iVOD / 161780

Field Value
IVOD_ID 161780
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161780
日期 2025-05-21
會議資料.會議代碼 委員會-11-3-36-17
會議資料.會議代碼:str 第11屆第3會期司法及法制委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第3會期司法及法制委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-05-21T15:21:52+08:00
結束時間 2025-05-21T15:41:24+08:00
影片長度 00:19:32
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/e381da0d479eb7db3c3c949fed01fc5fe11a54d16b4ae569f45a94dd28b54b389a6adb080ab407945ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 翁曉玲
委員發言時間 15:21:52 - 15:41:24
會議時間 2025-05-21T09:00:00+08:00
會議名稱 立法院第11屆第3會期司法及法制委員會第17次全體委員會議(事由:一、處理114年度中央政府總預算關於總統府預算凍結項目共5案。 二、處理114年度中央政府總預算關於國家安全會議預算凍結項目共4案。 【5月19日及21日兩天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.39784375
transcript.pyannote[0].end 1.41471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 8.50221875
transcript.pyannote[1].end 14.22284375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 12.72096875
transcript.pyannote[2].end 13.29471875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 19.21784375
transcript.pyannote[3].end 20.12909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 19.99409375
transcript.pyannote[4].end 23.28471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 23.99346875
transcript.pyannote[5].end 43.99034375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 44.73284375
transcript.pyannote[6].end 45.15471875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 45.49221875
transcript.pyannote[7].end 46.28534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 46.28534375
transcript.pyannote[8].end 48.74909375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 46.69034375
transcript.pyannote[9].end 47.33159375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 49.64346875
transcript.pyannote[10].end 51.44909375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 52.07346875
transcript.pyannote[11].end 52.93409375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 52.46159375
transcript.pyannote[12].end 54.35159375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 54.73971875
transcript.pyannote[13].end 57.40596875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 55.68471875
transcript.pyannote[14].end 63.34596875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 64.18971875
transcript.pyannote[15].end 67.78409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 67.93596875
transcript.pyannote[16].end 68.81346875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 68.81346875
transcript.pyannote[17].end 70.65284375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 70.19721875
transcript.pyannote[18].end 76.60971875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 76.62659375
transcript.pyannote[19].end 82.80284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 82.26284375
transcript.pyannote[20].end 86.41409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 87.03846875
transcript.pyannote[21].end 93.87284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 94.31159375
transcript.pyannote[22].end 95.47596875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 96.25221875
transcript.pyannote[23].end 98.39534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 96.72471875
transcript.pyannote[24].end 97.14659375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 100.47096875
transcript.pyannote[25].end 103.47471875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 105.17909375
transcript.pyannote[26].end 116.75534375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 105.34784375
transcript.pyannote[27].end 105.65159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 116.83971875
transcript.pyannote[28].end 118.18971875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 119.25284375
transcript.pyannote[29].end 120.38346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 119.82659375
transcript.pyannote[30].end 122.59409375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 122.76284375
transcript.pyannote[31].end 136.04346875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 136.49909375
transcript.pyannote[32].end 147.97409375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 148.19346875
transcript.pyannote[33].end 154.04909375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 152.00721875
transcript.pyannote[34].end 176.47596875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 155.12909375
transcript.pyannote[35].end 157.03596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 164.29221875
transcript.pyannote[36].end 165.76034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 167.59971875
transcript.pyannote[37].end 168.74721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 177.33659375
transcript.pyannote[38].end 182.63534375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 183.19221875
transcript.pyannote[39].end 183.83346875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 183.47909375
transcript.pyannote[40].end 189.14909375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 185.50409375
transcript.pyannote[41].end 186.22971875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 187.79909375
transcript.pyannote[42].end 188.60909375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 188.87909375
transcript.pyannote[43].end 201.73784375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 200.33721875
transcript.pyannote[44].end 210.90096875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 204.16784375
transcript.pyannote[45].end 204.57284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 204.57284375
transcript.pyannote[46].end 204.58971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 211.01909375
transcript.pyannote[47].end 212.01471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 211.42409375
transcript.pyannote[48].end 213.22971875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 213.34784375
transcript.pyannote[49].end 214.44471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 213.70221875
transcript.pyannote[50].end 216.48659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 215.32221875
transcript.pyannote[51].end 216.60471875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 216.73971875
transcript.pyannote[52].end 228.28221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 219.70971875
transcript.pyannote[53].end 220.01346875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 229.41284375
transcript.pyannote[54].end 240.24659375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 234.47534375
transcript.pyannote[55].end 235.20096875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 238.13721875
transcript.pyannote[56].end 238.99784375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 239.09909375
transcript.pyannote[57].end 254.42159375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 240.71909375
transcript.pyannote[58].end 240.76971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 241.09034375
transcript.pyannote[59].end 241.61346875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 255.85596875
transcript.pyannote[60].end 256.95284375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 257.13846875
transcript.pyannote[61].end 258.30284375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 257.15534375
transcript.pyannote[62].end 286.33221875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 259.58534375
transcript.pyannote[63].end 260.56409375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 264.27659375
transcript.pyannote[64].end 265.96409375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 265.96409375
transcript.pyannote[65].end 268.86659375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 269.77784375
transcript.pyannote[66].end 270.82409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 271.44846875
transcript.pyannote[67].end 271.81971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 276.49409375
transcript.pyannote[68].end 277.84409375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 284.89784375
transcript.pyannote[69].end 290.56784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 290.75346875
transcript.pyannote[70].end 300.03471875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 291.32721875
transcript.pyannote[71].end 292.93034375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 298.38096875
transcript.pyannote[72].end 301.53659375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 300.10221875
transcript.pyannote[73].end 305.72159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 307.05471875
transcript.pyannote[74].end 311.61096875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 308.59034375
transcript.pyannote[75].end 313.95659375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 311.94846875
transcript.pyannote[76].end 327.77721875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 328.77284375
transcript.pyannote[77].end 329.39721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 329.97096875
transcript.pyannote[78].end 332.13096875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 332.40096875
transcript.pyannote[79].end 333.86909375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 333.86909375
transcript.pyannote[80].end 333.97034375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 333.97034375
transcript.pyannote[81].end 333.98721875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 333.98721875
transcript.pyannote[82].end 334.00409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 334.00409375
transcript.pyannote[83].end 334.03784375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 334.03784375
transcript.pyannote[84].end 334.45971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 334.15596875
transcript.pyannote[85].end 335.70846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 334.45971875
transcript.pyannote[86].end 334.49346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 335.87721875
transcript.pyannote[87].end 337.78409375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 337.96971875
transcript.pyannote[88].end 338.86409375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 338.15534375
transcript.pyannote[89].end 340.19721875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 341.02409375
transcript.pyannote[90].end 341.81721875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 341.80034375
transcript.pyannote[91].end 344.23034375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 342.37409375
transcript.pyannote[92].end 343.38659375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 344.23034375
transcript.pyannote[93].end 348.73596875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 349.36034375
transcript.pyannote[94].end 381.27096875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 367.28159375
transcript.pyannote[95].end 369.01971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 381.92909375
transcript.pyannote[96].end 391.90221875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 392.32409375
transcript.pyannote[97].end 396.79596875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 392.34096875
transcript.pyannote[98].end 393.01596875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 393.99471875
transcript.pyannote[99].end 394.93971875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 395.58096875
transcript.pyannote[100].end 405.31784375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 406.36409375
transcript.pyannote[101].end 407.30909375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 407.73096875
transcript.pyannote[102].end 433.36409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 430.54596875
transcript.pyannote[103].end 430.56284375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 430.56284375
transcript.pyannote[104].end 458.64284375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 433.76909375
transcript.pyannote[105].end 434.73096875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 435.22034375
transcript.pyannote[106].end 435.64221875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 438.76409375
transcript.pyannote[107].end 439.59096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 439.59096875
transcript.pyannote[108].end 439.64159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 443.25284375
transcript.pyannote[109].end 443.82659375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 453.56346875
transcript.pyannote[110].end 457.54596875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 458.18721875
transcript.pyannote[111].end 460.41471875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 460.61721875
transcript.pyannote[112].end 466.52346875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 462.25409375
transcript.pyannote[113].end 462.28784375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 462.57471875
transcript.pyannote[114].end 464.43096875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 464.59971875
transcript.pyannote[115].end 473.22284375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 466.77659375
transcript.pyannote[116].end 467.38409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 468.05909375
transcript.pyannote[117].end 470.38784375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 472.21034375
transcript.pyannote[118].end 488.78159375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 474.21846875
transcript.pyannote[119].end 475.83846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 490.58721875
transcript.pyannote[120].end 496.83096875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 491.17784375
transcript.pyannote[121].end 491.19471875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 491.19471875
transcript.pyannote[122].end 492.02159375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 497.64096875
transcript.pyannote[123].end 500.91471875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 498.43409375
transcript.pyannote[124].end 498.97409375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 500.49284375
transcript.pyannote[125].end 503.51346875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 501.62346875
transcript.pyannote[126].end 502.82159375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 503.34471875
transcript.pyannote[127].end 506.12909375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 506.65221875
transcript.pyannote[128].end 512.08596875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 511.05659375
transcript.pyannote[129].end 518.59971875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 518.71784375
transcript.pyannote[130].end 521.62034375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 521.75534375
transcript.pyannote[131].end 528.67409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 526.61534375
transcript.pyannote[132].end 545.97096875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 531.34034375
transcript.pyannote[133].end 533.38221875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 533.38221875
transcript.pyannote[134].end 533.41596875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 533.65221875
transcript.pyannote[135].end 535.39034375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 535.74471875
transcript.pyannote[136].end 537.61784375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 545.68409375
transcript.pyannote[137].end 549.64971875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 547.75971875
transcript.pyannote[138].end 551.86034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 554.49284375
transcript.pyannote[139].end 555.21846875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 555.21846875
transcript.pyannote[140].end 555.25221875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 555.92721875
transcript.pyannote[141].end 562.45784375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 562.99784375
transcript.pyannote[142].end 563.47034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 564.33096875
transcript.pyannote[143].end 575.16471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 573.27471875
transcript.pyannote[144].end 573.44346875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 575.38409375
transcript.pyannote[145].end 577.64534375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 577.42596875
transcript.pyannote[146].end 578.59034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 579.80534375
transcript.pyannote[147].end 581.03721875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 581.03721875
transcript.pyannote[148].end 598.82346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 581.56034375
transcript.pyannote[149].end 581.96534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 582.50534375
transcript.pyannote[150].end 583.39971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 599.09346875
transcript.pyannote[151].end 615.02346875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 601.69221875
transcript.pyannote[152].end 603.48096875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 604.34159375
transcript.pyannote[153].end 604.88159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 604.88159375
transcript.pyannote[154].end 604.89846875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 605.35409375
transcript.pyannote[155].end 606.23159375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 607.58159375
transcript.pyannote[156].end 607.96971875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 607.96971875
transcript.pyannote[157].end 608.08784375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 615.46221875
transcript.pyannote[158].end 624.55784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 625.04721875
transcript.pyannote[159].end 632.86034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 633.65346875
transcript.pyannote[160].end 637.75409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 638.59784375
transcript.pyannote[161].end 648.92534375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 645.53346875
transcript.pyannote[162].end 647.20409375
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 647.99721875
transcript.pyannote[163].end 667.45409375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 649.46534375
transcript.pyannote[164].end 649.90409375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 668.06159375
transcript.pyannote[165].end 671.09909375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 671.95971875
transcript.pyannote[166].end 674.10284375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 674.50784375
transcript.pyannote[167].end 684.04221875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 679.24971875
transcript.pyannote[168].end 686.60721875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 686.94471875
transcript.pyannote[169].end 687.38346875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 691.28159375
transcript.pyannote[170].end 704.00534375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 704.10659375
transcript.pyannote[171].end 730.22909375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 723.22596875
transcript.pyannote[172].end 724.13721875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 730.87034375
transcript.pyannote[173].end 743.32409375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 743.96534375
transcript.pyannote[174].end 787.41846875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 788.56596875
transcript.pyannote[175].end 791.56971875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 793.03784375
transcript.pyannote[176].end 802.48784375
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 804.41159375
transcript.pyannote[177].end 807.43221875
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 808.59659375
transcript.pyannote[178].end 817.40534375
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 817.47284375
transcript.pyannote[179].end 819.73409375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 819.73409375
transcript.pyannote[180].end 838.63409375
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 828.01971875
transcript.pyannote[181].end 828.62721875
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 832.25534375
transcript.pyannote[182].end 832.67721875
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 833.41971875
transcript.pyannote[183].end 837.09846875
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 839.42721875
transcript.pyannote[184].end 841.67159375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 841.67159375
transcript.pyannote[185].end 845.33346875
transcript.pyannote[186].speaker SPEAKER_04
transcript.pyannote[186].start 842.83596875
transcript.pyannote[186].end 854.73284375
transcript.pyannote[187].speaker SPEAKER_04
transcript.pyannote[187].start 855.40784375
transcript.pyannote[187].end 860.33534375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 858.71534375
transcript.pyannote[188].end 891.68909375
transcript.pyannote[189].speaker SPEAKER_04
transcript.pyannote[189].start 862.24221875
transcript.pyannote[189].end 865.17846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 891.97596875
transcript.pyannote[190].end 902.96159375
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 893.56221875
transcript.pyannote[191].end 895.95846875
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 896.78534375
transcript.pyannote[192].end 897.86534375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 903.60284375
transcript.pyannote[193].end 908.05784375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 908.22659375
transcript.pyannote[194].end 917.38971875
transcript.pyannote[195].speaker SPEAKER_04
transcript.pyannote[195].start 910.36971875
transcript.pyannote[195].end 913.50846875
transcript.pyannote[196].speaker SPEAKER_04
transcript.pyannote[196].start 914.53784375
transcript.pyannote[196].end 918.95909375
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 920.49471875
transcript.pyannote[197].end 922.18221875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 921.57471875
transcript.pyannote[198].end 923.51534375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 923.98784375
transcript.pyannote[199].end 936.13784375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 936.47534375
transcript.pyannote[200].end 938.12909375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 938.51721875
transcript.pyannote[201].end 940.50846875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 940.84596875
transcript.pyannote[202].end 944.92971875
transcript.pyannote[203].speaker SPEAKER_05
transcript.pyannote[203].start 946.17846875
transcript.pyannote[203].end 948.77721875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 948.06846875
transcript.pyannote[204].end 953.19846875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 953.50221875
transcript.pyannote[205].end 959.29034375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 961.39971875
transcript.pyannote[206].end 962.73284375
transcript.pyannote[207].speaker SPEAKER_05
transcript.pyannote[207].start 961.77096875
transcript.pyannote[207].end 967.05284375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 967.06971875
transcript.pyannote[208].end 976.13159375
transcript.pyannote[209].speaker SPEAKER_05
transcript.pyannote[209].start 967.30596875
transcript.pyannote[209].end 967.32284375
transcript.pyannote[210].speaker SPEAKER_05
transcript.pyannote[210].start 967.37346875
transcript.pyannote[210].end 968.16659375
transcript.pyannote[211].speaker SPEAKER_05
transcript.pyannote[211].start 968.23409375
transcript.pyannote[211].end 968.26784375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 976.43534375
transcript.pyannote[212].end 979.10159375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 979.10159375
transcript.pyannote[213].end 979.28721875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 979.47284375
transcript.pyannote[214].end 986.15534375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 986.59409375
transcript.pyannote[215].end 989.85096875
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 988.61909375
transcript.pyannote[216].end 993.42846875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 993.78284375
transcript.pyannote[217].end 995.95971875
transcript.pyannote[218].speaker SPEAKER_04
transcript.pyannote[218].start 996.31409375
transcript.pyannote[218].end 999.75659375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 1001.12346875
transcript.pyannote[219].end 1009.17284375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 1007.72159375
transcript.pyannote[220].end 1007.99159375
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 1007.99159375
transcript.pyannote[221].end 1008.02534375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 1008.02534375
transcript.pyannote[222].end 1008.80159375
transcript.pyannote[223].speaker SPEAKER_04
transcript.pyannote[223].start 1008.80159375
transcript.pyannote[223].end 1008.83534375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 1008.83534375
transcript.pyannote[224].end 1008.88596875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 1009.89846875
transcript.pyannote[225].end 1010.32034375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 1010.32034375
transcript.pyannote[226].end 1010.64096875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 1010.64096875
transcript.pyannote[227].end 1042.73721875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 1010.70846875
transcript.pyannote[228].end 1010.75909375
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1010.87721875
transcript.pyannote[229].end 1011.02909375
transcript.pyannote[230].speaker SPEAKER_04
transcript.pyannote[230].start 1011.02909375
transcript.pyannote[230].end 1011.97409375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 1011.97409375
transcript.pyannote[231].end 1012.02471875
transcript.pyannote[232].speaker SPEAKER_04
transcript.pyannote[232].start 1012.02471875
transcript.pyannote[232].end 1012.69971875
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 1012.69971875
transcript.pyannote[233].end 1012.75034375
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 1012.75034375
transcript.pyannote[234].end 1012.78409375
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 1017.07034375
transcript.pyannote[235].end 1019.66909375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 1043.27721875
transcript.pyannote[236].end 1047.39471875
transcript.pyannote[237].speaker SPEAKER_04
transcript.pyannote[237].start 1043.42909375
transcript.pyannote[237].end 1044.57659375
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 1046.78721875
transcript.pyannote[238].end 1053.60471875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 1052.08596875
transcript.pyannote[239].end 1057.53659375
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 1055.44409375
transcript.pyannote[240].end 1057.23284375
transcript.pyannote[241].speaker SPEAKER_04
transcript.pyannote[241].start 1057.68846875
transcript.pyannote[241].end 1060.62471875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 1059.37596875
transcript.pyannote[242].end 1077.36471875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 1077.48284375
transcript.pyannote[243].end 1083.57471875
transcript.pyannote[244].speaker SPEAKER_04
transcript.pyannote[244].start 1083.11909375
transcript.pyannote[244].end 1085.86971875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 1086.42659375
transcript.pyannote[245].end 1090.84784375
transcript.pyannote[246].speaker SPEAKER_04
transcript.pyannote[246].start 1086.44346875
transcript.pyannote[246].end 1089.16034375
transcript.pyannote[247].speaker SPEAKER_04
transcript.pyannote[247].start 1089.93659375
transcript.pyannote[247].end 1091.10096875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 1091.33721875
transcript.pyannote[248].end 1106.77784375
transcript.pyannote[249].speaker SPEAKER_05
transcript.pyannote[249].start 1105.14096875
transcript.pyannote[249].end 1118.35409375
transcript.pyannote[250].speaker SPEAKER_05
transcript.pyannote[250].start 1118.47221875
transcript.pyannote[250].end 1119.21471875
transcript.pyannote[251].speaker SPEAKER_05
transcript.pyannote[251].start 1120.12596875
transcript.pyannote[251].end 1122.28596875
transcript.pyannote[252].speaker SPEAKER_05
transcript.pyannote[252].start 1122.75846875
transcript.pyannote[252].end 1147.96971875
transcript.pyannote[253].speaker SPEAKER_05
transcript.pyannote[253].start 1148.10471875
transcript.pyannote[253].end 1158.49971875
transcript.pyannote[254].speaker SPEAKER_05
transcript.pyannote[254].start 1158.97221875
transcript.pyannote[254].end 1161.19971875
transcript.pyannote[255].speaker SPEAKER_05
transcript.pyannote[255].start 1161.62159375
transcript.pyannote[255].end 1164.22034375
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 1164.50721875
transcript.pyannote[256].end 1167.24096875
transcript.pyannote[257].speaker SPEAKER_05
transcript.pyannote[257].start 1167.56159375
transcript.pyannote[257].end 1169.26596875
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 1169.63721875
transcript.pyannote[258].end 1172.47221875
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 1171.29096875
transcript.pyannote[259].end 1172.40471875
transcript.whisperx[0].start 9.028
transcript.whisperx[0].end 9.389
transcript.whisperx[0].text 首先先請何副秘書長
transcript.whisperx[1].start 19.386
transcript.whisperx[1].end 47.232
transcript.whisperx[1].text 黃委員您好是何副秘你好這個因為今天早上我們考慮到就是國安會秘書長還有總統府秘書長沒有來所以我們早上就是先會議休息然後呢您在中間的時候是不是有接受媒體訪問講說我們如果今天總統府的預算案不解凍的話阿兵哥再兩星期就沒飯吃是嗎是的是你不覺得您這樣子說這個話
transcript.whisperx[2].start 50.351
transcript.whisperx[2].end 58.043
transcript.whisperx[2].text 這個混淆是非啊我們今天要解凍的是什麼案子業務費裡面是跟阿兵哥的伙食費相同嗎我們是當時是凍結的是阿兵哥的伙食費嗎
transcript.whisperx[3].start 64.192
transcript.whisperx[3].end 68.237
transcript.whisperx[3].text 他是在我們的業務費裡面的其中一項一項什麼我快速跟是廚師費嘛在聘廚師的費用你們自己報告裡面顯示聘廚師的費用對不對他接下來的確會影響到他們的三餐的膳食
transcript.whisperx[4].start 84.455
transcript.whisperx[4].end 95.447
transcript.whisperx[4].text 今天我們要解凍的是什麼費用是廚師的費用嘛 聘廚師的費用你們自己報告書上面寫得很清楚啊每個月差不多八萬多塊錢 聘廚師的費用這個跟伙食費不一樣啊您說話有沒有邏輯太跳躍了
transcript.whisperx[5].start 105.216
transcript.whisperx[5].end 114.06
transcript.whisperx[5].text 我們伙食費沒有刪 沒有凍結就算是今天沒有廚師去煮飯給阿兵哥吃還是可以對外買水餃 買便當 買麥當勞吧
transcript.whisperx[6].start 119.759
transcript.whisperx[6].end 134.974
transcript.whisperx[6].text 不會讓阿兵哥餓到肚子嘛對不對我們真的很擔心啦就是第一個包含水電費沒了然後他們的三餐全部其實我真的很不會煮飯我最會煮的就是維大利炸醬麵而已
transcript.whisperx[7].start 136.576
transcript.whisperx[7].end 156.934
transcript.whisperx[7].text 那廚師也好 他們要選材 洗材 然後還要清潔而且因為總統府跟其他的單位比較不一樣他負責國家中樞 這些元首 甚至像各個重要的官員是 何富密 您說的我都了解我也絕對是認為說 我們辛苦的憲兵弟兄們不可以讓他們餓肚子 不可以讓他們吃不好這完全都同意
transcript.whisperx[8].start 164.881
transcript.whisperx[8].end 182.38
transcript.whisperx[8].text 那今天的解凍說實在話也沒有什麼太大的困難因為當時本來就認為說這部分請你們要做專案報告可是我今天很不滿的是你怎麼可以對外放話說我們如果今天這個廚師這個費用不解凍阿B哥就會餓肚子兩星期
transcript.whisperx[9].start 183.651
transcript.whisperx[9].end 188.375
transcript.whisperx[9].text 在兩星期阿兵哥就會餓肚子啊這是錯誤的這是一個造謠跟委員報告不僅僅阿兵哥會餓到肚子我們連一些僱員都會被解僱掉大概二十幾個人所以委員如果說我講話可以再
transcript.whisperx[10].start 201.485
transcript.whisperx[10].end 228.047
transcript.whisperx[10].text 對的解凍這是兩回事我現在只是講說你接受媒體採訪的時候因為你又這麼有媒體經驗你怎麼會不知道說這句話的影響力是對所以我今天只是要糾正是對這只是我們今天要解凍的有許只是一個聘廚室的費用但是這跟阿兵哥的伙食費沒有關係請你不要在那邊造謠說又是我們藍白立委喔這是害阿兵哥又沒飯吃又讓他們餓肚子
transcript.whisperx[11].start 229.488
transcript.whisperx[11].end 232.671
transcript.whisperx[11].text 真的讓他們餓肚子的是你們啦如果說這個沒有聘到廚師或是人家廚師辭職如果廚師辭職的話是不是阿民哥就會餓肚子呢不會嘛你們還是會想辦法買外賣啊我同意文委員的說法那但是很抱歉我來質詢台備詢之前我五六日我有問一下我們第一線的這些兄弟姊妹士官兵我說你們誰會煮飯
transcript.whisperx[12].start 255.885
transcript.whisperx[12].end 266.595
transcript.whisperx[12].text 他們都說現在什麼時代一定要會煮飯嗎就是阿民哥的伙食是一定要要自己有廚師去煮飯嗎對不對好啦這個何鳳敏我不要再跟你討論這個細節齁那麼我只是要希望你能夠為這個事情
transcript.whisperx[13].start 272.922
transcript.whisperx[13].end 289.36
transcript.whisperx[13].text 至少要说明白不是砍的是伙食费而是厨师费对不对我希望待会的这个媒体也可以做更正报道就澄清了事实澄清的报道但是他们真的说他们又要战哨然后又要晒太阳他们下
transcript.whisperx[14].start 290.822
transcript.whisperx[14].end 299.591
transcript.whisperx[14].text 哪一個軍人弟兄不是這樣所以我們才要調高軍人待遇啊你們又反對這個民進黨的委員又反對反對給這個軍人待遇調整
transcript.whisperx[15].start 307.11
transcript.whisperx[15].end 325.972
transcript.whisperx[15].text 所以民進黨很多的邏輯是非常奇怪的接下來我要問的就是說有關於你們講說因為業務被刪所以可能會影響到總統府的媒體新聞的宣傳等等我在這裡我想請問這次總統他接受了幾個媒體的採訪
transcript.whisperx[16].start 328.9
transcript.whisperx[16].end 339.974
transcript.whisperx[16].text 是總統府有沒有付這個受訪的費用不管是閩迪選讀日本經濟新聞還有財訊這個部分就我所知沒有
transcript.whisperx[17].start 341.295
transcript.whisperx[17].end 359.87
transcript.whisperx[17].text 這是沒有確定沒有我們之後下一年度看的時候看到你們的經費報這其實是有像過去蔡英文總統在選舉的時候我還記得是接受博恩夜夜秀的訪問本來以為說博恩夜夜秀是單純去邀訪
transcript.whisperx[18].start 360.791
transcript.whisperx[18].end 380.368
transcript.whisperx[18].text 等到事後才發現這也是付費的啊所以你們確定嗎這三個節目是沒有付任何的費用給媒體那如果是這樣的話那就代表說其實媒體對於總統府的這個各項的業務啊採訪這些都是很有興趣那你們其實真的可以節省這筆費用嗎
transcript.whisperx[19].start 381.977
transcript.whisperx[19].end 404.986
transcript.whisperx[19].text 你們媒體新聞宣傳費可以節省起來反正這麼多的媒體都對總統府很有興趣對總統的八眼也很有興趣以後應該要多邀他們來做免費報導我覺得這一方面也是節省功效不是嗎我跟委員報告一下其實帶我長大的我自己是單親家庭啦帶我長大的是一個身心障礙的哥哥我自己的
transcript.whisperx[20].start 406.651
transcript.whisperx[20].end 430.18
transcript.whisperx[20].text 這個表格那我想台灣為什麼會讓全世界尊重我們因為我們在總統在說話的時候不管是聽障的朋友還是如何我們都有手語的翻譯我們不要漏了不要漏了任何一個人那此外其實台灣受到全世界的尊重跟喜愛我們有多國的翻譯都在這一筆的預算裡面
transcript.whisperx[21].start 430.6
transcript.whisperx[21].end 455.036
transcript.whisperx[21].text 所以另外一個部分 何富密您講的我知道但是我覺得您又岔題了這也是我很佩服您的地方我剛剛其實問就是說是總統接受媒體訪問總統府有沒有付錢沒有 那沒有就非常好那就代表說總統的發言還有總統府的公關做得很好媒體都願意來免費報導那這樣我也鼓勵你們未來可以朝這個方向去做可是我們的直播怎麼辦呢有關於這個緊急危難的部分我們的翻譯怎麼辦
transcript.whisperx[22].start 460.74
transcript.whisperx[22].end 484.384
transcript.whisperx[22].text 你們可以把你們要去做媒體更換費用我們也不可能長期的找志工來這樣子真的會口語的翻譯好那接下來我要這個修語老師也我也我真的不會修語這個部分的費用解凍我們待會會再談拜託謝謝支持接下來我還會再講就是說有關於緊急危難未問金的部分看起來你們是如果這個費用沒有解凍國務教費裡面這個我們現在是動多少是
transcript.whisperx[23].start 490.766
transcript.whisperx[23].end 505.581
transcript.whisperx[23].text 動了一千萬如果沒有動的話總統是連緊急危難的補助金慰問金都發不出來是嗎是的我跟委員報告一下請問一下總統現在一個月領多少薪水像最近的這個車禍的事件
transcript.whisperx[24].start 507.118
transcript.whisperx[24].end 518.231
transcript.whisperx[24].text 總統其實到現場他也不接受媒體的訪問所以總統心有餘而力不足因為他沒有那個錢可以先支出緊急危難的慰問金是嗎
transcript.whisperx[25].start 521.775
transcript.whisperx[25].end 537.019
transcript.whisperx[25].text 就我所知他有時候會自己掏腰包啦至少我現在沒有聽到總統有自己掏腰包付支付緊急危難慰問金的情況我們只有看到中央政府不斷地講我們如果說扣了國務機要費那總統就沒有辦法用我們的公帑去支付緊急危難的慰問金
transcript.whisperx[26].start 545.742
transcript.whisperx[26].end 553.206
transcript.whisperx[26].text 其實他不僅僅緊急為難 包含一些軍警我想請教一下 總統每個月現在支領是多少薪水100萬嗎70萬要精準喔 要精準喔 來 請回應
transcript.whisperx[27].start 564.546
transcript.whisperx[27].end 576.037
transcript.whisperx[27].text 因為我們今年有調薪3%嘛 公教人員有調薪3%那總統副總統的薪水我們依照內政部配合公教人員調薪3%他答覆給我們的是546,970台加特資費呢
transcript.whisperx[28].start 579.844
transcript.whisperx[28].end 593.914
transcript.whisperx[28].text 沒有特殊費啊做得好 就是國際藥費嘛 對對對就是一個月五六十萬嘛 還加年終獎金等等我們這樣講好了表達一個心意 表達一個慰問金就算是這個國際藥費暫時凍結總統連這點小錢都不願意出嗎他連這樣的一個慰問的這個慰問的這個費用 請問委員我可以回答嗎對 他可以先暫待啊
transcript.whisperx[29].start 605.781
transcript.whisperx[29].end 624.266
transcript.whisperx[29].text 我覺得今天講的好像是總統只要是沒有這筆錢他連一般的社會的慰問緊急危難這些都沒有辦法做我覺得這是總統的心意就算是我們現在立法委員我們沒有編任何的什麼緊急危難的這個費用我遇到了
transcript.whisperx[30].start 625.174
transcript.whisperx[30].end 637.523
transcript.whisperx[30].text 有需要幫忙的人需要去救助的我自己還是會用我的薪水去我會花自己的錢去救助
transcript.whisperx[31].start 638.832
transcript.whisperx[31].end 666.558
transcript.whisperx[31].text 所以我認為說總統府不要把這些事情拿來講說因為這個錢如果不解凍的話會影響到委員可以給我30秒我30秒快速回應其實每一年總統府都會跟我們的弱勢團體採購水果或者手工皂手工餅乾這些讓這些社福團體他們能夠被看到而且有時候募款很辛苦的時候他們可以去做到第二件事情跟委員報告
transcript.whisperx[32].start 668.078
transcript.whisperx[32].end 682.074
transcript.whisperx[32].text 你可以上網自己搜尋其實賴總統以前真的都把他的薪水有捐給很多不同的社福團體但是他為善不欲人知所以並沒有特別的去做PR或者是做這些公關的部分
transcript.whisperx[33].start 693.389
transcript.whisperx[33].end 717.117
transcript.whisperx[33].text 今天是副秘書長來我想您今天大概從早到現在大概也受到了很多的炮火其實大家不是對您不滿大家主要是對吳釗燮秘書長不滿真的是藐視國會明明按照我們現在組織法國安會就是有要到立法院來備詢而且接受立法院的監督可是你們可以這麼多次都不來坦白說看起來
transcript.whisperx[34].start 718.357
transcript.whisperx[34].end 725.781
transcript.whisperx[34].text 吳釗信秘書長也不太在乎國安會的這個預算到底要不要解凍那因為剛剛涉及到一個事情所以我在這裡我要講就是剛剛說政務人員待遇為什麼我們只凍十萬元
transcript.whisperx[35].start 730.953
transcript.whisperx[35].end 742.464
transcript.whisperx[35].text 我要講的是當時的提案是因為我們有發現國安會在政務人員待遇今年的編列費用比去年高達多出15.85%這是超出過去的這個幅度
transcript.whisperx[36].start 748.65
transcript.whisperx[36].end 753.172
transcript.whisperx[36].text 而且依照公務人員的加薪每年加3%3%也加不到15.85%所以我們提出來這個問題請你們做專案報告後來這個本來是凍結100萬後來談談說好吧現在這樣的話只凍了10萬元
transcript.whisperx[37].start 764.076
transcript.whisperx[37].end 785.252
transcript.whisperx[37].text 是這樣的緣由不是王一川委員說的他那時候還沒有進來所以我就說委員要用功啦要去質詢的時候也要先看看人家之前的提案是什麼不要在那邊亂造謠那接下來還有一個部分就是有關於國安會這邊講的說要我們對於這個諮詢研究業務費用希望國安會要提出專案報告你們現在列的這是什麼這是叫專案報告兩頁叫專案報告
transcript.whisperx[38].start 793.106
transcript.whisperx[38].end 802.134
transcript.whisperx[38].text 徐副秘書長您的報告的概念跟我們做報告的概念是完全不一樣這加起來可能都還不到兩千字這就叫做報告報告委員這個內容主要是
transcript.whisperx[39].start 808.629
transcript.whisperx[39].end 813.31
transcript.whisperx[39].text 因為當時黃國昌委員問的是我們那個經費是怎麼使用那我們就是把用人別國別還有旅行的次數把它報告出來所以你們去了哪些國家做了什麼樣研究做了什麼調查難道我們沒有權利知道嗎難道人民不應該知道說到底官會每年編了這麼多的錢是用到哪裡了
transcript.whisperx[40].start 832.534
transcript.whisperx[40].end 857.058
transcript.whisperx[40].text 你們怎麼知道說你們是不是到日本去看黑熊或是到什麼冰島去看極光我們不可能去冰島看極光啦所以你要告訴我你們要去哪裡我已經講了我們這裡面都有專案每個專案去哪些但是委員我跟您說去哪些國家我們沒辦法講這是因為我們國安人員出去通常是不露出的
transcript.whisperx[41].start 857.618
transcript.whisperx[41].end 864.981
transcript.whisperx[41].text 這是基於雙方的一個不相同的問題我也知道這可能涉及到一些機密但是你不要忘記我們立法院也可以開秘密會議我們可以不需要公開讓所有的媒體讓所有的民眾看這個直播但是我們立法院可以召開秘密會議你們也可以提密件報告在國防外交委員會都有這麼做
transcript.whisperx[42].start 882.648
transcript.whisperx[42].end 902.569
transcript.whisperx[42].text 所以你們沒有道理說不讓我們立法委員知道你們今天到底去哪裡開會否則我們很合理的懷疑為什麼不敢講對不對連監察院都可以說他們編列外國參旅費是到日本去看黑熊那國安會議到底你們做了些什麼
transcript.whisperx[43].start 903.871
transcript.whisperx[43].end 915.487
transcript.whisperx[43].text 總是可以跟我們個別委員 或是我們就裝開一個小的群組讓我們大概知道 我們也不需要知道具體名下的名所以這個叫專案報告這是一個不合格的專案報告啊所以我們只能這樣寫
transcript.whisperx[44].start 920.58
transcript.whisperx[44].end 943.485
transcript.whisperx[44].text 我寫的沒有不跟您講請教主席如果說今天我們認為這個專案報告裡面的內容應該要更清楚那麼國安會認為說這可能社交機密我們是不是可以開一個秘密會議呢就是我們純粹委員這邊然後這樣才能夠知道他們的專案報告內容什麼否則的話我們今天怎麼可能會讓你們這個案子過
transcript.whisperx[45].start 946.206
transcript.whisperx[45].end 949.131
transcript.whisperx[45].text 就預算的部分他這裡我們不是講說就他的研究諮詢業務當時的研究諮詢業務說三個月內提出專案報告並經同意嗎
transcript.whisperx[46].start 961.448
transcript.whisperx[46].end 978.842
transcript.whisperx[46].text 有沒有這個可能性因為我問了一下我們本委員會以前從來沒有過這樣的前例啦是沒有這樣的前例但是不代表說不可以開嘛在我們法規上面有禁止說司法法治委員會不可以開命令會議嗎對否則我覺得這未來就是一個漏洞啊
transcript.whisperx[47].start 979.963
transcript.whisperx[47].end 999.225
transcript.whisperx[47].text 對 國安會每年的預算送給我們審查就我們竟然沒有辦法知道說他們到底用到哪裡去了只有一個總頭頭的一個經費幾千萬上億是總頭頭 我有分區域 有分次數這我都有報告那我怎麼知道你寫的是對還是不對我們都有經過會計和審核我們不可能撒謊啊
transcript.whisperx[48].start 1001.475
transcript.whisperx[48].end 1026.855
transcript.whisperx[48].text 現在連光雲撒謊這個大法官都認為沒有處罰啦所以我根本不知道你們到底有沒有撒謊啦我們經過會計程序怎麼可能撒謊呢我想我們立法院重要的職責基本上就是監督警政機關我們也很希望了解到底業務機關做了什麼事情這個可以作為你們日後要增加預算
transcript.whisperx[49].start 1027.375
transcript.whisperx[49].end 1041.432
transcript.whisperx[49].text 或是在兵力預算的時候就我們大家就比較清楚否則的話現在以你們這樣子的一個報告方式我們根本不知道你們到底去開了什麼會議做了什麼考察然後只是說依照地區然後什麼來區分
transcript.whisperx[50].start 1043.354
transcript.whisperx[50].end 1056.703
transcript.whisperx[50].text 任何一個機關的報告都不可能這樣子寫報告委員我們不是去考察我們都是去開會沒有考察這種東西是 所以去開會會議總要有個名稱吧有名稱但是沒辦法講報告委員沒辦法在這裡講我是跟您說實話所以我才說這可能可以涉及到密會或是你們有密件的方式來提供給我們知道送密件的方式是其他委員會也都有過的不是說沒有的
transcript.whisperx[51].start 1072.293
transcript.whisperx[51].end 1085.351
transcript.whisperx[51].text 對 我們如果看了密件 未來我們洩漏機密這個是要負責任的 負刑責的每個委員都很清楚我們的法律責任是什麼可是你們不能因此而規避掉你們的責任我們沒有規避 報告委員我們沒有規避
transcript.whisperx[52].start 1086.482
transcript.whisperx[52].end 1104.633
transcript.whisperx[52].text 我可以把你們的報告我直接可以貼臉書然後請社會大眾來公平看看我們是不是同意國安會這樣的專案報告可以讓他解凍預算因為我今天耽誤太多時間雖然我還準備了很多題目不過就是謝謝昭緯給我這樣的時間就是說剛剛有提到
transcript.whisperx[53].start 1109.016
transcript.whisperx[53].end 1117.633
transcript.whisperx[53].text 秘會的部分 因為以前沒有前例啦 那今天會後的話我們會研究一下那當然法規沒有禁止 這個是我要在這邊先跟各位報告
transcript.whisperx[54].start 1120.765
transcript.whisperx[54].end 1145.836
transcript.whisperx[54].text 那那個剛剛就是有關翁委員所提到的就是火石費的部分因為剛剛我們那個國防外交委員會的委員有特別請我在這邊跟大家說明一下就是因為國軍的官兵薪資裡面是由官兵向那個單位繳納納入火石團採買所以總統府的預算如果被凍結憲兵
transcript.whisperx[55].start 1148.297
transcript.whisperx[55].end 1171.918
transcript.whisperx[55].text 就是211營它的伙食它是無關的所以說這是剛剛那個國防委員會的委員給我們的就是說今天的業務費如果沒有解凍的話其實跟官兵沒有錢吃飯是兩回事這是剛剛國防委員會那當然這部分再請大家了解一下好 謝謝那我們下一位請陳美鳳