iVOD / 161972

Field Value
IVOD_ID 161972
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161972
日期 2025-05-28
會議資料.會議代碼 委員會-11-3-19-15
會議資料.會議代碼:str 第11屆第3會期經濟委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-05-28T10:15:36+08:00
結束時間 2025-05-28T10:25:09+08:00
影片長度 00:09:33
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f24d879fe3ef5889cc01b5ee1b3bf308d2eb291a8f6a096732c6bec4195852848de5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 10:15:36 - 10:25:09
會議時間 2025-05-28T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。 二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 14.27346875
transcript.pyannote[0].end 16.75409375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 18.76221875
transcript.pyannote[1].end 18.94784375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 25.66409375
transcript.pyannote[2].end 26.23784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 26.47409375
transcript.pyannote[3].end 27.79034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 28.34721875
transcript.pyannote[4].end 30.03471875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 30.60846875
transcript.pyannote[5].end 33.54471875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 34.10159375
transcript.pyannote[6].end 38.65784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 38.79284375
transcript.pyannote[7].end 40.46346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 41.15534375
transcript.pyannote[8].end 49.67721875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 50.53784375
transcript.pyannote[9].end 50.85846875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 51.39846875
transcript.pyannote[10].end 52.47846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 52.69784375
transcript.pyannote[11].end 54.46971875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 55.29659375
transcript.pyannote[12].end 58.13159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 58.45221875
transcript.pyannote[13].end 59.61659375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 60.03846875
transcript.pyannote[14].end 64.91534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 65.50596875
transcript.pyannote[15].end 66.78846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 67.44659375
transcript.pyannote[16].end 69.48846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 70.11284375
transcript.pyannote[17].end 70.58534375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 71.39534375
transcript.pyannote[18].end 74.09534375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 74.44971875
transcript.pyannote[19].end 78.44909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 79.51221875
transcript.pyannote[20].end 81.53721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 82.17846875
transcript.pyannote[21].end 83.52846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 84.25409375
transcript.pyannote[22].end 86.19471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 86.61659375
transcript.pyannote[23].end 87.12284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 88.01721875
transcript.pyannote[24].end 89.01284375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 89.43471875
transcript.pyannote[25].end 93.51846875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 93.90659375
transcript.pyannote[26].end 96.58971875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 97.45034375
transcript.pyannote[27].end 100.80846875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 97.60221875
transcript.pyannote[28].end 98.22659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 101.82096875
transcript.pyannote[29].end 102.79971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 102.98534375
transcript.pyannote[30].end 106.44471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 106.96784375
transcript.pyannote[31].end 108.14909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 108.72284375
transcript.pyannote[32].end 110.49471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 110.98409375
transcript.pyannote[33].end 111.97971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 112.60409375
transcript.pyannote[34].end 113.12721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 113.86971875
transcript.pyannote[35].end 115.15221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 115.55721875
transcript.pyannote[36].end 117.39659375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 117.95346875
transcript.pyannote[37].end 118.72971875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 118.91534375
transcript.pyannote[38].end 120.65346875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 120.97409375
transcript.pyannote[39].end 121.64909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 122.42534375
transcript.pyannote[40].end 122.99909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 123.58971875
transcript.pyannote[41].end 124.90596875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 125.56409375
transcript.pyannote[42].end 126.10409375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 126.94784375
transcript.pyannote[43].end 127.90971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 128.83784375
transcript.pyannote[44].end 129.31034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 129.59721875
transcript.pyannote[45].end 130.74471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 131.85846875
transcript.pyannote[46].end 132.61784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 133.03971875
transcript.pyannote[47].end 135.50346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 136.00971875
transcript.pyannote[48].end 136.22909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 136.92096875
transcript.pyannote[49].end 140.88659375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 141.61221875
transcript.pyannote[50].end 143.77221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 144.12659375
transcript.pyannote[51].end 145.25721875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 146.03346875
transcript.pyannote[52].end 146.84346875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 148.44659375
transcript.pyannote[53].end 149.32409375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 149.71221875
transcript.pyannote[54].end 150.37034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 151.11284375
transcript.pyannote[55].end 151.46721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 151.80471875
transcript.pyannote[56].end 152.80034375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 153.18846875
transcript.pyannote[57].end 154.43721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 155.23034375
transcript.pyannote[58].end 155.63534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 156.66471875
transcript.pyannote[59].end 157.76159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 158.68971875
transcript.pyannote[60].end 159.93846875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 161.06909375
transcript.pyannote[61].end 161.79471875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 162.41909375
transcript.pyannote[62].end 165.38909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 165.72659375
transcript.pyannote[63].end 168.93284375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 169.52346875
transcript.pyannote[64].end 172.05471875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 172.57784375
transcript.pyannote[65].end 175.07534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 175.83471875
transcript.pyannote[66].end 179.96909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 180.42471875
transcript.pyannote[67].end 182.73659375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 183.31034375
transcript.pyannote[68].end 184.89659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 185.53784375
transcript.pyannote[69].end 188.25471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 189.06471875
transcript.pyannote[70].end 192.50721875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 193.31721875
transcript.pyannote[71].end 196.48971875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 196.65846875
transcript.pyannote[72].end 198.43034375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 199.00409375
transcript.pyannote[73].end 214.96784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 214.96784375
transcript.pyannote[74].end 222.05534375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 222.25784375
transcript.pyannote[75].end 229.02471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 229.31159375
transcript.pyannote[76].end 263.90534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 264.56346875
transcript.pyannote[77].end 265.03596875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 265.03596875
transcript.pyannote[78].end 267.04409375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 267.19596875
transcript.pyannote[79].end 269.72721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 269.84534375
transcript.pyannote[80].end 280.35846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 281.11784375
transcript.pyannote[81].end 284.49284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 285.28596875
transcript.pyannote[82].end 287.76659375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 288.45846875
transcript.pyannote[83].end 288.59346875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 289.06596875
transcript.pyannote[84].end 292.64346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 293.14971875
transcript.pyannote[85].end 295.57971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 296.05221875
transcript.pyannote[86].end 299.68034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 299.83221875
transcript.pyannote[87].end 308.80971875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 309.18096875
transcript.pyannote[88].end 309.72096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 309.72096875
transcript.pyannote[89].end 314.00721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 309.73784375
transcript.pyannote[90].end 310.49721875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 314.00721875
transcript.pyannote[91].end 315.40784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 314.15909375
transcript.pyannote[92].end 314.76659375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 315.66096875
transcript.pyannote[93].end 317.19659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 315.69471875
transcript.pyannote[94].end 317.28096875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 317.75346875
transcript.pyannote[95].end 323.33909375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 323.74409375
transcript.pyannote[96].end 325.04346875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 323.77784375
transcript.pyannote[97].end 334.49346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 325.09409375
transcript.pyannote[98].end 328.16534375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 328.30034375
transcript.pyannote[99].end 328.78971875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 332.19846875
transcript.pyannote[100].end 332.97471875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 334.57784375
transcript.pyannote[101].end 334.96596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 334.96596875
transcript.pyannote[102].end 334.98284375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 335.57346875
transcript.pyannote[103].end 335.60721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 335.60721875
transcript.pyannote[104].end 336.94034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 338.84721875
transcript.pyannote[105].end 339.48846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 339.80909375
transcript.pyannote[106].end 340.70346875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 341.24346875
transcript.pyannote[107].end 342.44159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 343.13346875
transcript.pyannote[108].end 345.31034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 346.23846875
transcript.pyannote[109].end 353.98409375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 354.49034375
transcript.pyannote[110].end 356.12721875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 356.22846875
transcript.pyannote[111].end 358.45596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 358.79346875
transcript.pyannote[112].end 363.68721875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 364.10909375
transcript.pyannote[113].end 366.10034375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 366.64034375
transcript.pyannote[114].end 370.30221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 370.99409375
transcript.pyannote[115].end 372.63096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 374.08221875
transcript.pyannote[116].end 375.02721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 375.31409375
transcript.pyannote[117].end 377.64284375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 378.03096875
transcript.pyannote[118].end 379.83659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 380.78159375
transcript.pyannote[119].end 383.19471875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 383.54909375
transcript.pyannote[120].end 384.30846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 384.78096875
transcript.pyannote[121].end 386.08034375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 386.55284375
transcript.pyannote[122].end 388.12221875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 388.34159375
transcript.pyannote[123].end 389.77596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 390.26534375
transcript.pyannote[124].end 391.21034375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 392.10471875
transcript.pyannote[125].end 393.79221875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 394.29846875
transcript.pyannote[126].end 397.16721875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 397.36971875
transcript.pyannote[127].end 399.27659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 399.83346875
transcript.pyannote[128].end 401.20034375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 401.20034375
transcript.pyannote[129].end 407.03909375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 401.21721875
transcript.pyannote[130].end 401.85846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 407.03909375
transcript.pyannote[131].end 407.91659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 408.45659375
transcript.pyannote[132].end 408.47346875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 408.47346875
transcript.pyannote[133].end 410.70096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 412.47284375
transcript.pyannote[134].end 413.53596875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 413.53596875
transcript.pyannote[135].end 413.62034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 414.37971875
transcript.pyannote[136].end 414.97034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 414.97034375
transcript.pyannote[137].end 419.76284375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 416.62409375
transcript.pyannote[138].end 418.64909375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 419.76284375
transcript.pyannote[139].end 423.96471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 423.96471875
transcript.pyannote[140].end 426.10784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 424.47096875
transcript.pyannote[141].end 431.22096875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 427.89659375
transcript.pyannote[142].end 428.60534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 431.91284375
transcript.pyannote[143].end 434.84909375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 435.64221875
transcript.pyannote[144].end 437.31284375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 438.03846875
transcript.pyannote[145].end 438.79784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 439.25346875
transcript.pyannote[146].end 442.81409375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 442.94909375
transcript.pyannote[147].end 443.79284375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 444.48471875
transcript.pyannote[148].end 445.56471875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 446.08784375
transcript.pyannote[149].end 448.19721875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 449.27721875
transcript.pyannote[150].end 450.98159375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 451.89284375
transcript.pyannote[151].end 453.05721875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 453.56346875
transcript.pyannote[152].end 454.01909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 454.55909375
transcript.pyannote[153].end 456.97221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 457.42784375
transcript.pyannote[154].end 469.52721875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 470.11784375
transcript.pyannote[155].end 479.34846875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 480.12471875
transcript.pyannote[156].end 480.68159375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 481.49159375
transcript.pyannote[157].end 483.31409375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 484.09034375
transcript.pyannote[158].end 488.19096875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 488.46096875
transcript.pyannote[159].end 494.90721875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 495.27846875
transcript.pyannote[160].end 498.55221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 498.88971875
transcript.pyannote[161].end 501.47159375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 503.24346875
transcript.pyannote[162].end 504.39096875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 504.39096875
transcript.pyannote[163].end 504.40784375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 505.03221875
transcript.pyannote[164].end 505.97721875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 505.97721875
transcript.pyannote[165].end 520.64159375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 508.06971875
transcript.pyannote[166].end 508.69409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 521.16471875
transcript.pyannote[167].end 524.38784375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 524.94471875
transcript.pyannote[168].end 528.10034375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 526.80096875
transcript.pyannote[169].end 527.54346875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 528.72471875
transcript.pyannote[170].end 541.41471875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 541.90409375
transcript.pyannote[171].end 548.16471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 548.50221875
transcript.pyannote[172].end 551.33721875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 551.86034375
transcript.pyannote[173].end 555.52221875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 555.77534375
transcript.pyannote[174].end 557.39534375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 557.69909375
transcript.pyannote[175].end 561.44534375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 561.93471875
transcript.pyannote[176].end 562.25534375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 562.25534375
transcript.pyannote[177].end 562.27221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 562.66034375
transcript.pyannote[178].end 564.02721875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 564.02721875
transcript.pyannote[179].end 567.57096875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 568.68471875
transcript.pyannote[180].end 572.32971875
transcript.whisperx[0].start 14.478
transcript.whisperx[0].end 16.581
transcript.whisperx[0].text 主席 各位委員 有請部長喂吼 部長好吼
transcript.whisperx[1].start 28.59
transcript.whisperx[1].end 54.258
transcript.whisperx[1].text 今天這個審查這個我們召委還有郭委員所提的農民退休儲金條例第七條的一個修正要特別把這個主管機關要提繳的部分提高為1.5倍改為1.5倍本來是相同的改為1.5倍農業部的這個報告裡面特別提到
transcript.whisperx[2].start 55.316
transcript.whisperx[2].end 61.398
transcript.whisperx[2].text 農民領取老農津貼籍農退儲金合計約38,479元這是每月勞工領取勞保老年給付加上勞工退休金合計約每個月33,095元
transcript.whisperx[3].start 79.591
transcript.whisperx[3].end 106.171
transcript.whisperx[3].text 你們做這樣的一個比較然後特別提到這個如果修正為這個1.5的話會再提高到45431影響不同職業間的橫貧性而事實上這個如果每一次做一個這個調整然後就要做比較的話那永遠就不能比
transcript.whisperx[4].start 107.365
transcript.whisperx[4].end 135.29
transcript.whisperx[4].text 農業就不能調啦所以是有時候是我們這邊調然後去帶動其他的比如說帶動勞工的調整都是有這個需要性何況勞工基本上勞工基本上他是這個每隔月每隔月領薪水啦平常的時候上班的還沒有退休的時候
transcript.whisperx[5].start 137.097
transcript.whisperx[5].end 161.348
transcript.whisperx[5].text 跟農民不一樣,農民是看天吃飯很重要的是看天吃飯,不只是看天啊還要看什麼還要看這個消費現在還要看什麼,誰要看美國對不對川普的經濟川普的關稅所以這個
transcript.whisperx[6].start 162.472
transcript.whisperx[6].end 187.585
transcript.whisperx[6].text 因素也很多啦因素也很多所以這個部分這個再請這個農業部好好的評估然後另外這裡面很重要的這個你們的報告裡面第三點提到經分析農民未參加農退儲金之原因與農民之儲息意願儲息能力有關這個就是平常他的收入有關係啦
transcript.whisperx[7].start 189.45
transcript.whisperx[7].end 212.953
transcript.whisperx[7].text 跟他平常跟我剛剛講的有關係所以這個部分是一個他不確定的收入也不像勞工每個月領不像公務連每個月領他不是所以他因素很多所以就會產生這樣的一個考量所以農業部是不是在好好的評估在支持
transcript.whisperx[8].start 213.813
transcript.whisperx[8].end 227.842
transcript.whisperx[8].text 我第一個跟委員報告我們農業部的立場絕對沒有否定包括協議院委員或國務委員等委員所提的提案那我剛才說的就是我們一開始會做先做客觀的分析那因為以
transcript.whisperx[9].start 229.703
transcript.whisperx[9].end 255.363
transcript.whisperx[9].text 農業部來講當然越高對農民越有利可是相對的當政策執行下去的時候也會考慮到跟其他的類似的這樣子一個方的條例或辦法的時候的橫平性所以我們這邊提到的所以我們會再做一些評估同時是不是能夠有一些也達到委員的期待然後有更好的方式也能夠增加更多的
transcript.whisperx[10].start 256.544
transcript.whisperx[10].end 284.191
transcript.whisperx[10].text 農民來參加這個除菌我想這是我們共同的目的啦我們一定會很仔細的去做更細部的一個分析這個部分一定不能光用數字去衡量去比較啦必須考量我剛剛講的這些很多的因素所以這個部分也請農業部這邊考量好另外就是這個我一再提的
transcript.whisperx[11].start 285.862
transcript.whisperx[11].end 308.541
transcript.whisperx[11].text 這是你們3月26號的報告施行農民退休儲金制度提繳收益人數累計約10.9萬人覆蓋率約33.7%所以光我們從這個跟勞工的就不一樣勞工的很高幾乎是百分之百因為它強制的嘛
transcript.whisperx[12].start 309.541
transcript.whisperx[12].end 336.084
transcript.whisperx[12].text 所以這個 老公只有16而已喔志願提交才16個而已喔他們只有16嗎 16我們農業參加退休出家對 那個可能是有包含的那個那個不是 那個叫什麼沒有 那個是雇主提領6%的這個部分我們算過了 這個是16%所以農民本身的一個宣導我們是有加強宣導的效果啦 對好 我們看這個
transcript.whisperx[13].start 339.106
transcript.whisperx[13].end 344.199
transcript.whisperx[13].text 這是今天的報告裡面裡面提到這個
transcript.whisperx[14].start 348.089
transcript.whisperx[14].end 372.104
transcript.whisperx[14].text 統計114年3月底曾經參加農退儲金受惠人數合計約11萬人含移領這個部分佔未滿65歲且經系統比對符合資格者比例約為49%這個也提高了是吧是這是很好的一個成效好我們看這個
transcript.whisperx[15].start 374.124
transcript.whisperx[15].end 377.326
transcript.whisperx[15].text 我還是要再為原住民的農民來記這個是之前的一個數字這個是112年10月31號的數字
transcript.whisperx[16].start 392.165
transcript.whisperx[16].end 403.859
transcript.whisperx[16].text 原住民農民提繳農退儲軍的只有佔百分之五點七真的是這個比例很高我跟委員更新一下這個數據您這邊的數據是去年的數據嗎有這邊有你們這個新的
transcript.whisperx[17].start 412.723
transcript.whisperx[17].end 420.711
transcript.whisperx[17].text 新的數據現在還有更新的現在是866現在更新的是972到3月27號的是866現在已到上個禮拜是972972我們很努力的在做宣導所以這個部分這個宣導之外你們就是要去了解
transcript.whisperx[18].start 438.123
transcript.whisperx[18].end 450.671
transcript.whisperx[18].text 原因啊原因是不是他就是刚才你的报告里面提的搅不起所以这个部分所以在这样的一个情况之下是不是可以思考
transcript.whisperx[19].start 452.483
transcript.whisperx[19].end 478.542
transcript.whisperx[19].text 這個制度的調整制度的調整就原住民的部分也許就有一個制度的調整希望他們能夠講而起或怎麼樣去做鼓勵所以這個部分所以這個是一個你們在宣導的時候也了解一下原因是什麼好不好會 我們每次宣訪的時候都會收集相關的意見因為在這樣的一個比例如果從這個
transcript.whisperx[20].start 484.29
transcript.whisperx[20].end 500.729
transcript.whisperx[20].text 783這是112年的10月31號的數字經過你們的努力之後到3月今年的3月27是866沒有增加多少 不到100嘛增加的然後你現在是900多嘛 900幾
transcript.whisperx[21].start 503.411
transcript.whisperx[21].end 527.48
transcript.whisperx[21].text 現在是972然後現在的農保的人數也降低了大概是11995人所以那個比例有增加那是因為那個農民的人數我們參加的人數也增加了然後總農保的人數有稍微下降所以它是浮動的啦那我跟委員報告
transcript.whisperx[22].start 528.82
transcript.whisperx[22].end 551.202
transcript.whisperx[22].text 整體看起來是百分之八好像比平均的還低但是有一些縣市幾乎都是零啦這個部分就是我們宣傳的重點那有一些縣市我想像嘉義的其實嘉義的其實有達到百分之五十然後剩下的有達到像台南的有達到百分之三十五桃園的有達到百分之二十五
transcript.whisperx[23].start 551.903
transcript.whisperx[23].end 567.331
transcript.whisperx[23].text 但是因為有零的關係他會把整體的平均拉下來那這些資訊都是我們未來宣導的一個重點特別是針對比較比例比較低的部分好這個部分這個新的數據再提供給我好謝謝好謝謝現在請楊瓊英委員做詢答