IVOD_ID |
161910 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161910 |
日期 |
2025-05-26 |
會議資料.會議代碼 |
委員會-11-3-26-13 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
13 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-26T10:18:28+08:00 |
結束時間 |
2025-05-26T10:31:06+08:00 |
影片長度 |
00:12:38 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/120d1ede7233a40a2e768b6e14a260e7330f39aabc087525d00acb659e6b7ab0d45d1968440bc2ef5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蘇清泉 |
委員發言時間 |
10:18:28 - 10:31:06 |
會議時間 |
2025-05-26T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議(事由:處理114年度中央政府總預算決議有關環境部主管預算凍結報告案142案(含報告事項134案及討論事項8案)。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
10.84784375 |
transcript.pyannote[0].end |
17.44596875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
13.54784375 |
transcript.pyannote[1].end |
14.89784375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
16.19721875 |
transcript.pyannote[2].end |
16.88909375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
18.71159375 |
transcript.pyannote[3].end |
19.28534375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
19.74096875 |
transcript.pyannote[4].end |
19.96034375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
20.66909375 |
transcript.pyannote[5].end |
22.55909375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
22.76159375 |
transcript.pyannote[6].end |
22.98096875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
24.75284375 |
transcript.pyannote[7].end |
25.24221875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
25.39409375 |
transcript.pyannote[8].end |
25.59659375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
27.67221875 |
transcript.pyannote[9].end |
28.81971875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
30.57471875 |
transcript.pyannote[10].end |
39.46784375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
40.12596875 |
transcript.pyannote[11].end |
46.99409375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
47.02784375 |
transcript.pyannote[12].end |
50.41971875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
50.74034375 |
transcript.pyannote[13].end |
51.11159375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
51.68534375 |
transcript.pyannote[14].end |
52.09034375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
52.69784375 |
transcript.pyannote[15].end |
54.23346875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
55.51596875 |
transcript.pyannote[16].end |
56.02221875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
56.39346875 |
transcript.pyannote[17].end |
57.54096875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
60.34221875 |
transcript.pyannote[18].end |
61.20284375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
64.17284375 |
transcript.pyannote[19].end |
66.02909375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
73.25159375 |
transcript.pyannote[20].end |
73.99409375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
77.53784375 |
transcript.pyannote[21].end |
78.51659375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
79.74846875 |
transcript.pyannote[22].end |
82.53284375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
84.72659375 |
transcript.pyannote[23].end |
88.87784375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
89.28284375 |
transcript.pyannote[24].end |
91.91534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
92.52284375 |
transcript.pyannote[25].end |
93.58596875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
94.36221875 |
transcript.pyannote[26].end |
96.21846875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
97.33221875 |
transcript.pyannote[27].end |
99.37409375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
100.26846875 |
transcript.pyannote[28].end |
107.57534375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
108.31784375 |
transcript.pyannote[29].end |
111.50721875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
112.75596875 |
transcript.pyannote[30].end |
114.79784375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
115.65846875 |
transcript.pyannote[31].end |
119.53971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
118.30784375 |
transcript.pyannote[32].end |
118.51034375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
119.70846875 |
transcript.pyannote[33].end |
124.99034375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
119.97846875 |
transcript.pyannote[34].end |
120.68721875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
127.18409375 |
transcript.pyannote[35].end |
127.97721875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
127.97721875 |
transcript.pyannote[36].end |
128.02784375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
128.02784375 |
transcript.pyannote[37].end |
128.44971875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
128.44971875 |
transcript.pyannote[38].end |
128.51721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
128.51721875 |
transcript.pyannote[39].end |
128.56784375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
128.56784375 |
transcript.pyannote[40].end |
133.19159375 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
129.49596875 |
transcript.pyannote[41].end |
129.52971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
129.52971875 |
transcript.pyannote[42].end |
131.03159375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
131.03159375 |
transcript.pyannote[43].end |
131.08221875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
133.93409375 |
transcript.pyannote[44].end |
134.65971875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
134.65971875 |
transcript.pyannote[45].end |
134.79471875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
134.79471875 |
transcript.pyannote[46].end |
134.81159375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
134.81159375 |
transcript.pyannote[47].end |
136.95471875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
134.86221875 |
transcript.pyannote[48].end |
135.92534375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
137.41034375 |
transcript.pyannote[49].end |
138.13596875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
139.06409375 |
transcript.pyannote[50].end |
152.93534375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
153.42471875 |
transcript.pyannote[51].end |
156.02346875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
156.05721875 |
transcript.pyannote[52].end |
157.15409375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
158.36909375 |
transcript.pyannote[53].end |
162.75659375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
163.29659375 |
transcript.pyannote[54].end |
164.39346875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
164.79846875 |
transcript.pyannote[55].end |
165.25409375 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
172.20659375 |
transcript.pyannote[56].end |
176.56034375 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
176.86409375 |
transcript.pyannote[57].end |
179.05784375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
179.36159375 |
transcript.pyannote[58].end |
181.35284375 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
182.80409375 |
transcript.pyannote[59].end |
184.50846875 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
184.89659375 |
transcript.pyannote[60].end |
188.25471875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
188.69346875 |
transcript.pyannote[61].end |
190.33034375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
190.33034375 |
transcript.pyannote[62].end |
190.66784375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
191.14034375 |
transcript.pyannote[63].end |
192.70971875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
193.51971875 |
transcript.pyannote[64].end |
199.72971875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
203.67846875 |
transcript.pyannote[65].end |
214.09034375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
214.86659375 |
transcript.pyannote[66].end |
216.18284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
216.35159375 |
transcript.pyannote[67].end |
218.89971875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
219.59159375 |
transcript.pyannote[68].end |
220.30034375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
220.72221875 |
transcript.pyannote[69].end |
224.23221875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
224.23221875 |
transcript.pyannote[70].end |
224.97471875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
224.97471875 |
transcript.pyannote[71].end |
244.48221875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
240.24659375 |
transcript.pyannote[72].end |
240.82034375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
244.71846875 |
transcript.pyannote[73].end |
245.25846875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
247.85721875 |
transcript.pyannote[74].end |
250.65846875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
251.09721875 |
transcript.pyannote[75].end |
252.17721875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
254.55659375 |
transcript.pyannote[76].end |
270.90846875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
271.09409375 |
transcript.pyannote[77].end |
274.77284375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
274.99221875 |
transcript.pyannote[78].end |
280.93221875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
280.94909375 |
transcript.pyannote[79].end |
280.98284375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
281.53971875 |
transcript.pyannote[80].end |
286.82159375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
287.37846875 |
transcript.pyannote[81].end |
288.69471875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
289.25159375 |
transcript.pyannote[82].end |
322.10721875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
297.40221875 |
transcript.pyannote[83].end |
298.76909375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
298.76909375 |
transcript.pyannote[84].end |
299.03909375 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
299.03909375 |
transcript.pyannote[85].end |
299.68034375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
322.37721875 |
transcript.pyannote[86].end |
332.46846875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
334.54409375 |
transcript.pyannote[87].end |
339.03284375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
339.79221875 |
transcript.pyannote[88].end |
341.36159375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
341.66534375 |
transcript.pyannote[89].end |
346.96409375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
347.48721875 |
transcript.pyannote[90].end |
350.72721875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
351.13221875 |
transcript.pyannote[91].end |
352.29659375 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
352.51596875 |
transcript.pyannote[92].end |
369.28971875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
369.59346875 |
transcript.pyannote[93].end |
387.00846875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
385.86096875 |
transcript.pyannote[94].end |
389.37096875 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
389.37096875 |
transcript.pyannote[95].end |
389.47221875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
389.47221875 |
transcript.pyannote[96].end |
391.85159375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
392.20596875 |
transcript.pyannote[97].end |
392.74596875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
392.89784375 |
transcript.pyannote[98].end |
401.08221875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
401.28471875 |
transcript.pyannote[99].end |
418.37909375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
418.51409375 |
transcript.pyannote[100].end |
418.73346875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
418.90221875 |
transcript.pyannote[101].end |
423.05346875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
422.85096875 |
transcript.pyannote[102].end |
427.64346875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
428.18346875 |
transcript.pyannote[103].end |
435.65909375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
437.07659375 |
transcript.pyannote[104].end |
441.85221875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
442.18971875 |
transcript.pyannote[105].end |
442.91534375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
444.51846875 |
transcript.pyannote[106].end |
467.35034375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
467.73846875 |
transcript.pyannote[107].end |
469.61159375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
470.10096875 |
transcript.pyannote[108].end |
473.74596875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
474.43784375 |
transcript.pyannote[109].end |
475.18034375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
475.95659375 |
transcript.pyannote[110].end |
481.00221875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
481.00221875 |
transcript.pyannote[111].end |
495.26159375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
494.04659375 |
transcript.pyannote[112].end |
497.23596875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
497.03346875 |
transcript.pyannote[113].end |
499.27784375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
497.70846875 |
transcript.pyannote[114].end |
502.16346875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
501.87659375 |
transcript.pyannote[115].end |
502.88909375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
502.60221875 |
transcript.pyannote[116].end |
503.81721875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
503.81721875 |
transcript.pyannote[117].end |
505.04909375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
505.42034375 |
transcript.pyannote[118].end |
506.61846875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
507.22596875 |
transcript.pyannote[119].end |
508.99784375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
509.80784375 |
transcript.pyannote[120].end |
512.89596875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
513.46971875 |
transcript.pyannote[121].end |
514.22909375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
514.48221875 |
transcript.pyannote[122].end |
532.50471875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
532.63971875 |
transcript.pyannote[123].end |
544.45221875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
536.36909375 |
transcript.pyannote[124].end |
537.41534375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
544.45221875 |
transcript.pyannote[125].end |
545.41409375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
545.48159375 |
transcript.pyannote[126].end |
548.85659375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
549.59909375 |
transcript.pyannote[127].end |
557.91846875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
553.78409375 |
transcript.pyannote[128].end |
555.48846875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
555.89346875 |
transcript.pyannote[129].end |
555.92721875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
557.91846875 |
transcript.pyannote[130].end |
559.79159375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
559.67346875 |
transcript.pyannote[131].end |
562.05284375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
562.72784375 |
transcript.pyannote[132].end |
570.25409375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
569.84909375 |
transcript.pyannote[133].end |
570.72659375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
570.72659375 |
transcript.pyannote[134].end |
573.76409375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
573.89909375 |
transcript.pyannote[135].end |
575.38409375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
575.50221875 |
transcript.pyannote[136].end |
577.93221875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
578.01659375 |
transcript.pyannote[137].end |
595.31346875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
595.56659375 |
transcript.pyannote[138].end |
600.40971875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
601.27034375 |
transcript.pyannote[139].end |
605.48909375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
605.23596875 |
transcript.pyannote[140].end |
610.77096875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
608.52659375 |
transcript.pyannote[141].end |
608.69534375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
610.77096875 |
transcript.pyannote[142].end |
611.15909375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
611.09159375 |
transcript.pyannote[143].end |
613.94346875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
613.58909375 |
transcript.pyannote[144].end |
614.61846875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
614.68596875 |
transcript.pyannote[145].end |
616.54221875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
616.89659375 |
transcript.pyannote[146].end |
625.09784375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
625.70534375 |
transcript.pyannote[147].end |
628.70909375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
629.02971875 |
transcript.pyannote[148].end |
631.96596875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
632.80971875 |
transcript.pyannote[149].end |
635.18909375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
635.07096875 |
transcript.pyannote[150].end |
640.69034375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
640.69034375 |
transcript.pyannote[151].end |
640.97721875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
640.80846875 |
transcript.pyannote[152].end |
648.97596875 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
640.97721875 |
transcript.pyannote[153].end |
641.01096875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
647.69346875 |
transcript.pyannote[154].end |
657.24471875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
657.80159375 |
transcript.pyannote[155].end |
662.52659375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
662.93159375 |
transcript.pyannote[156].end |
665.93534375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
665.58096875 |
transcript.pyannote[157].end |
667.42034375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
667.31909375 |
transcript.pyannote[158].end |
678.55784375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
667.77471875 |
transcript.pyannote[159].end |
668.12909375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
678.55784375 |
transcript.pyannote[160].end |
678.74346875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
678.74346875 |
transcript.pyannote[161].end |
681.08909375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
681.08909375 |
transcript.pyannote[162].end |
686.13471875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
681.17346875 |
transcript.pyannote[163].end |
681.46034375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
685.72971875 |
transcript.pyannote[164].end |
688.44659375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
688.71659375 |
transcript.pyannote[165].end |
689.18909375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
689.25659375 |
transcript.pyannote[166].end |
689.76284375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
690.08346875 |
transcript.pyannote[167].end |
692.12534375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
693.13784375 |
transcript.pyannote[168].end |
693.84659375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
694.40346875 |
transcript.pyannote[169].end |
695.87159375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
696.14159375 |
transcript.pyannote[170].end |
704.74784375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
705.25409375 |
transcript.pyannote[171].end |
706.87409375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
707.75159375 |
transcript.pyannote[172].end |
709.06784375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
709.32096875 |
transcript.pyannote[173].end |
717.67409375 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
718.29846875 |
transcript.pyannote[174].end |
722.21346875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
722.51721875 |
transcript.pyannote[175].end |
727.88346875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
729.68909375 |
transcript.pyannote[176].end |
732.59159375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
732.69284375 |
transcript.pyannote[177].end |
734.48159375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
734.85284375 |
transcript.pyannote[178].end |
736.57409375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
737.08034375 |
transcript.pyannote[179].end |
743.47596875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
743.47596875 |
transcript.pyannote[180].end |
743.52659375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
743.52659375 |
transcript.pyannote[181].end |
746.32784375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
746.19284375 |
transcript.pyannote[182].end |
750.49596875 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
751.22159375 |
transcript.pyannote[183].end |
753.87096875 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
753.55034375 |
transcript.pyannote[184].end |
755.32221875 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
756.04784375 |
transcript.pyannote[185].end |
758.19096875 |
transcript.whisperx[0].start |
10.868 |
transcript.whisperx[0].end |
38.057 |
transcript.whisperx[0].text |
好 謝謝主席 我請部長請部長我們袁 袁 袁 袁 袁署長袁署長我今天三個問題請教你第一個 來這是我們的離島可能很多人不知道我們全台灣的離島的垃圾全部都運到台灣本島來處理 |
transcript.whisperx[1].start |
40.205 |
transcript.whisperx[1].end |
57.7 |
transcript.whisperx[1].text |
包括屏東的小琉球、綠島、蘭嶼包括連澎湖、金門、農莊、上場等等對不對對啦好來我先疊一下齁這個把它放大可以嗎我都放大吧那個結算齁 |
transcript.whisperx[2].start |
73.311 |
transcript.whisperx[2].end |
74.291 |
transcript.whisperx[2].text |
我們用小琉球為例它有兩個處理垃圾的委外案第一個就是垃圾轉運站營運管理這個議案 |
transcript.whisperx[3].start |
100.845 |
transcript.whisperx[3].end |
106.73 |
transcript.whisperx[3].text |
議案就是一般廢棄物轉運期監督我想所有的理事長都會這樣做啦這兩個案子 保證你看看這是34億的 |
transcript.whisperx[4].start |
115.809 |
transcript.whisperx[4].end |
135.659 |
transcript.whisperx[4].text |
你嚇死人了,你嚇到乎聾了啦不可能那麼多啦千萬百萬千萬億十億三百四十二萬三百四十二萬啦?不可能啦,抱歉啊你的招標案,你看看招標案 |
transcript.whisperx[5].start |
139.547 |
transcript.whisperx[5].end |
154.594 |
transcript.whisperx[5].text |
跟委員報告,這顯然是錯誤,屏東環保局可能在打的時候打錯我們同仁也有通知他,他現在應該是342萬,已經請他改正了你的招標是4百69萬,人家都有在看,你也這樣輪步一段,被人家笑死了另外一間,還有多少? |
transcript.whisperx[6].start |
172.387 |
transcript.whisperx[6].end |
197.899 |
transcript.whisperx[6].text |
發委員 剛才所指的兩個案子齁 它其實是同一筆同一個...一個...所以是兩個案子還是一個案子?它是...它是...它分兩個計畫 但是是同一個案 這樣子同一個案子 兩個計畫?是所以兩個報告是一樣?欸 它...它會分別齁 它有一個轉運計畫嘛 一個管理計畫兩個還是... |
transcript.whisperx[7].start |
204.744 |
transcript.whisperx[7].end |
210.426 |
transcript.whisperx[7].text |
對兩個的報告是一樣我看到所以這個我們在留學後我們就去實際考察我們看那個垃圾 |
transcript.whisperx[8].start |
214.912 |
transcript.whisperx[8].end |
243.899 |
transcript.whisperx[8].text |
打包之後弄到船然後就到鹽埔漁港然後車子就載出來嘛是是有的車子是就直接載車子就從小琉球然後那個車子就直接開到接駁船上面然後船就拉著走然後到東港到新衍這邊就直接開出去了是這樣嘛是是所以這是把他聽成一個慣例一個操作這樣喔 |
transcript.whisperx[9].start |
247.883 |
transcript.whisperx[9].end |
251.808 |
transcript.whisperx[9].text |
市長他們一直要求多一點的資源,你覺得怎麼樣? |
transcript.whisperx[10].start |
254.759 |
transcript.whisperx[10].end |
273.461 |
transcript.whisperx[10].text |
報告委員小琉球的要求我們會再考慮檢討不過目前小琉球的運輸費用是全國最高他甚至比金門運回來還要貴這個部分可能還要檢討一下我們看他的實際的需求 |
transcript.whisperx[11].start |
275.063 |
transcript.whisperx[11].end |
294.698 |
transcript.whisperx[11].text |
因為他的遊客真的是非常多民宿現在已經400多家了遊客很多,布朗也都去過所以這個督導是你們撥錢給屏東縣環保局,環保局去執行所以這個錢100%都是你們給的 |
transcript.whisperx[12].start |
301.443 |
transcript.whisperx[12].end |
318.873 |
transcript.whisperx[12].text |
好那這個要加強那第二個我們防管署我們在第18項第18款第4項第18款第5項黨團的這一些凍結案我就統一起來問剛剛很多委員問了很多 |
transcript.whisperx[13].start |
322.535 |
transcript.whisperx[13].end |
326.6 |
transcript.whisperx[13].text |
在垃圾不漏地的這一項到登革熱颱風現在又來了你有什麼想法跟做法 |
transcript.whisperx[14].start |
334.731 |
transcript.whisperx[14].end |
351.983 |
transcript.whisperx[14].text |
再來一些工廠的VOC等等這些有沒有什麼想法是 向委員報告其實在我們的登革熱防制上面我們在北中南從去年開始每一年分為北中南 |
transcript.whisperx[15].start |
352.583 |
transcript.whisperx[15].end |
371.522 |
transcript.whisperx[15].text |
各實施實兵演練那這些實兵演練就是大家在別的縣市如果機具由我們調度到現場不管是災害或者是這個登革熱等等之類的那這種高師演練跟現場演練北中南山區各有責任區我們做演練 |
transcript.whisperx[16].start |
372.242 |
transcript.whisperx[16].end |
400.597 |
transcript.whisperx[16].text |
那在工廠的VOC上面我們是以科技執法那在我們的年度預算裡面也有顯示在上面希望透過遠端的監控方式來做處理這個是一個科技執法的一個那所以你跟各縣市的環保局都有在監控這些瓶瓶罐罐啊颱風過後像這樣這兩天雨這樣下那些清除都有在監控嗎 |
transcript.whisperx[17].start |
401.397 |
transcript.whisperx[17].end |
426.977 |
transcript.whisperx[17].text |
是 這一個它清除完畢會跟我們回報它的數量當然我們也是有一個系統來如果哪一個縣市它有需要資源的話我們會去調度其他的資源或其他縣市來做資源清除所以如果他們做得好有評比 有獎勵 有沒有有 我們在年度的績效評比制度裡面是有這一項的 |
transcript.whisperx[18].start |
428.883 |
transcript.whisperx[18].end |
434.625 |
transcript.whisperx[18].text |
第三個問題就是我要問部長你剛剛一直在講的環境跟AI的監控你現在做的是有做到哪一些AI的 |
transcript.whisperx[19].start |
444.582 |
transcript.whisperx[19].end |
467.122 |
transcript.whisperx[19].text |
AI第一個是說我們那個對於空瓶的預測例如說現在PM2.5多少像我自己我是敏感體質啊我PM2.5我就設定20以上就會push給我啊那個呢就經過AI去算未來會到20例如說他一直提升他就會主動去推估未來多少那我就手機就會收到啊這個就保障每個人的健康 |
transcript.whisperx[20].start |
467.793 |
transcript.whisperx[20].end |
494.775 |
transcript.whisperx[20].text |
那各縣市的這些data如果是有超過預警值你們的署長啊你們的高階的人會顯示你的手機會顯示出來嗎有有我舉例例如說要是發生火災啊火災往哪裡飄那個煙往哪裡飄我們大概即時都會得到回報消防署會給我們那我們也有自己的所以這個都會提醒來預警做超前的部署 |
transcript.whisperx[21].start |
494.975 |
transcript.whisperx[21].end |
512.492 |
transcript.whisperx[21].text |
有危險值的通報對不對有有有我們自己內部都有可以看得到你看你的手機就會顯示出來對三更半夜也都有也都有對這樣的話那你剛剛另外一個講說家庭裡面也會產生PM2.5你是在說什麼 |
transcript.whisperx[22].start |
515.377 |
transcript.whisperx[22].end |
532.182 |
transcript.whisperx[22].text |
沒有啦,我們開一個GAS,開豬柴,一直砰,那個就是等於是燒天然氣嘛,其實那個時候PM2.5就會跳起來,我們有算過大概會到三四十啦,為客啦,因為差不多家裡如果你很乾淨的話,大概都是十以下, |
transcript.whisperx[23].start |
532.722 |
transcript.whisperx[23].end |
545.15 |
transcript.whisperx[23].text |
我們家裡用的那個液態那個是滋味瓦斯一桶一桶那個是中國石油公司煉油的時候所產生的副產品那我們剛剛一直在講那瓦斯船 |
transcript.whisperx[24].start |
549.696 |
transcript.whisperx[24].end |
577.738 |
transcript.whisperx[24].text |
再來要給台灣發電用的那個是液態天然氣那個兩個來源是不同的但是它原理是類似的當然但是這是石油在蒸餾的時候在分類的時候從傘層的那一個瓦斯應該講瓦斯它裡面應該是比液態天然氣還多樣化裡面的化學物質可能會更多 |
transcript.whisperx[25].start |
578.418 |
transcript.whisperx[25].end |
599.968 |
transcript.whisperx[25].text |
我們家裡面的其實也不少我們現在會啟動研究調查啦就是說因為像其實有人說要家裡要換電磁爐會比較好啦但是也有一些國外研究說沒差是你要吃什麼例如說國外有研究肩培根PM2.5可以到2000啦所以這個其實我們一直很想要用健康的觀點來保障每個國人的健康 |
transcript.whisperx[26].start |
601.388 |
transcript.whisperx[26].end |
624.825 |
transcript.whisperx[26].text |
就是說炸豬排啊那個其實PM2.5的都在美國你看到很多用電爐啦他們都220的230齁他們都用電爐很少像我們用炸的用炸的那我們的瓦斯就是桶裝的瓦斯或天然瓦斯自來瓦斯我在想裡面因為是煉油的過程所產生的 |
transcript.whisperx[27].start |
626.086 |
transcript.whisperx[27].end |
640.832 |
transcript.whisperx[27].text |
附加物它裡面可能會比液態天然氣還多樣化化學成分會更多有沒有研究過這個包委員這個部分國內的調查我有問我同仁目前過去調查的很少很少 |
transcript.whisperx[28].start |
641.152 |
transcript.whisperx[28].end |
652.879 |
transcript.whisperx[28].text |
像我們洗熱水澡也是用瓦斯其實也會產生出來其實生活裡面的這個就是我們我們要調查的所以這個你要往這個方面研究就是說你這台車輸了你現在燒出來的東西燒不完整不完全燃燒 |
transcript.whisperx[29].start |
657.982 |
transcript.whisperx[29].end |
678.044 |
transcript.whisperx[29].text |
為什麼冬天關個窗戶洗個熱水澡就會熄人那都是這樣是不是有其他的化學物質那是一氧化碳中毒當然你說一氧化碳但是我覺得它稍微有很多稍微不完整的那些稍微不完全的那些化學物質搞不好那裡面有一二十種成分 |
transcript.whisperx[30].start |
679.085 |
transcript.whisperx[30].end |
706.337 |
transcript.whisperx[30].text |
所以這個環保署你要去研究這個啦是是 我現在我們今年會有一個重點就是健康啦 健康的市長 你可能要去做一些研究啦 好不好好 那最後一個就是我們屏東剛才 王一民講得很大聲齁這些煤 這些發電廠一直漂漂漂齁我一直從小到現在那個臨沿石化工業區齁我對它真的是很 很 |
transcript.whisperx[31].start |
707.777 |
transcript.whisperx[31].end |
710.318 |
transcript.whisperx[31].text |
就給你小的啦,真的迷茫茫,天空那裡,星農那裡,這麼多肺部的問題啦我跟那邊是絕對的關係啦,那你新達大林飄過來的那屏東本身,你說你用AI在監控,那些農業機械什麼 |
transcript.whisperx[32].start |
730.402 |
transcript.whisperx[32].end |
752.242 |
transcript.whisperx[32].text |
有的時候如果用柴油燒很多的民眾例如說操作的農民如果用柴油燒積聚的話那個對身體還是不好啦所以這個其實我們以後也要來注意啦我有發現到這一塊所以我們一起來研究看看好 謝謝 |