IVOD_ID |
161972 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161972 |
日期 |
2025-05-28 |
會議資料.會議代碼 |
委員會-11-3-19-15 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-28T10:15:36+08:00 |
結束時間 |
2025-05-28T10:25:09+08:00 |
影片長度 |
00:09:33 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f24d879fe3ef5889cc01b5ee1b3bf308d2eb291a8f6a096732c6bec4195852848de5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
10:15:36 - 10:25:09 |
會議時間 |
2025-05-28T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。
二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
14.27346875 |
transcript.pyannote[0].end |
16.75409375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
18.76221875 |
transcript.pyannote[1].end |
18.94784375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
25.66409375 |
transcript.pyannote[2].end |
26.23784375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
26.47409375 |
transcript.pyannote[3].end |
27.79034375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
28.34721875 |
transcript.pyannote[4].end |
30.03471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
30.60846875 |
transcript.pyannote[5].end |
33.54471875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
34.10159375 |
transcript.pyannote[6].end |
38.65784375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
38.79284375 |
transcript.pyannote[7].end |
40.46346875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
41.15534375 |
transcript.pyannote[8].end |
49.67721875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
50.53784375 |
transcript.pyannote[9].end |
50.85846875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
51.39846875 |
transcript.pyannote[10].end |
52.47846875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
52.69784375 |
transcript.pyannote[11].end |
54.46971875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
55.29659375 |
transcript.pyannote[12].end |
58.13159375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
58.45221875 |
transcript.pyannote[13].end |
59.61659375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
60.03846875 |
transcript.pyannote[14].end |
64.91534375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
65.50596875 |
transcript.pyannote[15].end |
66.78846875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
67.44659375 |
transcript.pyannote[16].end |
69.48846875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
70.11284375 |
transcript.pyannote[17].end |
70.58534375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
71.39534375 |
transcript.pyannote[18].end |
74.09534375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
74.44971875 |
transcript.pyannote[19].end |
78.44909375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
79.51221875 |
transcript.pyannote[20].end |
81.53721875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
82.17846875 |
transcript.pyannote[21].end |
83.52846875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
84.25409375 |
transcript.pyannote[22].end |
86.19471875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
86.61659375 |
transcript.pyannote[23].end |
87.12284375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
88.01721875 |
transcript.pyannote[24].end |
89.01284375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
89.43471875 |
transcript.pyannote[25].end |
93.51846875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
93.90659375 |
transcript.pyannote[26].end |
96.58971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
97.45034375 |
transcript.pyannote[27].end |
100.80846875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
97.60221875 |
transcript.pyannote[28].end |
98.22659375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
101.82096875 |
transcript.pyannote[29].end |
102.79971875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
102.98534375 |
transcript.pyannote[30].end |
106.44471875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
106.96784375 |
transcript.pyannote[31].end |
108.14909375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
108.72284375 |
transcript.pyannote[32].end |
110.49471875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
110.98409375 |
transcript.pyannote[33].end |
111.97971875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
112.60409375 |
transcript.pyannote[34].end |
113.12721875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
113.86971875 |
transcript.pyannote[35].end |
115.15221875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
115.55721875 |
transcript.pyannote[36].end |
117.39659375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
117.95346875 |
transcript.pyannote[37].end |
118.72971875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
118.91534375 |
transcript.pyannote[38].end |
120.65346875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
120.97409375 |
transcript.pyannote[39].end |
121.64909375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
122.42534375 |
transcript.pyannote[40].end |
122.99909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
123.58971875 |
transcript.pyannote[41].end |
124.90596875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
125.56409375 |
transcript.pyannote[42].end |
126.10409375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
126.94784375 |
transcript.pyannote[43].end |
127.90971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
128.83784375 |
transcript.pyannote[44].end |
129.31034375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
129.59721875 |
transcript.pyannote[45].end |
130.74471875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
131.85846875 |
transcript.pyannote[46].end |
132.61784375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
133.03971875 |
transcript.pyannote[47].end |
135.50346875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
136.00971875 |
transcript.pyannote[48].end |
136.22909375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
136.92096875 |
transcript.pyannote[49].end |
140.88659375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
141.61221875 |
transcript.pyannote[50].end |
143.77221875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
144.12659375 |
transcript.pyannote[51].end |
145.25721875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
146.03346875 |
transcript.pyannote[52].end |
146.84346875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
148.44659375 |
transcript.pyannote[53].end |
149.32409375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
149.71221875 |
transcript.pyannote[54].end |
150.37034375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
151.11284375 |
transcript.pyannote[55].end |
151.46721875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
151.80471875 |
transcript.pyannote[56].end |
152.80034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
153.18846875 |
transcript.pyannote[57].end |
154.43721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
155.23034375 |
transcript.pyannote[58].end |
155.63534375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
156.66471875 |
transcript.pyannote[59].end |
157.76159375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
158.68971875 |
transcript.pyannote[60].end |
159.93846875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
161.06909375 |
transcript.pyannote[61].end |
161.79471875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
162.41909375 |
transcript.pyannote[62].end |
165.38909375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
165.72659375 |
transcript.pyannote[63].end |
168.93284375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
169.52346875 |
transcript.pyannote[64].end |
172.05471875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
172.57784375 |
transcript.pyannote[65].end |
175.07534375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
175.83471875 |
transcript.pyannote[66].end |
179.96909375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
180.42471875 |
transcript.pyannote[67].end |
182.73659375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
183.31034375 |
transcript.pyannote[68].end |
184.89659375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
185.53784375 |
transcript.pyannote[69].end |
188.25471875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
189.06471875 |
transcript.pyannote[70].end |
192.50721875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
193.31721875 |
transcript.pyannote[71].end |
196.48971875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
196.65846875 |
transcript.pyannote[72].end |
198.43034375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
199.00409375 |
transcript.pyannote[73].end |
214.96784375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
214.96784375 |
transcript.pyannote[74].end |
222.05534375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
222.25784375 |
transcript.pyannote[75].end |
229.02471875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
229.31159375 |
transcript.pyannote[76].end |
263.90534375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
264.56346875 |
transcript.pyannote[77].end |
265.03596875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
265.03596875 |
transcript.pyannote[78].end |
267.04409375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
267.19596875 |
transcript.pyannote[79].end |
269.72721875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
269.84534375 |
transcript.pyannote[80].end |
280.35846875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
281.11784375 |
transcript.pyannote[81].end |
284.49284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
285.28596875 |
transcript.pyannote[82].end |
287.76659375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
288.45846875 |
transcript.pyannote[83].end |
288.59346875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
289.06596875 |
transcript.pyannote[84].end |
292.64346875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
293.14971875 |
transcript.pyannote[85].end |
295.57971875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
296.05221875 |
transcript.pyannote[86].end |
299.68034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
299.83221875 |
transcript.pyannote[87].end |
308.80971875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
309.18096875 |
transcript.pyannote[88].end |
309.72096875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
309.72096875 |
transcript.pyannote[89].end |
314.00721875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
309.73784375 |
transcript.pyannote[90].end |
310.49721875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
314.00721875 |
transcript.pyannote[91].end |
315.40784375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
314.15909375 |
transcript.pyannote[92].end |
314.76659375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
315.66096875 |
transcript.pyannote[93].end |
317.19659375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
315.69471875 |
transcript.pyannote[94].end |
317.28096875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
317.75346875 |
transcript.pyannote[95].end |
323.33909375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
323.74409375 |
transcript.pyannote[96].end |
325.04346875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
323.77784375 |
transcript.pyannote[97].end |
334.49346875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
325.09409375 |
transcript.pyannote[98].end |
328.16534375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
328.30034375 |
transcript.pyannote[99].end |
328.78971875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
332.19846875 |
transcript.pyannote[100].end |
332.97471875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
334.57784375 |
transcript.pyannote[101].end |
334.96596875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
334.96596875 |
transcript.pyannote[102].end |
334.98284375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
335.57346875 |
transcript.pyannote[103].end |
335.60721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
335.60721875 |
transcript.pyannote[104].end |
336.94034375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
338.84721875 |
transcript.pyannote[105].end |
339.48846875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
339.80909375 |
transcript.pyannote[106].end |
340.70346875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
341.24346875 |
transcript.pyannote[107].end |
342.44159375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
343.13346875 |
transcript.pyannote[108].end |
345.31034375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
346.23846875 |
transcript.pyannote[109].end |
353.98409375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
354.49034375 |
transcript.pyannote[110].end |
356.12721875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
356.22846875 |
transcript.pyannote[111].end |
358.45596875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
358.79346875 |
transcript.pyannote[112].end |
363.68721875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
364.10909375 |
transcript.pyannote[113].end |
366.10034375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
366.64034375 |
transcript.pyannote[114].end |
370.30221875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
370.99409375 |
transcript.pyannote[115].end |
372.63096875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
374.08221875 |
transcript.pyannote[116].end |
375.02721875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
375.31409375 |
transcript.pyannote[117].end |
377.64284375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
378.03096875 |
transcript.pyannote[118].end |
379.83659375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
380.78159375 |
transcript.pyannote[119].end |
383.19471875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
383.54909375 |
transcript.pyannote[120].end |
384.30846875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
384.78096875 |
transcript.pyannote[121].end |
386.08034375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
386.55284375 |
transcript.pyannote[122].end |
388.12221875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
388.34159375 |
transcript.pyannote[123].end |
389.77596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
390.26534375 |
transcript.pyannote[124].end |
391.21034375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
392.10471875 |
transcript.pyannote[125].end |
393.79221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
394.29846875 |
transcript.pyannote[126].end |
397.16721875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
397.36971875 |
transcript.pyannote[127].end |
399.27659375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
399.83346875 |
transcript.pyannote[128].end |
401.20034375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
401.20034375 |
transcript.pyannote[129].end |
407.03909375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
401.21721875 |
transcript.pyannote[130].end |
401.85846875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
407.03909375 |
transcript.pyannote[131].end |
407.91659375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
408.45659375 |
transcript.pyannote[132].end |
408.47346875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
408.47346875 |
transcript.pyannote[133].end |
410.70096875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
412.47284375 |
transcript.pyannote[134].end |
413.53596875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
413.53596875 |
transcript.pyannote[135].end |
413.62034375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
414.37971875 |
transcript.pyannote[136].end |
414.97034375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
414.97034375 |
transcript.pyannote[137].end |
419.76284375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
416.62409375 |
transcript.pyannote[138].end |
418.64909375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
419.76284375 |
transcript.pyannote[139].end |
423.96471875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
423.96471875 |
transcript.pyannote[140].end |
426.10784375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
424.47096875 |
transcript.pyannote[141].end |
431.22096875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
427.89659375 |
transcript.pyannote[142].end |
428.60534375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
431.91284375 |
transcript.pyannote[143].end |
434.84909375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
435.64221875 |
transcript.pyannote[144].end |
437.31284375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
438.03846875 |
transcript.pyannote[145].end |
438.79784375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
439.25346875 |
transcript.pyannote[146].end |
442.81409375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
442.94909375 |
transcript.pyannote[147].end |
443.79284375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
444.48471875 |
transcript.pyannote[148].end |
445.56471875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
446.08784375 |
transcript.pyannote[149].end |
448.19721875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
449.27721875 |
transcript.pyannote[150].end |
450.98159375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
451.89284375 |
transcript.pyannote[151].end |
453.05721875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
453.56346875 |
transcript.pyannote[152].end |
454.01909375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
454.55909375 |
transcript.pyannote[153].end |
456.97221875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
457.42784375 |
transcript.pyannote[154].end |
469.52721875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
470.11784375 |
transcript.pyannote[155].end |
479.34846875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
480.12471875 |
transcript.pyannote[156].end |
480.68159375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
481.49159375 |
transcript.pyannote[157].end |
483.31409375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
484.09034375 |
transcript.pyannote[158].end |
488.19096875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
488.46096875 |
transcript.pyannote[159].end |
494.90721875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
495.27846875 |
transcript.pyannote[160].end |
498.55221875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
498.88971875 |
transcript.pyannote[161].end |
501.47159375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
503.24346875 |
transcript.pyannote[162].end |
504.39096875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
504.39096875 |
transcript.pyannote[163].end |
504.40784375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
505.03221875 |
transcript.pyannote[164].end |
505.97721875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
505.97721875 |
transcript.pyannote[165].end |
520.64159375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
508.06971875 |
transcript.pyannote[166].end |
508.69409375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
521.16471875 |
transcript.pyannote[167].end |
524.38784375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
524.94471875 |
transcript.pyannote[168].end |
528.10034375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
526.80096875 |
transcript.pyannote[169].end |
527.54346875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
528.72471875 |
transcript.pyannote[170].end |
541.41471875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
541.90409375 |
transcript.pyannote[171].end |
548.16471875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
548.50221875 |
transcript.pyannote[172].end |
551.33721875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
551.86034375 |
transcript.pyannote[173].end |
555.52221875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
555.77534375 |
transcript.pyannote[174].end |
557.39534375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
557.69909375 |
transcript.pyannote[175].end |
561.44534375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
561.93471875 |
transcript.pyannote[176].end |
562.25534375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
562.25534375 |
transcript.pyannote[177].end |
562.27221875 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
562.66034375 |
transcript.pyannote[178].end |
564.02721875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
564.02721875 |
transcript.pyannote[179].end |
567.57096875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
568.68471875 |
transcript.pyannote[180].end |
572.32971875 |
transcript.whisperx[0].start |
14.478 |
transcript.whisperx[0].end |
16.581 |
transcript.whisperx[0].text |
主席 各位委員 有請部長喂吼 部長好吼 |
transcript.whisperx[1].start |
28.59 |
transcript.whisperx[1].end |
54.258 |
transcript.whisperx[1].text |
今天這個審查這個我們召委還有郭委員所提的農民退休儲金條例第七條的一個修正要特別把這個主管機關要提繳的部分提高為1.5倍改為1.5倍本來是相同的改為1.5倍農業部的這個報告裡面特別提到 |
transcript.whisperx[2].start |
55.316 |
transcript.whisperx[2].end |
61.398 |
transcript.whisperx[2].text |
農民領取老農津貼籍農退儲金合計約38,479元這是每月勞工領取勞保老年給付加上勞工退休金合計約每個月33,095元 |
transcript.whisperx[3].start |
79.591 |
transcript.whisperx[3].end |
106.171 |
transcript.whisperx[3].text |
你們做這樣的一個比較然後特別提到這個如果修正為這個1.5的話會再提高到45431影響不同職業間的橫貧性而事實上這個如果每一次做一個這個調整然後就要做比較的話那永遠就不能比 |
transcript.whisperx[4].start |
107.365 |
transcript.whisperx[4].end |
135.29 |
transcript.whisperx[4].text |
農業就不能調啦所以是有時候是我們這邊調然後去帶動其他的比如說帶動勞工的調整都是有這個需要性何況勞工基本上勞工基本上他是這個每隔月每隔月領薪水啦平常的時候上班的還沒有退休的時候 |
transcript.whisperx[5].start |
137.097 |
transcript.whisperx[5].end |
161.348 |
transcript.whisperx[5].text |
跟農民不一樣,農民是看天吃飯很重要的是看天吃飯,不只是看天啊還要看什麼還要看這個消費現在還要看什麼,誰要看美國對不對川普的經濟川普的關稅所以這個 |
transcript.whisperx[6].start |
162.472 |
transcript.whisperx[6].end |
187.585 |
transcript.whisperx[6].text |
因素也很多啦因素也很多所以這個部分這個再請這個農業部好好的評估然後另外這裡面很重要的這個你們的報告裡面第三點提到經分析農民未參加農退儲金之原因與農民之儲息意願儲息能力有關這個就是平常他的收入有關係啦 |
transcript.whisperx[7].start |
189.45 |
transcript.whisperx[7].end |
212.953 |
transcript.whisperx[7].text |
跟他平常跟我剛剛講的有關係所以這個部分是一個他不確定的收入也不像勞工每個月領不像公務連每個月領他不是所以他因素很多所以就會產生這樣的一個考量所以農業部是不是在好好的評估在支持 |
transcript.whisperx[8].start |
213.813 |
transcript.whisperx[8].end |
227.842 |
transcript.whisperx[8].text |
我第一個跟委員報告我們農業部的立場絕對沒有否定包括協議院委員或國務委員等委員所提的提案那我剛才說的就是我們一開始會做先做客觀的分析那因為以 |
transcript.whisperx[9].start |
229.703 |
transcript.whisperx[9].end |
255.363 |
transcript.whisperx[9].text |
農業部來講當然越高對農民越有利可是相對的當政策執行下去的時候也會考慮到跟其他的類似的這樣子一個方的條例或辦法的時候的橫平性所以我們這邊提到的所以我們會再做一些評估同時是不是能夠有一些也達到委員的期待然後有更好的方式也能夠增加更多的 |
transcript.whisperx[10].start |
256.544 |
transcript.whisperx[10].end |
284.191 |
transcript.whisperx[10].text |
農民來參加這個除菌我想這是我們共同的目的啦我們一定會很仔細的去做更細部的一個分析這個部分一定不能光用數字去衡量去比較啦必須考量我剛剛講的這些很多的因素所以這個部分也請農業部這邊考量好另外就是這個我一再提的 |
transcript.whisperx[11].start |
285.862 |
transcript.whisperx[11].end |
308.541 |
transcript.whisperx[11].text |
這是你們3月26號的報告施行農民退休儲金制度提繳收益人數累計約10.9萬人覆蓋率約33.7%所以光我們從這個跟勞工的就不一樣勞工的很高幾乎是百分之百因為它強制的嘛 |
transcript.whisperx[12].start |
309.541 |
transcript.whisperx[12].end |
336.084 |
transcript.whisperx[12].text |
所以這個 老公只有16而已喔志願提交才16個而已喔他們只有16嗎 16我們農業參加退休出家對 那個可能是有包含的那個那個不是 那個叫什麼沒有 那個是雇主提領6%的這個部分我們算過了 這個是16%所以農民本身的一個宣導我們是有加強宣導的效果啦 對好 我們看這個 |
transcript.whisperx[13].start |
339.106 |
transcript.whisperx[13].end |
344.199 |
transcript.whisperx[13].text |
這是今天的報告裡面裡面提到這個 |
transcript.whisperx[14].start |
348.089 |
transcript.whisperx[14].end |
372.104 |
transcript.whisperx[14].text |
統計114年3月底曾經參加農退儲金受惠人數合計約11萬人含移領這個部分佔未滿65歲且經系統比對符合資格者比例約為49%這個也提高了是吧是這是很好的一個成效好我們看這個 |
transcript.whisperx[15].start |
374.124 |
transcript.whisperx[15].end |
377.326 |
transcript.whisperx[15].text |
我還是要再為原住民的農民來記這個是之前的一個數字這個是112年10月31號的數字 |
transcript.whisperx[16].start |
392.165 |
transcript.whisperx[16].end |
403.859 |
transcript.whisperx[16].text |
原住民農民提繳農退儲軍的只有佔百分之五點七真的是這個比例很高我跟委員更新一下這個數據您這邊的數據是去年的數據嗎有這邊有你們這個新的 |
transcript.whisperx[17].start |
412.723 |
transcript.whisperx[17].end |
420.711 |
transcript.whisperx[17].text |
新的數據現在還有更新的現在是866現在更新的是972到3月27號的是866現在已到上個禮拜是972972我們很努力的在做宣導所以這個部分這個宣導之外你們就是要去了解 |
transcript.whisperx[18].start |
438.123 |
transcript.whisperx[18].end |
450.671 |
transcript.whisperx[18].text |
原因啊原因是不是他就是刚才你的报告里面提的搅不起所以这个部分所以在这样的一个情况之下是不是可以思考 |
transcript.whisperx[19].start |
452.483 |
transcript.whisperx[19].end |
478.542 |
transcript.whisperx[19].text |
這個制度的調整制度的調整就原住民的部分也許就有一個制度的調整希望他們能夠講而起或怎麼樣去做鼓勵所以這個部分所以這個是一個你們在宣導的時候也了解一下原因是什麼好不好會 我們每次宣訪的時候都會收集相關的意見因為在這樣的一個比例如果從這個 |
transcript.whisperx[20].start |
484.29 |
transcript.whisperx[20].end |
500.729 |
transcript.whisperx[20].text |
783這是112年的10月31號的數字經過你們的努力之後到3月今年的3月27是866沒有增加多少 不到100嘛增加的然後你現在是900多嘛 900幾 |
transcript.whisperx[21].start |
503.411 |
transcript.whisperx[21].end |
527.48 |
transcript.whisperx[21].text |
現在是972然後現在的農保的人數也降低了大概是11995人所以那個比例有增加那是因為那個農民的人數我們參加的人數也增加了然後總農保的人數有稍微下降所以它是浮動的啦那我跟委員報告 |
transcript.whisperx[22].start |
528.82 |
transcript.whisperx[22].end |
551.202 |
transcript.whisperx[22].text |
整體看起來是百分之八好像比平均的還低但是有一些縣市幾乎都是零啦這個部分就是我們宣傳的重點那有一些縣市我想像嘉義的其實嘉義的其實有達到百分之五十然後剩下的有達到像台南的有達到百分之三十五桃園的有達到百分之二十五 |
transcript.whisperx[23].start |
551.903 |
transcript.whisperx[23].end |
567.331 |
transcript.whisperx[23].text |
但是因為有零的關係他會把整體的平均拉下來那這些資訊都是我們未來宣導的一個重點特別是針對比較比例比較低的部分好這個部分這個新的數據再提供給我好謝謝好謝謝現在請楊瓊英委員做詢答 |