iVOD / 161716

Field Value
IVOD_ID 161716
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161716
日期 2025-05-21
會議資料.會議代碼 委員會-11-3-20-13
會議資料.會議代碼:str 第11屆第3會期財政委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-05-21T11:19:52+08:00
結束時間 2025-05-21T11:32:27+08:00
影片長度 00:12:35
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/e381da0d479eb7db61ea68f55d286f49da433bb611ec39b9db0f420b3783afbd7a32154d30c6f4785ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:19:52 - 11:32:27
會議時間 2025-05-21T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第13次全體委員會議(事由:一、邀請財政部、金融監督管理委員會、中央銀行就「房屋稅2.0課徵亂象與金融機構對不動產融資緊縮及中央銀行信用管制措施對房地產交易之影響」進行專題報告,並備質詢。 二、處理中華民國114年度中央政府總預算決議有關金融監督管理委員會主管預算凍結書面報告案39案。【報告事項】 三、處理中華民國114年度中央政府總預算決議有關金融監督管理委員會主管預算凍結專案報告案9案。【討論事項】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.58346875
transcript.pyannote[0].end 2.46096875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.15284375
transcript.pyannote[1].end 4.50284375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 5.86971875
transcript.pyannote[2].end 6.47721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 7.27034375
transcript.pyannote[3].end 8.62034375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 9.00846875
transcript.pyannote[4].end 10.84784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 11.42159375
transcript.pyannote[5].end 11.94471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 12.50159375
transcript.pyannote[6].end 16.39971875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 17.63159375
transcript.pyannote[7].end 20.11221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.70284375
transcript.pyannote[8].end 21.41159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 21.81659375
transcript.pyannote[9].end 22.18784375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 22.50846875
transcript.pyannote[10].end 25.05659375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.10721875
transcript.pyannote[11].end 26.47409375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 27.03096875
transcript.pyannote[12].end 29.74784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 31.16534375
transcript.pyannote[13].end 32.90346875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 33.27471875
transcript.pyannote[14].end 40.12596875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 39.78846875
transcript.pyannote[15].end 44.58096875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 44.85096875
transcript.pyannote[16].end 45.25596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 45.79596875
transcript.pyannote[17].end 50.14971875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 50.28471875
transcript.pyannote[18].end 55.21221875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 55.53284375
transcript.pyannote[19].end 56.95034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 57.10221875
transcript.pyannote[20].end 58.97534375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 59.70096875
transcript.pyannote[21].end 61.21971875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 61.60784375
transcript.pyannote[22].end 63.00846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 63.56534375
transcript.pyannote[23].end 76.10346875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 76.42409375
transcript.pyannote[24].end 77.48721875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 77.72346875
transcript.pyannote[25].end 81.25034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 81.30096875
transcript.pyannote[26].end 83.20784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 83.57909375
transcript.pyannote[27].end 84.22034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 84.40596875
transcript.pyannote[28].end 85.16534375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 85.62096875
transcript.pyannote[29].end 86.26221875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 86.49846875
transcript.pyannote[30].end 87.20721875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 87.81471875
transcript.pyannote[31].end 89.65409375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 90.53159375
transcript.pyannote[32].end 91.94909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 92.40471875
transcript.pyannote[33].end 92.96159375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 93.58596875
transcript.pyannote[34].end 97.46721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 98.80034375
transcript.pyannote[35].end 99.71159375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 99.89721875
transcript.pyannote[36].end 100.25159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 100.55534375
transcript.pyannote[37].end 103.89659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 104.36909375
transcript.pyannote[38].end 111.10221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 109.48221875
transcript.pyannote[39].end 109.98846875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 113.32971875
transcript.pyannote[40].end 115.45596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 113.46471875
transcript.pyannote[41].end 114.59534375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 115.87784375
transcript.pyannote[42].end 117.76784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 117.98721875
transcript.pyannote[43].end 118.72971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 118.05471875
transcript.pyannote[44].end 121.12596875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 121.24409375
transcript.pyannote[45].end 123.11721875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 124.80471875
transcript.pyannote[46].end 125.22659375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 126.17159375
transcript.pyannote[47].end 130.15409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 129.51284375
transcript.pyannote[48].end 130.98096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 131.47034375
transcript.pyannote[49].end 138.45659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 138.89534375
transcript.pyannote[50].end 140.44784375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 141.12284375
transcript.pyannote[51].end 143.14784375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 143.14784375
transcript.pyannote[52].end 147.24846875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 147.46784375
transcript.pyannote[53].end 149.44221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 150.45471875
transcript.pyannote[54].end 160.24221875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 160.96784375
transcript.pyannote[55].end 164.10659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 164.47784375
transcript.pyannote[56].end 166.99221875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 167.07659375
transcript.pyannote[57].end 168.02159375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 168.47721875
transcript.pyannote[58].end 172.72971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 172.96596875
transcript.pyannote[59].end 175.37909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 175.81784375
transcript.pyannote[60].end 177.04971875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 178.04534375
transcript.pyannote[61].end 183.47909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 183.47909375
transcript.pyannote[62].end 183.51284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 184.18784375
transcript.pyannote[63].end 184.20471875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 184.20471875
transcript.pyannote[64].end 185.35221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 188.55846875
transcript.pyannote[65].end 189.90846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 190.26284375
transcript.pyannote[66].end 191.27534375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 192.25409375
transcript.pyannote[67].end 194.43096875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 194.59971875
transcript.pyannote[68].end 195.08909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 195.69659375
transcript.pyannote[69].end 196.37159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 196.79346875
transcript.pyannote[70].end 199.20659375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 200.48909375
transcript.pyannote[71].end 208.03221875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 205.06221875
transcript.pyannote[72].end 207.44159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 207.91409375
transcript.pyannote[73].end 209.01096875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 209.01096875
transcript.pyannote[74].end 211.23846875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 211.60971875
transcript.pyannote[75].end 212.01471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 212.21721875
transcript.pyannote[76].end 212.52096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 212.52096875
transcript.pyannote[77].end 214.81596875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 214.83284375
transcript.pyannote[78].end 214.84971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 214.84971875
transcript.pyannote[79].end 214.86659375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 214.86659375
transcript.pyannote[80].end 214.88346875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 214.88346875
transcript.pyannote[81].end 215.50784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 214.90034375
transcript.pyannote[82].end 216.25034375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 215.99721875
transcript.pyannote[83].end 218.79846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 219.42284375
transcript.pyannote[84].end 235.42034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 235.94346875
transcript.pyannote[85].end 240.21284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 238.39034375
transcript.pyannote[86].end 241.20846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 241.32659375
transcript.pyannote[87].end 242.20409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 242.55846875
transcript.pyannote[88].end 249.24096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 248.83596875
transcript.pyannote[89].end 250.23659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 250.30409375
transcript.pyannote[90].end 253.98284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 254.94471875
transcript.pyannote[91].end 278.48534375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 278.68784375
transcript.pyannote[92].end 280.12221875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 280.66221875
transcript.pyannote[93].end 284.03721875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 284.03721875
transcript.pyannote[94].end 286.06221875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 286.18034375
transcript.pyannote[95].end 289.11659375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 289.47096875
transcript.pyannote[96].end 290.44971875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 291.20909375
transcript.pyannote[97].end 292.66034375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 292.93034375
transcript.pyannote[98].end 293.97659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 293.97659375
transcript.pyannote[99].end 294.17909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 294.65159375
transcript.pyannote[100].end 296.52471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 297.14909375
transcript.pyannote[101].end 309.55221875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 302.48159375
transcript.pyannote[102].end 303.02159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 309.97409375
transcript.pyannote[103].end 310.58159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 311.81346875
transcript.pyannote[104].end 312.23534375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 312.35346875
transcript.pyannote[105].end 313.34909375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 313.72034375
transcript.pyannote[106].end 317.36534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 317.93909375
transcript.pyannote[107].end 319.86284375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 318.29346875
transcript.pyannote[108].end 318.76596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 320.53784375
transcript.pyannote[109].end 325.71846875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 320.68971875
transcript.pyannote[110].end 322.52909375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 322.71471875
transcript.pyannote[111].end 323.06909375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 325.75221875
transcript.pyannote[112].end 328.84034375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 328.95846875
transcript.pyannote[113].end 331.05096875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 331.23659375
transcript.pyannote[114].end 332.50221875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 332.50221875
transcript.pyannote[115].end 332.97471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 332.97471875
transcript.pyannote[116].end 335.77596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 336.06284375
transcript.pyannote[117].end 338.12159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 338.64471875
transcript.pyannote[118].end 341.37846875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 342.22221875
transcript.pyannote[119].end 343.87596875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 344.21346875
transcript.pyannote[120].end 348.78659375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 349.71471875
transcript.pyannote[121].end 350.89596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 351.11534375
transcript.pyannote[122].end 353.19096875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 354.57471875
transcript.pyannote[123].end 355.62096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 356.14409375
transcript.pyannote[124].end 362.59034375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 362.72534375
transcript.pyannote[125].end 365.42534375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 363.11346875
transcript.pyannote[126].end 365.15534375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 366.20159375
transcript.pyannote[127].end 368.20971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 368.20971875
transcript.pyannote[128].end 379.97159375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 381.16971875
transcript.pyannote[129].end 382.03034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 382.58721875
transcript.pyannote[130].end 382.99221875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 383.36346875
transcript.pyannote[131].end 384.02159375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 384.62909375
transcript.pyannote[132].end 385.84409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 386.13096875
transcript.pyannote[133].end 386.99159375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 387.44721875
transcript.pyannote[134].end 388.08846875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 388.29096875
transcript.pyannote[135].end 390.09659375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 392.50971875
transcript.pyannote[136].end 392.91471875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 394.50096875
transcript.pyannote[137].end 398.90534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 399.86721875
transcript.pyannote[138].end 401.89221875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 402.60096875
transcript.pyannote[139].end 403.24221875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 403.79909375
transcript.pyannote[140].end 404.55846875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 404.87909375
transcript.pyannote[141].end 413.43471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 414.09284375
transcript.pyannote[142].end 416.35409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 416.86034375
transcript.pyannote[143].end 418.26096875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 420.31971875
transcript.pyannote[144].end 420.72471875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 421.14659375
transcript.pyannote[145].end 421.63596875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 421.95659375
transcript.pyannote[146].end 422.49659375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 422.68221875
transcript.pyannote[147].end 423.74534375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 423.93096875
transcript.pyannote[148].end 425.26409375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 425.88846875
transcript.pyannote[149].end 427.00221875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 427.12034375
transcript.pyannote[150].end 428.01471875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 428.33534375
transcript.pyannote[151].end 428.99346875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 429.53346875
transcript.pyannote[152].end 430.14096875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 430.57971875
transcript.pyannote[153].end 431.91284375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 432.16596875
transcript.pyannote[154].end 432.46971875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 432.89159375
transcript.pyannote[155].end 435.03471875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 435.27096875
transcript.pyannote[156].end 435.81096875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 438.30846875
transcript.pyannote[157].end 440.21534375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 440.38409375
transcript.pyannote[158].end 440.56971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 440.56971875
transcript.pyannote[159].end 440.58659375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 440.60346875
transcript.pyannote[160].end 441.21096875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 441.75096875
transcript.pyannote[161].end 443.05034375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 443.21909375
transcript.pyannote[162].end 452.38221875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 453.29346875
transcript.pyannote[163].end 454.15409375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 454.71096875
transcript.pyannote[164].end 458.47409375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 458.81159375
transcript.pyannote[165].end 461.02221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 461.29221875
transcript.pyannote[166].end 467.14784375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 467.14784375
transcript.pyannote[167].end 467.23221875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 467.23221875
transcript.pyannote[168].end 467.87346875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 467.87346875
transcript.pyannote[169].end 493.96221875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 482.72346875
transcript.pyannote[170].end 483.61784375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 493.96221875
transcript.pyannote[171].end 499.88534375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 499.88534375
transcript.pyannote[172].end 510.06096875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 510.36471875
transcript.pyannote[173].end 511.96784375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 511.96784375
transcript.pyannote[174].end 518.71784375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 519.00471875
transcript.pyannote[175].end 533.06159375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 533.55096875
transcript.pyannote[176].end 552.97409375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 552.97409375
transcript.pyannote[177].end 561.49596875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 561.49596875
transcript.pyannote[178].end 561.68159375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 561.78284375
transcript.pyannote[179].end 561.90096875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 561.90096875
transcript.pyannote[180].end 562.03596875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 562.03596875
transcript.pyannote[181].end 573.10596875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 573.66284375
transcript.pyannote[182].end 582.33659375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 583.07909375
transcript.pyannote[183].end 597.96284375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 597.96284375
transcript.pyannote[184].end 603.17721875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 603.66659375
transcript.pyannote[185].end 605.45534375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 605.69159375
transcript.pyannote[186].end 606.43409375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 607.32846875
transcript.pyannote[187].end 627.93284375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 627.93284375
transcript.pyannote[188].end 630.44721875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 630.73409375
transcript.pyannote[189].end 632.69159375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 632.97846875
transcript.pyannote[190].end 633.77159375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 634.29471875
transcript.pyannote[191].end 635.39159375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 636.20159375
transcript.pyannote[192].end 636.62346875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 637.16346875
transcript.pyannote[193].end 638.78346875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 639.15471875
transcript.pyannote[194].end 640.52159375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 641.60159375
transcript.pyannote[195].end 642.56346875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 642.54659375
transcript.pyannote[196].end 663.13409375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 663.06659375
transcript.pyannote[197].end 666.32346875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 666.99846875
transcript.pyannote[198].end 686.60721875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 669.52971875
transcript.pyannote[199].end 670.76159375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 685.72971875
transcript.pyannote[200].end 688.59846875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 686.96159375
transcript.pyannote[201].end 688.56471875
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 688.59846875
transcript.pyannote[202].end 688.88534375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 688.88534375
transcript.pyannote[203].end 688.90221875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 688.90221875
transcript.pyannote[204].end 688.91909375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 690.06659375
transcript.pyannote[205].end 692.29409375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 692.83409375
transcript.pyannote[206].end 700.68096875
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 701.25471875
transcript.pyannote[207].end 702.97596875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 702.97596875
transcript.pyannote[208].end 703.12784375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 704.05596875
transcript.pyannote[209].end 708.86534375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 709.57409375
transcript.pyannote[210].end 711.29534375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 711.58221875
transcript.pyannote[211].end 712.39221875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 712.54409375
transcript.pyannote[212].end 716.79659375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 718.19721875
transcript.pyannote[213].end 724.72784375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 725.04846875
transcript.pyannote[214].end 726.76971875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 726.61784375
transcript.pyannote[215].end 727.66409375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 728.22096875
transcript.pyannote[216].end 728.49096875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 729.14909375
transcript.pyannote[217].end 736.91159375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 736.91159375
transcript.pyannote[218].end 738.17721875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 738.17721875
transcript.pyannote[219].end 738.26159375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 741.11346875
transcript.pyannote[220].end 741.14721875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 741.14721875
transcript.pyannote[221].end 743.10471875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 743.54346875
transcript.pyannote[222].end 745.50096875
transcript.whisperx[0].start 5.899
transcript.whisperx[0].end 28.883
transcript.whisperx[0].text 最近台幣的漲勢稍微緩和一點面對未來有沒有可能因為彭總裁你比較熟吧彭海南你比較久了上次提到彭總裁有人說沒有彭海南防線究竟彭海南防線是值幾塊錢
transcript.whisperx[1].start 31.206
transcript.whisperx[1].end 58.412
transcript.whisperx[1].text 那個 報告我 因為我從那個過去彭總裁 彭堅總裁或楊總裁我們都沒有對外宣稱說有所謂什麼防線可是大家認同的彭華聯防線就是28.5啊對於美元啊其實台幣的匯率也有升過超過28.5的情況是 就短暫一下不過在彭總裁任內感覺還蠻穩定的那對於本席在
transcript.whisperx[2].start 59.778
transcript.whisperx[2].end 82.738
transcript.whisperx[2].text 之前所提的主權基金其實有兩個人提案一個是吳欣穎前立委吳委員以及本席共同提案當初就希望提出主權基金的概念來配合國內的重要的企業發展可以起一個
transcript.whisperx[3].start 83.659
transcript.whisperx[3].end 110.925
transcript.whisperx[3].text 到處帶著資金可以去跟技術結合的投資對於主權基金那嚴副總裁你覺得這個基金的size大概要多大規模要多大其實這還是要看整個那種國家主權基金我們政府希望它要多大的規模其實我很難在這邊跟農委主權基金多少
transcript.whisperx[4].start 113.519
transcript.whisperx[4].end 140.264
transcript.whisperx[4].text 大概一兆多規模是算是非常大的幾個 新加坡 淡馬市等等全部大概都是一兆多以上是吧那個委員我這邊沒有資料所以我沒辦法跟您直接那央行對於當初我們是希望說從外匯存底裡面來提撥大概百分之十就是現在外匯存底是多少
transcript.whisperx[5].start 142.776
transcript.whisperx[5].end 159.93
transcript.whisperx[5].text 5,828億左右大概是500多億也是大概相當1.5兆左右那央行的態度是怎麼樣我們在5月8號的總裁在這邊的報告已經很明確的點出我們對於這個主權基金裁員有三種方式
transcript.whisperx[6].start 161.004
transcript.whisperx[6].end 184.749
transcript.whisperx[6].text 我們上次已經提過就是財政部發債財政部撥款或者財政部出資這樣子的方式那央行在這個過程裡面可能在某一塊可以做一些適度的協助那央行要不要投資這就是看整個政府對於這個基金的管理的設置那我們請財政部莊部長一起
transcript.whisperx[7].start 188.581
transcript.whisperx[7].end 212.972
transcript.whisperx[7].text 一統 還有金管會 彭主委一起三位一起那剛提到 央行它不出錢 財務部要準備出多少錢第一個 這個主權基金的規模要多大那第二個就是它財務來源要多少一兆多以上啊一兆多這麼大的規模是嗎對好 那你這個錢準備從哪裡來
transcript.whisperx[8].start 215.892
transcript.whisperx[8].end 234.757
transcript.whisperx[8].text 發債還是第一個我們的稅計剩餘其實並沒有那麼高那第二個就是說如果要發債的話現在公共債務法裡面並沒有涵蓋就是說可以去發債挹注主權基金所以是必要成立專法由專法裡面來做規範
transcript.whisperx[9].start 235.987
transcript.whisperx[9].end 252.42
transcript.whisperx[9].text 所以現在財政部有沒有錢可以來投資基金?財政部的錢就是國庫的錢國庫有沒有錢?國庫的錢在我們的預算書上都非常清楚稅入、稅出、稅計、剩餘以及債務都呈現得很清楚所以講起來就是沒有錢是不是?來我幫你找一條錢,請那個彭主委
transcript.whisperx[10].start 254.977
transcript.whisperx[10].end 278.943
transcript.whisperx[10].text 黃主席本席在這裡曾提過保險法第146條之事的提出如果在前年可以通過然後遵照我們立法院通過的決議來做的話你知道現在所有的保險公司投資在美國的公司債以及美國公債加起來的總資產大概有多少超過20兆
transcript.whisperx[11].start 281.071
transcript.whisperx[11].end 310.314
transcript.whisperx[11].text 20兆20兆的部分投資美元資產的大概有多少大概應該是九成以上都是美元資產所以大概18兆應該有這個數字主委你想想看如果大概在一年多前本席所提案的通過的話20兆就回來10兆但是那是屬於回來10兆的話最近的話因為台幣的升值大概減損的漲上大概10%左右事實上
transcript.whisperx[12].start 311.854
transcript.whisperx[12].end 319.245
transcript.whisperx[12].text 主委 一個動作我就幫所有的保險公司多賺了一兆啊而且你回來台灣
transcript.whisperx[13].start 320.992
transcript.whisperx[13].end 348.441
transcript.whisperx[13].text 當初如果我們來台灣有很多很多大家都知道未來的世界就是AI的世界這是很重要的一個產業吧主委認不認同我想應該全世界大部分人都認同這個好 那我再請那個關務署我把他的數據讓你參考一下關務署長最清楚了去年大概物流進進出出外銷的部分
transcript.whisperx[14].start 349.775
transcript.whisperx[14].end 353.003
transcript.whisperx[14].text AI的部分佔的比例大概有多少
transcript.whisperx[15].start 354.782
transcript.whisperx[15].end 379.559
transcript.whisperx[15].text 蕭美國的部分蕭美國的部分 包委員這數字我必須要再查一下你要查一下 因為這個不可以不知道那黃仁勳你認不認識報紙看過希望你可以跟他多聊聊你要來協助他為什麼黃仁勳他找了一共大概一百多個產業要組成一個
transcript.whisperx[16].start 381.506
transcript.whisperx[16].end 402.902
transcript.whisperx[16].text 聽台灣一個團隊其中包括國泰金控包括玉山金控都入列為什麼因為他這個產業周邊大概比較重要的大概有45家一個數據你去查一下就知道去年
transcript.whisperx[17].start 404.151
transcript.whisperx[17].end 431.64
transcript.whisperx[17].text 進出在自由貿易港區出去的部分總共金額是三兆多AI相關的產業NVIDIA的那一棟就在遠雄自貿港區的那一棟大概就接近兩兆所以希望署長你要把那些數字查出來來告訴提供這些重要的財經長官他們來做判斷是
transcript.whisperx[18].start 432.912
transcript.whisperx[18].end 435.655
transcript.whisperx[18].text 所以未來的發展,台灣如何在國際上發光發亮,掌控未來,事實上除了技術之外,就是後面的晶圓
transcript.whisperx[19].start 453.339
transcript.whisperx[19].end 471.925
transcript.whisperx[19].text 你要投資啊那主委你贊不贊成剛剛本席所提的海外的這些資金你可以回來就是當我們成立主權基金的時候看什麼樣的方式他們也可以投入當然這個屬性上有所差別因為這是屬於保險業的資產
transcript.whisperx[20].start 473.345
transcript.whisperx[20].end 483.195
transcript.whisperx[20].text 他必須要轉換成某一個工具才有辦法做投入比如剛剛委員提到假設政府是以舉債的方式如果他的條件合一的話我們也會鼓勵我們的保險業來投資這樣的一個這個也符合他們長期投資的債券
transcript.whisperx[21].start 491.002
transcript.whisperx[21].end 518.324
transcript.whisperx[21].text 是 主委你有沒有算過所有的保險公司在海外的部分現在所持有的美國公債以及美國公司債加起來你講個多少現在我剛剛跟我們報告那個數字裡面其實持有美國公債大概五千七百億左右台幣五千七百億那其他的部分大部分都是公司債居多好 那如果台幣繼續升值升值到二十七塊的時候對這些保險公司會產生什麼樣的影響
transcript.whisperx[22].start 519.076
transcript.whisperx[22].end 541.287
transcript.whisperx[22].text 我想任何一個匯率的波動對於我們有這麼巨大在海外資產如果說沒有做相對應的避險當然對財報賬戶上是會有蠻大的波動我也上次講過假設我想很多媒體也揭露過就是我們現在大概是假設以六兆是沒有避險的話那相當於兩千億
transcript.whisperx[23].start 543.468
transcript.whisperx[23].end 556.192
transcript.whisperx[23].text 兩千億美元的話大概就是一塊錢大概就是一千五百億到兩千億左右的影響數我想漲跌大概就是這樣一個幅度所以本席擔心的是因為這樣的狀況不斷的出現讓國內就受險公司的RBC每下預礦
transcript.whisperx[24].start 562.154
transcript.whisperx[24].end 582.068
transcript.whisperx[24].text 現在低於300的有幾間?我剛剛也跟委員報告過因為我們RBC的計算是以6月30號跟12月31號假如是12月31號的我們最近那一期的話其實大概有一家是不符合RBC的比例接下來6月30號必須要到7月或8月才能算得出來
transcript.whisperx[25].start 583.12
transcript.whisperx[25].end 605.119
transcript.whisperx[25].text 要嚴密監控啊當然我們每天都在監控該增資的有沒有要求他們要增資增資保險法有一定的規定不是說一到了不足兩百就增資它有一套非常非常周延的增資方法我們不能每次出了事情或者是下一個情況不好的時候仰賴保險安定基金保險安定基金現在有多少錢
transcript.whisperx[26].start 607.763
transcript.whisperx[26].end 634.523
transcript.whisperx[26].text 當然安定基金不能只看那個啦他現在的基金大概四百多億四百多億一千出問題你都沒辦法解決啊我想他不是只靠這個他有其他財源就像比如說我們在過去的經驗裡面呢大家都比如說可以我們依法可以舉借這部分過去大概都是這麼做的好 那主委我們看到現在房地產的這個放貸啊有很多很多的這個情況比預期還糟
transcript.whisperx[27].start 637.627
transcript.whisperx[27].end 639.954
transcript.whisperx[27].text 請問現在的房地產有違約的
transcript.whisperx[28].start 641.653
transcript.whisperx[28].end 665.544
transcript.whisperx[28].text 比例有沒有增加剛剛我在那個報告的時候呢我們現在的房貸的違約只有0.07%0.07%連0.1%都不到那這個建商的部分是0.16%這個都是史上很低的很低的這個程度我想這個餘放比例呢還在非常低的請問什麼數字最近是不斷的竄升的
transcript.whisperx[29].start 667.505
transcript.whisperx[29].end 686.29
transcript.whisperx[29].text 我想有媒體揭露那個絕對數字的部分因為當然我們的量體越大當然數字就會增加但是那個比率還是維持一樣而且在一個非常低的水準特別是我們的自用的房貸的部分請多注意一下這樣的情況最後一個問題金融風暴會不會再度來襲
transcript.whisperx[30].start 693.558
transcript.whisperx[30].end 716.574
transcript.whisperx[30].text 這個我想就一個金融監理機關每天都要有這樣的一個預備這是我們的日常好 謝謝那個央行謝謝美國的殖利率30年期的公債漲到5%啦美元的地位不保央行有沒有調節我們的外匯存底美金的比例
transcript.whisperx[31].start 718.22
transcript.whisperx[31].end 738.253
transcript.whisperx[31].text 我想那個長期以來我們會隨時去注意到國際的金融情勢我們會做適度的適度一直都有做適度的調整最近有調整嗎老師說我沒有資料但是我知道我們固定都會有看那個國外的經濟金融情勢變動做適度的調整好 多小心啦 謝謝謝謝羅恩的質詢下面請李坤城委員質詢請
gazette.lineno 869
gazette.blocks[0][0] 羅委員明才:(11時19分)主席、各位委員、出列席官員,大家好。主席,請央行嚴副總裁。
gazette.blocks[1][0] 主席:請嚴副總裁。
gazette.blocks[2][0] 羅委員明才:嚴副總裁,你好。
gazette.blocks[3][0] 嚴副總裁宗大:委員好。
gazette.blocks[4][0] 羅委員明才:最近台幣的漲勢稍微緩和一點,面對未來有沒有可能,因為彭總裁你比較熟吧?彭淮南。
gazette.blocks[5][0] 嚴副總裁宗大:是。
gazette.blocks[6][0] 羅委員明才:你比較久了。上次提到彭總裁,有人說沒有彭淮南防線,究竟彭淮南防線是指幾塊錢?
gazette.blocks[7][0] 嚴副總裁宗大:報告委員,因為從過去彭前總裁或楊總裁,我們都沒有對外宣稱有所謂什麼防線的問題……
gazette.blocks[8][0] 羅委員明才:可是大家認同的彭淮南防線就是28.5台幣對1美元。
gazette.blocks[9][0] 嚴副總裁宗大:其實台幣的匯率也有升值超過28.5的情況。
gazette.blocks[10][0] 羅委員明才:是,就是短暫期間,不過在彭總裁任內,感覺匯率還滿穩定的。本席之前所提的主權基金,其實有兩個人提案,一個是前立委吳欣盈委員,以及本席共同提案,當初就希望提出主權基金的概念,配合國內重要企業的發展,可以起一個到處帶著資金可以去跟技術結合的投資。對於主權基金,嚴副總裁,你覺得這個基金的size大概要多大、規模要多大?
gazette.blocks[11][0] 嚴副總裁宗大:這還是要看整個國家主權基金,我們政府希望它要多大的規模,其實我很難在這邊跟您……
gazette.blocks[12][0] 羅委員明才:挪威主權基金多少?大概一兆多。
gazette.blocks[13][0] 嚴副總裁宗大:規模算是非常大的,挪威或……
gazette.blocks[14][0] 羅委員明才:幾個主權基金,包含新加坡淡馬錫等等,全部大概都是一兆多以上,是吧?
gazette.blocks[15][0] 嚴副總裁宗大:委員,我這邊沒有資料,所以我沒辦法跟您直接報告。
gazette.blocks[16][0] 羅委員明才:當初我們是希望從外匯存底裡面來提撥大概10%,現在外匯存底是多少?
gazette.blocks[17][0] 嚴副總裁宗大:5,828億左右。
gazette.blocks[18][0] 羅委員明才:對,大概是五百多億,也是大概相當1.5兆左右,那央行的態度是怎麼樣?
gazette.blocks[19][0] 嚴副總裁宗大:5月8號我們總裁在這邊的報告已經很明確的點出,主權基金的財源有三種方式,我們上次已經提過就是財政部發債、財政部撥款,或者財政部出資這樣的方式,那央行在這個過程裡面,可能在某一塊可以做一些適度的協助。
gazette.blocks[20][0] 羅委員明才:那央行要不要投資?
gazette.blocks[21][0] 嚴副總裁宗大:這就看整個政府對於這個基金的管理設置……
gazette.blocks[22][0] 羅委員明才:好,那我們請財政部莊部長一同,還有金管會彭主委也一起,請三位一起。
gazette.blocks[23][0] 莊部長翠雲:委員好。
gazette.blocks[24][0] 羅委員明才:剛剛提到央行不出錢,財政部要準備出多少錢?
gazette.blocks[25][0] 莊部長翠雲:第一個,這個主權基金的規模要多大?第二個就是它的財務來源要多少,對不對?
gazette.blocks[26][0] 羅委員明才:剛剛有講,一般都一兆多以上。
gazette.blocks[27][0] 莊部長翠雲:一兆多這麼大的規模是嗎?
gazette.blocks[28][0] 羅委員明才:對。
gazette.blocks[29][0] 莊部長翠雲:好。
gazette.blocks[30][0] 羅委員明才:那這個錢你準備從哪裡來?發債還是?
gazette.blocks[31][0] 莊部長翠雲:第一個,我們的歲計賸餘並沒有那麼高;第二個,如果要發債的話,現在公共債務法裡面並沒有涵蓋可以去發債挹注主權基金,所以勢必要成立專法,由專法來做規範。
gazette.blocks[32][0] 羅委員明才:所以現在財政部有沒有錢可以來投資基金?
gazette.blocks[33][0] 莊部長翠雲:財政部的錢就是國庫的錢。
gazette.blocks[34][0] 羅委員明才:國庫有沒有錢?
gazette.blocks[35][0] 莊部長翠雲:國庫的錢在我們的預算書上都寫得非常清楚,歲入、歲出、歲計賸餘以及債務都呈現得很清楚。
gazette.blocks[36][0] 羅委員明才:講起來就是沒有錢,是不是?來,我幫你找一條錢。
gazette.blocks[36][1] 來,請彭主委。
gazette.blocks[36][2] 彭主委,本席在這裡曾提過保險法第一百四十六條之四的提出,如果在前年可以通過,就遵照我們立法院通過的決議來做的話,你知道現在所有保險公司投資在美國的公司債以及美國公債,加起來的總資產大概有多少?
gazette.blocks[37][0] 彭主任委員金隆:超過20兆。
gazette.blocks[38][0] 羅委員明才:20兆當中,投資美元資產的大概有多少?
gazette.blocks[39][0] 彭主任委員金隆:大概應該九成以上都是美元資產。
gazette.blocks[40][0] 羅委員明才:所以大概18兆?
gazette.blocks[41][0] 彭主任委員金隆:應該有這個數字。
gazette.blocks[42][0] 羅委員明才:主委,你想想看,如果大概在一年多前,本席所提的案通過的話,20兆就回來10兆……
gazette.blocks[43][0] 彭主任委員金隆:但是那是屬於……
gazette.blocks[44][0] 羅委員明才:回來10兆的話,最近因為台幣升值,帳上的減損大概10%,事實上,主委,一個動作我就幫所有的保險公司多賺了1兆啊!
gazette.blocks[45][0] 彭主任委員金隆:如果臺灣……
gazette.blocks[46][0] 羅委員明才:而且回來臺灣,當初如果回來臺灣……
gazette.blocks[47][0] 彭主任委員金隆:如果臺灣也有部分投資標的的話……
gazette.blocks[48][0] 羅委員明才:有很多很多,大家都知道,未來的世界就是AI的世界,這是很重要的一個產業吧!主委認不認同?
gazette.blocks[49][0] 彭主任委員金隆:我想應該全世界大部分人都認同這個。
gazette.blocks[50][0] 羅委員明才:好,我再請關務署,我把他的數據讓你參考一下。關務署長最清楚了,去年物流進進出出外銷的部分,AI的部分占的比例大概有多少?銷往美國的部分。
gazette.blocks[51][0] 彭署長英偉:銷往美國的部分?報告委員,這個數字我必須要再查一下。
gazette.blocks[52][0] 羅委員明才:你要查一下,因為這個不可以不知道。
gazette.blocks[53][0] 彭署長英偉:那個AI的項目非常多。
gazette.blocks[54][0] 羅委員明才:那黃仁勳你認不認識?
gazette.blocks[55][0] 彭署長英偉:在報紙上看過。
gazette.blocks[56][0] 羅委員明才:看過喔?希望你可以跟他多聊聊,你要來協助他。為什麼黃仁勳找了一共大概一百多個產業,要組成一個Team Taiwan團隊,其中包括國泰金控,包括玉山金控都入列,為什麼?因為他這個產業周邊比較重要的大概有45家,你去查一下一個數據就知道,去年的進出口,從自由貿易港區出去的部分,總共金額是三兆多,AI相關的產業,NVIDIA的那一棟,就在遠雄自貿港區的那一棟,大概就接近兩兆。所以希望署長,你要把那些數字查出來,提供給這些重要的財經長官來做判斷。
gazette.blocks[57][0] 彭署長英偉:是。
gazette.blocks[58][0] 羅委員明才:好,謝謝。
gazette.blocks[59][0] 彭署長英偉:謝謝。
gazette.blocks[60][0] 羅委員明才:接著請彭主委。
gazette.blocks[60][1] 彭主委,他們的數字都會給你,所以未來的發展,臺灣如何在國際上發光發亮、掌控未來,除了技術之外就是後面的金援,你要投資啊。主委,你贊不贊成剛剛本席所提的,海外的資金可以回來,當我們成立主權基金的時候,看用什麼樣的方式他們也可以投入?
gazette.blocks[61][0] 彭主任委員金隆:當然這個屬性上也有所差別,因為這是屬於保險業的資產,他必須要轉換成某一個工具才有辦法做投入,比如剛剛委員有提到,假設政府是以舉債的方式,如果他的條件合宜的話,我們也會鼓勵……
gazette.blocks[62][0] 羅委員明才:他可以買債啊。
gazette.blocks[63][0] 彭主任委員金隆:我們也鼓勵我們的保險業來投資這樣一個也符合他們長期投資的債券。
gazette.blocks[64][0] 羅委員明才:主委,你有沒有算過,所有保險公司在海外的資產,現在所持有的美國公債以及美國公司債加起來一共有多少?
gazette.blocks[65][0] 彭主任委員金隆:我剛剛跟委員報告的那個數字裡面,其實持有美國公債大概5,700億左右的台幣,其他的大部分都是公司債居多。
gazette.blocks[66][0] 羅委員明才:好。那如果台幣繼續升值,升值到27塊的時候,對這些保險公司會產生什麼樣的影響?
gazette.blocks[67][0] 彭主任委員金隆:我想任何匯率的波動,對於有這麼巨大的海外資產,如果沒有做相對應的避險,當然對財報帳務上是會有蠻大的波動。我上次也講過,我想很多媒體也揭露過,我們現在假設有6兆相當於2,000億美元是沒有避險的話,匯率波動一塊錢大概就是1,500億到2,000億左右的影響數,我想漲跌大概就是這樣的幅度。
gazette.blocks[68][0] 羅委員明才:本席擔心的是,因為這樣的狀況不斷的出現,讓國內壽險公司的RBC每下愈況,現在低於三百的有幾間?
gazette.blocks[69][0] 彭主任委員金隆:我剛剛也跟委員報告過,因為我們RBC的計算是以6月30號跟12月31號,假設12月31號我們最近那一期的話,其實有一家大概是不符合RBC的比率,接下來6月30號這一次,必須要到7月或8月才能算得出來。
gazette.blocks[70][0] 羅委員明才:要嚴密監控。
gazette.blocks[71][0] 彭主任委員金隆:當然,我們每天都在監控。
gazette.blocks[72][0] 羅委員明才:該增資的,有沒有要求他們要增資?
gazette.blocks[73][0] 彭主任委員金隆:增資部分保險法有一定的規定,不是說一到了不足兩百就增資,它有一套非常非常周延的增資……
gazette.blocks[74][0] 羅委員明才:主委,我們不能每次出了事情,或者是下一個情況不好的時候就仰賴保險安定基金。保險安定基金現在有多少錢?
gazette.blocks[75][0] 彭主任委員金隆:當然安定基金不能只看那個啦!現在的基金大概四百多億。
gazette.blocks[76][0] 羅委員明才:四百多億,一間出問題你都沒辦法解決啊!
gazette.blocks[77][0] 彭主任委員金隆:沒有,我想它不是只靠這個,它有其他的財源,比如說我們在過去的經驗裡面,我們依法可以舉借,這部分過去大概都是這麼做的。
gazette.blocks[78][0] 羅委員明才:好,主委,我們看到現在房地產的放貸有很多很多的情況比預期還糟,請問現在這些房地產有違約的,比率有沒有增加?
gazette.blocks[79][0] 彭主任委員金隆:剛剛我在報告的時候,我們現在房貸的違約只有0.07%,連0.1%都不到,建商的部分是0.16%,這個都是史上很低很低的程度,我想這個逾放比率還在非常低的……
gazette.blocks[80][0] 羅委員明才:請問什麼數字最近是不斷竄升的?
gazette.blocks[81][0] 彭主任委員金隆:有媒體揭露那個……
gazette.blocks[82][0] 羅委員明才:是跳票還是什麼?
gazette.blocks[83][0] 彭主任委員金隆:絕對數字的部分,因為我們的量體越大,當然數字就會增加,但是那個比率還是維持一樣,而且在一個非常低的水準,特別是自用房貸的部分。
gazette.blocks[84][0] 羅委員明才:好,請多注意一下這樣的情況。
gazette.blocks[85][0] 彭主任委員金隆:當然、當然,我們每年都會注意這件事情。
gazette.blocks[86][0] 羅委員明才:最後一個問題,金融風暴會不會再度來襲?
gazette.blocks[87][0] 彭主任委員金隆:我想就一個金融監理機關,每天都要有這樣的預備,這是我們的日常。
gazette.blocks[88][0] 羅委員明才:好,謝謝。接下來請央行。
gazette.blocks[89][0] 彭主任委員金隆:謝謝。
gazette.blocks[90][0] 羅委員明才:美國的殖利率,30年期的公債漲到5%,美元的地位不保,央行有沒有調節我們外匯存底美金的比例?
gazette.blocks[91][0] 嚴副總裁宗大:我想長期以來,我們會隨時去注意國際的金融情勢,一直都有做適度的調整。
gazette.blocks[92][0] 羅委員明才:最近有調整嗎?
gazette.blocks[93][0] 嚴副總裁宗大:老實說我沒有資料,但是我知道我們固定都會看國外的經濟金融情勢變動,做適度的調整。
gazette.blocks[94][0] 羅委員明才:好,要多小心啦!謝謝。
gazette.blocks[95][0] 嚴副總裁宗大:謝謝。
gazette.blocks[96][0] 主席(賴委員士葆):謝謝羅委員的質詢。
gazette.blocks[96][1] 下一位請李坤城委員質詢。
gazette.agenda.page_end 380
gazette.agenda.meet_id 委員會-11-3-20-13
gazette.agenda.speakers[0] 賴士葆
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 郭國文
gazette.agenda.speakers[4] 賴惠員
gazette.agenda.speakers[5] 李彥秀
gazette.agenda.speakers[6] 鍾佳濱
gazette.agenda.speakers[7] 羅明才
gazette.agenda.speakers[8] 李坤城
gazette.agenda.speakers[9] 顏寬恒
gazette.agenda.speakers[10] 黃珊珊
gazette.agenda.speakers[11] 陳玉珍
gazette.agenda.speakers[12] 林思銘
gazette.agenda.speakers[13] 王世堅
gazette.agenda.speakers[14] 林楚茵
gazette.agenda.speakers[15] 廖先翔
gazette.agenda.speakers[16] 邱志偉
gazette.agenda.speakers[17] 楊瓊瓔
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.page_start 299
gazette.agenda.meetingDate[0] 2025-05-21
gazette.agenda.gazette_id 1145101
gazette.agenda.agenda_lcidc_ids[0] 1145101_00009
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第13次全體委員會議紀錄
gazette.agenda.content 一、邀請財政部、金融監督管理委員會、中央銀行就「房屋稅2.0課徵亂象與金融機構對不動產 融資緊縮及中央銀行信用管制措施對房地產交易之影響」進行專題報告,並備質詢;二、處理中 華民國 114 年度中央政府總預算決議有關金融監督管理委員會主管預算凍結書面報告案 39 案; 三、處理中華民國114年度中央政府總預算決議有關金融監督管理委員會主管預算凍結專案報告 案9案
gazette.agenda.agenda_id 1145101_00008