iVOD / 16167

Field Value
影片長度 14055
委員名稱 完整會議
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/8d241381c4f8c7fcb2f07a4e68a7a9855e5a7d9476abbdb3c04c64b87e30630aa1f706c0b4f292795ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 1764.90284375
transcript.pyannote[0].end 1769.44221875
transcript.pyannote[1].speaker SPEAKER_06
transcript.pyannote[1].start 1771.14659375
transcript.pyannote[1].end 1774.94346875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 1775.60159375
transcript.pyannote[2].end 1780.61346875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 1780.95096875
transcript.pyannote[3].end 1792.27409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 1792.37534375
transcript.pyannote[4].end 1798.02846875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 1798.33221875
transcript.pyannote[5].end 1800.05346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 1800.32346875
transcript.pyannote[6].end 1803.47909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 1803.81659375
transcript.pyannote[7].end 1808.13659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 1808.38971875
transcript.pyannote[8].end 1812.37221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 1812.57471875
transcript.pyannote[9].end 1817.58659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 1817.82284375
transcript.pyannote[10].end 1819.83096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 1820.08409375
transcript.pyannote[11].end 1824.69096875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 1825.12971875
transcript.pyannote[12].end 1826.93534375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 1827.15471875
transcript.pyannote[13].end 1834.03971875
transcript.pyannote[14].speaker SPEAKER_06
transcript.pyannote[14].start 1837.71846875
transcript.pyannote[14].end 1840.90784375
transcript.pyannote[15].speaker SPEAKER_06
transcript.pyannote[15].start 1842.56159375
transcript.pyannote[15].end 1846.22346875
transcript.pyannote[16].speaker SPEAKER_06
transcript.pyannote[16].start 1846.42596875
transcript.pyannote[16].end 1849.26096875
transcript.pyannote[17].speaker SPEAKER_06
transcript.pyannote[17].start 1850.10471875
transcript.pyannote[17].end 1853.22659375
transcript.pyannote[18].speaker SPEAKER_06
transcript.pyannote[18].start 1853.96909375
transcript.pyannote[18].end 1855.04909375
transcript.pyannote[19].speaker SPEAKER_06
transcript.pyannote[19].start 1856.31471875
transcript.pyannote[19].end 1863.90846875
transcript.pyannote[20].speaker SPEAKER_06
transcript.pyannote[20].start 1864.93784375
transcript.pyannote[20].end 1867.46909375
transcript.pyannote[21].speaker SPEAKER_06
transcript.pyannote[21].start 1868.70096875
transcript.pyannote[21].end 1871.45159375
transcript.pyannote[22].speaker SPEAKER_06
transcript.pyannote[22].start 1872.39659375
transcript.pyannote[22].end 1876.15971875
transcript.pyannote[23].speaker SPEAKER_06
transcript.pyannote[23].start 1876.96971875
transcript.pyannote[23].end 1878.11721875
transcript.pyannote[24].speaker SPEAKER_06
transcript.pyannote[24].start 1878.37034375
transcript.pyannote[24].end 1878.84284375
transcript.pyannote[25].speaker SPEAKER_06
transcript.pyannote[25].start 1879.29846875
transcript.pyannote[25].end 1881.81284375
transcript.pyannote[26].speaker SPEAKER_06
transcript.pyannote[26].start 1882.09971875
transcript.pyannote[26].end 1882.74096875
transcript.pyannote[27].speaker SPEAKER_06
transcript.pyannote[27].start 1882.97721875
transcript.pyannote[27].end 1883.77034375
transcript.pyannote[28].speaker SPEAKER_06
transcript.pyannote[28].start 1883.97284375
transcript.pyannote[28].end 1885.32284375
transcript.pyannote[29].speaker SPEAKER_06
transcript.pyannote[29].start 1886.03159375
transcript.pyannote[29].end 1888.96784375
transcript.pyannote[30].speaker SPEAKER_06
transcript.pyannote[30].start 1889.22096875
transcript.pyannote[30].end 1894.78971875
transcript.pyannote[31].speaker SPEAKER_06
transcript.pyannote[31].start 1895.17784375
transcript.pyannote[31].end 1900.66221875
transcript.pyannote[32].speaker SPEAKER_06
transcript.pyannote[32].start 1900.84784375
transcript.pyannote[32].end 1901.33721875
transcript.pyannote[33].speaker SPEAKER_06
transcript.pyannote[33].start 1901.91096875
transcript.pyannote[33].end 1903.29471875
transcript.pyannote[34].speaker SPEAKER_06
transcript.pyannote[34].start 1903.81784375
transcript.pyannote[34].end 1908.42471875
transcript.pyannote[35].speaker SPEAKER_06
transcript.pyannote[35].start 1909.16721875
transcript.pyannote[35].end 1911.09096875
transcript.pyannote[36].speaker SPEAKER_06
transcript.pyannote[36].start 1911.59721875
transcript.pyannote[36].end 1912.55909375
transcript.pyannote[37].speaker SPEAKER_06
transcript.pyannote[37].start 1913.25096875
transcript.pyannote[37].end 1914.87096875
transcript.pyannote[38].speaker SPEAKER_06
transcript.pyannote[38].start 1915.73159375
transcript.pyannote[38].end 1919.64659375
transcript.pyannote[39].speaker SPEAKER_06
transcript.pyannote[39].start 1920.42284375
transcript.pyannote[39].end 1925.80596875
transcript.pyannote[40].speaker SPEAKER_06
transcript.pyannote[40].start 1926.46409375
transcript.pyannote[40].end 1927.78034375
transcript.pyannote[41].speaker SPEAKER_06
transcript.pyannote[41].start 1929.01221875
transcript.pyannote[41].end 1930.86846875
transcript.pyannote[42].speaker SPEAKER_06
transcript.pyannote[42].start 1930.96971875
transcript.pyannote[42].end 1933.12971875
transcript.pyannote[43].speaker SPEAKER_06
transcript.pyannote[43].start 1933.92284375
transcript.pyannote[43].end 1939.35659375
transcript.pyannote[44].speaker SPEAKER_06
transcript.pyannote[44].start 1940.25096875
transcript.pyannote[44].end 1943.82846875
transcript.pyannote[45].speaker SPEAKER_06
transcript.pyannote[45].start 1945.80284375
transcript.pyannote[45].end 1964.63534375
transcript.pyannote[46].speaker SPEAKER_06
transcript.pyannote[46].start 1965.69846875
transcript.pyannote[46].end 1973.46096875
transcript.pyannote[47].speaker SPEAKER_06
transcript.pyannote[47].start 1977.46034375
transcript.pyannote[47].end 1977.49409375
transcript.pyannote[48].speaker SPEAKER_13
transcript.pyannote[48].start 1977.49409375
transcript.pyannote[48].end 2013.30284375
transcript.pyannote[49].speaker SPEAKER_13
transcript.pyannote[49].start 2014.45034375
transcript.pyannote[49].end 2019.79971875
transcript.pyannote[50].speaker SPEAKER_13
transcript.pyannote[50].start 2020.05284375
transcript.pyannote[50].end 2020.74471875
transcript.pyannote[51].speaker SPEAKER_13
transcript.pyannote[51].start 2020.96409375
transcript.pyannote[51].end 2024.23784375
transcript.pyannote[52].speaker SPEAKER_13
transcript.pyannote[52].start 2024.57534375
transcript.pyannote[52].end 2049.48284375
transcript.pyannote[53].speaker SPEAKER_13
transcript.pyannote[53].start 2049.87096875
transcript.pyannote[53].end 2061.68346875
transcript.pyannote[54].speaker SPEAKER_13
transcript.pyannote[54].start 2061.76784375
transcript.pyannote[54].end 2079.87471875
transcript.pyannote[55].speaker SPEAKER_13
transcript.pyannote[55].start 2080.27971875
transcript.pyannote[55].end 2094.82596875
transcript.pyannote[56].speaker SPEAKER_13
transcript.pyannote[56].start 2094.89346875
transcript.pyannote[56].end 2095.02846875
transcript.pyannote[57].speaker SPEAKER_13
transcript.pyannote[57].start 2095.11284375
transcript.pyannote[57].end 2098.75784375
transcript.pyannote[58].speaker SPEAKER_13
transcript.pyannote[58].start 2099.34846875
transcript.pyannote[58].end 2100.71534375
transcript.pyannote[59].speaker SPEAKER_13
transcript.pyannote[59].start 2100.78284375
transcript.pyannote[59].end 2105.10284375
transcript.pyannote[60].speaker SPEAKER_13
transcript.pyannote[60].start 2105.54159375
transcript.pyannote[60].end 2148.03284375
transcript.pyannote[61].speaker SPEAKER_13
transcript.pyannote[61].start 2149.34909375
transcript.pyannote[61].end 2197.66221875
transcript.pyannote[62].speaker SPEAKER_13
transcript.pyannote[62].start 2198.01659375
transcript.pyannote[62].end 2218.03034375
transcript.pyannote[63].speaker SPEAKER_06
transcript.pyannote[63].start 2218.03034375
transcript.pyannote[63].end 2218.82346875
transcript.pyannote[64].speaker SPEAKER_06
transcript.pyannote[64].start 2220.10596875
transcript.pyannote[64].end 2220.39284375
transcript.pyannote[65].speaker SPEAKER_06
transcript.pyannote[65].start 2221.23659375
transcript.pyannote[65].end 2223.17721875
transcript.pyannote[66].speaker SPEAKER_06
transcript.pyannote[66].start 2223.41346875
transcript.pyannote[66].end 2225.92784375
transcript.pyannote[67].speaker SPEAKER_06
transcript.pyannote[67].start 2226.53534375
transcript.pyannote[67].end 2226.85596875
transcript.pyannote[68].speaker SPEAKER_08
transcript.pyannote[68].start 2232.40784375
transcript.pyannote[68].end 2232.66096875
transcript.pyannote[69].speaker SPEAKER_08
transcript.pyannote[69].start 2232.96471875
transcript.pyannote[69].end 2248.08471875
transcript.pyannote[70].speaker SPEAKER_08
transcript.pyannote[70].start 2248.47284375
transcript.pyannote[70].end 2257.28159375
transcript.pyannote[71].speaker SPEAKER_08
transcript.pyannote[71].start 2257.68659375
transcript.pyannote[71].end 2262.34409375
transcript.pyannote[72].speaker SPEAKER_08
transcript.pyannote[72].start 2262.81659375
transcript.pyannote[72].end 2264.11596875
transcript.pyannote[73].speaker SPEAKER_08
transcript.pyannote[73].start 2264.60534375
transcript.pyannote[73].end 2271.27096875
transcript.pyannote[74].speaker SPEAKER_08
transcript.pyannote[74].start 2271.60846875
transcript.pyannote[74].end 2273.66721875
transcript.pyannote[75].speaker SPEAKER_08
transcript.pyannote[75].start 2273.95409375
transcript.pyannote[75].end 2280.73784375
transcript.pyannote[76].speaker SPEAKER_08
transcript.pyannote[76].start 2281.22721875
transcript.pyannote[76].end 2284.38284375
transcript.pyannote[77].speaker SPEAKER_08
transcript.pyannote[77].start 2284.80471875
transcript.pyannote[77].end 2291.38596875
transcript.pyannote[78].speaker SPEAKER_08
transcript.pyannote[78].start 2291.89221875
transcript.pyannote[78].end 2306.48909375
transcript.pyannote[79].speaker SPEAKER_08
transcript.pyannote[79].start 2306.59034375
transcript.pyannote[79].end 2314.03221875
transcript.pyannote[80].speaker SPEAKER_08
transcript.pyannote[80].start 2314.21784375
transcript.pyannote[80].end 2328.17346875
transcript.pyannote[81].speaker SPEAKER_08
transcript.pyannote[81].start 2328.56159375
transcript.pyannote[81].end 2330.80596875
transcript.pyannote[82].speaker SPEAKER_08
transcript.pyannote[82].start 2331.12659375
transcript.pyannote[82].end 2333.23596875
transcript.pyannote[83].speaker SPEAKER_08
transcript.pyannote[83].start 2333.50596875
transcript.pyannote[83].end 2339.00721875
transcript.pyannote[84].speaker SPEAKER_08
transcript.pyannote[84].start 2339.20971875
transcript.pyannote[84].end 2342.36534375
transcript.pyannote[85].speaker SPEAKER_08
transcript.pyannote[85].start 2342.56784375
transcript.pyannote[85].end 2345.21721875
transcript.pyannote[86].speaker SPEAKER_08
transcript.pyannote[86].start 2345.36909375
transcript.pyannote[86].end 2347.05659375
transcript.pyannote[87].speaker SPEAKER_08
transcript.pyannote[87].start 2347.52909375
transcript.pyannote[87].end 2352.10221875
transcript.pyannote[88].speaker SPEAKER_08
transcript.pyannote[88].start 2352.42284375
transcript.pyannote[88].end 2352.76034375
transcript.pyannote[89].speaker SPEAKER_08
transcript.pyannote[89].start 2352.91221875
transcript.pyannote[89].end 2355.73034375
transcript.pyannote[90].speaker SPEAKER_08
transcript.pyannote[90].start 2356.00034375
transcript.pyannote[90].end 2358.56534375
transcript.pyannote[91].speaker SPEAKER_08
transcript.pyannote[91].start 2359.02096875
transcript.pyannote[91].end 2359.49346875
transcript.pyannote[92].speaker SPEAKER_08
transcript.pyannote[92].start 2359.99971875
transcript.pyannote[92].end 2362.41284375
transcript.pyannote[93].speaker SPEAKER_08
transcript.pyannote[93].start 2363.05409375
transcript.pyannote[93].end 2377.19534375
transcript.pyannote[94].speaker SPEAKER_08
transcript.pyannote[94].start 2377.48221875
transcript.pyannote[94].end 2381.78534375
transcript.pyannote[95].speaker SPEAKER_08
transcript.pyannote[95].start 2382.19034375
transcript.pyannote[95].end 2385.63284375
transcript.pyannote[96].speaker SPEAKER_08
transcript.pyannote[96].start 2386.20659375
transcript.pyannote[96].end 2390.62784375
transcript.pyannote[97].speaker SPEAKER_08
transcript.pyannote[97].start 2390.93159375
transcript.pyannote[97].end 2400.85409375
transcript.pyannote[98].speaker SPEAKER_08
transcript.pyannote[98].start 2401.09034375
transcript.pyannote[98].end 2404.65096875
transcript.pyannote[99].speaker SPEAKER_08
transcript.pyannote[99].start 2405.10659375
transcript.pyannote[99].end 2405.37659375
transcript.pyannote[100].speaker SPEAKER_08
transcript.pyannote[100].start 2405.54534375
transcript.pyannote[100].end 2415.04596875
transcript.pyannote[101].speaker SPEAKER_08
transcript.pyannote[101].start 2415.73784375
transcript.pyannote[101].end 2420.14221875
transcript.pyannote[102].speaker SPEAKER_08
transcript.pyannote[102].start 2420.51346875
transcript.pyannote[102].end 2423.68596875
transcript.pyannote[103].speaker SPEAKER_08
transcript.pyannote[103].start 2423.98971875
transcript.pyannote[103].end 2426.94284375
transcript.pyannote[104].speaker SPEAKER_08
transcript.pyannote[104].start 2427.17909375
transcript.pyannote[104].end 2430.04784375
transcript.pyannote[105].speaker SPEAKER_08
transcript.pyannote[105].start 2430.50346875
transcript.pyannote[105].end 2436.93284375
transcript.pyannote[106].speaker SPEAKER_08
transcript.pyannote[106].start 2437.48971875
transcript.pyannote[106].end 2445.28596875
transcript.pyannote[107].speaker SPEAKER_08
transcript.pyannote[107].start 2445.62346875
transcript.pyannote[107].end 2449.48784375
transcript.pyannote[108].speaker SPEAKER_08
transcript.pyannote[108].start 2450.02784375
transcript.pyannote[108].end 2451.74909375
transcript.pyannote[109].speaker SPEAKER_08
transcript.pyannote[109].start 2451.83346875
transcript.pyannote[109].end 2453.79096875
transcript.pyannote[110].speaker SPEAKER_08
transcript.pyannote[110].start 2454.19596875
transcript.pyannote[110].end 2454.46596875
transcript.pyannote[111].speaker SPEAKER_08
transcript.pyannote[111].start 2454.70221875
transcript.pyannote[111].end 2460.32159375
transcript.pyannote[112].speaker SPEAKER_08
transcript.pyannote[112].start 2460.79409375
transcript.pyannote[112].end 2461.50284375
transcript.pyannote[113].speaker SPEAKER_08
transcript.pyannote[113].start 2462.02596875
transcript.pyannote[113].end 2471.22284375
transcript.pyannote[114].speaker SPEAKER_08
transcript.pyannote[114].start 2471.86409375
transcript.pyannote[114].end 2486.98409375
transcript.pyannote[115].speaker SPEAKER_08
transcript.pyannote[115].start 2487.32159375
transcript.pyannote[115].end 2491.25346875
transcript.pyannote[116].speaker SPEAKER_08
transcript.pyannote[116].start 2491.52346875
transcript.pyannote[116].end 2494.74659375
transcript.pyannote[117].speaker SPEAKER_08
transcript.pyannote[117].start 2495.08409375
transcript.pyannote[117].end 2496.26534375
transcript.pyannote[118].speaker SPEAKER_08
transcript.pyannote[118].start 2496.55221875
transcript.pyannote[118].end 2504.55096875
transcript.pyannote[119].speaker SPEAKER_08
transcript.pyannote[119].start 2504.92221875
transcript.pyannote[119].end 2505.64784375
transcript.pyannote[120].speaker SPEAKER_08
transcript.pyannote[120].start 2505.79971875
transcript.pyannote[120].end 2506.47471875
transcript.pyannote[121].speaker SPEAKER_08
transcript.pyannote[121].start 2507.87534375
transcript.pyannote[121].end 2509.63034375
transcript.pyannote[122].speaker SPEAKER_08
transcript.pyannote[122].start 2510.11971875
transcript.pyannote[122].end 2510.87909375
transcript.pyannote[123].speaker SPEAKER_08
transcript.pyannote[123].start 2511.23346875
transcript.pyannote[123].end 2514.62534375
transcript.pyannote[124].speaker SPEAKER_08
transcript.pyannote[124].start 2514.87846875
transcript.pyannote[124].end 2517.62909375
transcript.pyannote[125].speaker SPEAKER_08
transcript.pyannote[125].start 2518.00034375
transcript.pyannote[125].end 2520.91971875
transcript.pyannote[126].speaker SPEAKER_08
transcript.pyannote[126].start 2521.27409375
transcript.pyannote[126].end 2526.87659375
transcript.pyannote[127].speaker SPEAKER_08
transcript.pyannote[127].start 2527.19721875
transcript.pyannote[127].end 2529.10409375
transcript.pyannote[128].speaker SPEAKER_08
transcript.pyannote[128].start 2529.27284375
transcript.pyannote[128].end 2532.68159375
transcript.pyannote[129].speaker SPEAKER_08
transcript.pyannote[129].start 2533.18784375
transcript.pyannote[129].end 2537.67659375
transcript.pyannote[130].speaker SPEAKER_06
transcript.pyannote[130].start 2540.71409375
transcript.pyannote[130].end 2542.75596875
transcript.pyannote[131].speaker SPEAKER_06
transcript.pyannote[131].start 2543.14409375
transcript.pyannote[131].end 2547.05909375
transcript.pyannote[132].speaker SPEAKER_06
transcript.pyannote[132].start 2553.15096875
transcript.pyannote[132].end 2553.74159375
transcript.pyannote[133].speaker SPEAKER_06
transcript.pyannote[133].start 2553.85971875
transcript.pyannote[133].end 2575.22346875
transcript.pyannote[134].speaker SPEAKER_17
transcript.pyannote[134].start 2586.29346875
transcript.pyannote[134].end 2588.23409375
transcript.pyannote[135].speaker SPEAKER_06
transcript.pyannote[135].start 2588.55471875
transcript.pyannote[135].end 2589.34784375
transcript.pyannote[136].speaker SPEAKER_06
transcript.pyannote[136].start 2592.26721875
transcript.pyannote[136].end 2593.31346875
transcript.pyannote[137].speaker SPEAKER_13
transcript.pyannote[137].start 2593.31346875
transcript.pyannote[137].end 2593.36409375
transcript.pyannote[138].speaker SPEAKER_06
transcript.pyannote[138].start 2593.36409375
transcript.pyannote[138].end 2593.38096875
transcript.pyannote[139].speaker SPEAKER_17
transcript.pyannote[139].start 2593.85346875
transcript.pyannote[139].end 2598.74721875
transcript.pyannote[140].speaker SPEAKER_17
transcript.pyannote[140].start 2599.45596875
transcript.pyannote[140].end 2601.78471875
transcript.pyannote[141].speaker SPEAKER_17
transcript.pyannote[141].start 2602.32471875
transcript.pyannote[141].end 2602.96596875
transcript.pyannote[142].speaker SPEAKER_17
transcript.pyannote[142].start 2603.37096875
transcript.pyannote[142].end 2605.78409375
transcript.pyannote[143].speaker SPEAKER_17
transcript.pyannote[143].start 2606.32409375
transcript.pyannote[143].end 2609.86784375
transcript.pyannote[144].speaker SPEAKER_17
transcript.pyannote[144].start 2610.52596875
transcript.pyannote[144].end 2611.03221875
transcript.pyannote[145].speaker SPEAKER_17
transcript.pyannote[145].start 2611.58909375
transcript.pyannote[145].end 2613.76596875
transcript.pyannote[146].speaker SPEAKER_17
transcript.pyannote[146].start 2614.52534375
transcript.pyannote[146].end 2619.68909375
transcript.pyannote[147].speaker SPEAKER_17
transcript.pyannote[147].start 2620.22909375
transcript.pyannote[147].end 2620.80284375
transcript.pyannote[148].speaker SPEAKER_17
transcript.pyannote[148].start 2622.87846875
transcript.pyannote[148].end 2628.56534375
transcript.pyannote[149].speaker SPEAKER_17
transcript.pyannote[149].start 2629.05471875
transcript.pyannote[149].end 2630.06721875
transcript.pyannote[150].speaker SPEAKER_17
transcript.pyannote[150].start 2630.48909375
transcript.pyannote[150].end 2631.78846875
transcript.pyannote[151].speaker SPEAKER_13
transcript.pyannote[151].start 2633.27346875
transcript.pyannote[151].end 2643.16221875
transcript.pyannote[152].speaker SPEAKER_17
transcript.pyannote[152].start 2642.55471875
transcript.pyannote[152].end 2646.97596875
transcript.pyannote[153].speaker SPEAKER_13
transcript.pyannote[153].start 2646.57096875
transcript.pyannote[153].end 2647.12784375
transcript.pyannote[154].speaker SPEAKER_17
transcript.pyannote[154].start 2647.39784375
transcript.pyannote[154].end 2648.81534375
transcript.pyannote[155].speaker SPEAKER_17
transcript.pyannote[155].start 2649.37221875
transcript.pyannote[155].end 2650.60409375
transcript.pyannote[156].speaker SPEAKER_17
transcript.pyannote[156].start 2650.85721875
transcript.pyannote[156].end 2657.60721875
transcript.pyannote[157].speaker SPEAKER_13
transcript.pyannote[157].start 2657.82659375
transcript.pyannote[157].end 2665.63971875
transcript.pyannote[158].speaker SPEAKER_17
transcript.pyannote[158].start 2666.04471875
transcript.pyannote[158].end 2667.76596875
transcript.pyannote[159].speaker SPEAKER_17
transcript.pyannote[159].start 2667.98534375
transcript.pyannote[159].end 2670.71909375
transcript.pyannote[160].speaker SPEAKER_17
transcript.pyannote[160].start 2671.27596875
transcript.pyannote[160].end 2674.75221875
transcript.pyannote[161].speaker SPEAKER_13
transcript.pyannote[161].start 2674.75221875
transcript.pyannote[161].end 2675.32596875
transcript.pyannote[162].speaker SPEAKER_17
transcript.pyannote[162].start 2675.32596875
transcript.pyannote[162].end 2681.06346875
transcript.pyannote[163].speaker SPEAKER_17
transcript.pyannote[163].start 2681.62034375
transcript.pyannote[163].end 2685.88971875
transcript.pyannote[164].speaker SPEAKER_17
transcript.pyannote[164].start 2686.51409375
transcript.pyannote[164].end 2687.27346875
transcript.pyannote[165].speaker SPEAKER_17
transcript.pyannote[165].start 2687.32409375
transcript.pyannote[165].end 2695.76159375
transcript.pyannote[166].speaker SPEAKER_17
transcript.pyannote[166].start 2696.50409375
transcript.pyannote[166].end 2699.81159375
transcript.pyannote[167].speaker SPEAKER_17
transcript.pyannote[167].start 2700.95909375
transcript.pyannote[167].end 2704.31721875
transcript.pyannote[168].speaker SPEAKER_13
transcript.pyannote[168].start 2705.00909375
transcript.pyannote[168].end 2713.24409375
transcript.pyannote[169].speaker SPEAKER_17
transcript.pyannote[169].start 2713.98659375
transcript.pyannote[169].end 2717.05784375
transcript.pyannote[170].speaker SPEAKER_13
transcript.pyannote[170].start 2717.02409375
transcript.pyannote[170].end 2722.49159375
transcript.pyannote[171].speaker SPEAKER_17
transcript.pyannote[171].start 2720.17971875
transcript.pyannote[171].end 2721.04034375
transcript.pyannote[172].speaker SPEAKER_17
transcript.pyannote[172].start 2722.93034375
transcript.pyannote[172].end 2725.19159375
transcript.pyannote[173].speaker SPEAKER_13
transcript.pyannote[173].start 2725.19159375
transcript.pyannote[173].end 2726.03534375
transcript.pyannote[174].speaker SPEAKER_17
transcript.pyannote[174].start 2726.03534375
transcript.pyannote[174].end 2726.05221875
transcript.pyannote[175].speaker SPEAKER_13
transcript.pyannote[175].start 2726.05221875
transcript.pyannote[175].end 2726.06909375
transcript.pyannote[176].speaker SPEAKER_17
transcript.pyannote[176].start 2726.06909375
transcript.pyannote[176].end 2726.10284375
transcript.pyannote[177].speaker SPEAKER_17
transcript.pyannote[177].start 2726.55846875
transcript.pyannote[177].end 2730.03471875
transcript.pyannote[178].speaker SPEAKER_17
transcript.pyannote[178].start 2730.40596875
transcript.pyannote[178].end 2731.13159375
transcript.pyannote[179].speaker SPEAKER_17
transcript.pyannote[179].start 2731.94159375
transcript.pyannote[179].end 2733.49409375
transcript.pyannote[180].speaker SPEAKER_17
transcript.pyannote[180].start 2734.00034375
transcript.pyannote[180].end 2740.36221875
transcript.pyannote[181].speaker SPEAKER_17
transcript.pyannote[181].start 2740.71659375
transcript.pyannote[181].end 2748.73221875
transcript.pyannote[182].speaker SPEAKER_17
transcript.pyannote[182].start 2748.95159375
transcript.pyannote[182].end 2756.83221875
transcript.pyannote[183].speaker SPEAKER_17
transcript.pyannote[183].start 2757.37221875
transcript.pyannote[183].end 2760.86534375
transcript.pyannote[184].speaker SPEAKER_17
transcript.pyannote[184].start 2761.38846875
transcript.pyannote[184].end 2764.25721875
transcript.pyannote[185].speaker SPEAKER_17
transcript.pyannote[185].start 2764.89846875
transcript.pyannote[185].end 2768.86409375
transcript.pyannote[186].speaker SPEAKER_13
transcript.pyannote[186].start 2770.09596875
transcript.pyannote[186].end 2775.96846875
transcript.pyannote[187].speaker SPEAKER_13
transcript.pyannote[187].start 2776.01909375
transcript.pyannote[187].end 2776.03596875
transcript.pyannote[188].speaker SPEAKER_13
transcript.pyannote[188].start 2776.05284375
transcript.pyannote[188].end 2776.71096875
transcript.pyannote[189].speaker SPEAKER_17
transcript.pyannote[189].start 2777.16659375
transcript.pyannote[189].end 2778.97221875
transcript.pyannote[190].speaker SPEAKER_17
transcript.pyannote[190].start 2779.14096875
transcript.pyannote[190].end 2782.24596875
transcript.pyannote[191].speaker SPEAKER_17
transcript.pyannote[191].start 2782.46534375
transcript.pyannote[191].end 2783.61284375
transcript.pyannote[192].speaker SPEAKER_17
transcript.pyannote[192].start 2785.89096875
transcript.pyannote[192].end 2793.34971875
transcript.pyannote[193].speaker SPEAKER_17
transcript.pyannote[193].start 2793.94034375
transcript.pyannote[193].end 2803.18784375
transcript.pyannote[194].speaker SPEAKER_13
transcript.pyannote[194].start 2804.89221875
transcript.pyannote[194].end 2814.03846875
transcript.pyannote[195].speaker SPEAKER_17
transcript.pyannote[195].start 2814.07221875
transcript.pyannote[195].end 2814.62909375
transcript.pyannote[196].speaker SPEAKER_17
transcript.pyannote[196].start 2815.08471875
transcript.pyannote[196].end 2818.10534375
transcript.pyannote[197].speaker SPEAKER_13
transcript.pyannote[197].start 2819.53971875
transcript.pyannote[197].end 2820.34971875
transcript.pyannote[198].speaker SPEAKER_13
transcript.pyannote[198].start 2820.36659375
transcript.pyannote[198].end 2820.48471875
transcript.pyannote[199].speaker SPEAKER_17
transcript.pyannote[199].start 2820.48471875
transcript.pyannote[199].end 2820.97409375
transcript.pyannote[200].speaker SPEAKER_13
transcript.pyannote[200].start 2820.97409375
transcript.pyannote[200].end 2821.22721875
transcript.pyannote[201].speaker SPEAKER_13
transcript.pyannote[201].start 2822.37471875
transcript.pyannote[201].end 2824.41659375
transcript.pyannote[202].speaker SPEAKER_13
transcript.pyannote[202].start 2824.82159375
transcript.pyannote[202].end 2827.38659375
transcript.pyannote[203].speaker SPEAKER_17
transcript.pyannote[203].start 2828.26409375
transcript.pyannote[203].end 2829.09096875
transcript.pyannote[204].speaker SPEAKER_17
transcript.pyannote[204].start 2829.39471875
transcript.pyannote[204].end 2829.76596875
transcript.pyannote[205].speaker SPEAKER_17
transcript.pyannote[205].start 2831.60534375
transcript.pyannote[205].end 2834.05221875
transcript.pyannote[206].speaker SPEAKER_13
transcript.pyannote[206].start 2835.21659375
transcript.pyannote[206].end 2835.82409375
transcript.pyannote[207].speaker SPEAKER_13
transcript.pyannote[207].start 2836.49909375
transcript.pyannote[207].end 2837.61284375
transcript.pyannote[208].speaker SPEAKER_13
transcript.pyannote[208].start 2837.88284375
transcript.pyannote[208].end 2838.49034375
transcript.pyannote[209].speaker SPEAKER_17
transcript.pyannote[209].start 2838.49034375
transcript.pyannote[209].end 2839.06409375
transcript.pyannote[210].speaker SPEAKER_13
transcript.pyannote[210].start 2839.06409375
transcript.pyannote[210].end 2839.16534375
transcript.pyannote[211].speaker SPEAKER_13
transcript.pyannote[211].start 2840.14409375
transcript.pyannote[211].end 2844.05909375
transcript.pyannote[212].speaker SPEAKER_17
transcript.pyannote[212].start 2844.98721875
transcript.pyannote[212].end 2845.76346875
transcript.pyannote[213].speaker SPEAKER_13
transcript.pyannote[213].start 2846.65784375
transcript.pyannote[213].end 2847.63659375
transcript.pyannote[214].speaker SPEAKER_17
transcript.pyannote[214].start 2849.45909375
transcript.pyannote[214].end 2850.67409375
transcript.pyannote[215].speaker SPEAKER_17
transcript.pyannote[215].start 2851.63596875
transcript.pyannote[215].end 2852.86784375
transcript.pyannote[216].speaker SPEAKER_17
transcript.pyannote[216].start 2853.59346875
transcript.pyannote[216].end 2858.47034375
transcript.pyannote[217].speaker SPEAKER_17
transcript.pyannote[217].start 2859.29721875
transcript.pyannote[217].end 2861.25471875
transcript.pyannote[218].speaker SPEAKER_17
transcript.pyannote[218].start 2862.55409375
transcript.pyannote[218].end 2863.85346875
transcript.pyannote[219].speaker SPEAKER_17
transcript.pyannote[219].start 2864.27534375
transcript.pyannote[219].end 2868.56159375
transcript.pyannote[220].speaker SPEAKER_17
transcript.pyannote[220].start 2870.35034375
transcript.pyannote[220].end 2872.89846875
transcript.pyannote[221].speaker SPEAKER_17
transcript.pyannote[221].start 2876.42534375
transcript.pyannote[221].end 2877.35346875
transcript.pyannote[222].speaker SPEAKER_17
transcript.pyannote[222].start 2880.66096875
transcript.pyannote[222].end 2882.87159375
transcript.pyannote[223].speaker SPEAKER_17
transcript.pyannote[223].start 2883.69846875
transcript.pyannote[223].end 2884.74471875
transcript.pyannote[224].speaker SPEAKER_17
transcript.pyannote[224].start 2885.55471875
transcript.pyannote[224].end 2889.35159375
transcript.pyannote[225].speaker SPEAKER_17
transcript.pyannote[225].start 2889.99284375
transcript.pyannote[225].end 2895.67971875
transcript.pyannote[226].speaker SPEAKER_17
transcript.pyannote[226].start 2896.10159375
transcript.pyannote[226].end 2900.20221875
transcript.pyannote[227].speaker SPEAKER_17
transcript.pyannote[227].start 2900.35409375
transcript.pyannote[227].end 2903.18909375
transcript.pyannote[228].speaker SPEAKER_17
transcript.pyannote[228].start 2903.52659375
transcript.pyannote[228].end 2904.38721875
transcript.pyannote[229].speaker SPEAKER_17
transcript.pyannote[229].start 2905.09596875
transcript.pyannote[229].end 2907.96471875
transcript.pyannote[230].speaker SPEAKER_13
transcript.pyannote[230].start 2911.71096875
transcript.pyannote[230].end 2917.27971875
transcript.pyannote[231].speaker SPEAKER_17
transcript.pyannote[231].start 2917.56659375
transcript.pyannote[231].end 2919.64221875
transcript.pyannote[232].speaker SPEAKER_17
transcript.pyannote[232].start 2920.45221875
transcript.pyannote[232].end 2920.99221875
transcript.pyannote[233].speaker SPEAKER_13
transcript.pyannote[233].start 2920.99221875
transcript.pyannote[233].end 2926.08846875
transcript.pyannote[234].speaker SPEAKER_17
transcript.pyannote[234].start 2926.96596875
transcript.pyannote[234].end 2927.65784375
transcript.pyannote[235].speaker SPEAKER_17
transcript.pyannote[235].start 2927.86034375
transcript.pyannote[235].end 2929.71659375
transcript.pyannote[236].speaker SPEAKER_17
transcript.pyannote[236].start 2934.32346875
transcript.pyannote[236].end 2936.28096875
transcript.pyannote[237].speaker SPEAKER_13
transcript.pyannote[237].start 2935.75784375
transcript.pyannote[237].end 2937.24284375
transcript.pyannote[238].speaker SPEAKER_17
transcript.pyannote[238].start 2936.98971875
transcript.pyannote[238].end 2940.90471875
transcript.pyannote[239].speaker SPEAKER_17
transcript.pyannote[239].start 2942.17034375
transcript.pyannote[239].end 2943.45284375
transcript.pyannote[240].speaker SPEAKER_13
transcript.pyannote[240].start 2942.18721875
transcript.pyannote[240].end 2943.84096875
transcript.pyannote[241].speaker SPEAKER_17
transcript.pyannote[241].start 2944.63409375
transcript.pyannote[241].end 2945.07284375
transcript.pyannote[242].speaker SPEAKER_17
transcript.pyannote[242].start 2946.01784375
transcript.pyannote[242].end 2951.02971875
transcript.pyannote[243].speaker SPEAKER_17
transcript.pyannote[243].start 2951.28284375
transcript.pyannote[243].end 2952.58221875
transcript.pyannote[244].speaker SPEAKER_13
transcript.pyannote[244].start 2952.80159375
transcript.pyannote[244].end 2953.22346875
transcript.pyannote[245].speaker SPEAKER_17
transcript.pyannote[245].start 2953.22346875
transcript.pyannote[245].end 2956.80096875
transcript.pyannote[246].speaker SPEAKER_06
transcript.pyannote[246].start 2960.73284375
transcript.pyannote[246].end 2961.84659375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 2962.42034375
transcript.pyannote[247].end 2962.96034375
transcript.pyannote[248].speaker SPEAKER_17
transcript.pyannote[248].start 2967.22971875
transcript.pyannote[248].end 2969.52471875
transcript.pyannote[249].speaker SPEAKER_17
transcript.pyannote[249].start 2970.52034375
transcript.pyannote[249].end 2971.04346875
transcript.pyannote[250].speaker SPEAKER_17
transcript.pyannote[250].start 2973.50721875
transcript.pyannote[250].end 2975.46471875
transcript.pyannote[251].speaker SPEAKER_17
transcript.pyannote[251].start 2977.15221875
transcript.pyannote[251].end 2980.12221875
transcript.pyannote[252].speaker SPEAKER_17
transcript.pyannote[252].start 2980.15596875
transcript.pyannote[252].end 2980.71284375
transcript.pyannote[253].speaker SPEAKER_17
transcript.pyannote[253].start 2981.28659375
transcript.pyannote[253].end 2986.66971875
transcript.pyannote[254].speaker SPEAKER_16
transcript.pyannote[254].start 2986.66971875
transcript.pyannote[254].end 2986.70346875
transcript.pyannote[255].speaker SPEAKER_16
transcript.pyannote[255].start 2987.63159375
transcript.pyannote[255].end 2995.09034375
transcript.pyannote[256].speaker SPEAKER_16
transcript.pyannote[256].start 2996.01846875
transcript.pyannote[256].end 3001.03034375
transcript.pyannote[257].speaker SPEAKER_17
transcript.pyannote[257].start 3001.03034375
transcript.pyannote[257].end 3001.70534375
transcript.pyannote[258].speaker SPEAKER_16
transcript.pyannote[258].start 3001.70534375
transcript.pyannote[258].end 3002.02596875
transcript.pyannote[259].speaker SPEAKER_17
transcript.pyannote[259].start 3002.02596875
transcript.pyannote[259].end 3004.06784375
transcript.pyannote[260].speaker SPEAKER_17
transcript.pyannote[260].start 3005.31659375
transcript.pyannote[260].end 3007.54409375
transcript.pyannote[261].speaker SPEAKER_16
transcript.pyannote[261].start 3007.54409375
transcript.pyannote[261].end 3007.59471875
transcript.pyannote[262].speaker SPEAKER_17
transcript.pyannote[262].start 3007.59471875
transcript.pyannote[262].end 3007.61159375
transcript.pyannote[263].speaker SPEAKER_17
transcript.pyannote[263].start 3008.15159375
transcript.pyannote[263].end 3008.97846875
transcript.pyannote[264].speaker SPEAKER_16
transcript.pyannote[264].start 3008.97846875
transcript.pyannote[264].end 3010.12596875
transcript.pyannote[265].speaker SPEAKER_17
transcript.pyannote[265].start 3010.19346875
transcript.pyannote[265].end 3010.22721875
transcript.pyannote[266].speaker SPEAKER_16
transcript.pyannote[266].start 3010.22721875
transcript.pyannote[266].end 3016.99409375
transcript.pyannote[267].speaker SPEAKER_16
transcript.pyannote[267].start 3017.88846875
transcript.pyannote[267].end 3022.22534375
transcript.pyannote[268].speaker SPEAKER_16
transcript.pyannote[268].start 3022.44471875
transcript.pyannote[268].end 3025.73534375
transcript.pyannote[269].speaker SPEAKER_16
transcript.pyannote[269].start 3026.46096875
transcript.pyannote[269].end 3034.03784375
transcript.pyannote[270].speaker SPEAKER_17
transcript.pyannote[270].start 3034.03784375
transcript.pyannote[270].end 3034.49346875
transcript.pyannote[271].speaker SPEAKER_16
transcript.pyannote[271].start 3035.32034375
transcript.pyannote[271].end 3035.33721875
transcript.pyannote[272].speaker SPEAKER_17
transcript.pyannote[272].start 3035.33721875
transcript.pyannote[272].end 3039.82596875
transcript.pyannote[273].speaker SPEAKER_17
transcript.pyannote[273].start 3040.82159375
transcript.pyannote[273].end 3045.49596875
transcript.pyannote[274].speaker SPEAKER_16
transcript.pyannote[274].start 3047.23409375
transcript.pyannote[274].end 3064.86846875
transcript.pyannote[275].speaker SPEAKER_16
transcript.pyannote[275].start 3064.90221875
transcript.pyannote[275].end 3065.03721875
transcript.pyannote[276].speaker SPEAKER_17
transcript.pyannote[276].start 3065.03721875
transcript.pyannote[276].end 3066.85971875
transcript.pyannote[277].speaker SPEAKER_17
transcript.pyannote[277].start 3068.10846875
transcript.pyannote[277].end 3075.53346875
transcript.pyannote[278].speaker SPEAKER_17
transcript.pyannote[278].start 3076.10721875
transcript.pyannote[278].end 3077.25471875
transcript.pyannote[279].speaker SPEAKER_17
transcript.pyannote[279].start 3077.60909375
transcript.pyannote[279].end 3084.52784375
transcript.pyannote[280].speaker SPEAKER_17
transcript.pyannote[280].start 3085.18596875
transcript.pyannote[280].end 3087.53159375
transcript.pyannote[281].speaker SPEAKER_17
transcript.pyannote[281].start 3087.83534375
transcript.pyannote[281].end 3089.97846875
transcript.pyannote[282].speaker SPEAKER_17
transcript.pyannote[282].start 3090.75471875
transcript.pyannote[282].end 3096.05346875
transcript.pyannote[283].speaker SPEAKER_17
transcript.pyannote[283].start 3096.47534375
transcript.pyannote[283].end 3100.84596875
transcript.pyannote[284].speaker SPEAKER_16
transcript.pyannote[284].start 3101.68971875
transcript.pyannote[284].end 3105.13221875
transcript.pyannote[285].speaker SPEAKER_16
transcript.pyannote[285].start 3105.92534375
transcript.pyannote[285].end 3108.03471875
transcript.pyannote[286].speaker SPEAKER_17
transcript.pyannote[286].start 3108.03471875
transcript.pyannote[286].end 3108.45659375
transcript.pyannote[287].speaker SPEAKER_16
transcript.pyannote[287].start 3108.45659375
transcript.pyannote[287].end 3108.57471875
transcript.pyannote[288].speaker SPEAKER_17
transcript.pyannote[288].start 3108.57471875
transcript.pyannote[288].end 3113.04659375
transcript.pyannote[289].speaker SPEAKER_17
transcript.pyannote[289].start 3113.21534375
transcript.pyannote[289].end 3115.13909375
transcript.pyannote[290].speaker SPEAKER_17
transcript.pyannote[290].start 3115.94909375
transcript.pyannote[290].end 3116.60721875
transcript.pyannote[291].speaker SPEAKER_17
transcript.pyannote[291].start 3118.31159375
transcript.pyannote[291].end 3119.98221875
transcript.pyannote[292].speaker SPEAKER_17
transcript.pyannote[292].start 3120.48846875
transcript.pyannote[292].end 3122.31096875
transcript.pyannote[293].speaker SPEAKER_17
transcript.pyannote[293].start 3122.78346875
transcript.pyannote[293].end 3124.16721875
transcript.pyannote[294].speaker SPEAKER_17
transcript.pyannote[294].start 3125.51721875
transcript.pyannote[294].end 3127.39034375
transcript.pyannote[295].speaker SPEAKER_17
transcript.pyannote[295].start 3127.72784375
transcript.pyannote[295].end 3128.92596875
transcript.pyannote[296].speaker SPEAKER_17
transcript.pyannote[296].start 3129.82034375
transcript.pyannote[296].end 3131.22096875
transcript.pyannote[297].speaker SPEAKER_16
transcript.pyannote[297].start 3131.22096875
transcript.pyannote[297].end 3131.25471875
transcript.pyannote[298].speaker SPEAKER_16
transcript.pyannote[298].start 3133.68471875
transcript.pyannote[298].end 3137.71784375
transcript.pyannote[299].speaker SPEAKER_16
transcript.pyannote[299].start 3137.81909375
transcript.pyannote[299].end 3138.84846875
transcript.pyannote[300].speaker SPEAKER_16
transcript.pyannote[300].start 3141.22784375
transcript.pyannote[300].end 3141.31221875
transcript.pyannote[301].speaker SPEAKER_17
transcript.pyannote[301].start 3141.31221875
transcript.pyannote[301].end 3142.03784375
transcript.pyannote[302].speaker SPEAKER_17
transcript.pyannote[302].start 3142.07159375
transcript.pyannote[302].end 3142.12221875
transcript.pyannote[303].speaker SPEAKER_17
transcript.pyannote[303].start 3142.17284375
transcript.pyannote[303].end 3144.87284375
transcript.pyannote[304].speaker SPEAKER_17
transcript.pyannote[304].start 3145.49721875
transcript.pyannote[304].end 3147.65721875
transcript.pyannote[305].speaker SPEAKER_17
transcript.pyannote[305].start 3148.04534375
transcript.pyannote[305].end 3151.03221875
transcript.pyannote[306].speaker SPEAKER_17
transcript.pyannote[306].start 3151.33596875
transcript.pyannote[306].end 3156.49971875
transcript.pyannote[307].speaker SPEAKER_17
transcript.pyannote[307].start 3157.25909375
transcript.pyannote[307].end 3159.72284375
transcript.pyannote[308].speaker SPEAKER_17
transcript.pyannote[308].start 3160.14471875
transcript.pyannote[308].end 3163.90784375
transcript.pyannote[309].speaker SPEAKER_17
transcript.pyannote[309].start 3164.21159375
transcript.pyannote[309].end 3166.75971875
transcript.pyannote[310].speaker SPEAKER_17
transcript.pyannote[310].start 3167.62034375
transcript.pyannote[310].end 3172.31159375
transcript.pyannote[311].speaker SPEAKER_17
transcript.pyannote[311].start 3172.80096875
transcript.pyannote[311].end 3180.74909375
transcript.pyannote[312].speaker SPEAKER_17
transcript.pyannote[312].start 3181.06971875
transcript.pyannote[312].end 3186.06471875
transcript.pyannote[313].speaker SPEAKER_16
transcript.pyannote[313].start 3187.11096875
transcript.pyannote[313].end 3195.43034375
transcript.pyannote[314].speaker SPEAKER_16
transcript.pyannote[314].start 3195.88596875
transcript.pyannote[314].end 3197.70846875
transcript.pyannote[315].speaker SPEAKER_16
transcript.pyannote[315].start 3199.73346875
transcript.pyannote[315].end 3200.03721875
transcript.pyannote[316].speaker SPEAKER_17
transcript.pyannote[316].start 3200.03721875
transcript.pyannote[316].end 3202.14659375
transcript.pyannote[317].speaker SPEAKER_17
transcript.pyannote[317].start 3203.47971875
transcript.pyannote[317].end 3204.07034375
transcript.pyannote[318].speaker SPEAKER_17
transcript.pyannote[318].start 3205.45409375
transcript.pyannote[318].end 3207.12471875
transcript.pyannote[319].speaker SPEAKER_17
transcript.pyannote[319].start 3207.34409375
transcript.pyannote[319].end 3208.49159375
transcript.pyannote[320].speaker SPEAKER_17
transcript.pyannote[320].start 3209.50409375
transcript.pyannote[320].end 3215.96721875
transcript.pyannote[321].speaker SPEAKER_16
transcript.pyannote[321].start 3215.96721875
transcript.pyannote[321].end 3216.03471875
transcript.pyannote[322].speaker SPEAKER_17
transcript.pyannote[322].start 3216.03471875
transcript.pyannote[322].end 3216.59159375
transcript.pyannote[323].speaker SPEAKER_16
transcript.pyannote[323].start 3216.59159375
transcript.pyannote[323].end 3216.60846875
transcript.pyannote[324].speaker SPEAKER_16
transcript.pyannote[324].start 3217.92471875
transcript.pyannote[324].end 3230.34471875
transcript.pyannote[325].speaker SPEAKER_17
transcript.pyannote[325].start 3231.99846875
transcript.pyannote[325].end 3237.48284375
transcript.pyannote[326].speaker SPEAKER_17
transcript.pyannote[326].start 3238.68096875
transcript.pyannote[326].end 3242.14034375
transcript.pyannote[327].speaker SPEAKER_17
transcript.pyannote[327].start 3242.30909375
transcript.pyannote[327].end 3245.14409375
transcript.pyannote[328].speaker SPEAKER_17
transcript.pyannote[328].start 3245.41409375
transcript.pyannote[328].end 3247.84409375
transcript.pyannote[329].speaker SPEAKER_17
transcript.pyannote[329].start 3248.60346875
transcript.pyannote[329].end 3250.47659375
transcript.pyannote[330].speaker SPEAKER_17
transcript.pyannote[330].start 3250.89846875
transcript.pyannote[330].end 3258.00284375
transcript.pyannote[331].speaker SPEAKER_17
transcript.pyannote[331].start 3259.35284375
transcript.pyannote[331].end 3268.39784375
transcript.pyannote[332].speaker SPEAKER_16
transcript.pyannote[332].start 3268.39784375
transcript.pyannote[332].end 3268.44846875
transcript.pyannote[333].speaker SPEAKER_17
transcript.pyannote[333].start 3268.85346875
transcript.pyannote[333].end 3269.96721875
transcript.pyannote[334].speaker SPEAKER_16
transcript.pyannote[334].start 3269.96721875
transcript.pyannote[334].end 3270.03471875
transcript.pyannote[335].speaker SPEAKER_17
transcript.pyannote[335].start 3270.03471875
transcript.pyannote[335].end 3270.05159375
transcript.pyannote[336].speaker SPEAKER_16
transcript.pyannote[336].start 3270.05159375
transcript.pyannote[336].end 3270.42284375
transcript.pyannote[337].speaker SPEAKER_17
transcript.pyannote[337].start 3270.42284375
transcript.pyannote[337].end 3270.74346875
transcript.pyannote[338].speaker SPEAKER_16
transcript.pyannote[338].start 3270.74346875
transcript.pyannote[338].end 3270.79409375
transcript.pyannote[339].speaker SPEAKER_17
transcript.pyannote[339].start 3270.79409375
transcript.pyannote[339].end 3270.87846875
transcript.pyannote[340].speaker SPEAKER_16
transcript.pyannote[340].start 3270.87846875
transcript.pyannote[340].end 3287.02784375
transcript.pyannote[341].speaker SPEAKER_16
transcript.pyannote[341].start 3287.92221875
transcript.pyannote[341].end 3288.02346875
transcript.pyannote[342].speaker SPEAKER_17
transcript.pyannote[342].start 3288.02346875
transcript.pyannote[342].end 3290.14971875
transcript.pyannote[343].speaker SPEAKER_17
transcript.pyannote[343].start 3290.47034375
transcript.pyannote[343].end 3301.20284375
transcript.pyannote[344].speaker SPEAKER_17
transcript.pyannote[344].start 3301.70909375
transcript.pyannote[344].end 3303.05909375
transcript.pyannote[345].speaker SPEAKER_17
transcript.pyannote[345].start 3303.22784375
transcript.pyannote[345].end 3306.13034375
transcript.pyannote[346].speaker SPEAKER_17
transcript.pyannote[346].start 3306.51846875
transcript.pyannote[346].end 3315.64784375
transcript.pyannote[347].speaker SPEAKER_17
transcript.pyannote[347].start 3315.88409375
transcript.pyannote[347].end 3317.99346875
transcript.pyannote[348].speaker SPEAKER_17
transcript.pyannote[348].start 3318.51659375
transcript.pyannote[348].end 3319.90034375
transcript.pyannote[349].speaker SPEAKER_17
transcript.pyannote[349].start 3320.38971875
transcript.pyannote[349].end 3321.68909375
transcript.pyannote[350].speaker SPEAKER_17
transcript.pyannote[350].start 3322.16159375
transcript.pyannote[350].end 3324.20346875
transcript.pyannote[351].speaker SPEAKER_17
transcript.pyannote[351].start 3324.77721875
transcript.pyannote[351].end 3325.60409375
transcript.pyannote[352].speaker SPEAKER_17
transcript.pyannote[352].start 3325.97534375
transcript.pyannote[352].end 3340.80846875
transcript.pyannote[353].speaker SPEAKER_16
transcript.pyannote[353].start 3341.29784375
transcript.pyannote[353].end 3342.78284375
transcript.pyannote[354].speaker SPEAKER_16
transcript.pyannote[354].start 3343.45784375
transcript.pyannote[354].end 3344.03159375
transcript.pyannote[355].speaker SPEAKER_17
transcript.pyannote[355].start 3344.03159375
transcript.pyannote[355].end 3344.47034375
transcript.pyannote[356].speaker SPEAKER_16
transcript.pyannote[356].start 3344.47034375
transcript.pyannote[356].end 3344.50409375
transcript.pyannote[357].speaker SPEAKER_17
transcript.pyannote[357].start 3344.50409375
transcript.pyannote[357].end 3344.52096875
transcript.pyannote[358].speaker SPEAKER_06
transcript.pyannote[358].start 3345.85409375
transcript.pyannote[358].end 3351.76034375
transcript.pyannote[359].speaker SPEAKER_01
transcript.pyannote[359].start 3366.32346875
transcript.pyannote[359].end 3367.03221875
transcript.pyannote[360].speaker SPEAKER_01
transcript.pyannote[360].start 3367.43721875
transcript.pyannote[360].end 3370.27221875
transcript.pyannote[361].speaker SPEAKER_13
transcript.pyannote[361].start 3372.28034375
transcript.pyannote[361].end 3373.29284375
transcript.pyannote[362].speaker SPEAKER_01
transcript.pyannote[362].start 3373.42784375
transcript.pyannote[362].end 3373.44471875
transcript.pyannote[363].speaker SPEAKER_12
transcript.pyannote[363].start 3373.44471875
transcript.pyannote[363].end 3374.38971875
transcript.pyannote[364].speaker SPEAKER_12
transcript.pyannote[364].start 3375.35159375
transcript.pyannote[364].end 3383.38409375
transcript.pyannote[365].speaker SPEAKER_12
transcript.pyannote[365].start 3384.04221875
transcript.pyannote[365].end 3389.18909375
transcript.pyannote[366].speaker SPEAKER_12
transcript.pyannote[366].start 3389.96534375
transcript.pyannote[366].end 3416.27346875
transcript.pyannote[367].speaker SPEAKER_12
transcript.pyannote[367].start 3416.67846875
transcript.pyannote[367].end 3423.15846875
transcript.pyannote[368].speaker SPEAKER_12
transcript.pyannote[368].start 3423.17534375
transcript.pyannote[368].end 3430.83659375
transcript.pyannote[369].speaker SPEAKER_12
transcript.pyannote[369].start 3431.20784375
transcript.pyannote[369].end 3437.38409375
transcript.pyannote[370].speaker SPEAKER_12
transcript.pyannote[370].start 3438.54846875
transcript.pyannote[370].end 3447.13784375
transcript.pyannote[371].speaker SPEAKER_12
transcript.pyannote[371].start 3447.67784375
transcript.pyannote[371].end 3459.32159375
transcript.pyannote[372].speaker SPEAKER_12
transcript.pyannote[372].start 3460.06409375
transcript.pyannote[372].end 3464.36721875
transcript.pyannote[373].speaker SPEAKER_12
transcript.pyannote[373].start 3464.92409375
transcript.pyannote[373].end 3465.49784375
transcript.pyannote[374].speaker SPEAKER_12
transcript.pyannote[374].start 3466.61159375
transcript.pyannote[374].end 3472.07909375
transcript.pyannote[375].speaker SPEAKER_12
transcript.pyannote[375].start 3472.56846875
transcript.pyannote[375].end 3477.66471875
transcript.pyannote[376].speaker SPEAKER_12
transcript.pyannote[376].start 3478.28909375
transcript.pyannote[376].end 3481.30971875
transcript.pyannote[377].speaker SPEAKER_12
transcript.pyannote[377].start 3482.01846875
transcript.pyannote[377].end 3484.33034375
transcript.pyannote[378].speaker SPEAKER_12
transcript.pyannote[378].start 3484.65096875
transcript.pyannote[378].end 3486.27096875
transcript.pyannote[379].speaker SPEAKER_12
transcript.pyannote[379].start 3486.60846875
transcript.pyannote[379].end 3488.71784375
transcript.pyannote[380].speaker SPEAKER_12
transcript.pyannote[380].start 3489.40971875
transcript.pyannote[380].end 3495.43409375
transcript.pyannote[381].speaker SPEAKER_12
transcript.pyannote[381].start 3495.90659375
transcript.pyannote[381].end 3501.99846875
transcript.pyannote[382].speaker SPEAKER_12
transcript.pyannote[382].start 3502.31909375
transcript.pyannote[382].end 3505.57596875
transcript.pyannote[383].speaker SPEAKER_12
transcript.pyannote[383].start 3506.25096875
transcript.pyannote[383].end 3508.02284375
transcript.pyannote[384].speaker SPEAKER_12
transcript.pyannote[384].start 3508.29284375
transcript.pyannote[384].end 3513.08534375
transcript.pyannote[385].speaker SPEAKER_12
transcript.pyannote[385].start 3513.62534375
transcript.pyannote[385].end 3515.34659375
transcript.pyannote[386].speaker SPEAKER_12
transcript.pyannote[386].start 3515.75159375
transcript.pyannote[386].end 3516.54471875
transcript.pyannote[387].speaker SPEAKER_12
transcript.pyannote[387].start 3516.66284375
transcript.pyannote[387].end 3525.30284375
transcript.pyannote[388].speaker SPEAKER_12
transcript.pyannote[388].start 3525.38721875
transcript.pyannote[388].end 3525.40409375
transcript.pyannote[389].speaker SPEAKER_13
transcript.pyannote[389].start 3525.40409375
transcript.pyannote[389].end 3525.67409375
transcript.pyannote[390].speaker SPEAKER_12
transcript.pyannote[390].start 3526.07909375
transcript.pyannote[390].end 3526.43346875
transcript.pyannote[391].speaker SPEAKER_12
transcript.pyannote[391].start 3527.10846875
transcript.pyannote[391].end 3527.74971875
transcript.pyannote[392].speaker SPEAKER_12
transcript.pyannote[392].start 3528.59346875
transcript.pyannote[392].end 3530.02784375
transcript.pyannote[393].speaker SPEAKER_12
transcript.pyannote[393].start 3530.50034375
transcript.pyannote[393].end 3536.30534375
transcript.pyannote[394].speaker SPEAKER_12
transcript.pyannote[394].start 3536.38971875
transcript.pyannote[394].end 3543.62909375
transcript.pyannote[395].speaker SPEAKER_12
transcript.pyannote[395].start 3543.96659375
transcript.pyannote[395].end 3547.64534375
transcript.pyannote[396].speaker SPEAKER_12
transcript.pyannote[396].start 3548.21909375
transcript.pyannote[396].end 3549.41721875
transcript.pyannote[397].speaker SPEAKER_12
transcript.pyannote[397].start 3550.49721875
transcript.pyannote[397].end 3558.51284375
transcript.pyannote[398].speaker SPEAKER_12
transcript.pyannote[398].start 3558.83346875
transcript.pyannote[398].end 3559.32284375
transcript.pyannote[399].speaker SPEAKER_06
transcript.pyannote[399].start 3562.24221875
transcript.pyannote[399].end 3563.89596875
transcript.pyannote[400].speaker SPEAKER_12
transcript.pyannote[400].start 3568.70534375
transcript.pyannote[400].end 3576.67034375
transcript.pyannote[401].speaker SPEAKER_06
transcript.pyannote[401].start 3569.00909375
transcript.pyannote[401].end 3569.51534375
transcript.pyannote[402].speaker SPEAKER_14
transcript.pyannote[402].start 3569.51534375
transcript.pyannote[402].end 3569.53221875
transcript.pyannote[403].speaker SPEAKER_01
transcript.pyannote[403].start 3569.53221875
transcript.pyannote[403].end 3569.54909375
transcript.pyannote[404].speaker SPEAKER_06
transcript.pyannote[404].start 3570.24096875
transcript.pyannote[404].end 3570.44346875
transcript.pyannote[405].speaker SPEAKER_12
transcript.pyannote[405].start 3577.05846875
transcript.pyannote[405].end 3594.57471875
transcript.pyannote[406].speaker SPEAKER_12
transcript.pyannote[406].start 3594.72659375
transcript.pyannote[406].end 3606.37034375
transcript.pyannote[407].speaker SPEAKER_14
transcript.pyannote[407].start 3606.77534375
transcript.pyannote[407].end 3614.94284375
transcript.pyannote[408].speaker SPEAKER_12
transcript.pyannote[408].start 3612.95159375
transcript.pyannote[408].end 3615.36471875
transcript.pyannote[409].speaker SPEAKER_12
transcript.pyannote[409].start 3615.83721875
transcript.pyannote[409].end 3616.49534375
transcript.pyannote[410].speaker SPEAKER_12
transcript.pyannote[410].start 3617.54159375
transcript.pyannote[410].end 3619.31346875
transcript.pyannote[411].speaker SPEAKER_12
transcript.pyannote[411].start 3619.75221875
transcript.pyannote[411].end 3630.65346875
transcript.pyannote[412].speaker SPEAKER_12
transcript.pyannote[412].start 3631.34534375
transcript.pyannote[412].end 3636.59346875
transcript.pyannote[413].speaker SPEAKER_12
transcript.pyannote[413].start 3637.33596875
transcript.pyannote[413].end 3637.97721875
transcript.pyannote[414].speaker SPEAKER_13
transcript.pyannote[414].start 3637.97721875
transcript.pyannote[414].end 3642.61784375
transcript.pyannote[415].speaker SPEAKER_12
transcript.pyannote[415].start 3642.34784375
transcript.pyannote[415].end 3645.79034375
transcript.pyannote[416].speaker SPEAKER_13
transcript.pyannote[416].start 3643.47846875
transcript.pyannote[416].end 3646.81971875
transcript.pyannote[417].speaker SPEAKER_12
transcript.pyannote[417].start 3646.81971875
transcript.pyannote[417].end 3661.12971875
transcript.pyannote[418].speaker SPEAKER_13
transcript.pyannote[418].start 3646.85346875
transcript.pyannote[418].end 3647.51159375
transcript.pyannote[419].speaker SPEAKER_12
transcript.pyannote[419].start 3661.80471875
transcript.pyannote[419].end 3662.32784375
transcript.pyannote[420].speaker SPEAKER_12
transcript.pyannote[420].start 3663.62721875
transcript.pyannote[420].end 3664.90971875
transcript.pyannote[421].speaker SPEAKER_12
transcript.pyannote[421].start 3665.63534375
transcript.pyannote[421].end 3671.13659375
transcript.pyannote[422].speaker SPEAKER_12
transcript.pyannote[422].start 3671.92971875
transcript.pyannote[422].end 3676.18221875
transcript.pyannote[423].speaker SPEAKER_12
transcript.pyannote[423].start 3676.78971875
transcript.pyannote[423].end 3677.73471875
transcript.pyannote[424].speaker SPEAKER_12
transcript.pyannote[424].start 3677.97096875
transcript.pyannote[424].end 3679.23659375
transcript.pyannote[425].speaker SPEAKER_12
transcript.pyannote[425].start 3679.99596875
transcript.pyannote[425].end 3681.44721875
transcript.pyannote[426].speaker SPEAKER_12
transcript.pyannote[426].start 3681.95346875
transcript.pyannote[426].end 3682.72971875
transcript.pyannote[427].speaker SPEAKER_12
transcript.pyannote[427].start 3684.28221875
transcript.pyannote[427].end 3685.44659375
transcript.pyannote[428].speaker SPEAKER_12
transcript.pyannote[428].start 3686.02034375
transcript.pyannote[428].end 3693.37784375
transcript.pyannote[429].speaker SPEAKER_12
transcript.pyannote[429].start 3693.91784375
transcript.pyannote[429].end 3696.43221875
transcript.pyannote[430].speaker SPEAKER_12
transcript.pyannote[430].start 3697.74846875
transcript.pyannote[430].end 3704.75159375
transcript.pyannote[431].speaker SPEAKER_12
transcript.pyannote[431].start 3705.10596875
transcript.pyannote[431].end 3710.91096875
transcript.pyannote[432].speaker SPEAKER_12
transcript.pyannote[432].start 3725.42346875
transcript.pyannote[432].end 3726.40221875
transcript.pyannote[433].speaker SPEAKER_12
transcript.pyannote[433].start 3727.14471875
transcript.pyannote[433].end 3728.00534375
transcript.pyannote[434].speaker SPEAKER_12
transcript.pyannote[434].start 3728.54534375
transcript.pyannote[434].end 3729.00096875
transcript.pyannote[435].speaker SPEAKER_12
transcript.pyannote[435].start 3729.70971875
transcript.pyannote[435].end 3733.59096875
transcript.pyannote[436].speaker SPEAKER_12
transcript.pyannote[436].start 3733.96221875
transcript.pyannote[436].end 3735.44721875
transcript.pyannote[437].speaker SPEAKER_12
transcript.pyannote[437].start 3736.49346875
transcript.pyannote[437].end 3739.32846875
transcript.pyannote[438].speaker SPEAKER_12
transcript.pyannote[438].start 3740.17221875
transcript.pyannote[438].end 3745.25159375
transcript.pyannote[439].speaker SPEAKER_12
transcript.pyannote[439].start 3745.82534375
transcript.pyannote[439].end 3749.36909375
transcript.pyannote[440].speaker SPEAKER_12
transcript.pyannote[440].start 3749.75721875
transcript.pyannote[440].end 3753.21659375
transcript.pyannote[441].speaker SPEAKER_12
transcript.pyannote[441].start 3753.75659375
transcript.pyannote[441].end 3761.26596875
transcript.pyannote[442].speaker SPEAKER_12
transcript.pyannote[442].start 3761.48534375
transcript.pyannote[442].end 3762.88596875
transcript.pyannote[443].speaker SPEAKER_12
transcript.pyannote[443].start 3763.07159375
transcript.pyannote[443].end 3764.74221875
transcript.pyannote[444].speaker SPEAKER_12
transcript.pyannote[444].start 3764.75909375
transcript.pyannote[444].end 3770.17596875
transcript.pyannote[445].speaker SPEAKER_12
transcript.pyannote[445].start 3770.54721875
transcript.pyannote[445].end 3771.88034375
transcript.pyannote[446].speaker SPEAKER_12
transcript.pyannote[446].start 3772.23471875
transcript.pyannote[446].end 3775.06971875
transcript.pyannote[447].speaker SPEAKER_12
transcript.pyannote[447].start 3775.33971875
transcript.pyannote[447].end 3782.10659375
transcript.pyannote[448].speaker SPEAKER_12
transcript.pyannote[448].start 3782.39346875
transcript.pyannote[448].end 3784.11471875
transcript.pyannote[449].speaker SPEAKER_12
transcript.pyannote[449].start 3784.33409375
transcript.pyannote[449].end 3796.04534375
transcript.pyannote[450].speaker SPEAKER_13
transcript.pyannote[450].start 3796.93971875
transcript.pyannote[450].end 3798.40784375
transcript.pyannote[451].speaker SPEAKER_12
transcript.pyannote[451].start 3798.69471875
transcript.pyannote[451].end 3801.85034375
transcript.pyannote[452].speaker SPEAKER_12
transcript.pyannote[452].start 3802.81221875
transcript.pyannote[452].end 3811.13159375
transcript.pyannote[453].speaker SPEAKER_12
transcript.pyannote[453].start 3811.75596875
transcript.pyannote[453].end 3817.30784375
transcript.pyannote[454].speaker SPEAKER_12
transcript.pyannote[454].start 3817.61159375
transcript.pyannote[454].end 3818.45534375
transcript.pyannote[455].speaker SPEAKER_12
transcript.pyannote[455].start 3819.04596875
transcript.pyannote[455].end 3824.05784375
transcript.pyannote[456].speaker SPEAKER_12
transcript.pyannote[456].start 3824.61471875
transcript.pyannote[456].end 3825.71159375
transcript.pyannote[457].speaker SPEAKER_12
transcript.pyannote[457].start 3825.98159375
transcript.pyannote[457].end 3827.34846875
transcript.pyannote[458].speaker SPEAKER_12
transcript.pyannote[458].start 3827.93909375
transcript.pyannote[458].end 3832.73159375
transcript.pyannote[459].speaker SPEAKER_12
transcript.pyannote[459].start 3833.01846875
transcript.pyannote[459].end 3835.66784375
transcript.pyannote[460].speaker SPEAKER_12
transcript.pyannote[460].start 3835.88721875
transcript.pyannote[460].end 3836.66346875
transcript.pyannote[461].speaker SPEAKER_12
transcript.pyannote[461].start 3837.10221875
transcript.pyannote[461].end 3838.75596875
transcript.pyannote[462].speaker SPEAKER_12
transcript.pyannote[462].start 3838.80659375
transcript.pyannote[462].end 3841.75971875
transcript.pyannote[463].speaker SPEAKER_12
transcript.pyannote[463].start 3842.01284375
transcript.pyannote[463].end 3849.01596875
transcript.pyannote[464].speaker SPEAKER_12
transcript.pyannote[464].start 3850.18034375
transcript.pyannote[464].end 3851.37846875
transcript.pyannote[465].speaker SPEAKER_12
transcript.pyannote[465].start 3851.74971875
transcript.pyannote[465].end 3852.61034375
transcript.pyannote[466].speaker SPEAKER_12
transcript.pyannote[466].start 3853.08284375
transcript.pyannote[466].end 3855.58034375
transcript.pyannote[467].speaker SPEAKER_12
transcript.pyannote[467].start 3856.05284375
transcript.pyannote[467].end 3857.06534375
transcript.pyannote[468].speaker SPEAKER_14
transcript.pyannote[468].start 3858.87096875
transcript.pyannote[468].end 3861.65534375
transcript.pyannote[469].speaker SPEAKER_12
transcript.pyannote[469].start 3861.04784375
transcript.pyannote[469].end 3870.49784375
transcript.pyannote[470].speaker SPEAKER_12
transcript.pyannote[470].start 3871.18971875
transcript.pyannote[470].end 3871.69596875
transcript.pyannote[471].speaker SPEAKER_12
transcript.pyannote[471].start 3872.23596875
transcript.pyannote[471].end 3876.40409375
transcript.pyannote[472].speaker SPEAKER_12
transcript.pyannote[472].start 3877.01159375
transcript.pyannote[472].end 3880.28534375
transcript.pyannote[473].speaker SPEAKER_12
transcript.pyannote[473].start 3880.55534375
transcript.pyannote[473].end 3883.66034375
transcript.pyannote[474].speaker SPEAKER_12
transcript.pyannote[474].start 3885.33096875
transcript.pyannote[474].end 3887.17034375
transcript.pyannote[475].speaker SPEAKER_13
transcript.pyannote[475].start 3888.40221875
transcript.pyannote[475].end 3890.76471875
transcript.pyannote[476].speaker SPEAKER_13
transcript.pyannote[476].start 3890.96721875
transcript.pyannote[476].end 3892.45221875
transcript.pyannote[477].speaker SPEAKER_12
transcript.pyannote[477].start 3891.97971875
transcript.pyannote[477].end 3894.35909375
transcript.pyannote[478].speaker SPEAKER_13
transcript.pyannote[478].start 3895.01721875
transcript.pyannote[478].end 3907.94346875
transcript.pyannote[479].speaker SPEAKER_12
transcript.pyannote[479].start 3895.08471875
transcript.pyannote[479].end 3895.65846875
transcript.pyannote[480].speaker SPEAKER_12
transcript.pyannote[480].start 3907.45409375
transcript.pyannote[480].end 3908.39909375
transcript.pyannote[481].speaker SPEAKER_12
transcript.pyannote[481].start 3911.16659375
transcript.pyannote[481].end 3914.27159375
transcript.pyannote[482].speaker SPEAKER_13
transcript.pyannote[482].start 3911.26784375
transcript.pyannote[482].end 3911.35221875
transcript.pyannote[483].speaker SPEAKER_13
transcript.pyannote[483].start 3911.43659375
transcript.pyannote[483].end 3911.45346875
transcript.pyannote[484].speaker SPEAKER_12
transcript.pyannote[484].start 3914.54159375
transcript.pyannote[484].end 3916.29659375
transcript.pyannote[485].speaker SPEAKER_12
transcript.pyannote[485].start 3917.39346875
transcript.pyannote[485].end 3918.35534375
transcript.pyannote[486].speaker SPEAKER_12
transcript.pyannote[486].start 3918.84471875
transcript.pyannote[486].end 3925.74659375
transcript.pyannote[487].speaker SPEAKER_08
transcript.pyannote[487].start 3925.74659375
transcript.pyannote[487].end 3932.73284375
transcript.pyannote[488].speaker SPEAKER_12
transcript.pyannote[488].start 3931.41659375
transcript.pyannote[488].end 3939.02721875
transcript.pyannote[489].speaker SPEAKER_12
transcript.pyannote[489].start 3939.33096875
transcript.pyannote[489].end 3941.77784375
transcript.pyannote[490].speaker SPEAKER_08
transcript.pyannote[490].start 3940.05659375
transcript.pyannote[490].end 3947.83596875
transcript.pyannote[491].speaker SPEAKER_08
transcript.pyannote[491].start 3947.85284375
transcript.pyannote[491].end 3949.75971875
transcript.pyannote[492].speaker SPEAKER_08
transcript.pyannote[492].start 3950.14784375
transcript.pyannote[492].end 3955.02471875
transcript.pyannote[493].speaker SPEAKER_12
transcript.pyannote[493].start 3954.28221875
transcript.pyannote[493].end 3954.67034375
transcript.pyannote[494].speaker SPEAKER_12
transcript.pyannote[494].start 3955.02471875
transcript.pyannote[494].end 3955.05846875
transcript.pyannote[495].speaker SPEAKER_08
transcript.pyannote[495].start 3955.05846875
transcript.pyannote[495].end 3957.28596875
transcript.pyannote[496].speaker SPEAKER_12
transcript.pyannote[496].start 3955.56471875
transcript.pyannote[496].end 3959.68221875
transcript.pyannote[497].speaker SPEAKER_12
transcript.pyannote[497].start 3960.28971875
transcript.pyannote[497].end 3961.85909375
transcript.pyannote[498].speaker SPEAKER_12
transcript.pyannote[498].start 3962.21346875
transcript.pyannote[498].end 3963.36096875
transcript.pyannote[499].speaker SPEAKER_12
transcript.pyannote[499].start 3963.47909375
transcript.pyannote[499].end 3988.16721875
transcript.pyannote[500].speaker SPEAKER_12
transcript.pyannote[500].start 3988.72409375
transcript.pyannote[500].end 4005.00846875
transcript.pyannote[501].speaker SPEAKER_12
transcript.pyannote[501].start 4005.21096875
transcript.pyannote[501].end 4005.61596875
transcript.pyannote[502].speaker SPEAKER_08
transcript.pyannote[502].start 4005.61596875
transcript.pyannote[502].end 4005.70034375
transcript.pyannote[503].speaker SPEAKER_12
transcript.pyannote[503].start 4005.70034375
transcript.pyannote[503].end 4005.71721875
transcript.pyannote[504].speaker SPEAKER_12
transcript.pyannote[504].start 4006.05471875
transcript.pyannote[504].end 4021.44471875
transcript.pyannote[505].speaker SPEAKER_08
transcript.pyannote[505].start 4021.84971875
transcript.pyannote[505].end 4024.88721875
transcript.pyannote[506].speaker SPEAKER_12
transcript.pyannote[506].start 4024.71846875
transcript.pyannote[506].end 4032.16034375
transcript.pyannote[507].speaker SPEAKER_12
transcript.pyannote[507].start 4032.49784375
transcript.pyannote[507].end 4037.05409375
transcript.pyannote[508].speaker SPEAKER_08
transcript.pyannote[508].start 4035.88971875
transcript.pyannote[508].end 4045.12034375
transcript.pyannote[509].speaker SPEAKER_12
transcript.pyannote[509].start 4041.79596875
transcript.pyannote[509].end 4044.39471875
transcript.pyannote[510].speaker SPEAKER_08
transcript.pyannote[510].start 4045.20471875
transcript.pyannote[510].end 4054.89096875
transcript.pyannote[511].speaker SPEAKER_12
transcript.pyannote[511].start 4054.89096875
transcript.pyannote[511].end 4064.07096875
transcript.pyannote[512].speaker SPEAKER_12
transcript.pyannote[512].start 4064.96534375
transcript.pyannote[512].end 4066.18034375
transcript.pyannote[513].speaker SPEAKER_12
transcript.pyannote[513].start 4066.46721875
transcript.pyannote[513].end 4072.96409375
transcript.pyannote[514].speaker SPEAKER_08
transcript.pyannote[514].start 4072.96409375
transcript.pyannote[514].end 4084.40534375
transcript.pyannote[515].speaker SPEAKER_12
transcript.pyannote[515].start 4083.84846875
transcript.pyannote[515].end 4091.69534375
transcript.pyannote[516].speaker SPEAKER_08
transcript.pyannote[516].start 4085.46846875
transcript.pyannote[516].end 4085.56971875
transcript.pyannote[517].speaker SPEAKER_08
transcript.pyannote[517].start 4086.22784375
transcript.pyannote[517].end 4087.56096875
transcript.pyannote[518].speaker SPEAKER_08
transcript.pyannote[518].start 4091.77971875
transcript.pyannote[518].end 4100.72346875
transcript.pyannote[519].speaker SPEAKER_12
transcript.pyannote[519].start 4100.72346875
transcript.pyannote[519].end 4107.97971875
transcript.pyannote[520].speaker SPEAKER_12
transcript.pyannote[520].start 4108.65471875
transcript.pyannote[520].end 4108.97534375
transcript.pyannote[521].speaker SPEAKER_08
transcript.pyannote[521].start 4108.97534375
transcript.pyannote[521].end 4109.02596875
transcript.pyannote[522].speaker SPEAKER_12
transcript.pyannote[522].start 4109.02596875
transcript.pyannote[522].end 4110.93284375
transcript.pyannote[523].speaker SPEAKER_08
transcript.pyannote[523].start 4109.14409375
transcript.pyannote[523].end 4109.81909375
transcript.pyannote[524].speaker SPEAKER_12
transcript.pyannote[524].start 4111.59096875
transcript.pyannote[524].end 4112.87346875
transcript.pyannote[525].speaker SPEAKER_12
transcript.pyannote[525].start 4112.97471875
transcript.pyannote[525].end 4128.53346875
transcript.pyannote[526].speaker SPEAKER_19
transcript.pyannote[526].start 4125.69846875
transcript.pyannote[526].end 4128.49971875
transcript.pyannote[527].speaker SPEAKER_19
transcript.pyannote[527].start 4128.53346875
transcript.pyannote[527].end 4128.58409375
transcript.pyannote[528].speaker SPEAKER_06
transcript.pyannote[528].start 4128.58409375
transcript.pyannote[528].end 4128.60096875
transcript.pyannote[529].speaker SPEAKER_06
transcript.pyannote[529].start 4129.54596875
transcript.pyannote[529].end 4134.43971875
transcript.pyannote[530].speaker SPEAKER_06
transcript.pyannote[530].start 4141.44284375
transcript.pyannote[530].end 4147.21409375
transcript.pyannote[531].speaker SPEAKER_13
transcript.pyannote[531].start 4148.41221875
transcript.pyannote[531].end 4149.03659375
transcript.pyannote[532].speaker SPEAKER_05
transcript.pyannote[532].start 4149.03659375
transcript.pyannote[532].end 4149.30659375
transcript.pyannote[533].speaker SPEAKER_05
transcript.pyannote[533].start 4150.62284375
transcript.pyannote[533].end 4160.17409375
transcript.pyannote[534].speaker SPEAKER_19
transcript.pyannote[534].start 4160.34284375
transcript.pyannote[534].end 4160.71409375
transcript.pyannote[535].speaker SPEAKER_05
transcript.pyannote[535].start 4161.03471875
transcript.pyannote[535].end 4169.53971875
transcript.pyannote[536].speaker SPEAKER_08
transcript.pyannote[536].start 4174.70346875
transcript.pyannote[536].end 4175.74971875
transcript.pyannote[537].speaker SPEAKER_05
transcript.pyannote[537].start 4176.03659375
transcript.pyannote[537].end 4192.05096875
transcript.pyannote[538].speaker SPEAKER_08
transcript.pyannote[538].start 4197.50159375
transcript.pyannote[538].end 4198.05846875
transcript.pyannote[539].speaker SPEAKER_08
transcript.pyannote[539].start 4198.46346875
transcript.pyannote[539].end 4206.22596875
transcript.pyannote[540].speaker SPEAKER_05
transcript.pyannote[540].start 4205.90534375
transcript.pyannote[540].end 4207.87971875
transcript.pyannote[541].speaker SPEAKER_08
transcript.pyannote[541].start 4206.24284375
transcript.pyannote[541].end 4206.56346875
transcript.pyannote[542].speaker SPEAKER_05
transcript.pyannote[542].start 4207.96409375
transcript.pyannote[542].end 4227.67409375
transcript.pyannote[543].speaker SPEAKER_05
transcript.pyannote[543].start 4228.39971875
transcript.pyannote[543].end 4244.51534375
transcript.pyannote[544].speaker SPEAKER_08
transcript.pyannote[544].start 4245.37596875
transcript.pyannote[544].end 4252.26096875
transcript.pyannote[545].speaker SPEAKER_05
transcript.pyannote[545].start 4251.85596875
transcript.pyannote[545].end 4257.57659375
transcript.pyannote[546].speaker SPEAKER_05
transcript.pyannote[546].start 4258.48784375
transcript.pyannote[546].end 4266.25034375
transcript.pyannote[547].speaker SPEAKER_05
transcript.pyannote[547].start 4266.99284375
transcript.pyannote[547].end 4292.42346875
transcript.pyannote[548].speaker SPEAKER_08
transcript.pyannote[548].start 4294.58346875
transcript.pyannote[548].end 4303.86471875
transcript.pyannote[549].speaker SPEAKER_05
transcript.pyannote[549].start 4301.31659375
transcript.pyannote[549].end 4302.49784375
transcript.pyannote[550].speaker SPEAKER_05
transcript.pyannote[550].start 4303.86471875
transcript.pyannote[550].end 4305.87284375
transcript.pyannote[551].speaker SPEAKER_04
transcript.pyannote[551].start 4306.07534375
transcript.pyannote[551].end 4313.26409375
transcript.pyannote[552].speaker SPEAKER_05
transcript.pyannote[552].start 4311.55971875
transcript.pyannote[552].end 4314.76596875
transcript.pyannote[553].speaker SPEAKER_04
transcript.pyannote[553].start 4314.59721875
transcript.pyannote[553].end 4317.43221875
transcript.pyannote[554].speaker SPEAKER_05
transcript.pyannote[554].start 4317.04409375
transcript.pyannote[554].end 4318.56284375
transcript.pyannote[555].speaker SPEAKER_05
transcript.pyannote[555].start 4319.01846875
transcript.pyannote[555].end 4321.19534375
transcript.pyannote[556].speaker SPEAKER_04
transcript.pyannote[556].start 4321.53284375
transcript.pyannote[556].end 4324.45221875
transcript.pyannote[557].speaker SPEAKER_04
transcript.pyannote[557].start 4324.63784375
transcript.pyannote[557].end 4330.57784375
transcript.pyannote[558].speaker SPEAKER_05
transcript.pyannote[558].start 4330.25721875
transcript.pyannote[558].end 4338.23909375
transcript.pyannote[559].speaker SPEAKER_04
transcript.pyannote[559].start 4338.49221875
transcript.pyannote[559].end 4342.87971875
transcript.pyannote[560].speaker SPEAKER_05
transcript.pyannote[560].start 4342.01909375
transcript.pyannote[560].end 4348.87034375
transcript.pyannote[561].speaker SPEAKER_04
transcript.pyannote[561].start 4343.95971875
transcript.pyannote[561].end 4344.21284375
transcript.pyannote[562].speaker SPEAKER_05
transcript.pyannote[562].start 4349.29221875
transcript.pyannote[562].end 4354.01721875
transcript.pyannote[563].speaker SPEAKER_04
transcript.pyannote[563].start 4349.34284375
transcript.pyannote[563].end 4349.73096875
transcript.pyannote[564].speaker SPEAKER_04
transcript.pyannote[564].start 4354.64159375
transcript.pyannote[564].end 4359.28221875
transcript.pyannote[565].speaker SPEAKER_05
transcript.pyannote[565].start 4359.11346875
transcript.pyannote[565].end 4366.15034375
transcript.pyannote[566].speaker SPEAKER_05
transcript.pyannote[566].start 4366.72409375
transcript.pyannote[566].end 4374.58784375
transcript.pyannote[567].speaker SPEAKER_05
transcript.pyannote[567].start 4375.29659375
transcript.pyannote[567].end 4376.73096875
transcript.pyannote[568].speaker SPEAKER_05
transcript.pyannote[568].start 4377.23721875
transcript.pyannote[568].end 4380.37596875
transcript.pyannote[569].speaker SPEAKER_05
transcript.pyannote[569].start 4382.14784375
transcript.pyannote[569].end 4387.22721875
transcript.pyannote[570].speaker SPEAKER_05
transcript.pyannote[570].start 4388.25659375
transcript.pyannote[570].end 4389.28596875
transcript.pyannote[571].speaker SPEAKER_08
transcript.pyannote[571].start 4390.46721875
transcript.pyannote[571].end 4390.78784375
transcript.pyannote[572].speaker SPEAKER_05
transcript.pyannote[572].start 4391.36159375
transcript.pyannote[572].end 4392.15471875
transcript.pyannote[573].speaker SPEAKER_08
transcript.pyannote[573].start 4393.53846875
transcript.pyannote[573].end 4394.44971875
transcript.pyannote[574].speaker SPEAKER_05
transcript.pyannote[574].start 4394.38221875
transcript.pyannote[574].end 4416.38721875
transcript.pyannote[575].speaker SPEAKER_05
transcript.pyannote[575].start 4417.36596875
transcript.pyannote[575].end 4417.97346875
transcript.pyannote[576].speaker SPEAKER_05
transcript.pyannote[576].start 4418.29409375
transcript.pyannote[576].end 4419.86346875
transcript.pyannote[577].speaker SPEAKER_05
transcript.pyannote[577].start 4420.38659375
transcript.pyannote[577].end 4428.90846875
transcript.pyannote[578].speaker SPEAKER_05
transcript.pyannote[578].start 4430.37659375
transcript.pyannote[578].end 4433.46471875
transcript.pyannote[579].speaker SPEAKER_05
transcript.pyannote[579].start 4434.20721875
transcript.pyannote[579].end 4447.25159375
transcript.pyannote[580].speaker SPEAKER_05
transcript.pyannote[580].start 4448.53409375
transcript.pyannote[580].end 4456.70159375
transcript.pyannote[581].speaker SPEAKER_05
transcript.pyannote[581].start 4458.05159375
transcript.pyannote[581].end 4460.22846875
transcript.pyannote[582].speaker SPEAKER_05
transcript.pyannote[582].start 4460.53221875
transcript.pyannote[582].end 4468.22721875
transcript.pyannote[583].speaker SPEAKER_05
transcript.pyannote[583].start 4469.40846875
transcript.pyannote[583].end 4491.48096875
transcript.pyannote[584].speaker SPEAKER_08
transcript.pyannote[584].start 4492.64534375
transcript.pyannote[584].end 4492.79721875
transcript.pyannote[585].speaker SPEAKER_08
transcript.pyannote[585].start 4492.96596875
transcript.pyannote[585].end 4495.02471875
transcript.pyannote[586].speaker SPEAKER_08
transcript.pyannote[586].start 4495.34534375
transcript.pyannote[586].end 4500.96471875
transcript.pyannote[587].speaker SPEAKER_08
transcript.pyannote[587].start 4501.31909375
transcript.pyannote[587].end 4509.26721875
transcript.pyannote[588].speaker SPEAKER_05
transcript.pyannote[588].start 4509.26721875
transcript.pyannote[588].end 4512.33846875
transcript.pyannote[589].speaker SPEAKER_05
transcript.pyannote[589].start 4512.74346875
transcript.pyannote[589].end 4517.21534375
transcript.pyannote[590].speaker SPEAKER_05
transcript.pyannote[590].start 4518.41346875
transcript.pyannote[590].end 4519.49346875
transcript.pyannote[591].speaker SPEAKER_05
transcript.pyannote[591].start 4520.42159375
transcript.pyannote[591].end 4520.70846875
transcript.pyannote[592].speaker SPEAKER_05
transcript.pyannote[592].start 4520.97846875
transcript.pyannote[592].end 4524.91034375
transcript.pyannote[593].speaker SPEAKER_05
transcript.pyannote[593].start 4525.46721875
transcript.pyannote[593].end 4534.46159375
transcript.pyannote[594].speaker SPEAKER_05
transcript.pyannote[594].start 4535.60909375
transcript.pyannote[594].end 4538.88284375
transcript.pyannote[595].speaker SPEAKER_05
transcript.pyannote[595].start 4539.33846875
transcript.pyannote[595].end 4546.54409375
transcript.pyannote[596].speaker SPEAKER_05
transcript.pyannote[596].start 4546.99971875
transcript.pyannote[596].end 4554.82971875
transcript.pyannote[597].speaker SPEAKER_05
transcript.pyannote[597].start 4555.35284375
transcript.pyannote[597].end 4557.95159375
transcript.pyannote[598].speaker SPEAKER_05
transcript.pyannote[598].start 4558.62659375
transcript.pyannote[598].end 4563.73971875
transcript.pyannote[599].speaker SPEAKER_05
transcript.pyannote[599].start 4564.41471875
transcript.pyannote[599].end 4567.04721875
transcript.pyannote[600].speaker SPEAKER_05
transcript.pyannote[600].start 4567.77284375
transcript.pyannote[600].end 4568.38034375
transcript.pyannote[601].speaker SPEAKER_05
transcript.pyannote[601].start 4569.07221875
transcript.pyannote[601].end 4574.92784375
transcript.pyannote[602].speaker SPEAKER_05
transcript.pyannote[602].start 4575.73784375
transcript.pyannote[602].end 4576.61534375
transcript.pyannote[603].speaker SPEAKER_08
transcript.pyannote[603].start 4577.62784375
transcript.pyannote[603].end 4579.50096875
transcript.pyannote[604].speaker SPEAKER_05
transcript.pyannote[604].start 4579.61909375
transcript.pyannote[604].end 4581.23909375
transcript.pyannote[605].speaker SPEAKER_05
transcript.pyannote[605].start 4581.54284375
transcript.pyannote[605].end 4582.58909375
transcript.pyannote[606].speaker SPEAKER_05
transcript.pyannote[606].start 4583.48346875
transcript.pyannote[606].end 4584.44534375
transcript.pyannote[607].speaker SPEAKER_05
transcript.pyannote[607].start 4586.14971875
transcript.pyannote[607].end 4587.88784375
transcript.pyannote[608].speaker SPEAKER_08
transcript.pyannote[608].start 4588.27596875
transcript.pyannote[608].end 4589.81159375
transcript.pyannote[609].speaker SPEAKER_05
transcript.pyannote[609].start 4589.84534375
transcript.pyannote[609].end 4596.32534375
transcript.pyannote[610].speaker SPEAKER_05
transcript.pyannote[610].start 4596.96659375
transcript.pyannote[610].end 4597.62471875
transcript.pyannote[611].speaker SPEAKER_08
transcript.pyannote[611].start 4598.63721875
transcript.pyannote[611].end 4599.73409375
transcript.pyannote[612].speaker SPEAKER_05
transcript.pyannote[612].start 4599.73409375
transcript.pyannote[612].end 4604.56034375
transcript.pyannote[613].speaker SPEAKER_05
transcript.pyannote[613].start 4604.72909375
transcript.pyannote[613].end 4610.70284375
transcript.pyannote[614].speaker SPEAKER_08
transcript.pyannote[614].start 4611.49596875
transcript.pyannote[614].end 4613.40284375
transcript.pyannote[615].speaker SPEAKER_05
transcript.pyannote[615].start 4614.06096875
transcript.pyannote[615].end 4615.19159375
transcript.pyannote[616].speaker SPEAKER_05
transcript.pyannote[616].start 4615.59659375
transcript.pyannote[616].end 4620.57471875
transcript.pyannote[617].speaker SPEAKER_05
transcript.pyannote[617].start 4621.26659375
transcript.pyannote[617].end 4627.78034375
transcript.pyannote[618].speaker SPEAKER_05
transcript.pyannote[618].start 4628.87721875
transcript.pyannote[618].end 4629.55221875
transcript.pyannote[619].speaker SPEAKER_08
transcript.pyannote[619].start 4630.96971875
transcript.pyannote[619].end 4631.32409375
transcript.pyannote[620].speaker SPEAKER_05
transcript.pyannote[620].start 4631.32409375
transcript.pyannote[620].end 4639.64346875
transcript.pyannote[621].speaker SPEAKER_05
transcript.pyannote[621].start 4640.01471875
transcript.pyannote[621].end 4649.70096875
transcript.pyannote[622].speaker SPEAKER_05
transcript.pyannote[622].start 4649.76846875
transcript.pyannote[622].end 4656.01221875
transcript.pyannote[623].speaker SPEAKER_05
transcript.pyannote[623].start 4656.40034375
transcript.pyannote[623].end 4659.01596875
transcript.pyannote[624].speaker SPEAKER_05
transcript.pyannote[624].start 4659.25221875
transcript.pyannote[624].end 4663.77471875
transcript.pyannote[625].speaker SPEAKER_13
transcript.pyannote[625].start 4665.29346875
transcript.pyannote[625].end 4670.03534375
transcript.pyannote[626].speaker SPEAKER_05
transcript.pyannote[626].start 4670.03534375
transcript.pyannote[626].end 4692.36096875
transcript.pyannote[627].speaker SPEAKER_13
transcript.pyannote[627].start 4692.59721875
transcript.pyannote[627].end 4696.02284375
transcript.pyannote[628].speaker SPEAKER_05
transcript.pyannote[628].start 4696.02284375
transcript.pyannote[628].end 4696.10721875
transcript.pyannote[629].speaker SPEAKER_13
transcript.pyannote[629].start 4696.10721875
transcript.pyannote[629].end 4696.14096875
transcript.pyannote[630].speaker SPEAKER_05
transcript.pyannote[630].start 4696.14096875
transcript.pyannote[630].end 4700.83221875
transcript.pyannote[631].speaker SPEAKER_13
transcript.pyannote[631].start 4697.11971875
transcript.pyannote[631].end 4698.03096875
transcript.pyannote[632].speaker SPEAKER_05
transcript.pyannote[632].start 4701.38909375
transcript.pyannote[632].end 4720.93034375
transcript.pyannote[633].speaker SPEAKER_05
transcript.pyannote[633].start 4722.01034375
transcript.pyannote[633].end 4722.97221875
transcript.pyannote[634].speaker SPEAKER_13
transcript.pyannote[634].start 4722.97221875
transcript.pyannote[634].end 4728.64221875
transcript.pyannote[635].speaker SPEAKER_05
transcript.pyannote[635].start 4726.83659375
transcript.pyannote[635].end 4727.42721875
transcript.pyannote[636].speaker SPEAKER_05
transcript.pyannote[636].start 4727.62971875
transcript.pyannote[636].end 4728.49034375
transcript.pyannote[637].speaker SPEAKER_05
transcript.pyannote[637].start 4728.64221875
transcript.pyannote[637].end 4728.79409375
transcript.pyannote[638].speaker SPEAKER_13
transcript.pyannote[638].start 4728.79409375
transcript.pyannote[638].end 4736.97846875
transcript.pyannote[639].speaker SPEAKER_05
transcript.pyannote[639].start 4728.87846875
transcript.pyannote[639].end 4729.11471875
transcript.pyannote[640].speaker SPEAKER_05
transcript.pyannote[640].start 4731.12284375
transcript.pyannote[640].end 4731.42659375
transcript.pyannote[641].speaker SPEAKER_05
transcript.pyannote[641].start 4735.49346875
transcript.pyannote[641].end 4735.51034375
transcript.pyannote[642].speaker SPEAKER_19
transcript.pyannote[642].start 4735.51034375
transcript.pyannote[642].end 4735.57784375
transcript.pyannote[643].speaker SPEAKER_05
transcript.pyannote[643].start 4735.57784375
transcript.pyannote[643].end 4735.66221875
transcript.pyannote[644].speaker SPEAKER_19
transcript.pyannote[644].start 4735.66221875
transcript.pyannote[644].end 4735.71284375
transcript.pyannote[645].speaker SPEAKER_05
transcript.pyannote[645].start 4735.71284375
transcript.pyannote[645].end 4735.72971875
transcript.pyannote[646].speaker SPEAKER_05
transcript.pyannote[646].start 4736.10096875
transcript.pyannote[646].end 4737.40034375
transcript.pyannote[647].speaker SPEAKER_19
transcript.pyannote[647].start 4736.97846875
transcript.pyannote[647].end 4737.14721875
transcript.pyannote[648].speaker SPEAKER_19
transcript.pyannote[648].start 4737.40034375
transcript.pyannote[648].end 4737.60284375
transcript.pyannote[649].speaker SPEAKER_05
transcript.pyannote[649].start 4737.60284375
transcript.pyannote[649].end 4740.52221875
transcript.pyannote[650].speaker SPEAKER_19
transcript.pyannote[650].start 4737.63659375
transcript.pyannote[650].end 4737.68721875
transcript.pyannote[651].speaker SPEAKER_13
transcript.pyannote[651].start 4737.68721875
transcript.pyannote[651].end 4737.72096875
transcript.pyannote[652].speaker SPEAKER_05
transcript.pyannote[652].start 4740.91034375
transcript.pyannote[652].end 4744.36971875
transcript.pyannote[653].speaker SPEAKER_05
transcript.pyannote[653].start 4745.07846875
transcript.pyannote[653].end 4747.69409375
transcript.pyannote[654].speaker SPEAKER_05
transcript.pyannote[654].start 4748.72346875
transcript.pyannote[654].end 4749.33096875
transcript.pyannote[655].speaker SPEAKER_08
transcript.pyannote[655].start 4750.84971875
transcript.pyannote[655].end 4754.22471875
transcript.pyannote[656].speaker SPEAKER_05
transcript.pyannote[656].start 4754.22471875
transcript.pyannote[656].end 4761.10971875
transcript.pyannote[657].speaker SPEAKER_08
transcript.pyannote[657].start 4762.18971875
transcript.pyannote[657].end 4766.86409375
transcript.pyannote[658].speaker SPEAKER_05
transcript.pyannote[658].start 4762.66221875
transcript.pyannote[658].end 4763.69159375
transcript.pyannote[659].speaker SPEAKER_05
transcript.pyannote[659].start 4766.32409375
transcript.pyannote[659].end 4770.27284375
transcript.pyannote[660].speaker SPEAKER_08
transcript.pyannote[660].start 4769.68221875
transcript.pyannote[660].end 4772.55096875
transcript.pyannote[661].speaker SPEAKER_05
transcript.pyannote[661].start 4772.68596875
transcript.pyannote[661].end 4782.20346875
transcript.pyannote[662].speaker SPEAKER_08
transcript.pyannote[662].start 4783.45221875
transcript.pyannote[662].end 4784.19471875
transcript.pyannote[663].speaker SPEAKER_05
transcript.pyannote[663].start 4784.19471875
transcript.pyannote[663].end 4787.62034375
transcript.pyannote[664].speaker SPEAKER_05
transcript.pyannote[664].start 4788.17721875
transcript.pyannote[664].end 4792.29471875
transcript.pyannote[665].speaker SPEAKER_05
transcript.pyannote[665].start 4792.81784375
transcript.pyannote[665].end 4792.83471875
transcript.pyannote[666].speaker SPEAKER_13
transcript.pyannote[666].start 4792.83471875
transcript.pyannote[666].end 4797.54284375
transcript.pyannote[667].speaker SPEAKER_05
transcript.pyannote[667].start 4797.54284375
transcript.pyannote[667].end 4799.31471875
transcript.pyannote[668].speaker SPEAKER_05
transcript.pyannote[668].start 4800.68159375
transcript.pyannote[668].end 4804.86659375
transcript.pyannote[669].speaker SPEAKER_06
transcript.pyannote[669].start 4804.86659375
transcript.pyannote[669].end 4804.88346875
transcript.pyannote[670].speaker SPEAKER_06
transcript.pyannote[670].start 4806.95909375
transcript.pyannote[670].end 4813.21971875
transcript.pyannote[671].speaker SPEAKER_07
transcript.pyannote[671].start 4819.49721875
transcript.pyannote[671].end 4822.73721875
transcript.pyannote[672].speaker SPEAKER_07
transcript.pyannote[672].start 4825.28534375
transcript.pyannote[672].end 4826.02784375
transcript.pyannote[673].speaker SPEAKER_07
transcript.pyannote[673].start 4826.48346875
transcript.pyannote[673].end 4829.58846875
transcript.pyannote[674].speaker SPEAKER_07
transcript.pyannote[674].start 4830.33096875
transcript.pyannote[674].end 4839.56159375
transcript.pyannote[675].speaker SPEAKER_07
transcript.pyannote[675].start 4839.67971875
transcript.pyannote[675].end 4844.55659375
transcript.pyannote[676].speaker SPEAKER_07
transcript.pyannote[676].start 4844.89409375
transcript.pyannote[676].end 4860.60471875
transcript.pyannote[677].speaker SPEAKER_13
transcript.pyannote[677].start 4861.54971875
transcript.pyannote[677].end 4874.39159375
transcript.pyannote[678].speaker SPEAKER_07
transcript.pyannote[678].start 4873.78409375
transcript.pyannote[678].end 4881.36096875
transcript.pyannote[679].speaker SPEAKER_13
transcript.pyannote[679].start 4876.02846875
transcript.pyannote[679].end 4876.97346875
transcript.pyannote[680].speaker SPEAKER_13
transcript.pyannote[680].start 4877.91846875
transcript.pyannote[680].end 4878.59346875
transcript.pyannote[681].speaker SPEAKER_07
transcript.pyannote[681].start 4881.42846875
transcript.pyannote[681].end 4881.46221875
transcript.pyannote[682].speaker SPEAKER_07
transcript.pyannote[682].start 4881.54659375
transcript.pyannote[682].end 4882.72784375
transcript.pyannote[683].speaker SPEAKER_07
transcript.pyannote[683].start 4883.26784375
transcript.pyannote[683].end 4883.97659375
transcript.pyannote[684].speaker SPEAKER_13
transcript.pyannote[684].start 4883.97659375
transcript.pyannote[684].end 4912.44471875
transcript.pyannote[685].speaker SPEAKER_00
transcript.pyannote[685].start 4902.21846875
transcript.pyannote[685].end 4902.75846875
transcript.pyannote[686].speaker SPEAKER_07
transcript.pyannote[686].start 4910.03159375
transcript.pyannote[686].end 4911.02721875
transcript.pyannote[687].speaker SPEAKER_07
transcript.pyannote[687].start 4912.20846875
transcript.pyannote[687].end 4918.62096875
transcript.pyannote[688].speaker SPEAKER_07
transcript.pyannote[688].start 4918.87409375
transcript.pyannote[688].end 4922.21534375
transcript.pyannote[689].speaker SPEAKER_07
transcript.pyannote[689].start 4922.97471875
transcript.pyannote[689].end 4925.55659375
transcript.pyannote[690].speaker SPEAKER_07
transcript.pyannote[690].start 4927.34534375
transcript.pyannote[690].end 4932.42471875
transcript.pyannote[691].speaker SPEAKER_13
transcript.pyannote[691].start 4927.41284375
transcript.pyannote[691].end 4929.60659375
transcript.pyannote[692].speaker SPEAKER_07
transcript.pyannote[692].start 4932.64409375
transcript.pyannote[692].end 4932.67784375
transcript.pyannote[693].speaker SPEAKER_13
transcript.pyannote[693].start 4932.67784375
transcript.pyannote[693].end 4977.48096875
transcript.pyannote[694].speaker SPEAKER_07
transcript.pyannote[694].start 4976.72159375
transcript.pyannote[694].end 4997.73096875
transcript.pyannote[695].speaker SPEAKER_07
transcript.pyannote[695].start 4998.74346875
transcript.pyannote[695].end 5010.79221875
transcript.pyannote[696].speaker SPEAKER_07
transcript.pyannote[696].start 5011.31534375
transcript.pyannote[696].end 5013.52596875
transcript.pyannote[697].speaker SPEAKER_07
transcript.pyannote[697].start 5013.99846875
transcript.pyannote[697].end 5017.99784375
transcript.pyannote[698].speaker SPEAKER_13
transcript.pyannote[698].start 5018.97659375
transcript.pyannote[698].end 5025.40596875
transcript.pyannote[699].speaker SPEAKER_13
transcript.pyannote[699].start 5026.01346875
transcript.pyannote[699].end 5058.78471875
transcript.pyannote[700].speaker SPEAKER_07
transcript.pyannote[700].start 5057.55284375
transcript.pyannote[700].end 5076.97596875
transcript.pyannote[701].speaker SPEAKER_13
transcript.pyannote[701].start 5074.66409375
transcript.pyannote[701].end 5075.40659375
transcript.pyannote[702].speaker SPEAKER_07
transcript.pyannote[702].start 5077.27971875
transcript.pyannote[702].end 5080.30034375
transcript.pyannote[703].speaker SPEAKER_07
transcript.pyannote[703].start 5080.65471875
transcript.pyannote[703].end 5085.24471875
transcript.pyannote[704].speaker SPEAKER_07
transcript.pyannote[704].start 5086.00409375
transcript.pyannote[704].end 5094.35721875
transcript.pyannote[705].speaker SPEAKER_13
transcript.pyannote[705].start 5095.26846875
transcript.pyannote[705].end 5161.97534375
transcript.pyannote[706].speaker SPEAKER_00
transcript.pyannote[706].start 5105.68034375
transcript.pyannote[706].end 5106.28784375
transcript.pyannote[707].speaker SPEAKER_07
transcript.pyannote[707].start 5161.09784375
transcript.pyannote[707].end 5162.54909375
transcript.pyannote[708].speaker SPEAKER_11
transcript.pyannote[708].start 5161.97534375
transcript.pyannote[708].end 5164.27034375
transcript.pyannote[709].speaker SPEAKER_13
transcript.pyannote[709].start 5162.54909375
transcript.pyannote[709].end 5162.63346875
transcript.pyannote[710].speaker SPEAKER_07
transcript.pyannote[710].start 5163.00471875
transcript.pyannote[710].end 5170.86846875
transcript.pyannote[711].speaker SPEAKER_07
transcript.pyannote[711].start 5171.34096875
transcript.pyannote[711].end 5172.97784375
transcript.pyannote[712].speaker SPEAKER_13
transcript.pyannote[712].start 5172.97784375
transcript.pyannote[712].end 5180.11596875
transcript.pyannote[713].speaker SPEAKER_07
transcript.pyannote[713].start 5179.23846875
transcript.pyannote[713].end 5189.31284375
transcript.pyannote[714].speaker SPEAKER_13
transcript.pyannote[714].start 5183.45721875
transcript.pyannote[714].end 5185.65096875
transcript.pyannote[715].speaker SPEAKER_13
transcript.pyannote[715].start 5186.95034375
transcript.pyannote[715].end 5187.01784375
transcript.pyannote[716].speaker SPEAKER_08
transcript.pyannote[716].start 5187.01784375
transcript.pyannote[716].end 5187.20346875
transcript.pyannote[717].speaker SPEAKER_13
transcript.pyannote[717].start 5187.20346875
transcript.pyannote[717].end 5187.35534375
transcript.pyannote[718].speaker SPEAKER_08
transcript.pyannote[718].start 5190.61221875
transcript.pyannote[718].end 5196.46784375
transcript.pyannote[719].speaker SPEAKER_08
transcript.pyannote[719].start 5196.77159375
transcript.pyannote[719].end 5198.00346875
transcript.pyannote[720].speaker SPEAKER_08
transcript.pyannote[720].start 5198.23971875
transcript.pyannote[720].end 5201.64846875
transcript.pyannote[721].speaker SPEAKER_08
transcript.pyannote[721].start 5201.73284375
transcript.pyannote[721].end 5218.33784375
transcript.pyannote[722].speaker SPEAKER_04
transcript.pyannote[722].start 5215.33409375
transcript.pyannote[722].end 5215.35096875
transcript.pyannote[723].speaker SPEAKER_07
transcript.pyannote[723].start 5215.35096875
transcript.pyannote[723].end 5215.78971875
transcript.pyannote[724].speaker SPEAKER_04
transcript.pyannote[724].start 5215.78971875
transcript.pyannote[724].end 5215.87409375
transcript.pyannote[725].speaker SPEAKER_07
transcript.pyannote[725].start 5216.24534375
transcript.pyannote[725].end 5216.65034375
transcript.pyannote[726].speaker SPEAKER_08
transcript.pyannote[726].start 5218.87784375
transcript.pyannote[726].end 5221.42596875
transcript.pyannote[727].speaker SPEAKER_04
transcript.pyannote[727].start 5222.38784375
transcript.pyannote[727].end 5225.84721875
transcript.pyannote[728].speaker SPEAKER_04
transcript.pyannote[728].start 5226.21846875
transcript.pyannote[728].end 5227.36596875
transcript.pyannote[729].speaker SPEAKER_07
transcript.pyannote[729].start 5227.65284375
transcript.pyannote[729].end 5241.03471875
transcript.pyannote[730].speaker SPEAKER_15
transcript.pyannote[730].start 5241.32159375
transcript.pyannote[730].end 5241.33846875
transcript.pyannote[731].speaker SPEAKER_08
transcript.pyannote[731].start 5241.33846875
transcript.pyannote[731].end 5241.49034375
transcript.pyannote[732].speaker SPEAKER_07
transcript.pyannote[732].start 5241.49034375
transcript.pyannote[732].end 5244.34221875
transcript.pyannote[733].speaker SPEAKER_08
transcript.pyannote[733].start 5241.50721875
transcript.pyannote[733].end 5241.86159375
transcript.pyannote[734].speaker SPEAKER_07
transcript.pyannote[734].start 5244.69659375
transcript.pyannote[734].end 5246.55284375
transcript.pyannote[735].speaker SPEAKER_08
transcript.pyannote[735].start 5246.26596875
transcript.pyannote[735].end 5248.78034375
transcript.pyannote[736].speaker SPEAKER_07
transcript.pyannote[736].start 5247.41346875
transcript.pyannote[736].end 5253.21846875
transcript.pyannote[737].speaker SPEAKER_07
transcript.pyannote[737].start 5253.69096875
transcript.pyannote[737].end 5270.22846875
transcript.pyannote[738].speaker SPEAKER_07
transcript.pyannote[738].start 5270.73471875
transcript.pyannote[738].end 5274.36284375
transcript.pyannote[739].speaker SPEAKER_08
transcript.pyannote[739].start 5274.90284375
transcript.pyannote[739].end 5289.16221875
transcript.pyannote[740].speaker SPEAKER_07
transcript.pyannote[740].start 5289.33096875
transcript.pyannote[740].end 5294.89971875
transcript.pyannote[741].speaker SPEAKER_08
transcript.pyannote[741].start 5294.89971875
transcript.pyannote[741].end 5301.70034375
transcript.pyannote[742].speaker SPEAKER_08
transcript.pyannote[742].start 5301.91971875
transcript.pyannote[742].end 5305.59846875
transcript.pyannote[743].speaker SPEAKER_07
transcript.pyannote[743].start 5305.59846875
transcript.pyannote[743].end 5317.83284375
transcript.pyannote[744].speaker SPEAKER_07
transcript.pyannote[744].start 5318.03534375
transcript.pyannote[744].end 5335.92284375
transcript.pyannote[745].speaker SPEAKER_13
transcript.pyannote[745].start 5337.67784375
transcript.pyannote[745].end 5368.03596875
transcript.pyannote[746].speaker SPEAKER_07
transcript.pyannote[746].start 5367.29346875
transcript.pyannote[746].end 5367.31034375
transcript.pyannote[747].speaker SPEAKER_11
transcript.pyannote[747].start 5367.31034375
transcript.pyannote[747].end 5368.79534375
transcript.pyannote[748].speaker SPEAKER_11
transcript.pyannote[748].start 5368.89659375
transcript.pyannote[748].end 5374.71846875
transcript.pyannote[749].speaker SPEAKER_07
transcript.pyannote[749].start 5368.96409375
transcript.pyannote[749].end 5369.06534375
transcript.pyannote[750].speaker SPEAKER_13
transcript.pyannote[750].start 5369.06534375
transcript.pyannote[750].end 5369.08221875
transcript.pyannote[751].speaker SPEAKER_07
transcript.pyannote[751].start 5369.08221875
transcript.pyannote[751].end 5369.09909375
transcript.pyannote[752].speaker SPEAKER_13
transcript.pyannote[752].start 5369.09909375
transcript.pyannote[752].end 5369.23409375
transcript.pyannote[753].speaker SPEAKER_07
transcript.pyannote[753].start 5369.23409375
transcript.pyannote[753].end 5369.31846875
transcript.pyannote[754].speaker SPEAKER_13
transcript.pyannote[754].start 5371.27596875
transcript.pyannote[754].end 5371.32659375
transcript.pyannote[755].speaker SPEAKER_07
transcript.pyannote[755].start 5371.32659375
transcript.pyannote[755].end 5371.74846875
transcript.pyannote[756].speaker SPEAKER_07
transcript.pyannote[756].start 5373.62159375
transcript.pyannote[756].end 5381.13096875
transcript.pyannote[757].speaker SPEAKER_13
transcript.pyannote[757].start 5379.29159375
transcript.pyannote[757].end 5389.02846875
transcript.pyannote[758].speaker SPEAKER_07
transcript.pyannote[758].start 5389.02846875
transcript.pyannote[758].end 5389.24784375
transcript.pyannote[759].speaker SPEAKER_13
transcript.pyannote[759].start 5389.24784375
transcript.pyannote[759].end 5389.34909375
transcript.pyannote[760].speaker SPEAKER_07
transcript.pyannote[760].start 5389.34909375
transcript.pyannote[760].end 5407.11846875
transcript.pyannote[761].speaker SPEAKER_08
transcript.pyannote[761].start 5407.82721875
transcript.pyannote[761].end 5408.21534375
transcript.pyannote[762].speaker SPEAKER_08
transcript.pyannote[762].start 5408.80596875
transcript.pyannote[762].end 5410.05471875
transcript.pyannote[763].speaker SPEAKER_07
transcript.pyannote[763].start 5409.53159375
transcript.pyannote[763].end 5411.69159375
transcript.pyannote[764].speaker SPEAKER_08
transcript.pyannote[764].start 5412.45096875
transcript.pyannote[764].end 5412.72096875
transcript.pyannote[765].speaker SPEAKER_08
transcript.pyannote[765].start 5413.49721875
transcript.pyannote[765].end 5415.58971875
transcript.pyannote[766].speaker SPEAKER_08
transcript.pyannote[766].start 5415.77534375
transcript.pyannote[766].end 5417.36159375
transcript.pyannote[767].speaker SPEAKER_07
transcript.pyannote[767].start 5417.07471875
transcript.pyannote[767].end 5428.65096875
transcript.pyannote[768].speaker SPEAKER_07
transcript.pyannote[768].start 5428.92096875
transcript.pyannote[768].end 5432.54909375
transcript.pyannote[769].speaker SPEAKER_08
transcript.pyannote[769].start 5432.54909375
transcript.pyannote[769].end 5433.12284375
transcript.pyannote[770].speaker SPEAKER_07
transcript.pyannote[770].start 5433.12284375
transcript.pyannote[770].end 5435.72159375
transcript.pyannote[771].speaker SPEAKER_08
transcript.pyannote[771].start 5433.19034375
transcript.pyannote[771].end 5433.30846875
transcript.pyannote[772].speaker SPEAKER_08
transcript.pyannote[772].start 5434.55721875
transcript.pyannote[772].end 5439.53534375
transcript.pyannote[773].speaker SPEAKER_19
transcript.pyannote[773].start 5437.39221875
transcript.pyannote[773].end 5437.40909375
transcript.pyannote[774].speaker SPEAKER_07
transcript.pyannote[774].start 5437.40909375
transcript.pyannote[774].end 5437.89846875
transcript.pyannote[775].speaker SPEAKER_08
transcript.pyannote[775].start 5439.73784375
transcript.pyannote[775].end 5443.14659375
transcript.pyannote[776].speaker SPEAKER_08
transcript.pyannote[776].start 5443.61909375
transcript.pyannote[776].end 5447.33159375
transcript.pyannote[777].speaker SPEAKER_07
transcript.pyannote[777].start 5445.86346875
transcript.pyannote[777].end 5448.44534375
transcript.pyannote[778].speaker SPEAKER_08
transcript.pyannote[778].start 5447.48346875
transcript.pyannote[778].end 5447.60159375
transcript.pyannote[779].speaker SPEAKER_07
transcript.pyannote[779].start 5448.88409375
transcript.pyannote[779].end 5456.20784375
transcript.pyannote[780].speaker SPEAKER_08
transcript.pyannote[780].start 5456.20784375
transcript.pyannote[780].end 5457.43971875
transcript.pyannote[781].speaker SPEAKER_07
transcript.pyannote[781].start 5457.08534375
transcript.pyannote[781].end 5458.87409375
transcript.pyannote[782].speaker SPEAKER_08
transcript.pyannote[782].start 5458.16534375
transcript.pyannote[782].end 5461.62471875
transcript.pyannote[783].speaker SPEAKER_07
transcript.pyannote[783].start 5460.20721875
transcript.pyannote[783].end 5478.61784375
transcript.pyannote[784].speaker SPEAKER_07
transcript.pyannote[784].start 5479.02284375
transcript.pyannote[784].end 5487.03846875
transcript.pyannote[785].speaker SPEAKER_08
transcript.pyannote[785].start 5487.96659375
transcript.pyannote[785].end 5489.55284375
transcript.pyannote[786].speaker SPEAKER_07
transcript.pyannote[786].start 5489.55284375
transcript.pyannote[786].end 5490.76784375
transcript.pyannote[787].speaker SPEAKER_08
transcript.pyannote[787].start 5490.24471875
transcript.pyannote[787].end 5492.28659375
transcript.pyannote[788].speaker SPEAKER_07
transcript.pyannote[788].start 5490.95346875
transcript.pyannote[788].end 5491.79721875
transcript.pyannote[789].speaker SPEAKER_07
transcript.pyannote[789].start 5492.28659375
transcript.pyannote[789].end 5492.32034375
transcript.pyannote[790].speaker SPEAKER_08
transcript.pyannote[790].start 5492.32034375
transcript.pyannote[790].end 5492.40471875
transcript.pyannote[791].speaker SPEAKER_07
transcript.pyannote[791].start 5492.40471875
transcript.pyannote[791].end 5492.55659375
transcript.pyannote[792].speaker SPEAKER_08
transcript.pyannote[792].start 5492.55659375
transcript.pyannote[792].end 5492.74221875
transcript.pyannote[793].speaker SPEAKER_07
transcript.pyannote[793].start 5492.74221875
transcript.pyannote[793].end 5494.14284375
transcript.pyannote[794].speaker SPEAKER_08
transcript.pyannote[794].start 5493.53534375
transcript.pyannote[794].end 5494.22721875
transcript.pyannote[795].speaker SPEAKER_07
transcript.pyannote[795].start 5494.22721875
transcript.pyannote[795].end 5494.59846875
transcript.pyannote[796].speaker SPEAKER_08
transcript.pyannote[796].start 5494.96971875
transcript.pyannote[796].end 5496.85971875
transcript.pyannote[797].speaker SPEAKER_08
transcript.pyannote[797].start 5496.91034375
transcript.pyannote[797].end 5496.92721875
transcript.pyannote[798].speaker SPEAKER_07
transcript.pyannote[798].start 5496.92721875
transcript.pyannote[798].end 5499.37409375
transcript.pyannote[799].speaker SPEAKER_08
transcript.pyannote[799].start 5497.77096875
transcript.pyannote[799].end 5497.88909375
transcript.pyannote[800].speaker SPEAKER_08
transcript.pyannote[800].start 5498.86784375
transcript.pyannote[800].end 5501.58471875
transcript.pyannote[801].speaker SPEAKER_07
transcript.pyannote[801].start 5500.87596875
transcript.pyannote[801].end 5506.30971875
transcript.pyannote[802].speaker SPEAKER_07
transcript.pyannote[802].start 5506.71471875
transcript.pyannote[802].end 5512.38471875
transcript.pyannote[803].speaker SPEAKER_08
transcript.pyannote[803].start 5512.80659375
transcript.pyannote[803].end 5514.52784375
transcript.pyannote[804].speaker SPEAKER_07
transcript.pyannote[804].start 5515.13534375
transcript.pyannote[804].end 5519.97846875
transcript.pyannote[805].speaker SPEAKER_08
transcript.pyannote[805].start 5519.97846875
transcript.pyannote[805].end 5532.24659375
transcript.pyannote[806].speaker SPEAKER_07
transcript.pyannote[806].start 5532.24659375
transcript.pyannote[806].end 5533.27596875
transcript.pyannote[807].speaker SPEAKER_08
transcript.pyannote[807].start 5533.27596875
transcript.pyannote[807].end 5533.30971875
transcript.pyannote[808].speaker SPEAKER_07
transcript.pyannote[808].start 5533.30971875
transcript.pyannote[808].end 5533.37721875
transcript.pyannote[809].speaker SPEAKER_08
transcript.pyannote[809].start 5533.37721875
transcript.pyannote[809].end 5533.39409375
transcript.pyannote[810].speaker SPEAKER_07
transcript.pyannote[810].start 5533.39409375
transcript.pyannote[810].end 5535.28409375
transcript.pyannote[811].speaker SPEAKER_08
transcript.pyannote[811].start 5535.28409375
transcript.pyannote[811].end 5545.03784375
transcript.pyannote[812].speaker SPEAKER_07
transcript.pyannote[812].start 5545.03784375
transcript.pyannote[812].end 5559.95534375
transcript.pyannote[813].speaker SPEAKER_07
transcript.pyannote[813].start 5560.68096875
transcript.pyannote[813].end 5564.88284375
transcript.pyannote[814].speaker SPEAKER_08
transcript.pyannote[814].start 5565.13596875
transcript.pyannote[814].end 5570.26596875
transcript.pyannote[815].speaker SPEAKER_07
transcript.pyannote[815].start 5569.69221875
transcript.pyannote[815].end 5576.93159375
transcript.pyannote[816].speaker SPEAKER_08
transcript.pyannote[816].start 5577.04971875
transcript.pyannote[816].end 5578.88909375
transcript.pyannote[817].speaker SPEAKER_07
transcript.pyannote[817].start 5578.63596875
transcript.pyannote[817].end 5599.66221875
transcript.pyannote[818].speaker SPEAKER_08
transcript.pyannote[818].start 5587.68096875
transcript.pyannote[818].end 5588.00159375
transcript.pyannote[819].speaker SPEAKER_08
transcript.pyannote[819].start 5588.27159375
transcript.pyannote[819].end 5588.79471875
transcript.pyannote[820].speaker SPEAKER_07
transcript.pyannote[820].start 5600.55659375
transcript.pyannote[820].end 5609.04471875
transcript.pyannote[821].speaker SPEAKER_06
transcript.pyannote[821].start 5609.36534375
transcript.pyannote[821].end 5615.76096875
transcript.pyannote[822].speaker SPEAKER_07
transcript.pyannote[822].start 5611.28909375
transcript.pyannote[822].end 5611.40721875
transcript.pyannote[823].speaker SPEAKER_26
transcript.pyannote[823].start 5626.05471875
transcript.pyannote[823].end 5631.58971875
transcript.pyannote[824].speaker SPEAKER_06
transcript.pyannote[824].start 5631.58971875
transcript.pyannote[824].end 5631.62346875
transcript.pyannote[825].speaker SPEAKER_26
transcript.pyannote[825].start 5631.62346875
transcript.pyannote[825].end 5631.69096875
transcript.pyannote[826].speaker SPEAKER_06
transcript.pyannote[826].start 5631.69096875
transcript.pyannote[826].end 5631.74159375
transcript.pyannote[827].speaker SPEAKER_26
transcript.pyannote[827].start 5631.74159375
transcript.pyannote[827].end 5631.82596875
transcript.pyannote[828].speaker SPEAKER_06
transcript.pyannote[828].start 5631.82596875
transcript.pyannote[828].end 5631.91034375
transcript.pyannote[829].speaker SPEAKER_26
transcript.pyannote[829].start 5631.91034375
transcript.pyannote[829].end 5631.92721875
transcript.pyannote[830].speaker SPEAKER_06
transcript.pyannote[830].start 5631.92721875
transcript.pyannote[830].end 5632.97346875
transcript.pyannote[831].speaker SPEAKER_26
transcript.pyannote[831].start 5632.97346875
transcript.pyannote[831].end 5633.14221875
transcript.pyannote[832].speaker SPEAKER_06
transcript.pyannote[832].start 5633.14221875
transcript.pyannote[832].end 5633.19284375
transcript.pyannote[833].speaker SPEAKER_26
transcript.pyannote[833].start 5633.19284375
transcript.pyannote[833].end 5633.29409375
transcript.pyannote[834].speaker SPEAKER_06
transcript.pyannote[834].start 5633.29409375
transcript.pyannote[834].end 5633.32784375
transcript.pyannote[835].speaker SPEAKER_06
transcript.pyannote[835].start 5633.46284375
transcript.pyannote[835].end 5633.74971875
transcript.pyannote[836].speaker SPEAKER_26
transcript.pyannote[836].start 5633.74971875
transcript.pyannote[836].end 5634.10409375
transcript.pyannote[837].speaker SPEAKER_26
transcript.pyannote[837].start 5636.38221875
transcript.pyannote[837].end 5637.29346875
transcript.pyannote[838].speaker SPEAKER_26
transcript.pyannote[838].start 5638.20471875
transcript.pyannote[838].end 5641.32659375
transcript.pyannote[839].speaker SPEAKER_26
transcript.pyannote[839].start 5642.47409375
transcript.pyannote[839].end 5644.39784375
transcript.pyannote[840].speaker SPEAKER_26
transcript.pyannote[840].start 5645.27534375
transcript.pyannote[840].end 5646.55784375
transcript.pyannote[841].speaker SPEAKER_26
transcript.pyannote[841].start 5646.84471875
transcript.pyannote[841].end 5647.65471875
transcript.pyannote[842].speaker SPEAKER_26
transcript.pyannote[842].start 5648.26221875
transcript.pyannote[842].end 5649.07221875
transcript.pyannote[843].speaker SPEAKER_26
transcript.pyannote[843].start 5649.42659375
transcript.pyannote[843].end 5654.53971875
transcript.pyannote[844].speaker SPEAKER_26
transcript.pyannote[844].start 5657.83034375
transcript.pyannote[844].end 5658.18471875
transcript.pyannote[845].speaker SPEAKER_26
transcript.pyannote[845].start 5658.96096875
transcript.pyannote[845].end 5659.73721875
transcript.pyannote[846].speaker SPEAKER_16
transcript.pyannote[846].start 5659.73721875
transcript.pyannote[846].end 5663.04471875
transcript.pyannote[847].speaker SPEAKER_26
transcript.pyannote[847].start 5664.83346875
transcript.pyannote[847].end 5669.08596875
transcript.pyannote[848].speaker SPEAKER_26
transcript.pyannote[848].start 5671.29659375
transcript.pyannote[848].end 5672.88284375
transcript.pyannote[849].speaker SPEAKER_26
transcript.pyannote[849].start 5673.22034375
transcript.pyannote[849].end 5676.49409375
transcript.pyannote[850].speaker SPEAKER_26
transcript.pyannote[850].start 5677.13534375
transcript.pyannote[850].end 5677.77659375
transcript.pyannote[851].speaker SPEAKER_26
transcript.pyannote[851].start 5679.14346875
transcript.pyannote[851].end 5680.08846875
transcript.pyannote[852].speaker SPEAKER_26
transcript.pyannote[852].start 5680.84784375
transcript.pyannote[852].end 5681.64096875
transcript.pyannote[853].speaker SPEAKER_26
transcript.pyannote[853].start 5682.07971875
transcript.pyannote[853].end 5682.88971875
transcript.pyannote[854].speaker SPEAKER_26
transcript.pyannote[854].start 5683.32846875
transcript.pyannote[854].end 5685.47159375
transcript.pyannote[855].speaker SPEAKER_26
transcript.pyannote[855].start 5685.97784375
transcript.pyannote[855].end 5687.09159375
transcript.pyannote[856].speaker SPEAKER_26
transcript.pyannote[856].start 5688.17159375
transcript.pyannote[856].end 5689.67346875
transcript.pyannote[857].speaker SPEAKER_26
transcript.pyannote[857].start 5691.05721875
transcript.pyannote[857].end 5693.95971875
transcript.pyannote[858].speaker SPEAKER_26
transcript.pyannote[858].start 5695.34346875
transcript.pyannote[858].end 5695.96784375
transcript.pyannote[859].speaker SPEAKER_26
transcript.pyannote[859].start 5696.45721875
transcript.pyannote[859].end 5697.45284375
transcript.pyannote[860].speaker SPEAKER_26
transcript.pyannote[860].start 5698.07721875
transcript.pyannote[860].end 5699.56221875
transcript.pyannote[861].speaker SPEAKER_26
transcript.pyannote[861].start 5700.10221875
transcript.pyannote[861].end 5706.26159375
transcript.pyannote[862].speaker SPEAKER_26
transcript.pyannote[862].start 5706.51471875
transcript.pyannote[862].end 5716.89284375
transcript.pyannote[863].speaker SPEAKER_26
transcript.pyannote[863].start 5718.17534375
transcript.pyannote[863].end 5720.25096875
transcript.pyannote[864].speaker SPEAKER_26
transcript.pyannote[864].start 5721.60096875
transcript.pyannote[864].end 5721.98909375
transcript.pyannote[865].speaker SPEAKER_26
transcript.pyannote[865].start 5722.25909375
transcript.pyannote[865].end 5727.35534375
transcript.pyannote[866].speaker SPEAKER_26
transcript.pyannote[866].start 5727.74346875
transcript.pyannote[866].end 5731.13534375
transcript.pyannote[867].speaker SPEAKER_26
transcript.pyannote[867].start 5732.60346875
transcript.pyannote[867].end 5734.69596875
transcript.pyannote[868].speaker SPEAKER_26
transcript.pyannote[868].start 5735.57346875
transcript.pyannote[868].end 5738.50971875
transcript.pyannote[869].speaker SPEAKER_26
transcript.pyannote[869].start 5738.72909375
transcript.pyannote[869].end 5747.63909375
transcript.pyannote[870].speaker SPEAKER_26
transcript.pyannote[870].start 5748.16221875
transcript.pyannote[870].end 5752.38096875
transcript.pyannote[871].speaker SPEAKER_26
transcript.pyannote[871].start 5752.63409375
transcript.pyannote[871].end 5754.76034375
transcript.pyannote[872].speaker SPEAKER_26
transcript.pyannote[872].start 5755.67159375
transcript.pyannote[872].end 5756.22846875
transcript.pyannote[873].speaker SPEAKER_26
transcript.pyannote[873].start 5756.73471875
transcript.pyannote[873].end 5757.61221875
transcript.pyannote[874].speaker SPEAKER_26
transcript.pyannote[874].start 5757.91596875
transcript.pyannote[874].end 5761.91534375
transcript.pyannote[875].speaker SPEAKER_26
transcript.pyannote[875].start 5763.02909375
transcript.pyannote[875].end 5764.83471875
transcript.pyannote[876].speaker SPEAKER_26
transcript.pyannote[876].start 5765.93159375
transcript.pyannote[876].end 5766.99471875
transcript.pyannote[877].speaker SPEAKER_26
transcript.pyannote[877].start 5767.51784375
transcript.pyannote[877].end 5772.93471875
transcript.pyannote[878].speaker SPEAKER_26
transcript.pyannote[878].start 5772.96846875
transcript.pyannote[878].end 5773.05284375
transcript.pyannote[879].speaker SPEAKER_26
transcript.pyannote[879].start 5773.30596875
transcript.pyannote[879].end 5782.48596875
transcript.pyannote[880].speaker SPEAKER_26
transcript.pyannote[880].start 5783.12721875
transcript.pyannote[880].end 5783.51534375
transcript.pyannote[881].speaker SPEAKER_26
transcript.pyannote[881].start 5783.66721875
transcript.pyannote[881].end 5784.93284375
transcript.pyannote[882].speaker SPEAKER_26
transcript.pyannote[882].start 5785.81034375
transcript.pyannote[882].end 5786.56971875
transcript.pyannote[883].speaker SPEAKER_26
transcript.pyannote[883].start 5787.12659375
transcript.pyannote[883].end 5788.00409375
transcript.pyannote[884].speaker SPEAKER_26
transcript.pyannote[884].start 5788.32471875
transcript.pyannote[884].end 5789.38784375
transcript.pyannote[885].speaker SPEAKER_26
transcript.pyannote[885].start 5789.99534375
transcript.pyannote[885].end 5790.29909375
transcript.pyannote[886].speaker SPEAKER_26
transcript.pyannote[886].start 5790.95721875
transcript.pyannote[886].end 5791.41284375
transcript.pyannote[887].speaker SPEAKER_26
transcript.pyannote[887].start 5791.83471875
transcript.pyannote[887].end 5793.58971875
transcript.pyannote[888].speaker SPEAKER_26
transcript.pyannote[888].start 5794.55159375
transcript.pyannote[888].end 5795.41221875
transcript.pyannote[889].speaker SPEAKER_26
transcript.pyannote[889].start 5795.78346875
transcript.pyannote[889].end 5796.34034375
transcript.pyannote[890].speaker SPEAKER_26
transcript.pyannote[890].start 5796.82971875
transcript.pyannote[890].end 5798.70284375
transcript.pyannote[891].speaker SPEAKER_26
transcript.pyannote[891].start 5798.98971875
transcript.pyannote[891].end 5800.10346875
transcript.pyannote[892].speaker SPEAKER_26
transcript.pyannote[892].start 5801.03159375
transcript.pyannote[892].end 5801.70659375
transcript.pyannote[893].speaker SPEAKER_26
transcript.pyannote[893].start 5802.06096875
transcript.pyannote[893].end 5803.20846875
transcript.pyannote[894].speaker SPEAKER_26
transcript.pyannote[894].start 5803.98471875
transcript.pyannote[894].end 5816.43846875
transcript.pyannote[895].speaker SPEAKER_26
transcript.pyannote[895].start 5817.33284375
transcript.pyannote[895].end 5818.90221875
transcript.pyannote[896].speaker SPEAKER_26
transcript.pyannote[896].start 5819.03721875
transcript.pyannote[896].end 5820.77534375
transcript.pyannote[897].speaker SPEAKER_26
transcript.pyannote[897].start 5821.06221875
transcript.pyannote[897].end 5821.93971875
transcript.pyannote[898].speaker SPEAKER_26
transcript.pyannote[898].start 5821.95659375
transcript.pyannote[898].end 5821.97346875
transcript.pyannote[899].speaker SPEAKER_26
transcript.pyannote[899].start 5823.34034375
transcript.pyannote[899].end 5840.08034375
transcript.pyannote[900].speaker SPEAKER_26
transcript.pyannote[900].start 5840.23221875
transcript.pyannote[900].end 5845.07534375
transcript.pyannote[901].speaker SPEAKER_00
transcript.pyannote[901].start 5844.26534375
transcript.pyannote[901].end 5844.73784375
transcript.pyannote[902].speaker SPEAKER_26
transcript.pyannote[902].start 5845.48034375
transcript.pyannote[902].end 5847.23534375
transcript.pyannote[903].speaker SPEAKER_26
transcript.pyannote[903].start 5847.74159375
transcript.pyannote[903].end 5850.81284375
transcript.pyannote[904].speaker SPEAKER_26
transcript.pyannote[904].start 5851.45409375
transcript.pyannote[904].end 5858.79471875
transcript.pyannote[905].speaker SPEAKER_26
transcript.pyannote[905].start 5859.60471875
transcript.pyannote[905].end 5871.58596875
transcript.pyannote[906].speaker SPEAKER_26
transcript.pyannote[906].start 5872.07534375
transcript.pyannote[906].end 5881.66034375
transcript.pyannote[907].speaker SPEAKER_26
transcript.pyannote[907].start 5882.48721875
transcript.pyannote[907].end 5884.56284375
transcript.pyannote[908].speaker SPEAKER_26
transcript.pyannote[908].start 5884.88346875
transcript.pyannote[908].end 5886.43596875
transcript.pyannote[909].speaker SPEAKER_26
transcript.pyannote[909].start 5887.26284375
transcript.pyannote[909].end 5892.51096875
transcript.pyannote[910].speaker SPEAKER_26
transcript.pyannote[910].start 5894.16471875
transcript.pyannote[910].end 5909.52096875
transcript.pyannote[911].speaker SPEAKER_26
transcript.pyannote[911].start 5909.72346875
transcript.pyannote[911].end 5915.86596875
transcript.pyannote[912].speaker SPEAKER_13
transcript.pyannote[912].start 5917.28346875
transcript.pyannote[912].end 5933.80409375
transcript.pyannote[913].speaker SPEAKER_13
transcript.pyannote[913].start 5933.87159375
transcript.pyannote[913].end 5944.55346875
transcript.pyannote[914].speaker SPEAKER_13
transcript.pyannote[914].start 5944.67159375
transcript.pyannote[914].end 5953.09221875
transcript.pyannote[915].speaker SPEAKER_13
transcript.pyannote[915].start 5953.49721875
transcript.pyannote[915].end 5960.82096875
transcript.pyannote[916].speaker SPEAKER_13
transcript.pyannote[916].start 5961.66471875
transcript.pyannote[916].end 5964.49971875
transcript.pyannote[917].speaker SPEAKER_26
transcript.pyannote[917].start 5964.49971875
transcript.pyannote[917].end 5967.21659375
transcript.pyannote[918].speaker SPEAKER_26
transcript.pyannote[918].start 5967.60471875
transcript.pyannote[918].end 5968.06034375
transcript.pyannote[919].speaker SPEAKER_26
transcript.pyannote[919].start 5968.90409375
transcript.pyannote[919].end 5980.29471875
transcript.pyannote[920].speaker SPEAKER_26
transcript.pyannote[920].start 5981.66159375
transcript.pyannote[920].end 5982.80909375
transcript.pyannote[921].speaker SPEAKER_08
transcript.pyannote[921].start 5981.77971875
transcript.pyannote[921].end 5982.52221875
transcript.pyannote[922].speaker SPEAKER_26
transcript.pyannote[922].start 5983.06221875
transcript.pyannote[922].end 5983.11284375
transcript.pyannote[923].speaker SPEAKER_08
transcript.pyannote[923].start 5983.11284375
transcript.pyannote[923].end 5983.53471875
transcript.pyannote[924].speaker SPEAKER_26
transcript.pyannote[924].start 5983.53471875
transcript.pyannote[924].end 5983.68659375
transcript.pyannote[925].speaker SPEAKER_08
transcript.pyannote[925].start 5983.68659375
transcript.pyannote[925].end 5983.70346875
transcript.pyannote[926].speaker SPEAKER_26
transcript.pyannote[926].start 5984.63159375
transcript.pyannote[926].end 5986.65659375
transcript.pyannote[927].speaker SPEAKER_26
transcript.pyannote[927].start 5987.29784375
transcript.pyannote[927].end 5993.18721875
transcript.pyannote[928].speaker SPEAKER_26
transcript.pyannote[928].start 5993.92971875
transcript.pyannote[928].end 5996.14034375
transcript.pyannote[929].speaker SPEAKER_26
transcript.pyannote[929].start 5996.71409375
transcript.pyannote[929].end 5998.97534375
transcript.pyannote[930].speaker SPEAKER_26
transcript.pyannote[930].start 5999.07659375
transcript.pyannote[930].end 6005.18534375
transcript.pyannote[931].speaker SPEAKER_26
transcript.pyannote[931].start 6005.60721875
transcript.pyannote[931].end 6011.80034375
transcript.pyannote[932].speaker SPEAKER_26
transcript.pyannote[932].start 6012.52596875
transcript.pyannote[932].end 6029.46846875
transcript.pyannote[933].speaker SPEAKER_26
transcript.pyannote[933].start 6030.41346875
transcript.pyannote[933].end 6031.27409375
transcript.pyannote[934].speaker SPEAKER_08
transcript.pyannote[934].start 6031.51034375
transcript.pyannote[934].end 6032.25284375
transcript.pyannote[935].speaker SPEAKER_26
transcript.pyannote[935].start 6032.67471875
transcript.pyannote[935].end 6036.26909375
transcript.pyannote[936].speaker SPEAKER_08
transcript.pyannote[936].start 6035.76284375
transcript.pyannote[936].end 6040.75784375
transcript.pyannote[937].speaker SPEAKER_08
transcript.pyannote[937].start 6040.85909375
transcript.pyannote[937].end 6040.92659375
transcript.pyannote[938].speaker SPEAKER_08
transcript.pyannote[938].start 6041.28096875
transcript.pyannote[938].end 6048.13221875
transcript.pyannote[939].speaker SPEAKER_08
transcript.pyannote[939].start 6048.14909375
transcript.pyannote[939].end 6049.02659375
transcript.pyannote[940].speaker SPEAKER_26
transcript.pyannote[940].start 6049.02659375
transcript.pyannote[940].end 6053.24534375
transcript.pyannote[941].speaker SPEAKER_26
transcript.pyannote[941].start 6054.91596875
transcript.pyannote[941].end 6055.97909375
transcript.pyannote[942].speaker SPEAKER_26
transcript.pyannote[942].start 6057.00846875
transcript.pyannote[942].end 6059.94471875
transcript.pyannote[943].speaker SPEAKER_26
transcript.pyannote[943].start 6060.09659375
transcript.pyannote[943].end 6061.80096875
transcript.pyannote[944].speaker SPEAKER_26
transcript.pyannote[944].start 6062.47596875
transcript.pyannote[944].end 6063.23534375
transcript.pyannote[945].speaker SPEAKER_26
transcript.pyannote[945].start 6063.89346875
transcript.pyannote[945].end 6066.17159375
transcript.pyannote[946].speaker SPEAKER_21
transcript.pyannote[946].start 6065.47971875
transcript.pyannote[946].end 6066.12096875
transcript.pyannote[947].speaker SPEAKER_21
transcript.pyannote[947].start 6066.17159375
transcript.pyannote[947].end 6066.39096875
transcript.pyannote[948].speaker SPEAKER_26
transcript.pyannote[948].start 6066.39096875
transcript.pyannote[948].end 6076.93784375
transcript.pyannote[949].speaker SPEAKER_26
transcript.pyannote[949].start 6077.61284375
transcript.pyannote[949].end 6086.05034375
transcript.pyannote[950].speaker SPEAKER_26
transcript.pyannote[950].start 6086.77596875
transcript.pyannote[950].end 6088.29471875
transcript.pyannote[951].speaker SPEAKER_26
transcript.pyannote[951].start 6088.68284375
transcript.pyannote[951].end 6090.57284375
transcript.pyannote[952].speaker SPEAKER_26
transcript.pyannote[952].start 6090.84284375
transcript.pyannote[952].end 6091.38284375
transcript.pyannote[953].speaker SPEAKER_26
transcript.pyannote[953].start 6091.85534375
transcript.pyannote[953].end 6093.54284375
transcript.pyannote[954].speaker SPEAKER_08
transcript.pyannote[954].start 6094.35284375
transcript.pyannote[954].end 6097.20471875
transcript.pyannote[955].speaker SPEAKER_26
transcript.pyannote[955].start 6096.98534375
transcript.pyannote[955].end 6100.15784375
transcript.pyannote[956].speaker SPEAKER_26
transcript.pyannote[956].start 6100.84971875
transcript.pyannote[956].end 6103.09409375
transcript.pyannote[957].speaker SPEAKER_26
transcript.pyannote[957].start 6103.34721875
transcript.pyannote[957].end 6123.37784375
transcript.pyannote[958].speaker SPEAKER_08
transcript.pyannote[958].start 6124.18784375
transcript.pyannote[958].end 6125.48721875
transcript.pyannote[959].speaker SPEAKER_08
transcript.pyannote[959].start 6125.55471875
transcript.pyannote[959].end 6127.41096875
transcript.pyannote[960].speaker SPEAKER_26
transcript.pyannote[960].start 6127.14096875
transcript.pyannote[960].end 6127.34346875
transcript.pyannote[961].speaker SPEAKER_13
transcript.pyannote[961].start 6127.41096875
transcript.pyannote[961].end 6129.01409375
transcript.pyannote[962].speaker SPEAKER_08
transcript.pyannote[962].start 6128.92971875
transcript.pyannote[962].end 6128.98034375
transcript.pyannote[963].speaker SPEAKER_26
transcript.pyannote[963].start 6128.98034375
transcript.pyannote[963].end 6128.99721875
transcript.pyannote[964].speaker SPEAKER_08
transcript.pyannote[964].start 6128.99721875
transcript.pyannote[964].end 6129.03096875
transcript.pyannote[965].speaker SPEAKER_26
transcript.pyannote[965].start 6129.01409375
transcript.pyannote[965].end 6130.78596875
transcript.pyannote[966].speaker SPEAKER_26
transcript.pyannote[966].start 6131.42721875
transcript.pyannote[966].end 6138.07596875
transcript.pyannote[967].speaker SPEAKER_26
transcript.pyannote[967].start 6138.81846875
transcript.pyannote[967].end 6149.43284375
transcript.pyannote[968].speaker SPEAKER_26
transcript.pyannote[968].start 6149.77034375
transcript.pyannote[968].end 6169.02471875
transcript.pyannote[969].speaker SPEAKER_19
transcript.pyannote[969].start 6169.02471875
transcript.pyannote[969].end 6169.75034375
transcript.pyannote[970].speaker SPEAKER_26
transcript.pyannote[970].start 6169.96971875
transcript.pyannote[970].end 6184.33034375
transcript.pyannote[971].speaker SPEAKER_26
transcript.pyannote[971].start 6184.56659375
transcript.pyannote[971].end 6197.64471875
transcript.pyannote[972].speaker SPEAKER_26
transcript.pyannote[972].start 6198.52221875
transcript.pyannote[972].end 6202.11659375
transcript.pyannote[973].speaker SPEAKER_13
transcript.pyannote[973].start 6202.11659375
transcript.pyannote[973].end 6202.13346875
transcript.pyannote[974].speaker SPEAKER_26
transcript.pyannote[974].start 6203.44971875
transcript.pyannote[974].end 6203.46659375
transcript.pyannote[975].speaker SPEAKER_13
transcript.pyannote[975].start 6203.46659375
transcript.pyannote[975].end 6233.03159375
transcript.pyannote[976].speaker SPEAKER_26
transcript.pyannote[976].start 6233.03159375
transcript.pyannote[976].end 6235.47846875
transcript.pyannote[977].speaker SPEAKER_26
transcript.pyannote[977].start 6235.49534375
transcript.pyannote[977].end 6236.62596875
transcript.pyannote[978].speaker SPEAKER_26
transcript.pyannote[978].start 6236.96346875
transcript.pyannote[978].end 6243.24096875
transcript.pyannote[979].speaker SPEAKER_13
transcript.pyannote[979].start 6243.24096875
transcript.pyannote[979].end 6243.25784375
transcript.pyannote[980].speaker SPEAKER_26
transcript.pyannote[980].start 6244.37159375
transcript.pyannote[980].end 6244.38846875
transcript.pyannote[981].speaker SPEAKER_13
transcript.pyannote[981].start 6244.38846875
transcript.pyannote[981].end 6245.36721875
transcript.pyannote[982].speaker SPEAKER_13
transcript.pyannote[982].start 6246.17721875
transcript.pyannote[982].end 6248.65784375
transcript.pyannote[983].speaker SPEAKER_13
transcript.pyannote[983].start 6248.97846875
transcript.pyannote[983].end 6258.14159375
transcript.pyannote[984].speaker SPEAKER_26
transcript.pyannote[984].start 6258.14159375
transcript.pyannote[984].end 6258.15846875
transcript.pyannote[985].speaker SPEAKER_13
transcript.pyannote[985].start 6258.93471875
transcript.pyannote[985].end 6259.03596875
transcript.pyannote[986].speaker SPEAKER_26
transcript.pyannote[986].start 6259.03596875
transcript.pyannote[986].end 6259.52534375
transcript.pyannote[987].speaker SPEAKER_26
transcript.pyannote[987].start 6260.16659375
transcript.pyannote[987].end 6260.63909375
transcript.pyannote[988].speaker SPEAKER_26
transcript.pyannote[988].start 6260.90909375
transcript.pyannote[988].end 6273.93659375
transcript.pyannote[989].speaker SPEAKER_26
transcript.pyannote[989].start 6276.19784375
transcript.pyannote[989].end 6283.87596875
transcript.pyannote[990].speaker SPEAKER_26
transcript.pyannote[990].start 6286.40721875
transcript.pyannote[990].end 6286.89659375
transcript.pyannote[991].speaker SPEAKER_13
transcript.pyannote[991].start 6286.89659375
transcript.pyannote[991].end 6294.03471875
transcript.pyannote[992].speaker SPEAKER_26
transcript.pyannote[992].start 6294.03471875
transcript.pyannote[992].end 6294.92909375
transcript.pyannote[993].speaker SPEAKER_26
transcript.pyannote[993].start 6295.87409375
transcript.pyannote[993].end 6305.15534375
transcript.pyannote[994].speaker SPEAKER_13
transcript.pyannote[994].start 6303.80534375
transcript.pyannote[994].end 6305.12159375
transcript.pyannote[995].speaker SPEAKER_13
transcript.pyannote[995].start 6305.15534375
transcript.pyannote[995].end 6306.25221875
transcript.pyannote[996].speaker SPEAKER_26
transcript.pyannote[996].start 6306.25221875
transcript.pyannote[996].end 6307.92284375
transcript.pyannote[997].speaker SPEAKER_13
transcript.pyannote[997].start 6306.30284375
transcript.pyannote[997].end 6307.16346875
transcript.pyannote[998].speaker SPEAKER_13
transcript.pyannote[998].start 6307.21409375
transcript.pyannote[998].end 6307.31534375
transcript.pyannote[999].speaker SPEAKER_13
transcript.pyannote[999].start 6307.92284375
transcript.pyannote[999].end 6308.44596875
transcript.pyannote[1000].speaker SPEAKER_26
transcript.pyannote[1000].start 6308.32784375
transcript.pyannote[1000].end 6313.86284375
transcript.pyannote[1001].speaker SPEAKER_26
transcript.pyannote[1001].start 6314.60534375
transcript.pyannote[1001].end 6315.38159375
transcript.pyannote[1002].speaker SPEAKER_26
transcript.pyannote[1002].start 6315.80346875
transcript.pyannote[1002].end 6316.22534375
transcript.pyannote[1003].speaker SPEAKER_13
transcript.pyannote[1003].start 6316.91721875
transcript.pyannote[1003].end 6319.39784375
transcript.pyannote[1004].speaker SPEAKER_26
transcript.pyannote[1004].start 6319.02659375
transcript.pyannote[1004].end 6321.52409375
transcript.pyannote[1005].speaker SPEAKER_26
transcript.pyannote[1005].start 6321.72659375
transcript.pyannote[1005].end 6324.27471875
transcript.pyannote[1006].speaker SPEAKER_13
transcript.pyannote[1006].start 6325.28721875
transcript.pyannote[1006].end 6331.61534375
transcript.pyannote[1007].speaker SPEAKER_13
transcript.pyannote[1007].start 6332.02034375
transcript.pyannote[1007].end 6339.42846875
transcript.pyannote[1008].speaker SPEAKER_26
transcript.pyannote[1008].start 6336.67784375
transcript.pyannote[1008].end 6344.52471875
transcript.pyannote[1009].speaker SPEAKER_26
transcript.pyannote[1009].start 6344.84534375
transcript.pyannote[1009].end 6348.91221875
transcript.pyannote[1010].speaker SPEAKER_00
transcript.pyannote[1010].start 6345.04784375
transcript.pyannote[1010].end 6345.40221875
transcript.pyannote[1011].speaker SPEAKER_11
transcript.pyannote[1011].start 6345.40221875
transcript.pyannote[1011].end 6347.68034375
transcript.pyannote[1012].speaker SPEAKER_26
transcript.pyannote[1012].start 6349.19909375
transcript.pyannote[1012].end 6351.54471875
transcript.pyannote[1013].speaker SPEAKER_26
transcript.pyannote[1013].start 6351.73034375
transcript.pyannote[1013].end 6356.89409375
transcript.pyannote[1014].speaker SPEAKER_13
transcript.pyannote[1014].start 6357.50159375
transcript.pyannote[1014].end 6370.02284375
transcript.pyannote[1015].speaker SPEAKER_26
transcript.pyannote[1015].start 6370.02284375
transcript.pyannote[1015].end 6381.66659375
transcript.pyannote[1016].speaker SPEAKER_13
transcript.pyannote[1016].start 6371.03534375
transcript.pyannote[1016].end 6371.47409375
transcript.pyannote[1017].speaker SPEAKER_26
transcript.pyannote[1017].start 6382.12221875
transcript.pyannote[1017].end 6387.43784375
transcript.pyannote[1018].speaker SPEAKER_26
transcript.pyannote[1018].start 6387.92721875
transcript.pyannote[1018].end 6388.77096875
transcript.pyannote[1019].speaker SPEAKER_26
transcript.pyannote[1019].start 6390.18846875
transcript.pyannote[1019].end 6391.23471875
transcript.pyannote[1020].speaker SPEAKER_26
transcript.pyannote[1020].start 6392.09534375
transcript.pyannote[1020].end 6393.20909375
transcript.pyannote[1021].speaker SPEAKER_26
transcript.pyannote[1021].start 6393.79971875
transcript.pyannote[1021].end 6395.79096875
transcript.pyannote[1022].speaker SPEAKER_26
transcript.pyannote[1022].start 6396.46596875
transcript.pyannote[1022].end 6401.35971875
transcript.pyannote[1023].speaker SPEAKER_26
transcript.pyannote[1023].start 6402.38909375
transcript.pyannote[1023].end 6404.92034375
transcript.pyannote[1024].speaker SPEAKER_26
transcript.pyannote[1024].start 6406.99596875
transcript.pyannote[1024].end 6407.50221875
transcript.pyannote[1025].speaker SPEAKER_26
transcript.pyannote[1025].start 6407.97471875
transcript.pyannote[1025].end 6424.00596875
transcript.pyannote[1026].speaker SPEAKER_19
transcript.pyannote[1026].start 6408.02534375
transcript.pyannote[1026].end 6408.58221875
transcript.pyannote[1027].speaker SPEAKER_26
transcript.pyannote[1027].start 6424.73159375
transcript.pyannote[1027].end 6430.85721875
transcript.pyannote[1028].speaker SPEAKER_26
transcript.pyannote[1028].start 6431.41409375
transcript.pyannote[1028].end 6446.29784375
transcript.pyannote[1029].speaker SPEAKER_26
transcript.pyannote[1029].start 6446.61846875
transcript.pyannote[1029].end 6447.64784375
transcript.pyannote[1030].speaker SPEAKER_26
transcript.pyannote[1030].start 6448.17096875
transcript.pyannote[1030].end 6448.60971875
transcript.pyannote[1031].speaker SPEAKER_26
transcript.pyannote[1031].start 6448.87971875
transcript.pyannote[1031].end 6449.41971875
transcript.pyannote[1032].speaker SPEAKER_26
transcript.pyannote[1032].start 6449.82471875
transcript.pyannote[1032].end 6451.78221875
transcript.pyannote[1033].speaker SPEAKER_26
transcript.pyannote[1033].start 6452.67659375
transcript.pyannote[1033].end 6453.87471875
transcript.pyannote[1034].speaker SPEAKER_26
transcript.pyannote[1034].start 6454.22909375
transcript.pyannote[1034].end 6455.03909375
transcript.pyannote[1035].speaker SPEAKER_06
transcript.pyannote[1035].start 6455.03909375
transcript.pyannote[1035].end 6455.47784375
transcript.pyannote[1036].speaker SPEAKER_26
transcript.pyannote[1036].start 6455.73096875
transcript.pyannote[1036].end 6455.74784375
transcript.pyannote[1037].speaker SPEAKER_06
transcript.pyannote[1037].start 6455.74784375
transcript.pyannote[1037].end 6456.52409375
transcript.pyannote[1038].speaker SPEAKER_13
transcript.pyannote[1038].start 6456.62534375
transcript.pyannote[1038].end 6457.06409375
transcript.pyannote[1039].speaker SPEAKER_06
transcript.pyannote[1039].start 6458.14409375
transcript.pyannote[1039].end 6459.93284375
transcript.pyannote[1040].speaker SPEAKER_06
transcript.pyannote[1040].start 6460.52346875
transcript.pyannote[1040].end 6462.70034375
transcript.pyannote[1041].speaker SPEAKER_25
transcript.pyannote[1041].start 6477.43221875
transcript.pyannote[1041].end 6495.91034375
transcript.pyannote[1042].speaker SPEAKER_25
transcript.pyannote[1042].start 6496.41659375
transcript.pyannote[1042].end 6507.94221875
transcript.pyannote[1043].speaker SPEAKER_25
transcript.pyannote[1043].start 6508.31346875
transcript.pyannote[1043].end 6517.40909375
transcript.pyannote[1044].speaker SPEAKER_25
transcript.pyannote[1044].start 6517.57784375
transcript.pyannote[1044].end 6531.88784375
transcript.pyannote[1045].speaker SPEAKER_25
transcript.pyannote[1045].start 6532.46159375
transcript.pyannote[1045].end 6539.86971875
transcript.pyannote[1046].speaker SPEAKER_06
transcript.pyannote[1046].start 6540.57846875
transcript.pyannote[1046].end 6542.82284375
transcript.pyannote[1047].speaker SPEAKER_25
transcript.pyannote[1047].start 6541.18596875
transcript.pyannote[1047].end 6542.85659375
transcript.pyannote[1048].speaker SPEAKER_06
transcript.pyannote[1048].start 6542.85659375
transcript.pyannote[1048].end 6586.61346875
transcript.pyannote[1049].speaker SPEAKER_25
transcript.pyannote[1049].start 6546.16409375
transcript.pyannote[1049].end 6546.33284375
transcript.pyannote[1050].speaker SPEAKER_19
transcript.pyannote[1050].start 6546.33284375
transcript.pyannote[1050].end 6546.40034375
transcript.pyannote[1051].speaker SPEAKER_19
transcript.pyannote[1051].start 6548.91471875
transcript.pyannote[1051].end 6550.82159375
transcript.pyannote[1052].speaker SPEAKER_00
transcript.pyannote[1052].start 6550.82159375
transcript.pyannote[1052].end 6550.99034375
transcript.pyannote[1053].speaker SPEAKER_25
transcript.pyannote[1053].start 6586.91721875
transcript.pyannote[1053].end 6593.16096875
transcript.pyannote[1054].speaker SPEAKER_25
transcript.pyannote[1054].start 6593.54909375
transcript.pyannote[1054].end 6607.16721875
transcript.pyannote[1055].speaker SPEAKER_25
transcript.pyannote[1055].start 6607.79159375
transcript.pyannote[1055].end 6658.77096875
transcript.pyannote[1056].speaker SPEAKER_06
transcript.pyannote[1056].start 6658.07909375
transcript.pyannote[1056].end 6658.99034375
transcript.pyannote[1057].speaker SPEAKER_25
transcript.pyannote[1057].start 6659.96909375
transcript.pyannote[1057].end 6662.50034375
transcript.pyannote[1058].speaker SPEAKER_06
transcript.pyannote[1058].start 6661.45409375
transcript.pyannote[1058].end 6662.21346875
transcript.pyannote[1059].speaker SPEAKER_06
transcript.pyannote[1059].start 6662.50034375
transcript.pyannote[1059].end 6662.55096875
transcript.pyannote[1060].speaker SPEAKER_06
transcript.pyannote[1060].start 6662.71971875
transcript.pyannote[1060].end 6663.69846875
transcript.pyannote[1061].speaker SPEAKER_25
transcript.pyannote[1061].start 6665.58846875
transcript.pyannote[1061].end 6666.34784375
transcript.pyannote[1062].speaker SPEAKER_25
transcript.pyannote[1062].start 6668.05221875
transcript.pyannote[1062].end 6709.75034375
transcript.pyannote[1063].speaker SPEAKER_25
transcript.pyannote[1063].start 6710.27346875
transcript.pyannote[1063].end 6744.64784375
transcript.pyannote[1064].speaker SPEAKER_13
transcript.pyannote[1064].start 6745.98096875
transcript.pyannote[1064].end 6782.93721875
transcript.pyannote[1065].speaker SPEAKER_25
transcript.pyannote[1065].start 6772.71096875
transcript.pyannote[1065].end 6773.97659375
transcript.pyannote[1066].speaker SPEAKER_11
transcript.pyannote[1066].start 6773.97659375
transcript.pyannote[1066].end 6774.02721875
transcript.pyannote[1067].speaker SPEAKER_25
transcript.pyannote[1067].start 6774.02721875
transcript.pyannote[1067].end 6774.66846875
transcript.pyannote[1068].speaker SPEAKER_19
transcript.pyannote[1068].start 6774.66846875
transcript.pyannote[1068].end 6774.75284375
transcript.pyannote[1069].speaker SPEAKER_25
transcript.pyannote[1069].start 6775.29284375
transcript.pyannote[1069].end 6776.81159375
transcript.pyannote[1070].speaker SPEAKER_25
transcript.pyannote[1070].start 6781.68846875
transcript.pyannote[1070].end 6831.13221875
transcript.pyannote[1071].speaker SPEAKER_25
transcript.pyannote[1071].start 6832.21221875
transcript.pyannote[1071].end 6833.42721875
transcript.pyannote[1072].speaker SPEAKER_13
transcript.pyannote[1072].start 6834.92909375
transcript.pyannote[1072].end 6842.87721875
transcript.pyannote[1073].speaker SPEAKER_13
transcript.pyannote[1073].start 6843.04596875
transcript.pyannote[1073].end 6849.44159375
transcript.pyannote[1074].speaker SPEAKER_24
transcript.pyannote[1074].start 6849.59346875
transcript.pyannote[1074].end 6850.03221875
transcript.pyannote[1075].speaker SPEAKER_25
transcript.pyannote[1075].start 6850.03221875
transcript.pyannote[1075].end 6850.15034375
transcript.pyannote[1076].speaker SPEAKER_13
transcript.pyannote[1076].start 6850.15034375
transcript.pyannote[1076].end 6856.76534375
transcript.pyannote[1077].speaker SPEAKER_25
transcript.pyannote[1077].start 6850.16721875
transcript.pyannote[1077].end 6850.70721875
transcript.pyannote[1078].speaker SPEAKER_24
transcript.pyannote[1078].start 6850.70721875
transcript.pyannote[1078].end 6850.77471875
transcript.pyannote[1079].speaker SPEAKER_25
transcript.pyannote[1079].start 6856.95096875
transcript.pyannote[1079].end 6895.25721875
transcript.pyannote[1080].speaker SPEAKER_19
transcript.pyannote[1080].start 6863.04284375
transcript.pyannote[1080].end 6864.51096875
transcript.pyannote[1081].speaker SPEAKER_25
transcript.pyannote[1081].start 6895.79721875
transcript.pyannote[1081].end 6904.03221875
transcript.pyannote[1082].speaker SPEAKER_25
transcript.pyannote[1082].start 6905.07846875
transcript.pyannote[1082].end 6905.23034375
transcript.pyannote[1083].speaker SPEAKER_25
transcript.pyannote[1083].start 6905.82096875
transcript.pyannote[1083].end 6908.31846875
transcript.pyannote[1084].speaker SPEAKER_25
transcript.pyannote[1084].start 6908.99346875
transcript.pyannote[1084].end 6913.34721875
transcript.pyannote[1085].speaker SPEAKER_20
transcript.pyannote[1085].start 6915.00096875
transcript.pyannote[1085].end 6929.96909375
transcript.pyannote[1086].speaker SPEAKER_25
transcript.pyannote[1086].start 6929.96909375
transcript.pyannote[1086].end 6930.25596875
transcript.pyannote[1087].speaker SPEAKER_08
transcript.pyannote[1087].start 6930.25596875
transcript.pyannote[1087].end 6935.55471875
transcript.pyannote[1088].speaker SPEAKER_08
transcript.pyannote[1088].start 6935.79096875
transcript.pyannote[1088].end 6948.80159375
transcript.pyannote[1089].speaker SPEAKER_25
transcript.pyannote[1089].start 6948.80159375
transcript.pyannote[1089].end 6968.19096875
transcript.pyannote[1090].speaker SPEAKER_25
transcript.pyannote[1090].start 6968.56221875
transcript.pyannote[1090].end 7002.32909375
transcript.pyannote[1091].speaker SPEAKER_25
transcript.pyannote[1091].start 7002.76784375
transcript.pyannote[1091].end 7016.50409375
transcript.pyannote[1092].speaker SPEAKER_25
transcript.pyannote[1092].start 7018.39409375
transcript.pyannote[1092].end 7032.55221875
transcript.pyannote[1093].speaker SPEAKER_25
transcript.pyannote[1093].start 7032.88971875
transcript.pyannote[1093].end 7045.69784375
transcript.pyannote[1094].speaker SPEAKER_25
transcript.pyannote[1094].start 7045.91721875
transcript.pyannote[1094].end 7053.19034375
transcript.pyannote[1095].speaker SPEAKER_00
transcript.pyannote[1095].start 7049.05596875
transcript.pyannote[1095].end 7049.32596875
transcript.pyannote[1096].speaker SPEAKER_25
transcript.pyannote[1096].start 7053.69659375
transcript.pyannote[1096].end 7057.62846875
transcript.pyannote[1097].speaker SPEAKER_25
transcript.pyannote[1097].start 7058.48909375
transcript.pyannote[1097].end 7061.81346875
transcript.pyannote[1098].speaker SPEAKER_25
transcript.pyannote[1098].start 7061.99909375
transcript.pyannote[1098].end 7066.55534375
transcript.pyannote[1099].speaker SPEAKER_25
transcript.pyannote[1099].start 7066.79159375
transcript.pyannote[1099].end 7069.25534375
transcript.pyannote[1100].speaker SPEAKER_25
transcript.pyannote[1100].start 7069.71096875
transcript.pyannote[1100].end 7070.21721875
transcript.pyannote[1101].speaker SPEAKER_25
transcript.pyannote[1101].start 7071.68534375
transcript.pyannote[1101].end 7090.82159375
transcript.pyannote[1102].speaker SPEAKER_25
transcript.pyannote[1102].start 7092.22221875
transcript.pyannote[1102].end 7097.84159375
transcript.pyannote[1103].speaker SPEAKER_25
transcript.pyannote[1103].start 7098.33096875
transcript.pyannote[1103].end 7109.72159375
transcript.pyannote[1104].speaker SPEAKER_25
transcript.pyannote[1104].start 7110.04221875
transcript.pyannote[1104].end 7110.81846875
transcript.pyannote[1105].speaker SPEAKER_25
transcript.pyannote[1105].start 7111.89846875
transcript.pyannote[1105].end 7117.11284375
transcript.pyannote[1106].speaker SPEAKER_25
transcript.pyannote[1106].start 7117.77096875
transcript.pyannote[1106].end 7118.47971875
transcript.pyannote[1107].speaker SPEAKER_25
transcript.pyannote[1107].start 7119.61034375
transcript.pyannote[1107].end 7119.84659375
transcript.pyannote[1108].speaker SPEAKER_25
transcript.pyannote[1108].start 7120.42034375
transcript.pyannote[1108].end 7125.06096875
transcript.pyannote[1109].speaker SPEAKER_25
transcript.pyannote[1109].start 7125.41534375
transcript.pyannote[1109].end 7133.00909375
transcript.pyannote[1110].speaker SPEAKER_25
transcript.pyannote[1110].start 7133.56596875
transcript.pyannote[1110].end 7139.23596875
transcript.pyannote[1111].speaker SPEAKER_25
transcript.pyannote[1111].start 7140.82221875
transcript.pyannote[1111].end 7144.11284375
transcript.pyannote[1112].speaker SPEAKER_25
transcript.pyannote[1112].start 7144.50096875
transcript.pyannote[1112].end 7159.46909375
transcript.pyannote[1113].speaker SPEAKER_13
transcript.pyannote[1113].start 7160.39721875
transcript.pyannote[1113].end 7162.84409375
transcript.pyannote[1114].speaker SPEAKER_25
transcript.pyannote[1114].start 7162.97909375
transcript.pyannote[1114].end 7163.45159375
transcript.pyannote[1115].speaker SPEAKER_25
transcript.pyannote[1115].start 7164.49784375
transcript.pyannote[1115].end 7172.66534375
transcript.pyannote[1116].speaker SPEAKER_13
transcript.pyannote[1116].start 7172.07471875
transcript.pyannote[1116].end 7190.80596875
transcript.pyannote[1117].speaker SPEAKER_13
transcript.pyannote[1117].start 7191.21096875
transcript.pyannote[1117].end 7208.28846875
transcript.pyannote[1118].speaker SPEAKER_13
transcript.pyannote[1118].start 7208.59221875
transcript.pyannote[1118].end 7224.35346875
transcript.pyannote[1119].speaker SPEAKER_25
transcript.pyannote[1119].start 7222.36221875
transcript.pyannote[1119].end 7336.33596875
transcript.pyannote[1120].speaker SPEAKER_25
transcript.pyannote[1120].start 7336.99409375
transcript.pyannote[1120].end 7346.59596875
transcript.pyannote[1121].speaker SPEAKER_06
transcript.pyannote[1121].start 7346.66346875
transcript.pyannote[1121].end 7358.27346875
transcript.pyannote[1122].speaker SPEAKER_10
transcript.pyannote[1122].start 7372.70159375
transcript.pyannote[1122].end 7376.38034375
transcript.pyannote[1123].speaker SPEAKER_06
transcript.pyannote[1123].start 7382.18534375
transcript.pyannote[1123].end 7387.26471875
transcript.pyannote[1124].speaker SPEAKER_06
transcript.pyannote[1124].start 7387.68659375
transcript.pyannote[1124].end 7398.53721875
transcript.pyannote[1125].speaker SPEAKER_06
transcript.pyannote[1125].start 7403.16096875
transcript.pyannote[1125].end 7416.49221875
transcript.pyannote[1126].speaker SPEAKER_06
transcript.pyannote[1126].start 7416.66096875
transcript.pyannote[1126].end 7417.90971875
transcript.pyannote[1127].speaker SPEAKER_06
transcript.pyannote[1127].start 7418.63534375
transcript.pyannote[1127].end 7422.11159375
transcript.pyannote[1128].speaker SPEAKER_06
transcript.pyannote[1128].start 7422.51659375
transcript.pyannote[1128].end 7425.80721875
transcript.pyannote[1129].speaker SPEAKER_06
transcript.pyannote[1129].start 7426.31346875
transcript.pyannote[1129].end 7428.45659375
transcript.pyannote[1130].speaker SPEAKER_06
transcript.pyannote[1130].start 7428.84471875
transcript.pyannote[1130].end 7432.35471875
transcript.pyannote[1131].speaker SPEAKER_06
transcript.pyannote[1131].start 7432.84409375
transcript.pyannote[1131].end 7437.56909375
transcript.pyannote[1132].speaker SPEAKER_06
transcript.pyannote[1132].start 7437.63659375
transcript.pyannote[1132].end 7442.80034375
transcript.pyannote[1133].speaker SPEAKER_06
transcript.pyannote[1133].start 7443.40784375
transcript.pyannote[1133].end 7444.03221875
transcript.pyannote[1134].speaker SPEAKER_06
transcript.pyannote[1134].start 7444.47096875
transcript.pyannote[1134].end 7445.36534375
transcript.pyannote[1135].speaker SPEAKER_06
transcript.pyannote[1135].start 7446.42846875
transcript.pyannote[1135].end 7447.32284375
transcript.pyannote[1136].speaker SPEAKER_06
transcript.pyannote[1136].start 7447.72784375
transcript.pyannote[1136].end 7448.65596875
transcript.pyannote[1137].speaker SPEAKER_06
transcript.pyannote[1137].start 7449.21284375
transcript.pyannote[1137].end 7450.17471875
transcript.pyannote[1138].speaker SPEAKER_06
transcript.pyannote[1138].start 7450.56284375
transcript.pyannote[1138].end 7451.77784375
transcript.pyannote[1139].speaker SPEAKER_14
transcript.pyannote[1139].start 7452.79034375
transcript.pyannote[1139].end 7462.93221875
transcript.pyannote[1140].speaker SPEAKER_06
transcript.pyannote[1140].start 7461.63284375
transcript.pyannote[1140].end 7466.18909375
transcript.pyannote[1141].speaker SPEAKER_14
transcript.pyannote[1141].start 7466.56034375
transcript.pyannote[1141].end 7472.66909375
transcript.pyannote[1142].speaker SPEAKER_06
transcript.pyannote[1142].start 7472.66909375
transcript.pyannote[1142].end 7479.16596875
transcript.pyannote[1143].speaker SPEAKER_14
transcript.pyannote[1143].start 7476.22971875
transcript.pyannote[1143].end 7476.53346875
transcript.pyannote[1144].speaker SPEAKER_06
transcript.pyannote[1144].start 7479.70596875
transcript.pyannote[1144].end 7481.34284375
transcript.pyannote[1145].speaker SPEAKER_14
transcript.pyannote[1145].start 7481.34284375
transcript.pyannote[1145].end 7483.35096875
transcript.pyannote[1146].speaker SPEAKER_06
transcript.pyannote[1146].start 7482.96284375
transcript.pyannote[1146].end 7487.28284375
transcript.pyannote[1147].speaker SPEAKER_13
transcript.pyannote[1147].start 7488.10971875
transcript.pyannote[1147].end 7503.49971875
transcript.pyannote[1148].speaker SPEAKER_06
transcript.pyannote[1148].start 7502.20034375
transcript.pyannote[1148].end 7506.72284375
transcript.pyannote[1149].speaker SPEAKER_08
transcript.pyannote[1149].start 7506.99284375
transcript.pyannote[1149].end 7507.31346875
transcript.pyannote[1150].speaker SPEAKER_08
transcript.pyannote[1150].start 7507.76909375
transcript.pyannote[1150].end 7514.72159375
transcript.pyannote[1151].speaker SPEAKER_06
transcript.pyannote[1151].start 7511.56596875
transcript.pyannote[1151].end 7512.15659375
transcript.pyannote[1152].speaker SPEAKER_08
transcript.pyannote[1152].start 7514.87346875
transcript.pyannote[1152].end 7516.10534375
transcript.pyannote[1153].speaker SPEAKER_08
transcript.pyannote[1153].start 7516.40909375
transcript.pyannote[1153].end 7517.26971875
transcript.pyannote[1154].speaker SPEAKER_06
transcript.pyannote[1154].start 7516.44284375
transcript.pyannote[1154].end 7517.20221875
transcript.pyannote[1155].speaker SPEAKER_06
transcript.pyannote[1155].start 7517.26971875
transcript.pyannote[1155].end 7518.56909375
transcript.pyannote[1156].speaker SPEAKER_08
transcript.pyannote[1156].start 7519.17659375
transcript.pyannote[1156].end 7525.70721875
transcript.pyannote[1157].speaker SPEAKER_06
transcript.pyannote[1157].start 7525.70721875
transcript.pyannote[1157].end 7532.67659375
transcript.pyannote[1158].speaker SPEAKER_06
transcript.pyannote[1158].start 7534.04346875
transcript.pyannote[1158].end 7542.81846875
transcript.pyannote[1159].speaker SPEAKER_13
transcript.pyannote[1159].start 7542.43034375
transcript.pyannote[1159].end 7545.97409375
transcript.pyannote[1160].speaker SPEAKER_13
transcript.pyannote[1160].start 7546.10909375
transcript.pyannote[1160].end 7548.16784375
transcript.pyannote[1161].speaker SPEAKER_13
transcript.pyannote[1161].start 7548.35346875
transcript.pyannote[1161].end 7553.98971875
transcript.pyannote[1162].speaker SPEAKER_06
transcript.pyannote[1162].start 7549.02846875
transcript.pyannote[1162].end 7549.68659375
transcript.pyannote[1163].speaker SPEAKER_06
transcript.pyannote[1163].start 7553.23034375
transcript.pyannote[1163].end 7553.24721875
transcript.pyannote[1164].speaker SPEAKER_19
transcript.pyannote[1164].start 7553.24721875
transcript.pyannote[1164].end 7553.95596875
transcript.pyannote[1165].speaker SPEAKER_19
transcript.pyannote[1165].start 7553.98971875
transcript.pyannote[1165].end 7554.02346875
transcript.pyannote[1166].speaker SPEAKER_13
transcript.pyannote[1166].start 7554.02346875
transcript.pyannote[1166].end 7571.62409375
transcript.pyannote[1167].speaker SPEAKER_06
transcript.pyannote[1167].start 7569.00846875
transcript.pyannote[1167].end 7569.24471875
transcript.pyannote[1168].speaker SPEAKER_06
transcript.pyannote[1168].start 7570.62846875
transcript.pyannote[1168].end 7573.61534375
transcript.pyannote[1169].speaker SPEAKER_08
transcript.pyannote[1169].start 7574.10471875
transcript.pyannote[1169].end 7574.39159375
transcript.pyannote[1170].speaker SPEAKER_08
transcript.pyannote[1170].start 7574.67846875
transcript.pyannote[1170].end 7578.81284375
transcript.pyannote[1171].speaker SPEAKER_06
transcript.pyannote[1171].start 7577.98596875
transcript.pyannote[1171].end 7580.14596875
transcript.pyannote[1172].speaker SPEAKER_08
transcript.pyannote[1172].start 7578.99846875
transcript.pyannote[1172].end 7581.05721875
transcript.pyannote[1173].speaker SPEAKER_08
transcript.pyannote[1173].start 7581.27659375
transcript.pyannote[1173].end 7583.21721875
transcript.pyannote[1174].speaker SPEAKER_06
transcript.pyannote[1174].start 7583.06534375
transcript.pyannote[1174].end 7585.15784375
transcript.pyannote[1175].speaker SPEAKER_08
transcript.pyannote[1175].start 7585.25909375
transcript.pyannote[1175].end 7585.71471875
transcript.pyannote[1176].speaker SPEAKER_08
transcript.pyannote[1176].start 7585.73159375
transcript.pyannote[1176].end 7586.96346875
transcript.pyannote[1177].speaker SPEAKER_06
transcript.pyannote[1177].start 7586.72721875
transcript.pyannote[1177].end 7590.92909375
transcript.pyannote[1178].speaker SPEAKER_06
transcript.pyannote[1178].start 7592.24534375
transcript.pyannote[1178].end 7592.26221875
transcript.pyannote[1179].speaker SPEAKER_13
transcript.pyannote[1179].start 7592.26221875
transcript.pyannote[1179].end 7592.27909375
transcript.pyannote[1180].speaker SPEAKER_06
transcript.pyannote[1180].start 7592.27909375
transcript.pyannote[1180].end 7597.52721875
transcript.pyannote[1181].speaker SPEAKER_13
transcript.pyannote[1181].start 7593.71346875
transcript.pyannote[1181].end 7594.06784375
transcript.pyannote[1182].speaker SPEAKER_13
transcript.pyannote[1182].start 7597.99971875
transcript.pyannote[1182].end 7607.48346875
transcript.pyannote[1183].speaker SPEAKER_06
transcript.pyannote[1183].start 7601.25659375
transcript.pyannote[1183].end 7601.40846875
transcript.pyannote[1184].speaker SPEAKER_13
transcript.pyannote[1184].start 7607.85471875
transcript.pyannote[1184].end 7612.64721875
transcript.pyannote[1185].speaker SPEAKER_08
transcript.pyannote[1185].start 7611.06096875
transcript.pyannote[1185].end 7612.54596875
transcript.pyannote[1186].speaker SPEAKER_08
transcript.pyannote[1186].start 7612.90034375
transcript.pyannote[1186].end 7613.62596875
transcript.pyannote[1187].speaker SPEAKER_08
transcript.pyannote[1187].start 7613.92971875
transcript.pyannote[1187].end 7622.50221875
transcript.pyannote[1188].speaker SPEAKER_13
transcript.pyannote[1188].start 7617.87846875
transcript.pyannote[1188].end 7618.63784375
transcript.pyannote[1189].speaker SPEAKER_11
transcript.pyannote[1189].start 7618.63784375
transcript.pyannote[1189].end 7618.68846875
transcript.pyannote[1190].speaker SPEAKER_13
transcript.pyannote[1190].start 7619.56596875
transcript.pyannote[1190].end 7619.59971875
transcript.pyannote[1191].speaker SPEAKER_11
transcript.pyannote[1191].start 7619.59971875
transcript.pyannote[1191].end 7619.61659375
transcript.pyannote[1192].speaker SPEAKER_19
transcript.pyannote[1192].start 7619.61659375
transcript.pyannote[1192].end 7619.85284375
transcript.pyannote[1193].speaker SPEAKER_11
transcript.pyannote[1193].start 7619.85284375
transcript.pyannote[1193].end 7619.93721875
transcript.pyannote[1194].speaker SPEAKER_08
transcript.pyannote[1194].start 7622.55284375
transcript.pyannote[1194].end 7630.39971875
transcript.pyannote[1195].speaker SPEAKER_06
transcript.pyannote[1195].start 7625.96159375
transcript.pyannote[1195].end 7626.21471875
transcript.pyannote[1196].speaker SPEAKER_06
transcript.pyannote[1196].start 7630.31534375
transcript.pyannote[1196].end 7634.06159375
transcript.pyannote[1197].speaker SPEAKER_08
transcript.pyannote[1197].start 7634.21346875
transcript.pyannote[1197].end 7638.38159375
transcript.pyannote[1198].speaker SPEAKER_08
transcript.pyannote[1198].start 7638.80346875
transcript.pyannote[1198].end 7639.49534375
transcript.pyannote[1199].speaker SPEAKER_06
transcript.pyannote[1199].start 7639.49534375
transcript.pyannote[1199].end 7639.51221875
transcript.pyannote[1200].speaker SPEAKER_08
transcript.pyannote[1200].start 7640.22096875
transcript.pyannote[1200].end 7641.03096875
transcript.pyannote[1201].speaker SPEAKER_06
transcript.pyannote[1201].start 7641.03096875
transcript.pyannote[1201].end 7642.85346875
transcript.pyannote[1202].speaker SPEAKER_06
transcript.pyannote[1202].start 7643.39346875
transcript.pyannote[1202].end 7644.86159375
transcript.pyannote[1203].speaker SPEAKER_06
transcript.pyannote[1203].start 7645.85721875
transcript.pyannote[1203].end 7651.64534375
transcript.pyannote[1204].speaker SPEAKER_13
transcript.pyannote[1204].start 7650.97034375
transcript.pyannote[1204].end 7651.61159375
transcript.pyannote[1205].speaker SPEAKER_13
transcript.pyannote[1205].start 7651.64534375
transcript.pyannote[1205].end 7655.49284375
transcript.pyannote[1206].speaker SPEAKER_06
transcript.pyannote[1206].start 7653.48471875
transcript.pyannote[1206].end 7661.77034375
transcript.pyannote[1207].speaker SPEAKER_13
transcript.pyannote[1207].start 7657.18034375
transcript.pyannote[1207].end 7657.43346875
transcript.pyannote[1208].speaker SPEAKER_06
transcript.pyannote[1208].start 7662.07409375
transcript.pyannote[1208].end 7664.04846875
transcript.pyannote[1209].speaker SPEAKER_06
transcript.pyannote[1209].start 7664.62221875
transcript.pyannote[1209].end 7665.16221875
transcript.pyannote[1210].speaker SPEAKER_11
transcript.pyannote[1210].start 7664.63909375
transcript.pyannote[1210].end 7665.12846875
transcript.pyannote[1211].speaker SPEAKER_11
transcript.pyannote[1211].start 7665.16221875
transcript.pyannote[1211].end 7665.65159375
transcript.pyannote[1212].speaker SPEAKER_06
transcript.pyannote[1212].start 7665.65159375
transcript.pyannote[1212].end 7671.00096875
transcript.pyannote[1213].speaker SPEAKER_11
transcript.pyannote[1213].start 7665.66846875
transcript.pyannote[1213].end 7667.23784375
transcript.pyannote[1214].speaker SPEAKER_08
transcript.pyannote[1214].start 7671.59159375
transcript.pyannote[1214].end 7675.05096875
transcript.pyannote[1215].speaker SPEAKER_06
transcript.pyannote[1215].start 7675.05096875
transcript.pyannote[1215].end 7676.14784375
transcript.pyannote[1216].speaker SPEAKER_08
transcript.pyannote[1216].start 7676.14784375
transcript.pyannote[1216].end 7677.24471875
transcript.pyannote[1217].speaker SPEAKER_06
transcript.pyannote[1217].start 7676.75534375
transcript.pyannote[1217].end 7680.60284375
transcript.pyannote[1218].speaker SPEAKER_06
transcript.pyannote[1218].start 7680.85596875
transcript.pyannote[1218].end 7681.90221875
transcript.pyannote[1219].speaker SPEAKER_06
transcript.pyannote[1219].start 7682.25659375
transcript.pyannote[1219].end 7683.58971875
transcript.pyannote[1220].speaker SPEAKER_06
transcript.pyannote[1220].start 7683.77534375
transcript.pyannote[1220].end 7685.86784375
transcript.pyannote[1221].speaker SPEAKER_13
transcript.pyannote[1221].start 7688.80409375
transcript.pyannote[1221].end 7690.03596875
transcript.pyannote[1222].speaker SPEAKER_13
transcript.pyannote[1222].start 7690.25534375
transcript.pyannote[1222].end 7703.50221875
transcript.pyannote[1223].speaker SPEAKER_06
transcript.pyannote[1223].start 7693.17471875
transcript.pyannote[1223].end 7694.11971875
transcript.pyannote[1224].speaker SPEAKER_06
transcript.pyannote[1224].start 7699.24971875
transcript.pyannote[1224].end 7700.46471875
transcript.pyannote[1225].speaker SPEAKER_06
transcript.pyannote[1225].start 7702.43909375
transcript.pyannote[1225].end 7702.72596875
transcript.pyannote[1226].speaker SPEAKER_06
transcript.pyannote[1226].start 7703.50221875
transcript.pyannote[1226].end 7705.00409375
transcript.pyannote[1227].speaker SPEAKER_13
transcript.pyannote[1227].start 7703.51909375
transcript.pyannote[1227].end 7704.00846875
transcript.pyannote[1228].speaker SPEAKER_06
transcript.pyannote[1228].start 7705.47659375
transcript.pyannote[1228].end 7708.46346875
transcript.pyannote[1229].speaker SPEAKER_08
transcript.pyannote[1229].start 7708.46346875
transcript.pyannote[1229].end 7714.23471875
transcript.pyannote[1230].speaker SPEAKER_06
transcript.pyannote[1230].start 7714.36971875
transcript.pyannote[1230].end 7722.31784375
transcript.pyannote[1231].speaker SPEAKER_08
transcript.pyannote[1231].start 7722.85784375
transcript.pyannote[1231].end 7724.56221875
transcript.pyannote[1232].speaker SPEAKER_06
transcript.pyannote[1232].start 7724.32596875
transcript.pyannote[1232].end 7725.59159375
transcript.pyannote[1233].speaker SPEAKER_06
transcript.pyannote[1233].start 7726.03034375
transcript.pyannote[1233].end 7730.29971875
transcript.pyannote[1234].speaker SPEAKER_06
transcript.pyannote[1234].start 7730.50221875
transcript.pyannote[1234].end 7736.22284375
transcript.pyannote[1235].speaker SPEAKER_06
transcript.pyannote[1235].start 7736.71221875
transcript.pyannote[1235].end 7738.21409375
transcript.pyannote[1236].speaker SPEAKER_06
transcript.pyannote[1236].start 7739.81721875
transcript.pyannote[1236].end 7740.59346875
transcript.pyannote[1237].speaker SPEAKER_06
transcript.pyannote[1237].start 7741.33596875
transcript.pyannote[1237].end 7744.23846875
transcript.pyannote[1238].speaker SPEAKER_01
transcript.pyannote[1238].start 7744.96409375
transcript.pyannote[1238].end 7744.98096875
transcript.pyannote[1239].speaker SPEAKER_08
transcript.pyannote[1239].start 7744.98096875
transcript.pyannote[1239].end 7745.03159375
transcript.pyannote[1240].speaker SPEAKER_01
transcript.pyannote[1240].start 7745.03159375
transcript.pyannote[1240].end 7745.23409375
transcript.pyannote[1241].speaker SPEAKER_06
transcript.pyannote[1241].start 7745.23409375
transcript.pyannote[1241].end 7747.27596875
transcript.pyannote[1242].speaker SPEAKER_08
transcript.pyannote[1242].start 7747.02284375
transcript.pyannote[1242].end 7747.10721875
transcript.pyannote[1243].speaker SPEAKER_08
transcript.pyannote[1243].start 7748.94659375
transcript.pyannote[1243].end 7755.03846875
transcript.pyannote[1244].speaker SPEAKER_06
transcript.pyannote[1244].start 7754.81909375
transcript.pyannote[1244].end 7754.95409375
transcript.pyannote[1245].speaker SPEAKER_06
transcript.pyannote[1245].start 7755.03846875
transcript.pyannote[1245].end 7755.64596875
transcript.pyannote[1246].speaker SPEAKER_08
transcript.pyannote[1246].start 7755.64596875
transcript.pyannote[1246].end 7755.74721875
transcript.pyannote[1247].speaker SPEAKER_06
transcript.pyannote[1247].start 7755.74721875
transcript.pyannote[1247].end 7757.38409375
transcript.pyannote[1248].speaker SPEAKER_08
transcript.pyannote[1248].start 7756.21971875
transcript.pyannote[1248].end 7756.33784375
transcript.pyannote[1249].speaker SPEAKER_08
transcript.pyannote[1249].start 7757.38409375
transcript.pyannote[1249].end 7760.42159375
transcript.pyannote[1250].speaker SPEAKER_06
transcript.pyannote[1250].start 7759.20659375
transcript.pyannote[1250].end 7763.81346875
transcript.pyannote[1251].speaker SPEAKER_08
transcript.pyannote[1251].start 7760.67471875
transcript.pyannote[1251].end 7761.75471875
transcript.pyannote[1252].speaker SPEAKER_08
transcript.pyannote[1252].start 7764.60659375
transcript.pyannote[1252].end 7767.71159375
transcript.pyannote[1253].speaker SPEAKER_06
transcript.pyannote[1253].start 7766.58096875
transcript.pyannote[1253].end 7767.30659375
transcript.pyannote[1254].speaker SPEAKER_06
transcript.pyannote[1254].start 7767.84659375
transcript.pyannote[1254].end 7770.05721875
transcript.pyannote[1255].speaker SPEAKER_08
transcript.pyannote[1255].start 7770.37784375
transcript.pyannote[1255].end 7770.56346875
transcript.pyannote[1256].speaker SPEAKER_06
transcript.pyannote[1256].start 7770.56346875
transcript.pyannote[1256].end 7771.72784375
transcript.pyannote[1257].speaker SPEAKER_06
transcript.pyannote[1257].start 7772.28471875
transcript.pyannote[1257].end 7778.14034375
transcript.pyannote[1258].speaker SPEAKER_06
transcript.pyannote[1258].start 7778.78159375
transcript.pyannote[1258].end 7793.17596875
transcript.pyannote[1259].speaker SPEAKER_06
transcript.pyannote[1259].start 7794.72846875
transcript.pyannote[1259].end 7797.32721875
transcript.pyannote[1260].speaker SPEAKER_13
transcript.pyannote[1260].start 7797.64784375
transcript.pyannote[1260].end 7800.65159375
transcript.pyannote[1261].speaker SPEAKER_06
transcript.pyannote[1261].start 7800.06096875
transcript.pyannote[1261].end 7800.55034375
transcript.pyannote[1262].speaker SPEAKER_13
transcript.pyannote[1262].start 7801.02284375
transcript.pyannote[1262].end 7803.67221875
transcript.pyannote[1263].speaker SPEAKER_06
transcript.pyannote[1263].start 7802.45721875
transcript.pyannote[1263].end 7803.97596875
transcript.pyannote[1264].speaker SPEAKER_08
transcript.pyannote[1264].start 7803.67221875
transcript.pyannote[1264].end 7803.72284375
transcript.pyannote[1265].speaker SPEAKER_08
transcript.pyannote[1265].start 7803.73971875
transcript.pyannote[1265].end 7803.79034375
transcript.pyannote[1266].speaker SPEAKER_08
transcript.pyannote[1266].start 7803.82409375
transcript.pyannote[1266].end 7803.99284375
transcript.pyannote[1267].speaker SPEAKER_13
transcript.pyannote[1267].start 7803.97596875
transcript.pyannote[1267].end 7804.41471875
transcript.pyannote[1268].speaker SPEAKER_06
transcript.pyannote[1268].start 7803.99284375
transcript.pyannote[1268].end 7804.02659375
transcript.pyannote[1269].speaker SPEAKER_08
transcript.pyannote[1269].start 7804.02659375
transcript.pyannote[1269].end 7804.29659375
transcript.pyannote[1270].speaker SPEAKER_06
transcript.pyannote[1270].start 7804.29659375
transcript.pyannote[1270].end 7804.56659375
transcript.pyannote[1271].speaker SPEAKER_08
transcript.pyannote[1271].start 7804.41471875
transcript.pyannote[1271].end 7804.43159375
transcript.pyannote[1272].speaker SPEAKER_08
transcript.pyannote[1272].start 7804.56659375
transcript.pyannote[1272].end 7804.58346875
transcript.pyannote[1273].speaker SPEAKER_08
transcript.pyannote[1273].start 7805.24159375
transcript.pyannote[1273].end 7806.37221875
transcript.pyannote[1274].speaker SPEAKER_08
transcript.pyannote[1274].start 7806.92909375
transcript.pyannote[1274].end 7811.60346875
transcript.pyannote[1275].speaker SPEAKER_19
transcript.pyannote[1275].start 7811.09721875
transcript.pyannote[1275].end 7812.70034375
transcript.pyannote[1276].speaker SPEAKER_08
transcript.pyannote[1276].start 7812.19409375
transcript.pyannote[1276].end 7818.82596875
transcript.pyannote[1277].speaker SPEAKER_08
transcript.pyannote[1277].start 7819.18034375
transcript.pyannote[1277].end 7827.04409375
transcript.pyannote[1278].speaker SPEAKER_06
transcript.pyannote[1278].start 7822.50471875
transcript.pyannote[1278].end 7822.87596875
transcript.pyannote[1279].speaker SPEAKER_06
transcript.pyannote[1279].start 7823.02784375
transcript.pyannote[1279].end 7823.28096875
transcript.pyannote[1280].speaker SPEAKER_06
transcript.pyannote[1280].start 7826.41971875
transcript.pyannote[1280].end 7827.36471875
transcript.pyannote[1281].speaker SPEAKER_08
transcript.pyannote[1281].start 7827.36471875
transcript.pyannote[1281].end 7827.38159375
transcript.pyannote[1282].speaker SPEAKER_06
transcript.pyannote[1282].start 7827.38159375
transcript.pyannote[1282].end 7827.39846875
transcript.pyannote[1283].speaker SPEAKER_08
transcript.pyannote[1283].start 7827.39846875
transcript.pyannote[1283].end 7827.43221875
transcript.pyannote[1284].speaker SPEAKER_08
transcript.pyannote[1284].start 7827.65159375
transcript.pyannote[1284].end 7829.67659375
transcript.pyannote[1285].speaker SPEAKER_06
transcript.pyannote[1285].start 7828.63034375
transcript.pyannote[1285].end 7834.67159375
transcript.pyannote[1286].speaker SPEAKER_08
transcript.pyannote[1286].start 7830.63846875
transcript.pyannote[1286].end 7830.65534375
transcript.pyannote[1287].speaker SPEAKER_06
transcript.pyannote[1287].start 7834.92471875
transcript.pyannote[1287].end 7837.86096875
transcript.pyannote[1288].speaker SPEAKER_06
transcript.pyannote[1288].start 7837.91159375
transcript.pyannote[1288].end 7847.86784375
transcript.pyannote[1289].speaker SPEAKER_06
transcript.pyannote[1289].start 7847.88471875
transcript.pyannote[1289].end 7847.90159375
transcript.pyannote[1290].speaker SPEAKER_19
transcript.pyannote[1290].start 7847.91846875
transcript.pyannote[1290].end 7848.23909375
transcript.pyannote[1291].speaker SPEAKER_06
transcript.pyannote[1291].start 7848.23909375
transcript.pyannote[1291].end 7848.96471875
transcript.pyannote[1292].speaker SPEAKER_06
transcript.pyannote[1292].start 7849.43721875
transcript.pyannote[1292].end 7853.45346875
transcript.pyannote[1293].speaker SPEAKER_06
transcript.pyannote[1293].start 7853.94284375
transcript.pyannote[1293].end 7856.00159375
transcript.pyannote[1294].speaker SPEAKER_06
transcript.pyannote[1294].start 7856.27159375
transcript.pyannote[1294].end 7861.38471875
transcript.pyannote[1295].speaker SPEAKER_06
transcript.pyannote[1295].start 7862.41409375
transcript.pyannote[1295].end 7866.56534375
transcript.pyannote[1296].speaker SPEAKER_11
transcript.pyannote[1296].start 7863.59534375
transcript.pyannote[1296].end 7864.33784375
transcript.pyannote[1297].speaker SPEAKER_13
transcript.pyannote[1297].start 7866.56534375
transcript.pyannote[1297].end 7866.61596875
transcript.pyannote[1298].speaker SPEAKER_06
transcript.pyannote[1298].start 7867.81409375
transcript.pyannote[1298].end 7867.96596875
transcript.pyannote[1299].speaker SPEAKER_13
transcript.pyannote[1299].start 7867.96596875
transcript.pyannote[1299].end 7868.03346875
transcript.pyannote[1300].speaker SPEAKER_06
transcript.pyannote[1300].start 7868.03346875
transcript.pyannote[1300].end 7868.23596875
transcript.pyannote[1301].speaker SPEAKER_13
transcript.pyannote[1301].start 7868.23596875
transcript.pyannote[1301].end 7868.62409375
transcript.pyannote[1302].speaker SPEAKER_13
transcript.pyannote[1302].start 7869.31596875
transcript.pyannote[1302].end 7880.89221875
transcript.pyannote[1303].speaker SPEAKER_06
transcript.pyannote[1303].start 7878.96846875
transcript.pyannote[1303].end 7879.06971875
transcript.pyannote[1304].speaker SPEAKER_06
transcript.pyannote[1304].start 7879.08659375
transcript.pyannote[1304].end 7879.18784375
transcript.pyannote[1305].speaker SPEAKER_06
transcript.pyannote[1305].start 7880.89221875
transcript.pyannote[1305].end 7886.74784375
transcript.pyannote[1306].speaker SPEAKER_06
transcript.pyannote[1306].start 7887.20346875
transcript.pyannote[1306].end 7888.57034375
transcript.pyannote[1307].speaker SPEAKER_06
transcript.pyannote[1307].start 7889.00909375
transcript.pyannote[1307].end 7893.88596875
transcript.pyannote[1308].speaker SPEAKER_09
transcript.pyannote[1308].start 7895.20221875
transcript.pyannote[1308].end 7896.16409375
transcript.pyannote[1309].speaker SPEAKER_06
transcript.pyannote[1309].start 7896.16409375
transcript.pyannote[1309].end 7897.12596875
transcript.pyannote[1310].speaker SPEAKER_06
transcript.pyannote[1310].start 7898.17221875
transcript.pyannote[1310].end 7903.13346875
transcript.pyannote[1311].speaker SPEAKER_06
transcript.pyannote[1311].start 7904.04471875
transcript.pyannote[1311].end 7907.77409375
transcript.pyannote[1312].speaker SPEAKER_06
transcript.pyannote[1312].start 7908.22971875
transcript.pyannote[1312].end 7913.84909375
transcript.pyannote[1313].speaker SPEAKER_06
transcript.pyannote[1313].start 7913.98409375
transcript.pyannote[1313].end 7919.94096875
transcript.pyannote[1314].speaker SPEAKER_06
transcript.pyannote[1314].start 7920.73409375
transcript.pyannote[1314].end 7921.99971875
transcript.pyannote[1315].speaker SPEAKER_06
transcript.pyannote[1315].start 7923.45096875
transcript.pyannote[1315].end 7923.48471875
transcript.pyannote[1316].speaker SPEAKER_09
transcript.pyannote[1316].start 7923.48471875
transcript.pyannote[1316].end 7923.56909375
transcript.pyannote[1317].speaker SPEAKER_06
transcript.pyannote[1317].start 7924.54784375
transcript.pyannote[1317].end 7924.56471875
transcript.pyannote[1318].speaker SPEAKER_09
transcript.pyannote[1318].start 7924.56471875
transcript.pyannote[1318].end 7925.54346875
transcript.pyannote[1319].speaker SPEAKER_06
transcript.pyannote[1319].start 7925.54346875
transcript.pyannote[1319].end 7925.61096875
transcript.pyannote[1320].speaker SPEAKER_06
transcript.pyannote[1320].start 7925.69534375
transcript.pyannote[1320].end 7927.11284375
transcript.pyannote[1321].speaker SPEAKER_06
transcript.pyannote[1321].start 7928.59784375
transcript.pyannote[1321].end 7932.20909375
transcript.pyannote[1322].speaker SPEAKER_06
transcript.pyannote[1322].start 7932.58034375
transcript.pyannote[1322].end 7933.35659375
transcript.pyannote[1323].speaker SPEAKER_13
transcript.pyannote[1323].start 7933.52534375
transcript.pyannote[1323].end 7934.72346875
transcript.pyannote[1324].speaker SPEAKER_06
transcript.pyannote[1324].start 7934.80784375
transcript.pyannote[1324].end 7937.15346875
transcript.pyannote[1325].speaker SPEAKER_06
transcript.pyannote[1325].start 7937.89596875
transcript.pyannote[1325].end 7938.45284375
transcript.pyannote[1326].speaker SPEAKER_06
transcript.pyannote[1326].start 7938.55409375
transcript.pyannote[1326].end 7939.95471875
transcript.pyannote[1327].speaker SPEAKER_06
transcript.pyannote[1327].start 7940.95034375
transcript.pyannote[1327].end 7951.07534375
transcript.pyannote[1328].speaker SPEAKER_06
transcript.pyannote[1328].start 7951.51409375
transcript.pyannote[1328].end 7960.42409375
transcript.pyannote[1329].speaker SPEAKER_06
transcript.pyannote[1329].start 7960.81221875
transcript.pyannote[1329].end 7970.78534375
transcript.pyannote[1330].speaker SPEAKER_06
transcript.pyannote[1330].start 7970.88659375
transcript.pyannote[1330].end 7974.48096875
transcript.pyannote[1331].speaker SPEAKER_06
transcript.pyannote[1331].start 7974.78471875
transcript.pyannote[1331].end 7978.49721875
transcript.pyannote[1332].speaker SPEAKER_06
transcript.pyannote[1332].start 7981.63596875
transcript.pyannote[1332].end 7983.54284375
transcript.pyannote[1333].speaker SPEAKER_06
transcript.pyannote[1333].start 7983.98159375
transcript.pyannote[1333].end 7984.31909375
transcript.pyannote[1334].speaker SPEAKER_06
transcript.pyannote[1334].start 7984.85909375
transcript.pyannote[1334].end 7989.14534375
transcript.pyannote[1335].speaker SPEAKER_06
transcript.pyannote[1335].start 7990.59659375
transcript.pyannote[1335].end 7991.60909375
transcript.pyannote[1336].speaker SPEAKER_06
transcript.pyannote[1336].start 7992.43596875
transcript.pyannote[1336].end 8003.82659375
transcript.pyannote[1337].speaker SPEAKER_06
transcript.pyannote[1337].start 8004.56909375
transcript.pyannote[1337].end 8006.13846875
transcript.pyannote[1338].speaker SPEAKER_16
transcript.pyannote[1338].start 8006.37471875
transcript.pyannote[1338].end 8006.77971875
transcript.pyannote[1339].speaker SPEAKER_06
transcript.pyannote[1339].start 8006.77971875
transcript.pyannote[1339].end 8006.79659375
transcript.pyannote[1340].speaker SPEAKER_06
transcript.pyannote[1340].start 8006.91471875
transcript.pyannote[1340].end 8009.96909375
transcript.pyannote[1341].speaker SPEAKER_16
transcript.pyannote[1341].start 8010.79596875
transcript.pyannote[1341].end 8025.19034375
transcript.pyannote[1342].speaker SPEAKER_16
transcript.pyannote[1342].start 8025.39284375
transcript.pyannote[1342].end 8025.46034375
transcript.pyannote[1343].speaker SPEAKER_06
transcript.pyannote[1343].start 8025.46034375
transcript.pyannote[1343].end 8025.69659375
transcript.pyannote[1344].speaker SPEAKER_16
transcript.pyannote[1344].start 8025.69659375
transcript.pyannote[1344].end 8025.79784375
transcript.pyannote[1345].speaker SPEAKER_06
transcript.pyannote[1345].start 8025.79784375
transcript.pyannote[1345].end 8026.77659375
transcript.pyannote[1346].speaker SPEAKER_06
transcript.pyannote[1346].start 8027.06346875
transcript.pyannote[1346].end 8030.77596875
transcript.pyannote[1347].speaker SPEAKER_06
transcript.pyannote[1347].start 8030.86034375
transcript.pyannote[1347].end 8032.49721875
transcript.pyannote[1348].speaker SPEAKER_06
transcript.pyannote[1348].start 8032.88534375
transcript.pyannote[1348].end 8037.64409375
transcript.pyannote[1349].speaker SPEAKER_06
transcript.pyannote[1349].start 8037.89721875
transcript.pyannote[1349].end 8044.69784375
transcript.pyannote[1350].speaker SPEAKER_16
transcript.pyannote[1350].start 8045.00159375
transcript.pyannote[1350].end 8046.67221875
transcript.pyannote[1351].speaker SPEAKER_06
transcript.pyannote[1351].start 8045.82846875
transcript.pyannote[1351].end 8052.24096875
transcript.pyannote[1352].speaker SPEAKER_06
transcript.pyannote[1352].start 8052.42659375
transcript.pyannote[1352].end 8053.65846875
transcript.pyannote[1353].speaker SPEAKER_06
transcript.pyannote[1353].start 8053.84409375
transcript.pyannote[1353].end 8056.17284375
transcript.pyannote[1354].speaker SPEAKER_06
transcript.pyannote[1354].start 8056.59471875
transcript.pyannote[1354].end 8057.89409375
transcript.pyannote[1355].speaker SPEAKER_16
transcript.pyannote[1355].start 8058.18096875
transcript.pyannote[1355].end 8058.21471875
transcript.pyannote[1356].speaker SPEAKER_06
transcript.pyannote[1356].start 8058.21471875
transcript.pyannote[1356].end 8058.23159375
transcript.pyannote[1357].speaker SPEAKER_16
transcript.pyannote[1357].start 8058.23159375
transcript.pyannote[1357].end 8058.80534375
transcript.pyannote[1358].speaker SPEAKER_06
transcript.pyannote[1358].start 8058.80534375
transcript.pyannote[1358].end 8058.97409375
transcript.pyannote[1359].speaker SPEAKER_16
transcript.pyannote[1359].start 8058.97409375
transcript.pyannote[1359].end 8059.00784375
transcript.pyannote[1360].speaker SPEAKER_06
transcript.pyannote[1360].start 8059.00784375
transcript.pyannote[1360].end 8060.29034375
transcript.pyannote[1361].speaker SPEAKER_16
transcript.pyannote[1361].start 8059.12596875
transcript.pyannote[1361].end 8059.64909375
transcript.pyannote[1362].speaker SPEAKER_06
transcript.pyannote[1362].start 8061.67409375
transcript.pyannote[1362].end 8064.00284375
transcript.pyannote[1363].speaker SPEAKER_06
transcript.pyannote[1363].start 8064.54284375
transcript.pyannote[1363].end 8064.57659375
transcript.pyannote[1364].speaker SPEAKER_13
transcript.pyannote[1364].start 8064.57659375
transcript.pyannote[1364].end 8064.62721875
transcript.pyannote[1365].speaker SPEAKER_06
transcript.pyannote[1365].start 8064.62721875
transcript.pyannote[1365].end 8064.64409375
transcript.pyannote[1366].speaker SPEAKER_13
transcript.pyannote[1366].start 8064.64409375
transcript.pyannote[1366].end 8064.89721875
transcript.pyannote[1367].speaker SPEAKER_06
transcript.pyannote[1367].start 8064.89721875
transcript.pyannote[1367].end 8065.97721875
transcript.pyannote[1368].speaker SPEAKER_13
transcript.pyannote[1368].start 8065.09971875
transcript.pyannote[1368].end 8065.79159375
transcript.pyannote[1369].speaker SPEAKER_13
transcript.pyannote[1369].start 8065.97721875
transcript.pyannote[1369].end 8066.02784375
transcript.pyannote[1370].speaker SPEAKER_06
transcript.pyannote[1370].start 8066.02784375
transcript.pyannote[1370].end 8066.97284375
transcript.pyannote[1371].speaker SPEAKER_13
transcript.pyannote[1371].start 8066.97284375
transcript.pyannote[1371].end 8067.02346875
transcript.pyannote[1372].speaker SPEAKER_06
transcript.pyannote[1372].start 8067.02346875
transcript.pyannote[1372].end 8067.86721875
transcript.pyannote[1373].speaker SPEAKER_06
transcript.pyannote[1373].start 8068.08659375
transcript.pyannote[1373].end 8071.78221875
transcript.pyannote[1374].speaker SPEAKER_13
transcript.pyannote[1374].start 8068.22159375
transcript.pyannote[1374].end 8070.44909375
transcript.pyannote[1375].speaker SPEAKER_19
transcript.pyannote[1375].start 8070.44909375
transcript.pyannote[1375].end 8070.87096875
transcript.pyannote[1376].speaker SPEAKER_13
transcript.pyannote[1376].start 8070.87096875
transcript.pyannote[1376].end 8070.93846875
transcript.pyannote[1377].speaker SPEAKER_19
transcript.pyannote[1377].start 8070.93846875
transcript.pyannote[1377].end 8070.95534375
transcript.pyannote[1378].speaker SPEAKER_13
transcript.pyannote[1378].start 8070.95534375
transcript.pyannote[1378].end 8070.97221875
transcript.pyannote[1379].speaker SPEAKER_19
transcript.pyannote[1379].start 8070.97221875
transcript.pyannote[1379].end 8071.76534375
transcript.pyannote[1380].speaker SPEAKER_19
transcript.pyannote[1380].start 8071.78221875
transcript.pyannote[1380].end 8071.88346875
transcript.pyannote[1381].speaker SPEAKER_19
transcript.pyannote[1381].start 8071.95096875
transcript.pyannote[1381].end 8072.03534375
transcript.pyannote[1382].speaker SPEAKER_06
transcript.pyannote[1382].start 8072.03534375
transcript.pyannote[1382].end 8075.02221875
transcript.pyannote[1383].speaker SPEAKER_06
transcript.pyannote[1383].start 8075.56221875
transcript.pyannote[1383].end 8077.38471875
transcript.pyannote[1384].speaker SPEAKER_06
transcript.pyannote[1384].start 8078.34659375
transcript.pyannote[1384].end 8081.73846875
transcript.pyannote[1385].speaker SPEAKER_06
transcript.pyannote[1385].start 8081.90721875
transcript.pyannote[1385].end 8082.53159375
transcript.pyannote[1386].speaker SPEAKER_06
transcript.pyannote[1386].start 8083.18971875
transcript.pyannote[1386].end 8084.67471875
transcript.pyannote[1387].speaker SPEAKER_06
transcript.pyannote[1387].start 8085.67034375
transcript.pyannote[1387].end 8086.54784375
transcript.pyannote[1388].speaker SPEAKER_06
transcript.pyannote[1388].start 8087.00346875
transcript.pyannote[1388].end 8089.04534375
transcript.pyannote[1389].speaker SPEAKER_06
transcript.pyannote[1389].start 8089.58534375
transcript.pyannote[1389].end 8091.12096875
transcript.pyannote[1390].speaker SPEAKER_06
transcript.pyannote[1390].start 8091.30659375
transcript.pyannote[1390].end 8094.09096875
transcript.pyannote[1391].speaker SPEAKER_06
transcript.pyannote[1391].start 8094.56346875
transcript.pyannote[1391].end 8095.81221875
transcript.pyannote[1392].speaker SPEAKER_06
transcript.pyannote[1392].start 8097.36471875
transcript.pyannote[1392].end 8098.17471875
transcript.pyannote[1393].speaker SPEAKER_06
transcript.pyannote[1393].start 8100.53721875
transcript.pyannote[1393].end 8101.38096875
transcript.pyannote[1394].speaker SPEAKER_06
transcript.pyannote[1394].start 8101.54971875
transcript.pyannote[1394].end 8102.27534375
transcript.pyannote[1395].speaker SPEAKER_06
transcript.pyannote[1395].start 8102.57909375
transcript.pyannote[1395].end 8104.70534375
transcript.pyannote[1396].speaker SPEAKER_06
transcript.pyannote[1396].start 8105.34659375
transcript.pyannote[1396].end 8106.83159375
transcript.pyannote[1397].speaker SPEAKER_06
transcript.pyannote[1397].start 8107.01721875
transcript.pyannote[1397].end 8109.26159375
transcript.pyannote[1398].speaker SPEAKER_06
transcript.pyannote[1398].start 8109.56534375
transcript.pyannote[1398].end 8113.04159375
transcript.pyannote[1399].speaker SPEAKER_06
transcript.pyannote[1399].start 8113.29471875
transcript.pyannote[1399].end 8114.45909375
transcript.pyannote[1400].speaker SPEAKER_06
transcript.pyannote[1400].start 8114.84721875
transcript.pyannote[1400].end 8116.24784375
transcript.pyannote[1401].speaker SPEAKER_06
transcript.pyannote[1401].start 8117.22659375
transcript.pyannote[1401].end 8118.15471875
transcript.pyannote[1402].speaker SPEAKER_06
transcript.pyannote[1402].start 8118.34034375
transcript.pyannote[1402].end 8119.50471875
transcript.pyannote[1403].speaker SPEAKER_06
transcript.pyannote[1403].start 8119.70721875
transcript.pyannote[1403].end 8122.01909375
transcript.pyannote[1404].speaker SPEAKER_06
transcript.pyannote[1404].start 8122.28909375
transcript.pyannote[1404].end 8127.82409375
transcript.pyannote[1405].speaker SPEAKER_06
transcript.pyannote[1405].start 8128.44846875
transcript.pyannote[1405].end 8140.93596875
transcript.pyannote[1406].speaker SPEAKER_06
transcript.pyannote[1406].start 8141.25659375
transcript.pyannote[1406].end 8148.27659375
transcript.pyannote[1407].speaker SPEAKER_06
transcript.pyannote[1407].start 8149.05284375
transcript.pyannote[1407].end 8149.59284375
transcript.pyannote[1408].speaker SPEAKER_06
transcript.pyannote[1408].start 8149.86284375
transcript.pyannote[1408].end 8150.45346875
transcript.pyannote[1409].speaker SPEAKER_09
transcript.pyannote[1409].start 8153.05221875
transcript.pyannote[1409].end 8153.69346875
transcript.pyannote[1410].speaker SPEAKER_06
transcript.pyannote[1410].start 8153.47409375
transcript.pyannote[1410].end 8156.37659375
transcript.pyannote[1411].speaker SPEAKER_06
transcript.pyannote[1411].start 8156.61284375
transcript.pyannote[1411].end 8157.50721875
transcript.pyannote[1412].speaker SPEAKER_09
transcript.pyannote[1412].start 8157.99659375
transcript.pyannote[1412].end 8158.18221875
transcript.pyannote[1413].speaker SPEAKER_19
transcript.pyannote[1413].start 8158.18221875
transcript.pyannote[1413].end 8158.19909375
transcript.pyannote[1414].speaker SPEAKER_06
transcript.pyannote[1414].start 8158.51971875
transcript.pyannote[1414].end 8159.11034375
transcript.pyannote[1415].speaker SPEAKER_06
transcript.pyannote[1415].start 8159.41409375
transcript.pyannote[1415].end 8165.15159375
transcript.pyannote[1416].speaker SPEAKER_06
transcript.pyannote[1416].start 8165.45534375
transcript.pyannote[1416].end 8166.45096875
transcript.pyannote[1417].speaker SPEAKER_13
transcript.pyannote[1417].start 8168.05409375
transcript.pyannote[1417].end 8168.54346875
transcript.pyannote[1418].speaker SPEAKER_13
transcript.pyannote[1418].start 8168.89784375
transcript.pyannote[1418].end 8170.02846875
transcript.pyannote[1419].speaker SPEAKER_06
transcript.pyannote[1419].start 8170.02846875
transcript.pyannote[1419].end 8170.14659375
transcript.pyannote[1420].speaker SPEAKER_13
transcript.pyannote[1420].start 8170.14659375
transcript.pyannote[1420].end 8171.09159375
transcript.pyannote[1421].speaker SPEAKER_06
transcript.pyannote[1421].start 8171.09159375
transcript.pyannote[1421].end 8171.17596875
transcript.pyannote[1422].speaker SPEAKER_13
transcript.pyannote[1422].start 8171.17596875
transcript.pyannote[1422].end 8171.27721875
transcript.pyannote[1423].speaker SPEAKER_06
transcript.pyannote[1423].start 8171.27721875
transcript.pyannote[1423].end 8171.29409375
transcript.pyannote[1424].speaker SPEAKER_06
transcript.pyannote[1424].start 8171.51346875
transcript.pyannote[1424].end 8181.46971875
transcript.pyannote[1425].speaker SPEAKER_08
transcript.pyannote[1425].start 8181.46971875
transcript.pyannote[1425].end 8182.54971875
transcript.pyannote[1426].speaker SPEAKER_06
transcript.pyannote[1426].start 8182.51596875
transcript.pyannote[1426].end 8184.67596875
transcript.pyannote[1427].speaker SPEAKER_08
transcript.pyannote[1427].start 8184.96284375
transcript.pyannote[1427].end 8189.73846875
transcript.pyannote[1428].speaker SPEAKER_06
transcript.pyannote[1428].start 8189.73846875
transcript.pyannote[1428].end 8191.54409375
transcript.pyannote[1429].speaker SPEAKER_06
transcript.pyannote[1429].start 8191.59471875
transcript.pyannote[1429].end 8202.93471875
transcript.pyannote[1430].speaker SPEAKER_06
transcript.pyannote[1430].start 8203.10346875
transcript.pyannote[1430].end 8204.38596875
transcript.pyannote[1431].speaker SPEAKER_06
transcript.pyannote[1431].start 8204.50409375
transcript.pyannote[1431].end 8209.93784375
transcript.pyannote[1432].speaker SPEAKER_06
transcript.pyannote[1432].start 8210.56221875
transcript.pyannote[1432].end 8212.63784375
transcript.pyannote[1433].speaker SPEAKER_06
transcript.pyannote[1433].start 8213.09346875
transcript.pyannote[1433].end 8220.06284375
transcript.pyannote[1434].speaker SPEAKER_06
transcript.pyannote[1434].start 8220.28221875
transcript.pyannote[1434].end 8221.36221875
transcript.pyannote[1435].speaker SPEAKER_06
transcript.pyannote[1435].start 8221.76721875
transcript.pyannote[1435].end 8222.25659375
transcript.pyannote[1436].speaker SPEAKER_13
transcript.pyannote[1436].start 8222.57721875
transcript.pyannote[1436].end 8222.96534375
transcript.pyannote[1437].speaker SPEAKER_06
transcript.pyannote[1437].start 8223.18471875
transcript.pyannote[1437].end 8231.90909375
transcript.pyannote[1438].speaker SPEAKER_06
transcript.pyannote[1438].start 8232.12846875
transcript.pyannote[1438].end 8233.41096875
transcript.pyannote[1439].speaker SPEAKER_06
transcript.pyannote[1439].start 8233.83284375
transcript.pyannote[1439].end 8234.49096875
transcript.pyannote[1440].speaker SPEAKER_06
transcript.pyannote[1440].start 8235.19971875
transcript.pyannote[1440].end 8236.02659375
transcript.pyannote[1441].speaker SPEAKER_06
transcript.pyannote[1441].start 8236.38096875
transcript.pyannote[1441].end 8238.01784375
transcript.pyannote[1442].speaker SPEAKER_13
transcript.pyannote[1442].start 8238.01784375
transcript.pyannote[1442].end 8238.03471875
transcript.pyannote[1443].speaker SPEAKER_13
transcript.pyannote[1443].start 8241.25784375
transcript.pyannote[1443].end 8246.03346875
transcript.pyannote[1444].speaker SPEAKER_06
transcript.pyannote[1444].start 8246.03346875
transcript.pyannote[1444].end 8247.82221875
transcript.pyannote[1445].speaker SPEAKER_13
transcript.pyannote[1445].start 8248.24409375
transcript.pyannote[1445].end 8248.26096875
transcript.pyannote[1446].speaker SPEAKER_06
transcript.pyannote[1446].start 8248.26096875
transcript.pyannote[1446].end 8249.74596875
transcript.pyannote[1447].speaker SPEAKER_06
transcript.pyannote[1447].start 8249.89784375
transcript.pyannote[1447].end 8251.33221875
transcript.pyannote[1448].speaker SPEAKER_06
transcript.pyannote[1448].start 8253.67784375
transcript.pyannote[1448].end 8258.55471875
transcript.pyannote[1449].speaker SPEAKER_06
transcript.pyannote[1449].start 8259.16221875
transcript.pyannote[1449].end 8259.93846875
transcript.pyannote[1450].speaker SPEAKER_06
transcript.pyannote[1450].start 8260.74846875
transcript.pyannote[1450].end 8261.45721875
transcript.pyannote[1451].speaker SPEAKER_06
transcript.pyannote[1451].start 8261.87909375
transcript.pyannote[1451].end 8264.76471875
transcript.pyannote[1452].speaker SPEAKER_06
transcript.pyannote[1452].start 8264.98409375
transcript.pyannote[1452].end 8265.92909375
transcript.pyannote[1453].speaker SPEAKER_06
transcript.pyannote[1453].start 8266.78971875
transcript.pyannote[1453].end 8268.20721875
transcript.pyannote[1454].speaker SPEAKER_08
transcript.pyannote[1454].start 8270.80596875
transcript.pyannote[1454].end 8271.27846875
transcript.pyannote[1455].speaker SPEAKER_08
transcript.pyannote[1455].start 8271.51471875
transcript.pyannote[1455].end 8271.54846875
transcript.pyannote[1456].speaker SPEAKER_06
transcript.pyannote[1456].start 8271.54846875
transcript.pyannote[1456].end 8272.57784375
transcript.pyannote[1457].speaker SPEAKER_06
transcript.pyannote[1457].start 8273.01659375
transcript.pyannote[1457].end 8273.65784375
transcript.pyannote[1458].speaker SPEAKER_06
transcript.pyannote[1458].start 8274.04596875
transcript.pyannote[1458].end 8277.85971875
transcript.pyannote[1459].speaker SPEAKER_08
transcript.pyannote[1459].start 8278.16346875
transcript.pyannote[1459].end 8278.51784375
transcript.pyannote[1460].speaker SPEAKER_06
transcript.pyannote[1460].start 8278.75409375
transcript.pyannote[1460].end 8278.77096875
transcript.pyannote[1461].speaker SPEAKER_10
transcript.pyannote[1461].start 8278.77096875
transcript.pyannote[1461].end 8279.26034375
transcript.pyannote[1462].speaker SPEAKER_10
transcript.pyannote[1462].start 8280.12096875
transcript.pyannote[1462].end 8283.27659375
transcript.pyannote[1463].speaker SPEAKER_06
transcript.pyannote[1463].start 8280.71159375
transcript.pyannote[1463].end 8281.13346875
transcript.pyannote[1464].speaker SPEAKER_08
transcript.pyannote[1464].start 8281.13346875
transcript.pyannote[1464].end 8281.18409375
transcript.pyannote[1465].speaker SPEAKER_06
transcript.pyannote[1465].start 8281.18409375
transcript.pyannote[1465].end 8281.20096875
transcript.pyannote[1466].speaker SPEAKER_06
transcript.pyannote[1466].start 8290.88721875
transcript.pyannote[1466].end 8293.53659375
transcript.pyannote[1467].speaker SPEAKER_24
transcript.pyannote[1467].start 8298.37971875
transcript.pyannote[1467].end 8305.99034375
transcript.pyannote[1468].speaker SPEAKER_06
transcript.pyannote[1468].start 8306.04096875
transcript.pyannote[1468].end 8309.70284375
transcript.pyannote[1469].speaker SPEAKER_11
transcript.pyannote[1469].start 8308.04909375
transcript.pyannote[1469].end 8308.80846875
transcript.pyannote[1470].speaker SPEAKER_24
transcript.pyannote[1470].start 8311.79534375
transcript.pyannote[1470].end 8313.22971875
transcript.pyannote[1471].speaker SPEAKER_24
transcript.pyannote[1471].start 8313.44909375
transcript.pyannote[1471].end 8324.87346875
transcript.pyannote[1472].speaker SPEAKER_24
transcript.pyannote[1472].start 8325.17721875
transcript.pyannote[1472].end 8332.78784375
transcript.pyannote[1473].speaker SPEAKER_24
transcript.pyannote[1473].start 8333.46284375
transcript.pyannote[1473].end 8342.45721875
transcript.pyannote[1474].speaker SPEAKER_24
transcript.pyannote[1474].start 8344.16159375
transcript.pyannote[1474].end 8392.20471875
transcript.pyannote[1475].speaker SPEAKER_24
transcript.pyannote[1475].start 8392.67721875
transcript.pyannote[1475].end 8402.68409375
transcript.pyannote[1476].speaker SPEAKER_24
transcript.pyannote[1476].start 8402.97096875
transcript.pyannote[1476].end 8404.81034375
transcript.pyannote[1477].speaker SPEAKER_24
transcript.pyannote[1477].start 8405.38409375
transcript.pyannote[1477].end 8410.49721875
transcript.pyannote[1478].speaker SPEAKER_24
transcript.pyannote[1478].start 8410.66596875
transcript.pyannote[1478].end 8420.77409375
transcript.pyannote[1479].speaker SPEAKER_24
transcript.pyannote[1479].start 8421.04409375
transcript.pyannote[1479].end 8421.90471875
transcript.pyannote[1480].speaker SPEAKER_24
transcript.pyannote[1480].start 8422.95096875
transcript.pyannote[1480].end 8424.19971875
transcript.pyannote[1481].speaker SPEAKER_24
transcript.pyannote[1481].start 8429.80221875
transcript.pyannote[1481].end 8442.42471875
transcript.pyannote[1482].speaker SPEAKER_24
transcript.pyannote[1482].start 8442.89721875
transcript.pyannote[1482].end 8445.10784375
transcript.pyannote[1483].speaker SPEAKER_24
transcript.pyannote[1483].start 8445.95159375
transcript.pyannote[1483].end 8448.61784375
transcript.pyannote[1484].speaker SPEAKER_24
transcript.pyannote[1484].start 8449.00596875
transcript.pyannote[1484].end 8476.20846875
transcript.pyannote[1485].speaker SPEAKER_24
transcript.pyannote[1485].start 8476.64721875
transcript.pyannote[1485].end 8477.94659375
transcript.pyannote[1486].speaker SPEAKER_24
transcript.pyannote[1486].start 8478.04784375
transcript.pyannote[1486].end 8487.81846875
transcript.pyannote[1487].speaker SPEAKER_24
transcript.pyannote[1487].start 8488.78034375
transcript.pyannote[1487].end 8494.31534375
transcript.pyannote[1488].speaker SPEAKER_24
transcript.pyannote[1488].start 8494.68659375
transcript.pyannote[1488].end 8498.75346875
transcript.pyannote[1489].speaker SPEAKER_24
transcript.pyannote[1489].start 8499.31034375
transcript.pyannote[1489].end 8500.47471875
transcript.pyannote[1490].speaker SPEAKER_24
transcript.pyannote[1490].start 8500.96409375
transcript.pyannote[1490].end 8521.28159375
transcript.pyannote[1491].speaker SPEAKER_24
transcript.pyannote[1491].start 8521.70346875
transcript.pyannote[1491].end 8538.69659375
transcript.pyannote[1492].speaker SPEAKER_24
transcript.pyannote[1492].start 8539.15221875
transcript.pyannote[1492].end 8541.49784375
transcript.pyannote[1493].speaker SPEAKER_24
transcript.pyannote[1493].start 8542.88159375
transcript.pyannote[1493].end 8550.00284375
transcript.pyannote[1494].speaker SPEAKER_24
transcript.pyannote[1494].start 8551.69034375
transcript.pyannote[1494].end 8552.88846875
transcript.pyannote[1495].speaker SPEAKER_24
transcript.pyannote[1495].start 8553.61409375
transcript.pyannote[1495].end 8562.76034375
transcript.pyannote[1496].speaker SPEAKER_24
transcript.pyannote[1496].start 8563.78971875
transcript.pyannote[1496].end 8566.16909375
transcript.pyannote[1497].speaker SPEAKER_24
transcript.pyannote[1497].start 8566.92846875
transcript.pyannote[1497].end 8586.97596875
transcript.pyannote[1498].speaker SPEAKER_24
transcript.pyannote[1498].start 8587.58346875
transcript.pyannote[1498].end 8589.32159375
transcript.pyannote[1499].speaker SPEAKER_24
transcript.pyannote[1499].start 8589.97971875
transcript.pyannote[1499].end 8592.40971875
transcript.pyannote[1500].speaker SPEAKER_24
transcript.pyannote[1500].start 8593.42221875
transcript.pyannote[1500].end 8594.09721875
transcript.pyannote[1501].speaker SPEAKER_24
transcript.pyannote[1501].start 8594.31659375
transcript.pyannote[1501].end 8600.81346875
transcript.pyannote[1502].speaker SPEAKER_24
transcript.pyannote[1502].start 8601.52221875
transcript.pyannote[1502].end 8608.13721875
transcript.pyannote[1503].speaker SPEAKER_24
transcript.pyannote[1503].start 8608.47471875
transcript.pyannote[1503].end 8614.26284375
transcript.pyannote[1504].speaker SPEAKER_24
transcript.pyannote[1504].start 8615.39346875
transcript.pyannote[1504].end 8616.15284375
transcript.pyannote[1505].speaker SPEAKER_24
transcript.pyannote[1505].start 8616.65909375
transcript.pyannote[1505].end 8632.55534375
transcript.pyannote[1506].speaker SPEAKER_24
transcript.pyannote[1506].start 8633.23034375
transcript.pyannote[1506].end 8659.58909375
transcript.pyannote[1507].speaker SPEAKER_14
transcript.pyannote[1507].start 8660.26409375
transcript.pyannote[1507].end 8663.28471875
transcript.pyannote[1508].speaker SPEAKER_24
transcript.pyannote[1508].start 8663.06534375
transcript.pyannote[1508].end 8664.76971875
transcript.pyannote[1509].speaker SPEAKER_24
transcript.pyannote[1509].start 8665.66409375
transcript.pyannote[1509].end 8670.74346875
transcript.pyannote[1510].speaker SPEAKER_14
transcript.pyannote[1510].start 8665.74846875
transcript.pyannote[1510].end 8666.96346875
transcript.pyannote[1511].speaker SPEAKER_24
transcript.pyannote[1511].start 8671.35096875
transcript.pyannote[1511].end 8674.97909375
transcript.pyannote[1512].speaker SPEAKER_14
transcript.pyannote[1512].start 8674.97909375
transcript.pyannote[1512].end 8675.04659375
transcript.pyannote[1513].speaker SPEAKER_24
transcript.pyannote[1513].start 8675.04659375
transcript.pyannote[1513].end 8676.54846875
transcript.pyannote[1514].speaker SPEAKER_14
transcript.pyannote[1514].start 8676.54846875
transcript.pyannote[1514].end 8689.84596875
transcript.pyannote[1515].speaker SPEAKER_24
transcript.pyannote[1515].start 8686.28534375
transcript.pyannote[1515].end 8690.82471875
transcript.pyannote[1516].speaker SPEAKER_14
transcript.pyannote[1516].start 8690.82471875
transcript.pyannote[1516].end 8691.56721875
transcript.pyannote[1517].speaker SPEAKER_24
transcript.pyannote[1517].start 8691.46596875
transcript.pyannote[1517].end 8693.00159375
transcript.pyannote[1518].speaker SPEAKER_24
transcript.pyannote[1518].start 8693.35596875
transcript.pyannote[1518].end 8700.37596875
transcript.pyannote[1519].speaker SPEAKER_24
transcript.pyannote[1519].start 8700.78096875
transcript.pyannote[1519].end 8713.72409375
transcript.pyannote[1520].speaker SPEAKER_24
transcript.pyannote[1520].start 8714.66909375
transcript.pyannote[1520].end 8719.00596875
transcript.pyannote[1521].speaker SPEAKER_24
transcript.pyannote[1521].start 8719.57971875
transcript.pyannote[1521].end 8750.29221875
transcript.pyannote[1522].speaker SPEAKER_24
transcript.pyannote[1522].start 8751.00096875
transcript.pyannote[1522].end 8754.66284375
transcript.pyannote[1523].speaker SPEAKER_08
transcript.pyannote[1523].start 8755.55721875
transcript.pyannote[1523].end 8760.09659375
transcript.pyannote[1524].speaker SPEAKER_24
transcript.pyannote[1524].start 8759.25284375
transcript.pyannote[1524].end 8763.28596875
transcript.pyannote[1525].speaker SPEAKER_08
transcript.pyannote[1525].start 8760.13034375
transcript.pyannote[1525].end 8760.24846875
transcript.pyannote[1526].speaker SPEAKER_08
transcript.pyannote[1526].start 8760.26534375
transcript.pyannote[1526].end 8760.97409375
transcript.pyannote[1527].speaker SPEAKER_24
transcript.pyannote[1527].start 8763.45471875
transcript.pyannote[1527].end 8767.97721875
transcript.pyannote[1528].speaker SPEAKER_24
transcript.pyannote[1528].start 8768.23034375
transcript.pyannote[1528].end 8770.91346875
transcript.pyannote[1529].speaker SPEAKER_24
transcript.pyannote[1529].start 8771.21721875
transcript.pyannote[1529].end 8778.52409375
transcript.pyannote[1530].speaker SPEAKER_24
transcript.pyannote[1530].start 8778.94596875
transcript.pyannote[1530].end 8791.56846875
transcript.pyannote[1531].speaker SPEAKER_24
transcript.pyannote[1531].start 8792.83409375
transcript.pyannote[1531].end 8793.57659375
transcript.pyannote[1532].speaker SPEAKER_24
transcript.pyannote[1532].start 8793.94784375
transcript.pyannote[1532].end 8794.58909375
transcript.pyannote[1533].speaker SPEAKER_24
transcript.pyannote[1533].start 8795.19659375
transcript.pyannote[1533].end 8816.47596875
transcript.pyannote[1534].speaker SPEAKER_24
transcript.pyannote[1534].start 8817.82596875
transcript.pyannote[1534].end 8835.84846875
transcript.pyannote[1535].speaker SPEAKER_24
transcript.pyannote[1535].start 8836.38846875
transcript.pyannote[1535].end 8838.12659375
transcript.pyannote[1536].speaker SPEAKER_14
transcript.pyannote[1536].start 8838.12659375
transcript.pyannote[1536].end 8849.38221875
transcript.pyannote[1537].speaker SPEAKER_24
transcript.pyannote[1537].start 8849.07846875
transcript.pyannote[1537].end 8851.05284375
transcript.pyannote[1538].speaker SPEAKER_14
transcript.pyannote[1538].start 8851.05284375
transcript.pyannote[1538].end 8858.86596875
transcript.pyannote[1539].speaker SPEAKER_24
transcript.pyannote[1539].start 8858.62971875
transcript.pyannote[1539].end 8875.82534375
transcript.pyannote[1540].speaker SPEAKER_14
transcript.pyannote[1540].start 8860.11471875
transcript.pyannote[1540].end 8860.65471875
transcript.pyannote[1541].speaker SPEAKER_24
transcript.pyannote[1541].start 8876.41596875
transcript.pyannote[1541].end 8877.93471875
transcript.pyannote[1542].speaker SPEAKER_24
transcript.pyannote[1542].start 8878.62659375
transcript.pyannote[1542].end 8894.55659375
transcript.pyannote[1543].speaker SPEAKER_24
transcript.pyannote[1543].start 8895.80534375
transcript.pyannote[1543].end 8896.44659375
transcript.pyannote[1544].speaker SPEAKER_24
transcript.pyannote[1544].start 8897.13846875
transcript.pyannote[1544].end 8899.48409375
transcript.pyannote[1545].speaker SPEAKER_24
transcript.pyannote[1545].start 8900.47971875
transcript.pyannote[1545].end 8922.19784375
transcript.pyannote[1546].speaker SPEAKER_24
transcript.pyannote[1546].start 8923.02471875
transcript.pyannote[1546].end 8923.63221875
transcript.pyannote[1547].speaker SPEAKER_13
transcript.pyannote[1547].start 8925.06659375
transcript.pyannote[1547].end 8925.55596875
transcript.pyannote[1548].speaker SPEAKER_24
transcript.pyannote[1548].start 8925.42096875
transcript.pyannote[1548].end 8932.00221875
transcript.pyannote[1549].speaker SPEAKER_13
transcript.pyannote[1549].start 8932.98096875
transcript.pyannote[1549].end 8936.76096875
transcript.pyannote[1550].speaker SPEAKER_24
transcript.pyannote[1550].start 8936.37284375
transcript.pyannote[1550].end 8938.21221875
transcript.pyannote[1551].speaker SPEAKER_13
transcript.pyannote[1551].start 8938.21221875
transcript.pyannote[1551].end 8938.60034375
transcript.pyannote[1552].speaker SPEAKER_24
transcript.pyannote[1552].start 8938.83659375
transcript.pyannote[1552].end 8940.82784375
transcript.pyannote[1553].speaker SPEAKER_13
transcript.pyannote[1553].start 8940.27096875
transcript.pyannote[1553].end 8945.60346875
transcript.pyannote[1554].speaker SPEAKER_24
transcript.pyannote[1554].start 8945.31659375
transcript.pyannote[1554].end 8964.90846875
transcript.pyannote[1555].speaker SPEAKER_24
transcript.pyannote[1555].start 8965.29659375
transcript.pyannote[1555].end 8965.98846875
transcript.pyannote[1556].speaker SPEAKER_24
transcript.pyannote[1556].start 8966.96721875
transcript.pyannote[1556].end 8978.66159375
transcript.pyannote[1557].speaker SPEAKER_24
transcript.pyannote[1557].start 8979.58971875
transcript.pyannote[1557].end 8980.46721875
transcript.pyannote[1558].speaker SPEAKER_24
transcript.pyannote[1558].start 8981.58096875
transcript.pyannote[1558].end 8989.37721875
transcript.pyannote[1559].speaker SPEAKER_08
transcript.pyannote[1559].start 8991.97596875
transcript.pyannote[1559].end 8992.53284375
transcript.pyannote[1560].speaker SPEAKER_08
transcript.pyannote[1560].start 8992.97159375
transcript.pyannote[1560].end 8993.03909375
transcript.pyannote[1561].speaker SPEAKER_24
transcript.pyannote[1561].start 8993.78159375
transcript.pyannote[1561].end 8995.03034375
transcript.pyannote[1562].speaker SPEAKER_08
transcript.pyannote[1562].start 8995.19909375
transcript.pyannote[1562].end 8996.53221875
transcript.pyannote[1563].speaker SPEAKER_08
transcript.pyannote[1563].start 8997.71346875
transcript.pyannote[1563].end 8999.28284375
transcript.pyannote[1564].speaker SPEAKER_24
transcript.pyannote[1564].start 8999.28284375
transcript.pyannote[1564].end 9002.48909375
transcript.pyannote[1565].speaker SPEAKER_08
transcript.pyannote[1565].start 8999.29971875
transcript.pyannote[1565].end 8999.31659375
transcript.pyannote[1566].speaker SPEAKER_08
transcript.pyannote[1566].start 8999.33346875
transcript.pyannote[1566].end 8999.35034375
transcript.pyannote[1567].speaker SPEAKER_24
transcript.pyannote[1567].start 9002.59034375
transcript.pyannote[1567].end 9005.91471875
transcript.pyannote[1568].speaker SPEAKER_08
transcript.pyannote[1568].start 9002.79284375
transcript.pyannote[1568].end 9003.50159375
transcript.pyannote[1569].speaker SPEAKER_13
transcript.pyannote[1569].start 9003.50159375
transcript.pyannote[1569].end 9004.10909375
transcript.pyannote[1570].speaker SPEAKER_08
transcript.pyannote[1570].start 9004.10909375
transcript.pyannote[1570].end 9004.15971875
transcript.pyannote[1571].speaker SPEAKER_13
transcript.pyannote[1571].start 9006.06659375
transcript.pyannote[1571].end 9010.63971875
transcript.pyannote[1572].speaker SPEAKER_13
transcript.pyannote[1572].start 9010.67346875
transcript.pyannote[1572].end 9010.70721875
transcript.pyannote[1573].speaker SPEAKER_24
transcript.pyannote[1573].start 9010.70721875
transcript.pyannote[1573].end 9018.46971875
transcript.pyannote[1574].speaker SPEAKER_13
transcript.pyannote[1574].start 9010.92659375
transcript.pyannote[1574].end 9012.12471875
transcript.pyannote[1575].speaker SPEAKER_24
transcript.pyannote[1575].start 9019.04346875
transcript.pyannote[1575].end 9025.13534375
transcript.pyannote[1576].speaker SPEAKER_24
transcript.pyannote[1576].start 9026.02971875
transcript.pyannote[1576].end 9026.63721875
transcript.pyannote[1577].speaker SPEAKER_24
transcript.pyannote[1577].start 9027.75096875
transcript.pyannote[1577].end 9042.53346875
transcript.pyannote[1578].speaker SPEAKER_24
transcript.pyannote[1578].start 9043.02284375
transcript.pyannote[1578].end 9052.65846875
transcript.pyannote[1579].speaker SPEAKER_24
transcript.pyannote[1579].start 9053.50221875
transcript.pyannote[1579].end 9069.19596875
transcript.pyannote[1580].speaker SPEAKER_24
transcript.pyannote[1580].start 9069.46596875
transcript.pyannote[1580].end 9070.51221875
transcript.pyannote[1581].speaker SPEAKER_24
transcript.pyannote[1581].start 9070.63034375
transcript.pyannote[1581].end 9071.59221875
transcript.pyannote[1582].speaker SPEAKER_24
transcript.pyannote[1582].start 9071.89596875
transcript.pyannote[1582].end 9075.45659375
transcript.pyannote[1583].speaker SPEAKER_24
transcript.pyannote[1583].start 9075.76034375
transcript.pyannote[1583].end 9078.98346875
transcript.pyannote[1584].speaker SPEAKER_24
transcript.pyannote[1584].start 9079.64159375
transcript.pyannote[1584].end 9081.05909375
transcript.pyannote[1585].speaker SPEAKER_13
transcript.pyannote[1585].start 9081.29534375
transcript.pyannote[1585].end 9087.28596875
transcript.pyannote[1586].speaker SPEAKER_24
transcript.pyannote[1586].start 9083.47221875
transcript.pyannote[1586].end 9084.99096875
transcript.pyannote[1587].speaker SPEAKER_24
transcript.pyannote[1587].start 9086.74596875
transcript.pyannote[1587].end 9099.87471875
transcript.pyannote[1588].speaker SPEAKER_13
transcript.pyannote[1588].start 9091.72409375
transcript.pyannote[1588].end 9092.51721875
transcript.pyannote[1589].speaker SPEAKER_24
transcript.pyannote[1589].start 9099.99284375
transcript.pyannote[1589].end 9107.16471875
transcript.pyannote[1590].speaker SPEAKER_24
transcript.pyannote[1590].start 9107.28284375
transcript.pyannote[1590].end 9108.16034375
transcript.pyannote[1591].speaker SPEAKER_11
transcript.pyannote[1591].start 9108.34596875
transcript.pyannote[1591].end 9111.70409375
transcript.pyannote[1592].speaker SPEAKER_24
transcript.pyannote[1592].start 9110.96159375
transcript.pyannote[1592].end 9111.29909375
transcript.pyannote[1593].speaker SPEAKER_24
transcript.pyannote[1593].start 9112.12596875
transcript.pyannote[1593].end 9131.86971875
transcript.pyannote[1594].speaker SPEAKER_24
transcript.pyannote[1594].start 9132.19034375
transcript.pyannote[1594].end 9154.31346875
transcript.pyannote[1595].speaker SPEAKER_24
transcript.pyannote[1595].start 9154.81971875
transcript.pyannote[1595].end 9156.08534375
transcript.pyannote[1596].speaker SPEAKER_24
transcript.pyannote[1596].start 9156.55784375
transcript.pyannote[1596].end 9159.94971875
transcript.pyannote[1597].speaker SPEAKER_06
transcript.pyannote[1597].start 9159.59534375
transcript.pyannote[1597].end 9163.42596875
transcript.pyannote[1598].speaker SPEAKER_13
transcript.pyannote[1598].start 9160.92846875
transcript.pyannote[1598].end 9161.04659375
transcript.pyannote[1599].speaker SPEAKER_24
transcript.pyannote[1599].start 9161.04659375
transcript.pyannote[1599].end 9161.09721875
transcript.pyannote[1600].speaker SPEAKER_13
transcript.pyannote[1600].start 9161.09721875
transcript.pyannote[1600].end 9161.18159375
transcript.pyannote[1601].speaker SPEAKER_06
transcript.pyannote[1601].start 9164.57346875
transcript.pyannote[1601].end 9170.56409375
transcript.pyannote[1602].speaker SPEAKER_10
transcript.pyannote[1602].start 9182.74784375
transcript.pyannote[1602].end 9186.57846875
transcript.pyannote[1603].speaker SPEAKER_10
transcript.pyannote[1603].start 9188.08034375
transcript.pyannote[1603].end 9189.49784375
transcript.pyannote[1604].speaker SPEAKER_13
transcript.pyannote[1604].start 9189.49784375
transcript.pyannote[1604].end 9190.32471875
transcript.pyannote[1605].speaker SPEAKER_10
transcript.pyannote[1605].start 9189.90284375
transcript.pyannote[1605].end 9203.36909375
transcript.pyannote[1606].speaker SPEAKER_10
transcript.pyannote[1606].start 9203.67284375
transcript.pyannote[1606].end 9226.33596875
transcript.pyannote[1607].speaker SPEAKER_10
transcript.pyannote[1607].start 9227.19659375
transcript.pyannote[1607].end 9262.02659375
transcript.pyannote[1608].speaker SPEAKER_10
transcript.pyannote[1608].start 9262.78596875
transcript.pyannote[1608].end 9291.86159375
transcript.pyannote[1609].speaker SPEAKER_13
transcript.pyannote[1609].start 9291.86159375
transcript.pyannote[1609].end 9360.96471875
transcript.pyannote[1610].speaker SPEAKER_19
transcript.pyannote[1610].start 9315.55409375
transcript.pyannote[1610].end 9315.82409375
transcript.pyannote[1611].speaker SPEAKER_10
transcript.pyannote[1611].start 9337.39034375
transcript.pyannote[1611].end 9338.40284375
transcript.pyannote[1612].speaker SPEAKER_10
transcript.pyannote[1612].start 9360.96471875
transcript.pyannote[1612].end 9361.13346875
transcript.pyannote[1613].speaker SPEAKER_13
transcript.pyannote[1613].start 9361.13346875
transcript.pyannote[1613].end 9400.43534375
transcript.pyannote[1614].speaker SPEAKER_13
transcript.pyannote[1614].start 9400.48596875
transcript.pyannote[1614].end 9401.97096875
transcript.pyannote[1615].speaker SPEAKER_10
transcript.pyannote[1615].start 9401.97096875
transcript.pyannote[1615].end 9408.75471875
transcript.pyannote[1616].speaker SPEAKER_10
transcript.pyannote[1616].start 9409.09221875
transcript.pyannote[1616].end 9426.57471875
transcript.pyannote[1617].speaker SPEAKER_10
transcript.pyannote[1617].start 9426.99659375
transcript.pyannote[1617].end 9432.34596875
transcript.pyannote[1618].speaker SPEAKER_10
transcript.pyannote[1618].start 9432.66659375
transcript.pyannote[1618].end 9448.05659375
transcript.pyannote[1619].speaker SPEAKER_13
transcript.pyannote[1619].start 9448.79909375
transcript.pyannote[1619].end 9490.96971875
transcript.pyannote[1620].speaker SPEAKER_10
transcript.pyannote[1620].start 9486.91971875
transcript.pyannote[1620].end 9487.29096875
transcript.pyannote[1621].speaker SPEAKER_10
transcript.pyannote[1621].start 9490.96971875
transcript.pyannote[1621].end 9522.50909375
transcript.pyannote[1622].speaker SPEAKER_13
transcript.pyannote[1622].start 9523.52159375
transcript.pyannote[1622].end 9555.28034375
transcript.pyannote[1623].speaker SPEAKER_13
transcript.pyannote[1623].start 9555.70221875
transcript.pyannote[1623].end 9601.85534375
transcript.pyannote[1624].speaker SPEAKER_10
transcript.pyannote[1624].start 9598.10909375
transcript.pyannote[1624].end 9599.42534375
transcript.pyannote[1625].speaker SPEAKER_10
transcript.pyannote[1625].start 9601.85534375
transcript.pyannote[1625].end 9634.27221875
transcript.pyannote[1626].speaker SPEAKER_13
transcript.pyannote[1626].start 9601.87221875
transcript.pyannote[1626].end 9602.10846875
transcript.pyannote[1627].speaker SPEAKER_10
transcript.pyannote[1627].start 9634.79534375
transcript.pyannote[1627].end 9637.68096875
transcript.pyannote[1628].speaker SPEAKER_13
transcript.pyannote[1628].start 9637.05659375
transcript.pyannote[1628].end 9670.51971875
transcript.pyannote[1629].speaker SPEAKER_10
transcript.pyannote[1629].start 9668.37659375
transcript.pyannote[1629].end 9669.25409375
transcript.pyannote[1630].speaker SPEAKER_10
transcript.pyannote[1630].start 9670.51971875
transcript.pyannote[1630].end 9682.14659375
transcript.pyannote[1631].speaker SPEAKER_10
transcript.pyannote[1631].start 9689.75721875
transcript.pyannote[1631].end 9758.62409375
transcript.pyannote[1632].speaker SPEAKER_20
transcript.pyannote[1632].start 9761.27346875
transcript.pyannote[1632].end 9763.06221875
transcript.pyannote[1633].speaker SPEAKER_20
transcript.pyannote[1633].start 9763.12971875
transcript.pyannote[1633].end 9778.13159375
transcript.pyannote[1634].speaker SPEAKER_10
transcript.pyannote[1634].start 9777.23721875
transcript.pyannote[1634].end 9790.92284375
transcript.pyannote[1635].speaker SPEAKER_10
transcript.pyannote[1635].start 9791.26034375
transcript.pyannote[1635].end 9808.11846875
transcript.pyannote[1636].speaker SPEAKER_10
transcript.pyannote[1636].start 9808.50659375
transcript.pyannote[1636].end 9829.16159375
transcript.pyannote[1637].speaker SPEAKER_09
transcript.pyannote[1637].start 9829.51596875
transcript.pyannote[1637].end 9840.60284375
transcript.pyannote[1638].speaker SPEAKER_10
transcript.pyannote[1638].start 9840.60284375
transcript.pyannote[1638].end 9845.37846875
transcript.pyannote[1639].speaker SPEAKER_10
transcript.pyannote[1639].start 9845.86784375
transcript.pyannote[1639].end 9857.25846875
transcript.pyannote[1640].speaker SPEAKER_06
transcript.pyannote[1640].start 9857.25846875
transcript.pyannote[1640].end 9857.29221875
transcript.pyannote[1641].speaker SPEAKER_10
transcript.pyannote[1641].start 9857.29221875
transcript.pyannote[1641].end 9857.30909375
transcript.pyannote[1642].speaker SPEAKER_10
transcript.pyannote[1642].start 9858.38909375
transcript.pyannote[1642].end 9858.43971875
transcript.pyannote[1643].speaker SPEAKER_06
transcript.pyannote[1643].start 9858.43971875
transcript.pyannote[1643].end 9859.19909375
transcript.pyannote[1644].speaker SPEAKER_06
transcript.pyannote[1644].start 9860.05971875
transcript.pyannote[1644].end 9866.15159375
transcript.pyannote[1645].speaker SPEAKER_06
transcript.pyannote[1645].start 10192.64909375
transcript.pyannote[1645].end 10196.26034375
transcript.pyannote[1646].speaker SPEAKER_06
transcript.pyannote[1646].start 10198.21784375
transcript.pyannote[1646].end 10199.09534375
transcript.pyannote[1647].speaker SPEAKER_21
transcript.pyannote[1647].start 10201.27221875
transcript.pyannote[1647].end 10203.09471875
transcript.pyannote[1648].speaker SPEAKER_21
transcript.pyannote[1648].start 10203.26346875
transcript.pyannote[1648].end 10205.67659375
transcript.pyannote[1649].speaker SPEAKER_21
transcript.pyannote[1649].start 10205.96346875
transcript.pyannote[1649].end 10212.46034375
transcript.pyannote[1650].speaker SPEAKER_21
transcript.pyannote[1650].start 10212.69659375
transcript.pyannote[1650].end 10214.14784375
transcript.pyannote[1651].speaker SPEAKER_06
transcript.pyannote[1651].start 10213.89471875
transcript.pyannote[1651].end 10213.96221875
transcript.pyannote[1652].speaker SPEAKER_21
transcript.pyannote[1652].start 10214.40096875
transcript.pyannote[1652].end 10215.98721875
transcript.pyannote[1653].speaker SPEAKER_21
transcript.pyannote[1653].start 10216.29096875
transcript.pyannote[1653].end 10217.25284375
transcript.pyannote[1654].speaker SPEAKER_06
transcript.pyannote[1654].start 10217.37096875
transcript.pyannote[1654].end 10220.29034375
transcript.pyannote[1655].speaker SPEAKER_13
transcript.pyannote[1655].start 10219.29471875
transcript.pyannote[1655].end 10220.00346875
transcript.pyannote[1656].speaker SPEAKER_21
transcript.pyannote[1656].start 10220.86409375
transcript.pyannote[1656].end 10225.11659375
transcript.pyannote[1657].speaker SPEAKER_21
transcript.pyannote[1657].start 10225.63971875
transcript.pyannote[1657].end 10230.41534375
transcript.pyannote[1658].speaker SPEAKER_21
transcript.pyannote[1658].start 10231.61346875
transcript.pyannote[1658].end 10233.62159375
transcript.pyannote[1659].speaker SPEAKER_21
transcript.pyannote[1659].start 10233.80721875
transcript.pyannote[1659].end 10234.80284375
transcript.pyannote[1660].speaker SPEAKER_21
transcript.pyannote[1660].start 10235.49471875
transcript.pyannote[1660].end 10235.88284375
transcript.pyannote[1661].speaker SPEAKER_21
transcript.pyannote[1661].start 10236.05159375
transcript.pyannote[1661].end 10238.95409375
transcript.pyannote[1662].speaker SPEAKER_21
transcript.pyannote[1662].start 10240.06784375
transcript.pyannote[1662].end 10241.21534375
transcript.pyannote[1663].speaker SPEAKER_21
transcript.pyannote[1663].start 10242.12659375
transcript.pyannote[1663].end 10243.39221875
transcript.pyannote[1664].speaker SPEAKER_21
transcript.pyannote[1664].start 10247.08784375
transcript.pyannote[1664].end 10248.28596875
transcript.pyannote[1665].speaker SPEAKER_21
transcript.pyannote[1665].start 10249.07909375
transcript.pyannote[1665].end 10249.95659375
transcript.pyannote[1666].speaker SPEAKER_08
transcript.pyannote[1666].start 10251.17159375
transcript.pyannote[1666].end 10252.26846875
transcript.pyannote[1667].speaker SPEAKER_21
transcript.pyannote[1667].start 10251.93096875
transcript.pyannote[1667].end 10254.34409375
transcript.pyannote[1668].speaker SPEAKER_21
transcript.pyannote[1668].start 10254.63096875
transcript.pyannote[1668].end 10255.06971875
transcript.pyannote[1669].speaker SPEAKER_21
transcript.pyannote[1669].start 10255.44096875
transcript.pyannote[1669].end 10256.25096875
transcript.pyannote[1670].speaker SPEAKER_19
transcript.pyannote[1670].start 10260.99284375
transcript.pyannote[1670].end 10261.29659375
transcript.pyannote[1671].speaker SPEAKER_13
transcript.pyannote[1671].start 10261.29659375
transcript.pyannote[1671].end 10261.31346875
transcript.pyannote[1672].speaker SPEAKER_19
transcript.pyannote[1672].start 10261.31346875
transcript.pyannote[1672].end 10261.33034375
transcript.pyannote[1673].speaker SPEAKER_13
transcript.pyannote[1673].start 10261.33034375
transcript.pyannote[1673].end 10272.83909375
transcript.pyannote[1674].speaker SPEAKER_19
transcript.pyannote[1674].start 10261.34721875
transcript.pyannote[1674].end 10261.58346875
transcript.pyannote[1675].speaker SPEAKER_21
transcript.pyannote[1675].start 10270.37534375
transcript.pyannote[1675].end 10270.96596875
transcript.pyannote[1676].speaker SPEAKER_13
transcript.pyannote[1676].start 10273.42971875
transcript.pyannote[1676].end 10274.77971875
transcript.pyannote[1677].speaker SPEAKER_21
transcript.pyannote[1677].start 10275.55596875
transcript.pyannote[1677].end 10276.12971875
transcript.pyannote[1678].speaker SPEAKER_08
transcript.pyannote[1678].start 10276.12971875
transcript.pyannote[1678].end 10276.29846875
transcript.pyannote[1679].speaker SPEAKER_21
transcript.pyannote[1679].start 10276.29846875
transcript.pyannote[1679].end 10276.97346875
transcript.pyannote[1680].speaker SPEAKER_08
transcript.pyannote[1680].start 10276.97346875
transcript.pyannote[1680].end 10277.17596875
transcript.pyannote[1681].speaker SPEAKER_08
transcript.pyannote[1681].start 10277.73284375
transcript.pyannote[1681].end 10278.50909375
transcript.pyannote[1682].speaker SPEAKER_08
transcript.pyannote[1682].start 10279.47096875
transcript.pyannote[1682].end 10283.52096875
transcript.pyannote[1683].speaker SPEAKER_21
transcript.pyannote[1683].start 10281.10784375
transcript.pyannote[1683].end 10281.15846875
transcript.pyannote[1684].speaker SPEAKER_13
transcript.pyannote[1684].start 10281.15846875
transcript.pyannote[1684].end 10281.17534375
transcript.pyannote[1685].speaker SPEAKER_21
transcript.pyannote[1685].start 10281.17534375
transcript.pyannote[1685].end 10282.03596875
transcript.pyannote[1686].speaker SPEAKER_14
transcript.pyannote[1686].start 10282.03596875
transcript.pyannote[1686].end 10282.37346875
transcript.pyannote[1687].speaker SPEAKER_21
transcript.pyannote[1687].start 10282.37346875
transcript.pyannote[1687].end 10282.39034375
transcript.pyannote[1688].speaker SPEAKER_08
transcript.pyannote[1688].start 10284.28034375
transcript.pyannote[1688].end 10285.73159375
transcript.pyannote[1689].speaker SPEAKER_14
transcript.pyannote[1689].start 10284.34784375
transcript.pyannote[1689].end 10285.03971875
transcript.pyannote[1690].speaker SPEAKER_14
transcript.pyannote[1690].start 10285.73159375
transcript.pyannote[1690].end 10285.76534375
transcript.pyannote[1691].speaker SPEAKER_08
transcript.pyannote[1691].start 10285.76534375
transcript.pyannote[1691].end 10285.78221875
transcript.pyannote[1692].speaker SPEAKER_14
transcript.pyannote[1692].start 10285.78221875
transcript.pyannote[1692].end 10285.79909375
transcript.pyannote[1693].speaker SPEAKER_08
transcript.pyannote[1693].start 10285.98471875
transcript.pyannote[1693].end 10286.76096875
transcript.pyannote[1694].speaker SPEAKER_14
transcript.pyannote[1694].start 10287.84096875
transcript.pyannote[1694].end 10292.38034375
transcript.pyannote[1695].speaker SPEAKER_21
transcript.pyannote[1695].start 10293.12284375
transcript.pyannote[1695].end 10297.27409375
transcript.pyannote[1696].speaker SPEAKER_21
transcript.pyannote[1696].start 10299.14721875
transcript.pyannote[1696].end 10300.17659375
transcript.pyannote[1697].speaker SPEAKER_21
transcript.pyannote[1697].start 10300.36221875
transcript.pyannote[1697].end 10303.02846875
transcript.pyannote[1698].speaker SPEAKER_21
transcript.pyannote[1698].start 10303.23096875
transcript.pyannote[1698].end 10308.73221875
transcript.pyannote[1699].speaker SPEAKER_21
transcript.pyannote[1699].start 10310.11596875
transcript.pyannote[1699].end 10312.17471875
transcript.pyannote[1700].speaker SPEAKER_21
transcript.pyannote[1700].start 10312.78221875
transcript.pyannote[1700].end 10313.52471875
transcript.pyannote[1701].speaker SPEAKER_21
transcript.pyannote[1701].start 10313.55846875
transcript.pyannote[1701].end 10316.02221875
transcript.pyannote[1702].speaker SPEAKER_21
transcript.pyannote[1702].start 10317.79409375
transcript.pyannote[1702].end 10319.11034375
transcript.pyannote[1703].speaker SPEAKER_21
transcript.pyannote[1703].start 10319.90346875
transcript.pyannote[1703].end 10320.89909375
transcript.pyannote[1704].speaker SPEAKER_21
transcript.pyannote[1704].start 10321.48971875
transcript.pyannote[1704].end 10326.55221875
transcript.pyannote[1705].speaker SPEAKER_21
transcript.pyannote[1705].start 10327.02471875
transcript.pyannote[1705].end 10338.31409375
transcript.pyannote[1706].speaker SPEAKER_00
transcript.pyannote[1706].start 10329.30284375
transcript.pyannote[1706].end 10329.53909375
transcript.pyannote[1707].speaker SPEAKER_21
transcript.pyannote[1707].start 10339.02284375
transcript.pyannote[1707].end 10356.70784375
transcript.pyannote[1708].speaker SPEAKER_21
transcript.pyannote[1708].start 10357.75409375
transcript.pyannote[1708].end 10365.21284375
transcript.pyannote[1709].speaker SPEAKER_21
transcript.pyannote[1709].start 10366.19159375
transcript.pyannote[1709].end 10370.02221875
transcript.pyannote[1710].speaker SPEAKER_13
transcript.pyannote[1710].start 10367.38971875
transcript.pyannote[1710].end 10368.89159375
transcript.pyannote[1711].speaker SPEAKER_13
transcript.pyannote[1711].start 10370.10659375
transcript.pyannote[1711].end 10384.70346875
transcript.pyannote[1712].speaker SPEAKER_21
transcript.pyannote[1712].start 10384.97346875
transcript.pyannote[1712].end 10396.66784375
transcript.pyannote[1713].speaker SPEAKER_21
transcript.pyannote[1713].start 10396.68471875
transcript.pyannote[1713].end 10399.19909375
transcript.pyannote[1714].speaker SPEAKER_13
transcript.pyannote[1714].start 10398.25409375
transcript.pyannote[1714].end 10411.70346875
transcript.pyannote[1715].speaker SPEAKER_21
transcript.pyannote[1715].start 10411.61909375
transcript.pyannote[1715].end 10418.80784375
transcript.pyannote[1716].speaker SPEAKER_21
transcript.pyannote[1716].start 10419.66846875
transcript.pyannote[1716].end 10428.24096875
transcript.pyannote[1717].speaker SPEAKER_21
transcript.pyannote[1717].start 10428.66284375
transcript.pyannote[1717].end 10429.05096875
transcript.pyannote[1718].speaker SPEAKER_21
transcript.pyannote[1718].start 10431.97034375
transcript.pyannote[1718].end 10433.52284375
transcript.pyannote[1719].speaker SPEAKER_21
transcript.pyannote[1719].start 10434.13034375
transcript.pyannote[1719].end 10441.21784375
transcript.pyannote[1720].speaker SPEAKER_21
transcript.pyannote[1720].start 10441.69034375
transcript.pyannote[1720].end 10445.36909375
transcript.pyannote[1721].speaker SPEAKER_21
transcript.pyannote[1721].start 10446.29721875
transcript.pyannote[1721].end 10447.44471875
transcript.pyannote[1722].speaker SPEAKER_13
transcript.pyannote[1722].start 10451.64659375
transcript.pyannote[1722].end 10460.52284375
transcript.pyannote[1723].speaker SPEAKER_21
transcript.pyannote[1723].start 10459.78034375
transcript.pyannote[1723].end 10462.81784375
transcript.pyannote[1724].speaker SPEAKER_13
transcript.pyannote[1724].start 10460.57346875
transcript.pyannote[1724].end 10461.55221875
transcript.pyannote[1725].speaker SPEAKER_21
transcript.pyannote[1725].start 10463.15534375
transcript.pyannote[1725].end 10465.34909375
transcript.pyannote[1726].speaker SPEAKER_21
transcript.pyannote[1726].start 10466.15909375
transcript.pyannote[1726].end 10476.53721875
transcript.pyannote[1727].speaker SPEAKER_08
transcript.pyannote[1727].start 10476.53721875
transcript.pyannote[1727].end 10482.19034375
transcript.pyannote[1728].speaker SPEAKER_08
transcript.pyannote[1728].start 10482.73034375
transcript.pyannote[1728].end 10486.30784375
transcript.pyannote[1729].speaker SPEAKER_08
transcript.pyannote[1729].start 10486.35846875
transcript.pyannote[1729].end 10489.04159375
transcript.pyannote[1730].speaker SPEAKER_08
transcript.pyannote[1730].start 10489.05846875
transcript.pyannote[1730].end 10489.71659375
transcript.pyannote[1731].speaker SPEAKER_08
transcript.pyannote[1731].start 10489.76721875
transcript.pyannote[1731].end 10493.02409375
transcript.pyannote[1732].speaker SPEAKER_08
transcript.pyannote[1732].start 10493.07471875
transcript.pyannote[1732].end 10494.23909375
transcript.pyannote[1733].speaker SPEAKER_08
transcript.pyannote[1733].start 10494.76221875
transcript.pyannote[1733].end 10496.77034375
transcript.pyannote[1734].speaker SPEAKER_08
transcript.pyannote[1734].start 10496.80409375
transcript.pyannote[1734].end 10497.88409375
transcript.pyannote[1735].speaker SPEAKER_08
transcript.pyannote[1735].start 10498.25534375
transcript.pyannote[1735].end 10500.02721875
transcript.pyannote[1736].speaker SPEAKER_08
transcript.pyannote[1736].start 10500.28034375
transcript.pyannote[1736].end 10503.40221875
transcript.pyannote[1737].speaker SPEAKER_21
transcript.pyannote[1737].start 10502.96346875
transcript.pyannote[1737].end 10506.72659375
transcript.pyannote[1738].speaker SPEAKER_08
transcript.pyannote[1738].start 10506.91221875
transcript.pyannote[1738].end 10513.30784375
transcript.pyannote[1739].speaker SPEAKER_21
transcript.pyannote[1739].start 10512.07596875
transcript.pyannote[1739].end 10513.32471875
transcript.pyannote[1740].speaker SPEAKER_08
transcript.pyannote[1740].start 10513.32471875
transcript.pyannote[1740].end 10513.76346875
transcript.pyannote[1741].speaker SPEAKER_08
transcript.pyannote[1741].start 10514.11784375
transcript.pyannote[1741].end 10515.34971875
transcript.pyannote[1742].speaker SPEAKER_21
transcript.pyannote[1742].start 10514.86034375
transcript.pyannote[1742].end 10515.09659375
transcript.pyannote[1743].speaker SPEAKER_08
transcript.pyannote[1743].start 10515.73784375
transcript.pyannote[1743].end 10516.41284375
transcript.pyannote[1744].speaker SPEAKER_08
transcript.pyannote[1744].start 10516.63221875
transcript.pyannote[1744].end 10519.68659375
transcript.pyannote[1745].speaker SPEAKER_08
transcript.pyannote[1745].start 10520.09159375
transcript.pyannote[1745].end 10520.95221875
transcript.pyannote[1746].speaker SPEAKER_08
transcript.pyannote[1746].start 10521.52596875
transcript.pyannote[1746].end 10523.65221875
transcript.pyannote[1747].speaker SPEAKER_08
transcript.pyannote[1747].start 10523.75346875
transcript.pyannote[1747].end 10523.95596875
transcript.pyannote[1748].speaker SPEAKER_08
transcript.pyannote[1748].start 10524.17534375
transcript.pyannote[1748].end 10526.77409375
transcript.pyannote[1749].speaker SPEAKER_21
transcript.pyannote[1749].start 10526.77409375
transcript.pyannote[1749].end 10528.00596875
transcript.pyannote[1750].speaker SPEAKER_08
transcript.pyannote[1750].start 10528.00596875
transcript.pyannote[1750].end 10534.51971875
transcript.pyannote[1751].speaker SPEAKER_21
transcript.pyannote[1751].start 10528.22534375
transcript.pyannote[1751].end 10528.64721875
transcript.pyannote[1752].speaker SPEAKER_08
transcript.pyannote[1752].start 10534.63784375
transcript.pyannote[1752].end 10540.08846875
transcript.pyannote[1753].speaker SPEAKER_21
transcript.pyannote[1753].start 10540.32471875
transcript.pyannote[1753].end 10549.01534375
transcript.pyannote[1754].speaker SPEAKER_21
transcript.pyannote[1754].start 10549.55534375
transcript.pyannote[1754].end 10552.13721875
transcript.pyannote[1755].speaker SPEAKER_21
transcript.pyannote[1755].start 10552.37346875
transcript.pyannote[1755].end 10556.38971875
transcript.pyannote[1756].speaker SPEAKER_21
transcript.pyannote[1756].start 10556.65971875
transcript.pyannote[1756].end 10568.15159375
transcript.pyannote[1757].speaker SPEAKER_21
transcript.pyannote[1757].start 10568.50596875
transcript.pyannote[1757].end 10571.35784375
transcript.pyannote[1758].speaker SPEAKER_21
transcript.pyannote[1758].start 10571.37471875
transcript.pyannote[1758].end 10572.96096875
transcript.pyannote[1759].speaker SPEAKER_21
transcript.pyannote[1759].start 10573.26471875
transcript.pyannote[1759].end 10574.58096875
transcript.pyannote[1760].speaker SPEAKER_13
transcript.pyannote[1760].start 10575.32346875
transcript.pyannote[1760].end 10576.03221875
transcript.pyannote[1761].speaker SPEAKER_06
transcript.pyannote[1761].start 10576.03221875
transcript.pyannote[1761].end 10576.13346875
transcript.pyannote[1762].speaker SPEAKER_13
transcript.pyannote[1762].start 10576.13346875
transcript.pyannote[1762].end 10576.15034375
transcript.pyannote[1763].speaker SPEAKER_06
transcript.pyannote[1763].start 10580.68971875
transcript.pyannote[1763].end 10585.27971875
transcript.pyannote[1764].speaker SPEAKER_06
transcript.pyannote[1764].start 10588.78971875
transcript.pyannote[1764].end 10589.07659375
transcript.pyannote[1765].speaker SPEAKER_03
transcript.pyannote[1765].start 10596.83909375
transcript.pyannote[1765].end 10604.34846875
transcript.pyannote[1766].speaker SPEAKER_06
transcript.pyannote[1766].start 10604.92221875
transcript.pyannote[1766].end 10604.93909375
transcript.pyannote[1767].speaker SPEAKER_03
transcript.pyannote[1767].start 10604.93909375
transcript.pyannote[1767].end 10605.90096875
transcript.pyannote[1768].speaker SPEAKER_19
transcript.pyannote[1768].start 10606.22159375
transcript.pyannote[1768].end 10606.47471875
transcript.pyannote[1769].speaker SPEAKER_03
transcript.pyannote[1769].start 10607.13284375
transcript.pyannote[1769].end 10607.97659375
transcript.pyannote[1770].speaker SPEAKER_03
transcript.pyannote[1770].start 10608.76971875
transcript.pyannote[1770].end 10610.15346875
transcript.pyannote[1771].speaker SPEAKER_03
transcript.pyannote[1771].start 10611.25034375
transcript.pyannote[1771].end 10613.32596875
transcript.pyannote[1772].speaker SPEAKER_03
transcript.pyannote[1772].start 10615.72221875
transcript.pyannote[1772].end 10618.27034375
transcript.pyannote[1773].speaker SPEAKER_03
transcript.pyannote[1773].start 10619.11409375
transcript.pyannote[1773].end 10623.23159375
transcript.pyannote[1774].speaker SPEAKER_03
transcript.pyannote[1774].start 10623.97409375
transcript.pyannote[1774].end 10627.04534375
transcript.pyannote[1775].speaker SPEAKER_03
transcript.pyannote[1775].start 10627.80471875
transcript.pyannote[1775].end 10635.65159375
transcript.pyannote[1776].speaker SPEAKER_03
transcript.pyannote[1776].start 10636.25909375
transcript.pyannote[1776].end 10649.84346875
transcript.pyannote[1777].speaker SPEAKER_03
transcript.pyannote[1777].start 10650.04596875
transcript.pyannote[1777].end 10650.77159375
transcript.pyannote[1778].speaker SPEAKER_03
transcript.pyannote[1778].start 10651.26096875
transcript.pyannote[1778].end 10660.28909375
transcript.pyannote[1779].speaker SPEAKER_03
transcript.pyannote[1779].start 10660.74471875
transcript.pyannote[1779].end 10661.26784375
transcript.pyannote[1780].speaker SPEAKER_03
transcript.pyannote[1780].start 10661.74034375
transcript.pyannote[1780].end 10668.40596875
transcript.pyannote[1781].speaker SPEAKER_13
transcript.pyannote[1781].start 10668.84471875
transcript.pyannote[1781].end 10673.02971875
transcript.pyannote[1782].speaker SPEAKER_13
transcript.pyannote[1782].start 10673.16471875
transcript.pyannote[1782].end 10703.82659375
transcript.pyannote[1783].speaker SPEAKER_03
transcript.pyannote[1783].start 10702.25721875
transcript.pyannote[1783].end 10703.89409375
transcript.pyannote[1784].speaker SPEAKER_13
transcript.pyannote[1784].start 10703.89409375
transcript.pyannote[1784].end 10704.07971875
transcript.pyannote[1785].speaker SPEAKER_03
transcript.pyannote[1785].start 10704.07971875
transcript.pyannote[1785].end 10728.32909375
transcript.pyannote[1786].speaker SPEAKER_03
transcript.pyannote[1786].start 10729.47659375
transcript.pyannote[1786].end 10731.56909375
transcript.pyannote[1787].speaker SPEAKER_13
transcript.pyannote[1787].start 10732.66596875
transcript.pyannote[1787].end 10747.71846875
transcript.pyannote[1788].speaker SPEAKER_03
transcript.pyannote[1788].start 10747.46534375
transcript.pyannote[1788].end 10773.72284375
transcript.pyannote[1789].speaker SPEAKER_03
transcript.pyannote[1789].start 10774.04346875
transcript.pyannote[1789].end 10776.13596875
transcript.pyannote[1790].speaker SPEAKER_03
transcript.pyannote[1790].start 10777.53659375
transcript.pyannote[1790].end 10779.35909375
transcript.pyannote[1791].speaker SPEAKER_03
transcript.pyannote[1791].start 10780.38846875
transcript.pyannote[1791].end 10781.77221875
transcript.pyannote[1792].speaker SPEAKER_03
transcript.pyannote[1792].start 10781.97471875
transcript.pyannote[1792].end 10782.37971875
transcript.pyannote[1793].speaker SPEAKER_03
transcript.pyannote[1793].start 10782.73409375
transcript.pyannote[1793].end 10786.95284375
transcript.pyannote[1794].speaker SPEAKER_03
transcript.pyannote[1794].start 10787.56034375
transcript.pyannote[1794].end 10789.92284375
transcript.pyannote[1795].speaker SPEAKER_03
transcript.pyannote[1795].start 10790.42909375
transcript.pyannote[1795].end 10791.22221875
transcript.pyannote[1796].speaker SPEAKER_03
transcript.pyannote[1796].start 10791.61034375
transcript.pyannote[1796].end 10793.41596875
transcript.pyannote[1797].speaker SPEAKER_03
transcript.pyannote[1797].start 10794.31034375
transcript.pyannote[1797].end 10796.01471875
transcript.pyannote[1798].speaker SPEAKER_03
transcript.pyannote[1798].start 10796.99346875
transcript.pyannote[1798].end 10798.30971875
transcript.pyannote[1799].speaker SPEAKER_03
transcript.pyannote[1799].start 10799.01846875
transcript.pyannote[1799].end 10800.57096875
transcript.pyannote[1800].speaker SPEAKER_03
transcript.pyannote[1800].start 10801.17846875
transcript.pyannote[1800].end 10804.41846875
transcript.pyannote[1801].speaker SPEAKER_03
transcript.pyannote[1801].start 10805.70096875
transcript.pyannote[1801].end 10806.84846875
transcript.pyannote[1802].speaker SPEAKER_03
transcript.pyannote[1802].start 10807.35471875
transcript.pyannote[1802].end 10810.49346875
transcript.pyannote[1803].speaker SPEAKER_03
transcript.pyannote[1803].start 10810.78034375
transcript.pyannote[1803].end 10812.70409375
transcript.pyannote[1804].speaker SPEAKER_03
transcript.pyannote[1804].start 10813.51409375
transcript.pyannote[1804].end 10817.12534375
transcript.pyannote[1805].speaker SPEAKER_03
transcript.pyannote[1805].start 10817.56409375
transcript.pyannote[1805].end 10824.02721875
transcript.pyannote[1806].speaker SPEAKER_03
transcript.pyannote[1806].start 10824.46596875
transcript.pyannote[1806].end 10828.11096875
transcript.pyannote[1807].speaker SPEAKER_03
transcript.pyannote[1807].start 10829.02221875
transcript.pyannote[1807].end 10829.47784375
transcript.pyannote[1808].speaker SPEAKER_13
transcript.pyannote[1808].start 10842.35346875
transcript.pyannote[1808].end 10842.45471875
transcript.pyannote[1809].speaker SPEAKER_13
transcript.pyannote[1809].start 10842.53909375
transcript.pyannote[1809].end 10850.03159375
transcript.pyannote[1810].speaker SPEAKER_03
transcript.pyannote[1810].start 10855.34721875
transcript.pyannote[1810].end 10884.16971875
transcript.pyannote[1811].speaker SPEAKER_03
transcript.pyannote[1811].start 10884.70971875
transcript.pyannote[1811].end 10891.84784375
transcript.pyannote[1812].speaker SPEAKER_03
transcript.pyannote[1812].start 10892.11784375
transcript.pyannote[1812].end 10906.07346875
transcript.pyannote[1813].speaker SPEAKER_03
transcript.pyannote[1813].start 10906.42784375
transcript.pyannote[1813].end 10913.59971875
transcript.pyannote[1814].speaker SPEAKER_13
transcript.pyannote[1814].start 10914.62909375
transcript.pyannote[1814].end 10919.99534375
transcript.pyannote[1815].speaker SPEAKER_03
transcript.pyannote[1815].start 10919.40471875
transcript.pyannote[1815].end 10923.50534375
transcript.pyannote[1816].speaker SPEAKER_13
transcript.pyannote[1816].start 10922.93159375
transcript.pyannote[1816].end 10929.24284375
transcript.pyannote[1817].speaker SPEAKER_03
transcript.pyannote[1817].start 10925.86784375
transcript.pyannote[1817].end 10926.13784375
transcript.pyannote[1818].speaker SPEAKER_03
transcript.pyannote[1818].start 10927.77471875
transcript.pyannote[1818].end 10933.46159375
transcript.pyannote[1819].speaker SPEAKER_03
transcript.pyannote[1819].start 10933.63034375
transcript.pyannote[1819].end 10938.50721875
transcript.pyannote[1820].speaker SPEAKER_03
transcript.pyannote[1820].start 10939.11471875
transcript.pyannote[1820].end 10942.30409375
transcript.pyannote[1821].speaker SPEAKER_03
transcript.pyannote[1821].start 10942.52346875
transcript.pyannote[1821].end 10944.19409375
transcript.pyannote[1822].speaker SPEAKER_03
transcript.pyannote[1822].start 10944.27846875
transcript.pyannote[1822].end 10948.75034375
transcript.pyannote[1823].speaker SPEAKER_03
transcript.pyannote[1823].start 10949.13846875
transcript.pyannote[1823].end 10952.34471875
transcript.pyannote[1824].speaker SPEAKER_03
transcript.pyannote[1824].start 10952.90159375
transcript.pyannote[1824].end 10955.71971875
transcript.pyannote[1825].speaker SPEAKER_03
transcript.pyannote[1825].start 10956.00659375
transcript.pyannote[1825].end 10963.51596875
transcript.pyannote[1826].speaker SPEAKER_03
transcript.pyannote[1826].start 10964.71409375
transcript.pyannote[1826].end 10970.13096875
transcript.pyannote[1827].speaker SPEAKER_03
transcript.pyannote[1827].start 10970.40096875
transcript.pyannote[1827].end 10972.69596875
transcript.pyannote[1828].speaker SPEAKER_03
transcript.pyannote[1828].start 10973.48909375
transcript.pyannote[1828].end 10974.19784375
transcript.pyannote[1829].speaker SPEAKER_03
transcript.pyannote[1829].start 10974.67034375
transcript.pyannote[1829].end 10976.79659375
transcript.pyannote[1830].speaker SPEAKER_03
transcript.pyannote[1830].start 10977.50534375
transcript.pyannote[1830].end 10979.37846875
transcript.pyannote[1831].speaker SPEAKER_03
transcript.pyannote[1831].start 10980.62721875
transcript.pyannote[1831].end 10987.51221875
transcript.pyannote[1832].speaker SPEAKER_03
transcript.pyannote[1832].start 10987.61346875
transcript.pyannote[1832].end 10989.08159375
transcript.pyannote[1833].speaker SPEAKER_03
transcript.pyannote[1833].start 10990.09409375
transcript.pyannote[1833].end 10991.86596875
transcript.pyannote[1834].speaker SPEAKER_03
transcript.pyannote[1834].start 10992.15284375
transcript.pyannote[1834].end 11002.02471875
transcript.pyannote[1835].speaker SPEAKER_03
transcript.pyannote[1835].start 11002.81784375
transcript.pyannote[1835].end 11004.52221875
transcript.pyannote[1836].speaker SPEAKER_03
transcript.pyannote[1836].start 11004.94409375
transcript.pyannote[1836].end 11005.23096875
transcript.pyannote[1837].speaker SPEAKER_03
transcript.pyannote[1837].start 11005.87221875
transcript.pyannote[1837].end 11006.36159375
transcript.pyannote[1838].speaker SPEAKER_03
transcript.pyannote[1838].start 11007.28971875
transcript.pyannote[1838].end 11010.63096875
transcript.pyannote[1839].speaker SPEAKER_03
transcript.pyannote[1839].start 11010.90096875
transcript.pyannote[1839].end 11014.34346875
transcript.pyannote[1840].speaker SPEAKER_03
transcript.pyannote[1840].start 11014.90034375
transcript.pyannote[1840].end 11017.17846875
transcript.pyannote[1841].speaker SPEAKER_03
transcript.pyannote[1841].start 11017.26284375
transcript.pyannote[1841].end 11017.68471875
transcript.pyannote[1842].speaker SPEAKER_03
transcript.pyannote[1842].start 11018.05596875
transcript.pyannote[1842].end 11024.50221875
transcript.pyannote[1843].speaker SPEAKER_03
transcript.pyannote[1843].start 11025.64971875
transcript.pyannote[1843].end 11027.13471875
transcript.pyannote[1844].speaker SPEAKER_03
transcript.pyannote[1844].start 11027.48909375
transcript.pyannote[1844].end 11031.77534375
transcript.pyannote[1845].speaker SPEAKER_03
transcript.pyannote[1845].start 11032.90596875
transcript.pyannote[1845].end 11033.29409375
transcript.pyannote[1846].speaker SPEAKER_03
transcript.pyannote[1846].start 11033.49659375
transcript.pyannote[1846].end 11045.49471875
transcript.pyannote[1847].speaker SPEAKER_03
transcript.pyannote[1847].start 11046.13596875
transcript.pyannote[1847].end 11047.03034375
transcript.pyannote[1848].speaker SPEAKER_03
transcript.pyannote[1848].start 11048.14409375
transcript.pyannote[1848].end 11055.94034375
transcript.pyannote[1849].speaker SPEAKER_03
transcript.pyannote[1849].start 11056.75034375
transcript.pyannote[1849].end 11059.34909375
transcript.pyannote[1850].speaker SPEAKER_03
transcript.pyannote[1850].start 11059.87221875
transcript.pyannote[1850].end 11066.63909375
transcript.pyannote[1851].speaker SPEAKER_03
transcript.pyannote[1851].start 11067.39846875
transcript.pyannote[1851].end 11075.76846875
transcript.pyannote[1852].speaker SPEAKER_03
transcript.pyannote[1852].start 11076.44346875
transcript.pyannote[1852].end 11083.81784375
transcript.pyannote[1853].speaker SPEAKER_03
transcript.pyannote[1853].start 11084.59409375
transcript.pyannote[1853].end 11084.91471875
transcript.pyannote[1854].speaker SPEAKER_03
transcript.pyannote[1854].start 11085.33659375
transcript.pyannote[1854].end 11087.27721875
transcript.pyannote[1855].speaker SPEAKER_03
transcript.pyannote[1855].start 11087.53034375
transcript.pyannote[1855].end 11089.45409375
transcript.pyannote[1856].speaker SPEAKER_03
transcript.pyannote[1856].start 11089.90971875
transcript.pyannote[1856].end 11090.24721875
transcript.pyannote[1857].speaker SPEAKER_03
transcript.pyannote[1857].start 11090.87159375
transcript.pyannote[1857].end 11096.13659375
transcript.pyannote[1858].speaker SPEAKER_03
transcript.pyannote[1858].start 11096.67659375
transcript.pyannote[1858].end 11102.34659375
transcript.pyannote[1859].speaker SPEAKER_03
transcript.pyannote[1859].start 11103.34221875
transcript.pyannote[1859].end 11103.86534375
transcript.pyannote[1860].speaker SPEAKER_03
transcript.pyannote[1860].start 11104.59096875
transcript.pyannote[1860].end 11105.36721875
transcript.pyannote[1861].speaker SPEAKER_03
transcript.pyannote[1861].start 11106.26159375
transcript.pyannote[1861].end 11108.03346875
transcript.pyannote[1862].speaker SPEAKER_03
transcript.pyannote[1862].start 11108.74221875
transcript.pyannote[1862].end 11112.67409375
transcript.pyannote[1863].speaker SPEAKER_03
transcript.pyannote[1863].start 11113.26471875
transcript.pyannote[1863].end 11114.49659375
transcript.pyannote[1864].speaker SPEAKER_03
transcript.pyannote[1864].start 11114.98596875
transcript.pyannote[1864].end 11118.98534375
transcript.pyannote[1865].speaker SPEAKER_03
transcript.pyannote[1865].start 11119.66034375
transcript.pyannote[1865].end 11125.24596875
transcript.pyannote[1866].speaker SPEAKER_03
transcript.pyannote[1866].start 11125.88721875
transcript.pyannote[1866].end 11128.51971875
transcript.pyannote[1867].speaker SPEAKER_03
transcript.pyannote[1867].start 11129.07659375
transcript.pyannote[1867].end 11131.96221875
transcript.pyannote[1868].speaker SPEAKER_03
transcript.pyannote[1868].start 11132.06346875
transcript.pyannote[1868].end 11133.64971875
transcript.pyannote[1869].speaker SPEAKER_03
transcript.pyannote[1869].start 11134.24034375
transcript.pyannote[1869].end 11136.04596875
transcript.pyannote[1870].speaker SPEAKER_03
transcript.pyannote[1870].start 11136.26534375
transcript.pyannote[1870].end 11141.80034375
transcript.pyannote[1871].speaker SPEAKER_03
transcript.pyannote[1871].start 11142.07034375
transcript.pyannote[1871].end 11161.86471875
transcript.pyannote[1872].speaker SPEAKER_03
transcript.pyannote[1872].start 11162.32034375
transcript.pyannote[1872].end 11166.25221875
transcript.pyannote[1873].speaker SPEAKER_03
transcript.pyannote[1873].start 11166.50534375
transcript.pyannote[1873].end 11168.53034375
transcript.pyannote[1874].speaker SPEAKER_03
transcript.pyannote[1874].start 11169.59346875
transcript.pyannote[1874].end 11172.51284375
transcript.pyannote[1875].speaker SPEAKER_03
transcript.pyannote[1875].start 11173.99784375
transcript.pyannote[1875].end 11176.02284375
transcript.pyannote[1876].speaker SPEAKER_03
transcript.pyannote[1876].start 11176.49534375
transcript.pyannote[1876].end 11180.25846875
transcript.pyannote[1877].speaker SPEAKER_03
transcript.pyannote[1877].start 11180.61284375
transcript.pyannote[1877].end 11184.76409375
transcript.pyannote[1878].speaker SPEAKER_03
transcript.pyannote[1878].start 11185.20284375
transcript.pyannote[1878].end 11200.69409375
transcript.pyannote[1879].speaker SPEAKER_03
transcript.pyannote[1879].start 11201.14971875
transcript.pyannote[1879].end 11203.98471875
transcript.pyannote[1880].speaker SPEAKER_03
transcript.pyannote[1880].start 11204.62596875
transcript.pyannote[1880].end 11205.62159375
transcript.pyannote[1881].speaker SPEAKER_03
transcript.pyannote[1881].start 11206.06034375
transcript.pyannote[1881].end 11207.42721875
transcript.pyannote[1882].speaker SPEAKER_03
transcript.pyannote[1882].start 11208.28784375
transcript.pyannote[1882].end 11210.00909375
transcript.pyannote[1883].speaker SPEAKER_03
transcript.pyannote[1883].start 11210.56596875
transcript.pyannote[1883].end 11214.98721875
transcript.pyannote[1884].speaker SPEAKER_03
transcript.pyannote[1884].start 11215.34159375
transcript.pyannote[1884].end 11217.82221875
transcript.pyannote[1885].speaker SPEAKER_03
transcript.pyannote[1885].start 11218.91909375
transcript.pyannote[1885].end 11220.13409375
transcript.pyannote[1886].speaker SPEAKER_03
transcript.pyannote[1886].start 11220.28596875
transcript.pyannote[1886].end 11221.24784375
transcript.pyannote[1887].speaker SPEAKER_03
transcript.pyannote[1887].start 11222.24346875
transcript.pyannote[1887].end 11223.28971875
transcript.pyannote[1888].speaker SPEAKER_03
transcript.pyannote[1888].start 11224.15034375
transcript.pyannote[1888].end 11226.85034375
transcript.pyannote[1889].speaker SPEAKER_03
transcript.pyannote[1889].start 11227.12034375
transcript.pyannote[1889].end 11232.45284375
transcript.pyannote[1890].speaker SPEAKER_03
transcript.pyannote[1890].start 11233.39784375
transcript.pyannote[1890].end 11233.83659375
transcript.pyannote[1891].speaker SPEAKER_03
transcript.pyannote[1891].start 11234.56221875
transcript.pyannote[1891].end 11236.13159375
transcript.pyannote[1892].speaker SPEAKER_03
transcript.pyannote[1892].start 11236.65471875
transcript.pyannote[1892].end 11238.27471875
transcript.pyannote[1893].speaker SPEAKER_03
transcript.pyannote[1893].start 11239.47284375
transcript.pyannote[1893].end 11241.73409375
transcript.pyannote[1894].speaker SPEAKER_03
transcript.pyannote[1894].start 11242.18971875
transcript.pyannote[1894].end 11248.16346875
transcript.pyannote[1895].speaker SPEAKER_03
transcript.pyannote[1895].start 11248.73721875
transcript.pyannote[1895].end 11250.34034375
transcript.pyannote[1896].speaker SPEAKER_03
transcript.pyannote[1896].start 11250.69471875
transcript.pyannote[1896].end 11252.36534375
transcript.pyannote[1897].speaker SPEAKER_03
transcript.pyannote[1897].start 11253.58034375
transcript.pyannote[1897].end 11254.28909375
transcript.pyannote[1898].speaker SPEAKER_03
transcript.pyannote[1898].start 11254.74471875
transcript.pyannote[1898].end 11255.52096875
transcript.pyannote[1899].speaker SPEAKER_03
transcript.pyannote[1899].start 11256.11159375
transcript.pyannote[1899].end 11256.95534375
transcript.pyannote[1900].speaker SPEAKER_03
transcript.pyannote[1900].start 11257.14096875
transcript.pyannote[1900].end 11258.38971875
transcript.pyannote[1901].speaker SPEAKER_03
transcript.pyannote[1901].start 11259.14909375
transcript.pyannote[1901].end 11263.03034375
transcript.pyannote[1902].speaker SPEAKER_03
transcript.pyannote[1902].start 11264.63346875
transcript.pyannote[1902].end 11266.15221875
transcript.pyannote[1903].speaker SPEAKER_03
transcript.pyannote[1903].start 11266.48971875
transcript.pyannote[1903].end 11268.56534375
transcript.pyannote[1904].speaker SPEAKER_03
transcript.pyannote[1904].start 11269.51034375
transcript.pyannote[1904].end 11271.16409375
transcript.pyannote[1905].speaker SPEAKER_03
transcript.pyannote[1905].start 11271.94034375
transcript.pyannote[1905].end 11272.76721875
transcript.pyannote[1906].speaker SPEAKER_03
transcript.pyannote[1906].start 11273.25659375
transcript.pyannote[1906].end 11277.77909375
transcript.pyannote[1907].speaker SPEAKER_03
transcript.pyannote[1907].start 11278.18409375
transcript.pyannote[1907].end 11279.73659375
transcript.pyannote[1908].speaker SPEAKER_03
transcript.pyannote[1908].start 11280.15846875
transcript.pyannote[1908].end 11285.00159375
transcript.pyannote[1909].speaker SPEAKER_03
transcript.pyannote[1909].start 11285.30534375
transcript.pyannote[1909].end 11287.02659375
transcript.pyannote[1910].speaker SPEAKER_03
transcript.pyannote[1910].start 11287.38096875
transcript.pyannote[1910].end 11288.86596875
transcript.pyannote[1911].speaker SPEAKER_03
transcript.pyannote[1911].start 11289.86159375
transcript.pyannote[1911].end 11290.82346875
transcript.pyannote[1912].speaker SPEAKER_03
transcript.pyannote[1912].start 11291.70096875
transcript.pyannote[1912].end 11292.79784375
transcript.pyannote[1913].speaker SPEAKER_03
transcript.pyannote[1913].start 11294.43471875
transcript.pyannote[1913].end 11294.87346875
transcript.pyannote[1914].speaker SPEAKER_03
transcript.pyannote[1914].start 11296.74659375
transcript.pyannote[1914].end 11296.76346875
transcript.pyannote[1915].speaker SPEAKER_13
transcript.pyannote[1915].start 11296.76346875
transcript.pyannote[1915].end 11310.02721875
transcript.pyannote[1916].speaker SPEAKER_11
transcript.pyannote[1916].start 11304.45846875
transcript.pyannote[1916].end 11304.69471875
transcript.pyannote[1917].speaker SPEAKER_03
transcript.pyannote[1917].start 11304.69471875
transcript.pyannote[1917].end 11304.84659375
transcript.pyannote[1918].speaker SPEAKER_11
transcript.pyannote[1918].start 11304.84659375
transcript.pyannote[1918].end 11304.93096875
transcript.pyannote[1919].speaker SPEAKER_00
transcript.pyannote[1919].start 11304.93096875
transcript.pyannote[1919].end 11304.96471875
transcript.pyannote[1920].speaker SPEAKER_03
transcript.pyannote[1920].start 11309.89221875
transcript.pyannote[1920].end 11309.97659375
transcript.pyannote[1921].speaker SPEAKER_03
transcript.pyannote[1921].start 11310.02721875
transcript.pyannote[1921].end 11310.04409375
transcript.pyannote[1922].speaker SPEAKER_13
transcript.pyannote[1922].start 11310.04409375
transcript.pyannote[1922].end 11311.02284375
transcript.pyannote[1923].speaker SPEAKER_03
transcript.pyannote[1923].start 11311.02284375
transcript.pyannote[1923].end 11311.90034375
transcript.pyannote[1924].speaker SPEAKER_03
transcript.pyannote[1924].start 11312.20409375
transcript.pyannote[1924].end 11315.37659375
transcript.pyannote[1925].speaker SPEAKER_03
transcript.pyannote[1925].start 11316.00096875
transcript.pyannote[1925].end 11318.65034375
transcript.pyannote[1926].speaker SPEAKER_03
transcript.pyannote[1926].start 11319.69659375
transcript.pyannote[1926].end 11322.58221875
transcript.pyannote[1927].speaker SPEAKER_03
transcript.pyannote[1927].start 11323.39221875
transcript.pyannote[1927].end 11326.21034375
transcript.pyannote[1928].speaker SPEAKER_03
transcript.pyannote[1928].start 11326.48034375
transcript.pyannote[1928].end 11337.76971875
transcript.pyannote[1929].speaker SPEAKER_03
transcript.pyannote[1929].start 11338.30971875
transcript.pyannote[1929].end 11340.03096875
transcript.pyannote[1930].speaker SPEAKER_06
transcript.pyannote[1930].start 11340.03096875
transcript.pyannote[1930].end 11346.03846875
transcript.pyannote[1931].speaker SPEAKER_06
transcript.pyannote[1931].start 11349.17721875
transcript.pyannote[1931].end 11350.57784375
transcript.pyannote[1932].speaker SPEAKER_15
transcript.pyannote[1932].start 11356.53471875
transcript.pyannote[1932].end 11360.33159375
transcript.pyannote[1933].speaker SPEAKER_06
transcript.pyannote[1933].start 11358.98159375
transcript.pyannote[1933].end 11359.85909375
transcript.pyannote[1934].speaker SPEAKER_15
transcript.pyannote[1934].start 11361.46221875
transcript.pyannote[1934].end 11365.29284375
transcript.pyannote[1935].speaker SPEAKER_15
transcript.pyannote[1935].start 11365.42784375
transcript.pyannote[1935].end 11369.95034375
transcript.pyannote[1936].speaker SPEAKER_15
transcript.pyannote[1936].start 11370.74346875
transcript.pyannote[1936].end 11374.10159375
transcript.pyannote[1937].speaker SPEAKER_15
transcript.pyannote[1937].start 11374.86096875
transcript.pyannote[1937].end 11377.42596875
transcript.pyannote[1938].speaker SPEAKER_15
transcript.pyannote[1938].start 11378.42159375
transcript.pyannote[1938].end 11379.33284375
transcript.pyannote[1939].speaker SPEAKER_15
transcript.pyannote[1939].start 11379.97409375
transcript.pyannote[1939].end 11390.58846875
transcript.pyannote[1940].speaker SPEAKER_15
transcript.pyannote[1940].start 11391.14534375
transcript.pyannote[1940].end 11398.50284375
transcript.pyannote[1941].speaker SPEAKER_15
transcript.pyannote[1941].start 11399.17784375
transcript.pyannote[1941].end 11404.39221875
transcript.pyannote[1942].speaker SPEAKER_15
transcript.pyannote[1942].start 11405.43846875
transcript.pyannote[1942].end 11410.60221875
transcript.pyannote[1943].speaker SPEAKER_15
transcript.pyannote[1943].start 11411.31096875
transcript.pyannote[1943].end 11411.96909375
transcript.pyannote[1944].speaker SPEAKER_15
transcript.pyannote[1944].start 11413.01534375
transcript.pyannote[1944].end 11414.17971875
transcript.pyannote[1945].speaker SPEAKER_15
transcript.pyannote[1945].start 11414.41596875
transcript.pyannote[1945].end 11417.20034375
transcript.pyannote[1946].speaker SPEAKER_15
transcript.pyannote[1946].start 11418.19596875
transcript.pyannote[1946].end 11419.49534375
transcript.pyannote[1947].speaker SPEAKER_15
transcript.pyannote[1947].start 11419.84971875
transcript.pyannote[1947].end 11422.02659375
transcript.pyannote[1948].speaker SPEAKER_15
transcript.pyannote[1948].start 11422.39784375
transcript.pyannote[1948].end 11425.45221875
transcript.pyannote[1949].speaker SPEAKER_15
transcript.pyannote[1949].start 11425.97534375
transcript.pyannote[1949].end 11429.14784375
transcript.pyannote[1950].speaker SPEAKER_15
transcript.pyannote[1950].start 11429.55284375
transcript.pyannote[1950].end 11432.57346875
transcript.pyannote[1951].speaker SPEAKER_15
transcript.pyannote[1951].start 11432.82659375
transcript.pyannote[1951].end 11440.55534375
transcript.pyannote[1952].speaker SPEAKER_15
transcript.pyannote[1952].start 11440.74096875
transcript.pyannote[1952].end 11444.84159375
transcript.pyannote[1953].speaker SPEAKER_15
transcript.pyannote[1953].start 11445.36471875
transcript.pyannote[1953].end 11447.35596875
transcript.pyannote[1954].speaker SPEAKER_15
transcript.pyannote[1954].start 11448.09846875
transcript.pyannote[1954].end 11449.39784375
transcript.pyannote[1955].speaker SPEAKER_15
transcript.pyannote[1955].start 11450.19096875
transcript.pyannote[1955].end 11454.61221875
transcript.pyannote[1956].speaker SPEAKER_15
transcript.pyannote[1956].start 11455.27034375
transcript.pyannote[1956].end 11458.51034375
transcript.pyannote[1957].speaker SPEAKER_15
transcript.pyannote[1957].start 11458.89846875
transcript.pyannote[1957].end 11464.33221875
transcript.pyannote[1958].speaker SPEAKER_15
transcript.pyannote[1958].start 11464.53471875
transcript.pyannote[1958].end 11469.07409375
transcript.pyannote[1959].speaker SPEAKER_13
transcript.pyannote[1959].start 11469.47909375
transcript.pyannote[1959].end 11477.96721875
transcript.pyannote[1960].speaker SPEAKER_15
transcript.pyannote[1960].start 11477.96721875
transcript.pyannote[1960].end 11500.63034375
transcript.pyannote[1961].speaker SPEAKER_15
transcript.pyannote[1961].start 11501.01846875
transcript.pyannote[1961].end 11505.30471875
transcript.pyannote[1962].speaker SPEAKER_15
transcript.pyannote[1962].start 11505.59159375
transcript.pyannote[1962].end 11511.19409375
transcript.pyannote[1963].speaker SPEAKER_15
transcript.pyannote[1963].start 11511.71721875
transcript.pyannote[1963].end 11516.05409375
transcript.pyannote[1964].speaker SPEAKER_15
transcript.pyannote[1964].start 11516.45909375
transcript.pyannote[1964].end 11518.50096875
transcript.pyannote[1965].speaker SPEAKER_15
transcript.pyannote[1965].start 11518.80471875
transcript.pyannote[1965].end 11525.13284375
transcript.pyannote[1966].speaker SPEAKER_13
transcript.pyannote[1966].start 11526.33096875
transcript.pyannote[1966].end 11526.34784375
transcript.pyannote[1967].speaker SPEAKER_15
transcript.pyannote[1967].start 11526.34784375
transcript.pyannote[1967].end 11546.39534375
transcript.pyannote[1968].speaker SPEAKER_13
transcript.pyannote[1968].start 11529.16596875
transcript.pyannote[1968].end 11529.48659375
transcript.pyannote[1969].speaker SPEAKER_15
transcript.pyannote[1969].start 11546.86784375
transcript.pyannote[1969].end 11547.74534375
transcript.pyannote[1970].speaker SPEAKER_15
transcript.pyannote[1970].start 11548.82534375
transcript.pyannote[1970].end 11550.09096875
transcript.pyannote[1971].speaker SPEAKER_15
transcript.pyannote[1971].start 11550.85034375
transcript.pyannote[1971].end 11555.06909375
transcript.pyannote[1972].speaker SPEAKER_15
transcript.pyannote[1972].start 11555.49096875
transcript.pyannote[1972].end 11557.88721875
transcript.pyannote[1973].speaker SPEAKER_15
transcript.pyannote[1973].start 11558.41034375
transcript.pyannote[1973].end 11562.96659375
transcript.pyannote[1974].speaker SPEAKER_15
transcript.pyannote[1974].start 11565.27846875
transcript.pyannote[1974].end 11569.00784375
transcript.pyannote[1975].speaker SPEAKER_15
transcript.pyannote[1975].start 11569.14284375
transcript.pyannote[1975].end 11581.71471875
transcript.pyannote[1976].speaker SPEAKER_15
transcript.pyannote[1976].start 11581.88346875
transcript.pyannote[1976].end 11589.62909375
transcript.pyannote[1977].speaker SPEAKER_15
transcript.pyannote[1977].start 11590.48971875
transcript.pyannote[1977].end 11595.58596875
transcript.pyannote[1978].speaker SPEAKER_15
transcript.pyannote[1978].start 11596.86846875
transcript.pyannote[1978].end 11597.54346875
transcript.pyannote[1979].speaker SPEAKER_15
transcript.pyannote[1979].start 11598.10034375
transcript.pyannote[1979].end 11598.47159375
transcript.pyannote[1980].speaker SPEAKER_15
transcript.pyannote[1980].start 11598.77534375
transcript.pyannote[1980].end 11637.45284375
transcript.pyannote[1981].speaker SPEAKER_15
transcript.pyannote[1981].start 11638.17846875
transcript.pyannote[1981].end 11647.52721875
transcript.pyannote[1982].speaker SPEAKER_15
transcript.pyannote[1982].start 11648.15159375
transcript.pyannote[1982].end 11661.09471875
transcript.pyannote[1983].speaker SPEAKER_15
transcript.pyannote[1983].start 11661.98909375
transcript.pyannote[1983].end 11668.82346875
transcript.pyannote[1984].speaker SPEAKER_15
transcript.pyannote[1984].start 11669.51534375
transcript.pyannote[1984].end 11687.30159375
transcript.pyannote[1985].speaker SPEAKER_15
transcript.pyannote[1985].start 11688.51659375
transcript.pyannote[1985].end 11694.50721875
transcript.pyannote[1986].speaker SPEAKER_15
transcript.pyannote[1986].start 11694.87846875
transcript.pyannote[1986].end 11698.13534375
transcript.pyannote[1987].speaker SPEAKER_15
transcript.pyannote[1987].start 11698.72596875
transcript.pyannote[1987].end 11702.08409375
transcript.pyannote[1988].speaker SPEAKER_13
transcript.pyannote[1988].start 11701.76346875
transcript.pyannote[1988].end 11726.08034375
transcript.pyannote[1989].speaker SPEAKER_11
transcript.pyannote[1989].start 11721.40596875
transcript.pyannote[1989].end 11721.42284375
transcript.pyannote[1990].speaker SPEAKER_15
transcript.pyannote[1990].start 11721.42284375
transcript.pyannote[1990].end 11722.11471875
transcript.pyannote[1991].speaker SPEAKER_15
transcript.pyannote[1991].start 11725.00034375
transcript.pyannote[1991].end 11769.60096875
transcript.pyannote[1992].speaker SPEAKER_15
transcript.pyannote[1992].start 11770.73159375
transcript.pyannote[1992].end 11772.36846875
transcript.pyannote[1993].speaker SPEAKER_15
transcript.pyannote[1993].start 11772.55409375
transcript.pyannote[1993].end 11832.49409375
transcript.pyannote[1994].speaker SPEAKER_06
transcript.pyannote[1994].start 11832.49409375
transcript.pyannote[1994].end 11832.52784375
transcript.pyannote[1995].speaker SPEAKER_06
transcript.pyannote[1995].start 11832.91596875
transcript.pyannote[1995].end 11833.08471875
transcript.pyannote[1996].speaker SPEAKER_15
transcript.pyannote[1996].start 11833.08471875
transcript.pyannote[1996].end 11834.02971875
transcript.pyannote[1997].speaker SPEAKER_06
transcript.pyannote[1997].start 11834.02971875
transcript.pyannote[1997].end 11842.24784375
transcript.pyannote[1998].speaker SPEAKER_15
transcript.pyannote[1998].start 11835.61596875
transcript.pyannote[1998].end 11835.63284375
transcript.pyannote[1999].speaker SPEAKER_19
transcript.pyannote[1999].start 11835.63284375
transcript.pyannote[1999].end 11835.73409375
transcript.pyannote[2000].speaker SPEAKER_15
transcript.pyannote[2000].start 11835.85221875
transcript.pyannote[2000].end 11838.01221875
transcript.pyannote[2001].speaker SPEAKER_00
transcript.pyannote[2001].start 11838.50159375
transcript.pyannote[2001].end 11838.63659375
transcript.pyannote[2002].speaker SPEAKER_15
transcript.pyannote[2002].start 11838.63659375
transcript.pyannote[2002].end 11838.95721875
transcript.pyannote[2003].speaker SPEAKER_22
transcript.pyannote[2003].start 11851.27596875
transcript.pyannote[2003].end 11854.31346875
transcript.pyannote[2004].speaker SPEAKER_06
transcript.pyannote[2004].start 11854.54971875
transcript.pyannote[2004].end 11854.58346875
transcript.pyannote[2005].speaker SPEAKER_22
transcript.pyannote[2005].start 11854.58346875
transcript.pyannote[2005].end 11855.95034375
transcript.pyannote[2006].speaker SPEAKER_22
transcript.pyannote[2006].start 11860.32096875
transcript.pyannote[2006].end 11871.55971875
transcript.pyannote[2007].speaker SPEAKER_22
transcript.pyannote[2007].start 11871.91409375
transcript.pyannote[2007].end 11875.60971875
transcript.pyannote[2008].speaker SPEAKER_22
transcript.pyannote[2008].start 11876.26784375
transcript.pyannote[2008].end 11876.95971875
transcript.pyannote[2009].speaker SPEAKER_22
transcript.pyannote[2009].start 11877.97221875
transcript.pyannote[2009].end 11881.54971875
transcript.pyannote[2010].speaker SPEAKER_22
transcript.pyannote[2010].start 11882.46096875
transcript.pyannote[2010].end 11887.57409375
transcript.pyannote[2011].speaker SPEAKER_22
transcript.pyannote[2011].start 11887.87784375
transcript.pyannote[2011].end 11887.99596875
transcript.pyannote[2012].speaker SPEAKER_20
transcript.pyannote[2012].start 11887.99596875
transcript.pyannote[2012].end 11888.02971875
transcript.pyannote[2013].speaker SPEAKER_22
transcript.pyannote[2013].start 11888.90721875
transcript.pyannote[2013].end 11893.64909375
transcript.pyannote[2014].speaker SPEAKER_22
transcript.pyannote[2014].start 11894.23971875
transcript.pyannote[2014].end 11901.71534375
transcript.pyannote[2015].speaker SPEAKER_22
transcript.pyannote[2015].start 11902.28909375
transcript.pyannote[2015].end 11907.68909375
transcript.pyannote[2016].speaker SPEAKER_22
transcript.pyannote[2016].start 11908.56659375
transcript.pyannote[2016].end 11919.87284375
transcript.pyannote[2017].speaker SPEAKER_22
transcript.pyannote[2017].start 11921.02034375
transcript.pyannote[2017].end 11956.13721875
transcript.pyannote[2018].speaker SPEAKER_22
transcript.pyannote[2018].start 11956.72784375
transcript.pyannote[2018].end 11959.88346875
transcript.pyannote[2019].speaker SPEAKER_22
transcript.pyannote[2019].start 11960.32221875
transcript.pyannote[2019].end 11971.30784375
transcript.pyannote[2020].speaker SPEAKER_08
transcript.pyannote[2020].start 11972.47221875
transcript.pyannote[2020].end 11980.72409375
transcript.pyannote[2021].speaker SPEAKER_08
transcript.pyannote[2021].start 11980.89284375
transcript.pyannote[2021].end 11983.86284375
transcript.pyannote[2022].speaker SPEAKER_08
transcript.pyannote[2022].start 11984.14971875
transcript.pyannote[2022].end 11985.66846875
transcript.pyannote[2023].speaker SPEAKER_08
transcript.pyannote[2023].start 11986.46159375
transcript.pyannote[2023].end 11988.13221875
transcript.pyannote[2024].speaker SPEAKER_08
transcript.pyannote[2024].start 11988.38534375
transcript.pyannote[2024].end 11995.60784375
transcript.pyannote[2025].speaker SPEAKER_08
transcript.pyannote[2025].start 11995.94534375
transcript.pyannote[2025].end 12001.27784375
transcript.pyannote[2026].speaker SPEAKER_22
transcript.pyannote[2026].start 12001.27784375
transcript.pyannote[2026].end 12009.96846875
transcript.pyannote[2027].speaker SPEAKER_08
transcript.pyannote[2027].start 12001.32846875
transcript.pyannote[2027].end 12001.36221875
transcript.pyannote[2028].speaker SPEAKER_08
transcript.pyannote[2028].start 12009.96846875
transcript.pyannote[2028].end 12016.66784375
transcript.pyannote[2029].speaker SPEAKER_22
transcript.pyannote[2029].start 12017.54534375
transcript.pyannote[2029].end 12034.72409375
transcript.pyannote[2030].speaker SPEAKER_22
transcript.pyannote[2030].start 12034.82534375
transcript.pyannote[2030].end 12038.08221875
transcript.pyannote[2031].speaker SPEAKER_22
transcript.pyannote[2031].start 12038.18346875
transcript.pyannote[2031].end 12044.66346875
transcript.pyannote[2032].speaker SPEAKER_22
transcript.pyannote[2032].start 12045.43971875
transcript.pyannote[2032].end 12055.48034375
transcript.pyannote[2033].speaker SPEAKER_22
transcript.pyannote[2033].start 12055.81784375
transcript.pyannote[2033].end 12079.54409375
transcript.pyannote[2034].speaker SPEAKER_08
transcript.pyannote[2034].start 12080.06721875
transcript.pyannote[2034].end 12096.68909375
transcript.pyannote[2035].speaker SPEAKER_22
transcript.pyannote[2035].start 12096.68909375
transcript.pyannote[2035].end 12096.95909375
transcript.pyannote[2036].speaker SPEAKER_08
transcript.pyannote[2036].start 12096.95909375
transcript.pyannote[2036].end 12097.06034375
transcript.pyannote[2037].speaker SPEAKER_22
transcript.pyannote[2037].start 12097.06034375
transcript.pyannote[2037].end 12097.14471875
transcript.pyannote[2038].speaker SPEAKER_22
transcript.pyannote[2038].start 12097.26284375
transcript.pyannote[2038].end 12097.31346875
transcript.pyannote[2039].speaker SPEAKER_08
transcript.pyannote[2039].start 12097.31346875
transcript.pyannote[2039].end 12097.34721875
transcript.pyannote[2040].speaker SPEAKER_22
transcript.pyannote[2040].start 12097.34721875
transcript.pyannote[2040].end 12098.03909375
transcript.pyannote[2041].speaker SPEAKER_22
transcript.pyannote[2041].start 12098.56221875
transcript.pyannote[2041].end 12129.81471875
transcript.pyannote[2042].speaker SPEAKER_22
transcript.pyannote[2042].start 12130.16909375
transcript.pyannote[2042].end 12134.55659375
transcript.pyannote[2043].speaker SPEAKER_22
transcript.pyannote[2043].start 12134.97846875
transcript.pyannote[2043].end 12156.37596875
transcript.pyannote[2044].speaker SPEAKER_22
transcript.pyannote[2044].start 12156.40971875
transcript.pyannote[2044].end 12176.15346875
transcript.pyannote[2045].speaker SPEAKER_22
transcript.pyannote[2045].start 12176.57534375
transcript.pyannote[2045].end 12205.04346875
transcript.pyannote[2046].speaker SPEAKER_22
transcript.pyannote[2046].start 12205.49909375
transcript.pyannote[2046].end 12226.60971875
transcript.pyannote[2047].speaker SPEAKER_22
transcript.pyannote[2047].start 12226.72784375
transcript.pyannote[2047].end 12226.96409375
transcript.pyannote[2048].speaker SPEAKER_22
transcript.pyannote[2048].start 12227.60534375
transcript.pyannote[2048].end 12230.45721875
transcript.pyannote[2049].speaker SPEAKER_22
transcript.pyannote[2049].start 12230.79471875
transcript.pyannote[2049].end 12232.48221875
transcript.pyannote[2050].speaker SPEAKER_22
transcript.pyannote[2050].start 12232.76909375
transcript.pyannote[2050].end 12235.06409375
transcript.pyannote[2051].speaker SPEAKER_22
transcript.pyannote[2051].start 12235.99221875
transcript.pyannote[2051].end 12244.12596875
transcript.pyannote[2052].speaker SPEAKER_22
transcript.pyannote[2052].start 12244.61534375
transcript.pyannote[2052].end 12247.56846875
transcript.pyannote[2053].speaker SPEAKER_22
transcript.pyannote[2053].start 12247.73721875
transcript.pyannote[2053].end 12252.59721875
transcript.pyannote[2054].speaker SPEAKER_22
transcript.pyannote[2054].start 12252.85034375
transcript.pyannote[2054].end 12253.18784375
transcript.pyannote[2055].speaker SPEAKER_22
transcript.pyannote[2055].start 12253.67721875
transcript.pyannote[2055].end 12260.00534375
transcript.pyannote[2056].speaker SPEAKER_22
transcript.pyannote[2056].start 12260.78159375
transcript.pyannote[2056].end 12267.75096875
transcript.pyannote[2057].speaker SPEAKER_22
transcript.pyannote[2057].start 12268.13909375
transcript.pyannote[2057].end 12287.74784375
transcript.pyannote[2058].speaker SPEAKER_06
transcript.pyannote[2058].start 12287.74784375
transcript.pyannote[2058].end 12301.48409375
transcript.pyannote[2059].speaker SPEAKER_18
transcript.pyannote[2059].start 12305.63534375
transcript.pyannote[2059].end 12307.74471875
transcript.pyannote[2060].speaker SPEAKER_06
transcript.pyannote[2060].start 12310.14096875
transcript.pyannote[2060].end 12311.96346875
transcript.pyannote[2061].speaker SPEAKER_13
transcript.pyannote[2061].start 12311.96346875
transcript.pyannote[2061].end 12312.16596875
transcript.pyannote[2062].speaker SPEAKER_06
transcript.pyannote[2062].start 12312.16596875
transcript.pyannote[2062].end 12312.18284375
transcript.pyannote[2063].speaker SPEAKER_18
transcript.pyannote[2063].start 12313.04346875
transcript.pyannote[2063].end 12321.34596875
transcript.pyannote[2064].speaker SPEAKER_18
transcript.pyannote[2064].start 12321.56534375
transcript.pyannote[2064].end 12344.93721875
transcript.pyannote[2065].speaker SPEAKER_13
transcript.pyannote[2065].start 12346.21971875
transcript.pyannote[2065].end 12353.89784375
transcript.pyannote[2066].speaker SPEAKER_18
transcript.pyannote[2066].start 12354.15096875
transcript.pyannote[2066].end 12368.81534375
transcript.pyannote[2067].speaker SPEAKER_18
transcript.pyannote[2067].start 12369.33846875
transcript.pyannote[2067].end 12395.68034375
transcript.pyannote[2068].speaker SPEAKER_00
transcript.pyannote[2068].start 12381.60659375
transcript.pyannote[2068].end 12381.62346875
transcript.pyannote[2069].speaker SPEAKER_19
transcript.pyannote[2069].start 12381.62346875
transcript.pyannote[2069].end 12381.97784375
transcript.pyannote[2070].speaker SPEAKER_00
transcript.pyannote[2070].start 12381.97784375
transcript.pyannote[2070].end 12382.39971875
transcript.pyannote[2071].speaker SPEAKER_13
transcript.pyannote[2071].start 12396.30471875
transcript.pyannote[2071].end 12396.99659375
transcript.pyannote[2072].speaker SPEAKER_13
transcript.pyannote[2072].start 12397.16534375
transcript.pyannote[2072].end 12398.95409375
transcript.pyannote[2073].speaker SPEAKER_13
transcript.pyannote[2073].start 12399.24096875
transcript.pyannote[2073].end 12411.18846875
transcript.pyannote[2074].speaker SPEAKER_18
transcript.pyannote[2074].start 12410.51346875
transcript.pyannote[2074].end 12414.22596875
transcript.pyannote[2075].speaker SPEAKER_13
transcript.pyannote[2075].start 12412.52159375
transcript.pyannote[2075].end 12412.90971875
transcript.pyannote[2076].speaker SPEAKER_13
transcript.pyannote[2076].start 12414.66471875
transcript.pyannote[2076].end 12425.86971875
transcript.pyannote[2077].speaker SPEAKER_18
transcript.pyannote[2077].start 12424.92471875
transcript.pyannote[2077].end 12437.19284375
transcript.pyannote[2078].speaker SPEAKER_13
transcript.pyannote[2078].start 12438.18846875
transcript.pyannote[2078].end 12444.80346875
transcript.pyannote[2079].speaker SPEAKER_18
transcript.pyannote[2079].start 12444.80346875
transcript.pyannote[2079].end 12455.55284375
transcript.pyannote[2080].speaker SPEAKER_13
transcript.pyannote[2080].start 12457.05471875
transcript.pyannote[2080].end 12473.49096875
transcript.pyannote[2081].speaker SPEAKER_18
transcript.pyannote[2081].start 12473.18721875
transcript.pyannote[2081].end 12476.74784375
transcript.pyannote[2082].speaker SPEAKER_13
transcript.pyannote[2082].start 12476.89971875
transcript.pyannote[2082].end 12483.64971875
transcript.pyannote[2083].speaker SPEAKER_18
transcript.pyannote[2083].start 12481.18596875
transcript.pyannote[2083].end 12490.16346875
transcript.pyannote[2084].speaker SPEAKER_18
transcript.pyannote[2084].start 12490.28159375
transcript.pyannote[2084].end 12509.18159375
transcript.pyannote[2085].speaker SPEAKER_13
transcript.pyannote[2085].start 12510.32909375
transcript.pyannote[2085].end 12516.67409375
transcript.pyannote[2086].speaker SPEAKER_18
transcript.pyannote[2086].start 12516.87659375
transcript.pyannote[2086].end 12524.82471875
transcript.pyannote[2087].speaker SPEAKER_13
transcript.pyannote[2087].start 12517.68659375
transcript.pyannote[2087].end 12518.07471875
transcript.pyannote[2088].speaker SPEAKER_13
transcript.pyannote[2088].start 12518.53034375
transcript.pyannote[2088].end 12519.61034375
transcript.pyannote[2089].speaker SPEAKER_13
transcript.pyannote[2089].start 12521.34846875
transcript.pyannote[2089].end 12521.73659375
transcript.pyannote[2090].speaker SPEAKER_13
transcript.pyannote[2090].start 12525.75284375
transcript.pyannote[2090].end 12547.13346875
transcript.pyannote[2091].speaker SPEAKER_00
transcript.pyannote[2091].start 12546.45846875
transcript.pyannote[2091].end 12546.86346875
transcript.pyannote[2092].speaker SPEAKER_13
transcript.pyannote[2092].start 12547.45409375
transcript.pyannote[2092].end 12551.11596875
transcript.pyannote[2093].speaker SPEAKER_13
transcript.pyannote[2093].start 12551.36909375
transcript.pyannote[2093].end 12554.03534375
transcript.pyannote[2094].speaker SPEAKER_13
transcript.pyannote[2094].start 12554.15346875
transcript.pyannote[2094].end 12560.75159375
transcript.pyannote[2095].speaker SPEAKER_13
transcript.pyannote[2095].start 12560.76846875
transcript.pyannote[2095].end 12560.90346875
transcript.pyannote[2096].speaker SPEAKER_18
transcript.pyannote[2096].start 12560.90346875
transcript.pyannote[2096].end 12592.62846875
transcript.pyannote[2097].speaker SPEAKER_13
transcript.pyannote[2097].start 12592.94909375
transcript.pyannote[2097].end 12600.94784375
transcript.pyannote[2098].speaker SPEAKER_18
transcript.pyannote[2098].start 12599.93534375
transcript.pyannote[2098].end 12601.58909375
transcript.pyannote[2099].speaker SPEAKER_18
transcript.pyannote[2099].start 12601.74096875
transcript.pyannote[2099].end 12608.01846875
transcript.pyannote[2100].speaker SPEAKER_18
transcript.pyannote[2100].start 12609.09846875
transcript.pyannote[2100].end 12611.93346875
transcript.pyannote[2101].speaker SPEAKER_13
transcript.pyannote[2101].start 12610.80284375
transcript.pyannote[2101].end 12611.02221875
transcript.pyannote[2102].speaker SPEAKER_13
transcript.pyannote[2102].start 12612.38909375
transcript.pyannote[2102].end 12619.96596875
transcript.pyannote[2103].speaker SPEAKER_18
transcript.pyannote[2103].start 12613.21596875
transcript.pyannote[2103].end 12613.23284375
transcript.pyannote[2104].speaker SPEAKER_18
transcript.pyannote[2104].start 12614.65034375
transcript.pyannote[2104].end 12614.76846875
transcript.pyannote[2105].speaker SPEAKER_18
transcript.pyannote[2105].start 12617.09721875
transcript.pyannote[2105].end 12617.85659375
transcript.pyannote[2106].speaker SPEAKER_18
transcript.pyannote[2106].start 12619.29096875
transcript.pyannote[2106].end 12626.19284375
transcript.pyannote[2107].speaker SPEAKER_18
transcript.pyannote[2107].start 12626.53034375
transcript.pyannote[2107].end 12641.02596875
transcript.pyannote[2108].speaker SPEAKER_18
transcript.pyannote[2108].start 12642.03846875
transcript.pyannote[2108].end 12644.38409375
transcript.pyannote[2109].speaker SPEAKER_18
transcript.pyannote[2109].start 12646.56096875
transcript.pyannote[2109].end 12652.58534375
transcript.pyannote[2110].speaker SPEAKER_13
transcript.pyannote[2110].start 12653.24346875
transcript.pyannote[2110].end 12658.08659375
transcript.pyannote[2111].speaker SPEAKER_18
transcript.pyannote[2111].start 12653.69909375
transcript.pyannote[2111].end 12654.40784375
transcript.pyannote[2112].speaker SPEAKER_18
transcript.pyannote[2112].start 12656.88846875
transcript.pyannote[2112].end 12660.80346875
transcript.pyannote[2113].speaker SPEAKER_18
transcript.pyannote[2113].start 12661.07346875
transcript.pyannote[2113].end 12664.16159375
transcript.pyannote[2114].speaker SPEAKER_13
transcript.pyannote[2114].start 12663.09846875
transcript.pyannote[2114].end 12664.31346875
transcript.pyannote[2115].speaker SPEAKER_13
transcript.pyannote[2115].start 12664.33034375
transcript.pyannote[2115].end 12666.64221875
transcript.pyannote[2116].speaker SPEAKER_18
transcript.pyannote[2116].start 12666.64221875
transcript.pyannote[2116].end 12682.48784375
transcript.pyannote[2117].speaker SPEAKER_13
transcript.pyannote[2117].start 12683.60159375
transcript.pyannote[2117].end 12689.69346875
transcript.pyannote[2118].speaker SPEAKER_18
transcript.pyannote[2118].start 12688.78221875
transcript.pyannote[2118].end 12697.74284375
transcript.pyannote[2119].speaker SPEAKER_18
transcript.pyannote[2119].start 12698.41784375
transcript.pyannote[2119].end 12701.72534375
transcript.pyannote[2120].speaker SPEAKER_18
transcript.pyannote[2120].start 12702.78846875
transcript.pyannote[2120].end 12725.41784375
transcript.pyannote[2121].speaker SPEAKER_18
transcript.pyannote[2121].start 12725.94096875
transcript.pyannote[2121].end 12729.65346875
transcript.pyannote[2122].speaker SPEAKER_19
transcript.pyannote[2122].start 12729.94034375
transcript.pyannote[2122].end 12730.81784375
transcript.pyannote[2123].speaker SPEAKER_11
transcript.pyannote[2123].start 12731.61096875
transcript.pyannote[2123].end 12731.71221875
transcript.pyannote[2124].speaker SPEAKER_19
transcript.pyannote[2124].start 12731.71221875
transcript.pyannote[2124].end 12732.64034375
transcript.pyannote[2125].speaker SPEAKER_11
transcript.pyannote[2125].start 12732.64034375
transcript.pyannote[2125].end 12732.75846875
transcript.pyannote[2126].speaker SPEAKER_18
transcript.pyannote[2126].start 12732.92721875
transcript.pyannote[2126].end 12736.21784375
transcript.pyannote[2127].speaker SPEAKER_11
transcript.pyannote[2127].start 12736.38659375
transcript.pyannote[2127].end 12738.09096875
transcript.pyannote[2128].speaker SPEAKER_18
transcript.pyannote[2128].start 12738.78284375
transcript.pyannote[2128].end 12739.98096875
transcript.pyannote[2129].speaker SPEAKER_18
transcript.pyannote[2129].start 12740.82471875
transcript.pyannote[2129].end 12742.63034375
transcript.pyannote[2130].speaker SPEAKER_06
transcript.pyannote[2130].start 12743.00159375
transcript.pyannote[2130].end 12744.25034375
transcript.pyannote[2131].speaker SPEAKER_18
transcript.pyannote[2131].start 12743.37284375
transcript.pyannote[2131].end 12751.13534375
transcript.pyannote[2132].speaker SPEAKER_18
transcript.pyannote[2132].start 12753.49784375
transcript.pyannote[2132].end 12754.79721875
transcript.pyannote[2133].speaker SPEAKER_06
transcript.pyannote[2133].start 12756.46784375
transcript.pyannote[2133].end 12758.47596875
transcript.pyannote[2134].speaker SPEAKER_06
transcript.pyannote[2134].start 12758.64471875
transcript.pyannote[2134].end 12760.73721875
transcript.pyannote[2135].speaker SPEAKER_18
transcript.pyannote[2135].start 12758.83034375
transcript.pyannote[2135].end 12778.25346875
transcript.pyannote[2136].speaker SPEAKER_18
transcript.pyannote[2136].start 12778.94534375
transcript.pyannote[2136].end 12782.18534375
transcript.pyannote[2137].speaker SPEAKER_18
transcript.pyannote[2137].start 12782.87721875
transcript.pyannote[2137].end 12784.22721875
transcript.pyannote[2138].speaker SPEAKER_18
transcript.pyannote[2138].start 12784.95284375
transcript.pyannote[2138].end 12787.93971875
transcript.pyannote[2139].speaker SPEAKER_06
transcript.pyannote[2139].start 12785.03721875
transcript.pyannote[2139].end 12789.98159375
transcript.pyannote[2140].speaker SPEAKER_18
transcript.pyannote[2140].start 12787.95659375
transcript.pyannote[2140].end 12788.49659375
transcript.pyannote[2141].speaker SPEAKER_18
transcript.pyannote[2141].start 12788.51346875
transcript.pyannote[2141].end 12795.78659375
transcript.pyannote[2142].speaker SPEAKER_06
transcript.pyannote[2142].start 12793.60971875
transcript.pyannote[2142].end 12794.75721875
transcript.pyannote[2143].speaker SPEAKER_18
transcript.pyannote[2143].start 12795.88784375
transcript.pyannote[2143].end 12798.63846875
transcript.pyannote[2144].speaker SPEAKER_13
transcript.pyannote[2144].start 12796.03971875
transcript.pyannote[2144].end 12796.88346875
transcript.pyannote[2145].speaker SPEAKER_13
transcript.pyannote[2145].start 12797.55846875
transcript.pyannote[2145].end 12804.25784375
transcript.pyannote[2146].speaker SPEAKER_18
transcript.pyannote[2146].start 12804.05534375
transcript.pyannote[2146].end 12804.13971875
transcript.pyannote[2147].speaker SPEAKER_18
transcript.pyannote[2147].start 12804.25784375
transcript.pyannote[2147].end 12804.89909375
transcript.pyannote[2148].speaker SPEAKER_13
transcript.pyannote[2148].start 12804.89909375
transcript.pyannote[2148].end 12805.59096875
transcript.pyannote[2149].speaker SPEAKER_18
transcript.pyannote[2149].start 12805.59096875
transcript.pyannote[2149].end 12811.29471875
transcript.pyannote[2150].speaker SPEAKER_13
transcript.pyannote[2150].start 12805.64159375
transcript.pyannote[2150].end 12805.96221875
transcript.pyannote[2151].speaker SPEAKER_06
transcript.pyannote[2151].start 12805.96221875
transcript.pyannote[2151].end 12807.85221875
transcript.pyannote[2152].speaker SPEAKER_06
transcript.pyannote[2152].start 12808.83096875
transcript.pyannote[2152].end 12811.10909375
transcript.pyannote[2153].speaker SPEAKER_06
transcript.pyannote[2153].start 12813.37034375
transcript.pyannote[2153].end 12814.55159375
transcript.pyannote[2154].speaker SPEAKER_06
transcript.pyannote[2154].start 12815.14221875
transcript.pyannote[2154].end 12817.40346875
transcript.pyannote[2155].speaker SPEAKER_06
transcript.pyannote[2155].start 12818.07846875
transcript.pyannote[2155].end 12818.68596875
transcript.pyannote[2156].speaker SPEAKER_02
transcript.pyannote[2156].start 12823.46159375
transcript.pyannote[2156].end 12823.61346875
transcript.pyannote[2157].speaker SPEAKER_02
transcript.pyannote[2157].start 12823.73159375
transcript.pyannote[2157].end 12827.56221875
transcript.pyannote[2158].speaker SPEAKER_02
transcript.pyannote[2158].start 12827.69721875
transcript.pyannote[2158].end 12828.99659375
transcript.pyannote[2159].speaker SPEAKER_06
transcript.pyannote[2159].start 12828.99659375
transcript.pyannote[2159].end 12829.01346875
transcript.pyannote[2160].speaker SPEAKER_06
transcript.pyannote[2160].start 12829.08096875
transcript.pyannote[2160].end 12831.27471875
transcript.pyannote[2161].speaker SPEAKER_02
transcript.pyannote[2161].start 12833.51909375
transcript.pyannote[2161].end 12833.95784375
transcript.pyannote[2162].speaker SPEAKER_02
transcript.pyannote[2162].start 12834.58221875
transcript.pyannote[2162].end 12835.54409375
transcript.pyannote[2163].speaker SPEAKER_02
transcript.pyannote[2163].start 12836.38784375
transcript.pyannote[2163].end 12838.07534375
transcript.pyannote[2164].speaker SPEAKER_02
transcript.pyannote[2164].start 12838.48034375
transcript.pyannote[2164].end 12839.03721875
transcript.pyannote[2165].speaker SPEAKER_02
transcript.pyannote[2165].start 12839.47596875
transcript.pyannote[2165].end 12843.22221875
transcript.pyannote[2166].speaker SPEAKER_02
transcript.pyannote[2166].start 12843.71159375
transcript.pyannote[2166].end 12853.31346875
transcript.pyannote[2167].speaker SPEAKER_02
transcript.pyannote[2167].start 12853.70159375
transcript.pyannote[2167].end 12855.59159375
transcript.pyannote[2168].speaker SPEAKER_02
transcript.pyannote[2168].start 12855.74346875
transcript.pyannote[2168].end 12858.46034375
transcript.pyannote[2169].speaker SPEAKER_02
transcript.pyannote[2169].start 12859.11846875
transcript.pyannote[2169].end 12861.73409375
transcript.pyannote[2170].speaker SPEAKER_02
transcript.pyannote[2170].start 12862.27409375
transcript.pyannote[2170].end 12879.67221875
transcript.pyannote[2171].speaker SPEAKER_02
transcript.pyannote[2171].start 12879.94221875
transcript.pyannote[2171].end 12882.37221875
transcript.pyannote[2172].speaker SPEAKER_02
transcript.pyannote[2172].start 12882.65909375
transcript.pyannote[2172].end 12883.65471875
transcript.pyannote[2173].speaker SPEAKER_02
transcript.pyannote[2173].start 12883.94159375
transcript.pyannote[2173].end 12884.22846875
transcript.pyannote[2174].speaker SPEAKER_02
transcript.pyannote[2174].start 12884.61659375
transcript.pyannote[2174].end 12910.38471875
transcript.pyannote[2175].speaker SPEAKER_02
transcript.pyannote[2175].start 12910.90784375
transcript.pyannote[2175].end 12917.57346875
transcript.pyannote[2176].speaker SPEAKER_02
transcript.pyannote[2176].start 12917.91096875
transcript.pyannote[2176].end 12918.33284375
transcript.pyannote[2177].speaker SPEAKER_02
transcript.pyannote[2177].start 12918.56909375
transcript.pyannote[2177].end 12925.13346875
transcript.pyannote[2178].speaker SPEAKER_02
transcript.pyannote[2178].start 12925.94346875
transcript.pyannote[2178].end 12929.67284375
transcript.pyannote[2179].speaker SPEAKER_02
transcript.pyannote[2179].start 12929.84159375
transcript.pyannote[2179].end 12935.78159375
transcript.pyannote[2180].speaker SPEAKER_02
transcript.pyannote[2180].start 12936.33846875
transcript.pyannote[2180].end 12940.84409375
transcript.pyannote[2181].speaker SPEAKER_02
transcript.pyannote[2181].start 12940.92846875
transcript.pyannote[2181].end 12963.65909375
transcript.pyannote[2182].speaker SPEAKER_13
transcript.pyannote[2182].start 12966.00471875
transcript.pyannote[2182].end 12971.86034375
transcript.pyannote[2183].speaker SPEAKER_13
transcript.pyannote[2183].start 12971.92784375
transcript.pyannote[2183].end 12978.84659375
transcript.pyannote[2184].speaker SPEAKER_13
transcript.pyannote[2184].start 12978.96471875
transcript.pyannote[2184].end 12983.43659375
transcript.pyannote[2185].speaker SPEAKER_13
transcript.pyannote[2185].start 12983.85846875
transcript.pyannote[2185].end 13020.54471875
transcript.pyannote[2186].speaker SPEAKER_02
transcript.pyannote[2186].start 13020.42659375
transcript.pyannote[2186].end 13033.48784375
transcript.pyannote[2187].speaker SPEAKER_02
transcript.pyannote[2187].start 13034.09534375
transcript.pyannote[2187].end 13081.39596875
transcript.pyannote[2188].speaker SPEAKER_02
transcript.pyannote[2188].start 13081.76721875
transcript.pyannote[2188].end 13103.48534375
transcript.pyannote[2189].speaker SPEAKER_02
transcript.pyannote[2189].start 13103.99159375
transcript.pyannote[2189].end 13125.84471875
transcript.pyannote[2190].speaker SPEAKER_02
transcript.pyannote[2190].start 13126.33409375
transcript.pyannote[2190].end 13134.72096875
transcript.pyannote[2191].speaker SPEAKER_13
transcript.pyannote[2191].start 13135.02471875
transcript.pyannote[2191].end 13221.57659375
transcript.pyannote[2192].speaker SPEAKER_02
transcript.pyannote[2192].start 13221.40784375
transcript.pyannote[2192].end 13255.78221875
transcript.pyannote[2193].speaker SPEAKER_02
transcript.pyannote[2193].start 13256.20409375
transcript.pyannote[2193].end 13263.51096875
transcript.pyannote[2194].speaker SPEAKER_02
transcript.pyannote[2194].start 13263.78096875
transcript.pyannote[2194].end 13291.89471875
transcript.pyannote[2195].speaker SPEAKER_02
transcript.pyannote[2195].start 13292.77221875
transcript.pyannote[2195].end 13293.46409375
transcript.pyannote[2196].speaker SPEAKER_02
transcript.pyannote[2196].start 13295.45534375
transcript.pyannote[2196].end 13301.96909375
transcript.pyannote[2197].speaker SPEAKER_02
transcript.pyannote[2197].start 13302.64409375
transcript.pyannote[2197].end 13308.90471875
transcript.pyannote[2198].speaker SPEAKER_02
transcript.pyannote[2198].start 13309.83284375
transcript.pyannote[2198].end 13322.01659375
transcript.pyannote[2199].speaker SPEAKER_02
transcript.pyannote[2199].start 13322.72534375
transcript.pyannote[2199].end 13322.74221875
transcript.pyannote[2200].speaker SPEAKER_13
transcript.pyannote[2200].start 13322.74221875
transcript.pyannote[2200].end 13322.89409375
transcript.pyannote[2201].speaker SPEAKER_02
transcript.pyannote[2201].start 13322.89409375
transcript.pyannote[2201].end 13322.97846875
transcript.pyannote[2202].speaker SPEAKER_13
transcript.pyannote[2202].start 13322.97846875
transcript.pyannote[2202].end 13339.02659375
transcript.pyannote[2203].speaker SPEAKER_02
transcript.pyannote[2203].start 13339.02659375
transcript.pyannote[2203].end 13345.81034375
transcript.pyannote[2204].speaker SPEAKER_02
transcript.pyannote[2204].start 13345.86096875
transcript.pyannote[2204].end 13363.84971875
transcript.pyannote[2205].speaker SPEAKER_02
transcript.pyannote[2205].start 13363.91721875
transcript.pyannote[2205].end 13368.30471875
transcript.pyannote[2206].speaker SPEAKER_02
transcript.pyannote[2206].start 13368.92909375
transcript.pyannote[2206].end 13391.05221875
transcript.pyannote[2207].speaker SPEAKER_02
transcript.pyannote[2207].start 13391.08596875
transcript.pyannote[2207].end 13397.09346875
transcript.pyannote[2208].speaker SPEAKER_02
transcript.pyannote[2208].start 13397.17784375
transcript.pyannote[2208].end 13410.88034375
transcript.pyannote[2209].speaker SPEAKER_02
transcript.pyannote[2209].start 13411.72409375
transcript.pyannote[2209].end 13424.88659375
transcript.pyannote[2210].speaker SPEAKER_02
transcript.pyannote[2210].start 13425.02159375
transcript.pyannote[2210].end 13426.72596875
transcript.pyannote[2211].speaker SPEAKER_02
transcript.pyannote[2211].start 13427.38409375
transcript.pyannote[2211].end 13427.67096875
transcript.pyannote[2212].speaker SPEAKER_02
transcript.pyannote[2212].start 13427.90721875
transcript.pyannote[2212].end 13432.78409375
transcript.pyannote[2213].speaker SPEAKER_02
transcript.pyannote[2213].start 13433.25659375
transcript.pyannote[2213].end 13444.42784375
transcript.pyannote[2214].speaker SPEAKER_02
transcript.pyannote[2214].start 13444.76534375
transcript.pyannote[2214].end 13445.15346875
transcript.pyannote[2215].speaker SPEAKER_02
transcript.pyannote[2215].start 13445.59221875
transcript.pyannote[2215].end 13448.15721875
transcript.pyannote[2216].speaker SPEAKER_02
transcript.pyannote[2216].start 13448.54534375
transcript.pyannote[2216].end 13518.52596875
transcript.pyannote[2217].speaker SPEAKER_02
transcript.pyannote[2217].start 13518.62721875
transcript.pyannote[2217].end 13518.72846875
transcript.pyannote[2218].speaker SPEAKER_02
transcript.pyannote[2218].start 13519.18409375
transcript.pyannote[2218].end 13520.28096875
transcript.pyannote[2219].speaker SPEAKER_02
transcript.pyannote[2219].start 13520.70284375
transcript.pyannote[2219].end 13523.77409375
transcript.pyannote[2220].speaker SPEAKER_06
transcript.pyannote[2220].start 13521.12471875
transcript.pyannote[2220].end 13522.10346875
transcript.pyannote[2221].speaker SPEAKER_06
transcript.pyannote[2221].start 13523.89221875
transcript.pyannote[2221].end 13533.17346875
transcript.pyannote[2222].speaker SPEAKER_23
transcript.pyannote[2222].start 13541.76284375
transcript.pyannote[2222].end 13545.35721875
transcript.pyannote[2223].speaker SPEAKER_06
transcript.pyannote[2223].start 13545.49221875
transcript.pyannote[2223].end 13546.72409375
transcript.pyannote[2224].speaker SPEAKER_06
transcript.pyannote[2224].start 13547.93909375
transcript.pyannote[2224].end 13549.01909375
transcript.pyannote[2225].speaker SPEAKER_23
transcript.pyannote[2225].start 13549.08659375
transcript.pyannote[2225].end 13561.70909375
transcript.pyannote[2226].speaker SPEAKER_23
transcript.pyannote[2226].start 13561.87784375
transcript.pyannote[2226].end 13626.37409375
transcript.pyannote[2227].speaker SPEAKER_23
transcript.pyannote[2227].start 13627.16721875
transcript.pyannote[2227].end 13651.80471875
transcript.pyannote[2228].speaker SPEAKER_13
transcript.pyannote[2228].start 13652.76659375
transcript.pyannote[2228].end 13671.21096875
transcript.pyannote[2229].speaker SPEAKER_23
transcript.pyannote[2229].start 13670.95784375
transcript.pyannote[2229].end 13672.40909375
transcript.pyannote[2230].speaker SPEAKER_13
transcript.pyannote[2230].start 13671.66659375
transcript.pyannote[2230].end 13690.60034375
transcript.pyannote[2231].speaker SPEAKER_23
transcript.pyannote[2231].start 13690.27971875
transcript.pyannote[2231].end 13731.70784375
transcript.pyannote[2232].speaker SPEAKER_23
transcript.pyannote[2232].start 13732.12971875
transcript.pyannote[2232].end 13801.21596875
transcript.pyannote[2233].speaker SPEAKER_23
transcript.pyannote[2233].start 13801.84034375
transcript.pyannote[2233].end 13827.33846875
transcript.pyannote[2234].speaker SPEAKER_13
transcript.pyannote[2234].start 13827.13596875
transcript.pyannote[2234].end 13847.55471875
transcript.pyannote[2235].speaker SPEAKER_23
transcript.pyannote[2235].start 13846.40721875
transcript.pyannote[2235].end 13856.31284375
transcript.pyannote[2236].speaker SPEAKER_23
transcript.pyannote[2236].start 13857.10596875
transcript.pyannote[2236].end 13862.50596875
transcript.pyannote[2237].speaker SPEAKER_13
transcript.pyannote[2237].start 13861.35846875
transcript.pyannote[2237].end 13873.59284375
transcript.pyannote[2238].speaker SPEAKER_23
transcript.pyannote[2238].start 13863.72096875
transcript.pyannote[2238].end 13863.85596875
transcript.pyannote[2239].speaker SPEAKER_23
transcript.pyannote[2239].start 13864.49721875
transcript.pyannote[2239].end 13864.91909375
transcript.pyannote[2240].speaker SPEAKER_23
transcript.pyannote[2240].start 13865.71221875
transcript.pyannote[2240].end 13866.38721875
transcript.pyannote[2241].speaker SPEAKER_23
transcript.pyannote[2241].start 13873.54221875
transcript.pyannote[2241].end 13877.64284375
transcript.pyannote[2242].speaker SPEAKER_23
transcript.pyannote[2242].start 13877.96346875
transcript.pyannote[2242].end 13935.86159375
transcript.pyannote[2243].speaker SPEAKER_23
transcript.pyannote[2243].start 13937.81909375
transcript.pyannote[2243].end 13938.86534375
transcript.pyannote[2244].speaker SPEAKER_06
transcript.pyannote[2244].start 13938.86534375
transcript.pyannote[2244].end 13944.16409375
transcript.pyannote[2245].speaker SPEAKER_23
transcript.pyannote[2245].start 13939.23659375
transcript.pyannote[2245].end 13940.63721875
transcript.pyannote[2246].speaker SPEAKER_06
transcript.pyannote[2246].start 13944.87284375
transcript.pyannote[2246].end 13968.32909375
transcript.pyannote[2247].speaker SPEAKER_06
transcript.pyannote[2247].start 13968.64971875
transcript.pyannote[2247].end 13978.18409375
transcript.whisperx[0].start 1765.049
transcript.whisperx[0].end 1790.894
transcript.whisperx[0].text 報告委員會出席委員8人以足法定人數請主席宣布開會現在開會進行報告事項宣讀上次會議議事錄立法院第11屆第2會期司法及法制委員會第3次全體委員會議議事錄實驗中華民國113年10月7日星期一上午9時5分至下午1時2分地連本院紅樓302會議室出席委員黃委員郭昌等是
transcript.whisperx[1].start 1791.474
transcript.whisperx[1].end 1791.714
transcript.whisperx[1].text 進行專題報告.並備質詢。
transcript.whisperx[2].start 1820.143
transcript.whisperx[2].end 1833.829
transcript.whisperx[2].text 本次會議委員黃國昌等17人提出質詢委員林思明提出書面質詢決定一報告及一詢答完畢二委員質詢時要求提供相關資料或以書面答覆者請相關機關請速送交個別委員及本會宣讀完畢好請問各位上次會議之路有無錯誤或遺漏
transcript.whisperx[3].start 1842.788
transcript.whisperx[3].end 1870.621
transcript.whisperx[3].text 如果沒有,我們意思不確定接著介紹道場委員及應邀列席官員先介紹在場委員,我們請黃國昌委員陳俊穎委員接下來介紹應邀列席官員行政院人事行政總處人事長蘇俊榮人事長懷旭副人事長陳明忠公務人力發展學院院長
transcript.whisperx[4].start 1872.452
transcript.whisperx[4].end 1875.461
transcript.whisperx[4].text 那速發部我們歡迎薛和明次長
transcript.whisperx[5].start 1877.208
transcript.whisperx[5].end 1902.874
transcript.whisperx[5].text 內政部我們歡迎資訊服務司黃國毓司長謝謝財政部邀請財政資訊中心張文希主任歡迎教育部我們邀請資訊及科技教育司鄭凱仁專門委員歡迎經濟部我們邀請到產業技術司周崇斌副司長歡迎交通部邀請到
transcript.whisperx[6].start 1903.894
transcript.whisperx[6].end 1921.349
transcript.whisperx[6].text 交通技術科技及資訊師王東琦副師長歡迎農業部邀請到資訊師郭坤峰師長歡迎衛生福利部邀請到資訊處的李建章處長歡迎環境部邀請到測監測資訊師陳信雄專門委員歡迎國科會邀請到
transcript.whisperx[7].start 1929.059
transcript.whisperx[7].end 1942.852
transcript.whisperx[7].text 政務副主任委員陳秉宇陳副主委歡迎天龍監督管理委員會.邀請到資訊服務處林玉泰處長歡迎法務部矯正署.我們邀請到周輝煌州署長歡迎
transcript.whisperx[8].start 1945.848
transcript.whisperx[8].end 1972.728
transcript.whisperx[8].text 好 那麼本次議程我們要請行政院人事總處人事長及相關部會列席就政府機關導入AI提升效能進行專題報告.並備質詢現在進行報告時間5分鐘那麼依序我們先請人事長以及處發部的次長那其餘的列席機關我們再依序的來視情況邀請好 首先邀請蘇人事長報告
transcript.whisperx[9].start 1978.409
transcript.whisperx[9].end 1991.056
transcript.whisperx[9].text 主席各位委員大家早安今天總處非常榮幸能夠列席就整個政府機關導入AI提升效能提出專案報告
transcript.whisperx[10].start 1991.943
transcript.whisperx[10].end 2009.823
transcript.whisperx[10].text 為了建國臺灣AI產業漸漸發展的基礎環境及前面提升公務人員對AI的認知和共識,行政院在113年6月6日合併提升行政院公務人員人工智慧智能實施計畫本總處依據實施計畫積極辦理
transcript.whisperx[11].start 2015.446
transcript.whisperx[11].end 2031.656
transcript.whisperx[11].text 113至114年公務人員AI智能培訓相關課程.結合了樹花部.國科會及專業機構的支援.推動高階人才AI共識營.AI推動實務種子人員課程.公務人員AI通識課程.
transcript.whisperx[12].start 2032.737
transcript.whisperx[12].end 2046.663
transcript.whisperx[12].text 公務機關應用AI工作坊公務機關AI應用成果競賽五大策略前面針對行政院各部會高階主管到基層公務員進行培訓接下來請就五項策略的執行規劃跟委員報告
transcript.whisperx[13].start 2049.969
transcript.whisperx[13].end 2075.526
transcript.whisperx[13].text 第一在高階人才AI共事員部分總處已經在今年的一一三年七月到十月分別辦理部會首長部會副首長三級機關首長三級機關副首長及二級機關司長共事員採前沿調性的方式我們總計會培訓731位今天下午是第四個場次針對三級機關副首長及二級機關司長處長
transcript.whisperx[14].start 2080.329
transcript.whisperx[14].end 2098.518
transcript.whisperx[14].text 第2 AI推動實務總值人員課程:以行政院首屬各機關會資訊單位負責推動AI應用的課長級以上人員為對象培育機關導入AI應用專案總值人才的關鍵能力今年下半年規劃辦理一個班期那明年
transcript.whisperx[15].start 2099.738
transcript.whisperx[15].end 2124.619
transcript.whisperx[15].text 來辦理五個班期。第三,針對公務人員AI通識課程部分,為了使公務人員普遍掌握AI的智能及先輩知識,總處已經在今年9月1日在一等公務員學習平台的AI人工智慧專期建置五門AI核心概念的數位課程,並結合AI技術應用趨勢,進行AI應用工具實作演練,辦理AI應用趨勢及實作課程。
transcript.whisperx[16].start 2126.44
transcript.whisperx[16].end 2146.579
transcript.whisperx[16].text 那今年預計辦理27個班期已經開班19班那明年預計再規劃56個班期另外透過公司部門標竿實踐案例的分享展示AI落地技術實務健學部分今年規劃5個班期已經都完成了那明年預計再辦理6個班期
transcript.whisperx[17].start 2149.417
transcript.whisperx[17].end 2178.969
transcript.whisperx[17].text 在公務機關應用AI工作環及公務機關AI應用成果競賽部分這一部分是委由事務部來規劃辦理本總處配合該部的規劃進行跨部會合作共同促進各部會積極導入AI應用為了積極培養具備AI專業知識與應用能力政府人才總處規劃AI政府人才發展策略在114年掀起規劃階段將AI納入公務人員每年必須完成
transcript.whisperx[18].start 2179.489
transcript.whisperx[18].end 2183.235
transcript.whisperx[18].text 學習時數的範圍及規劃公務AI學習地圖及認證體系在115年到119年推動落實階段則以公務AI應用發展四大方面智慧轉型、低碳永續
transcript.whisperx[19].start 2195.333
transcript.whisperx[19].end 2196.974
transcript.whisperx[19].text 並希望各位委員繼續予以支持以上謝謝
transcript.whisperx[20].start 2233.41
transcript.whisperx[20].end 2247.761
transcript.whisperx[20].text 主席、各位委員今天應邀列席貴委員會就數位發展部推動政府機關導入AI提升效能提出報告向各位委員請益還請各位委員不吝示教
transcript.whisperx[21].start 2249.342
transcript.whisperx[21].end 2273.293
transcript.whisperx[21].text AI就全球面臨高齡化及少子化的趨勢.勞動力遞減.無法因應傳統與人力為基礎的政府服務由於AI的技術蓬勃發展.為提升政府運作效率.帶來全新的機會政府可以運用AI強大的資料分析.及智慧化決策輔助能力.優化政府運作流程.並加速政府運作效能
transcript.whisperx[22].start 2274.253
transcript.whisperx[22].end 2291.168
transcript.whisperx[22].text 然而AI也衍生了個人隱私衝擊及數位落差的問題因此政府必須針對這些問題加以重視與因應以下我會報告政府AI發展戰略計畫就速發布作為我國自費政府
transcript.whisperx[23].start 2292.209
transcript.whisperx[23].end 2313.734
transcript.whisperx[23].text 政策波化與協調運作的角色.遵循賴總統科技數位導入數位新社會的數位政見.以及行政院國家發展計畫創新經濟智慧國家的施政目標.以下我們會報告五年期的AI發展戰略計畫正在報行政院審定.該計畫有五大戰略.第一就是
transcript.whisperx[24].start 2314.614
transcript.whisperx[24].end 2332.406
transcript.whisperx[24].text 發展智慧化的為民服務在這個項目裡面最主要是有關政府的智慧客服讓民眾可以用問的就可以輕鬆的取得AI的各種政府服務包含的智慧櫃檯、智慧秘書等等的AI補助項目
transcript.whisperx[25].start 2334.768
transcript.whisperx[25].end 2362.184
transcript.whisperx[25].text 建構自動化行政服務自動化行政服務是希望能引導政府機關利用AI技術協助公務同仁辦理常規繁雜及耗時工作比如協助文書處理與資料匯編助手或系統建置與資安維護的資安助手讓同仁可以聚焦於特定業務需要AI補助
transcript.whisperx[26].start 2363.157
transcript.whisperx[26].end 2390.413
transcript.whisperx[26].text 作為輔助決策的特定業務第三,要完備AI的資料與模型因為政府的資料經緯架構需要強化隱私強化技術我們也必須確認在安全無疑的狀況下及去識別化的前提下讓政府的高品質業務資料能夠跨機關傳輸運用因此作為政府發展特定業務的AI模型的訓練基礎例如
transcript.whisperx[27].start 2391.233
transcript.whisperx[27].end 2414.826
transcript.whisperx[27].text 內政、衛福、經濟、稅務等業務領域在此數位部會確保AI模型在補助政府業務的穩定表現第4打造數位平權的智慧服務由於AI技術必須考慮所有利害關係人的需求特別是高齡長者、身障人士、新住民等弱勢族群因此速發部在
transcript.whisperx[28].start 2416.302
transcript.whisperx[28].end 2436.239
transcript.whisperx[28].text 鼓勵政府開發AI服務時必須符合無障礙設計.並定期邀請民眾進行應用性測試.以完成AI的回饋意見.讓所有人能夠平等享用這些數位服務最後一點就是後持AI應用的基礎環境由於AI需要
transcript.whisperx[29].start 2438.171
transcript.whisperx[29].end 2452.62
transcript.whisperx[29].text 除了算力以外,也需要許多資料共通的環境,讓各機關可安全有效率地取得資料,並投注資源提升政府網路及通訊環境,因此擴大政府網路頻寬與資安防護
transcript.whisperx[30].start 2455.262
transcript.whisperx[30].end 2470.444
transcript.whisperx[30].text 變成是非常重要的議題。蘇巴部也會與人事總處、公務人員保訓會等人力培訓機關合作,設計適當的AI技術與管理課程以培植公務人員具備AI能力與數位素養
transcript.whisperx[31].start 2475.226
transcript.whisperx[31].end 2492.162
transcript.whisperx[31].text 上述政策提出AI發展配套措施.包括訂定公佈人智慧應用手冊.辦理政府AI人力人賠作業.推動數據公寓及隱私強化應用.發展AI產品與系統評測機制
transcript.whisperx[32].start 2495.685
transcript.whisperx[32].end 2514.199
transcript.whisperx[32].text 以及根據國科會所公布的AI基本法我們會規劃AI風險的分類框架這些做法都是為了要讓政府能夠保障AI的安全並能夠穩定的運行速發部透過這些
transcript.whisperx[33].start 2521.554
transcript.whisperx[33].end 2543.354
transcript.whisperx[33].text 這些配套措施是為了要引導政府三用AI技術以智慧科技促進公共領域的創新便捷服務並同時能夠保障推動平權與保障共榮以上報告 進行大院指教 謝謝好 謝謝 謝謝崔次長那麼其餘列席報告機關如無口頭補充報告請大家參閱書面
transcript.whisperx[34].start 2553.186
transcript.whisperx[34].end 2574.049
transcript.whisperx[34].text 好那接下來呢我們機關代表報告完畢相關書面報告內容列入公報記錄現在開始進行詢答本會委員詢答時間為8分鐘必要時得延長2分鐘非本會委員詢答時間為5分鐘並不再延長上午10時30分截止發言登記現在請登記第一位的黃委員國昌質詢
transcript.whisperx[35].start 2586.793
transcript.whisperx[35].end 2588.077
transcript.whisperx[35].text 謝謝主席有請人事長請人事長總召長
transcript.whisperx[36].start 2594.125
transcript.whisperx[36].end 2620.539
transcript.whisperx[36].text 喂 董事長早上一次詢答的時候我有請教你我們人事總處在繁複的人事法規當中我們花了納稅人的錢投入了預算建立了AI人事法規的生成系統在上一次詢答的過程當中我本來是想要跟你確認這個查詢系統的成效如何
transcript.whisperx[37].start 2624.281
transcript.whisperx[37].end 2631.337
transcript.whisperx[37].text 針對這個查詢系統的人效的成效目前人事總處自己評估有沒有達到效應
transcript.whisperx[38].start 2633.645
transcript.whisperx[38].end 2657.362
transcript.whisperx[38].text 我跟總召報告一下,上次總召有提到一個重點就是希望既然人事總處在規劃ChampGVP分兩個部分,是不是要開放給一般民眾,那個等一下再說你們針對目前自己在處理人事的同仁用這個AI生成系統的人事法規查詢系統,目前評估成效如何?
transcript.whisperx[39].start 2658.281
transcript.whisperx[39].end 2677.4
transcript.whisperx[39].text 呃成效大概傳統一般伸手在查的話本來大概要一個小時現在可以縮短到10分鐘好沒關係齁你們針對這個成效到底是怎麼評估的到底是怎麼評估的會後提供一個資料給我好嗎好沒問題因為你上次講齁說用了這個系統時間可以節省40%到50%
transcript.whisperx[40].start 2681.664
transcript.whisperx[40].end 2703.581
transcript.whisperx[40].text 那我回去就很有興趣嘛因為我們在訂任何的KPI的時候那你要直接具體的講時間縮短40到50那你要有個衡量的基準嘛不是空口說白話嘛那這個人事法規生程式的AI查詢系統一天一天啊 它的capacity可以查詢幾折
transcript.whisperx[41].start 2706.271
transcript.whisperx[41].end 2712.082
transcript.whisperx[41].text 因為現在是牽涉到我們跟他注用Token的費用我們一天大概300個Token
transcript.whisperx[42].start 2714.028
transcript.whisperx[42].end 2742.215
transcript.whisperx[42].text 那每一天300個Token都有用完是不是目前大概是220左右220到250之間那等於是300還沒有用盡嘛還沒有用盡你把這個系統開始以後到今天為止每一天使用Token的次數會後提供資料給我好嗎好因為我喜歡看白紙黑字的東西我喜歡看數字說話我不喜歡空口說白話
transcript.whisperx[43].start 2743.775
transcript.whisperx[43].end 2768.516
transcript.whisperx[43].text 因為你們沒有開放給一般人使用即使是我都沒有辦法去檢證這個AI查詢系統是不是像你們所說的有這麼好用有這麼正確所以我就去我們立法院人事處請教了我請教了我們的立法院人事處的主任人事長你知不知道我們立法院的人事處有沒有在用這個系統
transcript.whisperx[44].start 2770.191
transcript.whisperx[44].end 2782.868
transcript.whisperx[44].text 我目前只開放行政院所屬還有前續部跟考試院哪有啊你明明就有開放給立法院你還發函給立法院要立法院派人去做教育訓練
transcript.whisperx[45].start 2785.936
transcript.whisperx[45].end 2803.085
transcript.whisperx[45].text 人事長拜託你在國會詢答的時候你不知道可以說不知道啦但不要信口開河啊你們自己都發寒了叫立法院的人事處派員去參加教育訓練阿你如果沒有開放給他們他們去參加教育訓練是參加好玩的喔
transcript.whisperx[46].start 2805.633
transcript.whisperx[46].end 2828.428
transcript.whisperx[46].text 我這裡要跟委員報告一件事情花文給立法院的應該是前續部花文轉我們沒有直接邀他所以立法院的人人事處的人能不能用就是可以用對嘛那你怎麼會說沒有開放給他們用因為我們沒有直接花文給他胡扯來公務員可不可以擔任有限公司的股東
transcript.whisperx[47].start 2835.473
transcript.whisperx[47].end 2860.991
transcript.whisperx[47].text 不能不能嗎對持股有限制嗎持股不能超過10%你確定嗎這個再確認一下好我直接跟你講啦因為我自己不能用嘛我只能去拜託第一個我請教我們立法院人事處的人他們有沒有在用他們跟我說他們通通都沒有在用
transcript.whisperx[48].start 2862.577
transcript.whisperx[48].end 2864.819
transcript.whisperx[48].text 我自己回答我請立法院人事處的人用因為我不能用嘛
transcript.whisperx[49].start 2885.595
transcript.whisperx[49].end 2907.543
transcript.whisperx[49].text 那你們控管只有人事處的人可以用所以我就請他們用啦那我就請他們幫我打一個問題上去啊公務員可不可以擔任有限公司的股東啊他同時勾了法規跟函式啊出來的答案的結果如同我上面PVT上面所示啊來人事長這個AI查詢系統提供的答案正不正確
transcript.whisperx[50].start 2913.262
transcript.whisperx[50].end 2929.592
transcript.whisperx[50].text 這個本來是不能超過10%現在已經有修正法律已經修正了所以這個提供的答案並不正確嗎是吧因為這個是配合服務法的修正這一個是舊規定對啊服務法什麼時候修正的
transcript.whisperx[51].start 2934.369
transcript.whisperx[51].end 2956.424
transcript.whisperx[51].text 我直接跟你講不要浪費時間啊2021年6月22你這個系統什麼時候建置的去年建置的嘛那你去年建置今年上線結果2022年修法都還沒有update要再多加油啦是再多加油啦來請那個矯正署的署長來矯正署署長請
transcript.whisperx[52].start 2967.27
transcript.whisperx[52].end 2986.439
transcript.whisperx[52].text 委員好 署長好我先之前八德外易間我們的新建統包工程案是24億那這個八德外易間新建統包工程案本來什麼時候要完成
transcript.whisperx[53].start 2987.762
transcript.whisperx[53].end 3003.844
transcript.whisperx[53].text 報告委員我們大概預定是今年的年底按照7月的規範什麼時候要完成他已經比較遲遠一段時間了不好意思請你針對問題回答按照7月的規範他什麼時候要完成
transcript.whisperx[54].start 3005.339
transcript.whisperx[54].end 3034.211
transcript.whisperx[54].text 一百一十一年一百一十一年那2022年要完成嘛現在已經2024年了吧是今年年底我們爭取能夠順利脫了這麼久的理由是什麼因為他場上之間有經營權的爭議場上之間經營權的爭議跟政府有關係嗎因為他沒有錢給他的分包那有時候分包不願意出工受到影響我的意思是啦
transcript.whisperx[55].start 3035.356
transcript.whisperx[55].end 3045.023
transcript.whisperx[55].text 他們既然承包了政府的標案他們就要按契約履行嘛這是基本的觀念沒有錯吧是沒有按契約履行我們該怎麼辦
transcript.whisperx[56].start 3047.27
transcript.whisperx[56].end 3047.55
transcript.whisperx[56].text 我跟署長交換意見
transcript.whisperx[57].start 3068.171
transcript.whisperx[57].end 3088.265
transcript.whisperx[57].text 要不要終止契約或採取其他契約上面主張權利什麼樣的方式我絕對尊重行政機關的判斷但問題是什麼但問題是他們按照契約該履行哪些項目就要履行哪些項目因為我之前接到檢舉我就覺得很奇怪他檢舉的內容是說
transcript.whisperx[58].start 3090.816
transcript.whisperx[58].end 3116.183
transcript.whisperx[58].text 他的外意見我們在監獄的出入口是不是有一個三道門的管制?是有這個三道門的管制最重要的目的跟機能是什麼?介入安全管控出入人員他同一個時間可以同時開啟嗎?不行不行嗎?不行那我上次我夏天的時候我花時間去看就看
transcript.whisperx[59].start 3118.562
transcript.whisperx[59].end 3138.699
transcript.whisperx[59].text 這個三道門的管制啊根本沒有辦法正常運作我是在今年夏天的時候去看的到目前為止這個缺失改善了嗎現在目前是改善當中但是還沒完成改善多久了
transcript.whisperx[60].start 3142.57
transcript.whisperx[60].end 3166.607
transcript.whisperx[60].text 我跟署長交換概念時間我全部都列出來了嘛他本來2022年3月就要完成結果拖到2023年的3月現在是2024年的10月等於是長達一年多的時間當中這三道門的管制沒有發揮他應有的功能講形同虛設話可能太重了啦
transcript.whisperx[61].start 3167.662
transcript.whisperx[61].end 3185.489
transcript.whisperx[61].text 但是署長作為矯正署的大家長應該知道那三道門的管制在整個監所、戒護上面、安全上面他扮演的核心功能嗎?是那現在拖了一年多到現在10月這麼基本的功能還沒有辦法發揮署長你覺得還需要多久的時間?
transcript.whisperx[62].start 3188.048
transcript.whisperx[62].end 3216.32
transcript.whisperx[62].text 我們會盡快來督導所屬機關依法令來辦理有必要我們會依企業來計劃相關的罰則從去年3月到現在10月你覺得有符合你剛剛所講的請他們盡快嗎盡快已經盡快超過一年半了我跟署長交換一下概念這不是開玩笑的事情
transcript.whisperx[63].start 3218.452
transcript.whisperx[63].end 3236.742
transcript.whisperx[63].text 報告委員我們機關絕對會積極來跟廠商要求辦理但是有一些部分是我們機關他沒辦法去掌控的因素請委員可以諒解這個當然機關自己沒有辦法修才會找廠商嘛現在我只有一個問題啊
transcript.whisperx[64].start 3238.997
transcript.whisperx[64].end 3257.768
transcript.whisperx[64].text 這個沒有辦法正常發揮的功能在介護上面啊形成了重大的漏洞拖延了一年多大概還要拖延多久我其實只有這個問題而已因為我們總不可能說政府機關廠商事情沒有做到我們一而再再而三的讓他演嘛
transcript.whisperx[65].start 3259.409
transcript.whisperx[65].end 3260.41
transcript.whisperx[65].text 年底前我們盡力來完成
transcript.whisperx[66].start 3287.987
transcript.whisperx[66].end 3305.809
transcript.whisperx[66].text 那個同仁都很辛苦啦這個我了解啦廠商該做的事情沒有做結果竟然同仁是人力輔助那我就只有一個問題啦花納稅人的錢搞了一個這麼大的工程這個核心的部分拖了一年多都沒有辦法完成
transcript.whisperx[67].start 3306.59
transcript.whisperx[67].end 3323.738
transcript.whisperx[67].text 那到底還要再讓那個廠商拖多久時間的關係啦 署長可以去巴德外一間因為我現場去現看過我也跟他們交換過意見我的立場很簡單你們就按照契約該怎麼主張就怎麼主張
transcript.whisperx[68].start 3324.838
transcript.whisperx[68].end 3350.703
transcript.whisperx[68].text 不要放水那第二個更重要的事情是安全介護上面這麼大的漏洞這麼嚴重的事情廠商如果如果沒有能力處理的話就按照企業的規定找人來幫他把他處理完這樣可以嗎是的謝謝委員OK好謝謝好謝謝黃委員謝謝周署長接下來有請沈委員發會質詢
transcript.whisperx[69].start 3366.625
transcript.whisperx[69].end 3387.063
transcript.whisperx[69].text 主席有請我們人事長請說人事長委員長人事長早我想今天我們主席安排這個議程有關政府機關導入AI提升效能的這個議程這個如果人事長的印象這是在兩個禮拜前9月30
transcript.whisperx[70].start 3390.014
transcript.whisperx[70].end 3414.831
transcript.whisperx[70].text 我們這個人事總處的業務報告的時候本席在這裡花了10分鐘的時間整個質詢的時間就在跟這個人事長討論有關政府使用AI的所以可能是我跟主席的所見略同或者是主席受到本席的啟發知道說這個我們人總在這個政府導入這個AI裡面扮演的核心角色
transcript.whisperx[71].start 3416.806
transcript.whisperx[71].end 3437
transcript.whisperx[71].text 那這個上次我花了10分鐘也提出了三個要求那這個是不是人事長會擔心說那我是不是上個禮拜兩個禮拜前全部都問完了今天不知道問什麼了不過其實10分鐘是只短情長我們有關AI的部分我今天還是有很多要請教人事長
transcript.whisperx[72].start 3438.678
transcript.whisperx[72].end 3464.986
transcript.whisperx[72].text 那這個我想這個主席安排這樣的議程很重要也是因為這一屆我們本屆的內閣在520成立的時候就宣示本屆的內閣就是一個行動AI創新內閣那也就是說換句話說啦從剛剛講到現在我們人事總處就是在本屆內閣裡面扮演最核心的角色也就是我們這個政府使用設成是AI的核心角色那這個
transcript.whisperx[73].start 3467.43
transcript.whisperx[73].end 3485.802
transcript.whisperx[73].text 這個所以在520宣誓之後呢在6月6號我們行政院也合訂了有關提升行政院公務人員人工智慧智能實施計畫對不對對6月6號合訂了齁其中有五大內容這五大內容裡面有三大內容是我們人事總處的職責兩大內容是出發部的職責對不對
transcript.whisperx[74].start 3489.522
transcript.whisperx[74].end 3505.029
transcript.whisperx[74].text 所以上一次的質詢裡面我就針對這個三這個我們人總的這個三大這內容的業務提出三個要求第一個就是把AI計畫要這個他的成果要定期盤點
transcript.whisperx[75].start 3506.309
transcript.whisperx[75].end 3522.157
transcript.whisperx[75].text 成果的部分要定期盤點,要檢討。第二個,把AI列入公務人員學習必修課程,這個人事長記得吧。第三,把AI納入115年度原額評鑑計畫當中,這個人事長也承諾了,對不對?是。好,那這個
transcript.whisperx[76].start 3528.649
transcript.whisperx[76].end 3548.916
transcript.whisperx[76].text 也就是說我們這個這次那個編列的這個號稱編列百億AI預算並且合訂了這樣子的一個實施內容但是我們知道說除了這個AI的這個業務除了我們人種以外我們其他速發部我們的速發部跟國科會也扮演重要的角色
transcript.whisperx[77].start 3550.523
transcript.whisperx[77].end 3559.146
transcript.whisperx[77].text 那以我的了解我們國科會我們現在目前的人工智慧基本法是國科會主管對不對是主席是不是請國科會副主委來請國科會副主委請
transcript.whisperx[78].start 3569.335
transcript.whisperx[78].end 3593.712
transcript.whisperx[78].text 副主委我時間有限所以要趕快講我們這個AI基本法草案我們在7月15號預告開始預告60天應該是在9月13完成預告了那期間呢也有許多這個民間團體包括世改會包括跆拳會都對我們這個AI基本法的草案在預告期間提出了一些建議
transcript.whisperx[79].start 3594.893
transcript.whisperx[79].end 3615.946
transcript.whisperx[79].text 包括這個個人隱私的問題啦數位落差的問題等等這些部分請問一下副主委我們在接下來這個草案送冤我們有沒有會針對這些部分再做檢討報告委員這個部分我們已經納入這個考量當中那也修正在我們的基本法草案裡面有修正嗎很好很好那這個
transcript.whisperx[80].start 3617.931
transcript.whisperx[80].end 3629.185
transcript.whisperx[80].text 我們在AI基本法在立法以前還沒有完成立法之前我目前行政院是使用行政指導原則在進行有關AI的使用管控
transcript.whisperx[81].start 3637.655
transcript.whisperx[81].end 3660.611
transcript.whisperx[81].text 我們在上一年有一個AI的使用的一個所屬機關使用生成物質AI的這個參考指引有第一個參考指引對參考指引這個是行政指導原則行政指導原則那另外有關操作的部分有操作的指導也有這個各項AI管理指引技術指南就技術的部分有這個技術指南那這個
transcript.whisperx[82].start 3664.349
transcript.whisperx[82].end 3672.373
transcript.whisperx[82].text 這個我看了這個國科會的基本法草案齁在公告預告期間的看了這個草案齁總共內容18條啦齁18條裡面呢我們盤點這18條裡面總共有13條他開頭三個字都一樣是哪三個字主委欸副主委來
transcript.whisperx[83].start 3684.335
transcript.whisperx[83].end 3710.729
transcript.whisperx[83].text 政府應也就是說在基本法裡面這個18條裡面有13條都是政府應幹嘛政府應該幹嘛政府應該幹嘛總共13條都是規範政府的啦那這個有這麼多政府應應做的事情這個我就要請問人事長這個我們最核心的角色我們這裡人工智慧法裡面這麼多政府應作為的事項我們的人力足夠嗎現有的人力
transcript.whisperx[84].start 3725.451
transcript.whisperx[84].end 3738.538
transcript.whisperx[84].text 我們希望未來每一個公務員都有成功智慧的DNA檢驗所有經驗,包含我們之前犯罪好好,沒有關係這個這個人事長未來這個基本法通過之後政府應該作為的事情有這麼多了以現有的人力來講我認為這個人力一定的調整是勢在必行
transcript.whisperx[85].start 3740.636
transcript.whisperx[85].end 3752.464
transcript.whisperx[85].text 不管是公務人員的員額也好不管是約聘僱人員也好你未來政府有這麼多政府應作為的事項我們應該提早就我們的這個中央機關總員額法應該要提早做這個檢討還有我們有關這個約聘僱人員我們本會
transcript.whisperx[86].start 3764.972
transcript.whisperx[86].end 3771.756
transcript.whisperx[86].text 本委員會在這個今年5月的時候有提出一個臨時提案請我們人總提出有關這個有關AI的這個約聘僱人員人力使用檢討結果我看了你們檢討的書面報告基本上是沒有檢討啦你們只是把現狀列出來而已啦沒有檢討未來的做法
transcript.whisperx[87].start 3784.483
transcript.whisperx[87].end 3795.768
transcript.whisperx[87].text 所以這部分請我因為時間關係我請請這個人事長我們這個人事緣和調整在這個基本法架構之下絕對是勢在必行的所以請我們人總提早因應好不好謝謝謝謝委員那接下來另外一個比較比較這個我個人認為是不是應該政府應該考慮的這個我不曉得是國科會的職權還是人總的職權這是有關這個美國
transcript.whisperx[88].start 3811.806
transcript.whisperx[88].end 3822.665
transcript.whisperx[88].text 美國在這個今年的這個3月28號由這個賀錦麗副總統他提出了而且已經開始實施就是每個政府機關都必須設置AI長
transcript.whisperx[89].start 3824.69
transcript.whisperx[89].end 3848.125
transcript.whisperx[89].text 人工智慧長就是這個Chief AI Officer這是CAIO他們現在也已經開始美國的這個包括他們的國防部包括他們的網路安全局都已經開始都已經設置了這個AI長而且他們是要求未來每一個機關都必須設置AI長
transcript.whisperx[90].start 3850.393
transcript.whisperx[90].end 3875.94
transcript.whisperx[90].text 這個部分我們有沒有考慮是不是國科會先講我們在基本法架構裡面有沒有這個部分報告委員基本法應該沒有規範到這個沒有規範到這個部分所以要請人事總長這個要考量如果要考量這個我再看到這個我們國科會的基本法裡面這個列在如果要設這個AI長列在哪裡
transcript.whisperx[91].start 3877.079
transcript.whisperx[91].end 3883.465
transcript.whisperx[91].text 第一個,這是我們現在基本法草案第12條政府應建立AI應用負責機制這個主管機關應該就是人種啦報告委員,那是速發部啦應用的負責機制是速發部嗎?
transcript.whisperx[92].start 3896.347
transcript.whisperx[92].end 3907.937
transcript.whisperx[92].text 整個應用在政府機關的應用政策的規劃推動是在速發部那人總扮演的角色是公務人員人工智慧的培訓在公務人員這個區塊我剛提的這個美國所設置的這個人工智慧長AI長
transcript.whisperx[93].start 3917.432
transcript.whisperx[93].end 3938.297
transcript.whisperx[93].text 我們有沒有考慮因為現在事實上我們資安我們在各個政府機關現在都有設置資安長這個是已經各個政府機關都有設置我想AI長的部分是因為那個人工智慧基本法裡面現在沒有規定現在沒有規定對但是按照剛剛這樣大家討論的結果有關政府建立AI應用負責機制
transcript.whisperx[94].start 3942.34
transcript.whisperx[94].end 3957.393
transcript.whisperx[94].text 我們在修法的過程中不斷的在討論是要分級還是分類因為歐盟是分級美國是分類分類的基礎就是說不同的政府機關我理解我是請我們速發部
transcript.whisperx[95].start 3960.322
transcript.whisperx[95].end 3980.667
transcript.whisperx[95].text 能夠在考慮這個未來這個AI的這個使用上面在評估確認AI應用於哪些用途他對影響這個國民的安全跟權利這個部分設置在各機關設置AI長我個人認為是有必要的他不一定是常設的但是他可以像資安長一樣他是一個專責負責的人好不好我們請蘇發部來研議那蘇發部既然上來我就順便問蘇發部一個問題
transcript.whisperx[96].start 3988.849
transcript.whisperx[96].end 4004.58
transcript.whisperx[96].text 我看到你們在今年9月30號這個我們人事長跟我們這個國客會請回啦最後就是再請問訴發部我在9月30號看到你們表示齁你們預計在12月釋出政府機關AI應用指引對不對對
transcript.whisperx[97].start 4006.121
transcript.whisperx[97].end 4021.147
transcript.whisperx[97].text 那我要請問就是說你們要釋出將來12月預計要釋出的這個政府機關AI使用指引應用指引跟現行的行政院及所屬機關使用生成式AI參考指引有什麼不一樣
transcript.whisperx[98].start 4022.092
transcript.whisperx[98].end 4041.029
transcript.whisperx[98].text 跟委員報告他是一個上位跟上位的指導概念還是一個補充的概念還是一個取而代之的概念用這個新的公佈的指引來取代舊的指引是什麼樣的就AI這件事情當初內閣是決定說指引先行
transcript.whisperx[99].start 4041.71
transcript.whisperx[99].end 4063.815
transcript.whisperx[99].text 那指引先行後面再立法那指引先行就是說國科會他先訂了一個指引但是因為這個指引沒辦法包含各部會不同的使用情境比如說也就是說我這樣理解你的意思是說現在現行的已經公佈在實施的行政院及所屬機關使用生成式AI參考指引
transcript.whisperx[100].start 4072.037
transcript.whisperx[100].end 4091.526
transcript.whisperx[100].text 行政院提的這個指引是管制類的然後我們提的是應用類那這個應用類必須有各部會的應用指引先出來以後我們再去取也就是並行的就對了目前事實上我看到相當多的部會都已經都已經有訂定指引了但還沒有全部了
transcript.whisperx[101].start 4091.966
transcript.whisperx[101].end 4109.083
transcript.whisperx[101].text 對,因為這個是一個有button up的過程,就是各部會根據自己的應用情境去訂出應用指引,然後抒發部這邊會再做彙整所以說所屬機關現行的這個是,你們說你們所做的是應用類的,那現行的是什麼類的?管制類的
transcript.whisperx[102].start 4111.653
transcript.whisperx[102].end 4128.326
transcript.whisperx[102].text 好 這個部分我會看你們到時候所提出來這個政府機關AI應用指引我看這個內容跟現行的指引之間的有沒有相關的競合或者是這個抵觸的地方我再來觀察好 謝謝 謝謝委員好 謝謝沈委員 謝謝次長接下來有請羅委員自強質詢
transcript.whisperx[103].start 4141.485
transcript.whisperx[103].end 4161.921
transcript.whisperx[103].text 主席有請蘇人事長跟薛次長好請人事長跟薛次長委員早蘇發布的報告裡提到說將提出5年期的AI發展戰略計畫現在正在報請行政院核定對不對對那想請問這個是預計在115年啟動那我想請問次長5年的計畫預計編列多少的經費
transcript.whisperx[104].start 4174.741
transcript.whisperx[104].end 4191.544
transcript.whisperx[104].text 190億那我想請教一下因為AI發展牽涉到很多政府部門那速發部的角色當然也重要那我想請問次長那速發部明年編列明年編列多少預算來推動AI的發展
transcript.whisperx[105].start 4199.915
transcript.whisperx[105].end 4206.907
transcript.whisperx[105].text 我們明年是十幾億但是在速發部的預算那很多是跟其他部會一起提對好謝謝
transcript.whisperx[106].start 4208.396
transcript.whisperx[106].end 4226.785
transcript.whisperx[106].text 老實說跟次長說從速發部過去表現來看其實我對你們推動AI的能力是相當沒有信心的那比如說AI發展戰略計畫五大戰略裡面有一項叫做發展智慧化為民服務對不對
transcript.whisperx[107].start 4228.464
transcript.whisperx[107].end 4257.325
transcript.whisperx[107].text 那是要利用AI客服來協助民眾查報查找政府服務那目前速發部推動的強化智慧政府數位發展計畫其實就是這個計畫有相當的重合度嘛對不對就是過去的計畫並不會特別強調AI的部分所以最大的差異是導入AI建網之來啦我就先看你過去到底做了什麼才能看你未來到底能做什麼
transcript.whisperx[108].start 4258.51
transcript.whisperx[108].end 4260.694
transcript.whisperx[108].text 那事實上在書發部剛送進來的114年預算書裡面顯示書發部過去的成果是用
transcript.whisperx[109].start 4267.039
transcript.whisperx[109].end 4295.759
transcript.whisperx[109].text 這個﹖
transcript.whisperx[110].start 4296.777
transcript.whisperx[110].end 4321.057
transcript.whisperx[110].text 這個我可不可以請這個蘇政司的司長回覆因為他牽涉到各部會的智能小幫手你說什麼跟誰請這個司長回覆好來沒關係來司長請說委員好因為這一個我們115年開始那個計畫是五年期的計畫所以我們編一個我跟你講我現在是先看前面的表現啦所以我們114年我們就先有個銜接的好啦沒關係我來問齁這個智能小幫手什麼時候上線的啊
transcript.whisperx[111].start 4321.567
transcript.whisperx[111].end 4338.022
transcript.whisperx[111].text 而智能小幫手我們是預計今年底是在我們如果是講的是我們速發布自己的話我們是在今年底在我們的整個路口網站上線我講之前的啊你們之前就有啦111年11月上線連自己上線過的東西都不知道不會吧
transcript.whisperx[112].start 4338.707
transcript.whisperx[112].end 4365.714
transcript.whisperx[112].text 我們那個智能小幫桶應該是純粹智能小幫桶他應該沒有到112年底你們這一套的系統你知道累積使用人數是多少嗎111年11月到112年底大概一年時間左右啦我們的入口網大概每年大概是十幾萬人左右我講的是這一個系統不是講你的入口網站好不好你不要把拿你的整個速發部入口網站來蒙混
transcript.whisperx[113].start 4366.772
transcript.whisperx[113].end 4388.849
transcript.whisperx[113].text 你速發入口網站一年十幾萬的瀏覽人數你也不要驕傲你覺得驕傲嗎?次長你也不覺得驕傲吧?次長你上來好了啦我看他也答不出來所以我跟你說啦使用人次累計是4096人次啦次長你滿意嗎?你滿意嗎?
transcript.whisperx[114].start 4398.103
transcript.whisperx[114].end 4414.419
transcript.whisperx[114].text 一百一十一年十一月到十二月底使用的是一千兩百三十九次算起來一百一十二年全年使用是兩千五百八十七次平均每個月兩百三十八次每天不到八次點擊率點閱
transcript.whisperx[115].start 4417.463
transcript.whisperx[115].end 4428.63
transcript.whisperx[115].text 所以部長 次長為什麼要拿這個問題問你總知道了吧你知道這個112年度所謂的強化智慧政府數位發展計畫編列多少錢嗎我告訴你啦4149萬啦
transcript.whisperx[116].start 4434.264
transcript.whisperx[116].end 4456.22
transcript.whisperx[116].text 然後可是你現在照你過去的這個績效用全國規模的預算推出的這個智能小幫手服務人士連一個里我們大概去隨便一個里的人數都比你多那這樣子的話我覺得你的智能小幫手先提升一下我們書發部本身的智能一下好嗎4000多萬先去改善書發部的智能
transcript.whisperx[117].start 4458.243
transcript.whisperx[117].end 4467.672
transcript.whisperx[117].text 這是為什麼今天我要跟你講說我們當然支持政府來去打造台灣但現在總統說的阿要把台灣打造成AI智慧之島阿
transcript.whisperx[118].start 4469.468
transcript.whisperx[118].end 4491.173
transcript.whisperx[118].text 可是如果說你過去蘇發布的績效是這個樣子的話那說真的我怎麼對你未來的績效有信心呢打造AI之島當然啦國科會有責任啦對不對我看我們人事總處也在努力要把政府的那個系統在怎麼樣去AI化可是蘇發布是重中之重沒錯吧
transcript.whisperx[119].start 4493.079
transcript.whisperx[119].end 4497.043
transcript.whisperx[119].text 市長我跟你講你講的都要藉口啦4000多個點擊次兩年齁真的是有夠難看的我直接講啦
transcript.whisperx[120].start 4518.459
transcript.whisperx[120].end 4546.212
transcript.whisperx[120].text 那你等於是一個你花了四千多萬欸一個點擊次是一萬元的成本欸服務一個民眾上去點一次一萬塊欸不是這個意思那你跟我講那個現在也不實用因為現在有新的技術出來打掉了要重練了那我問你過去你就你一個點擊次要一萬塊啊我說真的我未來怎麼對你有信心呢我想書發部的揮霍預算早就惡名昭彰了也不是這件事啦
transcript.whisperx[121].start 4547.962
transcript.whisperx[121].end 4574.231
transcript.whisperx[121].text 2022年成立嘛大家都希望書發部能夠讓台灣更智慧化數位化推動AI打擊詐騙齁期待很高啦對不對當年嘛對不對可是立法院給了很多的預算事實上你也知道書發部大概是民眾齁最不滿意的部會之一啦為什麼你光像打詐慘不能賭然後很多的東西你知道王世堅委員怎麼形容你們嗎還記得嗎市長還記得嗎
transcript.whisperx[122].start 4578.079
transcript.whisperx[122].end 4597.185
transcript.whisperx[122].text 我最近記憶力不太好不太好我幫你提醒一下飯桶啊你們是飯桶嗎王世堅委員說你們是飯桶啊我們尊重委員的意見我告訴你不是尊重你們拿出點績效跟行動力證明速發部不是飯桶嘛可以嗎
transcript.whisperx[123].start 4598.663
transcript.whisperx[123].end 4627.464
transcript.whisperx[123].text 我們會努力 謝謝努力啦 證明不是飯桶 是非常低階的努力啦那我再舉個例子 講你揮霍蘇發部今年出國預算幾個 編列多少預算今年應該是 32個啦 預算是3133萬啦所以有人常講蘇發部叫出國部啦國際交流重要 但是我要跟市長說我就先不講別的部門 最重要的國際交流部門應該是哪個部門
transcript.whisperx[124].start 4628.942
transcript.whisperx[124].end 4655.894
transcript.whisperx[124].text 政府裡面?外交部當然是外交部啊外交部今年編了也只有14個出國計畫然後編列2908萬書發部不是不能出國考察交流啦可是你們的計畫是外交部的兩倍然後你們的AI服務人士像我剛剛講的Lililala本業都沒做好一天到晚想出國這難怪人家覺得不服難怪王世堅要罵你們是飯桶嘛
transcript.whisperx[125].start 4656.514
transcript.whisperx[125].end 4663.547
transcript.whisperx[125].text 所以這是你們自己本務要先做好那我要問一下人事長請問國人薪資中位數是多少
transcript.whisperx[126].start 4665.522
transcript.whisperx[126].end 4691.928
transcript.whisperx[126].text 國人的薪資中位數大概六七十萬之間我看到數字是111年是薪資中位數是51.8萬平均月薪4.3萬那是我的看當然你的數字也許有更不一樣的數字你再告訴我我再提供給委員那我想請問一下人事長你知道蘇發布全體職員平均的月薪是多少嗎比4.3萬高還是低高多少你知道嗎
transcript.whisperx[127].start 4692.668
transcript.whisperx[127].end 4720.652
transcript.whisperx[127].text 我肯定知道他一定會比較高啊不然他找不到人對對對好比較高我也認同比較高一點我告訴你啊速發部114年編列預算250百位法定編制員和23位約聘僱編列薪水獎金加給加班費加起來月薪是10.2萬一年是122萬那是國人薪資中位數的2.4倍那你知道比起其他部會高還是低
transcript.whisperx[128].start 4722.022
transcript.whisperx[128].end 4722.042
transcript.whisperx[128].text 請問次長
transcript.whisperx[129].start 4754.282
transcript.whisperx[129].end 4760.588
transcript.whisperx[129].text 我要告訴你的是基本上你如果拿到的比較好的薪水績效就要怎麼樣
transcript.whisperx[130].start 4762.421
transcript.whisperx[130].end 4768.247
transcript.whisperx[130].text 中位數有中位數平均值有平均值的意義阿我要講的是你拿的薪水比一般的民眾高沒錯吧你總不能講不是吧
transcript.whisperx[131].start 4784.216
transcript.whisperx[131].end 4804.944
transcript.whisperx[131].text 平均值你也比較高啦你還在跟我扯沈仁市長速發部現在拿月薪10萬平均值我比一般民眾高有沒有你跟我講按照我最近看的資料是比一般外面的高對啊那你還在跟我扯什麼不要在那邊凹來凹去找藉口人事長都已經打臉你了以上謝謝好謝謝羅委員謝謝沈市長謝謝次長接下來有請林委員私民諮詢
transcript.whisperx[132].start 4820.06
transcript.whisperx[132].end 4848.443
transcript.whisperx[132].text 謝謝主席 請人事長 請蘇人事長委員早 人事長早 人事長我想今天就這個AI的一個效能的問題 我首先來請教人事長 就是我們人事總處就公務人員的AI智能的數位轉型 你都有相關的規劃安排今天的業報也寫得很清楚 但是我在意的是說有關數位落差的問題 也就是說
transcript.whisperx[133].start 4849.304
transcript.whisperx[133].end 4860.295
transcript.whisperx[133].text 你對於這些比較資深的公務人員﹐對於數位化的熟悉度﹐跟我們新進的公務人員﹐他們是不是會產生數位的落差?
transcript.whisperx[134].start 4862.825
transcript.whisperx[134].end 4880.585
transcript.whisperx[134].text 這個現象一定是會的因為現在新進到公務機關服務已經是有2000年次之後的那這些都是屬於數位延伸所以一定會有不一樣的一個程度的差別對對對對於數位化的認識以及他的技能所以你會做培訓嗎你來培訓嗎
transcript.whisperx[135].start 4883.969
transcript.whisperx[135].end 4910.566
transcript.whisperx[135].text 培訓就是事實上我們的主要任務就是所有公務人員的一個培訓那陳盧委員你所了解的吧要把所有的公務人員全部都招訓來開實體課有困難所以我們從9月1號開始我們就開了五門的人工智慧的課程那之前的這6年我們就開人工智慧相關的像RPA的相關人工智慧的一些課程我們陸陸續續都有在開
transcript.whisperx[136].start 4912.327
transcript.whisperx[136].end 4925.217
transcript.whisperx[136].text 委員長你有開這課程培訓課程我了解就是說但是你有沒有考慮到你開這些這個課程啊你有沒有做差異化的培訓你全部招進來但是每個程度不一樣
transcript.whisperx[137].start 4927.432
transcript.whisperx[137].end 4942.537
transcript.whisperx[137].text 我跟委員我跟委員差異化做這個適當的一個訓練差異化大概就是有些是培養種子的部分我們就是有實體課大概3天而且還要有一些考試要取得一個證照
transcript.whisperx[138].start 4943.237
transcript.whisperx[138].end 4958.07
transcript.whisperx[138].text 那如果是一般通識型的話就是我們在我們的公務人力發展中心有一個數位學習課程讓公務人員他自己上去選他有興趣的課題因為這裡面有些是應用面有些
transcript.whisperx[139].start 4958.67
transcript.whisperx[139].end 4977.109
transcript.whisperx[139].text 是委員所關心的可能人工智慧在使用的時候他可能會有一些負面的一個impact對一些衝擊還是對弱勢的因為他可能一輩子都對人工智慧的東西他學習上的障礙那政府應該如何去協助那些
transcript.whisperx[140].start 4977.689
transcript.whisperx[140].end 4997.407
transcript.whisperx[140].text 市長我的意思就是說其實我是建議你啦因為大概程度就真的都不一樣所以你在設計相關的培訓課程啊可能你要做一些差異化的一個課程的設計就你剛才講的啊有些人可能他的這個什麼應該講什麼什麼障礙啊會有這樣的一個學習的一個能力的不一樣
transcript.whisperx[141].start 4998.923
transcript.whisperx[141].end 5017.579
transcript.whisperx[141].text 對他的了解不一樣即便你有通識的一個教育但是當你進入到這個要更深入的課程AI人工智慧課程的一個培訓的時候如果你還是用一樣的課程去做訓練的話會不會造成說人家學習上的一個障礙
transcript.whisperx[142].start 5018.988
transcript.whisperx[142].end 5040.403
transcript.whisperx[142].text 我跟委員報告大概有兩個角度第一個角度是我們課程有一些是屬於出街還有進街還有高街然後出街的課程是否一般公務人員他應該要來學習的然後這裡面有一個很重要我們就是在設計課程設計課程設計很重要
transcript.whisperx[143].start 5042.725
transcript.whisperx[143].end 5052.028
transcript.whisperx[143].text 不要設計的太協助性因為我們希望是用情境式的step by step一步一步來教這樣看 有在看 看有啦不然你用到最協助最理論
transcript.whisperx[144].start 5058.37
transcript.whisperx[144].end 5083.516
transcript.whisperx[144].text 時間關係,我建議在整個課程的設計,對於不同程度學習的太陽的差異,可能要考量課程的設計。另外我再請教一下,我們是否有考量到各機關內部,你是否已經具備相當到位的數位軟體設備?
transcript.whisperx[145].start 5086.055
transcript.whisperx[145].end 5113.549
transcript.whisperx[145].text 他要去訓練那你是不是有他們機關內部他們各種軟硬體的設備是否有到位可以來搭配執行我跟委員報告一下那個假如是在人工智慧方面因為目前市面上可以使用的比如像深層式人工智慧因為有一般的人工智慧還有深層式的那深層式的現在Google Gemini還有其他的
transcript.whisperx[146].start 5114.029
transcript.whisperx[146].end 5114.81
transcript.whisperx[146].text 委員也很清楚
transcript.whisperx[147].start 5141.544
transcript.whisperx[147].end 5161.458
transcript.whisperx[147].text 這些人工智慧尤其生成式的它需要耗用很多的運算資源那以每一個部會內部的現在的resource來講的話坦白講會有不夠那所以樹花部他們也有在規劃或者經濟部他們也有在規劃譬如去買灰打的一些金幣
transcript.whisperx[148].start 5171.164
transcript.whisperx[148].end 5171.184
transcript.whisperx[148].text 委員會議
transcript.whisperx[149].start 5190.766
transcript.whisperx[149].end 5219.38
transcript.whisperx[149].text 報告委員我們在數位政府是有一支計畫就是建立政府機關共用的AI平台那在這個平台裡面他就是會用一個API去串接那我們盡量去取得目前市面上各式各樣的各式各樣的大型語言模型那讓各機關在這個階段他他可以選擇他現在要用哪一個平台目前建制的情況怎樣我們請
transcript.whisperx[150].start 5220.701
transcript.whisperx[150].end 5243.977
transcript.whisperx[150].text 蘇政司補充包委員我們現在大概明年第一季可以開始使用明年第一季我想既然要做AI的各部門要做AI的一個智能效應的一個利用跟使用發揮我們的行政效率所以這部分軟硬體的設備你要儘速的把它建置完成所以你預期明年第一季
transcript.whisperx[151].start 5244.838
transcript.whisperx[151].end 5272.844
transcript.whisperx[151].text 明年底還是明年初明年初明年初就會把這些軟體設備把這個建置到位嗎OK好那再請教我們有關於這個治安的問題我想我們經過AI未來這個數位轉型AI之後AI技術的迅速發展與廣泛應用優化我們政府的運作流程並加速政府運作的效能在帶來便利的同時會不會帶來風險
transcript.whisperx[152].start 5275.104
transcript.whisperx[152].end 5288.6
transcript.whisperx[152].text 當然,所以在那個國科會公佈的人工智慧基本法裡面那速發部就必須對這些AI模型去做評測那評測裡面最重要非常重要的一個項目就是治安的風險是
transcript.whisperx[153].start 5290.041
transcript.whisperx[153].end 5317.357
transcript.whisperx[153].text 那目前為止我們對於治安的防護呢有沒有落實到位嚴格把關目前蘇發部已經成立的AI評測中心在治安院已經成立了AI評測中心那也對目前市面上的一些語言模型已經做了一些評測好那我再請教齁這個可能跟人事長沒有有關啦齁人事長學工現在我們未來在系統的運作齁指派作業人員的政策方面我們是既用具有
transcript.whisperx[154].start 5318.718
transcript.whisperx[154].end 5335.077
transcript.whisperx[154].text 專業的我們現在這個就是在我們各機關用的這些公務人員作為這些治安人員的一個的就是安排他來做這個治安的一個管理還是說我們是要編列預算外包給廠商
transcript.whisperx[155].start 5337.988
transcript.whisperx[155].end 5355.96
transcript.whisperx[155].text 這個大概分兩個部分啦第一個就是資安人員上一年年底速發部有提缺到考選部所以今年有入企的9位是屬於資安類科的不過這9位坦白講是不夠用的那其他的會從現有的資訊人員
transcript.whisperx[156].start 5358.542
transcript.whisperx[156].end 5373.115
transcript.whisperx[156].text 他去訓練 樹花部的治安署他有安排一些訓練的課程讓他們取得一些證照能夠來所以我們沒有外包啦齁沒有外包一定要搭配外包一定要搭配外包
transcript.whisperx[157].start 5373.695
transcript.whisperx[157].end 5375.638
transcript.whisperx[157].text 會有不同樣態的這種搭配跟民間企業的搭配的方式
transcript.whisperx[158].start 5390.238
transcript.whisperx[158].end 5411.334
transcript.whisperx[158].text 市長還有那個次長我總結來問 就是說你們是否能夠保證說在治安層面上一定能夠落實嚴格把關杜絕我們的這個資訊不會淪落為犯罪集團的這個作案工具可以做出保證
transcript.whisperx[159].start 5413.907
transcript.whisperx[159].end 5428.319
transcript.whisperx[159].text 我其實不太了解要保證什麼東西就是說你現在整個資安的問題就是說如果沒有辦法再就是你現在要請外包嘛那你外包你能夠保證說這些外包人員他
transcript.whisperx[160].start 5428.999
transcript.whisperx[160].end 5453.658
transcript.whisperx[160].text 不會把我們相關的資訊安全去洩漏出去嗎?了解就是說外包人員會用合約規範然後會用比如說那因為我們目前的法規只能對公務機關的人員跟跟這個行政機跟這個行政法人員所以這個我剛才才會問你嘛如果你要外包你要如何的落實說我們的這些資料不會外洩嗎?
transcript.whisperx[161].start 5456.22
transcript.whisperx[161].end 5459.621
transcript.whisperx[161].text 這個你要嚴格把關我想時間的關係我再問最後一個問題人事總處你在3個會期我詢詢詢問人事長我們對於資安長的聘用或各機關資安長的資格
transcript.whisperx[162].start 5479.125
transcript.whisperx[162].end 5485.989
transcript.whisperx[162].text 你跟我講說你跟數位發展部有合作辦理資安長的共事營這共事營辦了幾期
transcript.whisperx[163].start 5488.255
transcript.whisperx[163].end 5514.069
transcript.whisperx[163].text 這個我們一年辦兩次一年辦兩次每一次有兩期每一次有兩場大概幾個人每次都是大概兩三百人兩三百人所以各部會的所謂的各部會還有地方機關的資安長資安長都會來那這些資安長的資格我想我有問過人事長這個資安長到底是由我們各機關的什麼主管來擔任資安長一般是副首長
transcript.whisperx[164].start 5515.188
transcript.whisperx[164].end 5534.03
transcript.whisperx[164].text 副首長,副首長對資安他了解嗎?這個業務他了解嗎?跟委員報告,就是因為考慮第一個,資安長未必需要所有的資安細節但是他必須對於法尊以及制度要有了解所以他不需要具有資安相關的專業背景
transcript.whisperx[165].start 5536.292
transcript.whisperx[165].end 5558.903
transcript.whisperx[165].text 他需要的背景跟資安人員的背景不一樣所以這是我們在共識營裡面給他上的課最主要就是針對他站在資安其實我是陳剛才審發會委員講的AI長的問題所以說如果你沒有把這個資安長把他的資格去做一個很明確的一個聘用的一個限制的話很可能就是外行領導內行
transcript.whisperx[166].start 5560.857
transcript.whisperx[166].end 5576.714
transcript.whisperx[166].text 不懂治安也可以來當治安長如何領導統一我們最重要的是治安的法尊所以在治安 治安長共事其實這個治安我想不是只有法尊的問題如果這樣子的話任何學法的我跟莊惠雄都可以去擔任了
transcript.whisperx[167].start 5578.115
transcript.whisperx[167].end 5599.204
transcript.whisperx[167].text 所以你要對這個資訊安全要有相當的理解了解有專業的背景所以這部分我是希望你們要做改進啦做改善啦好我們會改善那個公職委員會資安長的未來的不是資安長的聘任啦就是我們資安長是不是什麼副首長來擔任啦那這個副首長是不是有資安的專業背景這你們要去考慮啊
transcript.whisperx[168].start 5600.949
transcript.whisperx[168].end 5601.43
transcript.whisperx[168].text 接下來有請莊委員瑞雄質詢
transcript.whisperx[169].start 5626.532
transcript.whisperx[169].end 5633.895
transcript.whisperx[169].text 謝謝主席 有請我們人事長還有我們數位部今天來了次長的 請蘇人事長跟薛次長委員長人事長 次長我今天早上我坐在那個地方 仔細聆聽我從台北市當議員 到屏東 到台東我聽了你們今天講這個議題 我感觸很深我先放給你一個影片 我昨天去的給你看
transcript.whisperx[170].start 5659.791
transcript.whisperx[170].end 5672.135
transcript.whisperx[170].text 這就是南北地鐵路害馬鈴發言團南北地鐵路害馬鈴發言團南北地鐵路害馬鈴發言團南北地鐵路害馬鈴發言團南北地鐵路害馬鈴發言團南北地鐵路害馬鈴發言團南北地鐵路害馬鈴
transcript.whisperx[171].start 5688.666
transcript.whisperx[171].end 5716.622
transcript.whisperx[171].text 傳來會告訴我 我都創好了創好了我告訴我 我們兩個說的地方不一樣這叫做什麼 你們說AIAI就是要精簡嘛人要看我們這樣減淡步利用機器 利用科技減少人力的一個浪費讓民眾有更便利性工人員辦起事情來更順利然後讓老百姓沒有厭圓AI不那麼好
transcript.whisperx[172].start 5718.2
transcript.whisperx[172].end 5720.082
transcript.whisperx[172].text 這就拉到最高分段我剛才有去我剛才去到現場我剛才是要看榮舜我看完榮舜阿台南匯鐵路在那裏沒有走來看要不要休息這就行這就行你跟AI也不好
transcript.whisperx[173].start 5735.609
transcript.whisperx[173].end 5754.274
transcript.whisperx[173].text 但是我要先感謝啦我要先感謝就是說那個人事長對於臺東這一次啊整個國產署人力的一個不足應該要補30億的齁那當然人整個啊跟心水跟體管有那個誘因留住公務人員有那個咳嗽 不能辦事你以為我台東住到的啊跟他現在南島中華住到的他現在就是AI的問題啊現在是欠咳嗽的問題啊
transcript.whisperx[174].start 5765.967
transcript.whisperx[174].end 5782.257
transcript.whisperx[174].text 是不是這樣說 人事長所以我今天在聽就有對我來講很大的衝擊啦我不是說AI內閣不好我不是說整個政府把它數位化不好但是那個面向太廣啦政府的施政有太多的一個地方像這個就要緊緊啦對吧 涉及到公共安全人要去嘛 勤災要去嘛你家屬不夠了 為 地方很多為什麼會承包都會比較慢
transcript.whisperx[175].start 5794.588
transcript.whisperx[175].end 5796.028
transcript.whisperx[175].text 但是這個喊了幾年我期待可以入實但是呢
transcript.whisperx[176].start 5823.41
transcript.whisperx[176].end 5841.857
transcript.whisperx[176].text 政府的施政有太多的方面了要檢討的地方還是很多啦那我特別感謝的就是說你那三年的限制解除掉以後就地方政府或者說我們各個部會裡面用人你說約聘的來 三天來就那個國會談判署你就知道來了三天那工夫是多好啊 你知道嗎你說三天不要再請 嘿把你丟在地方政府水球裡 人有多好人
transcript.whisperx[177].start 5851.619
transcript.whisperx[177].end 5858.624
transcript.whisperx[177].text 所以你就造成很多施政上我們很多人才就沒有辦法繼續留用所以這次把它解除這個限制啊
transcript.whisperx[178].start 5859.673
transcript.whisperx[178].end 5885.928
transcript.whisperx[178].text 表示非常大的贊同跟感謝啦 齁 也是定義改革問題你至少要先讓老百姓沒有怨言你政府施政才有辦法去便利嘛 更順暢嘛 可不是這樣說那所以呢 我們這一次除了補充人力以外 這次我看賴總統去強調了這個整個那個科技數位島跟數位的新社會 著手那個AI的戰略的一個發展我相信那個目標也是一樣 但是我要請教的就是說
transcript.whisperx[179].start 5887.318
transcript.whisperx[179].end 5891.682
transcript.whisperx[179].text 你像譬如說一般國考進來除了你有特別的資訊專長以外你說期待公務人員找很多時間去上很多課或者說讓他們上網自己去學習我不知道這個的誘因夠不夠在我們公務人員繁忙之外可以讓他去多加學習新的技能我不知道社長還是人事長你們有什麼樣的想法
transcript.whisperx[180].start 5919.065
transcript.whisperx[180].end 5943.473
transcript.whisperx[180].text 謝謝委員這個問題啦 我想齁 沒人的改端 我們的做法就是 呃 頂 呃 兩倍前齁 有委員在請教一個問題 是不是公布另外 我們有20點鐘的寫實 有10點鐘的必修 那我們現在跟數碼部在討論 呃 就是從明年1月1號開始 我們在10個鐘頭的必修的 每一個人都要去修1或2個鐘頭
transcript.whisperx[181].start 5944.733
transcript.whisperx[181].end 5944.753
transcript.whisperx[181].text 市長
transcript.whisperx[182].start 5968.973
transcript.whisperx[182].end 5992.026
transcript.whisperx[182].text 人事長剛才這樣說 說你們大家都去上課 增加這些誘因幾個小時我問你們數位部 你們北部 中部 南部都有嘛 對不對東部你又沒有啊 中部沒有有沒有 中部沒有 東部也沒有是嘛 我要跟你說的就是這樣 人事長你說的好 全國
transcript.whisperx[183].start 5994.531
transcript.whisperx[183].end 6010.497
transcript.whisperx[183].text 大家來上課學習我也是跟他說你當母你又欠你這個怎麼辦像你這個怎麼辦我們在說我們常常在說整個政府裡面要把數位政府裡面大家都會拿新加坡來當一個標竿
transcript.whisperx[184].start 6012.588
transcript.whisperx[184].end 6013.268
transcript.whisperx[184].text 第一大部分的課程是線上的
transcript.whisperx[185].start 6041.343
transcript.whisperx[185].end 6052.053
transcript.whisperx[185].text 那東部呢,我們也有一些課程是到各地去開專班那如果有需要的話我們也可以到東部去開專班所以你第一在想就是我從你們的配置裡面你第一個想到的就是東部不需要啊阿不然以後他還沒的不要啦,不要這樣啦,這樣也用批評啦你再笑,那國民黨就把你嚇了,我告訴你
transcript.whisperx[186].start 6064.347
transcript.whisperx[186].end 6086.095
transcript.whisperx[186].text 政府施政真的不能這樣我現在我認兩天我對政客如果有那些越政客越高的都會讓我選中你知道嗎但是總是要為那個地方來做一個發聲你要均衡嘛你要均衡嘛你公務人員的人力其實數值都很高但是因為你中央一個決策這樣下去以後人家覺得說我們這裡是話外之地這不對啊
transcript.whisperx[187].start 6088.855
transcript.whisperx[187].end 6118.237
transcript.whisperx[187].text 這不對,我是覺得蘇衛部這個地方要檢討這樣的一個政策裡面不夠周延我們會回去處理今天啦,今天要處理啦那其實喔我一直會覺得說你若說你師伯有這邊西部有這樣的一個規劃其實你也要去考量到東部公務人員他去上課他去學習這樣的一個便利性啊不然你覺得叫台東叫法輪的公務人員你如果招來台北
transcript.whisperx[188].start 6118.917
transcript.whisperx[188].end 6123.182
transcript.whisperx[188].text 你知不知道台東到台北一個字牆要多長時間?4點40分鐘但是火車站不是在台東縣政府走出來就可以搭上火車
transcript.whisperx[189].start 6138.851
transcript.whisperx[189].end 6139.231
transcript.whisperx[189].text 委員會主席
transcript.whisperx[190].start 6159.614
transcript.whisperx[190].end 6183.662
transcript.whisperx[190].text 那我接下來 那個 次長請回阿 這個不能開玩笑好不好齁 次長我要請教你就是說 現在大家在講 阿不不不 那個人事長齁 人事長次長請回 就是說 這次 大家在講 體育署會升格這個問題你從你的嘴巴裡面 你都很不喜歡講升格 我就覺得很奇怪阿就是說 不管啦 不管你認為那到底是不是升格啦
transcript.whisperx[191].start 6184.762
transcript.whisperx[191].end 6185.944
transcript.whisperx[191].text 人事總署對於體育部未來人力的規劃 假設叫做運動部
transcript.whisperx[192].start 6203.513
transcript.whisperx[192].end 6222.398
transcript.whisperx[192].text 我委員報告齁,不是給我們給一些而已,那是一個專心的部會,所以人力在編制上在人力上他是一個全新的思考,不過有一件事情我們會先處理,本來體育署學校體育教育的體育場館在做的那些
transcript.whisperx[193].start 6223.238
transcript.whisperx[193].end 6225.741
transcript.whisperx[193].text 委員會主席委員會主席委員會主席委員會主席委員會主席
transcript.whisperx[194].start 6244.394
transcript.whisperx[194].end 6251.278
transcript.whisperx[194].text 我會講啊你一百三十五你說要結一百五你要考慮到一個問題啦原來體育署的業務然後又要回到教育部人又再唱回去這個不是加減乘除的問題啦
transcript.whisperx[195].start 6276.38
transcript.whisperx[195].end 6282.744
transcript.whisperx[195].text 在整個我們現在教育部本部原額是567人喔公務預算原額是1540喔對不對1540還多多的以教育部本身目前的預算原額是489位阿不然你給我勾
transcript.whisperx[196].start 6296.516
transcript.whisperx[196].end 6307.298
transcript.whisperx[196].text 運動部成立,人差不多存多少?你說135,你再給他150,教育部還要拿多少錢?教育部拿整整幾個而已,拿整整幾個而已那你的預估,假設下個月運動部成立,假設,假設,你認為他緣合是多少?人手?人手我真的要再看... 差不多嘛,就簡單嘛,現在135嘛,現在135你說要再補100多嘛?
transcript.whisperx[197].start 6325.319
transcript.whisperx[197].end 6344.17
transcript.whisperx[197].text 應該是我們最要一百的議員 因為他還有競技 全民運動 還有運動產業是 我的意思就是說 那你原來隸屬在教育部的這些人 他教育部又把你拿走嘛 你還是要扣掉嘛
transcript.whisperx[198].start 6344.89
transcript.whisperx[198].end 6370.373
transcript.whisperx[198].text 你若要報一百個到時候你後裔的絕對不會一百個嘛你說十個嗎?那你如果請假你也只剩九十而已啊對啊九十啊 剩下不敢我怎麼報後裔啊這樣你兩百多個人 今天可以變成一個部我 委員報告 第一個改端說這個啦我們一個新的部會給我們成立喔你一群要到編制研學 假設三百個不可能一群就三百個 那就差不多兩天到兩天
transcript.whisperx[199].start 6372.034
transcript.whisperx[199].end 6388.7
transcript.whisperx[199].text 但是我今天重點我要結束啦 喔 抱歉就是說我們今天在講說AI政府啦 齁 要把它給數位化啦其實談到的都是在講人事 其實另外一個意涵是人事上的一個精簡啦但是你有多少部會 是缺人捏海巡你欠人 警察你欠人 機站要勘察你要欠人齁 你說我要去匯勘的 我要去套土的 我這些都要人工來捏
transcript.whisperx[200].start 6402.415
transcript.whisperx[200].end 6404.757
transcript.whisperx[200].text 我這人工不是人工智慧我都認為這個很衝突的概念所以你們要考慮清楚不是這樣在大家辦公室講講會講後來AI內閣我們全部以後都導入AI我們各組織我們來授聲
transcript.whisperx[201].start 6424.773
transcript.whisperx[201].end 6430.098
transcript.whisperx[201].text 另外一邊就 底下就跟你喊 我沒人 我沒人 我欠人 我工作做不出來 要面面具具到 不要開玩笑先抹而後凍 要做一個決策出來之後 絕對不能去 因為一個決策 到最後你要的 大家會認為說 啊你不是說想要 政府不是要去新加坡結果咧 咳 擠開了之後 人 不欠 尤其是身體 人 又欠
transcript.whisperx[202].start 6452.751
transcript.whisperx[202].end 6462.212
transcript.whisperx[202].text 那個民間的反撲特別要小心好不好謝謝委員謝謝專委員 謝謝人事長接下來有請翁委員小林諮詢
transcript.whisperx[203].start 6478.893
transcript.whisperx[203].end 6504.944
transcript.whisperx[203].text 主席好我想今天在質詢部會所長之前呢我想講一個問題就是我們知道其實每一次的質詢這個所有的立法委員都很認真我們大家都希望能夠早一點就能夠看到各部門所提出來的這個專案專題報告書可是以我們這一次的開會其實首先我要先謝謝我們的召委這個宗嘉斌召委他
transcript.whisperx[204].start 6507.35
transcript.whisperx[204].end 6531.418
transcript.whisperx[204].text 指示了今天這個相關部會單位要來報告政府機關導入AI提升效能的這個議題這個議題其實很重要那當然我們在看到這個這次議程的安排主要是以人事總處為主及相關部會那我當時以為說可能就是人總吧速發部啊經濟部等等那些單位結果沒想到我今天來的時候呢一下子拿了12份的報告
transcript.whisperx[205].start 6533.026
transcript.whisperx[205].end 6558.453
transcript.whisperx[205].text 對 所以這個部分我不知道說是不是昭緯是之前就已經有通知相關的部會機關今天都要來報告嗎來 那麼跟公務員說明一下因為上週原定我們通常一般在星期三或星期四最遲星期四會確定下週議程一邊發開通知但因為上週四是因為國慶日沒有上班那在上週三的議程聯絡後在上週五就做了更動
transcript.whisperx[206].start 6559.233
transcript.whisperx[206].end 6586.461
transcript.whisperx[206].text 所以人總的報告提前到星期一那這個過程當中我們也希望人總能夠將所有相關有AI導入的各機關名單提供所以因此我們在星期五的時候在很短的時間內又通知了相關的部會前來報告所以各機關的作業的準備時間大概只有星期五下班後到星期一的上班這段時間那提供的資料比較倉促可能造成委員在質詢應用上的不便也請多包涵
transcript.whisperx[207].start 6586.94
transcript.whisperx[207].end 6606.854
transcript.whisperx[207].text 好 謝謝周偉德說明我們其實同樣的都是禮拜五指導就是這個議程那我必須講就是各部會機關因為看起來你們今天報告其實頁數非常少啦大概少的話是三四頁但理論上這些東西都是你們應該stand by這個例行性的都要準備好相關的資料
transcript.whisperx[208].start 6608.95
transcript.whisperx[208].end 6625.876
transcript.whisperx[208].text 週末假日我都還在家裡面認真的讀報告可是今天看到另外還有十幾份的報告書我想我們委員不是神童我們沒有辦法一下子看這麼多報告書就知道說你們到底在做了些什麼
transcript.whisperx[209].start 6626.876
transcript.whisperx[209].end 6632.28
transcript.whisperx[209].text 對 這也很浪費你們的時間 寫了報告書幾乎委員沒有時間看所以我希望說是不是可以自此之後這個各機關至少都能夠在 如果說禮拜五才公告的議程的話那可能禮拜六禮拜天要提早就要給委員而不是我們當場的時候才拿到像法務部 矯正署 農業部 經管會 環境部就是你們今天早上才送的報告啊
transcript.whisperx[210].start 6649.093
transcript.whisperx[210].end 6662.989
transcript.whisperx[210].text 這樣子其實是非常不對的所以我首先我想要講這件事情好那接下來的話就開始進行我今天的質詢那麼請人事﹖請說人事長人事長還有﹖委員長卓次長請卓次長好下一頁
transcript.whisperx[211].start 6668.106
transcript.whisperx[211].end 6669.307
transcript.whisperx[211].text 我想我這次其實也看了經濟部還有人種、數位、數法部等所提出來的AI相關的業務報告書那我核對了一下這幾份業務報告書裡面其實我發現還是有蠻多高度重疊的地方,譬如說
transcript.whisperx[212].start 6687.702
transcript.whisperx[212].end 6696.386
transcript.whisperx[212].text 對於AI人力的培養:人事總處有講書發部也有對於提升智慧化的服務:人總這邊其實也有講說有相關的課程:書發部也說要做智慧化為民服務:經濟部也要做客服效率提升:也要提供數據分析最佳服務等等
transcript.whisperx[213].start 6710.694
transcript.whisperx[213].end 6728.092
transcript.whisperx[213].text 對,那我還沒有看其他的這個業務單位的報告書我相信可能裡面的內容是大同小異的在這樣子高度重疊的情況之下我不知道就是政府部門就中央政府機關到底有沒有一個主責單位對於我們台灣未來的AI發展
transcript.whisperx[214].start 6731.816
transcript.whisperx[214].end 6742.363
transcript.whisperx[214].text 不管是從提升人力的角度AI素養的角度發展相關的系統或是說要提供一些相關的服務有沒有一個組織機關目前組織機關是哪一個部會
transcript.whisperx[215].start 6746.501
transcript.whisperx[215].end 6759.947
transcript.whisperx[215].text 這裡大概跟委員說明一下人事總處是負責公務人員AI的培訓所以我們從7月30號陸陸續續從部長次長還有機關三級機關首長那今天下午會針對12職等的司長處長來辦訓練再來我們會針對我們的訓練對象還有一個10座課程是針對科長是業務單位
transcript.whisperx[216].start 6776.274
transcript.whisperx[216].end 6797.296
transcript.whisperx[216].text 蘇發布的重點在資訊單位一樣就是我們有分兩類型的我現在看到其他機關幾乎似乎也是follow行政院所核定的AI計畫裡面的一些東西在做但是我必須說就是裡面高度的重疊在本席看來其實各部會現在所做的事情
transcript.whisperx[217].start 6797.776
transcript.whisperx[217].end 6797.916
transcript.whisperx[217].text 從7月到10月開始就陸陸續續舉辦
transcript.whisperx[218].start 6825.21
transcript.whisperx[218].end 6830.816
transcript.whisperx[218].text 高階人才的AI共識營本席很好奇的是部會首長的AI共識營你們到底共識了些什麼?你們討論了一些什麼嗎?
transcript.whisperx[219].start 6834.963
transcript.whisperx[219].end 6856.129
transcript.whisperx[219].text 主要的課程是在讓所有部會首長知道人工智慧在未來國家的發展競爭上面它的幫助是怎樣還有它會有哪些的基礎環境必須要建構事實上部會首長他知道以後會把這個訊息傳達給他所屬的大家一起動起來
transcript.whisperx[220].start 6856.994
transcript.whisperx[220].end 6864.6
transcript.whisperx[220].text 了解,所以代表現在這些部會首長根本還沒有AI的素養沒有AI sense對不對都已經當了部會首長這都是陷在弦上我們其實都要做的然後如果說這方面大家對於這個議題的認知還不夠還要重新來學習我告訴你台灣的AI發展一定會遠遠的落後於其他的國家好接下來下一頁
transcript.whisperx[221].start 6880.211
transcript.whisperx[221].end 6903.06
transcript.whisperx[221].text 那麼我要談的就是說是其實經濟部也在今年也發布了一份112年全國電力資源供需報告書裡面呢有講到就是未來我們AI的電力的需求1年會比112年成長8倍我想請問就經濟部經濟部今天經濟部次長次長有來是不是不好意思司長好那你
transcript.whisperx[222].start 6909.322
transcript.whisperx[222].end 6930.141
transcript.whisperx[222].text 經濟部準備好了嗎?相關電力發展或書發部對這方面有沒有什麼看法?經濟部有臺電公司針對整個AI的發展有盤顧未來的電力需求那詳細的情況因為我不是臺電公司我是產業技術師所以這個詳細的數字我就沒辦法回答謝謝好本席告訴你肯定不夠而書發部呢?
transcript.whisperx[223].start 6930.922
transcript.whisperx[223].end 6948.184
transcript.whisperx[223].text 跟委員報告就是說電力的需求當然如果分散式的把這些AI分散在各部會那這一個的確是會造成非常大的影響那這也是為什麼剛剛我報告數位政府是他有一支計畫是建立政府共購的AI機房
transcript.whisperx[224].start 6949.345
transcript.whisperx[224].end 6966.972
transcript.whisperx[224].text 我想其實最重要的我們要發展AI基礎建設一定要完善而且電力很明顯就是不能缺嘛你沒有電的情況之下所有的系統這通訊系統是不能夠運作的所以我認為說與其我們講說發展AI其實不如說我們先把電力的這個環境先建置好這個才會更重要那接下來我想我就單獨請教這個人事長就好了
transcript.whisperx[225].start 6977.016
transcript.whisperx[225].end 6982.597
transcript.whisperx[225].text 兩位可以先回座本席接下來要談的就是說我有看到人事總處在人事行政政策規劃執行發展的計畫裡面其實有談到未來還是會持續的做智慧創新人事服務計畫等等這些所謂的自通訊安全的計畫大概編了一億三千
transcript.whisperx[226].start 7001.821
transcript.whisperx[226].end 7003.362
transcript.whisperx[226].text 本席發言委員
transcript.whisperx[227].start 7019.964
transcript.whisperx[227].end 7026.953
transcript.whisperx[227].text 市求人、退休金試算、退休金年金改革等系統本席也肯定人事總處規劃資通訊系統
transcript.whisperx[228].start 7033.542
transcript.whisperx[228].end 7056.967
transcript.whisperx[228].text 如果說從這個先談這個事求人的這個系統來講本席也這裡也做了一些統計我們從106年一直到113年看到這個事求人光是這個系統不斷的優化擴充本席不知道為什麼要每一年都要優化而且事實上累積起來的金額也相當的可觀
transcript.whisperx[229].start 7058.621
transcript.whisperx[229].end 7068.717
transcript.whisperx[229].text 然後還有就是都是給同一家的業者那麼這個是一個問題那我們接下來再看第二個例子另外就是在考試分發
transcript.whisperx[230].start 7071.718
transcript.whisperx[230].end 7090.56
transcript.whisperx[230].text 另外在考試分發的人事申報作業系統同樣的也是一樣都是透過優化擴充每年都是編很高的錢如果說我們講第一年是開發的話那第二年第三年之後理論上是維運可是為什麼每一年都是優化及擴充的系統還有下面
transcript.whisperx[231].start 7092.281
transcript.whisperx[231].end 7110.593
transcript.whisperx[231].text 那麼在人事服務系統的部分也是一樣.靈群電腦長年都是拿這個人事總處的標案.而且都是用擴充.不是用優化擴充精進的專案.然後呢這個申請的金額也都非常高.這下一頁人力資源管理資訊系統.同樣的也是一樣的情況.這也是給靈群的.下一頁
transcript.whisperx[232].start 7120.632
transcript.whisperx[232].end 7124.394
transcript.whisperx[232].text 退休撫恤系統支通電腦公司全頂退休撫恤試算系統優化系統
transcript.whisperx[233].start 7140.848
transcript.whisperx[233].end 7159.063
transcript.whisperx[233].text 那開發也是跟人事服務網有關的這些系統好下一頁本期要講就是說是你們自己其實都有說有關於像資通訊的服務的軟體開發有一個經費的估算原則請問人事長你們過去有按照這個估算原則在做嗎
transcript.whisperx[234].start 7160.421
transcript.whisperx[234].end 7161.502
transcript.whisperx[234].text 我跟委員報告因為人事總處現在維運的很多的系統是全國大家共用
transcript.whisperx[235].start 7180.735
transcript.whisperx[235].end 7207.887
transcript.whisperx[235].text 那這一年期間我們最少會有4次的使用者的一個meeting他會每一個人在使用之後他會覺得他有些功能是不夠滿足他的他希望再增加那很多人的需求我們會透過那個整合一年4次然後會有一個審查會把大家認為OK這個功能可以更新更新了以後我們再去做update因為
transcript.whisperx[236].start 7208.907
transcript.whisperx[236].end 7215.83
transcript.whisperx[236].text 剛才委員看到的這一些他會有兩個項目一個是Regular系統的維護費就是按照這個畫面所提的6到14%第二個是新的系統擴充因為使用之後我可能會增加新的功能謝謝人事長因為時間的關係我必須說我從剛剛的標案裡面我看不出來那個是有包含維護費
transcript.whisperx[237].start 7231.957
transcript.whisperx[237].end 7233.638
transcript.whisperx[237].text 如果說是擴充 你們也要把每一年擴充什麼本身希望你們可以做一個詳細的報告我剛剛列舉的那幾個系統到底他們擴充了一些什麼 優化了什麼我已經問過我們的一些資訊界的專家學者大家都覺得說這不太
transcript.whisperx[238].start 7252.153
transcript.whisperx[238].end 7257.794
transcript.whisperx[238].text 可能每一年都在擴充每一年都在優化你們不是一開始表演設計都應該要設計好了嗎怎麼可能每年都花那麼多錢下一頁然後接下來我要講的不管是在審計部還有我們立法院預算中心其實都有講這是有關於維護費的計費方式應該要依照這個相關的經費估算原則去做基本上要積極的檢討
transcript.whisperx[239].start 7278.079
transcript.whisperx[239].end 7300.735
transcript.whisperx[239].text 那麼看起來我覺得人事總處基本上並沒有按照之前的估算原則去做那麼本席希望你們可以把這個相關的報告書然後提送一個月之內可以吧提送一份給我因為我覺得這很重要這個人民的錢要花在刀口上我們不能夠巧立名目用各式各樣不同的精進優化擴充專案然後編了一大堆錢我剛剛是沒有時間講這些廠商這高達都是
transcript.whisperx[240].start 7306.499
transcript.whisperx[240].end 7306.519
transcript.whisperx[240].text 委員會議員
transcript.whisperx[241].start 7337.059
transcript.whisperx[241].end 7338.139
transcript.whisperx[241].text 陳俊宇委員休息5分鐘
transcript.whisperx[242].start 7372.708
transcript.whisperx[242].end 7396.048
transcript.whisperx[242].text 好,繼續我們邀請鐘嘉斌召委進行諮詢主席、在場委員先進、列席的政府機關總管官員、會場工作夥伴、媒體記者女士先生先有請我們書人事長、邱次長跟陳副主任委員那另外呢,待會會請內政部、農業部跟矯正署請準備
transcript.whisperx[243].start 7403.346
transcript.whisperx[243].end 7415.643
transcript.whisperx[243].text 人事長好、次長好、副主委好我想今天我在談的就是政府導入AI效能跟資產要並重那機關應用就要全面啟動並且要列入管考來我先請教陳副主委這個我們
transcript.whisperx[244].start 7418.687
transcript.whisperx[244].end 7445.061
transcript.whisperx[244].text 一般的流行用語啊在原子彈四爆爆炸啟用問世之後呢我們的1960年代就很多太空就是原子筆啦原子燙對不對那人類登陸月球之後呢什麼都是什麼太空啊太空啊80年代呢電腦問世之後呢什麼都電腦化電腦化現在呢就是資訊數位那現在呢2020啊通通都是人工智慧能不能很簡短的給人工智慧做個定義它有什麼特徵
transcript.whisperx[245].start 7446.482
transcript.whisperx[245].end 7465.997
transcript.whisperx[245].text 大量的數據自動生成自動學習有什麼特徵?報告委員我們在訂定這個人工智慧基本法的時候有在這個應該是第2條有對人工智慧人工智慧跟數位化什麼區塊鏈啊資訊化啊網路化有什麼差別?
transcript.whisperx[246].start 7467.001
transcript.whisperx[246].end 7486.96
transcript.whisperx[246].text 我們在人工智慧的定義上面是應該是說它是一個本身可以具備一個學習的自我學習運用大量資料庫能夠自動生成能夠回應使用者或環境的要求的一個應用的一個方式詳細的文字我可能要稍微看一下好謝謝請問兩位次長同意嗎人事長同意這樣的說明嗎
transcript.whisperx[247].start 7488.154
transcript.whisperx[247].end 7506.51
transcript.whisperx[247].text 大概人工智慧他第一個要求可能要有很大量的一個資料第二個是演算法第三個就是算力那之前算力沒有那麼強人工智慧他發展的速度就比較慢最近這幾年算力提升了OK算力啦那次長你認為人事長跟副主委講的你都同意嗎
transcript.whisperx[248].start 7507.83
transcript.whisperx[248].end 7531.979
transcript.whisperx[248].text 就是如果按照基本法第二條他就是他有感知那會產生output那為什麼那他最大的好處我們政府導入有什麼好處他可以加快一些過程但是這個感知跟產生output的過程必須被評測很好好謝謝副主委先請回來請教兩位次長跟我們人事長誰是政府導入AI的主責機關
transcript.whisperx[249].start 7534.09
transcript.whisperx[249].end 7553.351
transcript.whisperx[249].text 我這邊列的阿我看一下你們人事處有提五次策略阿人事總處阿書發部也提個五也是一樣阿五個策略誰是主管機關誰是主責我跟那個召委報告大概有主要的三個stakeholder那人總是負責公務人員的人工智慧的那書發部呢
transcript.whisperx[250].start 7554.744
transcript.whisperx[250].end 7571.253
transcript.whisperx[250].text 蘇發部是負責整個政府在應用人工智慧的政策的規劃跟推動那國科會的角色是在定義類似人工智慧基本法還有他會有很多的謝謝時間的關係 邱社長你同意剛剛人事長講的嗎
transcript.whisperx[251].start 7574.13
transcript.whisperx[251].end 7596.93
transcript.whisperx[251].text 跟委員報告這個是一個非常複雜的問題有沒有簡單的回答我們沒有很多時間簡單的回答就是說因為因為當初在訂立人工智慧的時候所以你同意人事長所講的這個分工基本上是正確的OK好謝謝來我們看一下那人總跟速發部辦理AI課程的對象有何不同我跟委員報告一下是不是你們人總做的是業務人員那我們速發部找的是資訊人員
transcript.whisperx[252].start 7598.032
transcript.whisperx[252].end 7621.913
transcript.whisperx[252].text 大概是中階的是屬於這樣啦中階我們是找業務直接業務來訓練你提供一些情境讓他去轉換成人工智慧的這一種模式那薛市長你同意嗎我們這邊包含三個部分第一個部分是種子人員種子人員當然是希望是科長以上推動AI的人員
transcript.whisperx[253].start 7622.614
transcript.whisperx[253].end 7644.313
transcript.whisperx[253].text 那第二個是有AI的公路人員的AI通識課程這個是針對一般的公路人員好那現在我進入那目前你們AI課程辦理的進入如何簡單的講我們現在有已經完成看起來是有將近800人次800人次來那個人事長那你們呢你們辦了好像三個營隊了嘛
transcript.whisperx[254].start 7646.649
transcript.whisperx[254].end 7663.647
transcript.whisperx[254].text 我們政府首長也辦了三級機關首長也辦了接下來連還要再辦今天下午是12職等12職等以上好聽起來不只是位階不同我請教一下未來人總跟書發部你們的AI課程是否允許各單位派同一組人參加這個我們事先有溝通過
transcript.whisperx[255].start 7664.668
transcript.whisperx[255].end 7666.649
transcript.whisperx[255].text 政府導入AI如何防止資料被害?
transcript.whisperx[256].start 7688.797
transcript.whisperx[256].end 7688.857
transcript.whisperx[256].text 委員會主席
transcript.whisperx[257].start 7705.518
transcript.whisperx[257].end 7722.14
transcript.whisperx[257].text 那你認為人總這樣做那你們怎麼樣防止資料被害我們是在制度上就是規定你要進AI的東西資料要清過對就是這樣子不具機敏性的才可以上雲端因為他有時候會透過境外伺服器具機敏性的政府就要自建伺服器是不是這樣
transcript.whisperx[258].start 7723.733
transcript.whisperx[258].end 7747.067
transcript.whisperx[258].text 這是一種方法政府的公文秘密目前有一個文書處理手冊請問人事長未來政府各機關以什麼機制標準作為機敏的資料分類有這樣一個標準出來了嗎人事長有沒有你們機敏資料分類不能上雲端的機敏資料怎麼分類有沒有分類辦法還是數位部
transcript.whisperx[259].start 7749.799
transcript.whisperx[259].end 7777.944
transcript.whisperx[259].text 蘇衛部這邊是說就是說我要上雲端的資料要最小化是那要機敏分類嘛對不對機敏的不上嘛不只是機敏就是說就算是我了解但是機敏的不能讓他上去嘛好那你們怎麼確定他不是機敏來因為機敏的基本上不會電的各機關各機關去判斷具不具有機敏性來那個人事長這樣子齁我現在就是說因為你們有你們的model有你們的方法但是方法之後呢要有手段
transcript.whisperx[260].start 7778.82
transcript.whisperx[260].end 7792.979
transcript.whisperx[260].text 你們要先要求各機關在你們的學習課程當中各機關要能辨識區別哪些機敏資料不能上雲端除了最小化之外要減少伺服器的負擔那另外為了防止資料被害要不要自建AI伺服器
transcript.whisperx[261].start 7794.718
transcript.whisperx[261].end 7795.379
transcript.whisperx[261].text 知見伺服器可能不是一個最好的方法
transcript.whisperx[262].start 7812.313
transcript.whisperx[262].end 7836.686
transcript.whisperx[262].text 那怎麼辦那所以基本上就算是上雲其實有一些軟體的手段可以完成這個治安的要求那這些報告你們打算怎麼做那我們會先做評測就是說你必須用評測的方法要不要預算執行這個當然需要預算執行所以你們要在預算上表達出來剛剛委員在關心預算你們都用優化啦擴充啦這些模糊的字眼我們希望未來兩個部會相關部會
transcript.whisperx[263].start 7838.072
transcript.whisperx[263].end 7861.32
transcript.whisperx[263].text 在進行導入政府導入AI要防止被害要建立資料的精敏分類而且在相關的伺服器的使用上你們需要投入什麼預算來預防要說明清楚好不好可以往下所以你們承諾AI不會縮減元額人長是不是這樣子那你們要怎麼做你們要提供效能而不是縮減元額那各機關用了AI之後人不需減少但是效能怎麼提升你怎麼怎麼驗測事實上導入AI來請那個內政部農業部跟那個
transcript.whisperx[264].start 7867.844
transcript.whisperx[264].end 7868.424
transcript.whisperx[264].text 保安委員我不想來我給你看一個
transcript.whisperx[265].start 7898.183
transcript.whisperx[265].end 7898.963
transcript.whisperx[265].text 目前還沒有 人事長怎麼辦
transcript.whisperx[266].start 7928.629
transcript.whisperx[266].end 7929.11
transcript.whisperx[266].text 內政部 移民署 你們管的嘛
transcript.whisperx[267].start 7941.001
transcript.whisperx[267].end 7959.958
transcript.whisperx[267].text 好 我們現在只要有出國國人都知道 很多國家最早用的我去接觸的是新加坡幾乎它的出入境都用很多的一個ATM類似ATM那樣的機器在幫你服務現在我們的出境大廳大家也可以到 你在旅客在桃園機場要出境 要去簽印錢
transcript.whisperx[268].start 7961.559
transcript.whisperx[268].end 7978.369
transcript.whisperx[268].text 機場的航空公司也用大量的這個機器我到日本去入境的時候也是用機器取代好 那目前你們的內政部的移民署的署長說我們移民署的第4代的E-GATE自動通關建置的成效未來能不能讓非本國籍的旅客出入使用自動通關 現在進入怎麼樣不知道對不對 人事長 怎麼辦你們高暢入營 但是各機關的配合速度跟不上怎麼辦 往下看
transcript.whisperx[269].start 7990.623
transcript.whisperx[269].end 8006.438
transcript.whisperx[269].text 好 那個蕭政署 過去我在2022年 2020年4年前我曾經問過受刑人在監獄遭管理員凌虐致死 我要求蕭政署要杜絕監視器的死角周組長知道這個事情嗎?
transcript.whisperx[270].start 8006.438
transcript.whisperx[270].end 8009.601
transcript.whisperx[270].text 知道那目前有說要求你們做智慧監獄 你們今天怎麼樣?
transcript.whisperx[271].start 8011.589
transcript.whisperx[271].end 8014.23
transcript.whisperx[271].text 現在科技很進步
transcript.whisperx[272].start 8027.279
transcript.whisperx[272].end 8044.432
transcript.whisperx[272].text 這是在2020年COVID-19前前我們發明那個叫電子圍籬另外我們發明到生理手環受刑人有的慢性病有的有性血管疾病他不見得都能夠及時的借護送醫如果這些高風險的受刑人有配上生理手環你們會及時監測到生理狀況不會延誤病情你同意嗎
transcript.whisperx[273].start 8045.211
transcript.whisperx[273].end 8060.101
transcript.whisperx[273].text 我同意那如果說一些盲區除了用監視器事後來檢查之外如果有射電子圍籬只要一進入盲區就會出現警號避免受刑人被匣帶進去修理有沒有可以做這個方法可以好 人事長看到沒有人事長
transcript.whisperx[274].start 8061.804
transcript.whisperx[274].end 8084.289
transcript.whisperx[274].text 聽到沒有 矯正組都說可以 那他做了沒進度如何你看人事長 你們開共識營高建是必要的到目前三級機關說的事情 你們開過了你還是不知道他們的進度往下看來 我再請 那個次長跟那個次長請回齁次長請回好 我們來看看登山吶
transcript.whisperx[275].start 8085.694
transcript.whisperx[275].end 8095.764
transcript.whisperx[275].text 防止射屏來請問這也是內政部的還有林保署來農業部你們知不知道目前的科技我們會去統計陸山的山友的人數農業部知道嗎不知道對不對我都知道因為我們經常民意代表負責去受理
transcript.whisperx[276].start 8105.41
transcript.whisperx[276].end 8115.687
transcript.whisperx[276].text 目前我們的配置大概在登山的路徑上會受感測器不管是山羌通過還是黑熊通過還是人類通過他會有技術的但是山友通常繞過
transcript.whisperx[277].start 8117.267
transcript.whisperx[277].end 8143.168
transcript.whisperx[277].text 所以我要問一下現在我們看到一個新聞向陽山發生一個失蹤16年的山友目前我們很常看到的路跑路跑你要參加路跑花200塊押金把那個晶片在你腳上你就可以計時這是一個RFID的無線射頻被動元件那麼這個元件很適合我們在山區裡面佈建可以知道山友如果進入了他有這個晶片我們會知道他在什麼時間什麼地點通過哪個檢測點
transcript.whisperx[278].start 8145.47
transcript.whisperx[278].end 8166.333
transcript.whisperx[278].text 未來發生事故可以縮小我們的搜尋範圍 農業部同意嗎知道 知道嗎 內政部因為你們管警政署也管陸山登進 內政部同意嗎同意 同意好 所以人事長 我也聽你提過用5G的無人機結合AI辨識來強化三難的搜救 你認為有沒有在進行了
transcript.whisperx[279].start 8168.97
transcript.whisperx[279].end 8184.484
transcript.whisperx[279].text 我感覺應該還沒有啦感覺還沒有來 速發步報就要請你們上來你們的速產署說啊5G無人機結合AI辨識強化三端救援你們有沒有要推動這樣的一個應用項目有這個計畫有這個計畫什麼時候要讓我們看到成果
transcript.whisperx[280].start 8185.344
transcript.whisperx[280].end 8209.805
transcript.whisperx[280].text 我記得這個計劃應該是現在開始進行那應該明年會有一些出...明年會有初步成果,好那麼所以AI導入山域救援呢它可以用這種方式用RFID同時呢AI會配合它的氣候預測跟山域的環境讓我們的受救人員不要冒自己的生命危險直升機不用老是去鋪空吊掛那麼派遣人員的地面人員也不用找不到花很多力氣去搜尋失蹤的人員是不是這樣子
transcript.whisperx[281].start 8210.606
transcript.whisperx[281].end 8237.868
transcript.whisperx[281].text 好 那人事長最後總結啦第一 人事總處跟塑化部要召開不同領域的AI課程各單位應對應相關的課程內容 派業務人員參與兩位是不是都同意 承諾好 那另外我請嚴毅將各項數據導入AI提升前項的四位應用內容的速度效益安全性可行報告一個月提出後面的農業部 內政部是不是都可以承諾人事長要不要列入管考
transcript.whisperx[282].start 8241.322
transcript.whisperx[282].end 8268.105
transcript.whisperx[282].text 我比較不方便去管考這一個部分那你們不管考那誰來要求他們做應用端應用端大概蘇哈布蘇哈布有你們來管考嗎應該不是警政署也不是你管考移民署也不是你管考矯正署也不是你管考我們的那個那個林保署也不是你管考那請問我們講的這些應用有說要做那誰來知道他做了沒有
transcript.whisperx[283].start 8270.834
transcript.whisperx[283].end 8271.574
transcript.whisperx[283].text 接下來有請吳委員施堯
transcript.whisperx[284].start 8298.951
transcript.whisperx[284].end 8308.819
transcript.whisperx[284].text 謝謝主席:有請人事長:速發部的薛次長:還有國客會陳副主委好 請蘇人事長 薛次長 還有陳副主委
transcript.whisperx[285].start 8312.157
transcript.whisperx[285].end 8314.98
transcript.whisperx[285].text NO ONE IS OUTSIDER
transcript.whisperx[286].start 8334.191
transcript.whisperx[286].end 8340.644
transcript.whisperx[286].text 沒有人是局外人各個部會都有承擔責任不管是培育或是參與
transcript.whisperx[287].start 8344.232
transcript.whisperx[287].end 8365.053
transcript.whisperx[287].text 那AI列入我們五大信賴產業當中跟AI相關的就是我們的國家雄心壯志是打造台灣為全球AI影響力中心推動目標裡頭呢當然希望有產值但是在人才的部分
transcript.whisperx[288].start 8365.774
transcript.whisperx[288].end 8390.004
transcript.whisperx[288].text 全國公司協力4年內培育20萬名AI數位人才然後提升數位經濟產業導入AI的應用普及率是50%對於製造業來導入AI的普及率要到3成今天的主題是我們公務部門其實也是順著剛剛我們趙薇所問的
transcript.whisperx[289].start 8392.725
transcript.whisperx[289].end 8408.155
transcript.whisperx[289].text 到底這麼多部會是國家隊每一個部會的你的職長都跟AI的應用相關到底誰管好我現在問這個問題啦我們對於數位經濟導入要4年5成對於製造業導入AI技術要4年3成那我問這個問題我們的公務體系導入AI的應用4年內的目標是多少
transcript.whisperx[290].start 8422.965
transcript.whisperx[290].end 8423.466
transcript.whisperx[290].text 這就是一個Key Point
transcript.whisperx[291].start 8446.164
transcript.whisperx[291].end 8461.181
transcript.whisperx[291].text 國家隊大家都有責任在自己的專善執掌裡頭想方設法去應用但是我們對於民間的產業有清楚的戰略目標對於公務體系我覺得不能夠
transcript.whisperx[292].start 8462.522
transcript.whisperx[292].end 8487.336
transcript.whisperx[292].text 這樣子毫無清晰的目標值這個問題好好帶回去這就是我們要面對的問題在公務體系今天人事長處理的是公務體系的培訓嘛來下一頁總統說了我們AI時代來臨希望我們公務體系每一位首長每一位公務同仁都要有相關的AI知能
transcript.whisperx[293].start 8488.82
transcript.whisperx[293].end 8517.183
transcript.whisperx[293].text 但是今天的主題我看到的如果是以因為法制委員會監督的是人事長我們可能會把他放在公務人力的人才培育但是我要說我們不只是培育公務體系的同仁有AI的知能更重要的是在國家的AI政策跟相關的應用上其實是各部會是參與的角色包括我對人事長你的期待
transcript.whisperx[294].start 8517.643
transcript.whisperx[294].end 8540.869
transcript.whisperx[294].text 我們不是只辦訓練營讓大家知道AI是什麼剛剛鍾釗緯講得非常好啊對於山南的協助對於矯正署法制委員會我們的法務部AI的應用何其之廣啊所以不是只有末端的人才培訓來告訴大家現在技術有哪些大家要懂重點是公務體系的應用
transcript.whisperx[295].start 8543.272
transcript.whisperx[295].end 8561.811
transcript.whisperx[295].text 這個是前後非常重要的一個思維的翻轉我在這裏一定要提出來這個Big Data新時代資訊就是新的石油因為我過去在教育文化委員會我長期跟國科會來做這方面的討論
transcript.whisperx[296].start 8563.846
transcript.whisperx[296].end 8589.06
transcript.whisperx[296].text 所以在CHAP GPT引爆了AI的這個資訊資料庫的浪潮之後我過去質詢了國科會那時候的吳政中他是主委也兼政委所以提出了要在2024年是今年的預算已經在執行有40億國家投入AI的發展這是今年度的預算但是呢我們還是落後了
transcript.whisperx[297].start 8593.442
transcript.whisperx[297].end 8596.245
transcript.whisperx[297].text 所以要打造一個資料庫我今天就就這個資料庫來就教於三位
transcript.whisperx[298].start 8615.695
transcript.whisperx[298].end 8632.271
transcript.whisperx[298].text 這個TED我們要推動可信任生成式的AI發展就在中研院去年發生了台灣的資訊資料庫不夠以至於我們中研院的研究員去引用了
transcript.whisperx[299].start 8633.311
transcript.whisperx[299].end 8659.253
transcript.whisperx[299].text 中國建制的資料庫鬧出了笑話大家記得這件事所以在這個事件之後國科會速發部跟中研院就投入了3億要進行臺版的CHAP GPT也就是臺灣自治大型語言模型目前這個進度應當是進行來是要陳副主委回答還是要我們學次長
transcript.whisperx[300].start 8660.559
transcript.whisperx[300].end 8683.347
transcript.whisperx[300].text 報告委員這應該是目前是國科會負責的那目前呢建制我們要創造台灣的資料數據建構台灣繁中系統的語言資料庫掌握data就是掌握了石油目前建制如何報告委員目前我們應該已經release了應該在今年的4月份有release一個版本出來
transcript.whisperx[301].start 8686.328
transcript.whisperx[301].end 8713.437
transcript.whisperx[301].text 我看您今天沒有辦法回答細節你可以提供相關資料給本席我要提這個是我們的預算當初要建這個台版的CHAP GDP是3億左右的預算那我剛剛講的即便3億之外要40億投入國家隊的AI發展我們還是落後先進國家非常多沒有預算就沒有辦法做事啦下一頁
transcript.whisperx[302].start 8714.73
transcript.whisperx[302].end 8727.097
transcript.whisperx[302].text 我掌握到的國科會針對這個TED資料庫的新年度就是明年2025年的國家預算至少是1.37億這是新增預算新增計畫如果總預算繼續被擋下去的話這一個臺灣的繁中語言資料庫的建制就成了受災戶我們就沒有辦法打我們的
transcript.whisperx[303].start 8741.825
transcript.whisperx[303].end 8770.423
transcript.whisperx[303].text 這個AI跟世界各國一起比拼的這個資訊大戰你們有去跟在野黨委員爭取預算說明預算了嗎?這裡面有國客會預算大概1.37億速發部應該也有吧?速發部的預算是那個評測中心的預算一年8千億一年8千億所以總預算八檔就不一定八檔嘛我們今天在這裡爭取我們AI向前大步走預算沒過怎麼推啊?
transcript.whisperx[304].start 8771.323
transcript.whisperx[304].end 8791.333
transcript.whisperx[304].text 我相信很多在野黨的委員也會在這裡要求你們我們要做多好做多多做多快預算沒過怎麼做呢我用的還只是這個TED資料庫繁中語言資料庫台版CHAP GDP的一個案例而已下一頁那另外就是
transcript.whisperx[305].start 8795.31
transcript.whisperx[305].end 8816.21
transcript.whisperx[305].text 是為了AI基本法嗎?你們現在公告完成了10月底要送行政院其實面對資安面對假訊息面對侵權行為的頻傳台灣能不能夠快速的來去制定出台灣的AI基本法我去年在教育文化委員會我是質疑的
transcript.whisperx[306].start 8817.881
transcript.whisperx[306].end 8837.846
transcript.whisperx[306].text 在世界各國還沒有他也許是指引歐美國家還沒有完成立法的台灣有信心做得到做得好嗎你們現在完成公告了收集社會的意見如何跟你們原始的法案的草擬的想像是如何來副主委
transcript.whisperx[307].start 8839.067
transcript.whisperx[307].end 8858.34
transcript.whisperx[307].text 報告委員我們已經完成了公告那其實也收集了蠻多的建議的那我們也在這個收集完之後有納入方向跟原本的設定方向跟原本設定大同小異我們還是會這個鼓勵創新跟兼顧人權這兩個方向會同時
transcript.whisperx[308].start 8858.72
transcript.whisperx[308].end 8877.638
transcript.whisperx[308].text 我沒有反對制定但是我是以國際經驗國外的AI每年投入這麼多預算的先進大國他們還是用指引的方式台灣能夠這麼快速的用一個立法的方式嗎我今天在這裡我還是質疑不需要為快而快
transcript.whisperx[309].start 8878.703
transcript.whisperx[309].end 8899.234
transcript.whisperx[309].text 我們要做就要做對方向繼續對話好AI基本法涉及7大基本原則4大推動重點都是跨部會的所以我們成立了行政院數位法制協調專案會議下一頁人事長我們人事總處是outside
transcript.whisperx[310].start 8900.543
transcript.whisperx[310].end 8900.563
transcript.whisperx[310].text 這樣感覺對嗎?
transcript.whisperx[311].start 8925.486
transcript.whisperx[311].end 8940.595
transcript.whisperx[311].text 這就回到我剛說的你只是負責培訓喔而不是參與喔你只是培育而不是參與喔我是假如他們有邀請我我一定去參加你覺得你需不需要在裡面我是樂於積極參與對國家發展有幫助的我認為AI新時代公務體系的
transcript.whisperx[312].start 8949.5
transcript.whisperx[312].end 8978.302
transcript.whisperx[312].text 了解AI的知能進一步的能夠更去應用它我們人事總處應當是insider否則你會留於後端一個知識性傳授的角色而已下一頁你看看這是我們開過三次會的會議結錄都提到各機關的座談會工作坊論壇去培育公務人員的AI知能
transcript.whisperx[313].start 8979.662
transcript.whisperx[313].end 8987.473
transcript.whisperx[313].text 我認為這個你們在場三位來這個國科會跟速發部應該速發部這個應當把人事總處納進去吧這麼簡單的問題因為這個是
transcript.whisperx[314].start 8999.346
transcript.whisperx[314].end 9024.856
transcript.whisperx[314].text 人事長公他願意勇於認識嗎 對不對一起參與嘛 我不說你主導嘛 你要加入嘛那個幕僚應該是國發會啦那請今天與會的國發會的代表把這個訊息帶回去好嗎下一頁因為我們現在都是做培訓課程 我說他是很末端的 人事長下一頁
transcript.whisperx[315].start 9027.796
transcript.whisperx[315].end 9052.439
transcript.whisperx[315].text 就以國科會定定的使用生成式AI的指引.裡頭每一項從國安資安人權隱私倫理保密各自保護著作權.完全都跟公務體系的user使用端有關.所以我們人事總處當然要盡可能多參與.而不是只顧政策訂出來我來培育就好下一頁
transcript.whisperx[316].start 9053.564
transcript.whisperx[316].end 9078.354
transcript.whisperx[316].text 好 說到你自己的這個提供我時間到了AI基礎的訓練課程120小時不管是高考或普考在整個 對不起所有公務體系的120小時的訓練裡頭AI甚至是資安不是只有AI都只有加起來都各只有8小時比例只有6.66這個部分就是我們培訓端就完全是人事總處
transcript.whisperx[317].start 9079.904
transcript.whisperx[317].end 9107.954
transcript.whisperx[317].text 這個人事長您的我各位這是保訓會的我們在跟保訓會溝通這不是AI課程喔這是資安plus裡面一小部分的AI如果我剛剛說的培訓你只做培訓不做前端政策應用的參與的話那培訓也要做得充足目前高考跟普考要新進公務體系的人員他的這方面的課程是非常的少的也沒搞啦
transcript.whisperx[318].start 9108.693
transcript.whisperx[318].end 9131.312
transcript.whisperx[318].text 我來蔡主委拜託所以我覺得我們今天拋出來的議題從嘉賓召委到思瑤我們連成一氣的觀點就是公務體系對於AI相關的發展他是要多參與而不是只有培育而參與的部分no one is outsider我認為人事長人才是重中之重
transcript.whisperx[319].start 9132.313
transcript.whisperx[319].end 9153.959
transcript.whisperx[319].text 我也很期待對於立法院也能夠有相關的課程包括立委或是立委的助理幕僚們我們都要共同來理解AI的新時代好嗎?今天的問題很高興教委說未來還會有專案報告對於我們的幾個核心問題我們的AI運用在公務體系有沒有什麼樣的目標誰來觀考?好好思考這個問題
transcript.whisperx[320].start 9158.34
transcript.whisperx[320].end 9162.741
transcript.whisperx[320].text 好嗎?好,一起加油,謝謝。好,謝謝,謝謝委員。謝謝吳委員,謝謝人事長、各位長官。那在陳俊宇委員質詢完畢後,我們休息5分鐘,現在請陳委員進行質詢。好,謝謝昭偉,我們有請蘇人事長。好,請人事長。
transcript.whisperx[321].start 9190.962
transcript.whisperx[321].end 9212.776
transcript.whisperx[321].text 今天我們對於如何將AI導入政府機關提升效能來進行相關的這個探討尤其在我們AI近幾年是全世界各領域都是最熱門的一個關鍵字的搜尋那我們也看到賴總統和內閣團隊都展現決心要打造台灣成為智慧國家
transcript.whisperx[322].start 9213.646
transcript.whisperx[322].end 9226.062
transcript.whisperx[322].text 但是科技的發展日新月異在人才法規乃至於在整體發展環境上政府都有責任走在最前面帶領各行各業來發展人工智慧的應用
transcript.whisperx[323].start 9227.284
transcript.whisperx[323].end 9254.936
transcript.whisperx[323].text 我也了解到我們這個各部會其實都有對於引用AI的這個部分提出相應的規劃和措施也如同人事長先前所說的公部門發展AI最所要的就是在人才培育所以我想就目前人總對於推動公務員的這個人力培訓的規劃來救教我們人事長如果政府要普及AI的應用
transcript.whisperx[324].start 9255.397
transcript.whisperx[324].end 9261.575
transcript.whisperx[324].text 可能普及到公務體系當中的每一個同仁我看到不管是人種或是速發部
transcript.whisperx[325].start 9263.004
transcript.whisperx[325].end 9287.671
transcript.whisperx[325].text 對於這個AI人才培訓都有做出分級的規劃那我想瞭解的是在政府現行的規劃下我們對於基層的公務人員具體上所希望擁有的這個基礎資能為何那預計要多久時間來進行培訓在習得這個基礎能力之後目前主要如何運用在我們
transcript.whisperx[326].start 9288.951
transcript.whisperx[326].end 9312.904
transcript.whisperx[326].text 這個辦公的場域當中我們想請教我們人事長謝謝委員這個問題我想大家委員也知道全國大概21萬的公務人員如果全部的課程要用實體課程來執行上會有其困難的地方所以我們現在從9月1號開始我們已經在數位學習的平台放了五門
transcript.whisperx[327].start 9313.664
transcript.whisperx[327].end 9314.645
transcript.whisperx[327].text 委員會委員會委員會委員會
transcript.whisperx[328].start 9342.243
transcript.whisperx[328].end 9369.245
transcript.whisperx[328].text 右映大概我們目前也在檢討假如你有上過人工智慧起的一些證照對未來的升遷會有一些幫助因為用相關的配套去拉動它可能速度會比較快一點我們那個滾動檢討啦另外第二個就是這個是數位學習的構面第二個我們跟數化部事實上也有在合作
transcript.whisperx[329].start 9370.006
transcript.whisperx[329].end 9385.106
transcript.whisperx[329].text 辦一些科長級以上的總職人員訓練因為這個總職人員訓練完以後他會回去擴散在每一個部會甚至地方政府的部份大家一起進來這樣整個國家在推動人工智慧這速度會比較快
transcript.whisperx[330].start 9385.546
transcript.whisperx[330].end 9414.548
transcript.whisperx[330].text 所以我們也有辦那個實務的課程這個大概3天的program那而且也要經過考試考試及格才會取得一個認證我想這樣有一點壓力他們學習的效果應該會比較好一點好那對於這個基層人員他的培訓是為了能夠使用這個AI和AI一起工作對於這個高階人才的培訓那剛剛那個人事長您也說了我們會
transcript.whisperx[331].start 9415.208
transcript.whisperx[331].end 9431.04
transcript.whisperx[331].text 另外再開闢一個課程那從現行的這個規劃來看可能還是希望能夠他們能夠自主的這個學習我們這個人事總署這邊所安排的課程他們來配合來配合學習
transcript.whisperx[332].start 9432.762
transcript.whisperx[332].end 9447.828
transcript.whisperx[332].text 那政府在培養AI人才的這個資源上是否應擴大運用公司部門共同協力而且在法規面尚未完備的情況下我們要先對於現有的這個平台來深化AI的使用
transcript.whisperx[333].start 9449.094
transcript.whisperx[333].end 9472.686
transcript.whisperx[333].text 我跟委員報告一下事實上人事總處來講我們的專長大概就是人事行政的那這些人工智慧的這些專門的領域事實上過去這幾年也謝謝人工智慧學校跟工研院那裡有團隊來協助我們去做這樣的事情所以我們現在很多課程的規劃跟執行事實上是跟民間來搭配
transcript.whisperx[334].start 9473.146
transcript.whisperx[334].end 9491.834
transcript.whisperx[334].text 然後今年跟明年我們也安排一些已經導入人工智慧的我帶我們的公務同仁去現場見習這樣看人家怎麼做這個印象會比較深刻所以我們才複合式的方式在推動這也是接下來我要問的
transcript.whisperx[335].start 9493.895
transcript.whisperx[335].end 9521.756
transcript.whisperx[335].text 這些高階的人才在經過完整的這個規劃培訓之後都是公部門非常寶貴的人力那在業界同樣都是求財若渴那會不會有大量的我們高階人才因為在這個過程裡面被挖角的可能那我們人種在策略上應該如何來避免未來會產生這樣的情形反過來有沒有在擬定從業界招募這個AI即戰力的這個規劃
transcript.whisperx[336].start 9523.584
transcript.whisperx[336].end 9537.963
transcript.whisperx[336].text 我覺得我目前整個策略上就是普遜所有的公務同仁就是把人工智慧變成他必要的一個核心能力就是一個DNA的概念
transcript.whisperx[337].start 9538.524
transcript.whisperx[337].end 9554.513
transcript.whisperx[337].text 那要從業界挖人進來主要就是請他們來擔任業師的角色來教導然後直接就引進來因為公務機關本身我們有公務人員服務法的一些限制所以要挖過來
transcript.whisperx[338].start 9555.774
transcript.whisperx[338].end 9557.154
transcript.whisperx[338].text 有些公務同仁我們在應用的那種情境跟民間的可能會有落差
transcript.whisperx[339].start 9572.099
transcript.whisperx[339].end 9572.94
transcript.whisperx[339].text 希望守住我們的好人才
transcript.whisperx[340].start 9601.641
transcript.whisperx[340].end 9626.918
transcript.whisperx[340].text 當然當然那另外因為這個AI應用對於軟體和硬體的這個要求都會比過去來的這個高許多那各部門在採購軟硬體設備時有自己的這個考量規格不見得是最高階的而在軟體上就連公文系統各部門使用的也不見得是來自同一家廠商我想請教我們的市長是不是有需要對於我們公部門軟硬體設備的這個
transcript.whisperx[341].start 9629.059
transcript.whisperx[341].end 9629.94
transcript.whisperx[341].text 人工智慧的運算的算力需求
transcript.whisperx[342].start 9648.2
transcript.whisperx[342].end 9648.34
transcript.whisperx[342].text 好﹗好
transcript.whisperx[343].start 9672.23
transcript.whisperx[343].end 9690.462
transcript.whisperx[343].text 好 那這部分還是請我們人事總處這邊就是盡量去做整合啦好 人事長您先請 我想請那個經濟部跟農業部的代表好 我們
transcript.whisperx[344].start 9691.28
transcript.whisperx[344].end 9708.45
transcript.whisperx[344].text 目前政府在使用AI提升公務效能之餘也應該有貼近民眾的這個相關日常生活我想就遭逢這個我們天災情況的時候也就是這個防災應用的部分來和我們經濟部來做討論
transcript.whisperx[345].start 9710.211
transcript.whisperx[345].end 9734.745
transcript.whisperx[345].text 今年我們臺灣接連受到這個凱米颱風還有山陀颱風的這個侵襲在各地造成不少的災情尤其我們也看到許多的這個地區因為強降雨或是豪大雨而導致積水淹水的狀況那行政院也在109年曾經合併這個水災智慧的防災計畫至今也已經辦了快5年而這今年也合併了第二期的計畫在未來5年要投入超過
transcript.whisperx[346].start 9735.405
transcript.whisperx[346].end 9739.047
transcript.whisperx[346].text 在第一期的計畫中AI應用於防汛工作上有哪些具體的成果以及在第二期5年的30.9億當中我們要如何來擴大使用AI的防災
transcript.whisperx[347].start 9761.294
transcript.whisperx[347].end 9780.601
transcript.whisperx[347].text 跟委員報告因為經濟部整個部長現在對AI的發展很重視所以他要求各部會各局處都要嚴厲的遵守那至於你提到水利署的計畫我想因為我是紀錄師的代表我回去轉告水利署一一提書面報告給委員那會後這個部分再給我書面的資料
transcript.whisperx[348].start 9781.201
transcript.whisperx[348].end 9801.314
transcript.whisperx[348].text 那我們也看到這個智慧防災計畫當中有使用這個AI輔助監控並辨識淹水的狀況能夠隨時掌握到各地這個積水或淹水的情況也能夠提前預警達到減災的效果像是這一次這個山頭的颱風來襲我跟這個農業部長陳部長視察防災的相關情形的時候當時這個
transcript.whisperx[349].start 9808.649
transcript.whisperx[349].end 9828.981
transcript.whisperx[349].text 也有提到我們農業要導入AI來建置智慧防災系統應用於農田水利設施的管理包括監控排水系統和遠端操作水閘門的開啟還有關閉等等我想請教我們農業部在AI建置智慧防災系統上目前辦理的情況如何
transcript.whisperx[350].start 9829.728
transcript.whisperx[350].end 9850.577
transcript.whisperx[350].text 跟委員報告其實那一天就是部長和委員到宜蘭去看那個農田放災的相關農田水利署的計畫那我回去我會跟農田水利署來向委員提出書面的報告好那這個部分還是會後給我一份完整的資料那以上就大概就對經濟部跟這個農業部相關的這個質詢就會後提供這個完整針對剛剛的這個問題的這個需求的這些答詢好 謝謝
transcript.whisperx[351].start 9860.097
transcript.whisperx[351].end 9865.804
transcript.whisperx[351].text 好 謝謝陳委員 謝謝兩位首長那我們現在休息5分鐘
transcript.whisperx[352].start 10193.878
transcript.whisperx[352].end 10195.925
transcript.whisperx[352].text 繼續開會,現在有請奈委員事保諮詢時間5分鐘
transcript.whisperx[353].start 10201.631
transcript.whisperx[353].end 10230.134
transcript.whisperx[353].text 謝謝主席 謝謝副總召那麼各位先進大家早安大家好有請人事長以及書發部的薛次長以及國科會的陳副主委有請人事長薛次長還有陳副主委各位長官因為我時間很短我就問幾個簡單的問題請問你們知不知道或者就請問幾位長官包括各單位的
transcript.whisperx[354].start 10231.667
transcript.whisperx[354].end 10255.726
transcript.whisperx[354].text 有跟CHAT GPT付錢去用CHAT GPT問他事情的舉手好不好有沒有都有嗎 後面都有嗎請問你們付幾塊錢的付幾塊錢的啊這裡有行情20塊美金以下的舉手免費的
transcript.whisperx[355].start 10261.017
transcript.whisperx[355].end 10262.277
transcript.whisperx[355].text 我自己沒有使用
transcript.whisperx[356].start 10288.647
transcript.whisperx[356].end 10315.863
transcript.whisperx[356].text 我們是用來做學術研究用途我現在是個人在用各位長官知道嗎當你來我請你看第一張我查了一下從8月22號到26號政府機關5天連線簽了GPD總共29萬餘次我要講什麼東西他講得非常清楚他就說如果你是20塊美金以下的
transcript.whisperx[357].start 10317.844
transcript.whisperx[357].end 10336.214
transcript.whisperx[357].text 你要把資料給他他要用你的資料就是我們不斷地用CHAT GPT就不斷地有政府的資料留在他手上他就會訓練在使用簡單來講就是政府相關的資料因為你們的使用CHAT GPT特別人事總署這裡還說整個是買團體的哇 這樣整個都棄了
transcript.whisperx[358].start 10339.056
transcript.whisperx[358].end 10364.839
transcript.whisperx[358].text 我們國家的資料國家的安全的問題資安的問題就呈現了我們國家的政府的機關的資料呼就送過去了然後他就訓練就用我們台灣政府的相關的單位的資料在裡面供他訓練所以這裡面就是無意當中我們因為你們的使用CHAT的GPT
transcript.whisperx[359].start 10366.28
transcript.whisperx[359].end 10384.343
transcript.whisperx[359].text 已經把我們已經有一個食安洩漏的問題出來了我們現在放在銀端的都是公開資料啦open data本來就是政府資訊公開來符合的資料本來就要放在上面所以跟那個我們比較confidential的這個部分就沒有關
transcript.whisperx[360].start 10385.029
transcript.whisperx[360].end 10385.249
transcript.whisperx[360].text 委員會主席
transcript.whisperx[361].start 10401.126
transcript.whisperx[361].end 10428.112
transcript.whisperx[361].text 他上面的是屬於公開資料,另外我們有用地端的,有些資料是不能對外公開的,我們就放在地端,沒有放在雲端,我們有做這樣的差別嗎?吉同家講,我現在是講說,你自己可以這樣子做,可是你底下的人,他不知道啊!你底下人怎麼用你知道嗎?他應該問一下,啊我現在這個放假的問題你給我回答一下,他就跟你回答,你們資料就出去了,怎麼沒有呢?對不對?
transcript.whisperx[362].start 10432.091
transcript.whisperx[362].end 10435.255
transcript.whisperx[362].text 有幾百個人在使用這東西你怎麼保證呢你沒辦法保證啊你沒辦法保證啊
transcript.whisperx[363].start 10452.191
transcript.whisperx[363].end 10476.433
transcript.whisperx[363].text 這張喔 或是我剛才說的兩項啦 一個雲端的就是開放資料 阿如果在地端就是不能我出去網購的來 你還是沒有回答問題的齁 時間快到了所以我不再問你了來 我們蘇花部的齁 AI資料的進出可以不可以管制 當我們政府機關去跟AI 比如說CHAT的GPT 裡面有互動的時候 我們有沒有辦法管制我們的指涵 有沒有辦法
transcript.whisperx[364].start 10476.613
transcript.whisperx[364].end 10479.575
transcript.whisperx[364].text 你沒有那麼評估了哪些AI可用哪些AI不能用
transcript.whisperx[365].start 10507.435
transcript.whisperx[365].end 10508.997
transcript.whisperx[365].text 目前這個評測中心已經評測了幾個幾個不可以有人跟我們講
transcript.whisperx[366].start 10515.856
transcript.whisperx[366].end 10539.953
transcript.whisperx[366].text 我看到資安比較好的應該是那個拉瑪拉瑪3.0的資安非常好那其他很多都沒有到達滿分因為他剛剛就是委員講的他免費的版本他會收你的資料所以如果你用付費的版本像剛剛人事總處他用付費的版本他是不能收你的資料的
transcript.whisperx[367].start 10540.305
transcript.whisperx[367].end 10548.597
transcript.whisperx[367].text 沒有沒有我再強調一個20塊錢美金20塊錢以下的資安都很可能漏出去了20塊錢以上的相對好一點
transcript.whisperx[368].start 10549.622
transcript.whisperx[368].end 10574.264
transcript.whisperx[368].text 我要強調這一點那我希望你這個書發部這裡確實做好這個治安的管控因為我們國家的各單位有太多的一個confidential的東西不應該因為跟GPT你剛剛提到了他相對的保密層級沒那麼高這樣容易流出去這其實是一個治安的一大的一個破口好不好好謝謝好謝謝委員
transcript.whisperx[369].start 10580.711
transcript.whisperx[369].end 10600.615
transcript.whisperx[369].text 好 謝謝賴委員 那麼接下來有請副委副總召昆齊諮詢主席阿琴委員市長有請蘇貞市長還有我們速發部速發部缺次長
transcript.whisperx[370].start 10607.742
transcript.whisperx[370].end 10635.425
transcript.whisperx[370].text 總統早早 人事長早蘇巴布斯次長現在人工智慧已經是所有全世界各國都在強力的發展尤其台灣我們在晉元代工其他很多的IT產業台灣在世界都是站在一個非常領先的一個國家的地位
transcript.whisperx[371].start 10636.465
transcript.whisperx[371].end 10659.255
transcript.whisperx[371].text 接下來AI未來也會在臺灣成為一個非常重要的發展項目甚至可是一個非常重要的發展基地我們政府也更應該要同步來跟上這樣的一個腳步所以如何提升公務員的效率已經是普遍人民的期待
transcript.whisperx[372].start 10663.004
transcript.whisperx[372].end 10686.437
transcript.whisperx[372].text 簡單淺淺的回答一下本期問題要怎麼樣把AI帶進我們所有的行政體系?請人事長我們現在推動的就是普遜的是透過數位學習讓全國21萬的公務人員可以到網站上寫數位學習不管你在花蓮台東任何地方都可以
transcript.whisperx[373].start 10687.157
transcript.whisperx[373].end 10699.132
transcript.whisperx[373].text 第2個我們有辦那個實體班就針對科長以上的總職人員我們今年辦了一班然後明年五班然後甚至數學部他們也有辦我們是針對業務單位的人員訓練他們是針對資訊這樣可以快速擴散
transcript.whisperx[374].start 10705.56
transcript.whisperx[374].end 10731.078
transcript.whisperx[374].text 那要怎麼樣提升提升整體的這樣的所有的公務人員整體這個數值對AI的認識瞭解數值的提升是不是未來也可能也辦一些相關的這樣的一個晉級的考試成為未來可能比較重要這關等升任一個非常重要的指標有沒有可能這要跟上世界的腳步
transcript.whisperx[375].start 10732.708
transcript.whisperx[375].end 10757.781
transcript.whisperx[375].text 大概我們目前在規劃就是明年可能我再升遷你有拿到人工智慧相關的證照會有加分你可以升遷速度會比較快有一個誘因這個部分我們目前正在規劃當中你是不是建議一下不要老是靠光靠一些年資的堆積作為主要的參考的依據這個加分的幅度是不是可以把它適度的放寬
transcript.whisperx[376].start 10759.582
transcript.whisperx[376].end 10786.352
transcript.whisperx[376].text 讓願意跟上世界腳步的這些我們的公職人員能夠更快的提升他的格局這樣子大家才會帶動整體學籍的氛圍本期在這裡跟你分享如果我們的公職人員如果能夠善用AI的話善用AI的話不只可以提升效率我們現在一直在講
transcript.whisperx[377].start 10787.679
transcript.whisperx[377].end 10812.446
transcript.whisperx[377].text 在公務機關 人民依法提出相關的申請案到了政府機關以後 如果以退件或是要求補件往往是補了又補 退了又退 退了又補 補了又退如果我們導入完整的一個人工智慧 就告訴他 你退件的話只能退一次
transcript.whisperx[378].start 10813.581
transcript.whisperx[378].end 10829.232
transcript.whisperx[378].text 我現在推薦給你你現在缺什麼資料缺什麼資料要一次補足甚至啊根本不用送到政府來在家裡上網就可以證券齊備了內容完整了我就給你可以嗎我覺得這個就是過去我在行政院有找惠夫的時候我們一起做這樣的提問而且這裡我也跟總編導報告講
transcript.whisperx[379].start 10840.748
transcript.whisperx[379].end 10852.631
transcript.whisperx[379].text 另外還有一個問題就是說當政府本身就要給民眾的這一些權益保障還有福利的話不用等民眾再申請政府本身就提供不過他的前提就是
transcript.whisperx[380].start 10856.207
transcript.whisperx[380].end 10883.757
transcript.whisperx[380].text 因為要政府核准的相關的申請案是非常的繁瑣非常複雜也非常項目眾多還是有很多必須要政府來核准的不是光給還是要經過相關的申請所以這個部分要拜託這個人事長過去你就投入了在這個領域但是現在還看不出有什麼明顯的績效往往在
transcript.whisperx[381].start 10884.81
transcript.whisperx[381].end 10913.303
transcript.whisperx[381].text 各級政府裡面這個案子啊這個送了又審完又要補補完又退這個會讓人家有遐想這個到底是不是要送其他的東西才能夠加快速度如果我們用標準的格式人工智慧在家裡就可以把所有東西都齊備不需要再經過刻意的人為判斷我想這個標準是大家都可以接受的可以嗎
transcript.whisperx[382].start 10914.956
transcript.whisperx[382].end 10937.809
transcript.whisperx[382].text 這個部分我再跟樹化部來談因為樹化部底下有一個所有公共旅遊部啦我就請他站在那裡就好了沒關係來繼續我覺得這件事很有意義的啦我們再拜託樹化部我們加速來推動很重要的就是人事長我要特別拜託你再跟所有的這相關的部會還有各級政府千萬記得
transcript.whisperx[383].start 10939.21
transcript.whisperx[383].end 10963.061
transcript.whisperx[383].text 人工智能就你未給他什麼資料他就吃了什麼資料他完全是根據這些資料去做運算去做蒐集然後整合最後給答案所以AI他的長處是什麼他可以最短的時間給你答案而且他不會怠惰不會罷工不會朝九晚五最重要他不會有情緒
transcript.whisperx[384].start 10965.355
transcript.whisperx[384].end 10988.846
transcript.whisperx[384].text 最短的時間之類能夠給你很重要的AI他不會說謊所以呢會說謊的是人不是AI所以你給他不正確的資料他就有不正確的答案所以未來在未資料的部分要千千萬萬注意未資料是最重要的事情你給他不正確的資料
transcript.whisperx[385].start 10990.094
transcript.whisperx[385].end 10990.374
transcript.whisperx[385].text 針對現在我們在審總預算這個啊
transcript.whisperx[386].start 11007.551
transcript.whisperx[386].end 11031.571
transcript.whisperx[386].text 一堆的網軍謠言綠媒就在講說這個國民黨民眾黨已經全數通過退回2024年的所謂這個老人津貼跟育兒津貼結果台灣事實查核中心再一次打臉完全沒有這樣的事情完全沒有這樣的事情事實不符
transcript.whisperx[387].start 11033.8
transcript.whisperx[387].end 11055.498
transcript.whisperx[387].text 所以錯誤的假訊息網軍綠媒不但帶著這個風向會造成連AI都會判斷錯誤所以還要經過人偽的來摔錢人事長了解了嗎?再過來還有另外一個案子更可笑來我們再看另外一個所謂花東三法叫兩兆錢坑
transcript.whisperx[388].start 11056.946
transcript.whisperx[388].end 11083.609
transcript.whisperx[388].text 事實查核中心就很清楚講這完全胡說八道而且他寫得很清楚這個是執政黨自己講民進黨講的這都不是事實各種網路國會發言不斷的造假造假造假因為已經習慣了說謊說久了就變成真的所以未來在整個未資料的時候真真假假假假真真萬一都丟了一些假訊息出去
transcript.whisperx[389].start 11085.436
transcript.whisperx[389].end 11111.381
transcript.whisperx[389].text 給AI的data裡面都是假的他就很難做出真的事情所以這個部分希望希望這個人事長在跟各部會各級機關要特別做這方面的這個宣導好不好還有一個事情很重要人事長本席知道啊您的生活非常的健康常常會這個因為畢竟臺灣就這麼美寶島世中環海
transcript.whisperx[390].start 11115.366
transcript.whisperx[390].end 11127.534
transcript.whisperx[390].text 有很大的海洋資源7-11是高山所以這位人事長常常會去踏青上山下海那是對的你為所有全國的公務員
transcript.whisperx[391].start 11129.844
transcript.whisperx[391].end 11130.165
transcript.whisperx[391].text 提供更多的資訊
transcript.whisperx[392].start 11159.685
transcript.whisperx[392].end 11171.3
transcript.whisperx[392].text 現在本席也在這裡特別提到臺灣有三分之二的山地高山有這麼多的區域裡面但我們的內政部我可以看一下
transcript.whisperx[393].start 11174.717
transcript.whisperx[393].end 11200.176
transcript.whisperx[393].text 這個消防署啊有特種特收隊特種特收隊這個需要緊急救難的時候這個特收隊會出動然後呢對於我們消防署啊消防署這個在各港齁在各港基隆港台中港高雄港花蓮港也都有這些消防大隊做緊急救難使用但是請問一下人事長
transcript.whisperx[394].start 11201.526
transcript.whisperx[394].end 11223.145
transcript.whisperx[394].text 現在對於國家公園人事長國家公園是內政部管的對不對為什麼在國家公園裡面發生任何事情卻管轄權在中央但是救人的時候要地方政府去救為什麼沒有為什麼沒有為什麼沒有
transcript.whisperx[395].start 11224.195
transcript.whisperx[395].end 11252.127
transcript.whisperx[395].text 一個國家公園的特首隊由內政部統一施權本來就是內政部消防署也在內政部為什麼不由內政部來做對不對我本席給你舉個例子這樣子發生一個事情在國家公園雖然雖然那個轄區是在花蓮縣但是在國家公園屬於內政部管的那結果要救人救人是不是如救火 對不對
transcript.whisperx[396].start 11253.695
transcript.whisperx[396].end 11268.318
transcript.whisperx[396].text 分秒都很重要結果呢花蓮這裡上不去花蓮特首都要繞到南投繞到嘉義才能上去去那裡七八個小時還要在宮頂還要再上山
transcript.whisperx[397].start 11269.84
transcript.whisperx[397].end 11292.851
transcript.whisperx[397].text 這個合乎經濟效益嗎這合乎對這些苦救難的需要幫助的人是不是有事實的效應但是現在聽到消防署內政部不斷表達說人事總處這裡不給援俄這個是救命的援俄這是救命的事情救命的事情救人是不是如救火是不是
transcript.whisperx[398].start 11296.952
transcript.whisperx[398].end 11325.779
transcript.whisperx[398].text 我們之前有找國家公園還有臨保署還有消防署一起去討論過這個問題應該會有一些解決的一個比較好的一個方向好 那個人事長既然是國家公園是內政部管轄怎麼會叫地方政府繞半個台灣去救援呢這個計不可乎現在21世紀救人一命啊 甚至到七級糊塗啊
transcript.whisperx[399].start 11326.904
transcript.whisperx[399].end 11328.905
transcript.whisperx[399].text 謝謝副總召 謝謝人事長跟次長接下來有請吳委員春晨質詢時間5分鐘
transcript.whisperx[400].start 11356.564
transcript.whisperx[400].end 11374.951
transcript.whisperx[400].text 好 有請我們人事長請蘇人事長我也很早你大概是我看過我們中央這個各部 部位當中最有笑容的人現在都戰鬥內閣所以看到你很開心那個 這個現在
transcript.whisperx[401].start 11380.031
transcript.whisperx[401].end 11403.687
transcript.whisperx[401].text 我今天提的題目就是應該要全面性的提升智慧型的公務大軍36萬的大軍人事長這個職務人事長這個職務何等的重要因為我來自企業界企業界當中都有CEOCEO如果想要做這個整個企業的變革
transcript.whisperx[402].start 11406.033
transcript.whisperx[402].end 11416.868
transcript.whisperx[402].text 因應所有的事情最重要身邊的那一個人就叫什麼人事長人事長對不對所以整個的政府我們現在的
transcript.whisperx[403].start 11418.26
transcript.whisperx[403].end 11446.926
transcript.whisperx[403].text 全球這個面臨的數位化高聯化全球化現在可以講說21世紀已經進入了一個全面性改變的一個時代全面性的政治經濟產業的競爭所有都不一樣但是我們的政府是20世紀的機器應該吧法規編制制度都來自於那裡所以如果以一個企業
transcript.whisperx[404].start 11448.126
transcript.whisperx[404].end 11448.186
transcript.whisperx[404].text 請問任市長
transcript.whisperx[405].start 11469.794
transcript.whisperx[405].end 11489.005
transcript.whisperx[405].text 我們當然扮演一個非常重要就是引領公務人員創新變革的一個非常重要的機構所以人事長我當然相信因為你的資歷非常的完整從105年擔任副任市長所以業務你非常的熟悉
transcript.whisperx[406].start 11489.585
transcript.whisperx[406].end 11517.231
transcript.whisperx[406].text 而且你本身是理工的底子練統計了然後練電腦練數位所以這方面數據我們來看這個剛才講的數位化高聯化我不曉得這個這麼大的以你這個現在一直我在提的壯世代我在談這個但是我發現我們的政府是沒有這個觀念的1970年的人口圖一個金字塔當時人口的中位數19歲
transcript.whisperx[407].start 11518.931
transcript.whisperx[407].end 11546.984
transcript.whisperx[407].text 到了2040年人口中位數是52歲臺灣天翻地覆這你知道吧上次有跟我提點過提點過齁這個禮拜是那個國發會要公布新的人口因為那兩年公布一次那每年都是八月拖到現在不敢公布我問了那個國發委員那個劉主委說為什麼拖到現在是不是事情變得更嚴重他點頭
transcript.whisperx[408].start 11548.848
transcript.whisperx[408].end 11549.208
transcript.whisperx[408].text 來 我們看一下
transcript.whisperx[409].start 11565.336
transcript.whisperx[409].end 11589.417
transcript.whisperx[409].text 第一件我要拜託這個人事長第一個公務人員的觀念要翻新觀念翻新人總有責政府對高齡者處處歧視我在這裡這個已經是我談了一個會期了每一個部會除了衛福部之外幾乎所有的高齡者60歲以上的
transcript.whisperx[410].start 11590.543
transcript.whisperx[410].end 11595.03
transcript.whisperx[410].text 沒有政策都沒辦法的事預算都不占不到他該部會的1%
transcript.whisperx[411].start 11596.909
transcript.whisperx[411].end 11625.395
transcript.whisperx[411].text 教育部 中生教育師 佔教育部預算的0.2%文化部 數位部 幾乎都通通一樣差不多我再講了政府公務單位 包括上禮拜我還諮詢國科會說你有沒有高齡的科技政策他說科技政策不為特定人服務我說你把高齡者當特定人你要害死人我們國科會的科學家講說佔三分之一人口說是特定人
transcript.whisperx[412].start 11626.375
transcript.whisperx[412].end 11631.778
transcript.whisperx[412].text 這充滿了在我們政府的腦袋裡面是不是可以請那個人事長我們這個真的是認知還留在1970年農業社會
transcript.whisperx[413].start 11638.277
transcript.whisperx[413].end 11660.399
transcript.whisperx[413].text 我們的政府很多人員都還停留在這樣子來看高齡政策在80天台灣進入超高齡社會了是不是可以這樣子我們有一個教育訓練中心我們現在那個院長是不是在這裡是不是應該要排入這種課程讓大家有點警覺接下來第二個當然是數位平權
transcript.whisperx[414].start 11662.065
transcript.whisperx[414].end 11687.078
transcript.whisperx[414].text 現在導入AI是一件好事嘛但是正如導入AI高齡者AI你知道嗎你知道那個在疫情之後所有的東西都要數位化你要打疫苗要上網不能出門這個吃飯你要叫那個負邊塔也要會懂的AI你要看個影片在家裡很無聊不能去都要會懂的結果你知道
transcript.whisperx[415].start 11689.105
transcript.whisperx[415].end 11697.425
transcript.whisperx[415].text 連臺北市都有60%的高齡者沒有能力使用數位化我們政府都要數位化你有沒有去兼顧這一塊
transcript.whisperx[416].start 11702.413
transcript.whisperx[416].end 11721.299
transcript.whisperx[416].text 委員關心的是數位包容的部分事實上整個數化部在推動這個過程中也一直有去注意到那剛才委員關注了議題事實上總統在國慶的一個演說裡面也有特別提到關注老年人的這個福利的部分
transcript.whisperx[417].start 11723.039
transcript.whisperx[417].end 11750.73
transcript.whisperx[417].text 這個過面我們會協調相關應該要去注意啦應該注意因為講的都講很久了啦但是事實上都沒有在做啦OK落差很大我告訴你這個在2022年的資料我們的這個60歲以上的懸崖懸崖的段落的東西現在的政府都沒有發現都在做偏鄉跟兒童的數位落差成鄉除了成鄉沒有數位落差啦落差大概5%而已你這個落成
transcript.whisperx[418].start 11751.83
transcript.whisperx[418].end 11777.937
transcript.whisperx[418].text 學歷跟這種年齡的落差像懸崖上的這一點要重視我最後一個問題再來的話就是制度這一點這個是今年6月的一個台鐵有一個人去考台鐵然後就錄取了因為他60幾歲錄取了第一個禮拜就開始辦退休因為他已經年滿65歲
transcript.whisperx[419].start 11779.713
transcript.whisperx[419].end 11801.951
transcript.whisperx[419].text 哇 這個是不是一件很大的笑話我們現在公務體系的人力斷層非常的厲害那是不是包括我在勞動部勞動基準法第54條修正這個65歲以後可以登經勞資協商延長退休那很多人就跟反應就是軍公教可不可以
transcript.whisperx[420].start 11802.851
transcript.whisperx[420].end 11828.142
transcript.whisperx[420].text 軍公教的現正高齡社會來臨這個已經命令到這裡了我問了到底這是誰負責權序不負責還是誰後來我問了還是你這邊要負責了你要啟動這樣子的討論跟修法的那個很多軍人40幾歲退休然後很多公務單位公務人員50歲就開始準備帶隊這個龐大的公務大軍的這個退休制度是不是人事長
transcript.whisperx[421].start 11829.022
transcript.whisperx[421].end 11838.388
transcript.whisperx[421].text 是不是應該要到了應該要大幅檢討的時候了好 那是不是容許讓人事長在會後回覆給您好 謝謝 謝謝林委員 謝謝蘇人事長好 接下來有請葛委員盧君質詢好 謝謝主席 有請速發部雀次長有請雀次長
transcript.whisperx[422].start 11860.339
transcript.whisperx[422].end 11862.32
transcript.whisperx[422].text 網路詐騙通報查詢網網路詐騙通報查詢網網路詐騙通報查詢網網路詐騙通報查詢網
transcript.whisperx[423].start 11882.503
transcript.whisperx[423].end 11907.325
transcript.whisperx[423].text 有一些蠻嚴重的問題我先很快速的提出先幫我下一頁首先啦 這個APP下載以後幫我按一下 下一頁再下一頁APP下載以後呢它基本上是所有大家通報的詐騙連結有摘要 有縮圖 完整的呈現這變成一個詐騙廣告大急警啊怎麼會這樣呢第二個我們再看下一頁
transcript.whisperx[424].start 11908.615
transcript.whisperx[424].end 11918.184
transcript.whisperx[424].text 你把它擠緊了以後你點擊進去竟然還可以分享到底想要分享給誰啊是想要分享詐騙的內容給朋友看嗎到底怎麼回事這個設計是怎麼設計再來下一頁
transcript.whisperx[425].start 11921.072
transcript.whisperx[425].end 11948.192
transcript.whisperx[425].text 明明裡面的頁面說是摘要結果每一個詐騙內文的資訊是完全呈現連連結都有耶連連結都給它保留這到底是怎麼回事啊再來看下一頁更誇張的連那個情色詐騙的訊息所有的內容竟然也把它這已經不是摘要了這是全文我算過了7,646個字整篇文章
transcript.whisperx[426].start 11949.053
transcript.whisperx[426].end 11971.108
transcript.whisperx[426].text 在打詐通查的APP竟然可以完成的閱讀這是我們的打詐APP的目的嗎這到底怎麼回事我們今天的主題是AI我們難道沒有使用一些AI智慧的檢索或篩選來處理這些問題嗎連人力都沒有放進去更何況是AI可不可以先簡要的回答一下
transcript.whisperx[427].start 11972.521
transcript.whisperx[427].end 12000.548
transcript.whisperx[427].text 跟委員報告我們在AI的部分主要是用來判斷詐騙那委員剛剛提的這些介面的問題的確是的確我第一次看到的時候也有提出這些也有這樣的感受因為你看起來就像一個搜尋引擎那我覺得因為這個目前還在測試階段我們會接受委員的這些建議在正式推出的時候會把這些問題改善掉
transcript.whisperx[428].start 12001.348
transcript.whisperx[428].end 12016.419
transcript.whisperx[428].text AI的目的是可以幫助我們來找出模式來進行判斷這些東西都是有模式的都是有跡可循的根文報告就是說你現在看到的他的詐騙通報網裡面大概有超過一半都是AI找出來的
transcript.whisperx[429].start 12018.199
transcript.whisperx[429].end 12044.365
transcript.whisperx[429].text 找出來是一件事篩選跟呈現也是一件事這些問題AI也可以幫忙不要都推給人好那我們來講人的問題下一頁一樣還有很多潛在的法律問題非常非常的嚴重你看這個秀出來了有很多人的臉在上面這些人的照片很可能都是被盜用的你們有辦法去檢查嗎你們有去做檢查嗎在下一頁
transcript.whisperx[430].start 12045.532
transcript.whisperx[430].end 12066.238
transcript.whisperx[430].text 左邊這張圖呢是一位朱姓主播右邊這張圖裡面有位吳姓名作家這些人的照片顯然是未經同意被使用的被詐騙集團拿去用結果我們的通查平台竟然還大剌剌把它展現縮圖展現在這裡是怎麼樣是要給他們二次傷害嗎是要幫詐騙集團來宣傳嗎
transcript.whisperx[431].start 12069.379
transcript.whisperx[431].end 12096.695
transcript.whisperx[431].text 這已經不是什麼AI的問題這是根本性的問題我是嚴正懷疑這個專案裡面背後到底是不是有什麼設計上的缺失是不是有人要負責啊我跟委員報告一下就是說第一個我想當初他會選擇要全部秀出來是為了讓民眾可以明確的比較那可是如果有這樣的疑慮的話我們在我們正式推出的時候會做調整打斷你齁
transcript.whisperx[432].start 12098.757
transcript.whisperx[432].end 12119.839
transcript.whisperx[432].text 這個是不是什麼疑慮啦 測試版都不是藉口違反法律的事情政府不要帶頭做上線之前不管你是測試還是非測試APP平台就有測試的機制叫testfly我們也不是沒學過啊網站也可以用測試的機制去擋流啊你為什麼要這樣大拉的出來然後什麼東西都說是測試呢當然我們理解啦
transcript.whisperx[433].start 12120.299
transcript.whisperx[433].end 12120.9
transcript.whisperx[433].text 主席主席主席
transcript.whisperx[434].start 12135.476
transcript.whisperx[434].end 12155.755
transcript.whisperx[434].text 這個名稱不一致啊我們要做打詐最重要的就是要給人信任信賴產業嘛對吧我如果三天兩頭都換名字你會相信我嗎我三天兩頭換手機你會相信我嗎結果我們的打詐通查網的名字呢都完全不一樣這字還有點太小了我幫你唸出來我們的這個速發部的部長就上一頁
transcript.whisperx[435].start 12157.036
transcript.whisperx[435].end 12158.637
transcript.whisperx[435].text 打詐通報查詢網打詐通查網網路詐騙通報查詢網網路詐騙通報查詢網網路詐騙通報查詢網網路詐騙通報查詢網
transcript.whisperx[436].start 12176.661
transcript.whisperx[436].end 12204.709
transcript.whisperx[436].text 你們的連結也不在第一頁第一頁是內政部的我們理解SEO累積需要時間但是能不能聯繫一下內政部把我們的這個連結就放在內政部搜尋結果第一名的這個頁面上面這個很難嗎打詐不是要跨部會合作嗎所以這一點是要有待努力最後我們來看一下下一頁對不起爭取一點時間因為這真的太重要了很多人在用你們自己說有6000人以上今天說不定已經破萬了
transcript.whisperx[437].start 12205.569
transcript.whisperx[437].end 12234.721
transcript.whisperx[437].text 你們那個app的logo亂改最上面那個是前兩天的叫moda下面那個是昨天改的叫測試版moda的大小寫又不一樣你這到底是詐騙集團做的還是你外包出去還是內部的人員做的一個東西名字可以不一樣logo icon也可以不一樣這到底怎麼回事下一頁再來一些隱藏的問題我們來看一下速度反應速度太慢而且誰來把關我們看下一頁
transcript.whisperx[438].start 12237.156
transcript.whisperx[438].end 12259.794
transcript.whisperx[438].text 這個10月11號就有人上傳了監理站的偽造網頁喔是要騙民眾去刷卡的喔到現在他已經說已經通知速發布了當天就通知速發布了結果現在還沒下下來啊我們看下一頁我自己是立法委員有一個偽造的頁面我自己通報結果到現在也還在上面下一頁
transcript.whisperx[439].start 12261.116
transcript.whisperx[439].end 12289.874
transcript.whisperx[439].text 賴清德總統的官方YouTube被通報結果對你們說是疑似詐騙網頁這是怎麼回事啊我想今天都只是一個交流啦那也謝謝主席啦我想打詐通查網是一個很好的開始但是我們絕對要導入最好的科技最先進的科技我們要用科技來打詐不要只是測試不要只是做做樣子人民非常的期待我們也一定要努力好不好謝謝好謝謝各位委員謝謝次長
transcript.whisperx[440].start 12290.674
transcript.whisperx[440].end 12290.754
transcript.whisperx[440].text 委員好
transcript.whisperx[441].start 12313.243
transcript.whisperx[441].end 12340.776
transcript.whisperx[441].text 委員長好我想政府推動AI這是跟國際接軌我們也全力推動我們私自在討論也就是政府針對AI的整個相關技術跟應用那您也在6月份的時候簽訪行政院來核定提升行政院公務人員人工智慧智能實施計畫
transcript.whisperx[442].start 12343.898
transcript.whisperx[442].end 12368.488
transcript.whisperx[442].text 你的目標是什麼所有的公務人員的DNA要有人工智慧是他的標配的概念所有的公務人員的DNA要有AI的標配也就是AI導入提升公務的效能也要強化整個政府公共服務的質量 對不對
transcript.whisperx[443].start 12369.908
transcript.whisperx[443].end 12395.391
transcript.whisperx[443].text 對 那繼續我們來談論你要建立各階層對於AI的認識跟共識你也要透過種子人才的一個培訓嘛 對不對這針對於關鍵人才是非常的重要這是目前你所推動的所以本席要請教你目前的進度如何因為據本席了解你預定要辦了六場嘛 是嗎
transcript.whisperx[444].start 12399.756
transcript.whisperx[444].end 12413.905
transcript.whisperx[444].text 針對科長以上的這些種子我們今年會辦一班明年會辦五班因為每一班的課程會有三天的課程受完訓以後他還是要去考試所以今年辦一場你這六場是明年五場
transcript.whisperx[445].start 12415.125
transcript.whisperx[445].end 12434.019
transcript.whisperx[445].text 對 另外這個還要搭配樹花部因為我們辦的是針對業務人員的科長以上樹花部辦的是針對諮詢人員我們兩個機關是有在合作你在7月份的時候你沒有報告你在7月份的時候你辦了高階人才AI的共識營內部的訓練成員是以部長為主是嗎
transcript.whisperx[446].start 12438.257
transcript.whisperx[446].end 12439.778
transcript.whisperx[446].text 各層級大家陸續那請教在你的7月份辦的高階人才的以部長為主的共事營的主軸是什麼
transcript.whisperx[447].start 12457.113
transcript.whisperx[447].end 12475.062
transcript.whisperx[447].text 大概我們有請幾個比較有名的講者來講整個國家導入AI的一個機會跟它的挑戰這些相關的然後在應用實務上要導入可能會面臨這個是在7月份的時候部長級的主軸嗎?部長、次長還有三級機關首長基本上就是以這個主軸
transcript.whisperx[448].start 12483.746
transcript.whisperx[448].end 12508.972
transcript.whisperx[448].text 所以這個也就是各階層大家一起來訓練那麼同時我們在談到數位部跟你是同步的來合作所以因此你在公務機關運用AI的工作坊以及公務機關AI應用的成果競賽這是你們目的要做的也就是互相的經驗交流跟學習是不是如此
transcript.whisperx[449].start 12510.573
transcript.whisperx[449].end 12524.549
transcript.whisperx[449].text 提到的工作坊跟競賽是速化部主辦我們是協作你們協作是以他為主嗎以他為主大家互相合作是所以在這樣的情況下你的目的要做什麼
transcript.whisperx[450].start 12525.799
transcript.whisperx[450].end 12546.849
transcript.whisperx[450].text 我覺得這一個很重要的今年以今年年底要辦的這個工作坊主要就是讓以有些中央跟地方那已經導入人工智慧的就是請他們來demo他們從故鄉為什麼要去導入人工智慧導入的人工智慧之前before跟after來分享
transcript.whisperx[451].start 12547.529
transcript.whisperx[451].end 12549.33
transcript.whisperx[451].text 所以人事長你剛才所說的也就是希望在整個AI的運用能夠增加在我們行政
transcript.whisperx[452].start 12569.74
transcript.whisperx[452].end 12571.101
transcript.whisperx[452].text 今年年底他要提出AI的應用執意來作為公務機關帶來哪些的幫助
transcript.whisperx[453].start 12593.012
transcript.whisperx[453].end 12594.554
transcript.whisperx[453].text 在年底速發部要釋出AI應用指引
transcript.whisperx[454].start 12609.144
transcript.whisperx[454].end 12625.836
transcript.whisperx[454].text 你不知道這個事情啊那你怎麼跟他合作呢我知道這個問題你知道這個問題他什麼時候要公布你不知道我不曉得什麼時候他可以公布那剛剛他主辦工作坊成果發表他主辦你們要交流那你連數位部
transcript.whisperx[455].start 12626.656
transcript.whisperx[455].end 12652.299
transcript.whisperx[455].text 他年底要釋出的這個AI應用指引你都不知道你是人事長你的體系是牽扯了所有的行政部門那你都不知道他的KPI在哪裡那你要依照什麼指引你知不知道他什麼時候他要出來所以政府的橫向聯繫非常重要他主辦你協辦你連這個都不知道那怎麼辦
transcript.whisperx[456].start 12653.788
transcript.whisperx[456].end 12682.037
transcript.whisperx[456].text 我們該主辦該協辦的還有一個你連這個都不知道最重要的AI的應用指引這一個指引非常的重要什麼時候要訂出來他年底第一版就會先出來你因著我的話講我也給你認同我告訴你難怪你會笑不要笑年底他會釋出AI的應用指引那最重要本事要告訴你也就是這個指引你知道他的方向是什麼嗎
transcript.whisperx[457].start 12691.292
transcript.whisperx[457].end 12701.637
transcript.whisperx[457].text 這也是我們大家都清楚的而且世界各國也在這麼做本席要告訴你一件事情你有沒有加入你的AI風險管理
transcript.whisperx[458].start 12704.744
transcript.whisperx[458].end 12705.745
transcript.whisperx[458].text 這是一定要的部分
transcript.whisperx[459].start 12733.021
transcript.whisperx[459].end 12754.46
transcript.whisperx[459].text 你有沒有講 不是一定要 你有沒有告訴訴法部不是誰清楚每一個人都要有責任對不對 好 馬上請問你有沒有告訴訴法部 因為你跟他合作的你有沒有告訴他指引必須要有風險控管管理你有跟他談過什麼
transcript.whisperx[460].start 12757.774
transcript.whisperx[460].end 12778.208
transcript.whisperx[460].text 你跟著本席的話語來講OK我也就是勉勵你務必這個風險管理非常的重要因為現在24小時7天也就是全天候在AI的導入所以因此本席還要再給你一個功課因為這個指引下來分布各個部門那到時候風險控管出了問題誰負責
transcript.whisperx[461].start 12784.966
transcript.whisperx[461].end 12789.787
transcript.whisperx[461].text 請教讓他回答就好誰負責人事長這個問題既然我們提出這個指引必須要有風險管理那有問題誰負責是你人事長負責嗎還是各部門各個部位他引用的話他自己要負責因為該賴已經講清楚了我們該賴講清楚我們就是要理清楚好風險控告很重要謝謝好
transcript.whisperx[462].start 12813.39
transcript.whisperx[462].end 12813.73
transcript.whisperx[462].text 人事長跟崔次長
transcript.whisperx[463].start 12833.527
transcript.whisperx[463].end 12841.171
transcript.whisperx[463].text 主要對於這個人工智慧的部分呢我們還是主要停留在就是上課嘛讓公務員上課主要還是在這個部分
transcript.whisperx[464].start 12859.499
transcript.whisperx[464].end 12883.406
transcript.whisperx[464].text 我想提一個東西就是其實我看了一下一些之前的資料就是我們政府尤其是之前賴總統先前在當行政院院長的時候他其實希望說把台灣發展成一個智慧的國家所以我們當時有一個政府的計畫就是前瞻基礎建設裡面的數位建設還有一個就是
transcript.whisperx[465].start 12884.646
transcript.whisperx[465].end 12910.165
transcript.whisperx[465].text 一百零六年到一百零九年花五十億在建構國家級的AI的雲端服務跟高速運算平台那還有一個就是一百零六年到一百一十年他投入五十億是建立四個AI的創新研究中心但是呢到現在已經這麼多年過去了我們現在看到公部門我國公部門現在使用人工智慧工具的
transcript.whisperx[466].start 12911.005
transcript.whisperx[466].end 12924.934
transcript.whisperx[466].text 事實是不多嘛那當然我知道這個是行政院的事情但是人總這邊你一直在弄很多的這個課程那我有一個問題想要請教請問一下你這課程是在教什麼東西啊
transcript.whisperx[467].start 12925.99
transcript.whisperx[467].end 12940.401
transcript.whisperx[467].text 因為我個人的淺見通常都是我自己碩士的時候我寫的論文就是寫人工智慧的部分它主要分成兩大區塊一個是Coding的部分另外一個當然是應用
transcript.whisperx[468].start 12941.061
transcript.whisperx[468].end 12963.406
transcript.whisperx[468].text 那我想對於公務員我們不可能是教他從程式怎麼寫開始教起對不對我們對於公務員的在職的教育一定是教育他你的這個公務員的領域裡面你需要什麼東西然後我再教導你那如果說這個工具相關的工具還沒有出來之前那這個教育課程的內容主要是什麼我想請教一下
transcript.whisperx[469].start 12966.702
transcript.whisperx[469].end 12982.981
transcript.whisperx[469].text 張偉的這個問題我想我們課程大概會有AI的基礎核心概念應用生成式AI還有導入AI專案做法還有了解人工智慧的影響還有避免AI應用的風險這剛才張偉你提到的大概有幾個部分
transcript.whisperx[470].start 12984.042
transcript.whisperx[470].end 13005.218
transcript.whisperx[470].text 上課數位學習實體課程另外還有一個很重要的我們就實作的課程我們事實上開種子班本身就是重點就是在實作第一個這個部分是實作因為你都要去上課你沒有在實際operation你學會的量也回去也不會去進嘛第二就是我們會帶他去
transcript.whisperx[471].start 13005.818
transcript.whisperx[471].end 13033.025
transcript.whisperx[471].text 看一些實際上已經導入人工智慧去現場看去跟那些人去交流他這樣印象會比較深還會更好事實上我們是採一個複合式針對不同階層我們採取不同的訓練的一個方式對那我的意思是這樣就是說我們不用就是我們今天講東西我們不要打高空不要講華而不實的東西你幾個小時或十幾二十個小時你要教導一個人從AI
transcript.whisperx[472].start 13034.165
transcript.whisperx[472].end 13047.713
transcript.whisperx[472].text 你要跟他講其實是聽不懂的啦所以最好的方式當然就是說工具出來的時候之後我們來教他怎麼樣去運用他那個部門所需要的那個工具嘛所以我當然一直覺得說我們已經這麼多年了就從那個賴總統還在當院長時代到現在
transcript.whisperx[473].start 13052.276
transcript.whisperx[473].end 13080.447
transcript.whisperx[473].text 他主張的這個東西這麼多年了我們也花了我剛剛有提到了花了一百一百六十億下去了可是到現在還是人總在上課那上課又只是教導他這個的內容是什麼然後你說實際的運用或教他去操作可是他的部門又沒有因應相關因應的工具出來所以我有時候搞不太懂啊因為我以前在我以前當公務員的時候我們一套系統出來那
transcript.whisperx[474].start 13082.248
transcript.whisperx[474].end 13103.167
transcript.whisperx[474].text 機關要我們去學習這套系統還會開一些相關課程教我怎麼去操作但是我現在知道的是大部分的公務部門他沒有類似的東西出來沒有類似的工具出來卻要這些公務員一直去上課那上了這個課會不會變成說對他的工作沒有太多的幫助那就只是消耗預算第二個就是說
transcript.whisperx[475].start 13104.068
transcript.whisperx[475].end 13125.217
transcript.whisperx[475].text 我們都當過公務員嘛那公務員在面對這個在職教育的時候他甚至有時候你管考也不嚴謹像遠端上課有的人就是連上線之後人就跑掉那同事之間也會大家也會口口相傳你要怎麼點進去然後人家就不知道你根本沒在看我想這個我們都不騙人嘛我們都很清楚嘛所以這一塊
transcript.whisperx[476].start 13126.397
transcript.whisperx[476].end 13155.445
transcript.whisperx[476].text 我們現在花了那麼多錢花了這麼多年然後建制到現在還在上課那這一塊可能你們自己要注意一下包括課程的內容我跟委員報告兩點第一點就是過去這五六年來很多中央機關跟地方政府都有在導入人工智慧一開始他們導入的是AI這兩年大家慢慢轉成CHAP GPT就是深層式的深層式的人工智慧事實上
transcript.whisperx[477].start 13157.246
transcript.whisperx[477].end 13171.261
transcript.whisperx[477].text 這兩個事實上是有一個程度落差因為你導入的類似ChangeGPT這一種你必須要考慮到算力的問題考慮到資料的問題還有考慮到你的演送法的問題那過去這幾年我知道的
transcript.whisperx[478].start 13171.721
transcript.whisperx[478].end 13191.994
transcript.whisperx[478].text 像桃園還有台北市、新北都有一些人工智慧導入不管在智慧交通、智慧醫療還有環境部他們也有導入一些空氣盒子事實上過去這幾年都有一些practice我覺得在這樣的一個基礎底下我們現在是坦白講
transcript.whisperx[479].start 13192.774
transcript.whisperx[479].end 13219.94
transcript.whisperx[479].text 是從AI再進化到所謂的善用深層式人工智慧來加速政府的一個流程再造裡面一個很重要的剛才有委員在關心的兩個問題嘛一個是為民服務品質的提高一個是行政效力可是這裡面最核心的部分應該是一個流程改造你用新的東西進來你流程如果不改的話整個效果是會
transcript.whisperx[480].start 13221.54
transcript.whisperx[480].end 13240.466
transcript.whisperx[480].text 人事長這個應該最清楚的說就是效率才是我們導入人工智慧最重要的一個核心那也要麻煩次長這邊就這些部分因為次長我們自己去看了一下那個新加坡他們所提出來的資料因為我們看了一下那個新加坡官方他有一個資料就是他有一個那個
transcript.whisperx[481].start 13241.186
transcript.whisperx[481].end 13255.022
transcript.whisperx[481].text 佩爾專案主要是把那openAI跟那個chatGPT融進他們的那個word系統裡面去減輕公務員的寫作研究的一些負擔我想說因為我看他們的那個
transcript.whisperx[482].start 13256.603
transcript.whisperx[482].end 13282.238
transcript.whisperx[482].text 報告裡面說他們的政府有85%的政府機關都有導入人工智慧的系統在協助公務員的辦這個是新加坡台北辦事處網頁裡面的資料我想說我們台灣在硬體上面竟然可以當一個世界領頭羊那在這個軟體的設計在這個AI的運用上面是不是也要加強一下這再麻煩次長這邊也能做到
transcript.whisperx[483].start 13284.218
transcript.whisperx[483].end 13308.606
transcript.whisperx[483].text 有幾個小問題就請教跟人事長這邊請教一下人事長你知道我們現在公部門有多少勞工公部門好沒關係喔那這個你再問一下你的幕僚好了那我們今年那個勞基法修正之後65歲強制退休這個我們現在改成得由勞僱雙方去協商之後延後對不對
transcript.whisperx[484].start 13311.082
transcript.whisperx[484].end 13312.564
transcript.whisperx[484].text 公有管理要點第21條適用勞基法的修正
transcript.whisperx[485].start 13322.722
transcript.whisperx[485].end 13324.203
transcript.whisperx[485].text 因為各機關裡面的勞工其實是非常多蠻多的啦
transcript.whisperx[486].start 13348.833
transcript.whisperx[486].end 13366.744
transcript.whisperx[486].text 現在他們各自向自己所屬的機關去詢問這個東西說可不可以適用這次勞基法修正所有的機關都推來推去但是因為關係到人這麼多是不是麻煩你們要趕快處理更何況這個要點是你們內部修正就可以嘛這應該很簡單啊
transcript.whisperx[487].start 13368.985
transcript.whisperx[487].end 13390.492
transcript.whisperx[487].text 如果說是不是可以盡快把這個事情釐清否則就會變成說他的老闆如果是一般民間企業那我就適用這個可以雙方再協商如果我的老闆是公部門那我就不適用這個是很奇怪的好不好這麻煩人事長你這個部分能夠兩個月內能夠告訴我們一下你們的那個修法
transcript.whisperx[488].start 13391.212
transcript.whisperx[488].end 13396.018
transcript.whisperx[488].text 公務人員協會法協會法不是人總所管的但是人總必須公務員的勤修及福利事項是人總在管的
transcript.whisperx[489].start 13413.21
transcript.whisperx[489].end 13428.506
transcript.whisperx[489].text 這次我看到一個特種警消成立協會的門檻他這次草案是從800人降到300人是有降低他們成立這個協會的門檻有降低但是現在有一個問題就是說
transcript.whisperx[490].start 13433.371
transcript.whisperx[490].end 13447.683
transcript.whisperx[490].text 原來的法案跟未來的草案其實都沒有提到都沒有同意說將來這個協會可以跟公部門有個團體協約出來那我想我看到前序不好意思再給我一分鐘
transcript.whisperx[491].start 13448.684
transcript.whisperx[491].end 13477.139
transcript.whisperx[491].text 全序部的報告美國英國跟法國都有承認這些團體協約的權利就是這個協約權的結果是能夠有效拘束政府機關的否則這些團體你不讓他成立工會你也不敢讓他罷工結果他今天有任何的權利想要爭取像消防員的消防設備有問題或什麼結果他今天講沒有人理他們到現在還在抗爭每年死了幾位消防員
transcript.whisperx[492].start 13477.619
transcript.whisperx[492].end 13477.799
transcript.whisperx[492].text 主席主席
transcript.whisperx[493].start 13499.087
transcript.whisperx[493].end 13499.287
transcript.whisperx[493].text 人事長可以嗎?
transcript.whisperx[494].start 13520.762
transcript.whisperx[494].end 13533.125
transcript.whisperx[494].text 好,那就這樣做,謝謝那是,好,那謝謝,好,謝謝兩位謝謝吳釗偉,謝謝人事長,謝謝次長接下來有請高基因素美委員,高基因素美委員,高基因素美委員不在有請陳委員培育質詢謝謝主席,那有請人事長,謝謝請蘇人事長
transcript.whisperx[495].start 13548.341
transcript.whisperx[495].end 13568.518
transcript.whisperx[495].text 委員好好 人事長無案時間有限我們就快速切入我相信我在聽了今天早上非常多委員對您的質詢你的回答我可以聽得出來你在AI這塊一定花足了時間做足了功課我們就直接切入重點你之前在一個論壇上你提到導入AI是為了改善公務員人力成本並且優化工作流程我非常認同
transcript.whisperx[496].start 13569.258
transcript.whisperx[496].end 13584.823
transcript.whisperx[496].text 我自己有非常多朋友也是公務員其實在公務員這個位置上還是可以自我成就一些然後甚至有一些夢想的可能性所以我認為導入AI對公務機關日常繁瑣而且一直重複性高的工作絕對是好事可是我們來看一下剛剛有非常多委員問了這個是我們現在找到有關於有經濟部或者是航港局開的一些課程
transcript.whisperx[497].start 13590.365
transcript.whisperx[497].end 13609.214
transcript.whisperx[497].text 那這些課程看起來呢你現在在研究對不對沒關係你們開了非常非常多課程剛剛委員問了那甚至呢在我們教委員會國科會也提出人工智慧基本法AI基本法的草案也許在年底就會往下進度但是在這個草案裡面我們看到他提到一個最重要的事情就是
transcript.whisperx[498].start 13609.614
transcript.whisperx[498].end 13625.481
transcript.whisperx[498].text 人工智慧的技術雖然會帶來社會跟經濟的效益但同時也可能對個人跟社會帶來新的風險跟影響其實剛剛有非常多委員關心這一題但我不會叫你回答有什麼風險跟影響因為如果你回答出來你就可以得諾貝爾獎了
transcript.whisperx[499].start 13627.233
transcript.whisperx[499].end 13648.451
transcript.whisperx[499].text 也就是說在發展AI這條路上其實有太多不可測跟大家根本不知道會發生什麼事情的情況下對不對我們只能做一些我們所知道的預防但是對於更多科技發展的未來例如說其實沒有人知道AI會在這兩年突然大爆炸在30年前其實就有人工智慧但是因為算力的關係所以我想要問對於這個不可知的風險跟影響人事長你自己怎麼看
transcript.whisperx[500].start 13653.013
transcript.whisperx[500].end 13680.862
transcript.whisperx[500].text 我跟委員報告大概之前賴總統當行政院院長的時候就已經找我們去談人工智慧導入以後可能產生的風險跟衝擊就是5、6年前我們已經在討論那隨著整個人工智慧的一個演化因為它的算力算力的提升對甚至未來還有量子電腦的它造成的一個衝擊事實上現在相關部會事實上都有在評估包含
transcript.whisperx[501].start 13682.643
transcript.whisperx[501].end 13702.997
transcript.whisperx[501].text 國科會的基本法還有事務部訂的一個應用指引的該來這些都會把它列進來好沒關係我時間有限意思就是說其實你們早在幾年前就開始評估並且如果按照這個說法我相信你們手邊應該有一些資料甚至可能已經有一些機關在應用上開始出現一些可能性的問題我說的是可能性的問題
transcript.whisperx[502].start 13705.379
transcript.whisperx[502].end 13730.529
transcript.whisperx[502].text 假設我今天讓我的同仁問一下卻GBT說我是一個公務人員我想要了解政府機關導入AI提升效能這個是問GBT for all我們來看一下他告訴我們可以幫忙處理日常行政可以資源決策可以優化公共服務GBT還告訴我們可以協助監管還有教育跟培訓但是GBT同時也提醒我們為政府機關帶來高效的運作模式可試驗面臨隱私數據安全我就直接提出來第一個
transcript.whisperx[503].start 13732.23
transcript.whisperx[503].end 13754.47
transcript.whisperx[503].text 目前我們知道台灣有自己在做泰德但是各個部會現在是開始用泰德在做一些事情嗎還是其實是用拉瑪帶回自己的每一個部會自己做開發還是透過標案請外面廠商做一些事情我覺得我時間有限我不勞煩人事長在這邊回答但是我覺得人事長你必須要協同各個部會去理解他們目前在做的事情到底是走到哪一個階段
transcript.whisperx[504].start 13755.191
transcript.whisperx[504].end 13777.809
transcript.whisperx[504].text 再來哪些資料可以被處理或是可以怎麼被處理還有每一個行政機關他們對於所謂非機敏資料的定義我們目前聽到為止好像沒有太多共同的討論但是我覺得這個是人民會在意的事情人民當然相信政府導入AI是好的公務人員也相信導入AI是好的可是非機敏資料我身為一個就診的人
transcript.whisperx[505].start 13778.149
transcript.whisperx[505].end 13781.052
transcript.whisperx[505].text 關於後續的配套措施,我們如何查錯?如何精整作業?如何確保資料沒有因為外流或誤用導致一些風險?如何確保資料沒有因為公務需求的使用?
transcript.whisperx[506].start 13801.889
transcript.whisperx[506].end 13802.149
transcript.whisperx[506].text 人事長 簡單回應一下
transcript.whisperx[507].start 13828.129
transcript.whisperx[507].end 13855.758
transcript.whisperx[507].text 我想這個部分我們會跟書畫部一起來討論事實上以我的理解這個過程中很重要的是transparency我的資料在政府機關的流通被哪些機關什麼時候用到當事人一定要有能夠在第一個時間就知道等一下 任市長你這句話有點危險我先跟你說你說當事人要第一時間知道可是光是今天交資料出來這麼多部會他們所有的資料都能夠被每一個
transcript.whisperx[508].start 13857.108
transcript.whisperx[508].end 13858.228
transcript.whisperx[508].text 人事長你剛講這個我都替你擔心我很開心聽到你說
transcript.whisperx[509].start 13878.115
transcript.whisperx[509].end 13890.564
transcript.whisperx[509].text 我要被授權或是所有行政機關要來找我這個人授權我當然聽到是好事可是就真的就行政機關行政的角度真的可行嗎其實剛剛張偉在問的時候我有聽張偉對於資料也非常的在意但是人事長你剛剛這樣講出來我真的害怕捏我們真的要每一個部會去發動授權這件事情嗎我跟您報告主席不好意思又幾分鐘就好我們泰德在座我們台灣自己的泰德在做資料訓練的時候以我來自的出版業告訴我
transcript.whisperx[510].start 13907.216
transcript.whisperx[510].end 13933.621
transcript.whisperx[510].text 他也得去叫出版業授權給他們可是不付錢欸那但是我們還有付了一千萬給中央社去授權那個資料也就是說資料有沒有價格這件事情資料是不是有價這件事情就很多商業跟非商業討論我們都可以吵得半天更何況是一般人民的資料所以我今天不是要來argue說不能用這個資料而是我們在用這個資料的時候我們如何定定跟人民溝通的那個管道把這個論述講清楚不然我相信所有的人權團體站出來我們會被K死欸
transcript.whisperx[511].start 13937.864
transcript.whisperx[511].end 13938.545
transcript.whisperx[511].text 好,謝謝主席,謝謝人事長,謝謝
transcript.whisperx[512].start 13946.153
transcript.whisperx[512].end 13967.522
transcript.whisperx[512].text 蘇慶權委員.蘇慶權委員.蘇慶元委員.蔡瑜委員.蔡瑜蔡瑜委員.洪孟凱委員.洪孟凱.洪孟凱委員.葉元智委員.葉元智.葉元智委員.登記發言委員.均已發言完畢.詢答結束.委員質詢時.要求提供相關資料或以書面答覆者.請相關機關競速送交.個別委員及本會
transcript.whisperx[513].start 13968.763
transcript.whisperx[513].end 13977.964
transcript.whisperx[513].text 那麼委員謝榮介所提書面質詢列入紀錄刊登公報並請相關機關以書面答覆本次會議到此結束現在散會謝謝大家
會議時間 2024-10-14T09:00:00+08:00
會議名稱 立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。)
委員發言時間 08:30:45 - 12:25:00
IVOD_ID 16167
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16167
日期 2024-10-14
會議資料.會議代碼 委員會-11-2-36-4
會議資料.屆 11
會議資料.會期 2
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第4次全體委員會議
影片種類 Full
開始時間 2024-10-14T08:30:45+08:00
結束時間 2024-10-14T12:25:00+08:00
支援功能[0] ai-transcript