iVOD / 161910

Field Value
IVOD_ID 161910
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161910
日期 2025-05-26
會議資料.會議代碼 委員會-11-3-26-13
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-05-26T10:18:28+08:00
結束時間 2025-05-26T10:31:06+08:00
影片長度 00:12:38
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/120d1ede7233a40a2e768b6e14a260e7330f39aabc087525d00acb659e6b7ab0d45d1968440bc2ef5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:18:28 - 10:31:06
會議時間 2025-05-26T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第13次全體委員會議(事由:處理114年度中央政府總預算決議有關環境部主管預算凍結報告案142案(含報告事項134案及討論事項8案)。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 10.84784375
transcript.pyannote[0].end 17.44596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 13.54784375
transcript.pyannote[1].end 14.89784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.19721875
transcript.pyannote[2].end 16.88909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 18.71159375
transcript.pyannote[3].end 19.28534375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 19.74096875
transcript.pyannote[4].end 19.96034375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 20.66909375
transcript.pyannote[5].end 22.55909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 22.76159375
transcript.pyannote[6].end 22.98096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 24.75284375
transcript.pyannote[7].end 25.24221875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 25.39409375
transcript.pyannote[8].end 25.59659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 27.67221875
transcript.pyannote[9].end 28.81971875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 30.57471875
transcript.pyannote[10].end 39.46784375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 40.12596875
transcript.pyannote[11].end 46.99409375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 47.02784375
transcript.pyannote[12].end 50.41971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 50.74034375
transcript.pyannote[13].end 51.11159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 51.68534375
transcript.pyannote[14].end 52.09034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 52.69784375
transcript.pyannote[15].end 54.23346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 55.51596875
transcript.pyannote[16].end 56.02221875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 56.39346875
transcript.pyannote[17].end 57.54096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 60.34221875
transcript.pyannote[18].end 61.20284375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 64.17284375
transcript.pyannote[19].end 66.02909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 73.25159375
transcript.pyannote[20].end 73.99409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 77.53784375
transcript.pyannote[21].end 78.51659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 79.74846875
transcript.pyannote[22].end 82.53284375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 84.72659375
transcript.pyannote[23].end 88.87784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 89.28284375
transcript.pyannote[24].end 91.91534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 92.52284375
transcript.pyannote[25].end 93.58596875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 94.36221875
transcript.pyannote[26].end 96.21846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 97.33221875
transcript.pyannote[27].end 99.37409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 100.26846875
transcript.pyannote[28].end 107.57534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 108.31784375
transcript.pyannote[29].end 111.50721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 112.75596875
transcript.pyannote[30].end 114.79784375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 115.65846875
transcript.pyannote[31].end 119.53971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 118.30784375
transcript.pyannote[32].end 118.51034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 119.70846875
transcript.pyannote[33].end 124.99034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 119.97846875
transcript.pyannote[34].end 120.68721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 127.18409375
transcript.pyannote[35].end 127.97721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 127.97721875
transcript.pyannote[36].end 128.02784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 128.02784375
transcript.pyannote[37].end 128.44971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 128.44971875
transcript.pyannote[38].end 128.51721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 128.51721875
transcript.pyannote[39].end 128.56784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 128.56784375
transcript.pyannote[40].end 133.19159375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 129.49596875
transcript.pyannote[41].end 129.52971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 129.52971875
transcript.pyannote[42].end 131.03159375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 131.03159375
transcript.pyannote[43].end 131.08221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 133.93409375
transcript.pyannote[44].end 134.65971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 134.65971875
transcript.pyannote[45].end 134.79471875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 134.79471875
transcript.pyannote[46].end 134.81159375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 134.81159375
transcript.pyannote[47].end 136.95471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 134.86221875
transcript.pyannote[48].end 135.92534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 137.41034375
transcript.pyannote[49].end 138.13596875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 139.06409375
transcript.pyannote[50].end 152.93534375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 153.42471875
transcript.pyannote[51].end 156.02346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 156.05721875
transcript.pyannote[52].end 157.15409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 158.36909375
transcript.pyannote[53].end 162.75659375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 163.29659375
transcript.pyannote[54].end 164.39346875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 164.79846875
transcript.pyannote[55].end 165.25409375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 172.20659375
transcript.pyannote[56].end 176.56034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 176.86409375
transcript.pyannote[57].end 179.05784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 179.36159375
transcript.pyannote[58].end 181.35284375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 182.80409375
transcript.pyannote[59].end 184.50846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 184.89659375
transcript.pyannote[60].end 188.25471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 188.69346875
transcript.pyannote[61].end 190.33034375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 190.33034375
transcript.pyannote[62].end 190.66784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 191.14034375
transcript.pyannote[63].end 192.70971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 193.51971875
transcript.pyannote[64].end 199.72971875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 203.67846875
transcript.pyannote[65].end 214.09034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 214.86659375
transcript.pyannote[66].end 216.18284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 216.35159375
transcript.pyannote[67].end 218.89971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 219.59159375
transcript.pyannote[68].end 220.30034375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 220.72221875
transcript.pyannote[69].end 224.23221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 224.23221875
transcript.pyannote[70].end 224.97471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 224.97471875
transcript.pyannote[71].end 244.48221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 240.24659375
transcript.pyannote[72].end 240.82034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 244.71846875
transcript.pyannote[73].end 245.25846875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 247.85721875
transcript.pyannote[74].end 250.65846875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 251.09721875
transcript.pyannote[75].end 252.17721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 254.55659375
transcript.pyannote[76].end 270.90846875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 271.09409375
transcript.pyannote[77].end 274.77284375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 274.99221875
transcript.pyannote[78].end 280.93221875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 280.94909375
transcript.pyannote[79].end 280.98284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 281.53971875
transcript.pyannote[80].end 286.82159375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 287.37846875
transcript.pyannote[81].end 288.69471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 289.25159375
transcript.pyannote[82].end 322.10721875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 297.40221875
transcript.pyannote[83].end 298.76909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 298.76909375
transcript.pyannote[84].end 299.03909375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 299.03909375
transcript.pyannote[85].end 299.68034375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 322.37721875
transcript.pyannote[86].end 332.46846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 334.54409375
transcript.pyannote[87].end 339.03284375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 339.79221875
transcript.pyannote[88].end 341.36159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 341.66534375
transcript.pyannote[89].end 346.96409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 347.48721875
transcript.pyannote[90].end 350.72721875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 351.13221875
transcript.pyannote[91].end 352.29659375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 352.51596875
transcript.pyannote[92].end 369.28971875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 369.59346875
transcript.pyannote[93].end 387.00846875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 385.86096875
transcript.pyannote[94].end 389.37096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 389.37096875
transcript.pyannote[95].end 389.47221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 389.47221875
transcript.pyannote[96].end 391.85159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 392.20596875
transcript.pyannote[97].end 392.74596875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 392.89784375
transcript.pyannote[98].end 401.08221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 401.28471875
transcript.pyannote[99].end 418.37909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 418.51409375
transcript.pyannote[100].end 418.73346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 418.90221875
transcript.pyannote[101].end 423.05346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 422.85096875
transcript.pyannote[102].end 427.64346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 428.18346875
transcript.pyannote[103].end 435.65909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 437.07659375
transcript.pyannote[104].end 441.85221875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 442.18971875
transcript.pyannote[105].end 442.91534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 444.51846875
transcript.pyannote[106].end 467.35034375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 467.73846875
transcript.pyannote[107].end 469.61159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 470.10096875
transcript.pyannote[108].end 473.74596875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 474.43784375
transcript.pyannote[109].end 475.18034375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 475.95659375
transcript.pyannote[110].end 481.00221875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 481.00221875
transcript.pyannote[111].end 495.26159375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 494.04659375
transcript.pyannote[112].end 497.23596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 497.03346875
transcript.pyannote[113].end 499.27784375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 497.70846875
transcript.pyannote[114].end 502.16346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 501.87659375
transcript.pyannote[115].end 502.88909375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 502.60221875
transcript.pyannote[116].end 503.81721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 503.81721875
transcript.pyannote[117].end 505.04909375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 505.42034375
transcript.pyannote[118].end 506.61846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 507.22596875
transcript.pyannote[119].end 508.99784375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 509.80784375
transcript.pyannote[120].end 512.89596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 513.46971875
transcript.pyannote[121].end 514.22909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 514.48221875
transcript.pyannote[122].end 532.50471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 532.63971875
transcript.pyannote[123].end 544.45221875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 536.36909375
transcript.pyannote[124].end 537.41534375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 544.45221875
transcript.pyannote[125].end 545.41409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 545.48159375
transcript.pyannote[126].end 548.85659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 549.59909375
transcript.pyannote[127].end 557.91846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 553.78409375
transcript.pyannote[128].end 555.48846875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 555.89346875
transcript.pyannote[129].end 555.92721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 557.91846875
transcript.pyannote[130].end 559.79159375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 559.67346875
transcript.pyannote[131].end 562.05284375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 562.72784375
transcript.pyannote[132].end 570.25409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 569.84909375
transcript.pyannote[133].end 570.72659375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 570.72659375
transcript.pyannote[134].end 573.76409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 573.89909375
transcript.pyannote[135].end 575.38409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 575.50221875
transcript.pyannote[136].end 577.93221875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 578.01659375
transcript.pyannote[137].end 595.31346875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 595.56659375
transcript.pyannote[138].end 600.40971875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 601.27034375
transcript.pyannote[139].end 605.48909375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 605.23596875
transcript.pyannote[140].end 610.77096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 608.52659375
transcript.pyannote[141].end 608.69534375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 610.77096875
transcript.pyannote[142].end 611.15909375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 611.09159375
transcript.pyannote[143].end 613.94346875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 613.58909375
transcript.pyannote[144].end 614.61846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 614.68596875
transcript.pyannote[145].end 616.54221875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 616.89659375
transcript.pyannote[146].end 625.09784375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 625.70534375
transcript.pyannote[147].end 628.70909375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 629.02971875
transcript.pyannote[148].end 631.96596875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 632.80971875
transcript.pyannote[149].end 635.18909375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 635.07096875
transcript.pyannote[150].end 640.69034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 640.69034375
transcript.pyannote[151].end 640.97721875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 640.80846875
transcript.pyannote[152].end 648.97596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 640.97721875
transcript.pyannote[153].end 641.01096875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 647.69346875
transcript.pyannote[154].end 657.24471875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 657.80159375
transcript.pyannote[155].end 662.52659375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 662.93159375
transcript.pyannote[156].end 665.93534375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 665.58096875
transcript.pyannote[157].end 667.42034375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 667.31909375
transcript.pyannote[158].end 678.55784375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 667.77471875
transcript.pyannote[159].end 668.12909375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 678.55784375
transcript.pyannote[160].end 678.74346875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 678.74346875
transcript.pyannote[161].end 681.08909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 681.08909375
transcript.pyannote[162].end 686.13471875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 681.17346875
transcript.pyannote[163].end 681.46034375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 685.72971875
transcript.pyannote[164].end 688.44659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 688.71659375
transcript.pyannote[165].end 689.18909375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 689.25659375
transcript.pyannote[166].end 689.76284375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 690.08346875
transcript.pyannote[167].end 692.12534375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 693.13784375
transcript.pyannote[168].end 693.84659375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 694.40346875
transcript.pyannote[169].end 695.87159375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 696.14159375
transcript.pyannote[170].end 704.74784375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 705.25409375
transcript.pyannote[171].end 706.87409375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 707.75159375
transcript.pyannote[172].end 709.06784375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 709.32096875
transcript.pyannote[173].end 717.67409375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 718.29846875
transcript.pyannote[174].end 722.21346875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 722.51721875
transcript.pyannote[175].end 727.88346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 729.68909375
transcript.pyannote[176].end 732.59159375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 732.69284375
transcript.pyannote[177].end 734.48159375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 734.85284375
transcript.pyannote[178].end 736.57409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 737.08034375
transcript.pyannote[179].end 743.47596875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 743.47596875
transcript.pyannote[180].end 743.52659375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 743.52659375
transcript.pyannote[181].end 746.32784375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 746.19284375
transcript.pyannote[182].end 750.49596875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 751.22159375
transcript.pyannote[183].end 753.87096875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 753.55034375
transcript.pyannote[184].end 755.32221875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 756.04784375
transcript.pyannote[185].end 758.19096875
transcript.whisperx[0].start 10.868
transcript.whisperx[0].end 38.057
transcript.whisperx[0].text 好 謝謝主席 我請部長請部長我們袁 袁 袁 袁 袁署長袁署長我今天三個問題請教你第一個 來這是我們的離島可能很多人不知道我們全台灣的離島的垃圾全部都運到台灣本島來處理
transcript.whisperx[1].start 40.205
transcript.whisperx[1].end 57.7
transcript.whisperx[1].text 包括屏東的小琉球、綠島、蘭嶼包括連澎湖、金門、農莊、上場等等對不對對啦好來我先疊一下齁這個把它放大可以嗎我都放大吧那個結算齁
transcript.whisperx[2].start 73.311
transcript.whisperx[2].end 74.291
transcript.whisperx[2].text 我們用小琉球為例它有兩個處理垃圾的委外案第一個就是垃圾轉運站營運管理這個議案
transcript.whisperx[3].start 100.845
transcript.whisperx[3].end 106.73
transcript.whisperx[3].text 議案就是一般廢棄物轉運期監督我想所有的理事長都會這樣做啦這兩個案子 保證你看看這是34億的
transcript.whisperx[4].start 115.809
transcript.whisperx[4].end 135.659
transcript.whisperx[4].text 你嚇死人了,你嚇到乎聾了啦不可能那麼多啦千萬百萬千萬億十億三百四十二萬三百四十二萬啦?不可能啦,抱歉啊你的招標案,你看看招標案
transcript.whisperx[5].start 139.547
transcript.whisperx[5].end 154.594
transcript.whisperx[5].text 跟委員報告,這顯然是錯誤,屏東環保局可能在打的時候打錯我們同仁也有通知他,他現在應該是342萬,已經請他改正了你的招標是4百69萬,人家都有在看,你也這樣輪步一段,被人家笑死了另外一間,還有多少?
transcript.whisperx[6].start 172.387
transcript.whisperx[6].end 197.899
transcript.whisperx[6].text 發委員 剛才所指的兩個案子齁 它其實是同一筆同一個...一個...所以是兩個案子還是一個案子?它是...它是...它分兩個計畫 但是是同一個案 這樣子同一個案子 兩個計畫?是所以兩個報告是一樣?欸 它...它會分別齁 它有一個轉運計畫嘛 一個管理計畫兩個還是...
transcript.whisperx[7].start 204.744
transcript.whisperx[7].end 210.426
transcript.whisperx[7].text 對兩個的報告是一樣我看到所以這個我們在留學後我們就去實際考察我們看那個垃圾
transcript.whisperx[8].start 214.912
transcript.whisperx[8].end 243.899
transcript.whisperx[8].text 打包之後弄到船然後就到鹽埔漁港然後車子就載出來嘛是是有的車子是就直接載車子就從小琉球然後那個車子就直接開到接駁船上面然後船就拉著走然後到東港到新衍這邊就直接開出去了是這樣嘛是是所以這是把他聽成一個慣例一個操作這樣喔
transcript.whisperx[9].start 247.883
transcript.whisperx[9].end 251.808
transcript.whisperx[9].text 市長他們一直要求多一點的資源,你覺得怎麼樣?
transcript.whisperx[10].start 254.759
transcript.whisperx[10].end 273.461
transcript.whisperx[10].text 報告委員小琉球的要求我們會再考慮檢討不過目前小琉球的運輸費用是全國最高他甚至比金門運回來還要貴這個部分可能還要檢討一下我們看他的實際的需求
transcript.whisperx[11].start 275.063
transcript.whisperx[11].end 294.698
transcript.whisperx[11].text 因為他的遊客真的是非常多民宿現在已經400多家了遊客很多,布朗也都去過所以這個督導是你們撥錢給屏東縣環保局,環保局去執行所以這個錢100%都是你們給的
transcript.whisperx[12].start 301.443
transcript.whisperx[12].end 318.873
transcript.whisperx[12].text 好那這個要加強那第二個我們防管署我們在第18項第18款第4項第18款第5項黨團的這一些凍結案我就統一起來問剛剛很多委員問了很多
transcript.whisperx[13].start 322.535
transcript.whisperx[13].end 326.6
transcript.whisperx[13].text 在垃圾不漏地的這一項到登革熱颱風現在又來了你有什麼想法跟做法
transcript.whisperx[14].start 334.731
transcript.whisperx[14].end 351.983
transcript.whisperx[14].text 再來一些工廠的VOC等等這些有沒有什麼想法是 向委員報告其實在我們的登革熱防制上面我們在北中南從去年開始每一年分為北中南
transcript.whisperx[15].start 352.583
transcript.whisperx[15].end 371.522
transcript.whisperx[15].text 各實施實兵演練那這些實兵演練就是大家在別的縣市如果機具由我們調度到現場不管是災害或者是這個登革熱等等之類的那這種高師演練跟現場演練北中南山區各有責任區我們做演練
transcript.whisperx[16].start 372.242
transcript.whisperx[16].end 400.597
transcript.whisperx[16].text 那在工廠的VOC上面我們是以科技執法那在我們的年度預算裡面也有顯示在上面希望透過遠端的監控方式來做處理這個是一個科技執法的一個那所以你跟各縣市的環保局都有在監控這些瓶瓶罐罐啊颱風過後像這樣這兩天雨這樣下那些清除都有在監控嗎
transcript.whisperx[17].start 401.397
transcript.whisperx[17].end 426.977
transcript.whisperx[17].text 是 這一個它清除完畢會跟我們回報它的數量當然我們也是有一個系統來如果哪一個縣市它有需要資源的話我們會去調度其他的資源或其他縣市來做資源清除所以如果他們做得好有評比 有獎勵 有沒有有 我們在年度的績效評比制度裡面是有這一項的
transcript.whisperx[18].start 428.883
transcript.whisperx[18].end 434.625
transcript.whisperx[18].text 第三個問題就是我要問部長你剛剛一直在講的環境跟AI的監控你現在做的是有做到哪一些AI的
transcript.whisperx[19].start 444.582
transcript.whisperx[19].end 467.122
transcript.whisperx[19].text AI第一個是說我們那個對於空瓶的預測例如說現在PM2.5多少像我自己我是敏感體質啊我PM2.5我就設定20以上就會push給我啊那個呢就經過AI去算未來會到20例如說他一直提升他就會主動去推估未來多少那我就手機就會收到啊這個就保障每個人的健康
transcript.whisperx[20].start 467.793
transcript.whisperx[20].end 494.775
transcript.whisperx[20].text 那各縣市的這些data如果是有超過預警值你們的署長啊你們的高階的人會顯示你的手機會顯示出來嗎有有我舉例例如說要是發生火災啊火災往哪裡飄那個煙往哪裡飄我們大概即時都會得到回報消防署會給我們那我們也有自己的所以這個都會提醒來預警做超前的部署
transcript.whisperx[21].start 494.975
transcript.whisperx[21].end 512.492
transcript.whisperx[21].text 有危險值的通報對不對有有有我們自己內部都有可以看得到你看你的手機就會顯示出來對三更半夜也都有也都有對這樣的話那你剛剛另外一個講說家庭裡面也會產生PM2.5你是在說什麼
transcript.whisperx[22].start 515.377
transcript.whisperx[22].end 532.182
transcript.whisperx[22].text 沒有啦,我們開一個GAS,開豬柴,一直砰,那個就是等於是燒天然氣嘛,其實那個時候PM2.5就會跳起來,我們有算過大概會到三四十啦,為客啦,因為差不多家裡如果你很乾淨的話,大概都是十以下,
transcript.whisperx[23].start 532.722
transcript.whisperx[23].end 545.15
transcript.whisperx[23].text 我們家裡用的那個液態那個是滋味瓦斯一桶一桶那個是中國石油公司煉油的時候所產生的副產品那我們剛剛一直在講那瓦斯船
transcript.whisperx[24].start 549.696
transcript.whisperx[24].end 577.738
transcript.whisperx[24].text 再來要給台灣發電用的那個是液態天然氣那個兩個來源是不同的但是它原理是類似的當然但是這是石油在蒸餾的時候在分類的時候從傘層的那一個瓦斯應該講瓦斯它裡面應該是比液態天然氣還多樣化裡面的化學物質可能會更多
transcript.whisperx[25].start 578.418
transcript.whisperx[25].end 599.968
transcript.whisperx[25].text 我們家裡面的其實也不少我們現在會啟動研究調查啦就是說因為像其實有人說要家裡要換電磁爐會比較好啦但是也有一些國外研究說沒差是你要吃什麼例如說國外有研究肩培根PM2.5可以到2000啦所以這個其實我們一直很想要用健康的觀點來保障每個國人的健康
transcript.whisperx[26].start 601.388
transcript.whisperx[26].end 624.825
transcript.whisperx[26].text 就是說炸豬排啊那個其實PM2.5的都在美國你看到很多用電爐啦他們都220的230齁他們都用電爐很少像我們用炸的用炸的那我們的瓦斯就是桶裝的瓦斯或天然瓦斯自來瓦斯我在想裡面因為是煉油的過程所產生的
transcript.whisperx[27].start 626.086
transcript.whisperx[27].end 640.832
transcript.whisperx[27].text 附加物它裡面可能會比液態天然氣還多樣化化學成分會更多有沒有研究過這個包委員這個部分國內的調查我有問我同仁目前過去調查的很少很少
transcript.whisperx[28].start 641.152
transcript.whisperx[28].end 652.879
transcript.whisperx[28].text 像我們洗熱水澡也是用瓦斯其實也會產生出來其實生活裡面的這個就是我們我們要調查的所以這個你要往這個方面研究就是說你這台車輸了你現在燒出來的東西燒不完整不完全燃燒
transcript.whisperx[29].start 657.982
transcript.whisperx[29].end 678.044
transcript.whisperx[29].text 為什麼冬天關個窗戶洗個熱水澡就會熄人那都是這樣是不是有其他的化學物質那是一氧化碳中毒當然你說一氧化碳但是我覺得它稍微有很多稍微不完整的那些稍微不完全的那些化學物質搞不好那裡面有一二十種成分
transcript.whisperx[30].start 679.085
transcript.whisperx[30].end 706.337
transcript.whisperx[30].text 所以這個環保署你要去研究這個啦是是 我現在我們今年會有一個重點就是健康啦 健康的市長 你可能要去做一些研究啦 好不好好 那最後一個就是我們屏東剛才 王一民講得很大聲齁這些煤 這些發電廠一直漂漂漂齁我一直從小到現在那個臨沿石化工業區齁我對它真的是很 很
transcript.whisperx[31].start 707.777
transcript.whisperx[31].end 710.318
transcript.whisperx[31].text 就給你小的啦,真的迷茫茫,天空那裡,星農那裡,這麼多肺部的問題啦我跟那邊是絕對的關係啦,那你新達大林飄過來的那屏東本身,你說你用AI在監控,那些農業機械什麼
transcript.whisperx[32].start 730.402
transcript.whisperx[32].end 752.242
transcript.whisperx[32].text 有的時候如果用柴油燒很多的民眾例如說操作的農民如果用柴油燒積聚的話那個對身體還是不好啦所以這個其實我們以後也要來注意啦我有發現到這一塊所以我們一起來研究看看好 謝謝