SPEAKER_22
transcript.pyannote[2795].start 20251.06034375
transcript.pyannote[2795].end 20261.38784375
transcript.pyannote[2796].speaker SPEAKER_14
transcript.pyannote[2796].start 20258.60346875
transcript.pyannote[2796].end 20260.57784375
transcript.pyannote[2797].speaker SPEAKER_14
transcript.pyannote[2797].start 20261.10096875
transcript.pyannote[2797].end 20284.91159375
transcript.pyannote[2798].speaker SPEAKER_00
transcript.pyannote[2798].start 20274.71909375
transcript.pyannote[2798].end 20274.95534375
transcript.pyannote[2799].speaker SPEAKER_09
transcript.pyannote[2799].start 20283.34221875
transcript.pyannote[2799].end 20283.69659375
transcript.pyannote[2800].speaker SPEAKER_14
transcript.pyannote[2800].start 20285.41784375
transcript.pyannote[2800].end 20290.00784375
transcript.pyannote[2801].speaker SPEAKER_14
transcript.pyannote[2801].start 20290.09221875
transcript.pyannote[2801].end 20316.97409375
transcript.pyannote[2802].speaker SPEAKER_25
transcript.pyannote[2802].start 20297.36534375
transcript.pyannote[2802].end 20297.97284375
transcript.pyannote[2803].speaker SPEAKER_00
transcript.pyannote[2803].start 20297.97284375
transcript.pyannote[2803].end 20298.12471875
transcript.pyannote[2804].speaker SPEAKER_22
transcript.pyannote[2804].start 20315.99534375
transcript.pyannote[2804].end 20322.15471875
transcript.pyannote[2805].speaker SPEAKER_14
transcript.pyannote[2805].start 20318.45909375
transcript.pyannote[2805].end 20318.74596875
transcript.pyannote[2806].speaker SPEAKER_14
transcript.pyannote[2806].start 20321.02409375
transcript.pyannote[2806].end 20328.63471875
transcript.pyannote[2807].speaker SPEAKER_22
transcript.pyannote[2807].start 20327.20034375
transcript.pyannote[2807].end 20327.58846875
transcript.pyannote[2808].speaker SPEAKER_00
transcript.pyannote[2808].start 20327.58846875
transcript.pyannote[2808].end 20327.63909375
transcript.pyannote[2809].speaker SPEAKER_14
transcript.pyannote[2809].start 20328.95534375
transcript.pyannote[2809].end 20336.85284375
transcript.pyannote[2810].speaker SPEAKER_22
transcript.pyannote[2810].start 20329.51221875
transcript.pyannote[2810].end 20330.08596875
transcript.pyannote[2811].speaker SPEAKER_22
transcript.pyannote[2811].start 20334.10221875
transcript.pyannote[2811].end 20334.87846875
transcript.pyannote[2812].speaker SPEAKER_22
transcript.pyannote[2812].start 20336.43096875
transcript.pyannote[2812].end 20338.82721875
transcript.pyannote[2813].speaker SPEAKER_14
transcript.pyannote[2813].start 20338.27034375
transcript.pyannote[2813].end 20343.24846875
transcript.pyannote[2814].speaker SPEAKER_30
transcript.pyannote[2814].start 20339.35034375
transcript.pyannote[2814].end 20339.36721875
transcript.pyannote[2815].speaker SPEAKER_22
transcript.pyannote[2815].start 20339.36721875
transcript.pyannote[2815].end 20339.75534375
transcript.pyannote[2816].speaker SPEAKER_22
transcript.pyannote[2816].start 20340.78471875
transcript.pyannote[2816].end 20340.80159375
transcript.pyannote[2817].speaker SPEAKER_30
transcript.pyannote[2817].start 20340.80159375
transcript.pyannote[2817].end 20344.12596875
transcript.pyannote[2818].speaker SPEAKER_30
transcript.pyannote[2818].start 20344.44659375
transcript.pyannote[2818].end 20353.33971875
transcript.pyannote[2819].speaker SPEAKER_10
transcript.pyannote[2819].start 20362.92471875
transcript.pyannote[2819].end 20365.20284375
transcript.pyannote[2820].speaker SPEAKER_30
transcript.pyannote[2820].start 20365.67534375
transcript.pyannote[2820].end 20366.56971875
transcript.pyannote[2821].speaker SPEAKER_10
transcript.pyannote[2821].start 20369.80971875
transcript.pyannote[2821].end 20369.84346875
transcript.pyannote[2822].speaker SPEAKER_10
transcript.pyannote[2822].start 20369.87721875
transcript.pyannote[2822].end 20371.59846875
transcript.pyannote[2823].speaker SPEAKER_10
transcript.pyannote[2823].start 20374.26471875
transcript.pyannote[2823].end 20376.25596875
transcript.pyannote[2824].speaker SPEAKER_08
transcript.pyannote[2824].start 20380.47471875
transcript.pyannote[2824].end 20381.67284375
transcript.pyannote[2825].speaker SPEAKER_08
transcript.pyannote[2825].start 20384.54159375
transcript.pyannote[2825].end 20384.55846875
transcript.pyannote[2826].speaker SPEAKER_10
transcript.pyannote[2826].start 20388.23721875
transcript.pyannote[2826].end 20388.91221875
transcript.pyannote[2827].speaker SPEAKER_10
transcript.pyannote[2827].start 20389.62096875
transcript.pyannote[2827].end 20394.02534375
transcript.pyannote[2828].speaker SPEAKER_10
transcript.pyannote[2828].start 20394.41346875
transcript.pyannote[2828].end 20414.44409375
transcript.pyannote[2829].speaker SPEAKER_10
transcript.pyannote[2829].start 20414.68034375
transcript.pyannote[2829].end 20418.49409375
transcript.pyannote[2830].speaker SPEAKER_10
transcript.pyannote[2830].start 20419.86096875
transcript.pyannote[2830].end 20422.89846875
transcript.pyannote[2831].speaker SPEAKER_10
transcript.pyannote[2831].start 20423.25284375
transcript.pyannote[2831].end 20427.26909375
transcript.pyannote[2832].speaker SPEAKER_10
transcript.pyannote[2832].start 20427.35346875
transcript.pyannote[2832].end 20427.37034375
transcript.pyannote[2833].speaker SPEAKER_10
transcript.pyannote[2833].start 20427.65721875
transcript.pyannote[2833].end 20430.57659375
transcript.pyannote[2834].speaker SPEAKER_10
transcript.pyannote[2834].start 20430.96471875
transcript.pyannote[2834].end 20445.51096875
transcript.pyannote[2835].speaker SPEAKER_10
transcript.pyannote[2835].start 20446.03409375
transcript.pyannote[2835].end 20458.31909375
transcript.pyannote[2836].speaker SPEAKER_10
transcript.pyannote[2836].start 20459.28096875
transcript.pyannote[2836].end 20459.93909375
transcript.pyannote[2837].speaker SPEAKER_10
transcript.pyannote[2837].start 20460.29346875
transcript.pyannote[2837].end 20461.03596875
transcript.pyannote[2838].speaker SPEAKER_10
transcript.pyannote[2838].start 20462.26784375
transcript.pyannote[2838].end 20482.28159375
transcript.pyannote[2839].speaker SPEAKER_10
transcript.pyannote[2839].start 20483.27721875
transcript.pyannote[2839].end 20495.29221875
transcript.pyannote[2840].speaker SPEAKER_10
transcript.pyannote[2840].start 20496.10221875
transcript.pyannote[2840].end 20496.42284375
transcript.pyannote[2841].speaker SPEAKER_10
transcript.pyannote[2841].start 20497.30034375
transcript.pyannote[2841].end 20506.26096875
transcript.pyannote[2842].speaker SPEAKER_10
transcript.pyannote[2842].start 20506.46346875
transcript.pyannote[2842].end 20507.81346875
transcript.pyannote[2843].speaker SPEAKER_10
transcript.pyannote[2843].start 20507.98221875
transcript.pyannote[2843].end 20512.79159375
transcript.pyannote[2844].speaker SPEAKER_10
transcript.pyannote[2844].start 20513.55096875
transcript.pyannote[2844].end 20519.10284375
transcript.pyannote[2845].speaker SPEAKER_10
transcript.pyannote[2845].start 20519.44034375
transcript.pyannote[2845].end 20520.18284375
transcript.pyannote[2846].speaker SPEAKER_10
transcript.pyannote[2846].start 20520.28409375
transcript.pyannote[2846].end 20521.12784375
transcript.pyannote[2847].speaker SPEAKER_10
transcript.pyannote[2847].start 20522.03909375
transcript.pyannote[2847].end 20526.03846875
transcript.pyannote[2848].speaker SPEAKER_20
transcript.pyannote[2848].start 20526.67971875
transcript.pyannote[2848].end 20527.03409375
transcript.pyannote[2849].speaker SPEAKER_20
transcript.pyannote[2849].start 20527.38846875
transcript.pyannote[2849].end 20551.68846875
transcript.pyannote[2850].speaker SPEAKER_10
transcript.pyannote[2850].start 20532.53534375
transcript.pyannote[2850].end 20532.75471875
transcript.pyannote[2851].speaker SPEAKER_16
transcript.pyannote[2851].start 20544.97221875
transcript.pyannote[2851].end 20544.98909375
transcript.pyannote[2852].speaker SPEAKER_10
transcript.pyannote[2852].start 20544.98909375
transcript.pyannote[2852].end 20545.96784375
transcript.pyannote[2853].speaker SPEAKER_10
transcript.pyannote[2853].start 20549.71409375
transcript.pyannote[2853].end 20550.97971875
transcript.pyannote[2854].speaker SPEAKER_10
transcript.pyannote[2854].start 20551.23284375
transcript.pyannote[2854].end 20553.07221875
transcript.pyannote[2855].speaker SPEAKER_20
transcript.pyannote[2855].start 20552.31284375
transcript.pyannote[2855].end 20553.47721875
transcript.pyannote[2856].speaker SPEAKER_10
transcript.pyannote[2856].start 20553.37596875
transcript.pyannote[2856].end 20553.40971875
transcript.pyannote[2857].speaker SPEAKER_10
transcript.pyannote[2857].start 20553.42659375
transcript.pyannote[2857].end 20557.71284375
transcript.pyannote[2858].speaker SPEAKER_10
transcript.pyannote[2858].start 20558.15159375
transcript.pyannote[2858].end 20563.95659375
transcript.pyannote[2859].speaker SPEAKER_10
transcript.pyannote[2859].start 20564.41221875
transcript.pyannote[2859].end 20568.46221875
transcript.pyannote[2860].speaker SPEAKER_10
transcript.pyannote[2860].start 20568.59721875
transcript.pyannote[2860].end 20572.95096875
transcript.pyannote[2861].speaker SPEAKER_10
transcript.pyannote[2861].start 20573.71034375
transcript.pyannote[2861].end 20582.60346875
transcript.pyannote[2862].speaker SPEAKER_10
transcript.pyannote[2862].start 20583.10971875
transcript.pyannote[2862].end 20583.71721875
transcript.pyannote[2863].speaker SPEAKER_10
transcript.pyannote[2863].start 20583.98721875
transcript.pyannote[2863].end 20585.35409375
transcript.pyannote[2864].speaker SPEAKER_10
transcript.pyannote[2864].start 20586.11346875
transcript.pyannote[2864].end 20613.02909375
transcript.pyannote[2865].speaker SPEAKER_20
transcript.pyannote[2865].start 20614.14284375
transcript.pyannote[2865].end 20623.23846875
transcript.pyannote[2866].speaker SPEAKER_10
transcript.pyannote[2866].start 20621.90534375
transcript.pyannote[2866].end 20652.19596875
transcript.pyannote[2867].speaker SPEAKER_20
transcript.pyannote[2867].start 20625.80346875
transcript.pyannote[2867].end 20626.49534375
transcript.pyannote[2868].speaker SPEAKER_20
transcript.pyannote[2868].start 20629.26284375
transcript.pyannote[2868].end 20629.65096875
transcript.pyannote[2869].speaker SPEAKER_00
transcript.pyannote[2869].start 20629.65096875
transcript.pyannote[2869].end 20629.73534375
transcript.pyannote[2870].speaker SPEAKER_00
transcript.pyannote[2870].start 20630.73096875
transcript.pyannote[2870].end 20630.76471875
transcript.pyannote[2871].speaker SPEAKER_20
transcript.pyannote[2871].start 20630.76471875
transcript.pyannote[2871].end 20630.96721875
transcript.pyannote[2872].speaker SPEAKER_00
transcript.pyannote[2872].start 20630.96721875
transcript.pyannote[2872].end 20630.98409375
transcript.pyannote[2873].speaker SPEAKER_00
transcript.pyannote[2873].start 20631.52409375
transcript.pyannote[2873].end 20631.59159375
transcript.pyannote[2874].speaker SPEAKER_25
transcript.pyannote[2874].start 20631.59159375
transcript.pyannote[2874].end 20631.92909375
transcript.pyannote[2875].speaker SPEAKER_00
transcript.pyannote[2875].start 20631.92909375
transcript.pyannote[2875].end 20631.97971875
transcript.pyannote[2876].speaker SPEAKER_09
transcript.pyannote[2876].start 20633.22846875
transcript.pyannote[2876].end 20634.13971875
transcript.pyannote[2877].speaker SPEAKER_10
transcript.pyannote[2877].start 20652.66846875
transcript.pyannote[2877].end 20681.69346875
transcript.pyannote[2878].speaker SPEAKER_10
transcript.pyannote[2878].start 20682.16596875
transcript.pyannote[2878].end 20685.30471875
transcript.pyannote[2879].speaker SPEAKER_20
transcript.pyannote[2879].start 20685.05159375
transcript.pyannote[2879].end 20691.31221875
transcript.pyannote[2880].speaker SPEAKER_10
transcript.pyannote[2880].start 20690.08034375
transcript.pyannote[2880].end 20690.50221875
transcript.pyannote[2881].speaker SPEAKER_10
transcript.pyannote[2881].start 20691.36284375
transcript.pyannote[2881].end 20692.15596875
transcript.pyannote[2882].speaker SPEAKER_30
transcript.pyannote[2882].start 20692.15596875
transcript.pyannote[2882].end 20692.18971875
transcript.pyannote[2883].speaker SPEAKER_20
transcript.pyannote[2883].start 20692.18971875
transcript.pyannote[2883].end 20693.94471875
transcript.pyannote[2884].speaker SPEAKER_30
transcript.pyannote[2884].start 20693.94471875
transcript.pyannote[2884].end 20693.97846875
transcript.pyannote[2885].speaker SPEAKER_20
transcript.pyannote[2885].start 20695.21034375
transcript.pyannote[2885].end 20695.24409375
transcript.pyannote[2886].speaker SPEAKER_30
transcript.pyannote[2886].start 20695.24409375
transcript.pyannote[2886].end 20695.54784375
transcript.pyannote[2887].speaker SPEAKER_10
transcript.pyannote[2887].start 20697.30284375
transcript.pyannote[2887].end 20697.74159375
transcript.pyannote[2888].speaker SPEAKER_30
transcript.pyannote[2888].start 20698.43346875
transcript.pyannote[2888].end 20699.47971875
transcript.pyannote[2889].speaker SPEAKER_30
transcript.pyannote[2889].start 20700.86346875
transcript.pyannote[2889].end 20701.58909375
transcript.pyannote[2890].speaker SPEAKER_30
transcript.pyannote[2890].start 20701.79159375
transcript.pyannote[2890].end 20702.17971875
transcript.pyannote[2891].speaker SPEAKER_30
transcript.pyannote[2891].start 20702.58471875
transcript.pyannote[2891].end 20704.44096875
transcript.pyannote[2892].speaker SPEAKER_03
transcript.pyannote[2892].start 20705.84159375
transcript.pyannote[2892].end 20705.89221875
transcript.pyannote[2893].speaker SPEAKER_25
transcript.pyannote[2893].start 20705.89221875
transcript.pyannote[2893].end 20705.90909375
transcript.pyannote[2894].speaker SPEAKER_03
transcript.pyannote[2894].start 20705.90909375
transcript.pyannote[2894].end 20705.94284375
transcript.pyannote[2895].speaker SPEAKER_27
transcript.pyannote[2895].start 20713.62096875
transcript.pyannote[2895].end 20716.57409375
transcript.pyannote[2896].speaker SPEAKER_27
transcript.pyannote[2896].start 20716.79346875
transcript.pyannote[2896].end 20717.36721875
transcript.pyannote[2897].speaker SPEAKER_27
transcript.pyannote[2897].start 20722.07534375
transcript.pyannote[2897].end 20725.77096875
transcript.pyannote[2898].speaker SPEAKER_20
transcript.pyannote[2898].start 20723.52659375
transcript.pyannote[2898].end 20723.81346875
transcript.pyannote[2899].speaker SPEAKER_30
transcript.pyannote[2899].start 20723.81346875
transcript.pyannote[2899].end 20723.86409375
transcript.pyannote[2900].speaker SPEAKER_20
transcript.pyannote[2900].start 20723.86409375
transcript.pyannote[2900].end 20723.88096875
transcript.pyannote[2901].speaker SPEAKER_27
transcript.pyannote[2901].start 20726.05784375
transcript.pyannote[2901].end 20726.64846875
transcript.pyannote[2902].speaker SPEAKER_27
transcript.pyannote[2902].start 20726.93534375
transcript.pyannote[2902].end 20727.94784375
transcript.pyannote[2903].speaker SPEAKER_27
transcript.pyannote[2903].start 20728.23471875
transcript.pyannote[2903].end 20729.04471875
transcript.pyannote[2904].speaker SPEAKER_27
transcript.pyannote[2904].start 20729.07846875
transcript.pyannote[2904].end 20731.66034375
transcript.pyannote[2905].speaker SPEAKER_27
transcript.pyannote[2905].start 20731.98096875
transcript.pyannote[2905].end 20732.53784375
transcript.pyannote[2906].speaker SPEAKER_27
transcript.pyannote[2906].start 20733.11159375
transcript.pyannote[2906].end 20734.51221875
transcript.pyannote[2907].speaker SPEAKER_27
transcript.pyannote[2907].start 20735.00159375
transcript.pyannote[2907].end 20735.81159375
transcript.pyannote[2908].speaker SPEAKER_27
transcript.pyannote[2908].start 20735.94659375
transcript.pyannote[2908].end 20738.64659375
transcript.pyannote[2909].speaker SPEAKER_27
transcript.pyannote[2909].start 20739.05159375
transcript.pyannote[2909].end 20739.70971875
transcript.pyannote[2910].speaker SPEAKER_27
transcript.pyannote[2910].start 20740.26659375
transcript.pyannote[2910].end 20741.05971875
transcript.pyannote[2911].speaker SPEAKER_27
transcript.pyannote[2911].start 20741.93721875
transcript.pyannote[2911].end 20743.38846875
transcript.pyannote[2912].speaker SPEAKER_27
transcript.pyannote[2912].start 20743.86096875
transcript.pyannote[2912].end 20744.18159375
transcript.pyannote[2913].speaker SPEAKER_27
transcript.pyannote[2913].start 20744.80596875
transcript.pyannote[2913].end 20745.85221875
transcript.pyannote[2914].speaker SPEAKER_27
transcript.pyannote[2914].start 20745.91971875
transcript.pyannote[2914].end 20747.26971875
transcript.pyannote[2915].speaker SPEAKER_27
transcript.pyannote[2915].start 20747.52284375
transcript.pyannote[2915].end 20748.02909375
transcript.pyannote[2916].speaker SPEAKER_27
transcript.pyannote[2916].start 20748.94034375
transcript.pyannote[2916].end 20753.41221875
transcript.pyannote[2917].speaker SPEAKER_27
transcript.pyannote[2917].start 20754.27284375
transcript.pyannote[2917].end 20754.52596875
transcript.pyannote[2918].speaker SPEAKER_27
transcript.pyannote[2918].start 20755.48784375
transcript.pyannote[2918].end 20756.12909375
transcript.pyannote[2919].speaker SPEAKER_27
transcript.pyannote[2919].start 20757.05721875
transcript.pyannote[2919].end 20759.45346875
transcript.pyannote[2920].speaker SPEAKER_27
transcript.pyannote[2920].start 20759.92596875
transcript.pyannote[2920].end 20763.52034375
transcript.pyannote[2921].speaker SPEAKER_27
transcript.pyannote[2921].start 20763.92534375
transcript.pyannote[2921].end 20776.85159375
transcript.pyannote[2922].speaker SPEAKER_27
transcript.pyannote[2922].start 20777.25659375
transcript.pyannote[2922].end 20782.94346875
transcript.pyannote[2923].speaker SPEAKER_27
transcript.pyannote[2923].start 20783.31471875
transcript.pyannote[2923].end 20786.28471875
transcript.pyannote[2924].speaker SPEAKER_27
transcript.pyannote[2924].start 20786.53784375
transcript.pyannote[2924].end 20787.82034375
transcript.pyannote[2925].speaker SPEAKER_27
transcript.pyannote[2925].start 20788.20846875
transcript.pyannote[2925].end 20793.64221875
transcript.pyannote[2926].speaker SPEAKER_27
transcript.pyannote[2926].start 20794.23284375
transcript.pyannote[2926].end 20797.96221875
transcript.pyannote[2927].speaker SPEAKER_27
transcript.pyannote[2927].start 20798.36721875
transcript.pyannote[2927].end 20804.57721875
transcript.pyannote[2928].speaker SPEAKER_27
transcript.pyannote[2928].start 20804.89784375
transcript.pyannote[2928].end 20806.80471875
transcript.pyannote[2929].speaker SPEAKER_27
transcript.pyannote[2929].start 20807.41221875
transcript.pyannote[2929].end 20809.75784375
transcript.pyannote[2930].speaker SPEAKER_27
transcript.pyannote[2930].start 20810.02784375
transcript.pyannote[2930].end 20811.96846875
transcript.pyannote[2931].speaker SPEAKER_27
transcript.pyannote[2931].start 20812.42409375
transcript.pyannote[2931].end 20815.46159375
transcript.pyannote[2932].speaker SPEAKER_27
transcript.pyannote[2932].start 20816.08596875
transcript.pyannote[2932].end 20818.29659375
transcript.pyannote[2933].speaker SPEAKER_27
transcript.pyannote[2933].start 20818.85346875
transcript.pyannote[2933].end 20824.00034375
transcript.pyannote[2934].speaker SPEAKER_27
transcript.pyannote[2934].start 20824.65846875
transcript.pyannote[2934].end 20833.87221875
transcript.pyannote[2935].speaker SPEAKER_27
transcript.pyannote[2935].start 20834.19284375
transcript.pyannote[2935].end 20837.55096875
transcript.pyannote[2936].speaker SPEAKER_27
transcript.pyannote[2936].start 20837.95596875
transcript.pyannote[2936].end 20838.51284375
transcript.pyannote[2937].speaker SPEAKER_20
transcript.pyannote[2937].start 20838.51284375
transcript.pyannote[2937].end 20838.54659375
transcript.pyannote[2938].speaker SPEAKER_27
transcript.pyannote[2938].start 20838.54659375
transcript.pyannote[2938].end 20838.96846875
transcript.pyannote[2939].speaker SPEAKER_20
transcript.pyannote[2939].start 20838.96846875
transcript.pyannote[2939].end 20861.14221875
transcript.pyannote[2940].speaker SPEAKER_27
transcript.pyannote[2940].start 20854.56096875
transcript.pyannote[2940].end 20857.80096875
transcript.pyannote[2941].speaker SPEAKER_27
transcript.pyannote[2941].start 20858.62784375
transcript.pyannote[2941].end 20874.35534375
transcript.pyannote[2942].speaker SPEAKER_20
transcript.pyannote[2942].start 20862.93096875
transcript.pyannote[2942].end 20862.99846875
transcript.pyannote[2943].speaker SPEAKER_27
transcript.pyannote[2943].start 20874.54096875
transcript.pyannote[2943].end 20879.09721875
transcript.pyannote[2944].speaker SPEAKER_27
transcript.pyannote[2944].start 20879.41784375
transcript.pyannote[2944].end 20888.19284375
transcript.pyannote[2945].speaker SPEAKER_27
transcript.pyannote[2945].start 20888.74971875
transcript.pyannote[2945].end 20891.14596875
transcript.pyannote[2946].speaker SPEAKER_27
transcript.pyannote[2946].start 20891.50034375
transcript.pyannote[2946].end 20894.53784375
transcript.pyannote[2947].speaker SPEAKER_27
transcript.pyannote[2947].start 20894.89221875
transcript.pyannote[2947].end 20896.90034375
transcript.pyannote[2948].speaker SPEAKER_27
transcript.pyannote[2948].start 20897.17034375
transcript.pyannote[2948].end 20897.60909375
transcript.pyannote[2949].speaker SPEAKER_27
transcript.pyannote[2949].start 20897.87909375
transcript.pyannote[2949].end 20932.06784375
transcript.pyannote[2950].speaker SPEAKER_27
transcript.pyannote[2950].start 20932.37159375
transcript.pyannote[2950].end 20932.69221875
transcript.pyannote[2951].speaker SPEAKER_27
transcript.pyannote[2951].start 20933.31659375
transcript.pyannote[2951].end 20938.88534375
transcript.pyannote[2952].speaker SPEAKER_27
transcript.pyannote[2952].start 20939.29034375
transcript.pyannote[2952].end 20954.30909375
transcript.pyannote[2953].speaker SPEAKER_27
transcript.pyannote[2953].start 20954.88284375
transcript.pyannote[2953].end 20956.09784375
transcript.pyannote[2954].speaker SPEAKER_27
transcript.pyannote[2954].start 20956.30034375
transcript.pyannote[2954].end 20958.27471875
transcript.pyannote[2955].speaker SPEAKER_27
transcript.pyannote[2955].start 20958.54471875
transcript.pyannote[2955].end 20966.22284375
transcript.pyannote[2956].speaker SPEAKER_20
transcript.pyannote[2956].start 20966.22284375
transcript.pyannote[2956].end 20966.23971875
transcript.pyannote[2957].speaker SPEAKER_27
transcript.pyannote[2957].start 20966.62784375
transcript.pyannote[2957].end 20966.64471875
transcript.pyannote[2958].speaker SPEAKER_20
transcript.pyannote[2958].start 20966.64471875
transcript.pyannote[2958].end 20966.66159375
transcript.pyannote[2959].speaker SPEAKER_27
transcript.pyannote[2959].start 20966.66159375
transcript.pyannote[2959].end 20966.96534375
transcript.pyannote[2960].speaker SPEAKER_20
transcript.pyannote[2960].start 20966.96534375
transcript.pyannote[2960].end 20974.25534375
transcript.pyannote[2961].speaker SPEAKER_27
transcript.pyannote[2961].start 20970.52596875
transcript.pyannote[2961].end 20971.08284375
transcript.pyannote[2962].speaker SPEAKER_27
transcript.pyannote[2962].start 20972.02784375
transcript.pyannote[2962].end 20972.46659375
transcript.pyannote[2963].speaker SPEAKER_27
transcript.pyannote[2963].start 20973.37784375
transcript.pyannote[2963].end 20973.71534375
transcript.pyannote[2964].speaker SPEAKER_27
transcript.pyannote[2964].start 20974.25534375
transcript.pyannote[2964].end 20974.55909375
transcript.pyannote[2965].speaker SPEAKER_27
transcript.pyannote[2965].start 20974.71096875
transcript.pyannote[2965].end 20980.88721875
transcript.pyannote[2966].speaker SPEAKER_20
transcript.pyannote[2966].start 20979.73971875
transcript.pyannote[2966].end 20983.18221875
transcript.pyannote[2967].speaker SPEAKER_27
transcript.pyannote[2967].start 20981.98409375
transcript.pyannote[2967].end 20991.75471875
transcript.pyannote[2968].speaker SPEAKER_27
transcript.pyannote[2968].start 20992.04159375
transcript.pyannote[2968].end 20995.72034375
transcript.pyannote[2969].speaker SPEAKER_27
transcript.pyannote[2969].start 20995.77096875
transcript.pyannote[2969].end 21011.97096875
transcript.pyannote[2970].speaker SPEAKER_25
transcript.pyannote[2970].start 21004.36034375
transcript.pyannote[2970].end 21005.77784375
transcript.pyannote[2971].speaker SPEAKER_20
transcript.pyannote[2971].start 21011.41409375
transcript.pyannote[2971].end 21017.72534375
transcript.pyannote[2972].speaker SPEAKER_27
transcript.pyannote[2972].start 21011.98784375
transcript.pyannote[2972].end 21012.03846875
transcript.pyannote[2973].speaker SPEAKER_27
transcript.pyannote[2973].start 21017.72534375
transcript.pyannote[2973].end 21017.96159375
transcript.pyannote[2974].speaker SPEAKER_20
transcript.pyannote[2974].start 21017.96159375
transcript.pyannote[2974].end 21022.75409375
transcript.pyannote[2975].speaker SPEAKER_27
transcript.pyannote[2975].start 21018.01221875
transcript.pyannote[2975].end 21018.02909375
transcript.pyannote[2976].speaker SPEAKER_30
transcript.pyannote[2976].start 21018.02909375
transcript.pyannote[2976].end 21018.88971875
transcript.pyannote[2977].speaker SPEAKER_30
transcript.pyannote[2977].start 21020.27346875
transcript.pyannote[2977].end 21022.06221875
transcript.pyannote[2978].speaker SPEAKER_30
transcript.pyannote[2978].start 21023.29409375
transcript.pyannote[2978].end 21025.84221875
transcript.pyannote[2979].speaker SPEAKER_30
transcript.pyannote[2979].start 21027.41159375
transcript.pyannote[2979].end 21041.01284375
transcript.pyannote[2980].speaker SPEAKER_30
transcript.pyannote[2980].start 21042.71721875
transcript.pyannote[2980].end 21046.56471875
transcript.pyannote[2981].speaker SPEAKER_30
transcript.pyannote[2981].start 21047.07096875
transcript.pyannote[2981].end 21052.15034375
transcript.pyannote[2982].speaker SPEAKER_30
transcript.pyannote[2982].start 21052.45409375
transcript.pyannote[2982].end 21053.60159375
transcript.pyannote[2983].speaker SPEAKER_30
transcript.pyannote[2983].start 21053.65221875
transcript.pyannote[2983].end 21055.03596875
transcript.pyannote[2984].speaker SPEAKER_22
transcript.pyannote[2984].start 21072.21471875
transcript.pyannote[2984].end 21073.68284375
transcript.pyannote[2985].speaker SPEAKER_22
transcript.pyannote[2985].start 21073.93596875
transcript.pyannote[2985].end 21073.98659375
transcript.pyannote[2986].speaker SPEAKER_25
transcript.pyannote[2986].start 21073.98659375
transcript.pyannote[2986].end 21074.34096875
transcript.pyannote[2987].speaker SPEAKER_22
transcript.pyannote[2987].start 21074.34096875
transcript.pyannote[2987].end 21074.49284375
transcript.pyannote[2988].speaker SPEAKER_25
transcript.pyannote[2988].start 21074.98221875
transcript.pyannote[2988].end 21075.60659375
transcript.pyannote[2989].speaker SPEAKER_22
transcript.pyannote[2989].start 21093.96659375
transcript.pyannote[2989].end 21095.73846875
transcript.pyannote[2990].speaker SPEAKER_22
transcript.pyannote[2990].start 21097.51034375
transcript.pyannote[2990].end 21100.49721875
transcript.pyannote[2991].speaker SPEAKER_22
transcript.pyannote[2991].start 21113.18721875
transcript.pyannote[2991].end 21114.52034375
transcript.pyannote[2992].speaker SPEAKER_22
transcript.pyannote[2992].start 21115.31346875
transcript.pyannote[2992].end 21116.03909375
transcript.pyannote[2993].speaker SPEAKER_22
transcript.pyannote[2993].start 21116.35971875
transcript.pyannote[2993].end 21117.92909375
transcript.pyannote[2994].speaker SPEAKER_22
transcript.pyannote[2994].start 21118.41846875
transcript.pyannote[2994].end 21138.02721875
transcript.pyannote[2995].speaker SPEAKER_20
transcript.pyannote[2995].start 21138.02721875
transcript.pyannote[2995].end 21140.32221875
transcript.pyannote[2996].speaker SPEAKER_20
transcript.pyannote[2996].start 21140.86221875
transcript.pyannote[2996].end 21143.41034375
transcript.pyannote[2997].speaker SPEAKER_25
transcript.pyannote[2997].start 21143.41034375
transcript.pyannote[2997].end 21143.42721875
transcript.pyannote[2998].speaker SPEAKER_20
transcript.pyannote[2998].start 21143.42721875
transcript.pyannote[2998].end 21143.44409375
transcript.whisperx[0].start 717.15
transcript.whisperx[0].end 719.428
transcript.whisperx[0].text 與亞鄰國家之留才攬才政策競爭力比較.
transcript.whisperx[1].start 1181.442
transcript.whisperx[1].end 1181.74
transcript.whisperx[1].text 與亞鄰國家之留才攬才政策競爭力比較。」進行報告。
transcript.whisperx[2].start 1511.459
transcript.whisperx[2].end 1511.683
transcript.whisperx[2].text 與亞鄰國家之留才攬才政策競爭力比較.
transcript.whisperx[3].start 1728.088
transcript.whisperx[3].end 1737.864
transcript.whisperx[3].text 好,報告委員會我們現在開會,請組密報告出席人數。報告全體會,出席委員13人,已足法定人數。好,我們現在開始開會,進行報告事項,請宣讀上次會議之路。
transcript.whisperx[4].start 1738.68
transcript.whisperx[4].end 1764.496
transcript.whisperx[4].text 立法院第11屆第2會期經濟委員會第7次全體委員會議一事錄時間113年10月23日星期三9時至11時50分地點紅紅一連一會議室出席委員林黛華委員等14人列席委員洪孟凱委員等21人列席人員經濟部常次連錦章環境部政次斯文珍財政部官務署副署長蘇淑珍及其各單位相關人員主席邱昭及委員志偉
transcript.whisperx[5].start 1765.316
transcript.whisperx[5].end 1783.327
transcript.whisperx[5].text 報告事項一、宣讀上次會議事務決定確定.二、邀請經濟部首長、環境部首長就我國碳費徵收機制對產業衝擊之影響評估及政府協助企業因應支配套措施進行報告.並備質詢。三、邀請經濟部首長
transcript.whisperx[6].start 1784.967
transcript.whisperx[6].end 1812
transcript.whisperx[6].text 環境部首長、財政部首長就我國碳邊境調整機制 的推動規劃.進行報告.並備質詢。報告四、向合併巡查、經濟部長賜連錦章及環境部政次施文貞、報告後委員林戴化等18人提出質詢.均由經濟部連長賜及環境部施政次及相關人員即席答覆。決定一、登記發言委員處不在場、走在區域進行發言完畢.訊答結束。二、委員陳昌明所提書面質詢、列入紀錄、刊登公報
transcript.whisperx[7].start 1812.8
transcript.whisperx[7].end 1823.924
transcript.whisperx[7].text 三、書面執行和會籍答覆部分請相關單元一周內以書面答覆並複製本會。散會宣讀完畢。好,在場沒有違約,我們依次入政不疏離。我們繼續進行報告事項,請一併宣讀。
transcript.whisperx[8].start 1825.782
transcript.whisperx[8].end 1845.824
transcript.whisperx[8].text 二、邀請國家發展委員會主任委員、衛生福利部首長、教育部首長、勞動部首長就我國少子女化現況及對策計畫成效,暨我國與亞鄰國家之留才攬才政策競爭力比較,進行報告,並備質詢。三、邀請國家發展委員會主任委員、行政院人事總處
transcript.whisperx[9].start 1849.792
transcript.whisperx[9].end 1859.427
transcript.whisperx[9].text 少子女化對策主管單位與主要國家作法之比較.我國參裁改制之可能行性.進行報告.並備質詢宣讀完畢。
transcript.whisperx[10].start 1862.742
transcript.whisperx[10].end 1890.116
transcript.whisperx[10].text 在國會的留主委報告之前我很快的介紹進行列席的各部會的官員國家發展委員會留進行主委、行政院國發基金實名三職祕、衛生福利部及家庭署、社家署周道軍代理署長、教育部由張料外兼次長代表出席還有國民及學院教育署馮護元署長
transcript.whisperx[11].start 1892.107
transcript.whisperx[11].end 1902.302
transcript.whisperx[11].text 勞動部部份由勞動力發展署黃玲玉副署長代表出席那行政院人事行政總處由李秉舟副人事長代表出席以上
transcript.whisperx[12].start 1904.352
transcript.whisperx[12].end 1933.832
transcript.whisperx[12].text 那現在開始進行報告本日報告我們排定是我國少子女化現況跟對策的計畫成效繼我國跟亞洲其他國家鄰國的留才攬才政策的競爭力的比較這是第一案第二我國少子女化對策主管單位跟主要國家的做法做相關的比較還有我國未來該參採改制的可行性這兩個案特別請劉主委做報告
transcript.whisperx[13].start 1935.253
transcript.whisperx[13].end 1937.516
transcript.whisperx[13].text 現在請國家發展委員會 主任委員報告
transcript.whisperx[14].start 1950.682
transcript.whisperx[14].end 1972.223
transcript.whisperx[14].text 主席、各位委員先進、大家早今天很榮幸應邀到貴會針對我國少子女化現況及對策計畫成效暨我國與鄰國家之留才攬才政策競爭力比較以及我國少子女化對策單位
transcript.whisperx[15].start 1972.944
transcript.whisperx[15].end 1984.972
transcript.whisperx[15].text 以及與主要國家作法之比較,即我國採行改制之可行性等案進行備詢.以報告。」那敬請各位委員不吝執政。
transcript.whisperx[16].start 1986.632
transcript.whisperx[16].end 2003.677
transcript.whisperx[16].text 我國我以幾個大的部分來做一個簡易的報告第一個是我國人口的變遷的趨勢那這幾年因為人口有了很大的結構化的改變各國都遇到類似的問題那2024年聯合國的報告全球已經有四分之一
transcript.whisperx[17].start 2004.554
transcript.whisperx[17].end 2017.162
transcript.whisperx[17].text 的國家或地區面臨到人口的負成長,包括我國、日本、韓國、中國、泰國等鄰近國家也都面臨人口的負成長的情形。那我國人口數將會從預估本會的預估是從2024年
transcript.whisperx[18].start 2020.444
transcript.whisperx[18].end 2024.348
transcript.whisperx[18].text 的2340萬人將會減至到2027年的1497萬人,那將會減少844萬人,其中0到14歲的幼兒人口數預計會減少171萬。15到64歲的青壯年,也就是我們最重要的工作人口年齡層,會減少920萬。
transcript.whisperx[19].start 2041.966
transcript.whisperx[19].end 2068.822
transcript.whisperx[19].text 那這將會造成未來在工作與稅收都會有很大的影響65歲上的老人則會增加248萬也就是被必須被照顧的人會增加可以照顧的人減少那人口高齡化已經變成一個國家面臨的很重大的一個課題我想已經連續兩任總統都提出來這是國安危機那2024年全球已經有40個國家和地區邁入了高齡化社會
transcript.whisperx[20].start 2070.884
transcript.whisperx[20].end 2072.653
transcript.whisperx[20].text 包括日本、德國、法國等
transcript.whisperx[21].start 2074.217
transcript.whisperx[21].end 2099.658
transcript.whisperx[21].text 也將明年加入高齡化社會的行業。65歲以上的老人佔比將會超過20%,在2027年甚至會增加到46.5%。」那針對這個情形,我們現在有什麼樣的政策?第一個我們的做法是參考了國際的做法,然後以日本作為比較主要的仿效。然後由政務委員協調我國少子化的人口因應對策。
transcript.whisperx[22].start 2100.879
transcript.whisperx[22].end 2124.784
transcript.whisperx[22].text 那這個對策呢其實幾個參考的做法那日本於2007年在內閣設置了少子化的這個擔當大臣那由這個擔當大臣來負責少子化所有的相關工作那跟措施那韓國在2006年則成立了第一生育與高齡社會委員會透過跨部會的討論
transcript.whisperx[23].start 2125.904
transcript.whisperx[23].end 2147.682
transcript.whisperx[23].text 來解決少子化與高齡化的相關議題,那因為日本的執行成效顯然比較好,所以我國參考的是日本少子化單單大成的機制,由行政院指派中委員進行跨部會的協調,那目前本屆政府是由陳時中政委
transcript.whisperx[24].start 2148.642
transcript.whisperx[24].end 2170.209
transcript.whisperx[24].text 來召集各部會包括教育部、衛福部、勞動部、國安會等單位來進行這樣的一個少子化的議題的相關的政策的呼應的對應。目前整個人口政策的分工我們在報告書上製作了一個表格大概我們目前有五大政策第一個是全方位的支持國人生養
transcript.whisperx[25].start 2171.149
transcript.whisperx[25].end 2191.773
transcript.whisperx[25].text 第一個是擴大平價優質的育兒服務也就是我們希望做到0到6歲國家一起養那這裡面有也提供了高育兒的這個醫療照顧的措施也有強化幼兒友善職場分別由教育部、衛福部、內政部、勞動部來負責那相關的法令也有我國少子
transcript.whisperx[26].start 2192.633
transcript.whisperx[26].end 2215.429
transcript.whisperx[26].text 少子女化的對策與計畫。」那這個是從2018年整個計畫是一個中長期計畫2018年一直到2025年到明年是一個段落那另外我們在質量並進充裕人才部分我們也利用提高勞動生產力的方式透過數位化的方式去降低勞動力的需求提升企業的競爭力這個部分來講
transcript.whisperx[27].start 2217.771
transcript.whisperx[27].end 2245.067
transcript.whisperx[27].text 只要有經過比較好的工業4.0的導入大部分的企業可以減少50%的勞動力需求那這個對勞動未來的人口政策是很大的幫助那另外我們也積極的擴大勞動參與率把提高在中高齡的就業以及婦女重返職場作為我們主要的目標那同時也強化這個新世代的人才所需要的教育方法那這個部分由經濟部、速發部、勞動部、教育部等來負責
transcript.whisperx[28].start 2247.248
transcript.whisperx[28].end 2271.147
transcript.whisperx[28].text 相關的法令有中高齡者及高齡者就業促進法。依據這個法,我們也訂定了中高齡及高齡就業者促進計畫,那是2023年到2025年。此時也同時訂定了婦女在就業計畫,鼓勵婦女重返職場。另外,我們也投資了青年就業方案,同時現在正在研議的是壯士代措施與規劃。
transcript.whisperx[29].start 2275.35
transcript.whisperx[29].end 2303.112
transcript.whisperx[29].text 那同時我們也帶動了台灣AI行動計畫希望能夠帶動這樣的事情也同時本會在今年也完成了國家認財競爭力要生方案2024年到2027年的中長年計畫所以這幾個計畫都會支持以上這些工作那同時我們擴大隨著老年化的來臨我們擴大照顧量能持續去協助照顧量能那這個量能除了我們有長照的
transcript.whisperx[30].start 2303.852
transcript.whisperx[30].end 2321.379
transcript.whisperx[30].text 的制度的再進化到3.0然後呢我們建立20小時重度失能者的支持以外我們同時也導入智慧科技的部分來協助所以這個部分也會在我們AI計畫裡面我想未來在機器人上面的投資在這方面很重要所以我們也從此有長照長期照顧10年計畫2017年到2026年計畫
transcript.whisperx[31].start 2324.48
transcript.whisperx[31].end 2329.801
transcript.whisperx[31].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[32].start 2354.328
transcript.whisperx[32].end 2365.837
transcript.whisperx[32].text 那這幾個政策都有負責的部會在進行那接下來報告我們現行的留才攬才政策因為留才攬才政策是本會負責的我們跟亞鄰國家的比較那我們將進行一個說明
transcript.whisperx[33].start 2369.5
transcript.whisperx[33].end 2384.767
transcript.whisperx[33].text 我們現在的政策裡面呢第一個在我們本會負責的是中高階人才所以我們以提升勞動生產力為主訴求來降低對市場的需求的壓力那我們以國科會跟這個速發部共同在將會推動一個
transcript.whisperx[34].start 2386.668
transcript.whisperx[34].end 2388.569
transcript.whisperx[34].text 臺灣AI行動計畫,我們希望透過這樣的計畫降低整個提升整個產業職場環境的工作效率,降低對人力的需求。第二個部分,我們擴大勞動力的來源,我們會強化人才培育的管道,
transcript.whisperx[35].start 2402.794
transcript.whisperx[35].end 2419.709
transcript.whisperx[35].text 然後滿足我國的產業需求。目前我們有兩個方式在進行,一個是從學校教育裡面在既有的科系裡面強化以外,我們也提供了非數位相關科系的人去透過STAND的方案來改善他自己的技能
transcript.whisperx[36].start 2420.289
transcript.whisperx[36].end 2443.63
transcript.whisperx[36].text 我們預計一年可以提升這個部分的人力可以達到10萬那我們目前累積到現在2028年累積到現在也有了45萬人次的Stand-in才那我們也鼓勵了10萬的國際生來臺就學到目前為止那我們希望擴大僑外生的方案來增加那目前已經達到每年2萬以上了那這些我們目前留才率已經達到了48.1%
transcript.whisperx[37].start 2446.454
transcript.whisperx[37].end 2474.495
transcript.whisperx[37].text 所以將來我們希望把它拉到六成更高也因此我們也協調了這個教育部我們將來在明年開始我們在每個學校設立就業輔導員來協助這些僑外生在臺工作增加我們臺灣本地所需要的勞動力另外我們也擴大勞動力來源增強中高齡所謂的壯士代的人力需求這個勞動部已經訂定了中高齡及高齡就業者的出行計畫目前也在實施中也甚至有中高齡者的這個
transcript.whisperx[38].start 2476.056
transcript.whisperx[38].end 2501.013
transcript.whisperx[38].text 就是壯士戴責的這個就業輔導機制也有。另外,我們希望擴大我們的婦女勞參率,因為我們的中高齡就業率跟婦女攬差率相較韓國、日本等國,我們是相較低的。我認為這裡可以有機會促進10萬名以上的就業機會提供就業人才進來。海外人才的部分,最近我們也參考了日本、新加坡、英國等國的攬才
transcript.whisperx[39].start 2501.994
transcript.whisperx[39].end 2526.011
transcript.whisperx[39].text 策略,我們訂定了一個國家人才競爭力躍升方案裡面,去完善在國際攬才跟建構留才的一個機制。國際攬才的部分,我們擴大攬才管道,我們除了跟教育部的合作橋外生之外,我們還有新型專班,然後我們同時有國外直接攬才等方案,同時我們正在
transcript.whisperx[40].start 2526.591
transcript.whisperx[40].end 2541.954
transcript.whisperx[40].text 做法規的鬆綁希望透過鬆綁的方式讓大家更容易進來而且留下來那這個法案我們預計在下個禮拜會送出做這個公開預覽然後我們希望12月有機會送到
transcript.whisperx[41].start 2543.561
transcript.whisperx[41].end 2564.922
transcript.whisperx[41].text 大院來進行討論。另外我們建構完善的留才生態系,主要是我們做了一個調查去了解這些外國人來這邊怎麼樣才能夠留下來。我們做了一個完整的調查,我們透過我們調查的結果,目前正在改善整體的生態環境,包括食衣住行等方面,我們都在
transcript.whisperx[42].start 2566.844
transcript.whisperx[42].end 2595.499
transcript.whisperx[42].text 進行各種工作希望能夠協助。」那關於跟鄰國的這個各國的做法呢我們有一張表已經附在我們的報告書裡面那裡面詳述了日本、新加坡、英國等主要的做法大家對於高級人才、頂尖人才、數位牧民等方面那數位牧民是我們今年比較大的新的做措施因為全球有3千5百萬那我們現在已經跟兩個縣市合作將會在11月我們就會有記者會公告然後呢進行
transcript.whisperx[43].start 2596.759
transcript.whisperx[43].end 2622.85
transcript.whisperx[43].text 進行推廣,然後我們也開始會跟日本進行一個交流合作,大家互相這個交換意見跟經驗,然後呢締結聯盟,然後讓我們的數位人才機會比較大,那以目前最近的有一篇報導裡面,我們臺灣的數位人才是亞洲這個數位牧民的環境裡面是亞洲排名第一,所以我們希望利用那個優勢趕緊把這樣的人拉進來,然後也透過這樣的人才去
transcript.whisperx[44].start 2624.37
transcript.whisperx[44].end 2648.871
transcript.whisperx[44].text 提供我們未來數位創新的基礎。」那第三最後是我們持續會觀察人口相關的變化那為了積極應變這樣的變化其實我們在院會年尾我們開了非常多次的會議希望能夠盡量在少子化方面我們能夠守住現在的狀況再來談進化所以我們會積極擴大人工生殖這個的補助對象延長育嬰留職
transcript.whisperx[45].start 2649.811
transcript.whisperx[45].end 2660.623
transcript.whisperx[45].text 以及挺心津貼在勞動市場面我們擴大中高齡及婦女的勞參然後吸引全球的優秀人才持續厚植產業人才的培育在經濟產業方面積極應用AI等方面讓產業能夠快速升級
transcript.whisperx[46].start 2664.967
transcript.whisperx[46].end 2686.647
transcript.whisperx[46].text 然後也降低對產業能力的需求在財政方面也因應未來納稅人口將會減少社會福利支出增加的部分我們也在商討如何去改善這個部分另外在社會環境部分我們也開始研議未來超高齡社會所需要的醫療與照顧能量我們透過智慧化的方式來改善甚至我們希望能夠透過預防醫療的方式
transcript.whisperx[47].start 2691.631
transcript.whisperx[47].end 2708.758
transcript.whisperx[47].text 總統推出《健康台灣》的政策,我們希望在醫療前能夠讓大家有更好的身體。這些方式我們現在都會每季或每半年進行檢討,尤其是滾動式。人口的部分我們目前是每一季由陳時中委員在帶動進行檢討。所以
transcript.whisperx[48].start 2712.6
transcript.whisperx[48].end 2738.6
transcript.whisperx[48].text 面對這樣的關鍵時刻,我們也也謝謝立法院那麼關心這件事情,我們也希望大家一起可以共同來努力,讓我們的經濟跟社會的韌性變得更好。那我們也希望在立院的協助之下,我們可以讓各項相關的政策能夠能夠推展比較順利,那相關的預算也能夠比較得到相當的支持。那這樣的話呢,我們兩院聯手呢,可以這個衝浴產業的發展所需要的人才
transcript.whisperx[49].start 2739.561
transcript.whisperx[49].end 2743.808
transcript.whisperx[49].text 與人力提升我國的競爭力,讓我們的社會未來更穩定更健康。」
transcript.whisperx[50].start 2749.73
transcript.whisperx[50].end 2773.362
transcript.whisperx[50].text 所以我請回座因為國化會議是屬於這個政策的規劃協調管考機關那目前是由陳時中啊政委擔任召集各部會的協調那主政單位還是併集在各部會包括教育部、衛福部主要是教育部、衛福部跟勞動部今天我請衛福部來周首長來進行報告重點報告
transcript.whisperx[51].start 2789.66
transcript.whisperx[51].end 2805.929
transcript.whisperx[51].text 教委以及各位委員大家早安以及委員會各位女士先生今天陳委員會邀請衛福部緊就再辦理我國少子女化對策計畫的部分其中有關涉及到與衛福部比較相關的幼兒照顧
transcript.whisperx[52].start 2807.53
transcript.whisperx[52].end 2832.525
transcript.whisperx[52].text 及兒童健康權益保護以及友善生養部分相關的作為,做一個簡單的口頭報告。首先,在0到2歲幼兒全面照顧的部分,衛福部這邊在112年開始,對於不管是生育津貼或者是托育補助的部分,我們大家都已經取消了牌幅的限制,只要是有生養子女的,都可以領取
transcript.whisperx[53].start 2832.705
transcript.whisperx[53].end 2858.363
transcript.whisperx[53].text 相關的津貼或者是補助那其中在預約津貼的部分也在112年它的這個津貼的費用從2500每個月2500塊調到5000塊那在托育補助的部分1000在113年今年開始其中它如果是送到公共化的公托的部分那每個月的補助金從每個月5500塊調到7000塊那如果送到私營的總公托那則是從每個月8500塊調到13000塊
transcript.whisperx[54].start 2860.985
transcript.whisperx[54].end 2864.449
transcript.whisperx[54].text 與亞鄰國家之留才攬才政策競爭力比較:一、邀請國家發展委員會主任委員會主任委員會首長就
transcript.whisperx[55].start 2878.564
transcript.whisperx[55].end 2904.665
transcript.whisperx[55].text 托育照顧的比例從1比5要能夠調降到1比4能夠去調升它的比例那對於這類機構的人員跟薪資以及各類輔導人的薪資我們也都會激動的來做調控來注意他們的薪資以及市場狀況來維持整個照顧的服務的水平那另外在兒童健康以及全醫、兒童健康跟醫療照護的部分那我們也推動了有關優化兒童醫療照護的計畫那
transcript.whisperx[56].start 2908.428
transcript.whisperx[56].end 2933.004
transcript.whisperx[56].text 衛福部一共補助了八處核心醫院來成立兒童重難罕症的焦點團體有補助三個重症的轉運專業團隊以及一處困難診斷疾病的平臺另外,還有九家醫院來設置周產期母嬰醫療中心來專責協助有關高危險妊娠以及新生兒家戶照護的工作
transcript.whisperx[57].start 2933.584
transcript.whisperx[57].end 2959.479
transcript.whisperx[57].text 那另外在112年11月開始我們也將全面將所有新生的幼兒能夠三歲以下的幼兒全部納入三歲以下幼兒的專責醫師制度那國內現在一共有1276家的院所2837位的相關的醫師來投入這樣的一個對新生兒以及幼兒的服務那另外在社會安全網線上的求助平臺我們也補助了
transcript.whisperx[58].start 2961.38
transcript.whisperx[58].end 2982.994
transcript.whisperx[58].text 國內12家醫院來辦理兒少保護的醫療整合中心來防止兒少的虐待以及疏忽。另外在擴充發展遲緩兒童的社區療癒服務提早早療的療癒補助還有輔助貧困弱勢家庭的自立協助兒童少年未來教育發展帳戶等等開戶人數也達到43萬人開戶率達到這些兒童的65%
transcript.whisperx[59].start 2988.517
transcript.whisperx[59].end 3012.675
transcript.whisperx[59].text 也就是差不多接近三分之二那在友善生養措施的部分衛福從110年7月起就已經開始擴大不孕症治療的補助那這個到一般的不孕夫妻那已經到目前為止已經成功產下2.13萬名新生兒那也補助孕婦的產檢從原來的10次提高到14次
transcript.whisperx[60].start 3015.204
transcript.whisperx[60].end 3034.686
transcript.whisperx[60].text 有一次提高到三次,而且也新增了妊娠糖尿病以及貧血的檢驗,讓母親在懷孕的過程,她的健康能夠有更高的保障。那縱觀各國在對於提車生育率的對策,基本上大概都是朝向從多元方式來著手,也大概不
transcript.whisperx[61].start 3035.046
transcript.whisperx[61].end 3059.108
transcript.whisperx[61].text 不完全是透過單一的部會或者單一的政策那衛福在這個角色上面我們除了提供了包括現金的給付那我們還是會從這個比較良好的醫療照顧體系我們這邊會持續的來做相關的努力那也會持續的跟相關所有在有關少子化計畫裡面相關的部會我們一起就整體的政策一起配合來推動相關的
transcript.whisperx[62].start 3060.149
transcript.whisperx[62].end 3087.44
transcript.whisperx[62].text 各種各樣的育兒措施能夠給育兒的家庭最大的支持以及奧元讓我們年輕一代的父母親能夠趕婚、怨生以及樂養那衛福部、城、大院以及各位委員會的指導與監督在這邊謹誌謝誠並請各位委員持續給予衛福部相關的監督與指導以上報告謝謝好謝謝衛福部周市長的報告來請回座下一位請教育部由張妙慧金次長做報告
transcript.whisperx[63].start 3092.837
transcript.whisperx[63].end 3111.813
transcript.whisperx[63].text 主席、各位委員先生大家好今天我們來應邀列席貴委員會那我們針對我國少子女化現況及對策計畫成效部分這個部分我們來進行報告那麼以下就先從二至六歲幼兒教育及照顧之推動情形
transcript.whisperx[64].start 3112.493
transcript.whisperx[64].end 3131.562
transcript.whisperx[64].text 提出重點說明,也請各位指教。首先是在兩歲到六歲的幼兒教育及照顧之辦理情形方面,透過五項作為來建立平價、優質跟普及的托育服務體系。目前五項作為分別是一、擴大公共化及准公共托育能量
transcript.whisperx[65].start 3132.182
transcript.whisperx[65].end 3147.469
transcript.whisperx[65].text 那麼從106年到113年起我們累計增加了3699班那麼在公共化的方面那麼同時結合準公共機制符合一定條件的私立幼兒園合作那麼增加教家長的選擇評價就學場域的機會從在113年
transcript.whisperx[66].start 3154.013
transcript.whisperx[66].end 3173.364
transcript.whisperx[66].text 現在已經有2039家私立幼兒園來參與那麼113年度合計公共化及準公共幼兒園一共提供超過50萬個評價就學名額那麼就來比較方面就是實行前我們已經增加了32.4萬個評價就學機會那麼第二個面向是在減輕家長的經濟負擔那麼分別對於就讀功力
transcript.whisperx[67].start 3180.007
transcript.whisperx[67].end 3202.258
transcript.whisperx[67].text 非營利及準公共幼兒園者家長每月的繳費不超過三千元,就是所謂的公利一千、非營利兩千、準公幼三千、一二三的政策。那麼對於中低及低收入戶的家庭子女就許是完全免費。那麼對於未接受公共化及準公共教保服務者每月發給幼兒津貼
transcript.whisperx[68].start 3205.842
transcript.whisperx[68].end 3230.779
transcript.whisperx[68].text 五千元,第一胎五千元,第二胎六千元,第三胎七千元,那麼在一百一十二年一月起也取消了育兒津貼的牌付,那麼第三個面向是完善托育時間,那麼除了托育的服務之外,從一百一十三年今年的一月起推動公立幼兒園平日課後延長照顧服務時間以及寒暑期的加托服務,那麼採定額繳費的方式辦理
transcript.whisperx[69].start 3231.079
transcript.whisperx[69].end 3254.362
transcript.whisperx[69].text 不足的費用則由本部與地方政府共同編列經費予以協助目前已經超過9成的公立幼兒園已經開辦從今年的8月起在45處的公共化幼兒園示範臨時照顧服務第四個面向是優化調整私生比就是我們大院所關心的幼兒園希望能夠朝向1比12
transcript.whisperx[70].start 3254.923
transcript.whisperx[70].end 3257.784
transcript.whisperx[70].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[71].start 3284.893
transcript.whisperx[71].end 3306.345
transcript.whisperx[71].text 幼兒園的園長、教師及教保員一年之區分為三個級距,每月基本薪資至少三萬三千兩百元起,並且一年之再提高,園方也應該要訂定調薪的機制,共同調升薪資待遇。」除了這五大面向之外,其實在測競作為方面,針對都會區及公共化供應量不足的地方
transcript.whisperx[72].start 3307.746
transcript.whisperx[72].end 3330.515
transcript.whisperx[72].text 家長對於兩歲專班的就讀需求非常大,持續協助各地方政府來增設公共化幼兒園及兩歲專班,目前也跟內政部營建署合作,在社會住宅內提供空間設置公共化幼兒園,以加速都會區設置公共化幼兒園,以及增加兩歲專班的供應量,預計在今年起到115年,我們可以增設兩歲專班200班,
transcript.whisperx[73].start 3334.497
transcript.whisperx[73].end 3356.882
transcript.whisperx[73].text 那麼最後呢,要感謝各位委員關心二、兩到六歲的幼兒教育照顧以及推動的情形跟成效那麼為了減輕家庭育兒負擔本部將持續配合少子女化計畫持續由上開育兒支持措施建立平價優質及普及的托育服務體系健全友善成長環境的政策精神以上報告,敬請各位委員指教,謝謝好,謝謝教育部長、廖文堅次長的報告
transcript.whisperx[74].start 3363.464
transcript.whisperx[74].end 3366.192
transcript.whisperx[74].text 接著請勞動部、勞動部發展署、黃副署長報告重點
transcript.whisperx[75].start 3374.11
transcript.whisperx[75].end 3396.827
transcript.whisperx[75].text 主席、委員各位先進大家好本部應邀列席進行報告上請各位指教本部配合衛福部推動少子女化對策以及國發會留才攬才政策採行了各項具體措施首先針對少子女化部分我們採行了滾動檢討育兒相關的制度現行在性別平等工作法裡面其實已經有一些產價
transcript.whisperx[76].start 3397.808
transcript.whisperx[76].end 3421.138
transcript.whisperx[76].text 以及相關措施的規定,包括留職停薪,得以不低於30天的期間向僱主提出,但是為了建構更友善的職場環境,本部在今年採行了彈性育嬰留職停薪的試辦原則,以5天或7天的這個低門檻,育嬰留職停薪的彈性措施進行試辦,預計試辦到今年年底,我們希望透過這次的實作,能夠作為未來政策參考。」
transcript.whisperx[77].start 3422.378
transcript.whisperx[77].end 3441.526
transcript.whisperx[77].text 第二是推動企業的設置普及乳式托兒設施除了提供企業相關的經費補助,我們也在今年8月修法提高了托兒設施最高的補助額度來到500萬此外,今年也補助了普及乳式、托兒設施以及措施576家,補助金額2900餘萬
transcript.whisperx[78].start 3444.947
transcript.whisperx[78].end 3458.474
transcript.whisperx[78].text 第三是強化育嬰留職停薪期間的經濟支持從110年7月起我們另外以公務預算的方式加給了兩成的薪資補助目前加碼來到八成薪截至今年8月底已經補助了近29萬4千餘人合幅金額108億
transcript.whisperx[79].start 3462.881
transcript.whisperx[79].end 3484.915
transcript.whisperx[79].text 另外,在留才攬才方面,我們也採行了三項措施一、針對延攬外國專業人才本部許可外國專業人才從事專門及技術性工作,到目前已經有5萬餘人此外,經會商經濟部、經管會衛福部等以修法擴大製造業、金融業、政企會等相關的工作範圍並且新增了外國人也可以從事設公司
transcript.whisperx[80].start 3486.055
transcript.whisperx[80].end 3506.753
transcript.whisperx[80].text 第二、加強留用畢業僑外生留台工作僑外生取得副學士以上經過評點制可以留台那我們在今年的6月14號進一步的再公告增加了實習跟獎助學金都可以調高他的配分此外也刪除了僑外生留台的人數上限目前留台的人數已經來到了一萬六千餘人
transcript.whisperx[81].start 3507.557
transcript.whisperx[81].end 3526.879
transcript.whisperx[81].text 未來要進一步的規劃放寬畢業僑外生可以申請個人式工作許可。」第三是擴大禁用中階技術人力目前已經有開放6年以上的資深移工以及僑外生可以符合一定的技術條件、薪資水準就可以從事製造業、營造業等中階技術工作目前已核准了3萬5千餘人
transcript.whisperx[82].start 3528.44
transcript.whisperx[82].end 3532.024
transcript.whisperx[82].text 為了進一步配合擴大留用僑外生,我們8月份再開放僑外生可以從事旅宿業。此外,也在會商各相關機關以及因應產業需要
transcript.whisperx[83].start 3541.274
transcript.whisperx[83].end 3569.55
transcript.whisperx[83].text 我們進一步的將在開放畢業僑外生可以從事醫院照護所、艙處理貨、貨車駕駛、隨車助理、公路及市區客運駕駛以及管理安全人員等等這六類的中階技術工作,我們也預計在今年年底會完成修法。未來也將持續配合國發會留才攬才的相關措施以及攬才專法的修正,共同擴大境外中階技術人力的延攬。以上報告,敬請不吝指教。謝謝。
transcript.whisperx[84].start 3573.574
transcript.whisperx[84].end 3591.829
transcript.whisperx[84].text 謝謝勞動部的報告我們先來確定意思錄請問在場各位同仁上次會議意思錄有錯誤沒有的話我們就意思錄確定另外行政院人事總處所提書片報告請委員進行參與並刊登公報那
transcript.whisperx[85].start 3594.401
transcript.whisperx[85].end 3616.296
transcript.whisperx[85].text 今天的報告雖然有兩岸,我們何必進行詢問?委員事併前,主席原理做以下宣告,每位委員發言時間本會委員6分鐘,必要延長2分鐘,非本會委員4分鐘,我們在上午10點30分即時發言登記,為了讓會議進行能夠順利,兼顧每位委員發言時間的公平性,避免影響消費委員發言的權益
transcript.whisperx[86].start 3618.797
transcript.whisperx[86].end 3633.682
transcript.whisperx[86].text 請質詢的委員於經時間結束之後停止發言。若繼續發言的話,那主席會制止。還請各位同仁能夠配合。感謝。」好,來,第一位質詢請林黛樺委員。有請劉組委。國會劉組委。
transcript.whisperx[87].start 3649.226
transcript.whisperx[87].end 3674.64
transcript.whisperx[87].text 林委員早好 各位這個本席認為整個涉及11個政府部門所提出的少子化政策就是兩個字叫無感所以導致了少子化的狀況是日趨嚴重你們從不提本國在全世界少子化的排名我們現在倒數第二名跟韓國倒數第一名只差0.01
transcript.whisperx[88].start 3677.324
transcript.whisperx[88].end 3704.295
transcript.whisperx[88].text 所以我本席認為所有的各部會當中誰講得最好誰爬出得最清楚叫做人事行政總處人事行政總處的最後一段少子化成因交織複雜涉及價值觀、經濟壓力如何兼顧育兒及就業育兒等面向其關鍵在於這句話是重點啦其關鍵在於所提對策能否切合
transcript.whisperx[89].start 3705.295
transcript.whisperx[89].end 3724.282
transcript.whisperx[89].text 並有效改善,並非單一部會能夠處理。」你們所有其他各部會都講說只強調一點這不是單一部會可以處理的所以都大概我就做我的那成效如何我不管所以現在的少子化政策叫什麼既沒有契合問題也沒有改善問題
transcript.whisperx[90].start 3725.322
transcript.whisperx[90].end 3743.788
transcript.whisperx[90].text 好 主委先回答本席三個問題第一個衛福部106年成立少子化辦公室目前少子化辦公室有沒有運作第二個行政院下有沒有少子化辦公室第三個520之後我們少子化的對策開了幾次會回答
transcript.whisperx[91].start 3747.007
transcript.whisperx[91].end 3764.884
transcript.whisperx[91].text 跟委員報告少子化辦公室已經移到行政院在運作那目前是有在運作那我們在公布人口報告的時候我們總共開了三次會議五二零之後嗎關我的報告公告前我要提升到行政院層次五二零之後
transcript.whisperx[92].start 3765.769
transcript.whisperx[92].end 3792.233
transcript.whisperx[92].text 五二零之後我參與過三次針對這個報告但五二零之前因為我沒有參與到五二零之後本席所掌握的是十二次報告十二次您在爬樹下本席所掌握的陳時中就十月一號開過一次會五二零之後好那所以現在行政院下有少子化辦公室這個實質的這個辦公室嗎那招集人叫做政委嗎
transcript.whisperx[93].start 3793.394
transcript.whisperx[93].end 3805.485
transcript.whisperx[93].text 目前是所以有少子化辦公室那這個你來那這個本席認為嚴重的原因在低薪是導致少子化的問題何部長講到這個10月17號勞動部月薪3萬1以下是屬於低薪這也將影響到120萬的勞動力
transcript.whisperx[94].start 3814.773
transcript.whisperx[94].end 3832.45
transcript.whisperx[94].text 那勞動力呢既然是逐漸下降勞動的供給我們供需勞動力的供給減少那薪資理論上是要增加的可是是沒有的所以各級企業面臨嚴重的勞動力短缺生產力當然有限那低薪我講的是實質所得
transcript.whisperx[95].start 3832.83
transcript.whisperx[95].end 3847.293
transcript.whisperx[95].text 所得導致少子化的問題日趨嚴重所以年輕人口的減少導致企業招聘困難特別是在勞動密集型的產業形成企業競爭力的下降所以產業與國力就是陷入惡性循環
transcript.whisperx[96].start 3848.274
transcript.whisperx[96].end 3864.475
transcript.whisperx[96].text 所以在整個尤其各部會講的時候呢你們都不講生育這件事情了你們都不講你們只講留才攬才花了很大的以及高齡人口那這個如何生育如何支持生育這件事情是沒講的好
transcript.whisperx[97].start 3866.097
transcript.whisperx[97].end 3870.08
transcript.whisperx[97].text 少子化辦公室在行政院下我認為他也孤掌難鳴從衛福部的少子化到你現在行政院的少子化辦公室卓院長在這個院會當中他也直接講少子案是國安議題
transcript.whisperx[98].start 3884.233
transcript.whisperx[98].end 3907.247
transcript.whisperx[98].text 國安議題啊所以你們在行政院下的這樣開會的頻率跟主責單位那政委不在我們立法院報告的啊不接受民意的那個啊的提點的啊那他怎麼會是個國安議題呢你們把國安把你們是末世少子漢是國安議題你把少子漢這樣國安議題是把國安議題當作塑膠
transcript.whisperx[99].start 3908.528
transcript.whisperx[99].end 3924.516
transcript.whisperx[99].text 所以少子化的議題那我請問你國發會跟陳時中是什麼關係?國發會這個單位跟少子化辦公室的召集人陳時中政委是什麼關係?你們做什麼事?我們是在他的整個規劃方案裡面我們負責國外的攬才
transcript.whisperx[100].start 3928.177
transcript.whisperx[100].end 3937.025
transcript.whisperx[100].text 國外的攬才 國外的攬才這件事情所以你看今天召委很用心希望對於少子化這樣國安題提出來結果請了國發會做主責你只負責攬才
transcript.whisperx[101].start 3941.963
transcript.whisperx[101].end 3947.626
transcript.whisperx[101].text 所以那到底我們要對整個行政院國安體我們怎麼質詢呢?我跟委員報告是這樣喔我上來之後其實我們也主動的做了這個人才競爭力的白皮書那我們也把各部位把各部位把人才需要全部整合我先不講競爭力我先要增加人數對人數我們現在就是跟勞動部也一起合作對你就留才攬才嘛不只不只我們現在也在所以你講生育是嗎?
transcript.whisperx[102].start 3967.698
transcript.whisperx[102].end 3971.96
transcript.whisperx[102].text 民眾無感的政策導致問題擴大。第一個少子化政策偏重於幼兒的照護跟關懷第二個缺乏勞動政策支持與租稅優惠
transcript.whisperx[103].start 3984.187
transcript.whisperx[103].end 3998.204
transcript.whisperx[103].text 第三、小孩不會因為照顧條件變好就自己蹦出來所以本席認為你所有的政策如果這是政委的政委在主導本席認為在婚配年輕化以及父母生育的誘因一定要提高這兩個這兩個才是正解
transcript.whisperx[104].start 4000.927
transcript.whisperx[104].end 4029.699
transcript.whisperx[104].text 這兩個你沒下去我們現在都是30歲以後32歲以後女性的生育的黃金其實有極限的所以我們婚配的年輕化如何去獎勵我們父母的生育的誘因怎麼提高這個是要加強的好我們就看新加坡既然你們講到新加坡我覺得你們也沒講到重點第一個這在本期的總諮詢也提過在6月18號新加坡我認為這幾個特色在生育的部分21到35歲單身女性忍動卵子
transcript.whisperx[105].start 4030.379
transcript.whisperx[105].end 4055.905
transcript.whisperx[105].text 第二、生育環境母親的有薪假應該在延伸16週附近的有薪陪產假4週好再來所得稅的減免因為我們你們也提說要這個婦女職業婦女啊所以你的第一胎要減少母親的總收入的15%第二胎你要減少他的總收入減免他的免稅額總收入20%第三胎以後減免他25%甚至可以到60%
transcript.whisperx[106].start 4058.826
transcript.whisperx[106].end 4060.927
transcript.whisperx[106].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[107].start 4081.636
transcript.whisperx[107].end 4104.339
transcript.whisperx[107].text 百分之七五的經濟我們就補下去啦所以你們沒有針對生育的部分去做誘因啊好我具體建議第一個院會正式你要既然您是國發會統籌各部會本席要求您在院會要正式提案行政院底下成立專責的少子化委員會辦公室提升到委員會至於這個委員會要不要比照你國發委員會編制內的
transcript.whisperx[108].start 4105.64
transcript.whisperx[108].end 4132.051
transcript.whisperx[108].text 大陸委員會也好,你要成為公共工程委員會也好,或者你行政院以下等同性平委員,至少幕僚機構,召集人就是院長啊,幕僚的主責可以是陳時中啊,你至少有一個委員會正式的運作,怎麼會是5月5、20之後到現在陳時中才開一次會,10月1號才開一次會,這哪是國安議題啊。第二個,盡快嚴厲少子化,白皮書
transcript.whisperx[109].start 4133.547
transcript.whisperx[109].end 4158.875
transcript.whisperx[109].text 好,這白皮書要針對幾點?針對孕婦所需心理的諮商、生理的理療、產前的準備價甚至生育所得稅的減免鼓勵生育啊第二個,比照新加坡評估婦女生育所得稅的減免優惠第三,青年購屋如果提高青年早婚的意願青年住宅結合少子化的政策一、生育子女數給不同的優惠完全不需要抽籤
transcript.whisperx[110].start 4159.835
transcript.whisperx[110].end 4188.641
transcript.whisperx[110].text 只要你願意生你青年也早一點結婚我們不需要抽籤讓青年能夠安穩定居第四個用國家的力量宣揚家庭的價值不分性向不分性別宣揚家庭的價值結合少子化的政策推動家庭的這個家庭日不是節日那這個主委你怎麼看呢?好我簡單回應委員的建議我會找我會直接找院長報告好非常好我會給你一個答覆好謝謝
transcript.whisperx[111].start 4190.134
transcript.whisperx[111].end 4213.913
transcript.whisperx[111].text 好,謝謝領導委員。主委請回座。消費資源請邱益穎委員。好,謝謝主席。我先請一下國發會。請國發會劉主委。
transcript.whisperx[112].start 4223.605
transcript.whisperx[112].end 4242.178
transcript.whisperx[112].text 今天我們要來討論這個少子化的議題我想這個國發會你們最新發布的這個人口推估到2070年的時候我們的生產者跟老年人口的比例將到達1對不對這個是你們最新的一個版本你不要告訴我你沒看過是的沒錯好
transcript.whisperx[113].start 4244.613
transcript.whisperx[113].end 4256.64
transcript.whisperx[113].text 來那也就是說其實在臺灣的這個少子高齡化的趨勢其實是在快速的擴大當中所以如果這樣子照你們現在的推估到2070年臺灣將會減少大概903萬的人口應該是920萬我們的數字你們的數字是920萬7年
transcript.whisperx[114].start 4267.125
transcript.whisperx[114].end 4268.706
transcript.whisperx[114].text 主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[115].start 4280.56
transcript.whisperx[115].end 4302.478
transcript.whisperx[115].text 但是西歐跟美國、澳洲等等這些國家其實他們的少子化的趨勢是比較和緩請教一下你們有沒有去做過研究這些國家為什麼他們有辦法維持這樣子的生育率雖然生育率是不像台灣、韓國、新加坡、日本的生育率是這麼低
transcript.whisperx[116].start 4303.519
transcript.whisperx[116].end 4306.401
transcript.whisperx[116].text 他們有沒有什麼值得我們借鏡的地方?你們有沒有去做過研究?
transcript.whisperx[117].start 4334.12
transcript.whisperx[117].end 4356.957
transcript.whisperx[117].text 在歐美婚生子女是比較少一點很多人不見得要結婚就生小孩了我先談到錢的部分您剛講到這個錢的部分我們的內閣其實對於少子高齡化有一些新的政策比如說我們的育兒津貼0到6歲國家一起養2.0兩歲的專班
transcript.whisperx[118].start 4361.36
transcript.whisperx[118].end 4388.639
transcript.whisperx[118].text 讓你看一下這個未來的預算增加不只是0到6歲國家跟你一起養青少年的這個預算增加了44億從教育部、衛福部到勞動部等等這個留職、停薪育兒的津貼都增加婦女的生育率我們也希望婦女的生育率能夠增加所以我們的人工生殖技術的補助等等
transcript.whisperx[119].start 4389.62
transcript.whisperx[119].end 4417.278
transcript.whisperx[119].text 這一些錢就是您剛講的都要錢嘛政府用大量的補助增加的補助去給他們沒錯那我請教一下現在你的這個所謂的少子化對策計畫294億有沒有總預算沒有那您剛講的這些補助在哪裡錢從哪裡來需要預算通過而且不只這個金額我們未來財霸法包括依照現在的
transcript.whisperx[120].start 4418.779
transcript.whisperx[120].end 4434.504
transcript.whisperx[120].text 這個在野黨的版本中央會少掉4000億喔只剩下3600億的錢那我們剛剛講的這些補助會很難解決沒有的話那你的少子化問題就會越來越嚴重嘛你最基本的錢的補助
transcript.whisperx[121].start 4436.124
transcript.whisperx[121].end 4455.614
transcript.whisperx[121].text 前不能通過的時候沒有預算沒有錢你後面的那些你講的那個風氣啦文化啊那個其實跟台灣還有很大段的距離但是眼前我們可以提高生育率我們可以提高對於孩子們的養育津貼的這個部分沒有錢啊那怎麼做
transcript.whisperx[122].start 4457.345
transcript.whisperx[122].end 4479.953
transcript.whisperx[122].text 所以少子化這個議題它跟我們的總預算也是牽扯非常的廣泛那剛剛其實也有委員一直在講說我們不談提高生育率我們一直講留才攬才其實主委我要接下來跟您請教這個部分我是不是也請一下這個勞動部跟教育部好不好
transcript.whisperx[123].start 4480.693
transcript.whisperx[123].end 4487.618
transcript.whisperx[123].text 呃、教育部請張教次長、勞動部首長、勞動部我們一直在談留才攬才這件事啊
transcript.whisperx[124].start 4490.647
transcript.whisperx[124].end 4516.653
transcript.whisperx[124].text 剛剛這個勞動部也特別報導從8月份開始僑生可以從事旅宿業的服務工作 對不對未來我們還要增加醫院的照護輔助人力倉儲人力貨車駕駛助理以及這個客運駕駛的安全管理人力的問題我們要利用這些所謂的僑外生來增加我們的人力來補足我們的人力缺口是不是這樣這是勞動部的政策嘛
transcript.whisperx[125].start 4518.356
transcript.whisperx[125].end 4525.286
transcript.whisperx[125].text 來接下來我要請教一下到底這一些橋外生他是學生是喬生還是學工
transcript.whisperx[126].start 4526.519
transcript.whisperx[126].end 4554.493
transcript.whisperx[126].text 我為什麼會這樣問?你看明年這個教育部應該有掌握明年有三萬個私立的高中職的學生裡面每四個就有一個是所謂的僑生僑生要到台灣來上課他必須通過基礎的華語文測驗對不對?次長那個張亮次長你知道嗎?但是你知道現在這一些僑生
transcript.whisperx[127].start 4557.204
transcript.whisperx[127].end 4583.509
transcript.whisperx[127].text 來這個是監察院最新的報告我們剛剛講僑委會從103年開始擴大所謂的產學攜手合作僑生專班3加4112年的招生人數是4069人到目前為止有畢業了三屆次長您看一下這個畢業率這一些學生來念書之後他的畢業率到最新的這屆是25.51
transcript.whisperx[128].start 4587.318
transcript.whisperx[128].end 4605.24
transcript.whisperx[128].text 就說這些學生來念書可是他念到一半以後他就退學了真正能夠念到畢業的只有25%真正留在台灣的4000多人裡面真正能夠留在台灣的也不過才幾百人這到底是什麼樣的問題
transcript.whisperx[129].start 4607.495
transcript.whisperx[129].end 4625.132
transcript.whisperx[129].text 是教育的問題呢還是說你們當時招生的時候其實只是為了找一些學工來並不是真的要讓他們在這裡念書求取知識然後甚至多學一些技能來留下來我我
transcript.whisperx[130].start 4626.053
transcript.whisperx[130].end 4640.235
transcript.whisperx[130].text 我去做一個調查,包括有一篇報導他說這些孩子們其實雖然來這裡念書但他們的中文能力其實跟我們的認知是有很大的落差的來,次長
transcript.whisperx[131].start 4641.119
transcript.whisperx[131].end 4667.715
transcript.whisperx[131].text 跟委員報告其實橋委會也針對這個事情也來教育部這邊也來跟我們討論其實很重要的一個問題就是語言的適應的問題就是說他的那個語言能力所以他現在這個比較變通的辦法就是在將來他在海外設立基地都是希望說來台灣前他的那個語文能力能夠達到一定的程度可是市長他來台灣前不是已經有通過了基礎的語文測驗嗎就是A1就是自打到A1
transcript.whisperx[132].start 4668.695
transcript.whisperx[132].end 4697.79
transcript.whisperx[132].text 所以A1是很低的level就是了那他如果是這樣他來台灣比如說來台灣上課的時候學校是不是要能夠因材施教比如說你的中文程度到什麼樣的程度我應該要讓你多一點或是應該怎麼樣去教導你那你的這些僑生他有可能是在職業學校跟他的技職有相關的中文的學習專有名詞的學習是不是也應該要多一點
transcript.whisperx[133].start 4698.75
transcript.whisperx[133].end 4719.517
transcript.whisperx[133].text 還是說阿就像放牛板那樣親菜阿啦?我想委員你的建議非常好其實我們那個僑委會的那個委員長來拜訪的時候我們就提過這個他其實語言的適應方面還有這個生活適應的方面都會相關這部分我們會一起來檢討那希望將來的那個留在台灣適應的能力、語言的能力都能夠提高
transcript.whisperx[134].start 4720.457
transcript.whisperx[134].end 4745.417
transcript.whisperx[134].text 這個其實會跟未來勞動部你要再開放各個不同的產業其實是有更正相關如果他在語言能力上面你比如說去做照護員他在語言能力的理解上是有很大的落差的話他根本沒辦法做好這個工作他當貨車的駕駛他連中文都看不懂中文字看不懂他要下高速公路要下哪一個路口要左轉右轉他都看不懂的話那你很難在這樣的一個行業裡頭去
transcript.whisperx[135].start 4746.792
transcript.whisperx[135].end 4766.958
transcript.whisperx[135].text 去達到我們要的這個人力目標。」所以我想這個部分可能要請勞動部跟教育部甚至僑委會都要在多方的再去配合好嗎?好,謝謝好,謝謝邱盈盈委員請回座下位質詢請呂玉玲委員
transcript.whisperx[136].start 4777.755
transcript.whisperx[136].end 4780.256
transcript.whisperx[136].text 謝謝主席請劉主委請國發會劉主委劉委員長主委本席過去針對這個少子化的問題有跟我們諸委國發會的諮詢的很多次那因為畢竟我們對這個整個這個
transcript.whisperx[137].start 4802.938
transcript.whisperx[137].end 4823.614
transcript.whisperx[137].text 無法扭轉人口結構少子化的問題所以造成我們國家總體競爭力的下降有關在教育方面的話整個私校的退場會越來越多有關在勞動力方面的話就業人數越來越少也等於是說產業會有更多的缺工跟高齡化的問題
transcript.whisperx[138].start 4824.875
transcript.whisperx[138].end 4827.416
transcript.whisperx[138].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[139].start 4851.64
transcript.whisperx[139].end 4867.135
transcript.whisperx[139].text 面臨的這個整個少子化的這個問題的因素是非常的複雜那尤其是我們看到了這個年輕人現在是越來越晚婚甚至不婚在這種情況之下也包括我們的物價房價都一直高漲包括的這個育兒津貼
transcript.whisperx[140].start 4870.418
transcript.whisperx[140].end 4871.539
transcript.whisperx[140].text 與亞鄰國家之留才攬才政策競爭力比較.暨我國與亞鄰國家之留才攬才政策競爭力比較.
transcript.whisperx[141].start 4891.123
transcript.whisperx[141].end 4918.039
transcript.whisperx[141].text 目前的確像委員講的我們的確有晚婚的現象跟不婚的現象現在是我們的調查事會年齡目前看起來是超過51%是不婚選擇不婚的確可是那個主委那個我們對這個人口推估的這報告在10月17號你們已經報告出來了那你報告出來的話因為我們是每兩年就做一次報告這個更新的是非常的高那但是這一次我們看到
transcript.whisperx[142].start 4919.56
transcript.whisperx[142].end 4940.657
transcript.whisperx[142].text 這個數字出來的時候是比2022年還要不樂觀欸是不是因為你把國際的趨勢也納入了關係的確我們這次生育率的確是降了0.1個百分比然後出來的結果是這個數字那基本上我們是覺得我們的推估模型應該算是夠精準了
transcript.whisperx[143].start 4943.274
transcript.whisperx[143].end 4958.756
transcript.whisperx[143].text 是對我們看到這個少子化已經成為是國安的這個問題那出生率就是非常的重要那尤其是我們看到這整個報告到2030年的低估這個我們整個來看的這個低估值就將近是11.2
transcript.whisperx[144].start 4960.799
transcript.whisperx[144].end 4969.983
transcript.whisperx[144].text 的二萬人出生率尤其是少估了1.1萬人如果2018年的少子化我們也針對於少子化對策來講我們有針對像我們要擴大教保的能量服務或是我們托育的更要補助再來做加碼尤其是我們就學的學費我們也一直在降低跟育兒津貼還有最重要的就是我們生養的意願的問題這個都是我們
transcript.whisperx[145].start 4990.552
transcript.whisperx[145].end 5012.473
transcript.whisperx[145].text 國發會你們都有考量進去的部分嗎?現在是政府的政策裡面0到6歲國家一起養的部分現在是可以補助到7000到13500那我也不瞞你說我們在兩禮拜前有再討論一下可不可以再把它增加可是這個增加的費用可能就會到500到1000億以上那我們目前是需要這個預算是沒辦法找到裁員
transcript.whisperx[146].start 5012.913
transcript.whisperx[146].end 5022.967
transcript.whisperx[146].text 來自國家養政策要出來你的對策計畫你就要適時的來做一個調整尤其是提高年輕人結婚率為什麼這樣講年輕人如果據統計我看到一些數字說90%的
transcript.whisperx[147].start 5030.436
transcript.whisperx[147].end 5054.998
transcript.whisperx[147].text 結婚的年輕人90%都會生小孩所以要鼓勵年輕人結婚那結婚的話就有房價的問題、物價的問題啊還有孩子生養的問題嗎還有一個更大的問題就是我們現在幾個調查下來比重最高的第一名是沒有找到他理想的結婚對象現在是比重最高在我們的各項調查沒有找到理想的對象對我們有兩個調查下來都是同一個問題
transcript.whisperx[148].start 5056.164
transcript.whisperx[148].end 5070.468
transcript.whisperx[148].text 這不是結婚的問題也是因素之一啊所以我說因素也很多啦但是我們可以協助幫忙的沒辦法幫他擇偶嘛那你是不是應該就在整個環境上給他們做一個改善包括我們要講的就像這個托育的問題啊這個環境他
transcript.whisperx[149].start 5075.169
transcript.whisperx[149].end 5080.151
transcript.whisperx[149].text 他只要結婚90%都會生小孩那生小孩就要養的問題嘛就托育的問題那就像我們桃園來講的話我們托育的這個公托的設施有49個實際收養的收托的人數有1518人在等待的就1778人這個是來等待的有很多市長說我排不到沒有來的還有更多這就表示我們這個公托的這個場域這設施是不夠的對不對
transcript.whisperx[150].start 5106.31
transcript.whisperx[150].end 5132.058
transcript.whisperx[150].text 這個問題我會來反映到那個像教育部然後來把您這個數字我們事後再跟您取得我們來看一下教育部這邊有沒有什麼可以協助的地方所以主委這一方面你們一定還要再加強這什麼對策這樣做一個調整包括我們剛剛講的就是救取的環境這等等部分好不好好謝謝主委那你請回我們請那個教育部的張次長教育部專調市長
transcript.whisperx[151].start 5135.447
transcript.whisperx[151].end 5155.863
transcript.whisperx[151].text 市長,我們就延續前面的話題這公托的環境、公托的設施非常不足那教育部這邊有沒有機會可能會增加?對,我們其實一直逐年在增加剛剛在報告裡面也提到這幾年來增加的比例已經讓公共化幼兒園跟准公幼兒園你準備增加多少?到50萬,現在超過50萬50萬?桃園會增加多少?
transcript.whisperx[152].start 5161.57
transcript.whisperx[152].end 5161.81
transcript.whisperx[152].text 議員會主任委員會主任
transcript.whisperx[153].start 5179.381
transcript.whisperx[153].end 5199.409
transcript.whisperx[153].text 所以我也要就教一下次長因為我們現在對少子化很多學校招生不足尤其我們看到很多技職學校是更需要被我們教育部關心的尤其是我們產業跟這個技職的來講是個屬於合作的部分但合作的話在資產上也可以幫我們培養更多專業的人才
transcript.whisperx[154].start 5201.59
transcript.whisperx[154].end 5223.637
transcript.whisperx[154].text 那尤其是本席也跟我們教育部之前有提出了這個第二期的技職教育的再造計畫也是希望我們把整個技職教育環境可以得到更多的改善那我們可以看到就是很多的那個技大將近有招生停招部分的有17個科大這個招生的部分就有15間都是技職學校
transcript.whisperx[155].start 5224.598
transcript.whisperx[155].end 5231.798
transcript.whisperx[155].text 十七間大學停招十五間都是禁止學校在這種情形之下我們要怎麼樣來改善這個問題
transcript.whisperx[156].start 5234.035
transcript.whisperx[156].end 5256.236
transcript.whisperx[156].text 這個這樣少子化的情況下真的是會這個退場的那個現象還是會持續的這個是不可貴但是在整個教育部的政策上比如說即時教育問題我們現在在推那個新五專就是3加4其實這不是這樣子講的對對像那個產息2.0啦或者是那個我們對那個私立科大像那個私立學校都有補助那個學費所以我們認為說這個
transcript.whisperx[157].start 5257.757
transcript.whisperx[157].end 5270.686
transcript.whisperx[157].text 家長們都會擔心孩子畢業而夜夜找得到工作嗎所以很多在讀一般大學或者是普通高中的時候他們沒有專業的技術那畢業了可能就會失業所以我們在技術教育上要重新的來讓我們大家的家長跟孩子們那個價值觀的改善
transcript.whisperx[158].start 5274.209
transcript.whisperx[158].end 5299.994
transcript.whisperx[158].text 尤其是我們像我們高職的人數從2018年的36萬人一直到2023年剩下26萬人這短短的6年就少了10萬人所以我們在這邊建議在普通高中跟大學的時候我們計職教育的課程跟學程或是開專班來讓我們的計職能夠讓我們孩子有一定的這個計職教育的能量好不好對謝謝委員你的建議就是對接這個產業的需求我們會繼續來努力好不好那會後的資料我們會提供給委員謝謝
transcript.whisperx[159].start 5302.997
transcript.whisperx[159].end 5305.278
transcript.whisperx[159].text 李玉琳委員非常精準的質詢謝謝下一位質詢請張其凱委員
transcript.whisperx[160].start 5334.656
transcript.whisperx[160].end 5362.324
transcript.whisperx[160].text 阿謙、劉主委請國家劉主委張委員早所以我聽拜有問你國安基金是人民的納稅錢這每一分錢投資都非常重要而且就應該是對國家發展是正面的結果去投資的一個戰爭片已經不得當了第二個
transcript.whisperx[161].start 5363.544
transcript.whisperx[161].end 5390.166
transcript.whisperx[161].text 你會發現凌日供給這部片至少有六成的錢都是政府的資金那國發金是變成一個綠色的投資結果我說你要上相關的資料給我對不對你給我的資料是什麼是忘記了還是不敢給你給我的扣掉封面之後大概只剩下薄薄的三頁這個字這麼大你是什麼忘記了還是什麼不敢給我
transcript.whisperx[162].start 5391.223
transcript.whisperx[162].end 5413.894
transcript.whisperx[162].text 我當初跟你要的有這個投資的計畫書、申請書、營運的計畫書還有最重要的就當初你說文化部那邊只要審查對不對我說你審議的那個會議紀錄啊你要攤開給全民、給全民去檢視啊你這些東西都沒有給我捏你這樣拔薄的三頁左右裡面這個字這麼大
transcript.whisperx[163].start 5415.632
transcript.whisperx[163].end 5434.184
transcript.whisperx[163].text 真正講到內容的大概只有300字欸報告委員因為這個資料在文化部所以文化部的文策院昨天有到您辦公室跟您的主任有報告他會事後提供事後再提供他昨天有去承諾啦因為這個不在我們手上所以我們請他們來他花我們人民納稅錢花國發基金的錢欸
transcript.whisperx[164].start 5437.065
transcript.whisperx[164].end 5461.07
transcript.whisperx[164].text 你聽住這個進度好不好尤其有講到那個點那個很多民眾都在關心的國家發展基金人民的錢為什麼去投資一個戰爭片對我們經濟發展是好的嗎對外資來投資是好的嗎這個我同意所以我們也找了這個文化部希望他們將來是投資到產業上不是在影片上
transcript.whisperx[165].start 5461.51
transcript.whisperx[165].end 5462.41
transcript.whisperx[165].text 希望透過帶動產業的發展,不是投資影片。」
transcript.whisperx[166].start 5481.532
transcript.whisperx[166].end 5504.433
transcript.whisperx[166].text 這個文車院給你的也是你給我的一個資料說啊這個會議啊你們召開這個投資審查會議通過這個投資4170萬那個時間點我把它簽起來你看113年的今年對不對對今年3月26號是然後本席再去查你知道這個你投資的這家公司這個影片什麼時候開拍
transcript.whisperx[167].start 5507.227
transcript.whisperx[167].end 5513.615
transcript.whisperx[167].text 呃...我不知道因為我們也...我沒有...你看會不會...會不會覺得太奇怪3月15號就開拍欸這個影片在3月15號就開拍然後你國發基金通過給到時間是3月26嗯
transcript.whisperx[168].start 5523.536
transcript.whisperx[168].end 5550.891
transcript.whisperx[168].text 這個很正常 很多公司都是成立以後才來跟我們申請基金啊不會沒有成立就來申請不是 不是成立是開拍是開拍的時間欸你沒有資金到位你敢開拍喔這個以商業行為來講我想這個投資商自己會決定啊但是我因為我們並沒有介入到這件事裡面喔所以這看不見實吧 這不是常識吧這他自己要判斷問題是國發基金
transcript.whisperx[169].start 5553.191
transcript.whisperx[169].end 5557.255
transcript.whisperx[169].text 包括文化部要你除了有內線交易要不然你資金欸你的國發基金加上文化部給他的錢佔了這個部片投資的44%欸44%如果沒有到位一般人一般公司敢就開拍齁啊你還敢給他錢
transcript.whisperx[170].start 5575.383
transcript.whisperx[170].end 5597.551
transcript.whisperx[170].text 這是不是很離譜?委員狀況是這樣齁,因為我們這個錢給到了文化部以後是文化部在主導這件這個這個整合的規劃你不能每次我問你這個事情你都推給文化部啦這是你的,而且是人民的納稅錢委員我跟您報告齁,我們現在遲到你要去問清楚,問完之後你還是要詳細的,不是要跟北極報告我不是在幫全民會檢視嗎?我為什麼跟你要一個當初你開會的會議資料?
transcript.whisperx[171].start 5600.183
transcript.whisperx[171].end 5619.679
transcript.whisperx[171].text 就攬開給全民看該不該投資現在不是只有立法院在盯著這個案子全民會判斷只有一個代表參加我們整個國發基金現在的遲到緣額只有29位其實他管理的量能是一兆多其實我們沒辦法每一個主委你不要講你的困難你要解決問題
transcript.whisperx[172].start 5621.823
transcript.whisperx[172].end 5645.818
transcript.whisperx[172].text 你是要解決問題的人你不要把問題丟出來給我們你發現有問題你要去解決好不好所以該給的東西該給全民跟立法院跟全民檢查來來我再問你一個更嚴重的問題這個片子到底是衛福先知或內線交易錢都沒有到位就開始拍了那更嚴重的啊你去看一下他這個內容是怎麼樣片子是什麼人民納稅錢去幫民進黨拍一個宣傳片嗎你看喔
transcript.whisperx[173].start 5647.369
transcript.whisperx[173].end 5654.032
transcript.whisperx[173].text 公司董事林錦昌陳水扁當過國安會陳水扁國安會執行委員、行政院政務委員、國安會副秘書長、蔡英文總統進行文稿、發言總顧問林錦昌有顧問沈柏洋
transcript.whisperx[174].start 5667.011
transcript.whisperx[174].end 5686.397
transcript.whisperx[174].text 民進黨立法委員、黑熊學院的創辦人兼院長、曹新成黑熊學院的這個贊助者、蘇紫瑩防衛者的兄弟、國防安全研究所的這個首長最特別的你看這個導演啊拍了一部片子叫賴清德總統競選的這個廣告再度上大家問啊我問你
transcript.whisperx[175].start 5693.257
transcript.whisperx[175].end 5706.157
transcript.whisperx[175].text 你的錢來自哪裡?人民嘛,對不對?投資的都是利有有的。這是不是人家很容易聯想嘛,就把人民的錢搬去幫民進黨拍的一個宣傳片嘛,是不是這樣子?
transcript.whisperx[176].start 5707.156
transcript.whisperx[176].end 5730.314
transcript.whisperx[176].text 主委你後期...OK所以我為什麼要一個就是說不只立法院在監督我要求的是非常公正理性的我只要你把當初你開會的審查的這個紀錄攤開來你送到本期辦公室我們攤開來給全民來檢視好不好對這個昨天我們有帶文車院到貴辦公室其實他們會送過來因為開會在他們那邊開的所以他會把資料他有答應把資料送過去
transcript.whisperx[177].start 5730.774
transcript.whisperx[177].end 5759.333
transcript.whisperx[177].text 好OK最重要是把資料完整好不好用全民來做功德備啊看他們人民辛辛苦苦的每一分的納稅錢用到什麼地方去好不好好另外我們來談一個也是很重要的事情這個前瞻預算的第四期啊有一個很重要叫做綠營建設花了編列了多少錢綠營建設近年公正轉型關鍵戰略推動計畫編列了1億9千2百萬差不多兩億喔這個主要的
transcript.whisperx[178].start 5760.396
transcript.whisperx[178].end 5787.966
transcript.whisperx[178].text 主責機關就是你國發會嘛對不對那我們來看一下成效來第一個人均的這個碳排放啊一年要碳排多少12公噸臺灣經過國發會那麼努力還有剛剛這個計畫開2億結果我們的結果是什麼溫室氣體的排放量全世界倒死第四有這麼明顯嗎
transcript.whisperx[179].start 5789.602
transcript.whisperx[179].end 5812.213
transcript.whisperx[179].text 第二個也是很離譜的能源部門佔溫室氣體的排放從104年8乘5喔他不只沒有降喔所以你看一下我們的政府這麼努力結果我們的溫室氣體的排放量不只沒有降從8乘5還跳到110年的9成再看下一張能源部門裡面
transcript.whisperx[180].start 5813.666
transcript.whisperx[180].end 5827.486
transcript.whisperx[180].text 能源產業的碳排放量超過7成這比例也非常高我們再看下一頁這個是目前最嚴重的問題這目前最嚴重的問題全世界都在淨零碳排
transcript.whisperx[181].start 5829.042
transcript.whisperx[181].end 5844.555
transcript.whisperx[181].text 其實我們台灣一直在以廢在發電我很快跟委員報告我把它講完我把它講完你剛才的數字是2023年的數字下降非常多可是你沿用的是2022年2022年是成立這個計畫的第一年我剛剛給你的資料實際上是環境部的資料啦OK你如果有更新的
transcript.whisperx[182].start 5845.375
transcript.whisperx[182].end 5863.487
transcript.whisperx[182].text 我當時就是因為拿這個資料去執行過環境部結果得到的數據2023年是有的但因為他會lag兩年所以他們有一個毛菇數沒有最終實際數那麼看這個更重要的這個牽扯到我們的關係到全民的健康跟生命用化石燃料來發電你看喔在2005年的時候
transcript.whisperx[183].start 5874.321
transcript.whisperx[183].end 5888.488
transcript.whisperx[183].text 佔總發電量的75.5%:到了2003年,不只沒有降,反而是升高了,變81.8,這是很沒有面子的,對人民的健康、對人民的生命也是不利的。」
transcript.whisperx[184].start 5891.233
transcript.whisperx[184].end 5916.339
transcript.whisperx[184].text 所以另外一個大的問題我拜託主委去查一下好不好拜託一下這個事情很重要最大單一排放的來源就是台電對不對大家知道嗎我們法令這個修改裡面出現台電現在是不用繳碳費的民進的電廠也不用繳碳費的我提醒主委好不好為什麼要修碳費就是要減碳嘛對不對
transcript.whisperx[185].start 5917.661
transcript.whisperx[185].end 5942.393
transcript.whisperx[185].text 結果我們台電還有民間電廠竟然不用繳碳費,這個在歐盟沒有這種事情,在先進國家沒有,我最後做一個要求,我最後做一個Ending,來,好,第一個,不要獨落最大單一的排碳的這個大戶,台電是不是應該繳碳費,這個要好好去討論,包括有沒有土地民間電廠,他們為什麼不用繳碳費,這個要趕快去討論,第二個,不要一直在燒煤好不好,另外高碳排這些化石的燃料,
transcript.whisperx[186].start 5943.493
transcript.whisperx[186].end 5967.529
transcript.whisperx[186].text 有問題,不能一直犧牲我們的健康,要怎麼樣把它降下來,注意力要去努力。」好不好?好,謝謝主委,謝謝主席,大家請回座來,下一位委員,請張家俊委員質詢主席,我想請主委請國安會劉主委
transcript.whisperx[187].start 5974.307
transcript.whisperx[187].end 5995.718
transcript.whisperx[187].text 劉主委早安張委員早今天我們在探討的這個少子化問題我想對一個國家來說人力即是國力人口代表著生產力跟競爭力那低迷的這個生育率將使我們國家的勞動力減少稅收減少社會支出增多
transcript.whisperx[188].start 5996.218
transcript.whisperx[188].end 6022.064
transcript.whisperx[188].text 學校體系崩潰包括社會撫養負擔加重嚴重的來說是讓我們走向滅國的危機啊所以請問國發會主委喔主委本席在10月7號的時候質詢您的時候曾問您說2024年的這個人口推估報告到底什麼時候會發布那您說10月17日那對於國發會說到做到本席給予
transcript.whisperx[189].start 6023.224
transcript.whisperx[189].end 6040.659
transcript.whisperx[189].text 高度的肯定,但是本席想詢問的是,方案及做法,那時候你告訴我說延遲上傳的理由是因為希望帶著方案與做法來面對,但是呢,在這一份人口推估報告中,本席翻了你們112頁的報告,
transcript.whisperx[190].start 6044.622
transcript.whisperx[190].end 6069.568
transcript.whisperx[190].text 從頭到尾都沒有提出解決的方案只有在新聞稿裡面稍稍提及那今天的主軸如何解決少子化的問題原本期待是針對少子化國發會可以提出具體的政策手段跟目標但是大家不知道有沒有看今天的報告今天的書面報告竟然怎麼解決少子化的問題只有143個字
transcript.whisperx[191].start 6073.12
transcript.whisperx[191].end 6096.052
transcript.whisperx[191].text 只有143個字。」主委你可以說明一下嗎?我跟您報告我們其實開了幾個小型會議大型的跨部會議一個是在10月1號陳時中政委及和所有的部會相關部會一個重大的討論我們盤點了所有的內容希望大家進行改善的規劃
transcript.whisperx[192].start 6097.393
transcript.whisperx[192].end 6103.879
transcript.whisperx[192].text 然後呢我們在10月17號我國家發展委員會是一個跨部會的首長所以你現在在告訴本席就是說你們開的會議相當的沒有效率而且也提出具體的作為所以具體的作為是什麼過去16年過去16年兩任總統都提出這是國安問題
transcript.whisperx[193].start 6116.531
transcript.whisperx[193].end 6122.998
transcript.whisperx[193].text 我們不可能在兩個月內或是一個月內我們就可以馬上成為委員我們現在是基於這個方案上面我們進行優化優化我們算出來的錢呢大家一千億以上我們希望委員能支持我們預算來做這件事情預算當然只要你花的合理對國家有幫助我們沒有理由反對
transcript.whisperx[194].start 6137.054
transcript.whisperx[194].end 6150.723
transcript.whisperx[194].text 大家給你們時間就是希望國發會可以拿出誠意拿出你們的想法如何解決少子化的問題但是你們到目前你們到目前只寫了143個字搞不好你連143個字的內容
transcript.whisperx[195].start 6155.586
transcript.whisperx[195].end 6174.941
transcript.whisperx[195].text 主委搞不好都還不理解。」那我想這感覺就像是ChartGPT寫出來的就直接跟ChartGPT寫說整理出國際上各種解決少子化的方案就想交差了事這種態度呢似乎有一點太草率了本席覺得你們應該要再振奮一點
transcript.whisperx[196].start 6176.373
transcript.whisperx[196].end 6193.618
transcript.whisperx[196].text 委員在我們的報告裡面我們提到其實我們國家已經有10個相關的法令跟計畫正在進行中包括少子化、中高齡等等然後也提出了各部會的施政的主軸跟方向所以你現在這份報告是滿意的意思嗎你現在在告訴本席說你對於這份報告對於少子化只有提出143個字的建議你是滿意的囉
transcript.whisperx[197].start 6201.64
transcript.whisperx[197].end 6206.542
transcript.whisperx[197].text 我沒有這樣講,但是以今天報告的時間來講,我只能準備這麼多的資料。」是啊,那你如果不滿意的話,你要更努力啊,你要答應本席,答應我們委員會說,國發會應該更努力才對啊。檢報跟實際做的計畫是沒辦法一致的。那你現在告訴我,我現在就是親自讓你講,你講你現在目前針對少子化有什麼具體化的作為?
transcript.whisperx[198].start 6226.384
transcript.whisperx[198].end 6243.07
transcript.whisperx[198].text 我們做了相當的分析我講幾個比較大的重點就是第一個我們過去並比較沒有太花時間在談結婚率的問題那我們現在看到結婚率的比重是比較低第二個延後生育所以結婚率你可以拿出什麼具體作為
transcript.whisperx[199].start 6244.482
transcript.whisperx[199].end 6271.328
transcript.whisperx[199].text 你講得非常好我們其實探討了非常久我們一直在debate一個事情父母解不掉小孩的問題國家有沒有能力解掉這麼多小孩的問題那我們只能解我們現在著重兩個方向第一個是想生有困難的譬如說0到6歲國家一起養包括我們強化對於不應證的解方包括我們再談到動亂的可能包括我們也會有新的法案讓
transcript.whisperx[200].start 6272.748
transcript.whisperx[200].end 6280.231
transcript.whisperx[200].text 坦白講,讓單身的婦女可以做人工受孕等等,我們希望先幫助想生的人生生。那我們現在跟您報告,去年有一萬多個小孩是因為不應證的補助而生出來的。」
transcript.whisperx[201].start 6289.335
transcript.whisperx[201].end 6313.112
transcript.whisperx[201].text 但是呢涉及的面向深度、廣度跟投入的資源真的是有待加強我希望說國發會既然你已經提出了那你要努力去爭取預算啊我們一定會支持但是你要說服其他的包括你行政院內部你要說服大家說為什麼這個這麼重要那你說到立法院來我們當然要支持啊因為這個力道真的是有待加強
transcript.whisperx[202].start 6314.033
transcript.whisperx[202].end 6330.399
transcript.whisperx[202].text 本席也清楚說全世界的已開發國家大部分都面臨著人口自然增加率降低甚至負數的問題甚至有一些已開發國家他們已經這個高於平均那我的意思就是說您知道
transcript.whisperx[203].start 6330.819
transcript.whisperx[203].end 6356.571
transcript.whisperx[203].text 有哪一些自然增加率不錯的國家是我們可以學習的那我們以加拿大為例好了就是政府鼓勵生育的政策我們是0至6歲國家養他們是0至17歲都國家養包括0至5歲每年最高補助是17.8萬台幣6至17每年是15萬台幣的補助這直接是由現金補助其他包括產價、育嬰價
transcript.whisperx[204].start 6358.132
transcript.whisperx[204].end 6363.914
transcript.whisperx[204].text 等有15週全新的產價這其實我覺得都是國發會可以參考的那我想就是這個可以借鏡的部分很多那主委同意嗎?這一點我同意那但是我們算過他要1000多億這個我們真的算過因為日本也是0到18歲每人每月是1萬日幣到3000萬日幣1000億你要想喔你要想喔我們普波台電已經4000億了
transcript.whisperx[205].start 6387.302
transcript.whisperx[205].end 6409.118
transcript.whisperx[205].text 而且是花在我們看不到的地方,這一千億我覺得如果你投資在少子化等級大大的支持你不要花在那種你去做非核家園你去做這個關閉核能廠然後讓我們無形中花這麼多錢然後對社會也沒有大大任何幫助你同不同意你同不同意說其實撥補台電的錢應該拿來投資在少子化上面
transcript.whisperx[206].start 6411.34
transcript.whisperx[206].end 6413.102
transcript.whisperx[206].text 二、邀請國家發展委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任
transcript.whisperx[207].start 6427.113
transcript.whisperx[207].end 6439.968
transcript.whisperx[207].text 我們其實就我瞭解當時是不希望電力太高的漲價去傷害到人民的利益我想大家都有這個想法那我們現在回到我們剛才談的少子化的利益你政策面影響到國家去對這個買單所以你覺得少子化投資1000億你覺得很多嗎?
transcript.whisperx[208].start 6446.957
transcript.whisperx[208].end 6455.269
transcript.whisperx[208].text 不,我想法跟你一樣所以我很支持您的看法但是這個部分的財源不足如果有特別預算我覺得會比較容易就是我們回到這個報告本身明年我們即將進入老年化人口超過兩成的超高齡社會
transcript.whisperx[209].start 6463.32
transcript.whisperx[209].end 6487.685
transcript.whisperx[209].text 那四年後人口紅利就正式結束了甚至2070年我們臺灣會剩下不到1500萬的人那我們現在目前會面臨著社會福利縮水年輕勞動力匱乏甚至整個社會都失去活力現在臺灣就已經出現各級學校都招不到學生傳統產業缺工募賓而達不到目標的狀況國發會有什麼對策嗎?
transcript.whisperx[210].start 6494.673
transcript.whisperx[210].end 6513.03
transcript.whisperx[210].text 我們可能用書面說明吧。」好,麻煩,謝謝。謝謝委員。謝謝張家俊委員。來,主委請回座。我們在鄭天才委員執行之後我們休息。接下來下一位執行委員請陳庭梅委員。
transcript.whisperx[211].start 6524.127
transcript.whisperx[211].end 6550.142
transcript.whisperx[211].text 謝謝召委,我們請主委。主委長我想這個議題是全世界的問題因為就像主委所說的它其實會造成我們的低出生率其實有很多因素那我們現在就要去盤整
transcript.whisperx[212].start 6551.523
transcript.whisperx[212].end 6574.663
transcript.whisperx[212].text 盤整說造成這些因素的原因那其實有時候我們在談這個議題我自己也是製造這個低出生率的原因之一因為我們都是單身那表示單身的女性也越來越多那單身的女性越來越多再加上這一個所謂雙薪家庭他會認為他的壓力過大
transcript.whisperx[213].start 6577.915
transcript.whisperx[213].end 6591.404
transcript.whisperx[213].text 他當要養一個小孩在養父母親他會覺得他的壓力過大所以這也是為什麼我們要提升所謂的長照從2.0到3.0從民進黨執政小英總統從300億到600億到明年預算已經到927億了就是這長照的部分也就是我們政府來幫他照顧爸爸媽媽
transcript.whisperx[214].start 6602.351
transcript.whisperx[214].end 6622.245
transcript.whisperx[214].text 讓他無後顧之憂而能夠把他的心力轉嫁在小孩子身上否則對於一個雙薪家庭確實照顧小孩在照顧到自己的長輩壓力確實很大而且他要照顧的可能是四個人可能是四個人
transcript.whisperx[215].start 6623.737
transcript.whisperx[215].end 6649.934
transcript.whisperx[215].text 所以在這樣的一個前提之下我們不斷的架構所有周邊的一個環境因素然後把這些環境因素減輕他們的壓力再回歸到所謂生小孩的議題那生小孩的議題我們也知道卓榮泰院長日前宣布說我們要落實0到6歲國家養的政策明年度要編列1082億的預算
transcript.whisperx[216].start 6654.246
transcript.whisperx[216].end 6660.073
transcript.whisperx[216].text 那其實我為什麼會強調這個就遺憾的是當我們在討論這個議題的時候我們不論是在長照3.0我們明年編了927億還是在0到6歲國家養的政策明年度編1082億不好意思
transcript.whisperx[217].start 6675.537
transcript.whisperx[217].end 6703.882
transcript.whisperx[217].text 這個預算現在還在空中飛因為它進不了我們的討論範圍裡面現在被擋住要被退回所以其實我們一直講的是你沒有預算來協助沒有減輕這些我們年輕一輩的壓力大家寧可選擇就是不去碰觸這個議題不要去生育
transcript.whisperx[218].start 6705.495
transcript.whisperx[218].end 6726.793
transcript.whisperx[218].text 所以你看我們在之前我們在所有國發會的資料裡面所看到的是我們不論做了很多的補助從托兒、托育到幼兒的補助基本上我們到2024年到目前為止我們的生育率還是一樣只有0.86
transcript.whisperx[219].start 6729.113
transcript.whisperx[219].end 6754.019
transcript.whisperx[219].text 就零點八六欸,低於一欸,但是這一段時間我們有沒有在做?有,如果沒有做了這些,可能生育率更低啊,是不是?可是另外一個方向大家會講說,啊有做嘛,但是這叫一向是正面思考,一向是負面思考。我們要講的如果沒有做這些動作,有可能生育率更低。
transcript.whisperx[220].start 6754.963
transcript.whisperx[220].end 6778.241
transcript.whisperx[220].text 年輕人、年輕朋友對政府越沒有信賴感越不敢生小孩所以可能會更低所以依照我們國發會自己所提供的資料你們在未來評估也都是低於一耶沒錯也是都低於一耶那我們到底有什麼政策再來
transcript.whisperx[221].start 6779.96
transcript.whisperx[221].end 6805.817
transcript.whisperx[221].text 我們所呈現的新生兒的人數依照人數比例人數來講2040年你們的預估是有可能低於10萬我們2024是新生兒人數就只有目前為止是13.1萬目前為止那如果再預估到2040是會低於10萬這數字是非常可怕的
transcript.whisperx[222].start 6810.973
transcript.whisperx[222].end 6837.621
transcript.whisperx[222].text 所以主委我們到底怎麼做我們該做的我們要再做那現在陳時中政委他有提出一個方向說政府是否可以嚴明育兒補助獎勵措施一個寶貝一個寶寶每個月補助三萬育兒補助你認為這個建議如何
transcript.whisperx[223].start 6841.105
transcript.whisperx[223].end 6845.86
transcript.whisperx[223].text 這個可以紓解年輕人對於養育小孩的壓力
transcript.whisperx[224].start 6847.097
transcript.whisperx[224].end 6873.885
transcript.whisperx[224].text 我覺得這是好的方向除了這個以外我們現在也希望他們可以優先取得社宅那第二個事情再來是我們希望協助他對照顧父母的壓力也紓解掉當然社宅是解決他住房的壓力居住的壓力叫居住正義那當有居住正義之後當有安定的一個家他才會去思考我是不是可以
transcript.whisperx[225].start 6874.545
transcript.whisperx[225].end 6894.672
transcript.whisperx[225].text 有機會去照顧我的下一代如果他居無定所當然就不會去思考我要去養育下一代所以這是聯動的所以從社會住宅從居住正義讓我們的年輕一輩可以有一個好的居住環境
transcript.whisperx[226].start 6895.872
transcript.whisperx[226].end 6922.352
transcript.whisperx[226].text 讓他去思考他可以再去養育下一代所以這是連帶的那現在所提出的包括我所講的從居住然後再長照幫他照顧爸爸媽媽然後減輕他這一塊的壓力那麼我們如果在所謂的育兒的這一個部分一個小孩每個月補助三萬
transcript.whisperx[227].start 6924.492
transcript.whisperx[227].end 6938.574
transcript.whisperx[227].text 這當然是試算了這還沒有一個精確的就是說這個陳時中政委也說這只是一個試算出來的一個數目但是起碼如果我們現在其實我們補助都不是齊頭式的啦
transcript.whisperx[228].start 6939.815
transcript.whisperx[228].end 6968.795
transcript.whisperx[228].text 現在我們對於育兒的部分從托育、托兒因為他還有所謂的可能你如果是公幼非營利他就一種補助然後如果是準公共化又是另外所以他是不一樣的然後育兒津貼又是另外一個部分所以計算起來其實大家不一定是有那麼多的7000到13500對不是那麼齊頭式那麼如果是這樣子的話陳時中政委所提出的
transcript.whisperx[229].start 6970.416
transcript.whisperx[229].end 6987.317
transcript.whisperx[229].text 這個就是屬於齊頭式的就是一個寶寶就是每個月補助三萬讓你去支應小孩子可能要去支應的部分這就一個不同的一個變革跟我們現在的思考邏輯又有點不同
transcript.whisperx[230].start 6987.537
transcript.whisperx[230].end 6989.217
transcript.whisperx[230].text 兼職委員會主任委員會主任委員會主任委員會主任委員會主任
transcript.whisperx[231].start 7006.144
transcript.whisperx[231].end 7020.834
transcript.whisperx[231].text 所以這是其中一個方案還是比較已經有focus焦點的方案是好幾個方案裡面的其中一個方案還是大家討論完之後這個方案不錯只是現在在找裁員我們其實討論四個方案
transcript.whisperx[232].start 7022.735
transcript.whisperx[232].end 7033.709
transcript.whisperx[232].text 財源真的有限,如果…當然我有建議提特別預算的概念,因為這是一國家大事,如果能有特別預算來專程解決這個問題,可能對國家比較有利,但是現在還沒有定論。」
transcript.whisperx[233].start 7040.757
transcript.whisperx[233].end 7043.198
transcript.whisperx[233].text 每個月補助3萬元每個月補助3萬元每個月補助3萬元
transcript.whisperx[234].start 7066.903
transcript.whisperx[234].end 7070.864
transcript.whisperx[234].text 對,長遠性應該朝這個方向。而不是說有不一樣的一個補助方式。那其實對於家長來講,可以讓他有這樣的心願意去生小孩。
transcript.whisperx[235].start 7087.669
transcript.whisperx[235].end 7113.784
transcript.whisperx[235].text 用因不夠大家還是覺得說壓力很大所以乾脆我們就一次在這個育兒補助獎勵一個小孩每個月補助3萬元這個方向其實是比較能夠讓大家有期待的好 這個再拜託主委我再跟他多討論謝謝謝謝陳庭文委員來 主委請回座來 下位質詢請鄭天才委員
transcript.whisperx[236].start 7128.394
transcript.whisperx[236].end 7149.106
transcript.whisperx[236].text 主席、各位委員、有請主任委員、教育部市長、衛福部署長、周署長。各位好,今天的議題非常非常的重要。這個臺灣
transcript.whisperx[237].start 7153.864
transcript.whisperx[237].end 7164.147
transcript.whisperx[237].text 全球最低的生意力,台灣。這個按照國會你的預估我國人口將由2024年的2340萬減少到2070年的1497萬人減少844萬人。事實上,如果我們從你的數字
transcript.whisperx[238].start 7183.735
transcript.whisperx[238].end 7205.362
transcript.whisperx[238].text 尤其是減少的就是年齡越小的事實上少子女化是國安問題已經喊了超過10年了然後這幾年當然政府也在努力也在做但是
transcript.whisperx[239].start 7207.975
transcript.whisperx[239].end 7232.252
transcript.whisperx[239].text 這個過去我一再的質詢行政院應該要最起碼少子女化辦公室但是都沒有設了那我們賴總統設了三個委員會也沒有把這個國安問題列在那個委員會裡面現在就是由政務委員政務委員也很忙我們是九個政務委員
transcript.whisperx[240].start 7233.744
transcript.whisperx[240].end 7261.112
transcript.whisperx[240].text 他們也很多事情所以這個一直維持過去的一個那國安會當然除了這個之外提了這個相關的主要政策提了這些政策結果一估的未來還是會減少這麼多所以這個部分顯然這個政策要去做調整要怎麼去因應當然這裡面很多政策你都提了
transcript.whisperx[241].start 7263.482
transcript.whisperx[241].end 7289.987
transcript.whisperx[241].text 就沒有提到年輕人買房也買不起租房子也租得很貴雖然很多的政策都在推動事實上並沒有根本的去解決這些問題所以這個部分這個各部會當然就國發會一些可能也很難仰賴政務委員他真的很忙他還有很多審議很多的法案
transcript.whisperx[242].start 7291.364
transcript.whisperx[242].end 7298.626
transcript.whisperx[242].text 國家發展委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[243].start 7320.154
transcript.whisperx[243].end 7346.373
transcript.whisperx[243].text 或者勢力的托孕中心都不足。」我跟這個衛福部做說明一個禮拜前、兩個禮拜前剛剛已經當了好幾屆的立法委員他現在沒有當立委了好不容易他的孩子好不容易有了孫子
transcript.whisperx[244].start 7347.486
transcript.whisperx[244].end 7350.147
transcript.whisperx[244].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[245].start 7374.151
transcript.whisperx[245].end 7400.098
transcript.whisperx[245].text 願意生、敢生所以這個部分光這個就不足啊所以這裡面提到薪資3萬多我們看勞動部長說薪水低於3.1萬就是低薪勞工啊我們只比低薪勞工多一點點照顧小孩嬰兒或是這個幼兒
transcript.whisperx[246].start 7403.612
transcript.whisperx[246].end 7432.483
transcript.whisperx[246].text 很辛苦的對不對勞動部長說3.1萬就是低薪勞工我們只比低薪勞工多一點點所以這個部分都是問題所以剛才為什麼有委員說這金額不足嘛對不對金額不足嘛我本來不想談四千多億台電
transcript.whisperx[247].start 7433.618
transcript.whisperx[247].end 7462.538
transcript.whisperx[247].text 加上核電當初新設就4000多億啊8000多億將近9000多億的錢投入結果就不用4000多億蓋核電廠4000多億當時的4000多億不是現在的所以這個我們的錢人民的錢都就是這樣花的但是真正國安的問題對不對你先
transcript.whisperx[248].start 7464.272
transcript.whisperx[248].end 7491.168
transcript.whisperx[248].text 為勞動部或是各部會所寫的沒有提到這些了我常常講的是什麼?軍人嘛自然就越來越少了對不對?那以後要外籍軍人喔這個就台灣而言備戰最重要就是人啊
transcript.whisperx[249].start 7492.208
transcript.whisperx[249].end 7520.908
transcript.whisperx[249].text 這也在座嗎?再怎麼精良的武器也要有精良的軍人來去操作來去使用啊現在完全完全真的是所以國發會很重要要怎麼去整合相關的問題所以這個部分是需要去非常重要的很大的一個政策要去統籌
transcript.whisperx[250].start 7522.983
transcript.whisperx[250].end 7547.154
transcript.whisperx[250].text 當然是這個部分要一個要有決定前的人來去做這個統合的業務相關各部會的業務包括國防部我剛講的對不對這個都有關係志願役就能越來越少因為他是低薪勞工
transcript.whisperx[251].start 7549.858
transcript.whisperx[251].end 7576.323
transcript.whisperx[251].text 都是低薪勞工啊!他是24小時在軍營區呢?對不對?沒有自由呢?當然不去了啊!對不對?去了離開的比例很高啊!這個是一個國安問題不是只有講的這些一般的人數而已啊!包括
transcript.whisperx[252].start 7579.14
transcript.whisperx[252].end 7606.909
transcript.whisperx[252].text 包括軍力、國防那才是真正的國安所以這個是很廣的所以我從這個第8屆當立委就開始諮詢少子女化辦公室最起碼行政院要成立那當然由賴總統來去成立委員會那更好所以比那個三個委員會還都還
transcript.whisperx[253].start 7608.624
transcript.whisperx[253].end 7632.737
transcript.whisperx[253].text 來得重要啊對不對我們一直說從國外來小外生來結果呢事實上不是這麼一回事啊花了那麼多錢在那邊所以還是怎麼樣讓我們的年輕人感生好我們這個主委還有這個衛福部請回座我們就請最後一部最後一個議題
transcript.whisperx[254].start 7636.376
transcript.whisperx[254].end 7661.183
transcript.whisperx[254].text 市長希望你能夠重視這個112年6月29號行政院公布了私立大專學校學習費掃腳3.5萬這個掃腳基本上都不包含原住民因為原住民本來從國民政府時代
transcript.whisperx[255].start 7664.912
transcript.whisperx[255].end 7686.178
transcript.whisperx[255].text 一直到現在教育部從過去的省政府教育廳到現在的教育部都有這個學雜費的減免但是都沒有調啊這邊私立大學少繳了3.5萬我們毫無受惠變成這麼多錢了
transcript.whisperx[256].start 7690.038
transcript.whisperx[256].end 7716.258
transcript.whisperx[256].text 我們毫無所悔所以本席曾經開過協調會也曾經質詢過前任的陳俊仁院長前任的部長也說要研議所以到現在還沒有一個結果所以要請次長而且這個部分不是因為107到現在都沒有條了
transcript.whisperx[257].start 7717.353
transcript.whisperx[257].end 7745.596
transcript.whisperx[257].text 也夠久了所以這個部分是這個要請次長是報告委員這個高中以下首長跟我說其實是那個對住宿對這個我知道都有調整這國民政府時代就開始的了對其實都有滾動性在調整補助那大學的部分因為那個私立大學那個政策補助3.5萬部分因為原來原住民學生就已經有補助了我知道所以要同步
transcript.whisperx[258].start 7746.127
transcript.whisperx[258].end 7773.58
transcript.whisperx[258].text 我們也人數很少啦是,我們未來會一起檢討啦看這個他的住宿費用啦或者其他的費用上能夠給予補助的部分或獎學金的部分我們會來提供研究好不好那會後的資料我們再提供給不用資料我都有所以住宿稅要增加減免原住民與非原住民的大專學生的落差
transcript.whisperx[259].start 7774.929
transcript.whisperx[259].end 7787.44
transcript.whisperx[259].text 百分之三十幾啊百分之三十幾交易的提升很重要所以這個部務必要請次長來幫幫忙好謝謝委員我們來努力謝謝謝謝謝謝鄭天才委員來次長請回座這個鄭委員、賴委員剛剛已經有宣告過
transcript.whisperx[260].start 7799.161
transcript.whisperx[260].end 7804.533
transcript.whisperx[260].text 因為宣告過了,政委員之後要休息了那已經有宣告過了現在休息7分鐘
transcript.whisperx[261].start 8229.676
transcript.whisperx[261].end 8234.261
transcript.whisperx[261].text 好,官員請就座我們繼續開會,下一位諮詢請鄭正前委員
transcript.whisperx[262].start 8266.985
transcript.whisperx[262].end 8288.802
transcript.whisperx[262].text 謝主席我想請一下我們國發會留主委還有我們教育部的張廖萬堅政策教育部張廖政策曾委員早昨天早我在想說臺灣少子化問題已經很多年了你應該知道從什麼時候開始出現生不如死的狀態對不對幾年
transcript.whisperx[263].start 8292.105
transcript.whisperx[263].end 8295.407
transcript.whisperx[263].text 二、邀請國家發展委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[264].start 8318.956
transcript.whisperx[264].end 8339.709
transcript.whisperx[264].text 這排序大家都非常的慘那我後來是看到了幾個狀態是因為我發現那個國發會在算我們的人口數的時候一直都算得不太準那麼今年一到九月份的時候我們只有九萬七千七百三十三人那麼也比之前來得少那我看了我們就是針對國發會在評估我們就是
transcript.whisperx[265].start 8343.632
transcript.whisperx[265].end 8368.009
transcript.whisperx[265].text 每一年度的出生率包括從高推估、中推估跟低推估來算的時候那我看的狀態其實基本上我們的實際出生數都比我們國發會這邊所提供出來的低推估還要少就我們少子化問題嚴重到比國發會的低推估還要少人主委你知道這個事情嗎
transcript.whisperx[266].start 8370.083
transcript.whisperx[266].end 8383.195
transcript.whisperx[266].text 我只知道那是上一版的今年我們這次的那個出生率我們有下調然後所以我們有對應到今年對到今年你們預計今年出生人數多少人
transcript.whisperx[267].start 8384.401
transcript.whisperx[267].end 8399.25
transcript.whisperx[267].text 我們今年到7月為我們大概是原定是13萬上下啦13萬人上下是不是?那我們到7月份比去年同期大概少了將近5000位因為我看了所有數字當中的時候那個
transcript.whisperx[268].start 8400.15
transcript.whisperx[268].end 8428.4
transcript.whisperx[268].text 到時候我再來我們本報告是因為我們有很清楚去整理一下我們從105、107、109到110年所有的低推估針對110年跟113年的人數的狀態那你們也許有不同的報告那我們希望能夠更精準因為少子化問題確實非常非常的嚴重好那我們再往下這個部分其實是台灣從2000年到今年1到9月為止的人數你發現就持續的下降當中
transcript.whisperx[269].start 8429.764
transcript.whisperx[269].end 8455.517
transcript.whisperx[269].text 只有在2008年到2016年當中的時候這邊曾經有就是反轉那我在因為我看你報告裡面其實你也寫到很多我們少子化問題的理由那你可不可以解釋一下為什麼在這段時間當中的時候我們的人口其實是成長的而不是持續的下降主委2016年是農年
transcript.whisperx[270].start 8456.69
transcript.whisperx[270].end 8465.536
transcript.whisperx[270].text 那一年是有龍年的效應呢?2012年……龍年現在我們今年也是龍年的效應啊怎麼沒有看到龍年效應出來?
transcript.whisperx[271].start 8467.069
transcript.whisperx[271].end 8486.669
transcript.whisperx[271].text 對今年是我們也記得在有在討論這個問題今年為什麼農年效應是比往年我再想說這邊我提到一個一個學界的一個看法他覺得因為事實上說臺灣的政府其實在針對少子化問題已經做了非常的做很多努力不管是給錢給更好的一個
transcript.whisperx[272].start 8487.51
transcript.whisperx[272].end 8514.41
transcript.whisperx[272].text 社會福利相關的一個政策等等的部分的時候可是我們的少子化問題還是持續的下降從陳水扁在那八年當中每一年都持續的下降蔡英文的八年當中也是每一年都持續的下降只有在馬英九執政的這八年當中的時候曾經反轉那我們有一個解釋的狀態就是說會不會是因為兩岸問題讓民眾覺得和平的穩定性高的時候大家就更敢於生孩子對
transcript.whisperx[273].start 8517.113
transcript.whisperx[273].end 8543.959
transcript.whisperx[273].text 這樣一個觀點你覺得是不是可以解釋在這為什麼在馬這八年當中的時候我們的出生人口數會反轉?這個因為當然我就想承諾我報告他那一年剛好是農年是一個因素那至於為什麼有沒有其他的因素我想我們還需要再去分析那我這邊有提到一個狀態我想應該是雙方的事情不是單方面的事情可是重點就是說
transcript.whisperx[274].start 8546.107
transcript.whisperx[274].end 8572.795
transcript.whisperx[274].text 和平會讓老百姓更有安全感所以大家可能會更敢生孩子所以整個的大環境來說是重要的那我想說我今天先提這個部分給主委這邊那我們要怎麼樣去做因為這不是國發會一個單位可以做出來的事因為我們今天邀請了五、六個部會來可是沒有陸委會所以我接下來我想問一個事情就是我們在看到就是
transcript.whisperx[275].start 8574.909
transcript.whisperx[275].end 8586.758
transcript.whisperx[275].text 台灣在今天的主題當中在針對那個少子化問題還有針對那個亞鄰國家攬才留才的競爭力比較我想問一下主委我們亞鄰國家含不含大陸
transcript.whisperx[276].start 8589.678
transcript.whisperx[276].end 8610.326
transcript.whisperx[276].text 韓大陸的確是對岸是我們的亞鄰國家沒有錯啦是可是因為我看到你在這裡面的時候呢所有的評估當中的時候基本上都沒有著墨到這個點那我想說再往下先往下問一個問題因為大陸地區人民其實我們之前
transcript.whisperx[277].start 8611.426
transcript.whisperx[277].end 8631.357
transcript.whisperx[277].text 兩岸交流的時候有很多大陸的學生來那我想問一下我們張家萬間政策就是說我們今年有錄取了多少大陸學生?今年有沒有大陸學生來?多少人?
transcript.whisperx[278].start 8632.557
transcript.whisperx[278].end 8639.179
transcript.whisperx[278].text 大概都是研修生,詳細資料我這邊沒有。」我簡單跟你講一下今年113學年報考臺灣碩博士放榜了34個學校總共只有174個人那麼區額高達1326名那麼整個招生率只有11.6是這14年來最低的一個水位
transcript.whisperx[279].start 8658.144
transcript.whisperx[279].end 8668.032
transcript.whisperx[279].text 那我在這邊提到一個點就是說這段時間的時候我想兩岸的關係沒有處理好所以台灣這邊一定是講大陸這邊沒有放行對不對
transcript.whisperx[280].start 8669.633
transcript.whisperx[280].end 8671.394
transcript.whisperx[280].text 二、邀請國家發展委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任
transcript.whisperx[281].start 8691.28
transcript.whisperx[281].end 8713.03
transcript.whisperx[281].text 有沒有更積極去做這件事情?」總量也都增加你看今年二月還修法讓陸聖能夠納入健保其實這都是非常友善的措施包括他們也可以領獎助金還有他們也可以來報考臺灣的技能檢定或者是他可以來擔任研究助理或從事學習性的事情我想說我們做很多可是沒有人來的時候
transcript.whisperx[282].start 8716.292
transcript.whisperx[282].end 8736.824
transcript.whisperx[282].text 提供更多的政策其實都沒有用所以我覺得一個大框架當中我希望教育部這邊跟陸委會這邊好好的去做一個溝通希望能夠從政策面去解決這個事情政策面要解決很大一部分是政治的友善度可能也要這邊去解決那我這邊提到一個個案這邊有一個大陸的學生
transcript.whisperx[283].start 8739.466
transcript.whisperx[283].end 8750.799
transcript.whisperx[283].text 他一清到台灣來念了三年高中念了四年的大學我們這七年我們對於一個大陸學生來我們要投入多少的資源下去
transcript.whisperx[284].start 8752.631
transcript.whisperx[284].end 8771.653
transcript.whisperx[284].text 市長你有沒有具體的數字?我們這個126萬人是怎麼算?因為我們平均每對每個大學生一年的投入是大概22萬8千對高中生16萬算起來他在這邊唸的七年書大概是這個數字可是你知道因為
transcript.whisperx[285].start 8772.834
transcript.whisperx[285].end 8795.374
transcript.whisperx[285].text 兩岸關係的不好他現在沒有辦法繼續來他本來想在台灣繼續念所以我們希望教育部這邊好好的跟陸委會這邊一起解決陸生來台的問題然後另外讓他們也能夠比照我們國發會這邊提出的一個留才攬才的一個計畫好不好讓他們也能夠變成台灣增加人才的一個來源
transcript.whisperx[286].start 8796.328
transcript.whisperx[286].end 8825.154
transcript.whisperx[286].text 我想教育部對於兩岸之間那種良性的互動跟教育文化的交流都是支持啦那我們也不斷的釋出善意可是就是對方到目前為止就是包括那個招生機構我們跟他聯繫他就是一睹不回所以說在這方面我們再努力繼續努力市長我覺得這部分可能要更加油好不好那跟陸委會這邊好好做溝通好導致先再到本辦公室來做報告好謝謝謝謝委員關心謝謝鄭正前委員時間掌握非常精確感謝
transcript.whisperx[287].start 8827.99
transcript.whisperx[287].end 8840.561
transcript.whisperx[287].text 來 這個主委先回座蕭委主席請賴瑞榮委員好謝謝昭緯請那個劉主委請國安會劉主委
transcript.whisperx[288].start 8849.471
transcript.whisperx[288].end 8868.786
transcript.whisperx[288].text 主委長我想我其實一直在關注這個問題因為我覺得少子化其實是國家的重大問題也是國安問題那國發會其實應該有更強的整合能量來處理這件事情我覺得這也是主委一個很好來幫台灣來幫國家處理好這事的機會我們看到這個趨勢其實是到了2070年剩1584所以
transcript.whisperx[289].start 8873.49
transcript.whisperx[289].end 8880.789
transcript.whisperx[289].text 而這個還是比較高位數的一個那其實看來會減少到700多甚至到900零3萬我問一下主委你覺得這樣的問題嚴不嚴重
transcript.whisperx[290].start 8883.808
transcript.whisperx[290].end 8908.378
transcript.whisperx[290].text 我認為非常嚴重尤其是特別影響到未來繳稅跟工作的勞動力會非常可怕包括消費的力道都會下滑所以我認為這個其實是國發會很重要的一個工作各部會但國發會可以扮演比較重要強大的我們看到主委你有幾個孩子我有兩個那你認為為什麼這個少子化台灣的問題會越嚴重就你的觀察跟你自己的經驗
transcript.whisperx[291].start 8910.339
transcript.whisperx[291].end 8926.179
transcript.whisperx[291].text 我們現在看到有兩個現象一個就是這個大家找不到匹配的對象是目前調查出來的第二個是他們對於養育小孩的壓力或者是還要同時照顧父母的壓力都同時存在
transcript.whisperx[292].start 8928.861
transcript.whisperx[292].end 8948.866
transcript.whisperx[292].text 所以我認為有三件事要做,第一個協助他養育,第二個讓他能夠結婚的人比較能夠早一點拿到社宅,或者是比較好的優惠條件租到社宅,然後第三個部分協助他解放他對養育照顧父母的壓力,尤其是很多來台北奮鬥的父母在南部他很壓力很大。
transcript.whisperx[293].start 8950.507
transcript.whisperx[293].end 8975.425
transcript.whisperx[293].text 同樣的一個原因啦在我看來其實因為我自己有三個孩子啦同樣都是你怎麼樣去讓減輕這些年輕的夫妻或是他們本身的壓力讓他們本身如果本身有意願想要生而能夠生而敢生的這個是很重要的原因這裡面有很多面向要去處理但是我覺得這個部分一定要去突破掉不然他兩個人的生活跟他生一個孩子的生活跟生兩個孩子的生活跟生三個孩子的生活是完全不同的
transcript.whisperx[294].start 8975.845
transcript.whisperx[294].end 8997.62
transcript.whisperx[294].text 包括生育的過程中所要產生的包括生完之後的花費包括他的教養的過程中的托育包括教育等等每個都非常的耗掉相當多的心力跟資源那如果國家在這件事情上給予他更多的支持他就比較有勇氣感去做那如果沒有的話他就會比較保守生一個就好或者是跟隨就不一定要生就有很多的選擇
transcript.whisperx[295].start 8998.28
transcript.whisperx[295].end 9026.875
transcript.whisperx[295].text 所以我希望國發會要站在這樣的高度去協助這件事情來推我們來看日本其實也很重視這個問題日本其實已經處理這個問題一段時間了那他們也用整個高度去做處理之前岸田政府的時候也提出了這個對策那我們其實也提出來了0到6歲國家一起養我認為我們現在做的國家一起養就是你國家跟父母一起養但我認為現在至少要達到一半以上才叫一起
transcript.whisperx[296].start 9027.765
transcript.whisperx[296].end 9050.123
transcript.whisperx[296].text 主委你現在覺得我們國家在支撐這些事情上有做到了一半嗎?我們目前是有在做了但是我們今年也增加了預算但當然預算還是卡在立法院那我自己我們有自己在做一個推估假設我們把這個力道再拉大有沒有幫助其實我們問了一下多少有幫助那這個幫助
transcript.whisperx[297].start 9051.504
transcript.whisperx[297].end 9076.197
transcript.whisperx[297].text 估計的預算大概是五百多億起跳每一年但是如果我們希望這把配套做得好的話我們當時估了一個比較具吸引力的方案大概是一年要增加一千億左右的預算對那這些如果能夠確實來落實的話我認為會很有助於改善因為這一錢就是整個直接用在孩子上就是說我認為國家一起養是其實甚至於我認為是國家要來照顧
transcript.whisperx[298].start 9077.197
transcript.whisperx[298].end 9100.359
transcript.whisperx[298].text 國家應該把所有的孩子當作是他的資產我們看到很多的政府都在努力日本的政府他對於孩子齁這個0到2歲一個月1.5萬日元3到高中畢業18歲一個月1萬瑞典更積極的在於他0到從幾乎是完全支撐的孩子生出來免費教育的部分甚至於這個相關的
transcript.whisperx[299].start 9101.929
transcript.whisperx[299].end 9123.841
transcript.whisperx[299].text 這些甚至營養午餐等等就是說瑞典的一些國家當然是比較福利的國家他們幾乎是把孩子當作自己的國家的責任在幫忙在照顧那當然國情不同但是用你這樣的態度我們就稅收也不一樣對但你這樣的態度在處理的時候其實周遭包括企業包括所有人都會感受到政府在重視這件事情而且對於生兒育女是友善的是支持的
transcript.whisperx[300].start 9124.261
transcript.whisperx[300].end 9142.422
transcript.whisperx[300].text 所以我真的希望用國外高度跟院長來支持不管是五百億或一千億我認為這樣的投入對於將來台灣的整體的競爭力有相當大的幫助主委會繼續朝這個方向來推動嗎我會朝這裡來努力也會找時間跟陳政委的討論這件事情
transcript.whisperx[301].start 9143.383
transcript.whisperx[301].end 9166.208
transcript.whisperx[301].text 我認為至少初階要做到把0到6歲當作是國家的責任國家來養就也就是說他所出生不管是你一次給了一筆的費用讓他生完之後的這個負擔或者是他0到6歲包括他的托育的過程中包括教育過程中的時候你給予他的支持讓他經費我現在看有很多的啦你搶這個公立的都不一定搶得到
transcript.whisperx[302].start 9167.148
transcript.whisperx[302].end 9187.142
transcript.whisperx[302].text 自立的又很貴然後你幾乎要負擔每個月要一萬多塊兩萬塊以上的費用的時候對於每一個生出來的生孩子的父母的壓力都非常沉重的那你這樣當然他更不會那這倒還不包含孩子可能半夜會給你吵醒甚至於很多的各種教養的很多問題那非常的複雜那如果你連最基本的支撐他的力量都沒有把它撐起來的話
transcript.whisperx[303].start 9187.802
transcript.whisperx[303].end 9210.172
transcript.whisperx[303].text 那他們又怎麼有勇氣於生那剛才也包含你談到了每生一個孩子就多出一個空間出來那你的住宅有沒有辦法給予協助等等很多的桌邊配套你的時間可能必須要更充沛你如果是兩個人的話你的生活你只要上下班就可以但是你要照顧孩子你要提前一個小時把他找起來整理好吃完早餐再送他去學校這學校還是你要能夠負擔得起的學校
transcript.whisperx[304].start 9210.612
transcript.whisperx[304].end 9226.207
transcript.whisperx[304].text 所以他有整套的方式一定要國家全力的來支持他在經費上面在制度方面給予更大的支持我認為才有辦法去有效去緩解這個問題不然就會如你們表所看的而且有可能不斷的下修不斷的惡化這會是台灣很大很大的問題
transcript.whisperx[305].start 9227.128
transcript.whisperx[305].end 9245.283
transcript.whisperx[305].text 主委認同這樣的看法嗎?我認同我會朝這個地方我們來試著去努力我們來看一下臺灣跟其他國家比我們總先例現在是最後一名的我們跟韓國兩個都非常的對我們只比韓國好一點那日本對那日本都還在努力其實都已經有一些成效我剛剛講到日本都還已經開始在
transcript.whisperx[306].start 9246.404
transcript.whisperx[306].end 9262.823
transcript.whisperx[306].text 為什麼日本給孩子們每個月給他錢等於他把它當作國家把當作是像他的孩子一樣到18歲前我把你當作孩子幫你父母來養這個孩子我給你相關的一些費用所以我覺得國家用這樣的態度來對待我們所有的孩子們
transcript.whisperx[307].start 9263.443
transcript.whisperx[307].end 9284.211
transcript.whisperx[307].text 在他的特別是0到6歲要特別給予照顧0到6歲是最辛苦的時候因為他還沒有自己獨立的一些能力到6歲上國小他可能自處能力比較強一點就好一點0到6歲往往很多的家庭父母為了要照顧孩子假設生一個兩個也許兩個就已經沒辦法做雙薪了可能到了第三個那抱歉可能只能一個薪水而已了
transcript.whisperx[308].start 9284.551
transcript.whisperx[308].end 9304.976
transcript.whisperx[308].text 所以那個絕對是非常非常的困難那政府一定要全力的去協助他在這些財政上在整個教育上面可以去做我認為才能夠解套這個問題是的所以我看到了其實你們從2016年開始政府在做我們經費已經持續增加但是我認為還是持續做我認為這件事情國家投資資源是非常有意義的
transcript.whisperx[309].start 9305.396
transcript.whisperx[309].end 9321.956
transcript.whisperx[309].text 一來我們把外來的好的勞動力拉進來但另一方面我們自己本身的優秀的這些人力要不斷地在下一代不斷地培育出來那這樣才會讓台灣整體的競爭力更加強化好不好我希望國家把他當真的國家當作支持這個孩子是我們的責任的角度來養
transcript.whisperx[310].start 9324.716
transcript.whisperx[310].end 9344.202
transcript.whisperx[310].text 那個計畫的部分我希望再整合一份也給我好不好我希望很快看到你跟院長溝通之後不管是500億的這樣的計畫或是1000億的計畫我希望能夠得到院長的支持那我們希望能夠有效的緩解少子化的問題有效的去讓我們優秀的下一代能夠持續的得到更多的照顧好不好
transcript.whisperx[311].start 9345.599
transcript.whisperx[311].end 9358.728
transcript.whisperx[311].text 主委,那個報告如果你有相關的資料是不是一個月內給我一份資料好不好?好,我去約一下那個院長跟政委那你整份規劃的資料也給我一份好嗎?好,謝謝謝謝賴總委員、主委,請回座下一位質詢,請謝一鳳委員
transcript.whisperx[312].start 9395.168
transcript.whisperx[312].end 9409.711
transcript.whisperx[312].text 我們工作人員是挑水一下。」謝謝趙偉。我想要請我們劉主委。請國會劉主委。次長。教育部張調次長。謝偉銘好。
transcript.whisperx[313].start 9422.388
transcript.whisperx[313].end 9438.724
transcript.whisperx[313].text 主委好 市長我想請問一下就是少子化的問題怎麼解決那當然0到6歲這個部分是大家都有共識的可是怎麼解決到底在
transcript.whisperx[314].start 9439.827
transcript.whisperx[314].end 9456.859
transcript.whisperx[314].text 地方的部分就是零到二歲目前缺少的部分有盤點嗎盤點的結果如何因為我看到在我們彰化縣各鄉鎮托嬰以及幼兒園的需求就是不一了那這個部分怎麼樣子規劃兩位誰可以講
transcript.whisperx[315].start 9462.19
transcript.whisperx[315].end 9479.503
transcript.whisperx[315].text 謝謝委員關心其實這個整個當然是我們都會透過地方政府他們去了解地方政府的需求那根據那個地方如果有一些公共空間或者學校有一些空教室他可以來辦理這個公共化的一個幼兒園
transcript.whisperx[316].start 9480.384
transcript.whisperx[316].end 9505.231
transcript.whisperx[316].text 但是我跟張廖次長說現在面臨的問題是有少子化問題我們在例如我們有一個鄉鎮它需要的是幼兒園那幼兒園要整合性可是它整合性的社區它本來是放在社區裡面現在社區要做長照了我們有兩塊部分要處理
transcript.whisperx[317].start 9506.751
transcript.whisperx[317].end 9533.419
transcript.whisperx[317].text 當他要把這個就是說要把這些幼兒園集中起來就是來管理要來興建幼兒園的時候教育部可能又覺得說現在少子化啦你到底可不可以蓋幼兒園啊那所以你們教育部到底是怎麼樣子盤點這些設施的那甚至在我們204鄉鎮他們就沒有駝音的部分啊
transcript.whisperx[318].start 9533.959
transcript.whisperx[318].end 9560.036
transcript.whisperx[318].text 那托嬰的部分要怎麼做呢?就是有鄉鎮沒有啊?還是你要集中管理還是要怎麼樣子?你總要有一個具體的長程的規劃吧?要讓所有的小朋友都有地方去嗎?如果要朝公共化的托嬰或者是幼兒園的這個政策來講是不是應該要盤點所有的設施?我們其實每個鄉鎮市都有做評估也做盤點
transcript.whisperx[319].start 9560.956
transcript.whisperx[319].end 9580.445
transcript.whisperx[319].text 有些當然因為出生率低的關係所以它的那個設置的方式會不太一樣那我們也都希望地方政府能夠我們跟地方政府一起合作看一下怎麼樣子來解決那可能有些地方政府也有一些財政的問題我們也會補助啦比如說他可能希望整病那剛才委員就提到嘛
transcript.whisperx[320].start 9580.845
transcript.whisperx[320].end 9582.747
transcript.whisperx[320].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[321].start 9600.002
transcript.whisperx[321].end 9613.467
transcript.whisperx[321].text 人家有同意啦人家就希望診病嘛是不是?您講的這個很有道理我們實際去了解實際是爸爸媽媽在送托不是鄉鎮公所所以這兩個面向讓我們多整合一下
transcript.whisperx[322].start 9615.848
transcript.whisperx[322].end 9642.734
transcript.whisperx[322].text 我也多到你辦公室報告好不好?不是啦 因為你如果把它放在社區的話人家也要做那個就是說長照的就是那個送餐的部分嘛所以有兩個面向嘛一個是拖老一個是拖嬰那拖嬰的部分爸爸媽媽在送的時候他比較社區化會比較方便所以這一點上是不是我們再到委員辦公室備福部也一起去還有鄉鎮事公所我們大家一起談一下好不好因為現在表達沒問題的是
transcript.whisperx[323].start 9645.535
transcript.whisperx[323].end 9673.616
transcript.whisperx[323].text 政府單位,但是真正在使用的是家長。」這個我們來衡量一下。你是調查了多少家長?你是調查了多少家長?我們在走訪的過程中說以前的經驗,我們還是很省事。對,你不能用以前的經驗嘛。這個我們有實際的了解社區。現在都已經什麼幾年了,我們從過去的經驗都不能夠符合現在實際的潮流嘛。你知道說我們的鄉鎮公所,現在它不只要處理一塊嘛。
transcript.whisperx[324].start 9674.156
transcript.whisperx[324].end 9698.73
transcript.whisperx[324].text 不只要處理托幼,還有要處理托老的部分啊,是不是?你不能夠,你們不能夠,欸,主委,主委,為什麼我會在這裡問這個問題?這是跨部會的問題嘛,是不是?張廖次長,還有上一次你去二林看我們二林工商的,就是災後的,開密颱風災後的這個重建的工作,那對於彰化縣的,不會有差別吧?
transcript.whisperx[325].start 9699.19
transcript.whisperx[325].end 9700.311
transcript.whisperx[325].text 主任委員會主任委員會主任委員
transcript.whisperx[326].start 9730.891
transcript.whisperx[326].end 9733.982
transcript.whisperx[326].text 培育兩年留臺工作,這不是國發會跟經濟部一起的嗎?
transcript.whisperx[327].start 9739.181
transcript.whisperx[327].end 9764.012
transcript.whisperx[327].text 有主委是嗎?那是郭部長提出來的所以不是你的?你們現在怎麼這樣子啊?主委你們現在怎麼這樣子分的那麼...郭部長大部分的事情是我們有在協助規劃啦那他那次的記者會我們沒有參與的所以我不知道他...我以為這是...對啊因為這需要跨部會啊然後今天又有勞動部又有教育部所以我才想說也順便問你啊
transcript.whisperx[328].start 9764.992
transcript.whisperx[328].end 9767.056
transcript.whisperx[328].text 我去找,我們去找他了解,我再給你報告。」
transcript.whisperx[329].start 9775.475
transcript.whisperx[329].end 9796.948
transcript.whisperx[329].text 那這樣子很難問下去是不是所以你不知道是加二但是我要請問你們所謂的要培養10萬個AI的工程師那到底這10萬工程師有沒有辦法留在台灣以及你們目前按照這些方案培養我看到我們勞動部
transcript.whisperx[330].start 9798.849
transcript.whisperx[330].end 9821.859
transcript.whisperx[330].text 一一三年第一季人力需求增減的情況製造業需要兩萬三千六十八人那根據你們這樣子的A就是你們這樣子的4加2的這個2加4的計畫有沒有辦法解決我們現在勞動力缺乏的問題
transcript.whisperx[331].start 9824.097
transcript.whisperx[331].end 9839.383
transcript.whisperx[331].text 如果就AI的部分我們目前從學校我們有兩個機制一個是學校的機制跟非學校的機制在培養AI那學校一年可以有6萬多就是科系畢業跟這個STAND學生
transcript.whisperx[332].start 9840.263
transcript.whisperx[332].end 9865.274
transcript.whisperx[332].text 另外是透過經濟部有補助外面的教育訓練機構以及這個工研院等等都有一些教育機構那我們算出來是10萬是可以培養的夠的那勞動力的部分我們現在看到從我國安會的角度我們現在看到是兩個狀況勞動力的需求我想勞動部非常清楚但是裡面有一個叫做技術落差就是有時候我們要的焊接工可能不是
transcript.whisperx[333].start 9866.556
transcript.whisperx[333].end 9894.551
transcript.whisperx[333].text 直接過來的外勞可以做的那這個部分我們會透過中階人才的修法來進一步的開放對於有技術性的技術工能夠再開放然後讓他們的更容易進到台灣來工作我們當然會朝這個方向來走只是我是說目前你們的規劃有沒有辦法解決我們目前在2024年第一季我們就面臨到製造業這麼大的缺口未來如果在
transcript.whisperx[334].start 9895.351
transcript.whisperx[334].end 9918.362
transcript.whisperx[334].text 在我們到2028年的時候預估人力缺口這是國發會的吧這是國發會的吧我們預估的是總人力缺口他會切成高階人才跟勞動力那勞動力工廠來講我們請那個勞動部說明一下是,報告委員有關這個AI的這個數位轉型其實我們為了要使國內的勞動者可以因應這個數位的發展
transcript.whisperx[335].start 9923.911
transcript.whisperx[335].end 9944.455
transcript.whisperx[335].text 所以我們其實在就業通已經有一個這個綠能淨零還有AI數位轉型的一個專區裡面有相關的資訊課程這個是提升現有勞動力的他的相關的能力我跟昭緯換次序所以我不要操時可是我必須要提一下就是我現在看到政府部門的跨部會的整合以及
transcript.whisperx[336].start 9944.855
transcript.whisperx[336].end 9966.976
transcript.whisperx[336].text 你們跨部會的溝通協調的確看起來好像就沒有我也不知道說當我在看到就是國發會跟經濟部共同推這個二加四方案的時候我不知道說你們怎麼樣子去溝通協調這中間的問題喔好謝謝好謝謝謝一鋒委員來主委、組長請回座來下位質詢請陳超明委員
transcript.whisperx[337].start 9977.216
transcript.whisperx[337].end 9979.498
transcript.whisperx[337].text 我國少子女化現況及對策計畫成效.
transcript.whisperx[338].start 10003.592
transcript.whisperx[338].end 10005.338
transcript.whisperx[338].text 你當然剛剛來到國華會現在少子化你感覺要怎麼改善才好
transcript.whisperx[339].start 10012.397
transcript.whisperx[339].end 10033.655
transcript.whisperx[339].text 少子化我們現在其實我們從多頭在進行中跟您報告一下第一個我們有做市場的調查還有大數據的分析大數據的分析我們請國會做大概會到年底才會有機會出來因為涉及到一些各自法那這個分析會突破過去傳統的做法
transcript.whisperx[340].start 10034.255
transcript.whisperx[340].end 10056.042
transcript.whisperx[340].text 那以分析來看以調查來看的話目前我們最大的第一個問題是結婚率比較低第二個結婚年齡偏晚第三個部分是想大家對育兒的壓力比較大那我們現在最能解的是育兒的壓力所以我們現在是朝育兒壓力跟這個結婚的人有沒有機會比較先拿到社宅或者是租到社宅
transcript.whisperx[341].start 10056.762
transcript.whisperx[341].end 10077.349
transcript.whisperx[341].text 第三個部分怎麼樣幫他施壓他們因為現在小孩生得少奉養父母的壓力都有比照顧父母的壓力也比較大我們希望從這三階段來做所以今年整體編列了一千兩百多億的預算我也覺得蠻中肯的因為我今天剛剛要來以前我就問我們裡面小姐說現在的人為什麼不想結婚
transcript.whisperx[342].start 10078.609
transcript.whisperx[342].end 10105.441
transcript.whisperx[342].text 他說養孩子很辛苦、壓力很大我看他個性很溫柔所以你重點就提出這個地方出來表示你這個調查報告是蠻準確的不是官方正式的一個報告是實際有了解啊現在說生不如死生不如死依照我們觀念說我的家不如死死的就好了那是生活的煎熬
transcript.whisperx[343].start 10106.494
transcript.whisperx[343].end 10133.103
transcript.whisperx[343].text 這一句話生不只是這樣生的人比死的人還要少尤其現在民意代表大概天天都要去臉香看到他老人家一直過世的話真的差別很大但是我再想想這裡面大概我最資深人生其實才開始所以這個社會是整個交雜在一起的
transcript.whisperx[344].start 10134.13
transcript.whisperx[344].end 10155.642
transcript.whisperx[344].text 那關於少子化我覺得失絕壓力但是我覺得在這個思想裡面常常沒有提到因為現在都是小那個叫小浪漫就是說只有我喜歡有什麼不可以青春不能留白他們也在逃避這種壓力一個社會結論
transcript.whisperx[345].start 10158.393
transcript.whisperx[345].end 10177.94
transcript.whisperx[345].text 那整個中國文化裡面對家的傳統觀念很少但是我發覺這整個世界都在改變這一些我做我自己就好我不要負擔壓力大人生的青春不能留白我覺得這幾個觀念你們也要特別注意一下確確實實
transcript.whisperx[346].start 10181.017
transcript.whisperx[346].end 10195.869
transcript.whisperx[346].text 現在我也問了很多,他說現在跟年輕人講話他不敢亂講,兒子講什麼也只能講好,不外其此上的意思,公切就這世代的觀念差距,其實現在的
transcript.whisperx[347].start 10197.33
transcript.whisperx[347].end 10223.537
transcript.whisperx[347].text 資訊裏面差距不會很大新的觀念跟舊的觀念有時候是經驗的傳承但是現在要討好很多的選票的時候把觀念改判臺灣是沒有職員的國家我覺得真的是當總統人、當行政院長、當國會委員的職位應該提出我們臺灣人口對策的一個中心思想不要人人也贏現在說什麼壯世代我搞不懂
transcript.whisperx[348].start 10224.577
transcript.whisperx[348].end 10245.811
transcript.whisperx[348].text 四十五歲以上叫壯世代,但是諸位,七十五歲及六十五歲是正在生產力的中心,超高齡的說65歲以上的,阿你給我省個壯世代,壯世代我就傻不,我今天要問他壯世代怎麼解釋,四十五歲到六十歲是生產力最強
transcript.whisperx[349].start 10247.012
transcript.whisperx[349].end 10257.392
transcript.whisperx[349].text 其實現在的生物科技已經改變了65歲的人以後非常年輕的非常多我估計這裡都要去租也要去賺你看我熱
transcript.whisperx[350].start 10261.503
transcript.whisperx[350].end 10288.391
transcript.whisperx[350].text 我的看法跟您非常接近因為現在的百歲人類也到了5500多位了那大家的身體越來越健康了那也因為這樣的關係其實勞動部也修了一個法令鼓勵中高齡的人回來就業因為現在人真的越來越年輕那最近的修法退休也不一定限定在65歲對對對好人事室的那個副副主委
transcript.whisperx[351].start 10289.531
transcript.whisperx[351].end 10291.993
transcript.whisperx[351].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[352].start 10309.053
transcript.whisperx[352].end 10324.015
transcript.whisperx[352].text 不強迫退休可以協商來我今天也剛剛碰到一個人跟我存強我們的公務人員60歲達到退休的年齡你們說不准留下來要跟我退但是我跟人事
transcript.whisperx[353].start 10325.472
transcript.whisperx[353].end 10349.187
transcript.whisperx[353].text 那個副處長我告訴你我會寫公共行政以前為什麼會逼著退是要給年輕的上來接這個公務人員的位置現在公務人員要經過考試考試的時候現在不一定少子化了就會跟大學一樣要來進入公務體系的不一定多
transcript.whisperx[354].start 10350.288
transcript.whisperx[354].end 10360.223
transcript.whisperx[354].text 而且女生會特別多我跟你講這個變化實在所以在這裏面有一個傳承這個傳承公務系統很重要
transcript.whisperx[355].start 10361.823
transcript.whisperx[355].end 10385.206
transcript.whisperx[355].text 你到行政公所去看一下那年輕進來的話大家要轉也沒有經驗什麼東西都不敢動所以我覺得公務人員如果能跟機關大家協調好可以說你到哪裡或是協調好應用這個已經很成熟有基本概念的公務人員對我們公務人員的效率推進是幫忙很大
transcript.whisperx[356].start 10386.347
transcript.whisperx[356].end 10415.256
transcript.whisperx[356].text 觀念改一下時代不一樣不是年輕人就更好吃我們希望他成長但是還有老一代現在的年輕人還在拍槓我選舉的人不能講這種話我是把我觀念跟你講你看法怎麼樣?謝謝委員的指教這個的確這個年齡的延後這是一個目前可能未來可能會面臨的議題那就值得去深思了能不能留任?
transcript.whisperx[357].start 10418.281
transcript.whisperx[357].end 10443.934
transcript.whisperx[357].text 請說你們發了一張公文去說不能認領跟我離開您提的是公務人員因為公務人員的退休令、借領的退休令是規定在公務人員的退休福氣法裡面在你們現在修改的法令有沒有告發公務人員因為公務人員法令啊這個退休法令在考試院所以我們你告訴我聽不清楚你告訴我英文比較不英文
transcript.whisperx[358].start 10444.634
transcript.whisperx[358].end 10456.53
transcript.whisperx[358].text 因為退休的年齡是法令俱全公務員當然有公務人員的法但是還是依照母法為基準到底65歲屆齡的公務人員能不能繼續留在公務機關
transcript.whisperx[359].start 10460.734
transcript.whisperx[359].end 10471.759
transcript.whisperx[359].text 如果按照要保留公務人員的身份,既有公務人員身份,因為退服法就規定...當然這台車全車子,你好好思考這幾個問題。我剛才說我早上跟我陳情我才問你。但是,那個...劉書蕾
transcript.whisperx[360].start 10479.778
transcript.whisperx[360].end 10497.112
transcript.whisperx[360].text 人不行的,你看他血肝,退出來不工作的時候很容易這樣,我比了手,他退出下來你給他有專業,他的精神反而更好更強壯,你說老人肢胎症就是得出的太陽,不知道要做什麼,
transcript.whisperx[361].start 10498.913
transcript.whisperx[361].end 10514.562
transcript.whisperx[361].text 保時中日狠狠頓頓的我感覺你這個成績60幾位現在的健康現在生物科技現在醫療都有在進步不應該限制這個可以給他一個充分發揮我覺得這樣子他們反而更健康
transcript.whisperx[362].start 10518.504
transcript.whisperx[362].end 10533.712
transcript.whisperx[362].text 你看美國總統真沒做什麼事情多聰明他真有事情做都很好我建議這幾點然後在留才攬才方面尤其AI你不要台灣培養的人才給外人在用你們永遠繼續做一點
transcript.whisperx[363].start 10535.593
transcript.whisperx[363].end 10553.966
transcript.whisperx[363].text 那些有錢的國家他那些印鈔票的國家把臺灣的人才抓高高只要去用來限制我們各種發展且即現在是競爭的啦大家在勝利要贏大家競爭要贏無所不用其極不要我們假裝人力道德
transcript.whisperx[364].start 10554.927
transcript.whisperx[364].end 10568.775
transcript.whisperx[364].text 我告訴你一件事,沒有台灣,包括產農產業,高科技業可能在這邊你們滋好很快,說不定會消失。謝謝第二次安寧。好,謝謝委員,感謝。謝謝陳昌平委員。下一位質詢請楊秋衣委員。
transcript.whisperx[365].start 10586.477
transcript.whisperx[365].end 10590.359
transcript.whisperx[365].text 謝謝主席 本席想邀請主委跟勞動部一起
transcript.whisperx[366].start 10603.392
transcript.whisperx[366].end 10629.114
transcript.whisperx[366].text 好謝謝主委我們看到我們在105年執行我們我國少子化的這個對策計畫到現在從最起初的105年的200億到我們看到你114年的預算是1177億但是呢你錢越多你的生育率不僅是逐年下降
transcript.whisperx[367].start 10629.935
transcript.whisperx[367].end 10645.911
transcript.whisperx[367].text 而且在CIA所公布五月份他所公布美國中情局他公布的2024年全球生育率的預測當中嚇一跳我們竟然是世界最後一名你看到這個世界最後一名
transcript.whisperx[368].start 10647.099
transcript.whisperx[368].end 10648.499
transcript.whisperx[368].text 你的心理作何感想?
transcript.whisperx[369].start 10668.064
transcript.whisperx[369].end 10693.485
transcript.whisperx[369].text 都是因為不育證經過補助而生下來的所以錢花的還是有那包括我們0到2歲0到6歲國家一起養其實都讓年輕人感覺到他有釋壓的情緒這個是我們從200億到明年度你編列的1177億你的過程努力但是你的答案是世界最危險的怎麼辦
transcript.whisperx[370].start 10696.96
transcript.whisperx[370].end 10709.175
transcript.whisperx[370].text 怎麼辦?如果你現在的回答只是告訴我我們現在的做法是什麼但是你的答案是全世界最後一名所以我本席不希望聽到這些本席要聽到你精進的方案
transcript.whisperx[371].start 10713.8
transcript.whisperx[371].end 10736.397
transcript.whisperx[371].text 因為錢不斷地在增加那你現在的方式有沒有調整的空間怎麼樣去鼓勵請做說明我們其實10月1號陳時中政委召集的各部會也包括國安會我們探討的這件事那10月17號在國家發展委員會有沒有方案出來你也談到這些事情有沒有方案你從200億到明年度預估將近1200億有沒有方案
transcript.whisperx[372].start 10741.741
transcript.whisperx[372].end 10760.546
transcript.whisperx[372].text 方案是有一部分已經在今年的預算裡面提出來就是一些補助的增加包括我們最近也會修法包括一些法令的鬆綁但是我們希望有更大的改變所以我們在那個會議裡面我們希望三個月後我們在會議裡面大家再來探討一次
transcript.whisperx[373].start 10763.187
transcript.whisperx[373].end 10779.473
transcript.whisperx[373].text 從什麼時候的三個月本席希望聽到方案因為我們即將要審預算要知道這筆預算能不能花在有效的效能所以這一個提問本席請問你們的整體方案什麼時候可以出來
transcript.whisperx[374].start 10780.755
transcript.whisperx[374].end 10782.776
transcript.whisperx[374].text 多久時間?實施中所以你的答案是全世界最後一名所以本期具體建議
transcript.whisperx[375].start 10802.06
transcript.whisperx[375].end 10822.488
transcript.whisperx[375].text 你去盤點主委你去盤點你現在最後一年你的答案也是世界最後一名所以趁著還有機會你到底你的預算在重議的時候你的預算、你的方案要怎麼樣去精進你三個月內給本席好不好我三個月給你但是我也跟你報告
transcript.whisperx[376].start 10825.709
transcript.whisperx[376].end 10834.122
transcript.whisperx[376].text 我們有探討很多事情其實不是其實這個不歸我的責任但是我主動找了院長探討我們也提了幾個方案出來那這裡面需要到500億到1000億左右的預算你是我們國發會的主委
transcript.whisperx[377].start 10840.117
transcript.whisperx[377].end 10852.505
transcript.whisperx[377].text 拿出你的gas去提出方案預算怎麼分配這是我們要看到的好不好三個月內將你的方案給本席所以我們實質討論勞動部在這裡全台有90%是屬於中小企業那麼彈性工時的部分勞動部你們現在的進度怎麼樣
transcript.whisperx[378].start 10868.293
transcript.whisperx[378].end 10892.279
transcript.whisperx[378].text 勞動部你們現在的作為方向是怎麼樣呢?報告委員其實我們現在依照勞動基準法跟我們的性別平等工作法我們現在在法令裡面就有一些可以實施彈性工作時間的一些措施跟空間那不管是彈性工時又或者是可以調整上下班又或者是有一些彈性的請假
transcript.whisperx[379].start 10893.659
transcript.whisperx[379].end 10913.697
transcript.whisperx[379].text 這些在勞動法規裡面都允許可以去做一些安排。」但是落實沒有辦法落實所以為什麼請國發會主委以及你同步大家互相橫向去聯繫因為我再次強調90%都是屬於中小企業那麼同時我們要顧了國家的產業
transcript.whisperx[380].start 10914.838
transcript.whisperx[380].end 10939.186
transcript.whisperx[380].text 那當然最重要現在最傷腦筋的全世界生育最後一名這個問題一年度要花一千多億在這樣的情況之下我們的橫向聯繫到底要怎麼樣去精進這是本席在跟你討論的這個議案所以我們也希望因為一方面要國家發展二方面不敢得罪雇主然後呢
transcript.whisperx[381].start 10940.166
transcript.whisperx[381].end 10943.768
transcript.whisperx[381].text 又要趕快要讓他們可以有彈性共識這個功課是很要有智慧的所以我把這個功課拋出去請國發會跟勞動部你們好好去研討要怎麼樣能夠去落實所以我拋出一個議題國發會主委你是不是可以如果沒有領頭羊不可能你是不是可以請我們的政府單位跟國營企業
transcript.whisperx[382].start 10969.024
transcript.whisperx[382].end 10994.641
transcript.whisperx[382].text 來當領頭羊來做事行的彈性工時可行性。」這個我會跟相關國營事業的組織單位我們會來討論看看這跟你報告你國家帶著走人家就願意你國家自己都不做那當然就到目前為止你到最後一億兩這個一千兩百億花完了還是全世界最後一名
transcript.whisperx[383].start 10995.781
transcript.whisperx[383].end 11001.484
transcript.whisperx[383].text 這個是我們不願意看到的所以是不是我想了一直想我們是不是由我們的國營事業跟我們的行政政府部門率頭來示範嘛好不好我來跟那個向經濟部這些單位來討論對這樣就對了那你多久時間可以告訴我可跟不可你們率先來示範嘛
transcript.whisperx[384].start 11018.609
transcript.whisperx[384].end 11019.39
transcript.whisperx[384].text 主任委員會主任委員會主任委員會主任
transcript.whisperx[385].start 11035.803
transcript.whisperx[385].end 11046.786
transcript.whisperx[385].text 這個70年你慢了三個月公布但是總是公布了那你告訴我們少子化跟高齡化的現象呢你告訴我們說預估2070年我國總人口將比2024年減少844萬人換句話說到了2070年我們從2300萬人會降到1500萬人所以主委在這樣子的數字告訴我們你要怎麼樣朝向
transcript.whisperx[386].start 11064.27
transcript.whisperx[386].end 11082.288
transcript.whisperx[386].text 少子化、勞動力、經濟產業、財政受資尤其是我們的醫療、照務這些面向做一個橫向整體性的一個研討這個是務必要做的我已經看到2070年我們的人口剩下1500萬人這怎麼辦呢
transcript.whisperx[387].start 11085.855
transcript.whisperx[387].end 11110.112
transcript.whisperx[387].text 請做說明這個部分我們已經整理了各種的影響因素以後我們在陳政委的會議裡面有特別提出來給各部會希望他們針對這些議題可能的傷害跟這個影響進行一定傷害沒有人什麼都不用講了所以請教主委你們在做你的KPI指數什麼時間點可以提出你們的方案
transcript.whisperx[388].start 11110.911
transcript.whisperx[388].end 11126.479
transcript.whisperx[388].text 這個我這樣子好不好我還是得跟陳政委去討論我跟陳政委討論之後再跟您回報你初步三個月去提出一個你們的草案方案我們繼續討論好不好這個我還是要爭得陳政委的同意所以你趕快去討論好不好這個很重要到了2070年我們剩下1500萬人這很緊張欸這怎麼辦最後一分鐘
transcript.whisperx[389].start 11137.184
transcript.whisperx[389].end 11138.285
transcript.whisperx[389].text 主任委員會主任委員會主任委員會
transcript.whisperx[390].start 11158.631
transcript.whisperx[390].end 11174.18
transcript.whisperx[390].text 這個2017年的時候有外國人才專法實施所以你的人數到目前有增加但是我們看到目前的產業必須要加入AI的這些我們必須要跟世界接軌所以我要求你我要求你你將你將跨部會去盤點我們產業人才的缺口你去延攬國際的人才因為
transcript.whisperx[391].start 11183.264
transcript.whisperx[391].end 11208.312
transcript.whisperx[391].text 近鄰觀光加注一個項目近鄰人才這是勢在必行所以如果依照你目前的步驟是沒有辦法吻合我們所必要國家發展所必要的這些人才以及跟世界接軌你是不是我把這個功課給你你去研討把那個方案告訴我們好不好好啊沒問題啊我們其實有資料啦那我把這個資料整理給你嘛來多久時間可以給本席
transcript.whisperx[392].start 11212.509
transcript.whisperx[392].end 11214.21
transcript.whisperx[392].text 一、邀請國家發展委員會主任委員會主任委員、行政院人事行政策競爭力比較。
transcript.whisperx[393].start 11241.279
transcript.whisperx[393].end 11252.147
transcript.whisperx[393].text 謝謝主席,請國安會的劉主委所以我們看第一個數據第一個數據是你們發布是針對2023的總生意率加上0.865那僅高於韓國0.72那針對2023對不對是的然後這個我們看一下美國的數據美國的數據你看下一張
transcript.whisperx[394].start 11266.192
transcript.whisperx[394].end 11284.907
transcript.whisperx[394].text 美國數據台灣已經低於韓國生育率變成全世界倒數第一名所有的國家裡面有227所以再回到上一頁你現在所提的五面向對策目前正在實施你明年二月又要提解方
transcript.whisperx[395].start 11285.933
transcript.whisperx[395].end 11313.291
transcript.whisperx[395].text 如果這些現在的五方五面向對策有效的話他不會變成那麼一個嚴峻的一個態勢就是說我們是227個國家裡面我們聲譽是倒數第一是聲譽力全世界最低的國家這是不是一個不可逆的趨勢目前來看其實要可逆是有點難度了我們希望先守住現在會永遠的倒數第一名對不對是的
transcript.whisperx[396].start 11314.858
transcript.whisperx[396].end 11315.279
transcript.whisperx[396].text 你對策沒有對政下要啊
transcript.whisperx[397].start 11320.936
transcript.whisperx[397].end 11347.635
transcript.whisperx[397].text 我跟委員報告一下我們現在最大的困難其實還是在大家的結婚慾望比較低我們必須先解掉這一段否則會很困難為什麼結婚慾望比較低呢?就是因為低薪嘛你低薪代表說你可自備所得這個減少你就不敢去養兒育女嘛OK?包括物價的膨脹生活所得的生活支出大幅提高包括物價的上漲包括高房價
transcript.whisperx[398].start 11348.931
transcript.whisperx[398].end 11349.852
transcript.whisperx[398].text 主任委員會主任委員會主任
transcript.whisperx[399].start 11365.034
transcript.whisperx[399].end 11386.465
transcript.whisperx[399].text 所以我們一直在探討怎麼樣讓0到6歲的這個國家一起養的政策更能夠吻合市場的需求當然這需要大量的預算所以我們還是就像我之前報告我們需要找裁員你知道嗎日本曾經是最早進入超高齡這個社會的國家但他們已經慢慢的可逆了
transcript.whisperx[400].start 11387.205
transcript.whisperx[400].end 11416.054
transcript.whisperx[400].text 他們生意力有提高了嗎?他們本來可逆是回到了1.4但是又降回到1.2疫情的期間但最起碼他們已經控制這個惡化的狀況嘛所以他們內閣裡面有個少子化部嘛有個少子化大臣對,他有一個大臣是內閣的閣員閣員相當於一個部長部長有實權、有預算、有能力去執行少子化的相關的對策那我目前的狀況是由政委
transcript.whisperx[401].start 11417.273
transcript.whisperx[401].end 11432.253
transcript.whisperx[401].text 政委是協調各部會的執行狀況做政策的規劃的協調政委也不需要來立法院備詢不管是院會也是委員會他的執行狀況如何我們沒有辦法透過國會的監督
transcript.whisperx[402].start 11434.065
transcript.whisperx[402].end 11448.545
transcript.whisperx[402].text 所以為什麼你必須要去參考其他國家是不是要成立一個專責的少子化對策部或少子化對策委員會有一個專任的部長來接受這個國會的監督編列預算、充實能力
transcript.whisperx[403].start 11450.331
transcript.whisperx[403].end 11473.751
transcript.whisperx[403].text 對政下要把青年的地心問題解決可自備所得提高降低房價降低這個生活開支他們才有這個意願去生才有能力去養所以我覺得你現在明年二月你還要邀集各部會明年二月提解方這五面像是不是正在做的事情
transcript.whisperx[404].start 11475.199
transcript.whisperx[404].end 11494.329
transcript.whisperx[404].text 都在做事情嘛。」好那我想這個您的建議我也是會會把這個跟院長報告看看他對這件事有什麼樣的才識你是幕僚機關你應該提出解方不是去問院長因為院長一定會回問你你的看法是怎麼樣
transcript.whisperx[405].start 11495.558
transcript.whisperx[405].end 11517.567
transcript.whisperx[405].text 你不能去問院長你是幕僚的首長沒錯所以這部分應該你要提出解方所以我剛剛現在對政效要問題在哪裡針對問題解決問題我們再看一下這女性就業的狀況我們20到24歲的女性勞動參與率比較低的原因是因為她就學年數的關係大家念念就有所25歲到29歲女性勞參與率是這個大概是鄰國之冠到90%
transcript.whisperx[406].start 11524.397
transcript.whisperx[406].end 11551.025
transcript.whisperx[406].text 但是另外呢到40歲以上因為結婚的關係因為生育的關係他就沒有辦法再投入返回職場不像其他的國家日本、南韓跟美國他的重返職場的比例比台灣高太多了你看台灣到5.365歲以上然後50到都比其他每一個年齡世代都比韓國、日本還低
transcript.whisperx[407].start 11553.587
transcript.whisperx[407].end 11557.846
transcript.whisperx[407].text 所以為什麼女性沒有辦法在這個結婚育兒之後重返職場
transcript.whisperx[408].start 11559.384
transcript.whisperx[408].end 11575.397
transcript.whisperx[408].text 這個要去探討原因有這個這兩個問題其實我們有兩個兩個比例都比較低一個是中高齡的就業就業比例比較低第一個婦女的這個勞參率比較低這個我們都有請跟勞動部討論你講到這個引髮族或者是退休的狀況我們看最後一個表勞動參與率的年齡別
transcript.whisperx[409].start 11584.209
transcript.whisperx[409].end 11603.332
transcript.whisperx[409].text 你看一下我們這個25歲到49歲年齡有八成的勞動參與率跟國際相比毫不遜色但是50歲以上呢所謂壯世代我們今天討論壯世代50到64歲這個基本上體力上都沒有問題他的勞參與率是階梯式的雪崩式的下降
transcript.whisperx[410].start 11604.878
transcript.whisperx[410].end 11614.386
transcript.whisperx[410].text 你要怎麼去解決這個問題?怎辦二度就業者、銀髮族、銀髮族能夠同心在導入職場?這需要政策去引導
transcript.whisperx[411].start 11615.894
transcript.whisperx[411].end 11634.883
transcript.whisperx[411].text 對這個部分也許我不知道勞動部是不是可以來說明一下因為勞動部針對婦女跟中高齡都有一個相當的政策我這沒有那麼多時間我只是把這個問題提出來我希望你做一個協調單位你要跟院長講你也要跟這個陳時中政委講這部分非常重要因為這個講到這個缺工的問題
transcript.whisperx[412].start 11639.451
transcript.whisperx[412].end 11663.268
transcript.whisperx[412].text 人力航空部今年4月缺工110萬左右我們國人到海外去工作人數將近50萬中國最多美國居次然後去東南亞鄰國包括日本、臺灣工作也多包括南韓也吸引臺灣留學生挖走了我們很多的白領跟知識精英
transcript.whisperx[413].start 11664.734
transcript.whisperx[413].end 11692.504
transcript.whisperx[413].text 讓我們相對的政策要吸引其他國家的高階人才、白領人才到台灣來反而這個效果有限這問題到底是出現在哪裡你的目標是2030年要40萬人才攬才目標捏40萬捏那目前的結果是怎麼樣2024還有6年你要達40萬攬才的目標捏到底能不能達成呢
transcript.whisperx[414].start 11694.706
transcript.whisperx[414].end 11717.095
transcript.whisperx[414].text 目前至少我們現在是有訂定的相當的策略我們也分配到不同的任務裡面去以目前來看的話我們最大的來源還是在這個喬外森在這邊念學的這是最大來源第二個部分是我跟您報告我們現在開始進行到海外攬才的部分連40萬目標我覺得這個很拚另外高階專業人才你門檻要16萬
transcript.whisperx[415].start 11723.735
transcript.whisperx[415].end 11739.364
transcript.whisperx[415].text 你要配合他久居的福利的這些資源也沒有配套措施所以我覺得你要模仿或者學其他國家的做法把司法的門檻能夠降低我們現在已經開始在調整了我有時間再跟你請教因為這個問題很重要我再給我10分鐘我也講不完但是我要遵守時間的規律這個招委要以身作則謝謝委員
transcript.whisperx[416].start 11757.017
transcript.whisperx[416].end 11760.018
transcript.whisperx[416].text 現在請羅志強委員執行主席有請國發會主委羅委員好
transcript.whisperx[417].start 11780.256
transcript.whisperx[417].end 11797.302
transcript.whisperx[417].text 主委好看到國發會公布的人口推估我們在明年進入超高齡社會那人口紅利在2028年結束那一個很驚人的數字就2070年人口將剩下1497萬較現今大減844萬那原本3.6名的青壯人口撫養一名老年人口那會減少為每一名青壯
transcript.whisperx[418].start 11810.126
transcript.whisperx[418].end 11838.147
transcript.whisperx[418].text 人口讓他撫養一名老人。」那我想請教你有沒有那個馬總統曾經在執政的時候說過一句話有沒有聽過叫少子化是國安問題有聽說你認同嗎我認同對非常嚴重那我們講少子化我們就要從新生兒人數開始說那實際上從2000年的30.7萬一路下滑那到去年剩下多少
transcript.whisperx[419].start 11839.989
transcript.whisperx[419].end 11864.394
transcript.whisperx[419].text 十三年十三萬五你知道這一路下滑趨勢只有在一個時段它曾經有反轉往上走是哪一個年代是上一個農年十二年前對就是再次又下來了對好跟你講2010年那個時候這個我們的出生的人口是到了16萬6
transcript.whisperx[420].start 11867.162
transcript.whisperx[420].end 11888.137
transcript.whisperx[420].text 到2012年反轉為22.9萬到2015年也還有21.3萬所以換言之這整個過去這20年的人口下滑的趨勢只有在這個階段它是有反轉的那我就想請教您請教您事實上你剛剛講農年
transcript.whisperx[421].start 11890.118
transcript.whisperx[421].end 11909.165
transcript.whisperx[421].text 開始反轉那一年是農年嘛但是今年農年一到八月出生的寶寶數竟然比去年同期還少農寶寶比兔寶寶還少連農年效應都失去了請問主委那這些年投入預算那麼多為什麼出生人口越來越少不見成效呢
transcript.whisperx[422].start 11912.165
transcript.whisperx[422].end 11923.5
transcript.whisperx[422].text 這個問題其實我們從另外一個角度來看請委員看一下我們去年13萬5裡面有一萬多個是因為不孕症的關係經過補助而生下來的那
transcript.whisperx[423].start 11925.703
transcript.whisperx[423].end 11953.899
transcript.whisperx[423].text 我想委員也認同一件事我們幫助年輕人在養育小孩上紓壓是合理的是有效果的那這些都是資金的投入主委我告訴你您可以明示我們那些資金的投入是錯的那我願意來調整我來告訴你鐵針針事實擺在眼前你不用推給委員今天鐵針針事實就是今天我們民進黨政府上來之後你不斷地要改變少子化
transcript.whisperx[424].start 11955.066
transcript.whisperx[424].end 11968.912
transcript.whisperx[424].text 你可以講100個你做得很棒的地方但你改變不了一個事實啊就是從馬政府時候的將近22萬人、21萬人掉到現在剩13萬了接近腰斬了有不過8年多的時間了
transcript.whisperx[425].start 11970.66
transcript.whisperx[425].end 11987.876
transcript.whisperx[425].text 但為什麼當時國民黨執政的時候喊出所謂的把國安就是少子化當作國安問題然後做出很多的措施能夠去反轉這個人口下跌的少子化這個趨勢我這時候在當總統府副秘書長抱歉
transcript.whisperx[426].start 11988.797
transcript.whisperx[426].end 12018.206
transcript.whisperx[426].text 我經常在陪馬總統在開這個所謂的國安少子化的國安的研究對策會議馬總統是多麼重視這件事所以他技術非常多他是把這件事當一件重要的事來做可是我再舉個數字啊賴總統仍然要推出生生不息的政策嘛說要在2030年總生育率回到1.4可是你知道這個生生不息政策是在行政院長那一題提出來的2017年總生育率是多少
transcript.whisperx[427].start 12020.879
transcript.whisperx[427].end 12046.101
transcript.whisperx[427].text 1.13去年多少降到0.87不是我對賴清德當總統沒信心啊他當院長他喊的1.4我只看到越來越掉掉越來越多掉到0.87那於2013年剩下沒多少時間拜託再努力一點好不好好謝謝謝謝好謝謝羅志祥委員來主委先請回座下一位請陳金輝委員
transcript.whisperx[428].start 12054.905
transcript.whisperx[428].end 12056.107
transcript.whisperx[428].text 主席互相請國發會還有衛福部衛福部我們這個首長
transcript.whisperx[429].start 12066.284
transcript.whisperx[429].end 12084.965
transcript.whisperx[429].text 陳委員早剛剛已經聽了許多委員發表他們的意見那對我來說我也是少子化的最大受害者因為我是婦產科醫師嘛以前我們一個晚上可能起來很多次有時候兩間三間產房同時在節省現在我們可以睡得很好
transcript.whisperx[430].start 12085.706
transcript.whisperx[430].end 12103.158
transcript.whisperx[430].text 但是我有看到你們又確定要再展延一年可是你們也發布了最新的人口報告請問你們有想過如果小子化已經是無可逆轉因為從人的人口報告看起來就是這樣子你這個計畫是不是乾脆要把它常態化?
transcript.whisperx[431].start 12107.185
transcript.whisperx[431].end 12127.566
transcript.whisperx[431].text 全委員你指的是人口的公佈還是人口計畫?人口的公佈你前陣子人口的公佈就代表少子化這件事情已經沒有辦法逆轉了是嗎?是的我們的確現在要逆轉很困難那的確我們的確您有我們有討論到準備
transcript.whisperx[432].start 12128.647
transcript.whisperx[432].end 12151.349
transcript.whisperx[432].text 做這件事情把它變成常態化所以我們現在有在研議一個常態化的做法跟人力需求我們會抱怨來做這個事因為它必須更密集的不能兩年一次我也幫您稍微回答一下剛有一位委員問您的問題說到說因為年輕人低薪不敢結婚這是錯的
transcript.whisperx[433].start 12153.215
transcript.whisperx[433].end 12174.644
transcript.whisperx[433].text 經過許許多多的調查,現在的年輕人並沒有把婚姻視為人生的一個選項。這點你同意嗎?根據我們的調查的確是,其中最大的因素當然是他沒有覺得遇到他想要結婚的對象,現在是比重最高的。That's why 發生一個事情,25到29歲的未婚率將近八成,其實9.3那30到34歲有到52.5
transcript.whisperx[434].start 12178.886
transcript.whisperx[434].end 12198.952
transcript.whisperx[434].text 那最大的原因就是你講的就是他對婚姻沒有那麼強烈然後也沒有找到他合適的對象所以我們等一下討論的事情要以兩個目標為核心第一個就是願意生的人你要讓他多生嘛你要讓他生完第一個想要再生第二個想要再生第三個另外一個就是
transcript.whisperx[435].start 12200.257
transcript.whisperx[435].end 12223.816
transcript.whisperx[435].text 與我們相關的人工生殖法他願意生的假使他沒有結婚你也希望可以幫助他再來對所以這兩個是我們等一下討論的重點好既然他都願意生了我們不管是用科學的方法協助他生育或者是我們鼓勵他有incentive讓他願意生完一個再多生兩個我們來看一下你現在編的預算
transcript.whisperx[436].start 12226.187
transcript.whisperx[436].end 12247.155
transcript.whisperx[436].text 為什麼是越編越少呢?這個擴大育兒津貼你看113年度、114年度一般人民看到不是會覺得說我們勤領的金額變少了所以更不敢生小孩嗎?
transcript.whisperx[437].start 12248.306
transcript.whisperx[437].end 12275.372
transcript.whisperx[437].text 公務員報告在對於每一個兒童的部分的補助金額是只有上升沒有下降那我們對於預算的推估是根據每一年實際上出生數的部分來推估的總額所以可能因為這樣的關係所以預算總額看起來沒有像前一個年度這麼多好那下一張我想問一下這邊你們把擴大公共化托育的補助
transcript.whisperx[438].start 12276.741
transcript.whisperx[438].end 12288.996
transcript.whisperx[438].text 中央越來越少地方越來越多的原因為何?因為少子化是一個國安議題沒有道理中央是越變越少地方是越變越多啊不是應該要全國一起動起來嗎?
transcript.whisperx[439].start 12293.082
transcript.whisperx[439].end 12308.61
transcript.whisperx[439].text 公文報告這個對於公共托育的部分事實上中央的部分事實上托育金額的補助也是在即使是今年也比往年也都有提高所以在金額的部分是應該是不會降低的
transcript.whisperx[440].start 12309.23
transcript.whisperx[440].end 12322.645
transcript.whisperx[440].text 那特別預算的部分這邊所看到的委員指的是是對於這個去佈建公共托育場所的金額那這個部分的話是中央跟地方分別來分攤是那我講一個比較具體的建議主席一分鐘謝謝
transcript.whisperx[441].start 12325.868
transcript.whisperx[441].end 12351.1
transcript.whisperx[441].text 我希望你們可以把托嬰、托育還有零托這件事都可以常態化因為這已經無可逆轉了在這邊給你看一下有58.1%的家庭都是雙薪家庭尤其是學前兒童的家庭所以目前的核心小家庭他其實是缺乏長輩同住資源所以你出去小吃攤你會看到這樣子的狀況我希望未來你可以整合教育部、衛福部
transcript.whisperx[442].start 12352.501
transcript.whisperx[442].end 12376.56
transcript.whisperx[442].text 可以讓這些雙薪家庭都可以無後顧之憂。」好嗎?謝謝。好,謝謝陳金輝委員。主委,先回座。我們上午諮詢到在場委員,在場委員諮詢到蔡玉玉委員,諮詢完之後我們會休息。休息到下午兩點才會繼續開會。下回諮詢請賴慧維委員。
transcript.whisperx[443].start 12382.623
transcript.whisperx[443].end 12389.493
transcript.whisperx[443].text 謝謝主席我們請國科會主委還有教育部張廖次長請國發會劉主委教育部張廖次長
transcript.whisperx[444].start 12394.672
transcript.whisperx[444].end 12413.206
transcript.whisperx[444].text 賴委員好是,處長我想就是從剛才幾位委員的一個質詢內容裡頭我們來聽這個台灣的生育率會不會越來越少還是有可能緩談回升顯然你給的這個答案是非常的一個精準就是說
transcript.whisperx[445].start 12414.106
transcript.whisperx[445].end 12425.683
transcript.whisperx[445].text 你認為就是不可逆會越來越少那還有在這個207年年你甚至就是說大膽臆測我們的人口數只會剩下1500萬是這樣子嗎?
transcript.whisperx[446].start 12429.331
transcript.whisperx[446].end 12448.674
transcript.whisperx[446].text 不是這樣的意思我們其實現在用現在的狀況來推估2070年如果我們不去改善的話會持續的惡化那我們現在希望兩部曲第一部先能夠守住現在的出生的狀態然後下一部才來看怎麼提升
transcript.whisperx[447].start 12449.595
transcript.whisperx[447].end 12461.663
transcript.whisperx[447].text 大概我們朝這兩個方向來走能守住其實以國際情勢來看的話其實幾乎我們看全球趨勢每個國家都是會倒下的現象從少子化就是這個子女對策的一個計畫裡頭我們已經是從107年到114年了就等於是說小英總統在105年就職的第二年他就開始就是說已經知道了這個少子少子女這個
transcript.whisperx[448].start 12477.694
transcript.whisperx[448].end 12502.026
transcript.whisperx[448].text 這個計畫的一個對策的計畫一直在提出來了顯然我們還是擋不住顯然還是擋不住所以是不是有比較好的當然就是說你的報告裡頭你也講到了這個是其實是一個多元面向的一個問題你必須要就是跨部會的來解決那當然少子化的一個衝擊我覺得整個因應的方式我們要想得更廣
transcript.whisperx[449].start 12503.507
transcript.whisperx[449].end 12530.717
transcript.whisperx[449].text 所以我在這裡就是部長那個指委你請回我就針對的教育的問題跟次長來做一個探討少子化的衝擊這個其實我想從這個教育的一個面向來跟次長做一個探討就是113年學年度就是即將停招的國小他有18所那這個是教育史上最多的分布在七個縣市其中以台南、南投、屏東
transcript.whisperx[450].start 12531.537
transcript.whisperx[450].end 12545.323
transcript.whisperx[450].text 澎湖是重災區,臺南更是重中之重,臺南有即將停辦四個國小的分校,其中這四所分校有兩所分校,其實就在本席的選區裡頭。在這裡要請教次長,就是說
transcript.whisperx[451].start 12549.965
transcript.whisperx[451].end 12569.562
transcript.whisperx[451].text 現在台南市政府教育局他已經去尋求跨校的一個合作所謂跨校的合作當然次長你非常的清楚就是主辦的學校跟就是跨校的一個學校這個已經實施了四年了可是還是不可逆你看還是關掉了這麼多的一個分校
transcript.whisperx[452].start 12570.262
transcript.whisperx[452].end 12599.502
transcript.whisperx[452].text 那事實上就是說有什麼樣的一個互補的一個資源互補的一個資源可以去因應少子化的一個資源有限帶來的一個挑戰讓我們學生可以獲得更好的一個品質在少子化的一個衝擊裡頭我在特別的跟次長做一個探討你看在第8條裡頭他說學校應該是在每年的4月15號一估學生的學年度然後
transcript.whisperx[453].start 12600.622
transcript.whisperx[453].end 12622.68
transcript.whisperx[453].text 辦理下列的一個招生那我現在就是合併學校的就是臺南市教育局他就說30人以下的那個學校他就是必須要跨校了那我們看到了就是這些併校或是會校教育部是不是可以提供你們有什麼相對的因應的措施
transcript.whisperx[454].start 12623.578
transcript.whisperx[454].end 12642.17
transcript.whisperx[454].text 我想我們因為高中以下大概包括國中小這些他如果要停辦他會有一個規定有一個準則去年大概有修了那這個地方應該也都是經過專案的評估有一些公聽會然後教審會這個程序他才會去合併或者是停辦
transcript.whisperx[455].start 12643.131
transcript.whisperx[455].end 12645.873
transcript.whisperx[455].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[456].start 12660.245
transcript.whisperx[456].end 12675.996
transcript.whisperx[456].text 如果是真的廢校他還是會有一些學生我們會提供學生交通或住宿的相關的一些市長我想就是說我們快速因為時間有限不管是就近入學還是區域入學還是自由入學
transcript.whisperx[457].start 12677.077
transcript.whisperx[457].end 12693.162
transcript.whisperx[457].text 其實本席在這裡就是說要特別提出來就是一個實驗學校你把它整合起來就是一個實驗的學校不然我們實在不敢想像就是說所以委員講得很好實驗教育這部分我們其實會考就是說它廢校之後它其實可以再
transcript.whisperx[458].start 12694.714
transcript.whisperx[458].end 12717.208
transcript.whisperx[458].text 讓一些有民間那個想要辦實驗教育他可以來附辦那是不是應該更大區域的一個更大規模的一個實驗學校的一個那個區域當然他就沒有學區的限制啦對實驗教育對沒問題有關你如果需要這個資料我們其實最近也在討論啦好市長是不是把這些計畫提供給本席好謝謝你的關心謝謝賴會委員市長請回座下一位質詢請羅美玲委員
transcript.whisperx[459].start 12732.947
transcript.whisperx[459].end 12734.552
transcript.whisperx[459].text 謝謝主席,有請勞發署黃麗玉副署長
transcript.whisperx[460].start 12743.393
transcript.whisperx[460].end 12766.014
transcript.whisperx[460].text 委員好副署長好副署長為了這個充裕國內的人力缺口我國做出了很多推出了很多這個留才攬才的政策那當然其中包含了延展僑外生留台工作那現行僑外生留台工作可以經過三個管道一個就是一般申請一般工作的許可那再來還有僑外生評點制跟這個
transcript.whisperx[461].start 12767.655
transcript.whisperx[461].end 12797.129
transcript.whisperx[461].text 中介技術人力申請留才工作。」那像這三個管道其實它都有門檻有條件甚至有工作類別的這個限定喔那可是我們為了要擴大留才所以呢這些門檻條件其實我們有看到都是逐步在鬆綁當中那甚至呢我們勞動部呢要推出這個喬外森的個人工作許可那這個部分是很多喬外森所關心的大家都問說什麼時候我們準備來推出呢請問他的期程
transcript.whisperx[462].start 12798.3
transcript.whisperx[462].end 12805.945
transcript.whisperx[462].text 是謝謝委員的關心那有關喬惠生的部分基本上我們也是逐次一直在鬆綁包括今年我們也把他這個
transcript.whisperx[463].start 12807.392
transcript.whisperx[463].end 12828.725
transcript.whisperx[463].text 人數的上限也刪除了就是希望透過這個相關的機制可以讓僑外生盡量留台那至於個人式工作許可呢是我們一個比較長的目標那我們最近呢正在研擬草案我們希望在今年的年底能夠提出這個僑外生個人式工作許可的修法年底的時候可以推出來是不是
transcript.whisperx[464].start 12829.885
transcript.whisperx[464].end 12845.631
transcript.whisperx[464].text 要預計要修正這個就業服務法 會在裡面 年底準備要來修這個就業服務法那再來還有一點我剛有提到就是說我們前面所提到的現有的這個三個管道其實他是有條件有門檻有工作類別的這個限定那我想請問一下
transcript.whisperx[465].start 12847.852
transcript.whisperx[465].end 12870.409
transcript.whisperx[465].text 喬外申要申請個人工作許可,他有什麼需要什麼樣的一個資格、什麼樣的條件嗎?我們有設什麼樣的門檻嗎?好,大家都在問說到底我們這個個人工作許可的內容是什麼?跟委員報告,基本上個人是工作許可從他的本行,他當時候的意旨就是說他是不需要有一定雇主的
transcript.whisperx[466].start 12870.865
transcript.whisperx[466].end 12884.323
transcript.whisperx[466].text 也就是說他是一個開放式的一個工作許可他不限業別也不限業別是他是open的那所以所有的僑外生都可以申請個人工作許可的意思嗎是他只要是在臺畢業就
transcript.whisperx[467].start 12886.085
transcript.whisperx[467].end 12903.055
transcript.whisperx[467].text 就業然後畢業所以副署長您的意思就是說我們前面所提到的一般工作許可評點至中階技術人力的這些這些申請的這些這些管道其實會退場的意思嗎?之後大家都可以用個人工作許可
transcript.whisperx[468].start 12904.667
transcript.whisperx[468].end 12929.763
transcript.whisperx[468].text 這對僑外生的部分?報告委員基本上我們是多元管道留才所以我們的措施會盡量的大概是多元並行那個人式工作許可主要是否應屆畢業的否應屆畢業的所以是應屆畢業的才能夠申請個人工作許可這部分可以講得比較清楚一點嗎?報告委員因為我們有一些草案需要跟相關的機關團體還要再進一步的溝通
transcript.whisperx[469].start 12931.924
transcript.whisperx[469].end 12944.699
transcript.whisperx[469].text 所以目前我們對於這些是不是還要進一步設限或者是有這樣的條件可能我們還需要再有一些討論那如果我們有進一步的規劃是不是容許我們再到委員辦公室跟您說明
transcript.whisperx[470].start 12946.781
transcript.whisperx[470].end 12969.069
transcript.whisperx[470].text 年底準備要來修舊福法可是還有很多細節還需要討論所以還不知道所以這就是喬外申的疑問因為到目前為止當然非常的開心說我們行政單位準備也來推出這個個人工作許可可是又覺得說怎麼好像還沒有很清楚的說明因為大家都在期待嘛
transcript.whisperx[471].start 12969.369
transcript.whisperx[471].end 12993.692
transcript.whisperx[471].text 所以現在已經留在臺灣工作的這些橋外生已經有工作了其實已經不適用的意識所以只有針對這個應屆的畢業生才適用這目前看到的是這一點反正它就是一個沒有門檻沒有工作類別我們就可以讓他們投入所有的工作職場的意思就是這樣子
transcript.whisperx[472].start 12994.933
transcript.whisperx[472].end 13023.695
transcript.whisperx[472].text 委員因為這個基本上還是涉及到這個工作所以我想我們還是會找可能會邀國發會還有相關的部會進一步的針對細節的部分做一些討論我們的目的其實都是為了留下來那我是想說如果有比較清楚的內容跟方向的話我希望老發署可以到本席辦公室來做一個說明OK好以上謝謝謝謝委員非常謝謝羅美玲委員來副市長請回座下一位質詢請陳培宇委員
transcript.whisperx[473].start 13031.656
transcript.whisperx[473].end 13034.057
transcript.whisperx[473].text 好謝謝主席有請國發會主委還有勞動部國發會有主委勞動部來處長勞動部來副組長陳偉華
transcript.whisperx[474].start 13045.916
transcript.whisperx[474].end 13061.522
transcript.whisperx[474].text 好,諸位好。我要想快速看一下你們的報告裡面,其實你們提到關於AI產業化、產業AI化,其實各個部會該負責的業務我們在業務報告裡面有看見,但是我們覺得比較擔心的是看見勞動部的部分報告比較少,到底從勞工這一端
transcript.whisperx[475].start 13063.042
transcript.whisperx[475].end 13081.185
transcript.whisperx[475].text 勞動部有沒有積極地開始跟很多勞工溝通相關團體溝通他們的工作或是他們目前產業狀態他們是必須要積極導入AI或者是勞工的工作可能被勞工取代於是需要政府部門在增能、執訓方面的協助我們看到相關業務的分工目前是這樣
transcript.whisperx[476].start 13081.966
transcript.whisperx[476].end 13104.934
transcript.whisperx[476].text 那我猜想國發會跟勞動部應該已經有開始積極討論但是我時間有限可不可以快速請主委或者是勞動部這邊回應一下目前我們對於勞工這邊相關的協助或者是到底哪些產業需要導入AI而且是什麼樣程度的AI導入我們目前在相關業務報告裡面其實沒有看到太仔細的內容是謝謝委員的關心我想很簡要的說明
transcript.whisperx[477].start 13105.393
transcript.whisperx[477].end 13126.048
transcript.whisperx[477].text 基本上本部配合AI行動計畫2.0還有產業發展所需要的AI技能事實上我們在1、1、2年已經投入大概3億3千多萬辦理了AI大數據的人才養成、深度學習等相關課程來到了380班訓練1萬1千多人、就業率也高達8成那在今年9月我們又持續投入了大概3億多
transcript.whisperx[478].start 13127.028
transcript.whisperx[478].end 13135.95
transcript.whisperx[478].text 也開辦了380班訓練1萬多人那這個AI人才訓練的班別包括青年職業訓練、職業者﹗聽起來你們是有一些進度的人我打斷但是你們在開這些課程的同時是不是也有積極的收集相關勞工的訊息跟回饋他們有沒有有沒有真的在這些課程當中被增能或者是回到產業現場因為AI的變化真的太快了從之前跟主委請教
transcript.whisperx[479].start 13151.354
transcript.whisperx[479].end 13178.342
transcript.whisperx[479].text 從AI到現在其實不過半年整個產業的進展非常的快那我這邊想要建議勞動部跟國發會這邊是不是應該更加積極以勞動部的角色增進相關勞工的知能也好或者是當這些AI的技術導入產業它對相關產業的衝擊我認為國發會應該更有角色去協助勞動部看見這個面向的困境還有做出相對的因應是這邊可不可以請主委回應一下
transcript.whisperx[480].start 13180.492
transcript.whisperx[480].end 13193.211
transcript.whisperx[480].text 好的,這個部分我們會跟相關部會來討論一下,看怎麼樣讓勞工可以盡早地適應到未來的變化,也具備這樣的應用AI的技能。好,這邊我們希望兩個月內給我們辦公室相關報告可以嗎?
transcript.whisperx[481].start 13194.239
transcript.whisperx[481].end 13217.199
transcript.whisperx[481].text 可以啊好謝謝主委那另外一個其實我之前已經來跟主委請教過就是關於地方創新的事情之前跟主委討論是相關的法規範其實對於很多新創的產業有非常大的困境喔最近這個黑白大廚很好我就不再多說可是這裡面導入了韓國在地的飲食精彩的飲食文化這件事情其實已經是全球的趨勢我要告訴主委其實我們台灣的料理或是台灣
transcript.whisperx[482].start 13217.699
transcript.whisperx[482].end 13232.813
transcript.whisperx[482].text 相關的創新能力絕對不輸這個但是他們到底遇到什麼問題我之前跟您請教過在5月30我說他們被同業檢舉啊、被開法會相關的法規範其實都不適合讓他們回到地方有非常非常多的困境其實但是因為地方創生計畫是來自國發會所以國發會從我們5月30質詢到現在到底相關法規範在各個部會之間的討論平台目前的困境是什麼
transcript.whisperx[483].start 13241.681
transcript.whisperx[483].end 13266.997
transcript.whisperx[483].text 例如說我們知道月桃在衛福部今年五月營用可是還是有些問題可是老葉呢到目前還不得使用我當然知道衛福部為了照顧國人的食安當然要嚴謹地把關可是例如說我要講艾草目前是應適量使用根莖尚不得使用芝子花這可以做出婚貴我不知道主委你知不知道芝子花是這樣來的還有呢相關之前因為這個蝸牛小米粽的問題可能也讓大家擔心但它可能不是因為食安的問題
transcript.whisperx[484].start 13268.118
transcript.whisperx[484].end 13280.702
transcript.whisperx[484].text 我想要問的是台灣的很多米其林餐廳甚至也有在用這些食材所以不管是地方創生也好或者是所謂高級的米其林餐飲其實他們都會遇到類似的問題但是國發會這邊的角色主委你要不要說一下我想
transcript.whisperx[485].start 13283.922
transcript.whisperx[485].end 13307.517
transcript.whisperx[485].text 我們這邊針對上一次您的質詢的像月頭等等是有我們有做過的法規的調適但是您現在提的可能範圍更大就是我們應該是更全面的看這件事情那我想我會來自己來協調部會我們來看一下是不是可以全面性的來協助我們的地方青年在他的創新上面可以有比較大的空間
transcript.whisperx[486].start 13308.157
transcript.whisperx[486].end 13325.982
transcript.whisperx[486].text 太好了我非常開心聽到主委您說您會主動召開相關的會議由您來主持我相信您的這個承諾一定會讓更多地方創生的夥伴知道自己可以回到自己的原始的家鄉或部落繼續做這樣的事情好那也謝謝主委我們辦公室會再積極跟國防會討論好的好謝謝謝謝主席謝謝陳培委員謝謝主委請回座下一位質詢請蔡育委員
transcript.whisperx[487].start 13348.054
transcript.whisperx[487].end 13360.558
transcript.whisperx[487].text 謝謝主席那我們是不是請國發會請國會留主委主委這個國發會說2030年有48萬的勞動力缺口那這個缺口在2023年在在2028年要補足
transcript.whisperx[488].start 13375.615
transcript.whisperx[488].end 13384.616
transcript.whisperx[488].text 這一個勞動力缺口就是35萬那目前還有20萬的差額啊所以這20萬的差額你們是說要怎麼怎麼去補回來
transcript.whisperx[489].start 13386.438
transcript.whisperx[489].end 13407.674
transcript.whisperx[489].text 二十萬差額裡面有八萬是屬於勞動力那有十二萬是屬於技術能力那我們會這個分工下來就是希望把這個十二萬的這個這個白領的這個技術人才我們把它會以這個為來講吸引人才跟留住我們的僑外生兩個方向來做
transcript.whisperx[490].start 13409.335
transcript.whisperx[490].end 13424.036
transcript.whisperx[490].text 那喬外森我們現在一年可以新進的已經到了2萬那過去是48.1%會留下來那我們明年請了教育部幫忙會在每個學校設立一個就業輔導員我們希望能夠有到八成到九成的人留下來這樣的話呢
transcript.whisperx[491].start 13425.898
transcript.whisperx[491].end 13441.868
transcript.whisperx[491].text 再加上我們國外攬才加上我們最近會修法我們下禮拜會公開預覽然後放寬外籍人士進來那這些多元管道我們認為應該是沒有問題可以達到我們要的目標。」主委你認為現在橋外生的優勢是怎樣?
transcript.whisperx[492].start 13443.939
transcript.whisperx[492].end 13457.376
transcript.whisperx[492].text 主要的問題在於是我們沒有足夠的人以2028年35萬來看我們的畢業生只有15萬就怎麼樣就沒有了當然啊所以喬外森的最大優勢是這樣
transcript.whisperx[493].start 13460.88
transcript.whisperx[493].end 13482.159
transcript.whisperx[493].text 有些僑生他本身就會中文能力就很不錯那至少這些人在台灣都讀過書了解台灣的文化了解台灣的社會秩序那我們協助他們留下來的話可以幫助我們可以做得更好會比那些沒待過台灣的更容易被留下來那目前來說這些僑外生他們留下來的意願呢?
transcript.whisperx[494].start 13483.465
transcript.whisperx[494].end 13501.765
transcript.whisperx[494].text 目前的意願是很高的那我們現在怎麼去有更多的法令讓他們可以更容易找到工作所以我們現在也放寬到他畢業以後他有兩年找工作的期間就不會那麼快要逼回去那另外我們還做了一件事情就是全球現在有3500萬的數位牧民就是他用
transcript.whisperx[495].start 13502.465
transcript.whisperx[495].end 13530.145
transcript.whisperx[495].text 數位技能在家工作的那我們希望把他吸引進來然後也留下至少我們希望在2018年之前有10萬人進來留下一萬人對所以政策上就是說跟兩個縣市談好了要做實驗橋外生要他們是需要工作嘛沒有工作是沒辦法留下來啊對對對那所以事實上他們如果在大學就在念書的時候可以打工每個禮拜是20個小時
transcript.whisperx[496].start 13532.408
transcript.whisperx[496].end 13549.037
transcript.whisperx[496].text 現在是就我了解是就剛才可以打工的對是可以求外生可以打工對但是你說你放寬兩年讓他這兩年可以去找工作那找工作的期間的收入呢
transcript.whisperx[497].start 13550.772
transcript.whisperx[497].end 13551.933
transcript.whisperx[497].text 這段時間可以繼續打工嗎?」
transcript.whisperx[498].start 13575.333
transcript.whisperx[498].end 13577.575
transcript.whisperx[498].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[499].start 13595.229
transcript.whisperx[499].end 13615.277
transcript.whisperx[499].text 呃要嫁接齁這個僱主齁跟僑外生齁他們的呃這個平台對不對對你們的平台是要怎麼樣就是說好我今天我我是產業那我有勞動力的需求那我要怎麼去找到這些僑外生還是要等著僑外生來找我
transcript.whisperx[500].start 13616.663
transcript.whisperx[500].end 13643.62
transcript.whisperx[500].text 我們現在是第一個我們這個是由教育部會協助在這些學校設就業輔導專員我們希望從學校是最快因為他還沒離開那透過學校的就業輔導單位然後有專員來協助這些橋外生那原來這種事不是每個學校都有有這樣的人力那所以現在會有那第二個部分是我們開始透過經濟部去接洽企業
transcript.whisperx[501].start 13645.341
transcript.whisperx[501].end 13662.892
transcript.whisperx[501].text 像很多的企業就開始預先去找這些橋外生包括前一陣子經濟部也媒介了這個台電要修這個電網的這些廠商去找橋外生然後開始進行訓練所以我們是從學校的角度跟企業的角度我們雙軌並行
transcript.whisperx[502].start 13664.246
transcript.whisperx[502].end 13673.617
transcript.whisperx[502].text 但是現在還是有一個問題就是說我們現在要求的僱主他有一個門檻的要求就是他的資本額要大500萬或是營業額是1000萬以上那
transcript.whisperx[503].start 13678.066
transcript.whisperx[503].end 13702.178
transcript.whisperx[503].text 這兩個是貨所以兩個中有達到一個但是我要強調的是說你定資本額500萬以上的企業事實上在我們全國的稅籍登記的資料它只有占18%所以相對的就是還有另外82%的它是不在500萬以上當然這部分它可能就要需要用營業額1000萬去做它第二個要件
transcript.whisperx[504].start 13702.719
transcript.whisperx[504].end 13714.297
transcript.whisperx[504].text 那你們這樣看起來在這兩個要件之下大概國內有多少比例的企業可以符合可以符合他可以聘請僑外生各位委員報告這部分有一些鬆綁我們請勞動部做說明
transcript.whisperx[505].start 13718.491
transcript.whisperx[505].end 13727.275
transcript.whisperx[505].text 委員是跟您報告一下基本上為了要配合國發會的攬才政策所以我們在111跟112已經陸續放寬了包括新創事業5加2產業還有六大核心戰略產業這些產業的這個500萬跟1000萬的限制我們都已經鬆綁了
transcript.whisperx[506].start 13735.399
transcript.whisperx[506].end 13758.214
transcript.whisperx[506].text 那這些產業呢大概已經站到這個專業及技術人才裡面所以說未來五百萬跟這個一千萬都都沒有限制了對都打開等於是所有的企業都可以重點產業那如果說還有在這個業別以外的那目的事業主管機關認為有需要我們有一個會商機制經會商之後一樣可以打開
transcript.whisperx[507].start 13759.662
transcript.whisperx[507].end 13787.602
transcript.whisperx[507].text 所以目前這個部分應該是已經解決了大部分喬艾森所造成的一些就業上的困擾好那我再就教主委一個問題啦是關於移工嘛就是不是喬艾森是單純的移工事實上很多移工朋友事實上跟我反映你包括日本跟韓國他們現在都已經開放說你到比方說到日本去移工他是可以帶他的家屬
transcript.whisperx[508].start 13789.059
transcript.whisperx[508].end 13807.527
transcript.whisperx[508].text 直接都可以到日本去帶家屬去而且家屬過去也可以工作那如果這一個家屬的工作有發生問題的時候當然就會有一點連坐法連著移工也一併要被遣送回去那個是罰則的部分
transcript.whisperx[509].start 13807.987
transcript.whisperx[509].end 13830.628
transcript.whisperx[509].text 但是我們講他開的這個門就是說移工他可以帶著他的家屬一方面讓移工他們不用跟他的家人隔著非常遠的距離會有思鄉之苦第二個因為移工他的家人也過來他會希望在台灣有更安定的生活他也尋求更安定的工作
transcript.whisperx[510].start 13831.088
transcript.whisperx[510].end 13850.196
transcript.whisperx[510].text 所以他的工作態度或者是他們會盡量去避免違法避免犯規因為連坐的一個結果會變成他整個他的比如比方說他的爸爸媽媽兄弟姊妹來都要相對的要被送回去那我們台灣有可能走到這一步嗎?
transcript.whisperx[511].start 13851.036
transcript.whisperx[511].end 13864.24
transcript.whisperx[511].text 我們跟委員報告我們現在我們這次的修法裡面會把中階技術人才納進來就是中階技術的移工包括具備一定技術能力的焊接、模具這些我們都會納進來他就會適用這條
transcript.whisperx[512].start 13866.661
transcript.whisperx[512].end 13893.419
transcript.whisperx[512].text 所以他未來就是可以引他的家屬進來他的家屬來後就在台灣一樣是定居然後一樣可以找工作對他會適用到我們的攬才專法裡面好那我蠻期待的我希望這個文字如果形成文字後可以給我們辦公室是的我們預計我們下禮拜會公開預覽那我們也送一份到您辦公室好謝謝主委好謝謝來謝謝參議委員主委先回座
transcript.whisperx[513].start 13899.603
transcript.whisperx[513].end 13901.586
transcript.whisperx[513].text 現在休息,我們下午兩點繼續開會。」
transcript.whisperx[514].start 18309.189
transcript.whisperx[514].end 18310.64
transcript.whisperx[514].text 與亞鄰國家之留才攬才政策競爭力比較.
transcript.whisperx[515].start 19724.807
transcript.whisperx[515].end 19729.73
transcript.whisperx[515].text 好我們現在繼續開會下一位質詢請林月琦委員質詢有請我們的國家發展委員會主委請郭外劉主委
transcript.whisperx[516].start 19753.615
transcript.whisperx[516].end 19754.957
transcript.whisperx[516].text 主任委員會主任委員
transcript.whisperx[517].start 19767.964
transcript.whisperx[517].end 19795.993
transcript.whisperx[517].text 改變我們少子化的課題這幾天我想國家發展委員會的人口推估的報告已經出來了大家都很熱烈討論從2020年事實上我們已經走到生不如死40多年後人口老化甚至會超過日本2070年我們可能會全台不到1500萬的人扶養比可能到1比1左右所以想問一下
transcript.whisperx[518].start 19797.15
transcript.whisperx[518].end 19819.056
transcript.whisperx[518].text 你的看法,你同意這樣的說法嗎?過去幾年的少子化對策是不是失敗的?這個很難界定,但是我舉個例子,去年我們有一萬多個小孩子是因為我們對於這個不孕症的補助而生出來的小孩有一萬多位
transcript.whisperx[519].start 19819.836
transcript.whisperx[519].end 19820.697
transcript.whisperx[519].text 主任委員會主任委員會主任委員
transcript.whisperx[520].start 19844.229
transcript.whisperx[520].end 19870.41
transcript.whisperx[520].text 更低於去年所以就想來跟你討論一下一些問題我覺得失敗的原因在哪邊呢問題一呢臺灣一直事實上是缺乏專責機構事實上我們有成立少子化辦公室僅開過一次會那就是2017年那就停擺了可是相較於日本的話所以我覺得行政院人事行政總處做的報告還比你們還
transcript.whisperx[521].start 19871.451
transcript.whisperx[521].end 19890.909
transcript.whisperx[521].text 比較精準掌握現在日本的狀況你們都還停留在2007年日本的狀態去年他們成立了兒童家庭廳反而我們事實上沒有去思考到這個問題我們看瑞典的經驗怎麼去讓少子化可以減緩呢若實兒權公約然後呢性平然後第三個事實上支持父母成為父母
transcript.whisperx[522].start 19891.249
transcript.whisperx[522].end 19919.029
transcript.whisperx[522].text 和我們現在連專責機構都沒有,因為要去統整統合。第二個是加碼的補助,不變的負擔,固定的學費,高額的雜費。對,現在政府事實上是給育兒津貼也加碼了,有準工,學費非常的低。不過也可以看這錢到底到誰的手上?大概都到業者的手上去。補多少,漲多少,甚至政府如果要漲的話,業者先知道的話,搞不好他漲的比你還高。
transcript.whisperx[523].start 19919.491
transcript.whisperx[523].end 19933.838
transcript.whisperx[523].text 所以政府的錢大概到口袋裡邊去那基本上當不上價嗎還有很重要的就是房價因為趕不上我們進度的居住正義這也是家長如果沒有辦法安居那就沒有辦法熱業所以這也是一個問題第二個
transcript.whisperx[524].start 19937.148
transcript.whisperx[524].end 19964.487
transcript.whisperx[524].text 我們對於兒童身心健全成長缺乏支持現在行人地域我們交通死傷在兒少也是最高的那如果事故傷害居高不下是兒少1到14歲死傷最高其中交通最高的話那我們大概即便生下來還是面對到死亡那還有我們的身心健康這狀況每況愈下而且自殺已經是到第二名那這個
transcript.whisperx[525].start 19967.945
transcript.whisperx[525].end 19983.03
transcript.whisperx[525].text 狀態裡邊又再加上我們的網路安全這是一個很大問題有網路工程甚至網路安全的這個課題又跟自殺有相近的關係來下一頁那隔離近的日本也是跟我們遇到同樣的社會問題
transcript.whisperx[526].start 19984.51
transcript.whisperx[526].end 20005.583
transcript.whisperx[526].text 少子女化嚴重、貧窮、虐待、幸福感低弱,可是他已經改方向了,往下,因為他們去年事實上人口是有成長的,他們有專責單位,所以我不知道人事總處這邊副處長也在,不知道支不支持,就是我們有一個專責的單位,是不是可以去做努力了,那再下一頁,那
transcript.whisperx[527].start 20006.824
transcript.whisperx[527].end 20028.997
transcript.whisperx[527].text 希望能夠催生到營造兒童的友善社會能夠落實是不是比照日本有一個兒童基本法精神所以我覺得這是不是可以再去研究一個是成立專責單位一個是落實兒童基本法謝謝謝謝林月琴委員的質詢謝謝委員主委先回座下一位李坤臣李坤臣李坤臣不在下一位質詢請王小林委員
transcript.whisperx[528].start 20038.457
transcript.whisperx[528].end 20048.197
transcript.whisperx[528].text 主席好,接下來想有請教育部次長教育部張廖次長是
transcript.whisperx[529].start 20051.107
transcript.whisperx[529].end 20066.903
transcript.whisperx[529].text 市長最近國發會所公布的那個報告其實確實帶給國人一個警訊讓我們了解到了2070年我們台灣的人口只剩下1500萬
transcript.whisperx[530].start 20068.965
transcript.whisperx[530].end 20092.925
transcript.whisperx[530].text 比現在大概要少了800多萬人之多那當然現在這個少子化的問題它確實已經影響到衝擊到了我們的教育系統那今天本席在另外未還委員會那邊這個正好是吳春成委員他推動的壯世代政策法案那麼裡面呢本席有特別有提到就是
transcript.whisperx[531].start 20093.946
transcript.whisperx[531].end 20113.203
transcript.whisperx[531].text 在壯世代如何可以帶給教育系統另外一個契機?」那麼這個議題少子化跟壯世代議題我認為是相輔相成的那麼尤其是我們可以看到就是在這個人口年齡結構當中未來幼年跟青壯人口是持續下降
transcript.whisperx[532].start 20114.944
transcript.whisperx[532].end 20133.412
transcript.whisperx[532].text 65歲以上的銀髮族人口是往上提升。」那麼所以這邊會讓我們去思考那面對現在少子化的問題我們教育系統是如何因應那麼我知道其實這個少子化問題其實早就在國高中小學已經發生了所以之前有很多流浪
transcript.whisperx[533].start 20134.272
transcript.whisperx[533].end 20161.842
transcript.whisperx[533].text 是教師,那現在呢這個流浪教師的影響已經升級到大學所以我們這些年來大概也出現了流浪教授那麼高學歷的人才是找不到工作那麼在這邊的話本席想請教教育部看到我們現在的大學學生的招生缺額的情況越來越嚴重可是呢我本席感到很有趣的
transcript.whisperx[534].start 20162.903
transcript.whisperx[534].end 20167.938
transcript.whisperx[534].text 我也看到一個現象就是教育部也同意一些學校不斷的外加名額
transcript.whisperx[535].start 20170.001
transcript.whisperx[535].end 20193.414
transcript.whisperx[535].text 尤其是在大學部跟研究所的部分都有外加名額他其實他一定會影響到就是整個的這個學生聲援的分配的問題還有私立大學的學生現在已經招不到這也是個事關於這部分我跟委員做一個報告分兩部分一部分就是說少子化的衝擊是難免就是說整個看起來那個私立學校的退場已經成為一個無法避免的結構
transcript.whisperx[536].start 20196.736
transcript.whisperx[536].end 20225.329
transcript.whisperx[536].text 但是呢對委員關心這個非常好就是說其實在我們現在外加名的部分其實本來是針對一些比較國家重點產業他需要的一些人才所以在碩博士裡面在學士班都有開那過去確實因為當時是因為配合國家政策所以就找國立大學來協助但是也有考慮到委員所關心的這個現象所以在113年度就今年度8月開始其實已經有做一些調整我來
transcript.whisperx[537].start 20226.249
transcript.whisperx[537].end 20247.12
transcript.whisperx[537].text 講一下就是說就是113學年度起公立大學以培育高階碩博士為主那學士班是以體質良好且這個教學品質比較佳的私立大學為主要來培育這個比例就有差113年在碩博士方面公立學校大概是佔了大概15%15%那那個好
transcript.whisperx[538].start 20251.122
transcript.whisperx[538].end 20260.53
transcript.whisperx[538].text 那個學士大概5%那明年度114年度學士的部分私立占更多那就是公立現在3%而已是,現在是這樣子的就是因為我們知道如果說公立大學的招生員額還是維持現在的規模
transcript.whisperx[539].start 20269.377
transcript.whisperx[539].end 20275.981
transcript.whisperx[539].text 他勢必也會影響到之後私立大學的招生的這個情況以現在來講15萬人到了2070了這到了接下來的5年之後我們還有這麼多的學生嗎
transcript.whisperx[540].start 20285.507
transcript.whisperx[540].end 20298.173
transcript.whisperx[540].text 那麼本席是建議就是教育部要去研擬一個方案就是我們的公立大學是不是也要開始逐漸的要去縮減整個的這個學生的名額還有分配那這樣的話為後面的這個應該是說私立大學他的招生元額才不會缺
transcript.whisperx[541].start 20307.958
transcript.whisperx[541].end 20327.567
transcript.whisperx[541].text 否則的話,如果說我們公立大學的學生的結構不改變的話,那一定未來會有更多的私立大學沒有辦法繼續升職。這個我們會做通盤檢討,那如果有詳細的結果會跟我們報告。那我也希望教育部這裡,是不是可以兩個禮拜給我一個,或是一個月給我一份你們的對於
transcript.whisperx[542].start 20329.648
transcript.whisperx[542].end 20353.099
transcript.whisperx[542].text 公立大學跟私立大學的學生生源結構研析報告,如何我們來調整這樣的一個環境。」好,我們一個月內,我們來跟委員做報告。好,那麻煩一個月後,一個月之內給我一份報告。好,謝謝。好,謝謝,謝謝市長。好,謝謝,謝謝。好,請回座。何金淳,何金淳,何金淳不在。賴思寶,賴思寶,賴思寶不在。林俊憲,林俊憲,林俊憲不在。下一位請張雅琳委員。
transcript.whisperx[543].start 20363.473
transcript.whisperx[543].end 20364.614
transcript.whisperx[543].text 謝謝主席,我們有請主委。
transcript.whisperx[544].start 20390.238
transcript.whisperx[544].end 20400.162
transcript.whisperx[544].text 謝謝主委我想請教有關於少子化的政策我看了一下我們其實今天我們主計總處其實從107年到現在推出少子女化的對策計畫從193.72億提高到現在112年度已經是1088.27億而今年也持續的去超過了1201億
transcript.whisperx[545].start 20414.808
transcript.whisperx[545].end 20418.163
transcript.whisperx[545].text 但是我們的小孩並沒有多生一點
transcript.whisperx[546].start 20420.215
transcript.whisperx[546].end 20444.031
transcript.whisperx[546].text 那講這個問題呢其實我並沒有要指責國發會的意思因為其實我今年看的這個經濟學人他今年其實就在講全世界的生育率持續的下降但是其實大家都持續的不停的撒錢所以他的標題就是說撒錢換小孩但其實他裡面有一個他裡面就有舉了一個例子就是說從韓國2006年到現在他每一年花2700億美元
transcript.whisperx[547].start 20446.112
transcript.whisperx[547].end 20447.894
transcript.whisperx[547].text 主任委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[548].start 20462.538
transcript.whisperx[548].end 20481.914
transcript.whisperx[548].text 這個只要女性不想生育了就很難起死回生因為觀念的轉變讓年輕女性不想再拼命生小孩現今的補貼對於中低收入的家庭有短暫的吸引力第三個就是中等階級的家庭比起育兒更在乎自己的家庭生活但他其中也有提到一個解放就是說
transcript.whisperx[549].start 20483.545
transcript.whisperx[549].end 20494.975
transcript.whisperx[549].text 在北歐,以北歐的例子來說,我們如果可以提供一個更友善的措施,例如產假或優渥的兒童托育政策,就可能會有一個小幅度的提升。」
transcript.whisperx[550].start 20497.355
transcript.whisperx[550].end 20525.591
transcript.whisperx[550].text 就是小幅度喔,非常小幅度那這個研究其實我也發現中研院鄭彥新研究員也有相關的研究在講為何孩子越生越少他談少子化的困境那他其實也有去講到就是說這個結論是跟經濟學院一樣的不過我想要先講一件事情喔他剛講就是支持友善的環境那我不曉得主委有沒有在網路上面看過各式各樣的厭害言論
transcript.whisperx[551].start 20528.102
transcript.whisperx[551].end 20544.529
transcript.whisperx[551].text 我有這個習慣在網路上收集這些訊息我們也從網路上看到的確目前來講心態上的不爭比什麼都多我們也可以感受到其實我們有找文化部討論因為很多是文化層次
transcript.whisperx[552].start 20545.049
transcript.whisperx[552].end 20572.678
transcript.whisperx[552].text 我想你可以看到美國人都願意多生小孩因為他們的溫情在不論在電視節目或是在家庭生活對我想文化是一個部分我們反而變少了文化的部分是一個但是我可以我舉一個例子就是說你可以看到上面講的當一個家長他們其實在上面討論就是說我帶小孩搭飛機我要準備什麼東西我是不是要讓他吃個鼻塞藥讓他在上面好睡覺我就不會吵到別人我今天大家去餐廳吃飯我要整理得多乾淨我才不會被
transcript.whisperx[553].start 20573.718
transcript.whisperx[553].end 20589.729
transcript.whisperx[553].text 餐廳的老闆媽才會被別人偷拍照。」但其實整個社會是一個非常厭害的環境其實這增加了女性尤其是特別是女性在育兒的時候她的這個擔憂跟困境所以我會覺得說我們今天在做少子化的時候我們除了現金補貼之外
transcript.whisperx[554].start 20591.89
transcript.whisperx[554].end 20612.823
transcript.whisperx[554].text 還有我們現在做的這些政策之外我們是不是可以有更開闊的一些思考來去思考如何從不管從文化的角度也好從整個家長的教育也好來去支持讓我們的所有的小孩都可以被城市裡的大人們可以看見所以第一個建議我想問我們是不是可以讓各個部會來舉辦這個所謂的家庭日
transcript.whisperx[555].start 20614.466
transcript.whisperx[555].end 20632.786
transcript.whisperx[555].text 這個我因為整個主政還是陳時中政委我會把這個想法去跟他說一個說明我希望就是說因為大家還是希望因為大家可能不生小孩其實不太能夠理解生有個小孩子在這個城市裡他會遇到什麼樣子的問題如果我可以把小孩帶來職場的話大家都可以有一些感受我覺得這是第一個步
transcript.whisperx[556].start 20633.226
transcript.whisperx[556].end 20633.806
transcript.whisperx[556].text 主任委員會主任委員會主任委員會
transcript.whisperx[557].start 20653.271
transcript.whisperx[557].end 20681.179
transcript.whisperx[557].text 我們有召集大家來可是只有21家企業有員工來申請但其實這個比例是非常低那我們是不是可以來做一個檢討瞭解一下怎麼樣可以鼓勵我們更多的企業來投入申請這個企業的彈性育嬰假因為有非常多的家長還是有告訴我們說其實他就算想要去請的時候老公他老闆可能會告訴他他人資可能會告訴他你要考慮一下你老闆的想法你要考慮一下你未來的生前在某種程度還是暗示了他不能去申請
transcript.whisperx[558].start 20682.239
transcript.whisperx[558].end 20686.242
transcript.whisperx[558].text 所以我們是不是可以來做一個檢討針對這個面向?這個我請陳政委找勞動部來討論這件事情來檢討一下這件事謝謝張雅玲委員有1分20秒了主委請回座下位諮詢請吳淳澄委員
transcript.whisperx[559].start 20713.789
transcript.whisperx[559].end 20740.838
transcript.whisperx[559].text 邀請國家發展委員會主任委員。」主委好最近經常看到你憂心忡忡覺得很心疼因為但是我必須要肯定你很誠實的勇敢的公布了我們的人口退估數字所以呢整個的
transcript.whisperx[560].start 20741.977
transcript.whisperx[560].end 20747.823
transcript.whisperx[560].text 我們不敢面對的事情就是臺灣的人口惡化
transcript.whisperx[561].start 20757.29
transcript.whisperx[561].end 20782.731
transcript.whisperx[561].text 這一個人口的這個資料所以這個本週立法院都就是人口週現在這個同時未完在談人口老化的問題那經濟在談少子化的問題顯然大家都是追隨你的腳步非常的關注那這是一個很重要精神但國發會是人口的專家是我們國家在這個引導整個人口政策
transcript.whisperx[562].start 20784.654
transcript.whisperx[562].end 20791.869
transcript.whisperx[562].text 所以也期待我們不要憂心勇敢地往前走發揮你世代夫的精神嚴所當言為所當委
transcript.whisperx[563].start 20794.315
transcript.whisperx[563].end 20817.453
transcript.whisperx[563].text 那當然這個就知道今天在談少子化那這個可能前面有人提過了就是我們其實每年都花了上千億但是我們的少子化幾乎是每兩年就要減少減少一萬這個的人口推估你看這幾年來從1.78逐年一直下降
transcript.whisperx[564].start 20818.954
transcript.whisperx[564].end 20825.116
transcript.whisperx[564].text 下降到你現在推估的最新2025年0.87但是呢這個後面這個反而又上揚這個是依據有什麼理由台灣未來的這個生育率會上升這個主委請教你
transcript.whisperx[565].start 20838.962
transcript.whisperx[565].end 20862.622
transcript.whisperx[565].text 我們現在我們原來的計畫是希望透過2024年、2025年我們現在整個目標就是要努力守住現在的出生率先不讓它往下降然後之後我們才會來談怎麼樣的往上升所以我們總是要表示一下我們願意朝這個方向的決心當然你一定要樂觀我們當然也是期待這樣子
transcript.whisperx[566].start 20863.903
transcript.whisperx[566].end 20884.423
transcript.whisperx[566].text 只是應該按照現在的一個下降的速度應該也不用等到大家都說提早的15年事實上不只提早15年今年是2024年可能看起來是2026年、2027年就會破10萬了按照現在的速度還不用等到2040年所以這個問題是非常嚴重
transcript.whisperx[567].start 20886.704
transcript.whisperx[567].end 20902.024
transcript.whisperx[567].text 就剛應該就國發會要告訴我們的政府少子化、高齡化已經定型了你也提出了不可逆轉所以我們要面對這樣的一個事實我們過去都把它當作邊陲問題
transcript.whisperx[568].start 20903.926
transcript.whisperx[568].end 20931.814
transcript.whisperx[568].text 頭痛一頭腳痛一頭反正遇到問題就用短期政策應付一下短期政策應付一下但是請國發會告訴我們的政府不可逆轉已經定型了所以我們要為未來少子化高齡化的社會好好的來做設計不然這個台灣真的是一個非常大的危機未來30年最重要的事情就是國發會的事情人口的事接下來我們少子化高齡化跟少子化一體之兩面
transcript.whisperx[569].start 20933.594
transcript.whisperx[569].end 20952.619
transcript.whisperx[569].text 為什麼會少子化?現在用這種補貼的政策能夠解決嗎?最重要的他們是沒有未來那沒有未來兩個,一個高齡化會壓垮現在扶養比3.6比1接下來2014年會2比1接下來高齡化這個問題不解決的話年輕人沒有未來了啦,我們要告訴年輕人所以要解決
transcript.whisperx[570].start 20953.459
transcript.whisperx[570].end 20973.817
transcript.whisperx[570].text 同時呢我在談的壯世代就是把分子被撫養的分子拉下來當分模讓台灣的基本盤每一個人都成為生產者消費者壯捷你認不認同?這個我們已經在進行了所以勞動部也有中高齡就業法也有做家人服務所以這些已經在進行了
transcript.whisperx[571].start 20975.318
transcript.whisperx[571].end 21000.014
transcript.whisperx[571].text 我知道都在進行今天談的就是說我們行政院都在進行的而且我們現在也放寬了退休的規範也推出了很多但是我想這個主委是專家用24G的腦袋無法解決21G的問題現在推出來的就是雖然有很多部會在做但是其實沒有人沒有預算沒有法制沒有什麼所有的用現狀的問題用
transcript.whisperx[572].start 21001.255
transcript.whisperx[572].end 21003.936
transcript.whisperx[572].text 解決過去的那種老舊的問題來解決未來問題。」
transcript.whisperx[573].start 21027.615
transcript.whisperx[573].end 21051.33
transcript.whisperx[573].text 謝惠、羅明財、羅明財、羅明財不在、陳冠廷、陳冠廷、陳冠廷不在、林淑儀、林淑儀、林淑儀不在、蘇清泉、蘇英元、蘇英元不在、洪孟凱、洪孟凱、洪孟凱不在、林倩琦、林倩琦、林倩琦不在、鍾嘉斌、鍾嘉斌、鍾嘉斌不在、葉元芝、葉元芝、葉元芝不在。登記發言委員除不在場者外,區區發言完畢。訊號結束。順便諮詢以及未及答問部分,請相關單位一周內已順便答問並複製本會。本
transcript.whisperx[574].start 21094.205
transcript.whisperx[574].end 21098.011
transcript.whisperx[574].text 二、邀請國家發展委員會主任委員會主任委員會主任委員會主任委員會主任委員會
transcript.whisperx[575].start 21110.188
transcript.whisperx[575].end 21118.715
transcript.whisperx[575].text 與亞鄰國家之留才政策競爭力比較:暨我國與亞鄰國家之留才政策競爭力比較:暨我國與亞鄰國家之留才政策競爭力比較:暨我國與亞鄰國家之留才政策競爭力比較:暨
transcript.whisperx[576].start 21139.172
transcript.whisperx[576].end 21143.11
transcript.whisperx[576].text 我國少子女化現況及對策計畫成效:一、邀請國家發展委員會主任委員會首長、教育部首長、
IVOD_ID 16205
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16205
日期 2024-10-24
會議資料.會議代碼 委員會-11-2-19-8
會議資料.屆 11
會議資料.會期 2
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.標題 第11屆第2會期經濟委員會第8次全體委員會議
影片種類 Full
開始時間 2024-10-24T08:31:16+08:00
結束時間 2024-10-24T14:24:00+08:00
支援功能[0] ai-transcript