iVOD / 16165

Field Value
影片長度 20102
委員名稱 完整會議
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685b2f07a4e68a7a9854d503f9c4523e571c04c64b87e30630a37e2af3f78ac1b645ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_12
transcript.pyannote[0].start 351.48659375
transcript.pyannote[0].end 352.75221875
transcript.pyannote[1].speaker SPEAKER_31
transcript.pyannote[1].start 780.17909375
transcript.pyannote[1].end 780.56721875
transcript.pyannote[2].speaker SPEAKER_31
transcript.pyannote[2].start 811.19534375
transcript.pyannote[2].end 812.39346875
transcript.pyannote[3].speaker SPEAKER_31
transcript.pyannote[3].start 817.21971875
transcript.pyannote[3].end 818.45159375
transcript.pyannote[4].speaker SPEAKER_31
transcript.pyannote[4].start 1266.34784375
transcript.pyannote[4].end 1266.85409375
transcript.pyannote[5].speaker SPEAKER_31
transcript.pyannote[5].start 1509.11159375
transcript.pyannote[5].end 1509.56721875
transcript.pyannote[6].speaker SPEAKER_31
transcript.pyannote[6].start 1532.65221875
transcript.pyannote[6].end 1533.86721875
transcript.pyannote[7].speaker SPEAKER_30
transcript.pyannote[7].start 1853.17596875
transcript.pyannote[7].end 1858.96409375
transcript.pyannote[8].speaker SPEAKER_26
transcript.pyannote[8].start 1858.96409375
transcript.pyannote[8].end 1905.94409375
transcript.pyannote[9].speaker SPEAKER_26
transcript.pyannote[9].start 1906.14659375
transcript.pyannote[9].end 1982.05034375
transcript.pyannote[10].speaker SPEAKER_30
transcript.pyannote[10].start 1983.94034375
transcript.pyannote[10].end 2003.59971875
transcript.pyannote[11].speaker SPEAKER_30
transcript.pyannote[11].start 2004.17346875
transcript.pyannote[11].end 2005.45596875
transcript.pyannote[12].speaker SPEAKER_30
transcript.pyannote[12].start 2007.36284375
transcript.pyannote[12].end 2008.84784375
transcript.pyannote[13].speaker SPEAKER_30
transcript.pyannote[13].start 2010.01221875
transcript.pyannote[13].end 2011.42971875
transcript.pyannote[14].speaker SPEAKER_30
transcript.pyannote[14].start 2012.81346875
transcript.pyannote[14].end 2014.33221875
transcript.pyannote[15].speaker SPEAKER_30
transcript.pyannote[15].start 2015.81721875
transcript.pyannote[15].end 2016.17159375
transcript.pyannote[16].speaker SPEAKER_30
transcript.pyannote[16].start 2016.69471875
transcript.pyannote[16].end 2020.96409375
transcript.pyannote[17].speaker SPEAKER_30
transcript.pyannote[17].start 2025.06471875
transcript.pyannote[17].end 2028.11909375
transcript.pyannote[18].speaker SPEAKER_30
transcript.pyannote[18].start 2028.33846875
transcript.pyannote[18].end 2031.35909375
transcript.pyannote[19].speaker SPEAKER_30
transcript.pyannote[19].start 2033.06346875
transcript.pyannote[19].end 2037.50159375
transcript.pyannote[20].speaker SPEAKER_30
transcript.pyannote[20].start 2038.41284375
transcript.pyannote[20].end 2041.61909375
transcript.pyannote[21].speaker SPEAKER_30
transcript.pyannote[21].start 2042.22659375
transcript.pyannote[21].end 2044.65659375
transcript.pyannote[22].speaker SPEAKER_30
transcript.pyannote[22].start 2045.87159375
transcript.pyannote[22].end 2048.40284375
transcript.pyannote[23].speaker SPEAKER_30
transcript.pyannote[23].start 2049.80346875
transcript.pyannote[23].end 2052.26721875
transcript.pyannote[24].speaker SPEAKER_30
transcript.pyannote[24].start 2053.54971875
transcript.pyannote[24].end 2056.40159375
transcript.pyannote[25].speaker SPEAKER_30
transcript.pyannote[25].start 2057.48159375
transcript.pyannote[25].end 2060.29971875
transcript.pyannote[26].speaker SPEAKER_30
transcript.pyannote[26].start 2061.21096875
transcript.pyannote[26].end 2064.24846875
transcript.pyannote[27].speaker SPEAKER_30
transcript.pyannote[27].start 2065.24409375
transcript.pyannote[27].end 2068.23096875
transcript.pyannote[28].speaker SPEAKER_30
transcript.pyannote[28].start 2069.04096875
transcript.pyannote[28].end 2071.89284375
transcript.pyannote[29].speaker SPEAKER_30
transcript.pyannote[29].start 2072.88846875
transcript.pyannote[29].end 2076.09471875
transcript.pyannote[30].speaker SPEAKER_30
transcript.pyannote[30].start 2077.20846875
transcript.pyannote[30].end 2079.85784375
transcript.pyannote[31].speaker SPEAKER_30
transcript.pyannote[31].start 2080.65096875
transcript.pyannote[31].end 2081.91659375
transcript.pyannote[32].speaker SPEAKER_30
transcript.pyannote[32].start 2081.95034375
transcript.pyannote[32].end 2081.96721875
transcript.pyannote[33].speaker SPEAKER_30
transcript.pyannote[33].start 2082.18659375
transcript.pyannote[33].end 2083.73909375
transcript.pyannote[34].speaker SPEAKER_30
transcript.pyannote[34].start 2085.30846875
transcript.pyannote[34].end 2088.66659375
transcript.pyannote[35].speaker SPEAKER_30
transcript.pyannote[35].start 2089.96596875
transcript.pyannote[35].end 2092.90221875
transcript.pyannote[36].speaker SPEAKER_30
transcript.pyannote[36].start 2094.26909375
transcript.pyannote[36].end 2094.57284375
transcript.pyannote[37].speaker SPEAKER_30
transcript.pyannote[37].start 2095.38284375
transcript.pyannote[37].end 2096.02409375
transcript.pyannote[38].speaker SPEAKER_30
transcript.pyannote[38].start 2096.07471875
transcript.pyannote[38].end 2099.41596875
transcript.pyannote[39].speaker SPEAKER_23
transcript.pyannote[39].start 2106.11534375
transcript.pyannote[39].end 2409.86534375
transcript.pyannote[40].speaker SPEAKER_23
transcript.pyannote[40].start 2410.48971875
transcript.pyannote[40].end 2609.19284375
transcript.pyannote[41].speaker SPEAKER_30
transcript.pyannote[41].start 2610.74534375
transcript.pyannote[41].end 2638.79159375
transcript.pyannote[42].speaker SPEAKER_30
transcript.pyannote[42].start 2639.06159375
transcript.pyannote[42].end 2641.05284375
transcript.pyannote[43].speaker SPEAKER_30
transcript.pyannote[43].start 2641.20471875
transcript.pyannote[43].end 2645.52471875
transcript.pyannote[44].speaker SPEAKER_30
transcript.pyannote[44].start 2650.57034375
transcript.pyannote[44].end 2650.63784375
transcript.pyannote[45].speaker SPEAKER_22
transcript.pyannote[45].start 2650.63784375
transcript.pyannote[45].end 2652.19034375
transcript.pyannote[46].speaker SPEAKER_22
transcript.pyannote[46].start 2652.40971875
transcript.pyannote[46].end 2653.27034375
transcript.pyannote[47].speaker SPEAKER_13
transcript.pyannote[47].start 2657.50596875
transcript.pyannote[47].end 2658.46784375
transcript.pyannote[48].speaker SPEAKER_22
transcript.pyannote[48].start 2657.99534375
transcript.pyannote[48].end 2677.23284375
transcript.pyannote[49].speaker SPEAKER_22
transcript.pyannote[49].start 2677.58721875
transcript.pyannote[49].end 2692.65659375
transcript.pyannote[50].speaker SPEAKER_23
transcript.pyannote[50].start 2693.19659375
transcript.pyannote[50].end 2719.52159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 2707.50659375
transcript.pyannote[51].end 2707.86096875
transcript.pyannote[52].speaker SPEAKER_22
transcript.pyannote[52].start 2718.28971875
transcript.pyannote[52].end 2742.74159375
transcript.pyannote[53].speaker SPEAKER_31
transcript.pyannote[53].start 2742.74159375
transcript.pyannote[53].end 2742.97784375
transcript.pyannote[54].speaker SPEAKER_21
transcript.pyannote[54].start 2742.97784375
transcript.pyannote[54].end 2743.18034375
transcript.pyannote[55].speaker SPEAKER_22
transcript.pyannote[55].start 2743.18034375
transcript.pyannote[55].end 2778.16221875
transcript.pyannote[56].speaker SPEAKER_21
transcript.pyannote[56].start 2743.19721875
transcript.pyannote[56].end 2743.38284375
transcript.pyannote[57].speaker SPEAKER_22
transcript.pyannote[57].start 2778.34784375
transcript.pyannote[57].end 2809.06034375
transcript.pyannote[58].speaker SPEAKER_22
transcript.pyannote[58].start 2809.44846875
transcript.pyannote[58].end 2817.27846875
transcript.pyannote[59].speaker SPEAKER_23
transcript.pyannote[59].start 2817.39659375
transcript.pyannote[59].end 2839.18221875
transcript.pyannote[60].speaker SPEAKER_22
transcript.pyannote[60].start 2838.84471875
transcript.pyannote[60].end 2841.47721875
transcript.pyannote[61].speaker SPEAKER_23
transcript.pyannote[61].start 2841.03846875
transcript.pyannote[61].end 2841.12284375
transcript.pyannote[62].speaker SPEAKER_23
transcript.pyannote[62].start 2841.13971875
transcript.pyannote[62].end 2842.03409375
transcript.pyannote[63].speaker SPEAKER_22
transcript.pyannote[63].start 2841.67971875
transcript.pyannote[63].end 2849.52659375
transcript.pyannote[64].speaker SPEAKER_22
transcript.pyannote[64].start 2849.88096875
transcript.pyannote[64].end 2866.95846875
transcript.pyannote[65].speaker SPEAKER_22
transcript.pyannote[65].start 2867.43096875
transcript.pyannote[65].end 2886.93846875
transcript.pyannote[66].speaker SPEAKER_22
transcript.pyannote[66].start 2887.17471875
transcript.pyannote[66].end 2913.24659375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 2908.23471875
transcript.pyannote[67].end 2909.11221875
transcript.pyannote[68].speaker SPEAKER_22
transcript.pyannote[68].start 2913.38159375
transcript.pyannote[68].end 2929.91909375
transcript.pyannote[69].speaker SPEAKER_31
transcript.pyannote[69].start 2923.05096875
transcript.pyannote[69].end 2923.28721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 2923.28721875
transcript.pyannote[70].end 2923.30409375
transcript.pyannote[71].speaker SPEAKER_22
transcript.pyannote[71].start 2930.25659375
transcript.pyannote[71].end 2931.91034375
transcript.pyannote[72].speaker SPEAKER_22
transcript.pyannote[72].start 2932.31534375
transcript.pyannote[72].end 2947.92471875
transcript.pyannote[73].speaker SPEAKER_22
transcript.pyannote[73].start 2948.36346875
transcript.pyannote[73].end 2955.65346875
transcript.pyannote[74].speaker SPEAKER_22
transcript.pyannote[74].start 2955.80534375
transcript.pyannote[74].end 2962.60596875
transcript.pyannote[75].speaker SPEAKER_23
transcript.pyannote[75].start 2962.18409375
transcript.pyannote[75].end 2989.63971875
transcript.pyannote[76].speaker SPEAKER_22
transcript.pyannote[76].start 2968.47846875
transcript.pyannote[76].end 2968.98471875
transcript.pyannote[77].speaker SPEAKER_29
transcript.pyannote[77].start 2968.98471875
transcript.pyannote[77].end 2969.11971875
transcript.pyannote[78].speaker SPEAKER_08
transcript.pyannote[78].start 2978.92409375
transcript.pyannote[78].end 2978.97471875
transcript.pyannote[79].speaker SPEAKER_22
transcript.pyannote[79].start 2987.71596875
transcript.pyannote[79].end 2988.08721875
transcript.pyannote[80].speaker SPEAKER_22
transcript.pyannote[80].start 2989.30221875
transcript.pyannote[80].end 3004.91159375
transcript.pyannote[81].speaker SPEAKER_23
transcript.pyannote[81].start 2995.86659375
transcript.pyannote[81].end 2995.96784375
transcript.pyannote[82].speaker SPEAKER_22
transcript.pyannote[82].start 3005.40096875
transcript.pyannote[82].end 3030.40971875
transcript.pyannote[83].speaker SPEAKER_23
transcript.pyannote[83].start 3030.40971875
transcript.pyannote[83].end 3031.96221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 3031.96221875
transcript.pyannote[84].end 3076.96784375
transcript.pyannote[85].speaker SPEAKER_22
transcript.pyannote[85].start 3055.63784375
transcript.pyannote[85].end 3056.70096875
transcript.pyannote[86].speaker SPEAKER_22
transcript.pyannote[86].start 3058.81034375
transcript.pyannote[86].end 3061.05471875
transcript.pyannote[87].speaker SPEAKER_22
transcript.pyannote[87].start 3073.59284375
transcript.pyannote[87].end 3074.03159375
transcript.pyannote[88].speaker SPEAKER_22
transcript.pyannote[88].start 3074.06534375
transcript.pyannote[88].end 3074.08221875
transcript.pyannote[89].speaker SPEAKER_22
transcript.pyannote[89].start 3074.31846875
transcript.pyannote[89].end 3075.11159375
transcript.pyannote[90].speaker SPEAKER_22
transcript.pyannote[90].start 3076.02284375
transcript.pyannote[90].end 3076.14096875
transcript.pyannote[91].speaker SPEAKER_22
transcript.pyannote[91].start 3076.15784375
transcript.pyannote[91].end 3104.92971875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 3094.26471875
transcript.pyannote[92].end 3094.55159375
transcript.pyannote[93].speaker SPEAKER_23
transcript.pyannote[93].start 3102.56721875
transcript.pyannote[93].end 3102.92159375
transcript.pyannote[94].speaker SPEAKER_23
transcript.pyannote[94].start 3104.76096875
transcript.pyannote[94].end 3112.55721875
transcript.pyannote[95].speaker SPEAKER_22
transcript.pyannote[95].start 3105.48659375
transcript.pyannote[95].end 3106.83659375
transcript.pyannote[96].speaker SPEAKER_22
transcript.pyannote[96].start 3108.37221875
transcript.pyannote[96].end 3108.67596875
transcript.pyannote[97].speaker SPEAKER_22
transcript.pyannote[97].start 3111.79784375
transcript.pyannote[97].end 3157.88346875
transcript.pyannote[98].speaker SPEAKER_23
transcript.pyannote[98].start 3158.01846875
transcript.pyannote[98].end 3175.87221875
transcript.pyannote[99].speaker SPEAKER_22
transcript.pyannote[99].start 3166.06784375
transcript.pyannote[99].end 3166.96221875
transcript.pyannote[100].speaker SPEAKER_31
transcript.pyannote[100].start 3166.96221875
transcript.pyannote[100].end 3166.99596875
transcript.pyannote[101].speaker SPEAKER_22
transcript.pyannote[101].start 3166.99596875
transcript.pyannote[101].end 3167.13096875
transcript.pyannote[102].speaker SPEAKER_22
transcript.pyannote[102].start 3173.59409375
transcript.pyannote[102].end 3174.57284375
transcript.pyannote[103].speaker SPEAKER_22
transcript.pyannote[103].start 3175.31534375
transcript.pyannote[103].end 3216.42284375
transcript.pyannote[104].speaker SPEAKER_23
transcript.pyannote[104].start 3177.45846875
transcript.pyannote[104].end 3178.90971875
transcript.pyannote[105].speaker SPEAKER_22
transcript.pyannote[105].start 3216.62534375
transcript.pyannote[105].end 3218.88659375
transcript.pyannote[106].speaker SPEAKER_22
transcript.pyannote[106].start 3219.42659375
transcript.pyannote[106].end 3225.34971875
transcript.pyannote[107].speaker SPEAKER_22
transcript.pyannote[107].start 3225.58596875
transcript.pyannote[107].end 3234.00659375
transcript.pyannote[108].speaker SPEAKER_23
transcript.pyannote[108].start 3234.04034375
transcript.pyannote[108].end 3243.65909375
transcript.pyannote[109].speaker SPEAKER_22
transcript.pyannote[109].start 3241.44846875
transcript.pyannote[109].end 3246.86534375
transcript.pyannote[110].speaker SPEAKER_23
transcript.pyannote[110].start 3247.15221875
transcript.pyannote[110].end 3250.02096875
transcript.pyannote[111].speaker SPEAKER_22
transcript.pyannote[111].start 3249.32909375
transcript.pyannote[111].end 3255.80909375
transcript.pyannote[112].speaker SPEAKER_23
transcript.pyannote[112].start 3255.26909375
transcript.pyannote[112].end 3260.17971875
transcript.pyannote[113].speaker SPEAKER_22
transcript.pyannote[113].start 3260.17971875
transcript.pyannote[113].end 3260.28096875
transcript.pyannote[114].speaker SPEAKER_22
transcript.pyannote[114].start 3261.12471875
transcript.pyannote[114].end 3263.26784375
transcript.pyannote[115].speaker SPEAKER_22
transcript.pyannote[115].start 3263.30159375
transcript.pyannote[115].end 3264.17909375
transcript.pyannote[116].speaker SPEAKER_23
transcript.pyannote[116].start 3264.75284375
transcript.pyannote[116].end 3269.47784375
transcript.pyannote[117].speaker SPEAKER_22
transcript.pyannote[117].start 3268.68471875
transcript.pyannote[117].end 3286.90971875
transcript.pyannote[118].speaker SPEAKER_23
transcript.pyannote[118].start 3277.12221875
transcript.pyannote[118].end 3277.72971875
transcript.pyannote[119].speaker SPEAKER_31
transcript.pyannote[119].start 3277.72971875
transcript.pyannote[119].end 3277.76346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 3277.76346875
transcript.pyannote[120].end 3277.84784375
transcript.pyannote[121].speaker SPEAKER_23
transcript.pyannote[121].start 3279.21471875
transcript.pyannote[121].end 3279.58596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 3279.58596875
transcript.pyannote[122].end 3279.61971875
transcript.pyannote[123].speaker SPEAKER_23
transcript.pyannote[123].start 3286.92659375
transcript.pyannote[123].end 3293.45721875
transcript.pyannote[124].speaker SPEAKER_22
transcript.pyannote[124].start 3291.17909375
transcript.pyannote[124].end 3291.19596875
transcript.pyannote[125].speaker SPEAKER_30
transcript.pyannote[125].start 3291.19596875
transcript.pyannote[125].end 3292.78221875
transcript.pyannote[126].speaker SPEAKER_22
transcript.pyannote[126].start 3292.78221875
transcript.pyannote[126].end 3292.83284375
transcript.pyannote[127].speaker SPEAKER_30
transcript.pyannote[127].start 3292.83284375
transcript.pyannote[127].end 3292.84971875
transcript.pyannote[128].speaker SPEAKER_30
transcript.pyannote[128].start 3293.47409375
transcript.pyannote[128].end 3297.72659375
transcript.pyannote[129].speaker SPEAKER_05
transcript.pyannote[129].start 3308.18909375
transcript.pyannote[129].end 3311.17596875
transcript.pyannote[130].speaker SPEAKER_23
transcript.pyannote[130].start 3313.72409375
transcript.pyannote[130].end 3314.36534375
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 3315.27659375
transcript.pyannote[131].end 3319.96784375
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 3320.35596875
transcript.pyannote[132].end 3326.39721875
transcript.pyannote[133].speaker SPEAKER_05
transcript.pyannote[133].start 3326.71784375
transcript.pyannote[133].end 3340.06596875
transcript.pyannote[134].speaker SPEAKER_05
transcript.pyannote[134].start 3340.33596875
transcript.pyannote[134].end 3342.91784375
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 3343.05284375
transcript.pyannote[135].end 3343.45784375
transcript.pyannote[136].speaker SPEAKER_05
transcript.pyannote[136].start 3343.54221875
transcript.pyannote[136].end 3386.03346875
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 3386.25284375
transcript.pyannote[137].end 3395.39909375
transcript.pyannote[138].speaker SPEAKER_05
transcript.pyannote[138].start 3395.65221875
transcript.pyannote[138].end 3396.17534375
transcript.pyannote[139].speaker SPEAKER_05
transcript.pyannote[139].start 3396.58034375
transcript.pyannote[139].end 3396.86721875
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 3397.37346875
transcript.pyannote[140].end 3404.79846875
transcript.pyannote[141].speaker SPEAKER_23
transcript.pyannote[141].start 3404.79846875
transcript.pyannote[141].end 3461.81909375
transcript.pyannote[142].speaker SPEAKER_05
transcript.pyannote[142].start 3458.76471875
transcript.pyannote[142].end 3459.81096875
transcript.pyannote[143].speaker SPEAKER_05
transcript.pyannote[143].start 3461.81909375
transcript.pyannote[143].end 3467.64096875
transcript.pyannote[144].speaker SPEAKER_05
transcript.pyannote[144].start 3467.91096875
transcript.pyannote[144].end 3478.91346875
transcript.pyannote[145].speaker SPEAKER_05
transcript.pyannote[145].start 3479.16659375
transcript.pyannote[145].end 3502.03221875
transcript.pyannote[146].speaker SPEAKER_05
transcript.pyannote[146].start 3503.04471875
transcript.pyannote[146].end 3520.20659375
transcript.pyannote[147].speaker SPEAKER_05
transcript.pyannote[147].start 3520.67909375
transcript.pyannote[147].end 3535.17471875
transcript.pyannote[148].speaker SPEAKER_25
transcript.pyannote[148].start 3528.27284375
transcript.pyannote[148].end 3528.42471875
transcript.pyannote[149].speaker SPEAKER_05
transcript.pyannote[149].start 3535.51221875
transcript.pyannote[149].end 3547.24034375
transcript.pyannote[150].speaker SPEAKER_05
transcript.pyannote[150].start 3547.81409375
transcript.pyannote[150].end 3549.72096875
transcript.pyannote[151].speaker SPEAKER_23
transcript.pyannote[151].start 3550.09221875
transcript.pyannote[151].end 3582.13784375
transcript.pyannote[152].speaker SPEAKER_05
transcript.pyannote[152].start 3581.10846875
transcript.pyannote[152].end 3598.75971875
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 3598.97909375
transcript.pyannote[153].end 3600.59909375
transcript.pyannote[154].speaker SPEAKER_05
transcript.pyannote[154].start 3600.75096875
transcript.pyannote[154].end 3611.98971875
transcript.pyannote[155].speaker SPEAKER_05
transcript.pyannote[155].start 3612.41159375
transcript.pyannote[155].end 3627.97034375
transcript.pyannote[156].speaker SPEAKER_23
transcript.pyannote[156].start 3627.97034375
transcript.pyannote[156].end 3663.69471875
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 3663.08721875
transcript.pyannote[157].end 3670.96784375
transcript.pyannote[158].speaker SPEAKER_05
transcript.pyannote[158].start 3671.06909375
transcript.pyannote[158].end 3671.79471875
transcript.pyannote[159].speaker SPEAKER_05
transcript.pyannote[159].start 3671.91284375
transcript.pyannote[159].end 3677.90346875
transcript.pyannote[160].speaker SPEAKER_05
transcript.pyannote[160].start 3678.24096875
transcript.pyannote[160].end 3681.91971875
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 3682.56096875
transcript.pyannote[161].end 3709.79721875
transcript.pyannote[162].speaker SPEAKER_05
transcript.pyannote[162].start 3710.32034375
transcript.pyannote[162].end 3722.84159375
transcript.pyannote[163].speaker SPEAKER_05
transcript.pyannote[163].start 3723.14534375
transcript.pyannote[163].end 3729.03471875
transcript.pyannote[164].speaker SPEAKER_05
transcript.pyannote[164].start 3729.28784375
transcript.pyannote[164].end 3732.46034375
transcript.pyannote[165].speaker SPEAKER_05
transcript.pyannote[165].start 3732.56159375
transcript.pyannote[165].end 3735.78471875
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 3736.10534375
transcript.pyannote[166].end 3739.73346875
transcript.pyannote[167].speaker SPEAKER_05
transcript.pyannote[167].start 3740.07096875
transcript.pyannote[167].end 3741.80909375
transcript.pyannote[168].speaker SPEAKER_05
transcript.pyannote[168].start 3742.51784375
transcript.pyannote[168].end 3744.32346875
transcript.pyannote[169].speaker SPEAKER_05
transcript.pyannote[169].start 3744.37409375
transcript.pyannote[169].end 3758.68409375
transcript.pyannote[170].speaker SPEAKER_23
transcript.pyannote[170].start 3759.07221875
transcript.pyannote[170].end 3774.71534375
transcript.pyannote[171].speaker SPEAKER_05
transcript.pyannote[171].start 3774.71534375
transcript.pyannote[171].end 3774.85034375
transcript.pyannote[172].speaker SPEAKER_23
transcript.pyannote[172].start 3774.85034375
transcript.pyannote[172].end 3774.96846875
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 3774.96846875
transcript.pyannote[173].end 3797.56409375
transcript.pyannote[174].speaker SPEAKER_23
transcript.pyannote[174].start 3798.15471875
transcript.pyannote[174].end 3821.17221875
transcript.pyannote[175].speaker SPEAKER_05
transcript.pyannote[175].start 3821.93159375
transcript.pyannote[175].end 3826.58909375
transcript.pyannote[176].speaker SPEAKER_05
transcript.pyannote[176].start 3827.19659375
transcript.pyannote[176].end 3835.17846875
transcript.pyannote[177].speaker SPEAKER_05
transcript.pyannote[177].start 3835.60034375
transcript.pyannote[177].end 3849.21846875
transcript.pyannote[178].speaker SPEAKER_23
transcript.pyannote[178].start 3849.21846875
transcript.pyannote[178].end 3849.43784375
transcript.pyannote[179].speaker SPEAKER_05
transcript.pyannote[179].start 3849.43784375
transcript.pyannote[179].end 3851.69909375
transcript.pyannote[180].speaker SPEAKER_23
transcript.pyannote[180].start 3849.50534375
transcript.pyannote[180].end 3849.92721875
transcript.pyannote[181].speaker SPEAKER_23
transcript.pyannote[181].start 3851.42909375
transcript.pyannote[181].end 3878.17596875
transcript.pyannote[182].speaker SPEAKER_05
transcript.pyannote[182].start 3878.34471875
transcript.pyannote[182].end 3888.87471875
transcript.pyannote[183].speaker SPEAKER_31
transcript.pyannote[183].start 3887.55846875
transcript.pyannote[183].end 3887.77784375
transcript.pyannote[184].speaker SPEAKER_31
transcript.pyannote[184].start 3888.87471875
transcript.pyannote[184].end 3889.38096875
transcript.pyannote[185].speaker SPEAKER_05
transcript.pyannote[185].start 3889.12784375
transcript.pyannote[185].end 3890.03909375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 3890.39346875
transcript.pyannote[186].end 3894.10596875
transcript.pyannote[187].speaker SPEAKER_05
transcript.pyannote[187].start 3894.30846875
transcript.pyannote[187].end 3903.06659375
transcript.pyannote[188].speaker SPEAKER_05
transcript.pyannote[188].start 3903.33659375
transcript.pyannote[188].end 3911.63909375
transcript.pyannote[189].speaker SPEAKER_05
transcript.pyannote[189].start 3911.80784375
transcript.pyannote[189].end 3913.42784375
transcript.pyannote[190].speaker SPEAKER_05
transcript.pyannote[190].start 3913.61346875
transcript.pyannote[190].end 3922.99596875
transcript.pyannote[191].speaker SPEAKER_23
transcript.pyannote[191].start 3923.45159375
transcript.pyannote[191].end 3943.60034375
transcript.pyannote[192].speaker SPEAKER_32
transcript.pyannote[192].start 3939.88784375
transcript.pyannote[192].end 3940.29284375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 3940.29284375
transcript.pyannote[193].end 3941.27159375
transcript.pyannote[194].speaker SPEAKER_05
transcript.pyannote[194].start 3941.71034375
transcript.pyannote[194].end 3958.55159375
transcript.pyannote[195].speaker SPEAKER_05
transcript.pyannote[195].start 3958.82159375
transcript.pyannote[195].end 3962.87159375
transcript.pyannote[196].speaker SPEAKER_23
transcript.pyannote[196].start 3961.96034375
transcript.pyannote[196].end 3963.98534375
transcript.pyannote[197].speaker SPEAKER_30
transcript.pyannote[197].start 3964.32284375
transcript.pyannote[197].end 3968.60909375
transcript.pyannote[198].speaker SPEAKER_18
transcript.pyannote[198].start 3977.33346875
transcript.pyannote[198].end 3980.03346875
transcript.pyannote[199].speaker SPEAKER_18
transcript.pyannote[199].start 3980.43846875
transcript.pyannote[199].end 3981.29909375
transcript.pyannote[200].speaker SPEAKER_23
transcript.pyannote[200].start 3983.54346875
transcript.pyannote[200].end 3984.23534375
transcript.pyannote[201].speaker SPEAKER_18
transcript.pyannote[201].start 3984.84284375
transcript.pyannote[201].end 3985.99034375
transcript.pyannote[202].speaker SPEAKER_18
transcript.pyannote[202].start 3986.32784375
transcript.pyannote[202].end 3987.81284375
transcript.pyannote[203].speaker SPEAKER_18
transcript.pyannote[203].start 3988.13346875
transcript.pyannote[203].end 4094.88471875
transcript.pyannote[204].speaker SPEAKER_18
transcript.pyannote[204].start 4095.23909375
transcript.pyannote[204].end 4098.29346875
transcript.pyannote[205].speaker SPEAKER_18
transcript.pyannote[205].start 4098.66471875
transcript.pyannote[205].end 4108.99221875
transcript.pyannote[206].speaker SPEAKER_37
transcript.pyannote[206].start 4111.35471875
transcript.pyannote[206].end 4111.45596875
transcript.pyannote[207].speaker SPEAKER_37
transcript.pyannote[207].start 4111.81034375
transcript.pyannote[207].end 4129.39409375
transcript.pyannote[208].speaker SPEAKER_18
transcript.pyannote[208].start 4128.65159375
transcript.pyannote[208].end 4131.73971875
transcript.pyannote[209].speaker SPEAKER_37
transcript.pyannote[209].start 4131.19971875
transcript.pyannote[209].end 4132.46534375
transcript.pyannote[210].speaker SPEAKER_18
transcript.pyannote[210].start 4132.24596875
transcript.pyannote[210].end 4132.76909375
transcript.pyannote[211].speaker SPEAKER_37
transcript.pyannote[211].start 4132.76909375
transcript.pyannote[211].end 4133.19096875
transcript.pyannote[212].speaker SPEAKER_18
transcript.pyannote[212].start 4133.19096875
transcript.pyannote[212].end 4135.77284375
transcript.pyannote[213].speaker SPEAKER_37
transcript.pyannote[213].start 4135.80659375
transcript.pyannote[213].end 4138.43909375
transcript.pyannote[214].speaker SPEAKER_18
transcript.pyannote[214].start 4137.94971875
transcript.pyannote[214].end 4143.87284375
transcript.pyannote[215].speaker SPEAKER_18
transcript.pyannote[215].start 4145.00346875
transcript.pyannote[215].end 4174.72034375
transcript.pyannote[216].speaker SPEAKER_18
transcript.pyannote[216].start 4175.32784375
transcript.pyannote[216].end 4181.36909375
transcript.pyannote[217].speaker SPEAKER_23
transcript.pyannote[217].start 4181.43659375
transcript.pyannote[217].end 4193.09721875
transcript.pyannote[218].speaker SPEAKER_18
transcript.pyannote[218].start 4192.47284375
transcript.pyannote[218].end 4223.65784375
transcript.pyannote[219].speaker SPEAKER_23
transcript.pyannote[219].start 4224.18096875
transcript.pyannote[219].end 4232.02784375
transcript.pyannote[220].speaker SPEAKER_27
transcript.pyannote[220].start 4230.69471875
transcript.pyannote[220].end 4231.67346875
transcript.pyannote[221].speaker SPEAKER_23
transcript.pyannote[221].start 4233.09096875
transcript.pyannote[221].end 4234.47471875
transcript.pyannote[222].speaker SPEAKER_27
transcript.pyannote[222].start 4234.47471875
transcript.pyannote[222].end 4243.21596875
transcript.pyannote[223].speaker SPEAKER_18
transcript.pyannote[223].start 4243.43534375
transcript.pyannote[223].end 4274.67096875
transcript.pyannote[224].speaker SPEAKER_18
transcript.pyannote[224].start 4274.90721875
transcript.pyannote[224].end 4278.60284375
transcript.pyannote[225].speaker SPEAKER_18
transcript.pyannote[225].start 4279.10909375
transcript.pyannote[225].end 4289.63909375
transcript.pyannote[226].speaker SPEAKER_18
transcript.pyannote[226].start 4290.16221875
transcript.pyannote[226].end 4307.03721875
transcript.pyannote[227].speaker SPEAKER_18
transcript.pyannote[227].start 4307.66159375
transcript.pyannote[227].end 4315.30596875
transcript.pyannote[228].speaker SPEAKER_18
transcript.pyannote[228].start 4315.42409375
transcript.pyannote[228].end 4333.15971875
transcript.pyannote[229].speaker SPEAKER_23
transcript.pyannote[229].start 4333.19346875
transcript.pyannote[229].end 4393.47096875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 4353.57846875
transcript.pyannote[230].end 4353.67971875
transcript.pyannote[231].speaker SPEAKER_31
transcript.pyannote[231].start 4353.67971875
transcript.pyannote[231].end 4353.79784375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 4353.79784375
transcript.pyannote[232].end 4353.86534375
transcript.pyannote[233].speaker SPEAKER_18
transcript.pyannote[233].start 4393.21784375
transcript.pyannote[233].end 4445.36159375
transcript.pyannote[234].speaker SPEAKER_18
transcript.pyannote[234].start 4445.96909375
transcript.pyannote[234].end 4477.89659375
transcript.pyannote[235].speaker SPEAKER_18
transcript.pyannote[235].start 4478.30159375
transcript.pyannote[235].end 4497.64034375
transcript.pyannote[236].speaker SPEAKER_18
transcript.pyannote[236].start 4497.84284375
transcript.pyannote[236].end 4503.74909375
transcript.pyannote[237].speaker SPEAKER_23
transcript.pyannote[237].start 4503.74909375
transcript.pyannote[237].end 4507.44471875
transcript.pyannote[238].speaker SPEAKER_18
transcript.pyannote[238].start 4507.44471875
transcript.pyannote[238].end 4529.28096875
transcript.pyannote[239].speaker SPEAKER_23
transcript.pyannote[239].start 4529.28096875
transcript.pyannote[239].end 4530.63096875
transcript.pyannote[240].speaker SPEAKER_18
transcript.pyannote[240].start 4530.19221875
transcript.pyannote[240].end 4530.76596875
transcript.pyannote[241].speaker SPEAKER_05
transcript.pyannote[241].start 4532.52096875
transcript.pyannote[241].end 4535.15346875
transcript.pyannote[242].speaker SPEAKER_17
transcript.pyannote[242].start 4550.67846875
transcript.pyannote[242].end 4552.53471875
transcript.pyannote[243].speaker SPEAKER_05
transcript.pyannote[243].start 4552.70346875
transcript.pyannote[243].end 4553.39534375
transcript.pyannote[244].speaker SPEAKER_17
transcript.pyannote[244].start 4557.42846875
transcript.pyannote[244].end 4566.89534375
transcript.pyannote[245].speaker SPEAKER_17
transcript.pyannote[245].start 4567.41846875
transcript.pyannote[245].end 4578.74159375
transcript.pyannote[246].speaker SPEAKER_23
transcript.pyannote[246].start 4579.24784375
transcript.pyannote[246].end 4599.21096875
transcript.pyannote[247].speaker SPEAKER_17
transcript.pyannote[247].start 4599.21096875
transcript.pyannote[247].end 4606.12971875
transcript.pyannote[248].speaker SPEAKER_17
transcript.pyannote[248].start 4606.39971875
transcript.pyannote[248].end 4632.31971875
transcript.pyannote[249].speaker SPEAKER_17
transcript.pyannote[249].start 4632.70784375
transcript.pyannote[249].end 4634.54721875
transcript.pyannote[250].speaker SPEAKER_17
transcript.pyannote[250].start 4635.12096875
transcript.pyannote[250].end 4641.33096875
transcript.pyannote[251].speaker SPEAKER_23
transcript.pyannote[251].start 4641.44909375
transcript.pyannote[251].end 4667.38596875
transcript.pyannote[252].speaker SPEAKER_17
transcript.pyannote[252].start 4667.31846875
transcript.pyannote[252].end 4683.55221875
transcript.pyannote[253].speaker SPEAKER_23
transcript.pyannote[253].start 4683.72096875
transcript.pyannote[253].end 4696.47846875
transcript.pyannote[254].speaker SPEAKER_17
transcript.pyannote[254].start 4686.91034375
transcript.pyannote[254].end 4687.26471875
transcript.pyannote[255].speaker SPEAKER_17
transcript.pyannote[255].start 4687.53471875
transcript.pyannote[255].end 4688.19284375
transcript.pyannote[256].speaker SPEAKER_17
transcript.pyannote[256].start 4694.45346875
transcript.pyannote[256].end 4694.79096875
transcript.pyannote[257].speaker SPEAKER_17
transcript.pyannote[257].start 4696.98471875
transcript.pyannote[257].end 4736.28659375
transcript.pyannote[258].speaker SPEAKER_17
transcript.pyannote[258].start 4736.92784375
transcript.pyannote[258].end 4763.69159375
transcript.pyannote[259].speaker SPEAKER_23
transcript.pyannote[259].start 4763.89409375
transcript.pyannote[259].end 4779.89159375
transcript.pyannote[260].speaker SPEAKER_17
transcript.pyannote[260].start 4779.13221875
transcript.pyannote[260].end 4782.01784375
transcript.pyannote[261].speaker SPEAKER_23
transcript.pyannote[261].start 4782.01784375
transcript.pyannote[261].end 4802.57159375
transcript.pyannote[262].speaker SPEAKER_17
transcript.pyannote[262].start 4782.28784375
transcript.pyannote[262].end 4782.64221875
transcript.pyannote[263].speaker SPEAKER_17
transcript.pyannote[263].start 4801.47471875
transcript.pyannote[263].end 4807.34721875
transcript.pyannote[264].speaker SPEAKER_23
transcript.pyannote[264].start 4806.46971875
transcript.pyannote[264].end 4813.38846875
transcript.pyannote[265].speaker SPEAKER_17
transcript.pyannote[265].start 4812.67971875
transcript.pyannote[265].end 4826.31471875
transcript.pyannote[266].speaker SPEAKER_23
transcript.pyannote[266].start 4826.31471875
transcript.pyannote[266].end 4838.54909375
transcript.pyannote[267].speaker SPEAKER_17
transcript.pyannote[267].start 4838.80221875
transcript.pyannote[267].end 4845.75471875
transcript.pyannote[268].speaker SPEAKER_17
transcript.pyannote[268].start 4846.27784375
transcript.pyannote[268].end 4857.06096875
transcript.pyannote[269].speaker SPEAKER_23
transcript.pyannote[269].start 4857.51659375
transcript.pyannote[269].end 4865.49846875
transcript.pyannote[270].speaker SPEAKER_23
transcript.pyannote[270].start 4866.27471875
transcript.pyannote[270].end 4867.74284375
transcript.pyannote[271].speaker SPEAKER_17
transcript.pyannote[271].start 4866.64596875
transcript.pyannote[271].end 4869.86909375
transcript.pyannote[272].speaker SPEAKER_23
transcript.pyannote[272].start 4869.58221875
transcript.pyannote[272].end 4869.70034375
transcript.pyannote[273].speaker SPEAKER_23
transcript.pyannote[273].start 4869.86909375
transcript.pyannote[273].end 4869.90284375
transcript.pyannote[274].speaker SPEAKER_17
transcript.pyannote[274].start 4869.90284375
transcript.pyannote[274].end 4869.91971875
transcript.pyannote[275].speaker SPEAKER_23
transcript.pyannote[275].start 4869.91971875
transcript.pyannote[275].end 4869.97034375
transcript.pyannote[276].speaker SPEAKER_17
transcript.pyannote[276].start 4869.97034375
transcript.pyannote[276].end 4869.98721875
transcript.pyannote[277].speaker SPEAKER_23
transcript.pyannote[277].start 4869.98721875
transcript.pyannote[277].end 4870.03784375
transcript.pyannote[278].speaker SPEAKER_17
transcript.pyannote[278].start 4870.03784375
transcript.pyannote[278].end 4889.95034375
transcript.pyannote[279].speaker SPEAKER_14
transcript.pyannote[279].start 4889.86596875
transcript.pyannote[279].end 4890.18659375
transcript.pyannote[280].speaker SPEAKER_17
transcript.pyannote[280].start 4890.03471875
transcript.pyannote[280].end 4893.89909375
transcript.pyannote[281].speaker SPEAKER_17
transcript.pyannote[281].start 4894.35471875
transcript.pyannote[281].end 4900.49721875
transcript.pyannote[282].speaker SPEAKER_23
transcript.pyannote[282].start 4900.49721875
transcript.pyannote[282].end 4902.79221875
transcript.pyannote[283].speaker SPEAKER_17
transcript.pyannote[283].start 4902.04971875
transcript.pyannote[283].end 4915.16159375
transcript.pyannote[284].speaker SPEAKER_23
transcript.pyannote[284].start 4915.46534375
transcript.pyannote[284].end 4916.49471875
transcript.pyannote[285].speaker SPEAKER_23
transcript.pyannote[285].start 4916.93346875
transcript.pyannote[285].end 4949.70471875
transcript.pyannote[286].speaker SPEAKER_17
transcript.pyannote[286].start 4950.00846875
transcript.pyannote[286].end 4955.22284375
transcript.pyannote[287].speaker SPEAKER_23
transcript.pyannote[287].start 4955.22284375
transcript.pyannote[287].end 4957.65284375
transcript.pyannote[288].speaker SPEAKER_17
transcript.pyannote[288].start 4956.96096875
transcript.pyannote[288].end 4965.73596875
transcript.pyannote[289].speaker SPEAKER_23
transcript.pyannote[289].start 4965.95534375
transcript.pyannote[289].end 4966.76534375
transcript.pyannote[290].speaker SPEAKER_17
transcript.pyannote[290].start 4966.76534375
transcript.pyannote[290].end 4974.57846875
transcript.pyannote[291].speaker SPEAKER_31
transcript.pyannote[291].start 4974.54471875
transcript.pyannote[291].end 4974.98346875
transcript.pyannote[292].speaker SPEAKER_17
transcript.pyannote[292].start 4974.98346875
transcript.pyannote[292].end 4977.46409375
transcript.pyannote[293].speaker SPEAKER_17
transcript.pyannote[293].start 4978.18971875
transcript.pyannote[293].end 4986.86346875
transcript.pyannote[294].speaker SPEAKER_17
transcript.pyannote[294].start 4987.13346875
transcript.pyannote[294].end 4995.87471875
transcript.pyannote[295].speaker SPEAKER_23
transcript.pyannote[295].start 4996.31346875
transcript.pyannote[295].end 4997.22471875
transcript.pyannote[296].speaker SPEAKER_23
transcript.pyannote[296].start 4998.08534375
transcript.pyannote[296].end 4998.67596875
transcript.pyannote[297].speaker SPEAKER_27
transcript.pyannote[297].start 4998.67596875
transcript.pyannote[297].end 5018.21721875
transcript.pyannote[298].speaker SPEAKER_27
transcript.pyannote[298].start 5018.33534375
transcript.pyannote[298].end 5033.91096875
transcript.pyannote[299].speaker SPEAKER_17
transcript.pyannote[299].start 5033.47221875
transcript.pyannote[299].end 5059.17284375
transcript.pyannote[300].speaker SPEAKER_27
transcript.pyannote[300].start 5034.24846875
transcript.pyannote[300].end 5034.50159375
transcript.pyannote[301].speaker SPEAKER_17
transcript.pyannote[301].start 5059.29096875
transcript.pyannote[301].end 5059.34159375
transcript.pyannote[302].speaker SPEAKER_31
transcript.pyannote[302].start 5059.34159375
transcript.pyannote[302].end 5059.44284375
transcript.pyannote[303].speaker SPEAKER_17
transcript.pyannote[303].start 5059.44284375
transcript.pyannote[303].end 5075.10284375
transcript.pyannote[304].speaker SPEAKER_17
transcript.pyannote[304].start 5075.25471875
transcript.pyannote[304].end 5077.70159375
transcript.pyannote[305].speaker SPEAKER_17
transcript.pyannote[305].start 5078.15721875
transcript.pyannote[305].end 5082.91596875
transcript.pyannote[306].speaker SPEAKER_23
transcript.pyannote[306].start 5083.20284375
transcript.pyannote[306].end 5105.74784375
transcript.pyannote[307].speaker SPEAKER_17
transcript.pyannote[307].start 5105.51159375
transcript.pyannote[307].end 5129.96346875
transcript.pyannote[308].speaker SPEAKER_23
transcript.pyannote[308].start 5110.55721875
transcript.pyannote[308].end 5110.67534375
transcript.pyannote[309].speaker SPEAKER_17
transcript.pyannote[309].start 5130.16596875
transcript.pyannote[309].end 5142.58596875
transcript.pyannote[310].speaker SPEAKER_17
transcript.pyannote[310].start 5143.19346875
transcript.pyannote[310].end 5155.42784375
transcript.pyannote[311].speaker SPEAKER_17
transcript.pyannote[311].start 5155.71471875
transcript.pyannote[311].end 5163.83159375
transcript.pyannote[312].speaker SPEAKER_17
transcript.pyannote[312].start 5164.23659375
transcript.pyannote[312].end 5177.97284375
transcript.pyannote[313].speaker SPEAKER_23
transcript.pyannote[313].start 5177.97284375
transcript.pyannote[313].end 5186.54534375
transcript.pyannote[314].speaker SPEAKER_17
transcript.pyannote[314].start 5184.48659375
transcript.pyannote[314].end 5184.55409375
transcript.pyannote[315].speaker SPEAKER_17
transcript.pyannote[315].start 5186.32596875
transcript.pyannote[315].end 5214.87846875
transcript.pyannote[316].speaker SPEAKER_31
transcript.pyannote[316].start 5214.99659375
transcript.pyannote[316].end 5215.77284375
transcript.pyannote[317].speaker SPEAKER_31
transcript.pyannote[317].start 5216.02596875
transcript.pyannote[317].end 5216.09346875
transcript.pyannote[318].speaker SPEAKER_17
transcript.pyannote[318].start 5216.09346875
transcript.pyannote[318].end 5224.90221875
transcript.pyannote[319].speaker SPEAKER_31
transcript.pyannote[319].start 5216.22846875
transcript.pyannote[319].end 5218.72596875
transcript.pyannote[320].speaker SPEAKER_31
transcript.pyannote[320].start 5218.75971875
transcript.pyannote[320].end 5218.97909375
transcript.pyannote[321].speaker SPEAKER_23
transcript.pyannote[321].start 5225.00346875
transcript.pyannote[321].end 5226.13409375
transcript.pyannote[322].speaker SPEAKER_30
transcript.pyannote[322].start 5226.15096875
transcript.pyannote[322].end 5230.33596875
transcript.pyannote[323].speaker SPEAKER_32
transcript.pyannote[323].start 5237.89596875
transcript.pyannote[323].end 5240.12346875
transcript.pyannote[324].speaker SPEAKER_30
transcript.pyannote[324].start 5240.12346875
transcript.pyannote[324].end 5240.95034375
transcript.pyannote[325].speaker SPEAKER_32
transcript.pyannote[325].start 5243.80221875
transcript.pyannote[325].end 5245.91159375
transcript.pyannote[326].speaker SPEAKER_32
transcript.pyannote[326].start 5245.96221875
transcript.pyannote[326].end 5245.97909375
transcript.pyannote[327].speaker SPEAKER_32
transcript.pyannote[327].start 5246.24909375
transcript.pyannote[327].end 5256.94784375
transcript.pyannote[328].speaker SPEAKER_32
transcript.pyannote[328].start 5257.40346875
transcript.pyannote[328].end 5263.27596875
transcript.pyannote[329].speaker SPEAKER_32
transcript.pyannote[329].start 5263.68096875
transcript.pyannote[329].end 5266.09409375
transcript.pyannote[330].speaker SPEAKER_32
transcript.pyannote[330].start 5266.48221875
transcript.pyannote[330].end 5269.03034375
transcript.pyannote[331].speaker SPEAKER_32
transcript.pyannote[331].start 5269.58721875
transcript.pyannote[331].end 5276.38784375
transcript.pyannote[332].speaker SPEAKER_32
transcript.pyannote[332].start 5276.69159375
transcript.pyannote[332].end 5279.34096875
transcript.pyannote[333].speaker SPEAKER_32
transcript.pyannote[333].start 5279.79659375
transcript.pyannote[333].end 5283.30659375
transcript.pyannote[334].speaker SPEAKER_32
transcript.pyannote[334].start 5283.59346875
transcript.pyannote[334].end 5284.25159375
transcript.pyannote[335].speaker SPEAKER_32
transcript.pyannote[335].start 5284.79159375
transcript.pyannote[335].end 5289.65159375
transcript.pyannote[336].speaker SPEAKER_32
transcript.pyannote[336].start 5290.03971875
transcript.pyannote[336].end 5298.69659375
transcript.pyannote[337].speaker SPEAKER_32
transcript.pyannote[337].start 5299.32096875
transcript.pyannote[337].end 5300.90721875
transcript.pyannote[338].speaker SPEAKER_32
transcript.pyannote[338].start 5301.68346875
transcript.pyannote[338].end 5304.21471875
transcript.pyannote[339].speaker SPEAKER_32
transcript.pyannote[339].start 5304.41721875
transcript.pyannote[339].end 5306.10471875
transcript.pyannote[340].speaker SPEAKER_32
transcript.pyannote[340].start 5306.44221875
transcript.pyannote[340].end 5309.78346875
transcript.pyannote[341].speaker SPEAKER_32
transcript.pyannote[341].start 5310.17159375
transcript.pyannote[341].end 5311.31909375
transcript.pyannote[342].speaker SPEAKER_32
transcript.pyannote[342].start 5311.82534375
transcript.pyannote[342].end 5316.22971875
transcript.pyannote[343].speaker SPEAKER_32
transcript.pyannote[343].start 5317.42784375
transcript.pyannote[343].end 5334.85971875
transcript.pyannote[344].speaker SPEAKER_32
transcript.pyannote[344].start 5335.41659375
transcript.pyannote[344].end 5345.13659375
transcript.pyannote[345].speaker SPEAKER_32
transcript.pyannote[345].start 5345.47409375
transcript.pyannote[345].end 5345.49096875
transcript.pyannote[346].speaker SPEAKER_32
transcript.pyannote[346].start 5346.36846875
transcript.pyannote[346].end 5355.02534375
transcript.pyannote[347].speaker SPEAKER_32
transcript.pyannote[347].start 5355.49784375
transcript.pyannote[347].end 5358.53534375
transcript.pyannote[348].speaker SPEAKER_32
transcript.pyannote[348].start 5358.87284375
transcript.pyannote[348].end 5361.20159375
transcript.pyannote[349].speaker SPEAKER_32
transcript.pyannote[349].start 5361.92721875
transcript.pyannote[349].end 5367.85034375
transcript.pyannote[350].speaker SPEAKER_32
transcript.pyannote[350].start 5368.28909375
transcript.pyannote[350].end 5371.73159375
transcript.pyannote[351].speaker SPEAKER_32
transcript.pyannote[351].start 5372.18721875
transcript.pyannote[351].end 5375.84909375
transcript.pyannote[352].speaker SPEAKER_23
transcript.pyannote[352].start 5375.84909375
transcript.pyannote[352].end 5375.89971875
transcript.pyannote[353].speaker SPEAKER_32
transcript.pyannote[353].start 5376.49034375
transcript.pyannote[353].end 5376.50721875
transcript.pyannote[354].speaker SPEAKER_23
transcript.pyannote[354].start 5376.50721875
transcript.pyannote[354].end 5377.53659375
transcript.pyannote[355].speaker SPEAKER_23
transcript.pyannote[355].start 5377.92471875
transcript.pyannote[355].end 5430.18659375
transcript.pyannote[356].speaker SPEAKER_32
transcript.pyannote[356].start 5429.52846875
transcript.pyannote[356].end 5435.65409375
transcript.pyannote[357].speaker SPEAKER_32
transcript.pyannote[357].start 5435.89034375
transcript.pyannote[357].end 5437.57784375
transcript.pyannote[358].speaker SPEAKER_31
transcript.pyannote[358].start 5437.49346875
transcript.pyannote[358].end 5437.64534375
transcript.pyannote[359].speaker SPEAKER_32
transcript.pyannote[359].start 5437.64534375
transcript.pyannote[359].end 5450.33534375
transcript.pyannote[360].speaker SPEAKER_31
transcript.pyannote[360].start 5437.69596875
transcript.pyannote[360].end 5437.81409375
transcript.pyannote[361].speaker SPEAKER_32
transcript.pyannote[361].start 5450.97659375
transcript.pyannote[361].end 5463.16034375
transcript.pyannote[362].speaker SPEAKER_32
transcript.pyannote[362].start 5463.61596875
transcript.pyannote[362].end 5494.15971875
transcript.pyannote[363].speaker SPEAKER_32
transcript.pyannote[363].start 5494.58159375
transcript.pyannote[363].end 5509.70159375
transcript.pyannote[364].speaker SPEAKER_32
transcript.pyannote[364].start 5509.97159375
transcript.pyannote[364].end 5511.57471875
transcript.pyannote[365].speaker SPEAKER_32
transcript.pyannote[365].start 5512.31721875
transcript.pyannote[365].end 5514.29159375
transcript.pyannote[366].speaker SPEAKER_32
transcript.pyannote[366].start 5514.42659375
transcript.pyannote[366].end 5515.79346875
transcript.pyannote[367].speaker SPEAKER_32
transcript.pyannote[367].start 5516.82284375
transcript.pyannote[367].end 5517.76784375
transcript.pyannote[368].speaker SPEAKER_23
transcript.pyannote[368].start 5517.93659375
transcript.pyannote[368].end 5518.03784375
transcript.pyannote[369].speaker SPEAKER_23
transcript.pyannote[369].start 5519.10096875
transcript.pyannote[369].end 5519.48909375
transcript.pyannote[370].speaker SPEAKER_23
transcript.pyannote[370].start 5519.72534375
transcript.pyannote[370].end 5521.69971875
transcript.pyannote[371].speaker SPEAKER_27
transcript.pyannote[371].start 5521.91909375
transcript.pyannote[371].end 5559.21284375
transcript.pyannote[372].speaker SPEAKER_27
transcript.pyannote[372].start 5559.55034375
transcript.pyannote[372].end 5566.90784375
transcript.pyannote[373].speaker SPEAKER_32
transcript.pyannote[373].start 5566.26659375
transcript.pyannote[373].end 5580.27284375
transcript.pyannote[374].speaker SPEAKER_27
transcript.pyannote[374].start 5566.94159375
transcript.pyannote[374].end 5566.97534375
transcript.pyannote[375].speaker SPEAKER_27
transcript.pyannote[375].start 5568.67971875
transcript.pyannote[375].end 5569.25346875
transcript.pyannote[376].speaker SPEAKER_27
transcript.pyannote[376].start 5575.68284375
transcript.pyannote[376].end 5575.69971875
transcript.pyannote[377].speaker SPEAKER_23
transcript.pyannote[377].start 5575.69971875
transcript.pyannote[377].end 5577.35346875
transcript.pyannote[378].speaker SPEAKER_23
transcript.pyannote[378].start 5579.73284375
transcript.pyannote[378].end 5579.88471875
transcript.pyannote[379].speaker SPEAKER_23
transcript.pyannote[379].start 5580.22221875
transcript.pyannote[379].end 5580.23909375
transcript.pyannote[380].speaker SPEAKER_23
transcript.pyannote[380].start 5580.25596875
transcript.pyannote[380].end 5601.38346875
transcript.pyannote[381].speaker SPEAKER_32
transcript.pyannote[381].start 5601.38346875
transcript.pyannote[381].end 5607.35721875
transcript.pyannote[382].speaker SPEAKER_32
transcript.pyannote[382].start 5607.71159375
transcript.pyannote[382].end 5611.79534375
transcript.pyannote[383].speaker SPEAKER_32
transcript.pyannote[383].start 5612.26784375
transcript.pyannote[383].end 5620.01346875
transcript.pyannote[384].speaker SPEAKER_32
transcript.pyannote[384].start 5620.04721875
transcript.pyannote[384].end 5644.02659375
transcript.pyannote[385].speaker SPEAKER_32
transcript.pyannote[385].start 5644.61721875
transcript.pyannote[385].end 5646.89534375
transcript.pyannote[386].speaker SPEAKER_23
transcript.pyannote[386].start 5647.04721875
transcript.pyannote[386].end 5648.81909375
transcript.pyannote[387].speaker SPEAKER_27
transcript.pyannote[387].start 5648.81909375
transcript.pyannote[387].end 5673.38909375
transcript.pyannote[388].speaker SPEAKER_32
transcript.pyannote[388].start 5671.29659375
transcript.pyannote[388].end 5677.33784375
transcript.pyannote[389].speaker SPEAKER_27
transcript.pyannote[389].start 5674.30034375
transcript.pyannote[389].end 5675.24534375
transcript.pyannote[390].speaker SPEAKER_31
transcript.pyannote[390].start 5675.24534375
transcript.pyannote[390].end 5675.31284375
transcript.pyannote[391].speaker SPEAKER_27
transcript.pyannote[391].start 5677.21971875
transcript.pyannote[391].end 5677.23659375
transcript.pyannote[392].speaker SPEAKER_31
transcript.pyannote[392].start 5677.23659375
transcript.pyannote[392].end 5678.16471875
transcript.pyannote[393].speaker SPEAKER_32
transcript.pyannote[393].start 5677.74284375
transcript.pyannote[393].end 5687.44596875
transcript.pyannote[394].speaker SPEAKER_32
transcript.pyannote[394].start 5688.12096875
transcript.pyannote[394].end 5688.15471875
transcript.pyannote[395].speaker SPEAKER_23
transcript.pyannote[395].start 5688.15471875
transcript.pyannote[395].end 5690.51721875
transcript.pyannote[396].speaker SPEAKER_23
transcript.pyannote[396].start 5690.61846875
transcript.pyannote[396].end 5699.12346875
transcript.pyannote[397].speaker SPEAKER_32
transcript.pyannote[397].start 5690.68596875
transcript.pyannote[397].end 5691.09096875
transcript.pyannote[398].speaker SPEAKER_32
transcript.pyannote[398].start 5699.12346875
transcript.pyannote[398].end 5699.22471875
transcript.pyannote[399].speaker SPEAKER_23
transcript.pyannote[399].start 5699.22471875
transcript.pyannote[399].end 5699.96721875
transcript.pyannote[400].speaker SPEAKER_32
transcript.pyannote[400].start 5699.96721875
transcript.pyannote[400].end 5706.43034375
transcript.pyannote[401].speaker SPEAKER_32
transcript.pyannote[401].start 5707.83096875
transcript.pyannote[401].end 5709.40034375
transcript.pyannote[402].speaker SPEAKER_23
transcript.pyannote[402].start 5707.93221875
transcript.pyannote[402].end 5708.18534375
transcript.pyannote[403].speaker SPEAKER_23
transcript.pyannote[403].start 5708.20221875
transcript.pyannote[403].end 5721.16221875
transcript.pyannote[404].speaker SPEAKER_32
transcript.pyannote[404].start 5712.01596875
transcript.pyannote[404].end 5712.75846875
transcript.pyannote[405].speaker SPEAKER_32
transcript.pyannote[405].start 5713.55159375
transcript.pyannote[405].end 5713.93971875
transcript.pyannote[406].speaker SPEAKER_32
transcript.pyannote[406].start 5718.34409375
transcript.pyannote[406].end 5718.78284375
transcript.pyannote[407].speaker SPEAKER_32
transcript.pyannote[407].start 5719.39034375
transcript.pyannote[407].end 5720.26784375
transcript.pyannote[408].speaker SPEAKER_23
transcript.pyannote[408].start 5721.70221875
transcript.pyannote[408].end 5735.15159375
transcript.pyannote[409].speaker SPEAKER_32
transcript.pyannote[409].start 5734.76346875
transcript.pyannote[409].end 5735.13471875
transcript.pyannote[410].speaker SPEAKER_32
transcript.pyannote[410].start 5735.15159375
transcript.pyannote[410].end 5738.15534375
transcript.pyannote[411].speaker SPEAKER_23
transcript.pyannote[411].start 5738.47596875
transcript.pyannote[411].end 5749.96784375
transcript.pyannote[412].speaker SPEAKER_32
transcript.pyannote[412].start 5738.77971875
transcript.pyannote[412].end 5739.42096875
transcript.pyannote[413].speaker SPEAKER_32
transcript.pyannote[413].start 5749.96784375
transcript.pyannote[413].end 5792.22284375
transcript.pyannote[414].speaker SPEAKER_30
transcript.pyannote[414].start 5793.77534375
transcript.pyannote[414].end 5798.39909375
transcript.pyannote[415].speaker SPEAKER_04
transcript.pyannote[415].start 5808.20346875
transcript.pyannote[415].end 5810.43096875
transcript.pyannote[416].speaker SPEAKER_30
transcript.pyannote[416].start 5810.68409375
transcript.pyannote[416].end 5811.49409375
transcript.pyannote[417].speaker SPEAKER_23
transcript.pyannote[417].start 5814.39659375
transcript.pyannote[417].end 5815.17284375
transcript.pyannote[418].speaker SPEAKER_04
transcript.pyannote[418].start 5816.75909375
transcript.pyannote[418].end 5817.21471875
transcript.pyannote[419].speaker SPEAKER_04
transcript.pyannote[419].start 5817.31596875
transcript.pyannote[419].end 5817.48471875
transcript.pyannote[420].speaker SPEAKER_23
transcript.pyannote[420].start 5817.48471875
transcript.pyannote[420].end 5817.53534375
transcript.pyannote[421].speaker SPEAKER_04
transcript.pyannote[421].start 5818.17659375
transcript.pyannote[421].end 5819.86409375
transcript.pyannote[422].speaker SPEAKER_04
transcript.pyannote[422].start 5820.06659375
transcript.pyannote[422].end 5823.10409375
transcript.pyannote[423].speaker SPEAKER_04
transcript.pyannote[423].start 5823.55971875
transcript.pyannote[423].end 5828.63909375
transcript.pyannote[424].speaker SPEAKER_04
transcript.pyannote[424].start 5829.26346875
transcript.pyannote[424].end 5837.44784375
transcript.pyannote[425].speaker SPEAKER_04
transcript.pyannote[425].start 5837.92034375
transcript.pyannote[425].end 5838.67971875
transcript.pyannote[426].speaker SPEAKER_23
transcript.pyannote[426].start 5838.89909375
transcript.pyannote[426].end 5842.39221875
transcript.pyannote[427].speaker SPEAKER_04
transcript.pyannote[427].start 5841.04221875
transcript.pyannote[427].end 5844.40034375
transcript.pyannote[428].speaker SPEAKER_23
transcript.pyannote[428].start 5845.07534375
transcript.pyannote[428].end 5847.96096875
transcript.pyannote[429].speaker SPEAKER_04
transcript.pyannote[429].start 5848.77096875
transcript.pyannote[429].end 5849.76659375
transcript.pyannote[430].speaker SPEAKER_04
transcript.pyannote[430].start 5850.08721875
transcript.pyannote[430].end 5854.74471875
transcript.pyannote[431].speaker SPEAKER_23
transcript.pyannote[431].start 5855.62221875
transcript.pyannote[431].end 5862.86159375
transcript.pyannote[432].speaker SPEAKER_04
transcript.pyannote[432].start 5861.84909375
transcript.pyannote[432].end 5862.55784375
transcript.pyannote[433].speaker SPEAKER_04
transcript.pyannote[433].start 5862.87846875
transcript.pyannote[433].end 5864.78534375
transcript.pyannote[434].speaker SPEAKER_23
transcript.pyannote[434].start 5864.00909375
transcript.pyannote[434].end 5865.10596875
transcript.pyannote[435].speaker SPEAKER_04
transcript.pyannote[435].start 5865.10596875
transcript.pyannote[435].end 5868.02534375
transcript.pyannote[436].speaker SPEAKER_04
transcript.pyannote[436].start 5868.24471875
transcript.pyannote[436].end 5869.98284375
transcript.pyannote[437].speaker SPEAKER_23
transcript.pyannote[437].start 5870.05034375
transcript.pyannote[437].end 5875.18034375
transcript.pyannote[438].speaker SPEAKER_04
transcript.pyannote[438].start 5875.55159375
transcript.pyannote[438].end 5877.08721875
transcript.pyannote[439].speaker SPEAKER_04
transcript.pyannote[439].start 5877.40784375
transcript.pyannote[439].end 5881.72784375
transcript.pyannote[440].speaker SPEAKER_23
transcript.pyannote[440].start 5882.48721875
transcript.pyannote[440].end 5883.55034375
transcript.pyannote[441].speaker SPEAKER_04
transcript.pyannote[441].start 5883.06096875
transcript.pyannote[441].end 5886.85784375
transcript.pyannote[442].speaker SPEAKER_23
transcript.pyannote[442].start 5887.41471875
transcript.pyannote[442].end 5887.63409375
transcript.pyannote[443].speaker SPEAKER_04
transcript.pyannote[443].start 5887.90409375
transcript.pyannote[443].end 5892.57846875
transcript.pyannote[444].speaker SPEAKER_23
transcript.pyannote[444].start 5892.91596875
transcript.pyannote[444].end 5897.94471875
transcript.pyannote[445].speaker SPEAKER_04
transcript.pyannote[445].start 5897.06721875
transcript.pyannote[445].end 5899.00784375
transcript.pyannote[446].speaker SPEAKER_23
transcript.pyannote[446].start 5899.00784375
transcript.pyannote[446].end 5899.14284375
transcript.pyannote[447].speaker SPEAKER_04
transcript.pyannote[447].start 5899.14284375
transcript.pyannote[447].end 5899.80096875
transcript.pyannote[448].speaker SPEAKER_04
transcript.pyannote[448].start 5900.08784375
transcript.pyannote[448].end 5901.72471875
transcript.pyannote[449].speaker SPEAKER_04
transcript.pyannote[449].start 5902.06221875
transcript.pyannote[449].end 5902.95659375
transcript.pyannote[450].speaker SPEAKER_04
transcript.pyannote[450].start 5903.49659375
transcript.pyannote[450].end 5904.17159375
transcript.pyannote[451].speaker SPEAKER_04
transcript.pyannote[451].start 5904.64409375
transcript.pyannote[451].end 5906.38221875
transcript.pyannote[452].speaker SPEAKER_04
transcript.pyannote[452].start 5906.93909375
transcript.pyannote[452].end 5909.04846875
transcript.pyannote[453].speaker SPEAKER_04
transcript.pyannote[453].start 5909.50409375
transcript.pyannote[453].end 5910.36471875
transcript.pyannote[454].speaker SPEAKER_04
transcript.pyannote[454].start 5911.00596875
transcript.pyannote[454].end 5912.89596875
transcript.pyannote[455].speaker SPEAKER_04
transcript.pyannote[455].start 5912.96346875
transcript.pyannote[455].end 5917.46909375
transcript.pyannote[456].speaker SPEAKER_04
transcript.pyannote[456].start 5917.84034375
transcript.pyannote[456].end 5919.64596875
transcript.pyannote[457].speaker SPEAKER_23
transcript.pyannote[457].start 5919.64596875
transcript.pyannote[457].end 5919.73034375
transcript.pyannote[458].speaker SPEAKER_04
transcript.pyannote[458].start 5919.73034375
transcript.pyannote[458].end 5919.79784375
transcript.pyannote[459].speaker SPEAKER_23
transcript.pyannote[459].start 5919.79784375
transcript.pyannote[459].end 5919.89909375
transcript.pyannote[460].speaker SPEAKER_13
transcript.pyannote[460].start 5919.89909375
transcript.pyannote[460].end 5919.96659375
transcript.pyannote[461].speaker SPEAKER_23
transcript.pyannote[461].start 5919.96659375
transcript.pyannote[461].end 5919.98346875
transcript.pyannote[462].speaker SPEAKER_04
transcript.pyannote[462].start 5920.20284375
transcript.pyannote[462].end 5920.72596875
transcript.pyannote[463].speaker SPEAKER_04
transcript.pyannote[463].start 5920.91159375
transcript.pyannote[463].end 5938.03971875
transcript.pyannote[464].speaker SPEAKER_04
transcript.pyannote[464].start 5938.14096875
transcript.pyannote[464].end 5945.09346875
transcript.pyannote[465].speaker SPEAKER_04
transcript.pyannote[465].start 5945.73471875
transcript.pyannote[465].end 5950.25721875
transcript.pyannote[466].speaker SPEAKER_23
transcript.pyannote[466].start 5950.78034375
transcript.pyannote[466].end 5960.12909375
transcript.pyannote[467].speaker SPEAKER_04
transcript.pyannote[467].start 5954.45909375
transcript.pyannote[467].end 5954.89784375
transcript.pyannote[468].speaker SPEAKER_04
transcript.pyannote[468].start 5957.81721875
transcript.pyannote[468].end 5958.23909375
transcript.pyannote[469].speaker SPEAKER_04
transcript.pyannote[469].start 5960.93909375
transcript.pyannote[469].end 5960.95596875
transcript.pyannote[470].speaker SPEAKER_23
transcript.pyannote[470].start 5960.95596875
transcript.pyannote[470].end 5961.24284375
transcript.pyannote[471].speaker SPEAKER_04
transcript.pyannote[471].start 5961.24284375
transcript.pyannote[471].end 5964.56721875
transcript.pyannote[472].speaker SPEAKER_23
transcript.pyannote[472].start 5964.31409375
transcript.pyannote[472].end 5968.41471875
transcript.pyannote[473].speaker SPEAKER_23
transcript.pyannote[473].start 5968.60034375
transcript.pyannote[473].end 5968.70159375
transcript.pyannote[474].speaker SPEAKER_04
transcript.pyannote[474].start 5968.70159375
transcript.pyannote[474].end 5983.04534375
transcript.pyannote[475].speaker SPEAKER_23
transcript.pyannote[475].start 5968.76909375
transcript.pyannote[475].end 5968.80284375
transcript.pyannote[476].speaker SPEAKER_04
transcript.pyannote[476].start 5984.10846875
transcript.pyannote[476].end 5986.85909375
transcript.pyannote[477].speaker SPEAKER_04
transcript.pyannote[477].start 5987.38221875
transcript.pyannote[477].end 6007.88534375
transcript.pyannote[478].speaker SPEAKER_04
transcript.pyannote[478].start 6008.27346875
transcript.pyannote[478].end 6012.05346875
transcript.pyannote[479].speaker SPEAKER_04
transcript.pyannote[479].start 6012.40784375
transcript.pyannote[479].end 6013.75784375
transcript.pyannote[480].speaker SPEAKER_23
transcript.pyannote[480].start 6014.02784375
transcript.pyannote[480].end 6021.45284375
transcript.pyannote[481].speaker SPEAKER_23
transcript.pyannote[481].start 6021.94221875
transcript.pyannote[481].end 6029.18159375
transcript.pyannote[482].speaker SPEAKER_04
transcript.pyannote[482].start 6029.18159375
transcript.pyannote[482].end 6032.10096875
transcript.pyannote[483].speaker SPEAKER_04
transcript.pyannote[483].start 6032.42159375
transcript.pyannote[483].end 6035.69534375
transcript.pyannote[484].speaker SPEAKER_04
transcript.pyannote[484].start 6036.04971875
transcript.pyannote[484].end 6036.91034375
transcript.pyannote[485].speaker SPEAKER_04
transcript.pyannote[485].start 6037.38284375
transcript.pyannote[485].end 6039.82971875
transcript.pyannote[486].speaker SPEAKER_04
transcript.pyannote[486].start 6040.03221875
transcript.pyannote[486].end 6040.04909375
transcript.pyannote[487].speaker SPEAKER_13
transcript.pyannote[487].start 6040.04909375
transcript.pyannote[487].end 6040.06596875
transcript.pyannote[488].speaker SPEAKER_04
transcript.pyannote[488].start 6040.06596875
transcript.pyannote[488].end 6040.08284375
transcript.pyannote[489].speaker SPEAKER_23
transcript.pyannote[489].start 6040.08284375
transcript.pyannote[489].end 6040.23471875
transcript.pyannote[490].speaker SPEAKER_04
transcript.pyannote[490].start 6040.23471875
transcript.pyannote[490].end 6040.28534375
transcript.pyannote[491].speaker SPEAKER_23
transcript.pyannote[491].start 6040.48784375
transcript.pyannote[491].end 6041.17971875
transcript.pyannote[492].speaker SPEAKER_23
transcript.pyannote[492].start 6041.88846875
transcript.pyannote[492].end 6042.98534375
transcript.pyannote[493].speaker SPEAKER_23
transcript.pyannote[493].start 6043.22159375
transcript.pyannote[493].end 6043.40721875
transcript.pyannote[494].speaker SPEAKER_23
transcript.pyannote[494].start 6043.64346875
transcript.pyannote[494].end 6044.95971875
transcript.pyannote[495].speaker SPEAKER_27
transcript.pyannote[495].start 6045.46596875
transcript.pyannote[495].end 6051.49034375
transcript.pyannote[496].speaker SPEAKER_04
transcript.pyannote[496].start 6050.59596875
transcript.pyannote[496].end 6054.44346875
transcript.pyannote[497].speaker SPEAKER_27
transcript.pyannote[497].start 6053.36346875
transcript.pyannote[497].end 6065.14221875
transcript.pyannote[498].speaker SPEAKER_04
transcript.pyannote[498].start 6062.44221875
transcript.pyannote[498].end 6074.62596875
transcript.pyannote[499].speaker SPEAKER_27
transcript.pyannote[499].start 6075.18284375
transcript.pyannote[499].end 6097.69409375
transcript.pyannote[500].speaker SPEAKER_04
transcript.pyannote[500].start 6094.85909375
transcript.pyannote[500].end 6099.21284375
transcript.pyannote[501].speaker SPEAKER_23
transcript.pyannote[501].start 6099.43221875
transcript.pyannote[501].end 6112.02096875
transcript.pyannote[502].speaker SPEAKER_04
transcript.pyannote[502].start 6112.02096875
transcript.pyannote[502].end 6113.67471875
transcript.pyannote[503].speaker SPEAKER_04
transcript.pyannote[503].start 6113.89409375
transcript.pyannote[503].end 6115.69971875
transcript.pyannote[504].speaker SPEAKER_04
transcript.pyannote[504].start 6115.76721875
transcript.pyannote[504].end 6118.26471875
transcript.pyannote[505].speaker SPEAKER_04
transcript.pyannote[505].start 6119.20971875
transcript.pyannote[505].end 6121.87596875
transcript.pyannote[506].speaker SPEAKER_23
transcript.pyannote[506].start 6123.04034375
transcript.pyannote[506].end 6143.99909375
transcript.pyannote[507].speaker SPEAKER_04
transcript.pyannote[507].start 6142.27784375
transcript.pyannote[507].end 6142.75034375
transcript.pyannote[508].speaker SPEAKER_04
transcript.pyannote[508].start 6143.74596875
transcript.pyannote[508].end 6146.59784375
transcript.pyannote[509].speaker SPEAKER_04
transcript.pyannote[509].start 6146.71596875
transcript.pyannote[509].end 6156.89159375
transcript.pyannote[510].speaker SPEAKER_04
transcript.pyannote[510].start 6157.14471875
transcript.pyannote[510].end 6159.77721875
transcript.pyannote[511].speaker SPEAKER_04
transcript.pyannote[511].start 6160.48596875
transcript.pyannote[511].end 6163.87784375
transcript.pyannote[512].speaker SPEAKER_04
transcript.pyannote[512].start 6164.67096875
transcript.pyannote[512].end 6168.45096875
transcript.pyannote[513].speaker SPEAKER_04
transcript.pyannote[513].start 6168.77159375
transcript.pyannote[513].end 6179.67284375
transcript.pyannote[514].speaker SPEAKER_31
transcript.pyannote[514].start 6175.60596875
transcript.pyannote[514].end 6175.62284375
transcript.pyannote[515].speaker SPEAKER_23
transcript.pyannote[515].start 6175.62284375
transcript.pyannote[515].end 6176.07846875
transcript.pyannote[516].speaker SPEAKER_23
transcript.pyannote[516].start 6179.67284375
transcript.pyannote[516].end 6187.01346875
transcript.pyannote[517].speaker SPEAKER_04
transcript.pyannote[517].start 6179.92596875
transcript.pyannote[517].end 6180.56721875
transcript.pyannote[518].speaker SPEAKER_04
transcript.pyannote[518].start 6181.02284375
transcript.pyannote[518].end 6181.29284375
transcript.pyannote[519].speaker SPEAKER_04
transcript.pyannote[519].start 6185.81534375
transcript.pyannote[519].end 6207.11159375
transcript.pyannote[520].speaker SPEAKER_04
transcript.pyannote[520].start 6207.98909375
transcript.pyannote[520].end 6208.51221875
transcript.pyannote[521].speaker SPEAKER_04
transcript.pyannote[521].start 6208.69784375
transcript.pyannote[521].end 6218.83971875
transcript.pyannote[522].speaker SPEAKER_04
transcript.pyannote[522].start 6219.16034375
transcript.pyannote[522].end 6238.07721875
transcript.pyannote[523].speaker SPEAKER_00
transcript.pyannote[523].start 6237.23346875
transcript.pyannote[523].end 6237.25034375
transcript.pyannote[524].speaker SPEAKER_31
transcript.pyannote[524].start 6237.48659375
transcript.pyannote[524].end 6237.55409375
transcript.pyannote[525].speaker SPEAKER_04
transcript.pyannote[525].start 6238.83659375
transcript.pyannote[525].end 6241.14846875
transcript.pyannote[526].speaker SPEAKER_04
transcript.pyannote[526].start 6241.80659375
transcript.pyannote[526].end 6249.19784375
transcript.pyannote[527].speaker SPEAKER_01
transcript.pyannote[527].start 6249.19784375
transcript.pyannote[527].end 6249.36659375
transcript.pyannote[528].speaker SPEAKER_23
transcript.pyannote[528].start 6249.36659375
transcript.pyannote[528].end 6249.40034375
transcript.pyannote[529].speaker SPEAKER_01
transcript.pyannote[529].start 6249.40034375
transcript.pyannote[529].end 6249.46784375
transcript.pyannote[530].speaker SPEAKER_04
transcript.pyannote[530].start 6249.46784375
transcript.pyannote[530].end 6253.63596875
transcript.pyannote[531].speaker SPEAKER_01
transcript.pyannote[531].start 6250.78409375
transcript.pyannote[531].end 6250.80096875
transcript.pyannote[532].speaker SPEAKER_23
transcript.pyannote[532].start 6250.80096875
transcript.pyannote[532].end 6251.59409375
transcript.pyannote[533].speaker SPEAKER_01
transcript.pyannote[533].start 6251.59409375
transcript.pyannote[533].end 6251.61096875
transcript.pyannote[534].speaker SPEAKER_23
transcript.pyannote[534].start 6251.61096875
transcript.pyannote[534].end 6251.62784375
transcript.pyannote[535].speaker SPEAKER_23
transcript.pyannote[535].start 6253.88909375
transcript.pyannote[535].end 6290.33909375
transcript.pyannote[536].speaker SPEAKER_04
transcript.pyannote[536].start 6290.87909375
transcript.pyannote[536].end 6299.83971875
transcript.pyannote[537].speaker SPEAKER_23
transcript.pyannote[537].start 6299.46846875
transcript.pyannote[537].end 6301.34159375
transcript.pyannote[538].speaker SPEAKER_04
transcript.pyannote[538].start 6301.81409375
transcript.pyannote[538].end 6308.10846875
transcript.pyannote[539].speaker SPEAKER_04
transcript.pyannote[539].start 6309.30659375
transcript.pyannote[539].end 6310.11659375
transcript.pyannote[540].speaker SPEAKER_04
transcript.pyannote[540].start 6310.33596875
transcript.pyannote[540].end 6312.39471875
transcript.pyannote[541].speaker SPEAKER_23
transcript.pyannote[541].start 6312.32721875
transcript.pyannote[541].end 6313.72784375
transcript.pyannote[542].speaker SPEAKER_04
transcript.pyannote[542].start 6313.66034375
transcript.pyannote[542].end 6324.49409375
transcript.pyannote[543].speaker SPEAKER_23
transcript.pyannote[543].start 6324.49409375
transcript.pyannote[543].end 6324.83159375
transcript.pyannote[544].speaker SPEAKER_04
transcript.pyannote[544].start 6325.18596875
transcript.pyannote[544].end 6326.68784375
transcript.pyannote[545].speaker SPEAKER_04
transcript.pyannote[545].start 6326.92409375
transcript.pyannote[545].end 6331.63221875
transcript.pyannote[546].speaker SPEAKER_04
transcript.pyannote[546].start 6332.18909375
transcript.pyannote[546].end 6336.22221875
transcript.pyannote[547].speaker SPEAKER_04
transcript.pyannote[547].start 6336.50909375
transcript.pyannote[547].end 6347.07284375
transcript.pyannote[548].speaker SPEAKER_04
transcript.pyannote[548].start 6347.76471875
transcript.pyannote[548].end 6348.03471875
transcript.pyannote[549].speaker SPEAKER_23
transcript.pyannote[549].start 6348.86159375
transcript.pyannote[549].end 6361.29846875
transcript.pyannote[550].speaker SPEAKER_04
transcript.pyannote[550].start 6361.63596875
transcript.pyannote[550].end 6363.69471875
transcript.pyannote[551].speaker SPEAKER_04
transcript.pyannote[551].start 6364.23471875
transcript.pyannote[551].end 6365.70284375
transcript.pyannote[552].speaker SPEAKER_23
transcript.pyannote[552].start 6365.34846875
transcript.pyannote[552].end 6366.91784375
transcript.pyannote[553].speaker SPEAKER_30
transcript.pyannote[553].start 6368.47034375
transcript.pyannote[553].end 6374.78159375
transcript.pyannote[554].speaker SPEAKER_30
transcript.pyannote[554].start 6375.77721875
transcript.pyannote[554].end 6378.34221875
transcript.pyannote[555].speaker SPEAKER_00
transcript.pyannote[555].start 6386.86409375
transcript.pyannote[555].end 6388.48409375
transcript.pyannote[556].speaker SPEAKER_30
transcript.pyannote[556].start 6388.63596875
transcript.pyannote[556].end 6389.46284375
transcript.pyannote[557].speaker SPEAKER_00
transcript.pyannote[557].start 6393.17534375
transcript.pyannote[557].end 6393.98534375
transcript.pyannote[558].speaker SPEAKER_23
transcript.pyannote[558].start 6393.98534375
transcript.pyannote[558].end 6394.03596875
transcript.pyannote[559].speaker SPEAKER_00
transcript.pyannote[559].start 6394.03596875
transcript.pyannote[559].end 6394.94721875
transcript.pyannote[560].speaker SPEAKER_00
transcript.pyannote[560].start 6395.18346875
transcript.pyannote[560].end 6402.33846875
transcript.pyannote[561].speaker SPEAKER_00
transcript.pyannote[561].start 6402.65909375
transcript.pyannote[561].end 6407.11409375
transcript.pyannote[562].speaker SPEAKER_00
transcript.pyannote[562].start 6407.31659375
transcript.pyannote[562].end 6408.93659375
transcript.pyannote[563].speaker SPEAKER_00
transcript.pyannote[563].start 6409.51034375
transcript.pyannote[563].end 6410.82659375
transcript.pyannote[564].speaker SPEAKER_00
transcript.pyannote[564].start 6410.86034375
transcript.pyannote[564].end 6412.48034375
transcript.pyannote[565].speaker SPEAKER_00
transcript.pyannote[565].start 6413.12159375
transcript.pyannote[565].end 6418.79159375
transcript.pyannote[566].speaker SPEAKER_23
transcript.pyannote[566].start 6418.92659375
transcript.pyannote[566].end 6420.44534375
transcript.pyannote[567].speaker SPEAKER_00
transcript.pyannote[567].start 6419.78721875
transcript.pyannote[567].end 6424.76534375
transcript.pyannote[568].speaker SPEAKER_00
transcript.pyannote[568].start 6425.38971875
transcript.pyannote[568].end 6426.38534375
transcript.pyannote[569].speaker SPEAKER_23
transcript.pyannote[569].start 6426.77346875
transcript.pyannote[569].end 6433.72596875
transcript.pyannote[570].speaker SPEAKER_00
transcript.pyannote[570].start 6433.72596875
transcript.pyannote[570].end 6451.39409375
transcript.pyannote[571].speaker SPEAKER_23
transcript.pyannote[571].start 6451.42784375
transcript.pyannote[571].end 6464.96159375
transcript.pyannote[572].speaker SPEAKER_00
transcript.pyannote[572].start 6462.83534375
transcript.pyannote[572].end 6463.22346875
transcript.pyannote[573].speaker SPEAKER_00
transcript.pyannote[573].start 6464.62409375
transcript.pyannote[573].end 6470.26034375
transcript.pyannote[574].speaker SPEAKER_23
transcript.pyannote[574].start 6467.25659375
transcript.pyannote[574].end 6469.01159375
transcript.pyannote[575].speaker SPEAKER_23
transcript.pyannote[575].start 6470.26034375
transcript.pyannote[575].end 6471.93096875
transcript.pyannote[576].speaker SPEAKER_00
transcript.pyannote[576].start 6471.93096875
transcript.pyannote[576].end 6474.51284375
transcript.pyannote[577].speaker SPEAKER_23
transcript.pyannote[577].start 6474.51284375
transcript.pyannote[577].end 6475.23846875
transcript.pyannote[578].speaker SPEAKER_00
transcript.pyannote[578].start 6475.05284375
transcript.pyannote[578].end 6476.23409375
transcript.pyannote[579].speaker SPEAKER_23
transcript.pyannote[579].start 6475.93034375
transcript.pyannote[579].end 6480.03096875
transcript.pyannote[580].speaker SPEAKER_00
transcript.pyannote[580].start 6479.38971875
transcript.pyannote[580].end 6486.46034375
transcript.pyannote[581].speaker SPEAKER_23
transcript.pyannote[581].start 6486.78096875
transcript.pyannote[581].end 6492.28221875
transcript.pyannote[582].speaker SPEAKER_00
transcript.pyannote[582].start 6491.77596875
transcript.pyannote[582].end 6494.02034375
transcript.pyannote[583].speaker SPEAKER_00
transcript.pyannote[583].start 6494.44221875
transcript.pyannote[583].end 6497.00721875
transcript.pyannote[584].speaker SPEAKER_23
transcript.pyannote[584].start 6497.31096875
transcript.pyannote[584].end 6500.16284375
transcript.pyannote[585].speaker SPEAKER_00
transcript.pyannote[585].start 6497.66534375
transcript.pyannote[585].end 6498.27284375
transcript.pyannote[586].speaker SPEAKER_00
transcript.pyannote[586].start 6499.75784375
transcript.pyannote[586].end 6505.15784375
transcript.pyannote[587].speaker SPEAKER_23
transcript.pyannote[587].start 6505.15784375
transcript.pyannote[587].end 6513.15659375
transcript.pyannote[588].speaker SPEAKER_00
transcript.pyannote[588].start 6512.61659375
transcript.pyannote[588].end 6520.24409375
transcript.pyannote[589].speaker SPEAKER_23
transcript.pyannote[589].start 6520.71659375
transcript.pyannote[589].end 6531.55034375
transcript.pyannote[590].speaker SPEAKER_00
transcript.pyannote[590].start 6531.04409375
transcript.pyannote[590].end 6535.12784375
transcript.pyannote[591].speaker SPEAKER_23
transcript.pyannote[591].start 6535.12784375
transcript.pyannote[591].end 6545.43846875
transcript.pyannote[592].speaker SPEAKER_00
transcript.pyannote[592].start 6535.53284375
transcript.pyannote[592].end 6535.76909375
transcript.pyannote[593].speaker SPEAKER_00
transcript.pyannote[593].start 6535.98846875
transcript.pyannote[593].end 6536.19096875
transcript.pyannote[594].speaker SPEAKER_00
transcript.pyannote[594].start 6545.05034375
transcript.pyannote[594].end 6551.88471875
transcript.pyannote[595].speaker SPEAKER_23
transcript.pyannote[595].start 6552.17159375
transcript.pyannote[595].end 6562.31346875
transcript.pyannote[596].speaker SPEAKER_00
transcript.pyannote[596].start 6562.21221875
transcript.pyannote[596].end 6563.30909375
transcript.pyannote[597].speaker SPEAKER_00
transcript.pyannote[597].start 6563.83221875
transcript.pyannote[597].end 6565.97534375
transcript.pyannote[598].speaker SPEAKER_00
transcript.pyannote[598].start 6566.16096875
transcript.pyannote[598].end 6570.80159375
transcript.pyannote[599].speaker SPEAKER_00
transcript.pyannote[599].start 6571.02096875
transcript.pyannote[599].end 6572.48909375
transcript.pyannote[600].speaker SPEAKER_00
transcript.pyannote[600].start 6572.80971875
transcript.pyannote[600].end 6585.90471875
transcript.pyannote[601].speaker SPEAKER_23
transcript.pyannote[601].start 6585.90471875
transcript.pyannote[601].end 6594.13971875
transcript.pyannote[602].speaker SPEAKER_23
transcript.pyannote[602].start 6594.32534375
transcript.pyannote[602].end 6594.37596875
transcript.pyannote[603].speaker SPEAKER_00
transcript.pyannote[603].start 6594.61221875
transcript.pyannote[603].end 6626.48909375
transcript.pyannote[604].speaker SPEAKER_23
transcript.pyannote[604].start 6597.41346875
transcript.pyannote[604].end 6597.73409375
transcript.pyannote[605].speaker SPEAKER_23
transcript.pyannote[605].start 6598.84784375
transcript.pyannote[605].end 6599.01659375
transcript.pyannote[606].speaker SPEAKER_23
transcript.pyannote[606].start 6627.04596875
transcript.pyannote[606].end 6632.54721875
transcript.pyannote[607].speaker SPEAKER_00
transcript.pyannote[607].start 6632.68221875
transcript.pyannote[607].end 6639.04409375
transcript.pyannote[608].speaker SPEAKER_23
transcript.pyannote[608].start 6636.15846875
transcript.pyannote[608].end 6636.96846875
transcript.pyannote[609].speaker SPEAKER_00
transcript.pyannote[609].start 6639.16221875
transcript.pyannote[609].end 6645.42284375
transcript.pyannote[610].speaker SPEAKER_23
transcript.pyannote[610].start 6639.21284375
transcript.pyannote[610].end 6640.44471875
transcript.pyannote[611].speaker SPEAKER_23
transcript.pyannote[611].start 6644.32596875
transcript.pyannote[611].end 6644.37659375
transcript.pyannote[612].speaker SPEAKER_31
transcript.pyannote[612].start 6644.37659375
transcript.pyannote[612].end 6644.49471875
transcript.pyannote[613].speaker SPEAKER_31
transcript.pyannote[613].start 6644.59596875
transcript.pyannote[613].end 6644.96721875
transcript.pyannote[614].speaker SPEAKER_23
transcript.pyannote[614].start 6644.96721875
transcript.pyannote[614].end 6645.05159375
transcript.pyannote[615].speaker SPEAKER_00
transcript.pyannote[615].start 6648.88221875
transcript.pyannote[615].end 6651.17721875
transcript.pyannote[616].speaker SPEAKER_31
transcript.pyannote[616].start 6651.10971875
transcript.pyannote[616].end 6651.66659375
transcript.pyannote[617].speaker SPEAKER_00
transcript.pyannote[617].start 6651.53159375
transcript.pyannote[617].end 6659.93534375
transcript.pyannote[618].speaker SPEAKER_23
transcript.pyannote[618].start 6660.49221875
transcript.pyannote[618].end 6673.62096875
transcript.pyannote[619].speaker SPEAKER_00
transcript.pyannote[619].start 6662.97284375
transcript.pyannote[619].end 6663.41159375
transcript.pyannote[620].speaker SPEAKER_31
transcript.pyannote[620].start 6663.41159375
transcript.pyannote[620].end 6663.42846875
transcript.pyannote[621].speaker SPEAKER_00
transcript.pyannote[621].start 6672.82784375
transcript.pyannote[621].end 6672.97971875
transcript.pyannote[622].speaker SPEAKER_00
transcript.pyannote[622].start 6673.84034375
transcript.pyannote[622].end 6675.94971875
transcript.pyannote[623].speaker SPEAKER_23
transcript.pyannote[623].start 6676.32096875
transcript.pyannote[623].end 6680.35409375
transcript.pyannote[624].speaker SPEAKER_00
transcript.pyannote[624].start 6680.35409375
transcript.pyannote[624].end 6682.26096875
transcript.pyannote[625].speaker SPEAKER_00
transcript.pyannote[625].start 6682.64909375
transcript.pyannote[625].end 6685.24784375
transcript.pyannote[626].speaker SPEAKER_23
transcript.pyannote[626].start 6685.31534375
transcript.pyannote[626].end 6693.14534375
transcript.pyannote[627].speaker SPEAKER_00
transcript.pyannote[627].start 6693.87096875
transcript.pyannote[627].end 6698.25846875
transcript.pyannote[628].speaker SPEAKER_23
transcript.pyannote[628].start 6700.13159375
transcript.pyannote[628].end 6700.70534375
transcript.pyannote[629].speaker SPEAKER_00
transcript.pyannote[629].start 6700.70534375
transcript.pyannote[629].end 6706.00409375
transcript.pyannote[630].speaker SPEAKER_23
transcript.pyannote[630].start 6700.72221875
transcript.pyannote[630].end 6701.00909375
transcript.pyannote[631].speaker SPEAKER_23
transcript.pyannote[631].start 6703.42221875
transcript.pyannote[631].end 6704.33346875
transcript.pyannote[632].speaker SPEAKER_23
transcript.pyannote[632].start 6705.54846875
transcript.pyannote[632].end 6705.90284375
transcript.pyannote[633].speaker SPEAKER_00
transcript.pyannote[633].start 6706.22346875
transcript.pyannote[633].end 6707.15159375
transcript.pyannote[634].speaker SPEAKER_23
transcript.pyannote[634].start 6706.34159375
transcript.pyannote[634].end 6712.26471875
transcript.pyannote[635].speaker SPEAKER_00
transcript.pyannote[635].start 6707.16846875
transcript.pyannote[635].end 6707.18534375
transcript.pyannote[636].speaker SPEAKER_00
transcript.pyannote[636].start 6712.21409375
transcript.pyannote[636].end 6715.36971875
transcript.pyannote[637].speaker SPEAKER_23
transcript.pyannote[637].start 6715.18409375
transcript.pyannote[637].end 6723.13221875
transcript.pyannote[638].speaker SPEAKER_00
transcript.pyannote[638].start 6723.13221875
transcript.pyannote[638].end 6723.30096875
transcript.pyannote[639].speaker SPEAKER_23
transcript.pyannote[639].start 6723.30096875
transcript.pyannote[639].end 6724.41471875
transcript.pyannote[640].speaker SPEAKER_23
transcript.pyannote[640].start 6724.81971875
transcript.pyannote[640].end 6758.97471875
transcript.pyannote[641].speaker SPEAKER_00
transcript.pyannote[641].start 6758.38409375
transcript.pyannote[641].end 6761.32034375
transcript.pyannote[642].speaker SPEAKER_00
transcript.pyannote[642].start 6761.91096875
transcript.pyannote[642].end 6762.55221875
transcript.pyannote[643].speaker SPEAKER_00
transcript.pyannote[643].start 6762.56909375
transcript.pyannote[643].end 6762.58596875
transcript.pyannote[644].speaker SPEAKER_23
transcript.pyannote[644].start 6762.58596875
transcript.pyannote[644].end 6763.66596875
transcript.pyannote[645].speaker SPEAKER_00
transcript.pyannote[645].start 6763.66596875
transcript.pyannote[645].end 6769.97721875
transcript.pyannote[646].speaker SPEAKER_23
transcript.pyannote[646].start 6770.26409375
transcript.pyannote[646].end 6784.42221875
transcript.pyannote[647].speaker SPEAKER_00
transcript.pyannote[647].start 6782.16096875
transcript.pyannote[647].end 6782.26221875
transcript.pyannote[648].speaker SPEAKER_00
transcript.pyannote[648].start 6782.95409375
transcript.pyannote[648].end 6783.13971875
transcript.pyannote[649].speaker SPEAKER_00
transcript.pyannote[649].start 6784.11846875
transcript.pyannote[649].end 6815.47221875
transcript.pyannote[650].speaker SPEAKER_05
transcript.pyannote[650].start 6813.17721875
transcript.pyannote[650].end 6813.22784375
transcript.pyannote[651].speaker SPEAKER_00
transcript.pyannote[651].start 6816.13034375
transcript.pyannote[651].end 6821.12534375
transcript.pyannote[652].speaker SPEAKER_23
transcript.pyannote[652].start 6821.78346875
transcript.pyannote[652].end 6830.40659375
transcript.pyannote[653].speaker SPEAKER_00
transcript.pyannote[653].start 6828.12846875
transcript.pyannote[653].end 6838.25346875
transcript.pyannote[654].speaker SPEAKER_23
transcript.pyannote[654].start 6838.30409375
transcript.pyannote[654].end 6842.97846875
transcript.pyannote[655].speaker SPEAKER_00
transcript.pyannote[655].start 6842.23596875
transcript.pyannote[655].end 6848.19284375
transcript.pyannote[656].speaker SPEAKER_23
transcript.pyannote[656].start 6847.06221875
transcript.pyannote[656].end 6855.29721875
transcript.pyannote[657].speaker SPEAKER_00
transcript.pyannote[657].start 6854.77409375
transcript.pyannote[657].end 6855.34784375
transcript.pyannote[658].speaker SPEAKER_00
transcript.pyannote[658].start 6855.76971875
transcript.pyannote[658].end 6864.34221875
transcript.pyannote[659].speaker SPEAKER_23
transcript.pyannote[659].start 6856.59659375
transcript.pyannote[659].end 6856.76534375
transcript.pyannote[660].speaker SPEAKER_23
transcript.pyannote[660].start 6860.74784375
transcript.pyannote[660].end 6860.83221875
transcript.pyannote[661].speaker SPEAKER_23
transcript.pyannote[661].start 6862.63784375
transcript.pyannote[661].end 6864.79784375
transcript.pyannote[662].speaker SPEAKER_30
transcript.pyannote[662].start 6865.99596875
transcript.pyannote[662].end 6868.81409375
transcript.pyannote[663].speaker SPEAKER_30
transcript.pyannote[663].start 6870.61971875
transcript.pyannote[663].end 6871.22721875
transcript.pyannote[664].speaker SPEAKER_30
transcript.pyannote[664].start 6876.01971875
transcript.pyannote[664].end 6876.49221875
transcript.pyannote[665].speaker SPEAKER_30
transcript.pyannote[665].start 6881.52096875
transcript.pyannote[665].end 6883.57971875
transcript.pyannote[666].speaker SPEAKER_35
transcript.pyannote[666].start 6887.84909375
transcript.pyannote[666].end 6889.03034375
transcript.pyannote[667].speaker SPEAKER_30
transcript.pyannote[667].start 6891.24096875
transcript.pyannote[667].end 6891.35909375
transcript.pyannote[668].speaker SPEAKER_30
transcript.pyannote[668].start 6891.73034375
transcript.pyannote[668].end 6892.27034375
transcript.pyannote[669].speaker SPEAKER_23
transcript.pyannote[669].start 6892.97909375
transcript.pyannote[669].end 6893.82284375
transcript.pyannote[670].speaker SPEAKER_35
transcript.pyannote[670].start 6896.15159375
transcript.pyannote[670].end 6899.20596875
transcript.pyannote[671].speaker SPEAKER_35
transcript.pyannote[671].start 6899.62784375
transcript.pyannote[671].end 6902.68221875
transcript.pyannote[672].speaker SPEAKER_35
transcript.pyannote[672].start 6903.18846875
transcript.pyannote[672].end 6904.30221875
transcript.pyannote[673].speaker SPEAKER_35
transcript.pyannote[673].start 6904.89284375
transcript.pyannote[673].end 6905.75346875
transcript.pyannote[674].speaker SPEAKER_35
transcript.pyannote[674].start 6906.17534375
transcript.pyannote[674].end 6907.45784375
transcript.pyannote[675].speaker SPEAKER_35
transcript.pyannote[675].start 6907.81221875
transcript.pyannote[675].end 6910.54596875
transcript.pyannote[676].speaker SPEAKER_23
transcript.pyannote[676].start 6910.76534375
transcript.pyannote[676].end 6923.23596875
transcript.pyannote[677].speaker SPEAKER_35
transcript.pyannote[677].start 6923.69159375
transcript.pyannote[677].end 6924.65346875
transcript.pyannote[678].speaker SPEAKER_23
transcript.pyannote[678].start 6923.79284375
transcript.pyannote[678].end 6924.11346875
transcript.pyannote[679].speaker SPEAKER_23
transcript.pyannote[679].start 6924.16409375
transcript.pyannote[679].end 6924.18096875
transcript.pyannote[680].speaker SPEAKER_23
transcript.pyannote[680].start 6924.46784375
transcript.pyannote[680].end 6924.48471875
transcript.pyannote[681].speaker SPEAKER_23
transcript.pyannote[681].start 6924.50159375
transcript.pyannote[681].end 6924.78846875
transcript.pyannote[682].speaker SPEAKER_35
transcript.pyannote[682].start 6924.70409375
transcript.pyannote[682].end 6925.54784375
transcript.pyannote[683].speaker SPEAKER_23
transcript.pyannote[683].start 6925.93596875
transcript.pyannote[683].end 6931.28534375
transcript.pyannote[684].speaker SPEAKER_35
transcript.pyannote[684].start 6931.43721875
transcript.pyannote[684].end 6931.96034375
transcript.pyannote[685].speaker SPEAKER_23
transcript.pyannote[685].start 6932.60159375
transcript.pyannote[685].end 6935.79096875
transcript.pyannote[686].speaker SPEAKER_35
transcript.pyannote[686].start 6935.57159375
transcript.pyannote[686].end 6938.49096875
transcript.pyannote[687].speaker SPEAKER_23
transcript.pyannote[687].start 6939.68909375
transcript.pyannote[687].end 6939.90846875
transcript.pyannote[688].speaker SPEAKER_35
transcript.pyannote[688].start 6940.49909375
transcript.pyannote[688].end 6941.27534375
transcript.pyannote[689].speaker SPEAKER_35
transcript.pyannote[689].start 6942.27096875
transcript.pyannote[689].end 6942.99659375
transcript.pyannote[690].speaker SPEAKER_35
transcript.pyannote[690].start 6945.46034375
transcript.pyannote[690].end 6946.16909375
transcript.pyannote[691].speaker SPEAKER_35
transcript.pyannote[691].start 6946.48971875
transcript.pyannote[691].end 6947.14784375
transcript.pyannote[692].speaker SPEAKER_35
transcript.pyannote[692].start 6947.55284375
transcript.pyannote[692].end 6949.69596875
transcript.pyannote[693].speaker SPEAKER_35
transcript.pyannote[693].start 6950.03346875
transcript.pyannote[693].end 6952.14284375
transcript.pyannote[694].speaker SPEAKER_35
transcript.pyannote[694].start 6953.20596875
transcript.pyannote[694].end 6954.35346875
transcript.pyannote[695].speaker SPEAKER_35
transcript.pyannote[695].start 6954.97784375
transcript.pyannote[695].end 6956.02409375
transcript.pyannote[696].speaker SPEAKER_35
transcript.pyannote[696].start 6957.94784375
transcript.pyannote[696].end 6960.91784375
transcript.pyannote[697].speaker SPEAKER_35
transcript.pyannote[697].start 6961.62659375
transcript.pyannote[697].end 6962.74034375
transcript.pyannote[698].speaker SPEAKER_35
transcript.pyannote[698].start 6965.37284375
transcript.pyannote[698].end 6966.16596875
transcript.pyannote[699].speaker SPEAKER_35
transcript.pyannote[699].start 6966.65534375
transcript.pyannote[699].end 6967.95471875
transcript.pyannote[700].speaker SPEAKER_35
transcript.pyannote[700].start 6968.49471875
transcript.pyannote[700].end 6969.15284375
transcript.pyannote[701].speaker SPEAKER_35
transcript.pyannote[701].start 6971.63346875
transcript.pyannote[701].end 6972.40971875
transcript.pyannote[702].speaker SPEAKER_35
transcript.pyannote[702].start 6974.58659375
transcript.pyannote[702].end 6975.44721875
transcript.pyannote[703].speaker SPEAKER_35
transcript.pyannote[703].start 6975.73409375
transcript.pyannote[703].end 6977.01659375
transcript.pyannote[704].speaker SPEAKER_35
transcript.pyannote[704].start 6977.38784375
transcript.pyannote[704].end 6978.72096875
transcript.pyannote[705].speaker SPEAKER_35
transcript.pyannote[705].start 6979.91909375
transcript.pyannote[705].end 6982.43346875
transcript.pyannote[706].speaker SPEAKER_35
transcript.pyannote[706].start 6985.20096875
transcript.pyannote[706].end 6986.23034375
transcript.pyannote[707].speaker SPEAKER_35
transcript.pyannote[707].start 6986.28096875
transcript.pyannote[707].end 6986.29784375
transcript.pyannote[708].speaker SPEAKER_23
transcript.pyannote[708].start 6986.29784375
transcript.pyannote[708].end 7029.81846875
transcript.pyannote[709].speaker SPEAKER_35
transcript.pyannote[709].start 7031.97846875
transcript.pyannote[709].end 7035.80909375
transcript.pyannote[710].speaker SPEAKER_35
transcript.pyannote[710].start 7035.89346875
transcript.pyannote[710].end 7035.94409375
transcript.pyannote[711].speaker SPEAKER_35
transcript.pyannote[711].start 7036.02846875
transcript.pyannote[711].end 7037.96909375
transcript.pyannote[712].speaker SPEAKER_35
transcript.pyannote[712].start 7038.34034375
transcript.pyannote[712].end 7038.86346875
transcript.pyannote[713].speaker SPEAKER_35
transcript.pyannote[713].start 7039.48784375
transcript.pyannote[713].end 7040.16284375
transcript.pyannote[714].speaker SPEAKER_35
transcript.pyannote[714].start 7040.90534375
transcript.pyannote[714].end 7042.49159375
transcript.pyannote[715].speaker SPEAKER_31
transcript.pyannote[715].start 7042.49159375
transcript.pyannote[715].end 7042.77846875
transcript.pyannote[716].speaker SPEAKER_35
transcript.pyannote[716].start 7042.77846875
transcript.pyannote[716].end 7053.15659375
transcript.pyannote[717].speaker SPEAKER_35
transcript.pyannote[717].start 7053.47721875
transcript.pyannote[717].end 7057.18971875
transcript.pyannote[718].speaker SPEAKER_35
transcript.pyannote[718].start 7057.59471875
transcript.pyannote[718].end 7091.04096875
transcript.pyannote[719].speaker SPEAKER_00
transcript.pyannote[719].start 7076.64659375
transcript.pyannote[719].end 7077.82784375
transcript.pyannote[720].speaker SPEAKER_35
transcript.pyannote[720].start 7092.00284375
transcript.pyannote[720].end 7102.95471875
transcript.pyannote[721].speaker SPEAKER_35
transcript.pyannote[721].start 7103.93346875
transcript.pyannote[721].end 7147.96034375
transcript.pyannote[722].speaker SPEAKER_35
transcript.pyannote[722].start 7148.34846875
transcript.pyannote[722].end 7149.24284375
transcript.pyannote[723].speaker SPEAKER_35
transcript.pyannote[723].start 7149.36096875
transcript.pyannote[723].end 7169.91471875
transcript.pyannote[724].speaker SPEAKER_23
transcript.pyannote[724].start 7156.66784375
transcript.pyannote[724].end 7157.79846875
transcript.pyannote[725].speaker SPEAKER_23
transcript.pyannote[725].start 7169.91471875
transcript.pyannote[725].end 7170.30284375
transcript.pyannote[726].speaker SPEAKER_35
transcript.pyannote[726].start 7170.15096875
transcript.pyannote[726].end 7171.99034375
transcript.pyannote[727].speaker SPEAKER_35
transcript.pyannote[727].start 7172.61471875
transcript.pyannote[727].end 7210.12784375
transcript.pyannote[728].speaker SPEAKER_35
transcript.pyannote[728].start 7211.42721875
transcript.pyannote[728].end 7218.66659375
transcript.pyannote[729].speaker SPEAKER_35
transcript.pyannote[729].start 7219.66221875
transcript.pyannote[729].end 7222.93596875
transcript.pyannote[730].speaker SPEAKER_35
transcript.pyannote[730].start 7223.29034375
transcript.pyannote[730].end 7224.52221875
transcript.pyannote[731].speaker SPEAKER_35
transcript.pyannote[731].start 7225.11284375
transcript.pyannote[731].end 7226.49659375
transcript.pyannote[732].speaker SPEAKER_35
transcript.pyannote[732].start 7226.83409375
transcript.pyannote[732].end 7227.84659375
transcript.pyannote[733].speaker SPEAKER_35
transcript.pyannote[733].start 7228.15034375
transcript.pyannote[733].end 7229.68596875
transcript.pyannote[734].speaker SPEAKER_35
transcript.pyannote[734].start 7230.46221875
transcript.pyannote[734].end 7231.10346875
transcript.pyannote[735].speaker SPEAKER_23
transcript.pyannote[735].start 7231.10346875
transcript.pyannote[735].end 7280.04096875
transcript.pyannote[736].speaker SPEAKER_35
transcript.pyannote[736].start 7280.19284375
transcript.pyannote[736].end 7282.20096875
transcript.pyannote[737].speaker SPEAKER_23
transcript.pyannote[737].start 7282.90971875
transcript.pyannote[737].end 7290.11534375
transcript.pyannote[738].speaker SPEAKER_35
transcript.pyannote[738].start 7284.71534375
transcript.pyannote[738].end 7285.12034375
transcript.pyannote[739].speaker SPEAKER_35
transcript.pyannote[739].start 7286.65596875
transcript.pyannote[739].end 7287.55034375
transcript.pyannote[740].speaker SPEAKER_35
transcript.pyannote[740].start 7288.14096875
transcript.pyannote[740].end 7288.54596875
transcript.pyannote[741].speaker SPEAKER_35
transcript.pyannote[741].start 7290.19971875
transcript.pyannote[741].end 7302.88971875
transcript.pyannote[742].speaker SPEAKER_35
transcript.pyannote[742].start 7303.75034375
transcript.pyannote[742].end 7314.83721875
transcript.pyannote[743].speaker SPEAKER_31
transcript.pyannote[743].start 7309.65659375
transcript.pyannote[743].end 7310.02784375
transcript.pyannote[744].speaker SPEAKER_23
transcript.pyannote[744].start 7310.02784375
transcript.pyannote[744].end 7310.04471875
transcript.pyannote[745].speaker SPEAKER_35
transcript.pyannote[745].start 7315.15784375
transcript.pyannote[745].end 7316.20409375
transcript.pyannote[746].speaker SPEAKER_23
transcript.pyannote[746].start 7316.33909375
transcript.pyannote[746].end 7316.76096875
transcript.pyannote[747].speaker SPEAKER_35
transcript.pyannote[747].start 7317.11534375
transcript.pyannote[747].end 7318.00971875
transcript.pyannote[748].speaker SPEAKER_23
transcript.pyannote[748].start 7318.34721875
transcript.pyannote[748].end 7332.15096875
transcript.pyannote[749].speaker SPEAKER_35
transcript.pyannote[749].start 7319.25846875
transcript.pyannote[749].end 7319.27534375
transcript.pyannote[750].speaker SPEAKER_35
transcript.pyannote[750].start 7332.08346875
transcript.pyannote[750].end 7338.66471875
transcript.pyannote[751].speaker SPEAKER_23
transcript.pyannote[751].start 7336.75784375
transcript.pyannote[751].end 7337.16284375
transcript.pyannote[752].speaker SPEAKER_35
transcript.pyannote[752].start 7338.98534375
transcript.pyannote[752].end 7339.86284375
transcript.pyannote[753].speaker SPEAKER_23
transcript.pyannote[753].start 7339.17096875
transcript.pyannote[753].end 7339.49159375
transcript.pyannote[754].speaker SPEAKER_23
transcript.pyannote[754].start 7339.86284375
transcript.pyannote[754].end 7339.87971875
transcript.pyannote[755].speaker SPEAKER_35
transcript.pyannote[755].start 7339.87971875
transcript.pyannote[755].end 7339.89659375
transcript.pyannote[756].speaker SPEAKER_23
transcript.pyannote[756].start 7339.89659375
transcript.pyannote[756].end 7346.88284375
transcript.pyannote[757].speaker SPEAKER_35
transcript.pyannote[757].start 7339.96409375
transcript.pyannote[757].end 7341.39846875
transcript.pyannote[758].speaker SPEAKER_35
transcript.pyannote[758].start 7341.66846875
transcript.pyannote[758].end 7342.15784375
transcript.pyannote[759].speaker SPEAKER_35
transcript.pyannote[759].start 7344.77346875
transcript.pyannote[759].end 7345.12784375
transcript.pyannote[760].speaker SPEAKER_35
transcript.pyannote[760].start 7346.34284375
transcript.pyannote[760].end 7347.97971875
transcript.pyannote[761].speaker SPEAKER_35
transcript.pyannote[761].start 7348.26659375
transcript.pyannote[761].end 7350.78096875
transcript.pyannote[762].speaker SPEAKER_35
transcript.pyannote[762].start 7351.30409375
transcript.pyannote[762].end 7354.07159375
transcript.pyannote[763].speaker SPEAKER_35
transcript.pyannote[763].start 7354.29096875
transcript.pyannote[763].end 7354.66221875
transcript.pyannote[764].speaker SPEAKER_35
transcript.pyannote[764].start 7355.55659375
transcript.pyannote[764].end 7360.48409375
transcript.pyannote[765].speaker SPEAKER_35
transcript.pyannote[765].start 7361.37846875
transcript.pyannote[765].end 7362.12096875
transcript.pyannote[766].speaker SPEAKER_23
transcript.pyannote[766].start 7362.57659375
transcript.pyannote[766].end 7364.02784375
transcript.pyannote[767].speaker SPEAKER_35
transcript.pyannote[767].start 7363.18409375
transcript.pyannote[767].end 7381.45971875
transcript.pyannote[768].speaker SPEAKER_23
transcript.pyannote[768].start 7366.45784375
transcript.pyannote[768].end 7366.47471875
transcript.pyannote[769].speaker SPEAKER_23
transcript.pyannote[769].start 7366.74471875
transcript.pyannote[769].end 7367.20034375
transcript.pyannote[770].speaker SPEAKER_23
transcript.pyannote[770].start 7382.03346875
transcript.pyannote[770].end 7383.40034375
transcript.pyannote[771].speaker SPEAKER_35
transcript.pyannote[771].start 7382.59034375
transcript.pyannote[771].end 7384.73346875
transcript.pyannote[772].speaker SPEAKER_35
transcript.pyannote[772].start 7385.12159375
transcript.pyannote[772].end 7385.74596875
transcript.pyannote[773].speaker SPEAKER_35
transcript.pyannote[773].start 7386.15096875
transcript.pyannote[773].end 7389.35721875
transcript.pyannote[774].speaker SPEAKER_35
transcript.pyannote[774].start 7389.82971875
transcript.pyannote[774].end 7390.77471875
transcript.pyannote[775].speaker SPEAKER_35
transcript.pyannote[775].start 7391.33159375
transcript.pyannote[775].end 7391.82096875
transcript.pyannote[776].speaker SPEAKER_35
transcript.pyannote[776].start 7392.15846875
transcript.pyannote[776].end 7395.78659375
transcript.pyannote[777].speaker SPEAKER_35
transcript.pyannote[777].start 7396.00596875
transcript.pyannote[777].end 7397.89596875
transcript.pyannote[778].speaker SPEAKER_35
transcript.pyannote[778].start 7398.11534375
transcript.pyannote[778].end 7405.74284375
transcript.pyannote[779].speaker SPEAKER_35
transcript.pyannote[779].start 7406.01284375
transcript.pyannote[779].end 7414.90596875
transcript.pyannote[780].speaker SPEAKER_35
transcript.pyannote[780].start 7415.49659375
transcript.pyannote[780].end 7417.42034375
transcript.pyannote[781].speaker SPEAKER_35
transcript.pyannote[781].start 7417.77471875
transcript.pyannote[781].end 7424.86221875
transcript.pyannote[782].speaker SPEAKER_35
transcript.pyannote[782].start 7425.50346875
transcript.pyannote[782].end 7432.37159375
transcript.pyannote[783].speaker SPEAKER_35
transcript.pyannote[783].start 7432.89471875
transcript.pyannote[783].end 7434.14346875
transcript.pyannote[784].speaker SPEAKER_31
transcript.pyannote[784].start 7434.31221875
transcript.pyannote[784].end 7434.90284375
transcript.pyannote[785].speaker SPEAKER_35
transcript.pyannote[785].start 7435.12221875
transcript.pyannote[785].end 7436.60721875
transcript.pyannote[786].speaker SPEAKER_35
transcript.pyannote[786].start 7436.87721875
transcript.pyannote[786].end 7438.58159375
transcript.pyannote[787].speaker SPEAKER_35
transcript.pyannote[787].start 7438.59846875
transcript.pyannote[787].end 7447.33971875
transcript.pyannote[788].speaker SPEAKER_35
transcript.pyannote[788].start 7447.81221875
transcript.pyannote[788].end 7458.00471875
transcript.pyannote[789].speaker SPEAKER_35
transcript.pyannote[789].start 7458.39284375
transcript.pyannote[789].end 7459.38846875
transcript.pyannote[790].speaker SPEAKER_23
transcript.pyannote[790].start 7459.38846875
transcript.pyannote[790].end 7475.53784375
transcript.pyannote[791].speaker SPEAKER_35
transcript.pyannote[791].start 7475.03159375
transcript.pyannote[791].end 7479.58784375
transcript.pyannote[792].speaker SPEAKER_23
transcript.pyannote[792].start 7477.83284375
transcript.pyannote[792].end 7478.69346875
transcript.pyannote[793].speaker SPEAKER_23
transcript.pyannote[793].start 7479.55409375
transcript.pyannote[793].end 7479.80721875
transcript.pyannote[794].speaker SPEAKER_35
transcript.pyannote[794].start 7479.67221875
transcript.pyannote[794].end 7488.21096875
transcript.pyannote[795].speaker SPEAKER_35
transcript.pyannote[795].start 7489.72971875
transcript.pyannote[795].end 7491.36659375
transcript.pyannote[796].speaker SPEAKER_35
transcript.pyannote[796].start 7491.38346875
transcript.pyannote[796].end 7491.40034375
transcript.pyannote[797].speaker SPEAKER_31
transcript.pyannote[797].start 7491.40034375
transcript.pyannote[797].end 7491.87284375
transcript.pyannote[798].speaker SPEAKER_35
transcript.pyannote[798].start 7491.87284375
transcript.pyannote[798].end 7492.21034375
transcript.pyannote[799].speaker SPEAKER_35
transcript.pyannote[799].start 7492.95284375
transcript.pyannote[799].end 7509.67596875
transcript.pyannote[800].speaker SPEAKER_31
transcript.pyannote[800].start 7501.35659375
transcript.pyannote[800].end 7501.54221875
transcript.pyannote[801].speaker SPEAKER_00
transcript.pyannote[801].start 7501.54221875
transcript.pyannote[801].end 7501.69409375
transcript.pyannote[802].speaker SPEAKER_23
transcript.pyannote[802].start 7504.61346875
transcript.pyannote[802].end 7504.88346875
transcript.pyannote[803].speaker SPEAKER_35
transcript.pyannote[803].start 7510.09784375
transcript.pyannote[803].end 7514.46846875
transcript.pyannote[804].speaker SPEAKER_23
transcript.pyannote[804].start 7511.81909375
transcript.pyannote[804].end 7512.40971875
transcript.pyannote[805].speaker SPEAKER_35
transcript.pyannote[805].start 7515.05909375
transcript.pyannote[805].end 7521.42096875
transcript.pyannote[806].speaker SPEAKER_35
transcript.pyannote[806].start 7521.85971875
transcript.pyannote[806].end 7525.63971875
transcript.pyannote[807].speaker SPEAKER_31
transcript.pyannote[807].start 7525.74096875
transcript.pyannote[807].end 7526.16284375
transcript.pyannote[808].speaker SPEAKER_35
transcript.pyannote[808].start 7526.16284375
transcript.pyannote[808].end 7527.05721875
transcript.pyannote[809].speaker SPEAKER_35
transcript.pyannote[809].start 7527.24284375
transcript.pyannote[809].end 7538.98784375
transcript.pyannote[810].speaker SPEAKER_35
transcript.pyannote[810].start 7539.42659375
transcript.pyannote[810].end 7540.69221875
transcript.pyannote[811].speaker SPEAKER_35
transcript.pyannote[811].start 7541.08034375
transcript.pyannote[811].end 7543.78034375
transcript.pyannote[812].speaker SPEAKER_35
transcript.pyannote[812].start 7545.31596875
transcript.pyannote[812].end 7547.05409375
transcript.pyannote[813].speaker SPEAKER_23
transcript.pyannote[813].start 7547.07096875
transcript.pyannote[813].end 7554.96846875
transcript.pyannote[814].speaker SPEAKER_23
transcript.pyannote[814].start 7555.27221875
transcript.pyannote[814].end 7580.16284375
transcript.pyannote[815].speaker SPEAKER_35
transcript.pyannote[815].start 7580.41596875
transcript.pyannote[815].end 7590.64221875
transcript.pyannote[816].speaker SPEAKER_23
transcript.pyannote[816].start 7584.44909375
transcript.pyannote[816].end 7585.42784375
transcript.pyannote[817].speaker SPEAKER_23
transcript.pyannote[817].start 7590.64221875
transcript.pyannote[817].end 7607.71971875
transcript.pyannote[818].speaker SPEAKER_35
transcript.pyannote[818].start 7595.01284375
transcript.pyannote[818].end 7595.26596875
transcript.pyannote[819].speaker SPEAKER_31
transcript.pyannote[819].start 7595.26596875
transcript.pyannote[819].end 7595.29971875
transcript.pyannote[820].speaker SPEAKER_35
transcript.pyannote[820].start 7596.21096875
transcript.pyannote[820].end 7596.44721875
transcript.pyannote[821].speaker SPEAKER_31
transcript.pyannote[821].start 7596.44721875
transcript.pyannote[821].end 7596.48096875
transcript.pyannote[822].speaker SPEAKER_35
transcript.pyannote[822].start 7607.71971875
transcript.pyannote[822].end 7614.45284375
transcript.pyannote[823].speaker SPEAKER_23
transcript.pyannote[823].start 7614.65534375
transcript.pyannote[823].end 7624.88159375
transcript.pyannote[824].speaker SPEAKER_35
transcript.pyannote[824].start 7625.79284375
transcript.pyannote[824].end 7629.84284375
transcript.pyannote[825].speaker SPEAKER_23
transcript.pyannote[825].start 7629.84284375
transcript.pyannote[825].end 7632.89721875
transcript.pyannote[826].speaker SPEAKER_35
transcript.pyannote[826].start 7629.85971875
transcript.pyannote[826].end 7630.01159375
transcript.pyannote[827].speaker SPEAKER_35
transcript.pyannote[827].start 7632.89721875
transcript.pyannote[827].end 7634.50034375
transcript.pyannote[828].speaker SPEAKER_23
transcript.pyannote[828].start 7634.50034375
transcript.pyannote[828].end 7650.66659375
transcript.pyannote[829].speaker SPEAKER_35
transcript.pyannote[829].start 7651.02096875
transcript.pyannote[829].end 7654.98659375
transcript.pyannote[830].speaker SPEAKER_23
transcript.pyannote[830].start 7654.98659375
transcript.pyannote[830].end 7655.13846875
transcript.pyannote[831].speaker SPEAKER_35
transcript.pyannote[831].start 7655.13846875
transcript.pyannote[831].end 7659.71159375
transcript.pyannote[832].speaker SPEAKER_37
transcript.pyannote[832].start 7659.71159375
transcript.pyannote[832].end 7659.79596875
transcript.pyannote[833].speaker SPEAKER_35
transcript.pyannote[833].start 7660.72409375
transcript.pyannote[833].end 7664.57159375
transcript.pyannote[834].speaker SPEAKER_37
transcript.pyannote[834].start 7664.57159375
transcript.pyannote[834].end 7664.87534375
transcript.pyannote[835].speaker SPEAKER_35
transcript.pyannote[835].start 7665.09471875
transcript.pyannote[835].end 7666.90034375
transcript.pyannote[836].speaker SPEAKER_35
transcript.pyannote[836].start 7667.33909375
transcript.pyannote[836].end 7690.00221875
transcript.pyannote[837].speaker SPEAKER_35
transcript.pyannote[837].start 7690.94721875
transcript.pyannote[837].end 7692.12846875
transcript.pyannote[838].speaker SPEAKER_35
transcript.pyannote[838].start 7692.75284375
transcript.pyannote[838].end 7693.17471875
transcript.pyannote[839].speaker SPEAKER_35
transcript.pyannote[839].start 7693.57971875
transcript.pyannote[839].end 7694.35596875
transcript.pyannote[840].speaker SPEAKER_37
transcript.pyannote[840].start 7695.72284375
transcript.pyannote[840].end 7715.26409375
transcript.pyannote[841].speaker SPEAKER_35
transcript.pyannote[841].start 7698.97971875
transcript.pyannote[841].end 7699.97534375
transcript.pyannote[842].speaker SPEAKER_00
transcript.pyannote[842].start 7699.97534375
transcript.pyannote[842].end 7700.00909375
transcript.pyannote[843].speaker SPEAKER_00
transcript.pyannote[843].start 7704.24471875
transcript.pyannote[843].end 7704.34596875
transcript.pyannote[844].speaker SPEAKER_31
transcript.pyannote[844].start 7704.34596875
transcript.pyannote[844].end 7704.48096875
transcript.pyannote[845].speaker SPEAKER_35
transcript.pyannote[845].start 7715.26409375
transcript.pyannote[845].end 7719.17909375
transcript.pyannote[846].speaker SPEAKER_31
transcript.pyannote[846].start 7719.11159375
transcript.pyannote[846].end 7719.12846875
transcript.pyannote[847].speaker SPEAKER_37
transcript.pyannote[847].start 7719.12846875
transcript.pyannote[847].end 7719.36471875
transcript.pyannote[848].speaker SPEAKER_31
transcript.pyannote[848].start 7719.36471875
transcript.pyannote[848].end 7719.43221875
transcript.pyannote[849].speaker SPEAKER_35
transcript.pyannote[849].start 7719.43221875
transcript.pyannote[849].end 7735.91909375
transcript.pyannote[850].speaker SPEAKER_31
transcript.pyannote[850].start 7719.48284375
transcript.pyannote[850].end 7719.49971875
transcript.pyannote[851].speaker SPEAKER_35
transcript.pyannote[851].start 7736.77971875
transcript.pyannote[851].end 7737.65721875
transcript.pyannote[852].speaker SPEAKER_37
transcript.pyannote[852].start 7737.65721875
transcript.pyannote[852].end 7743.00659375
transcript.pyannote[853].speaker SPEAKER_35
transcript.pyannote[853].start 7743.12471875
transcript.pyannote[853].end 7747.52909375
transcript.pyannote[854].speaker SPEAKER_37
transcript.pyannote[854].start 7747.66409375
transcript.pyannote[854].end 7747.96784375
transcript.pyannote[855].speaker SPEAKER_35
transcript.pyannote[855].start 7747.91721875
transcript.pyannote[855].end 7751.68034375
transcript.pyannote[856].speaker SPEAKER_35
transcript.pyannote[856].start 7752.05159375
transcript.pyannote[856].end 7754.00909375
transcript.pyannote[857].speaker SPEAKER_37
transcript.pyannote[857].start 7754.76846875
transcript.pyannote[857].end 7759.47659375
transcript.pyannote[858].speaker SPEAKER_35
transcript.pyannote[858].start 7760.08409375
transcript.pyannote[858].end 7762.22721875
transcript.pyannote[859].speaker SPEAKER_35
transcript.pyannote[859].start 7763.42534375
transcript.pyannote[859].end 7764.67409375
transcript.pyannote[860].speaker SPEAKER_30
transcript.pyannote[860].start 7764.80909375
transcript.pyannote[860].end 7764.82596875
transcript.pyannote[861].speaker SPEAKER_37
transcript.pyannote[861].start 7764.82596875
transcript.pyannote[861].end 7764.84284375
transcript.pyannote[862].speaker SPEAKER_30
transcript.pyannote[862].start 7764.84284375
transcript.pyannote[862].end 7764.85971875
transcript.pyannote[863].speaker SPEAKER_37
transcript.pyannote[863].start 7764.85971875
transcript.pyannote[863].end 7765.02846875
transcript.pyannote[864].speaker SPEAKER_35
transcript.pyannote[864].start 7765.02846875
transcript.pyannote[864].end 7765.53471875
transcript.pyannote[865].speaker SPEAKER_30
transcript.pyannote[865].start 7765.53471875
transcript.pyannote[865].end 7765.68659375
transcript.pyannote[866].speaker SPEAKER_35
transcript.pyannote[866].start 7765.75409375
transcript.pyannote[866].end 7766.96909375
transcript.pyannote[867].speaker SPEAKER_35
transcript.pyannote[867].start 7767.27284375
transcript.pyannote[867].end 7769.36534375
transcript.pyannote[868].speaker SPEAKER_30
transcript.pyannote[868].start 7769.95596875
transcript.pyannote[868].end 7772.06534375
transcript.pyannote[869].speaker SPEAKER_30
transcript.pyannote[869].start 7772.23409375
transcript.pyannote[869].end 7774.32659375
transcript.pyannote[870].speaker SPEAKER_36
transcript.pyannote[870].start 7782.94971875
transcript.pyannote[870].end 7786.05471875
transcript.pyannote[871].speaker SPEAKER_36
transcript.pyannote[871].start 7786.72971875
transcript.pyannote[871].end 7790.22284375
transcript.pyannote[872].speaker SPEAKER_30
transcript.pyannote[872].start 7789.96971875
transcript.pyannote[872].end 7791.72471875
transcript.pyannote[873].speaker SPEAKER_23
transcript.pyannote[873].start 7792.04534375
transcript.pyannote[873].end 7792.88909375
transcript.pyannote[874].speaker SPEAKER_36
transcript.pyannote[874].start 7793.61471875
transcript.pyannote[874].end 7794.27284375
transcript.pyannote[875].speaker SPEAKER_30
transcript.pyannote[875].start 7794.27284375
transcript.pyannote[875].end 7794.47534375
transcript.pyannote[876].speaker SPEAKER_36
transcript.pyannote[876].start 7795.06596875
transcript.pyannote[876].end 7795.58909375
transcript.pyannote[877].speaker SPEAKER_36
transcript.pyannote[877].start 7796.97284375
transcript.pyannote[877].end 7799.84159375
transcript.pyannote[878].speaker SPEAKER_36
transcript.pyannote[878].start 7800.49971875
transcript.pyannote[878].end 7803.53721875
transcript.pyannote[879].speaker SPEAKER_36
transcript.pyannote[879].start 7803.95909375
transcript.pyannote[879].end 7806.82784375
transcript.pyannote[880].speaker SPEAKER_36
transcript.pyannote[880].start 7807.28346875
transcript.pyannote[880].end 7811.02971875
transcript.pyannote[881].speaker SPEAKER_36
transcript.pyannote[881].start 7811.41784375
transcript.pyannote[881].end 7816.68284375
transcript.pyannote[882].speaker SPEAKER_36
transcript.pyannote[882].start 7817.20596875
transcript.pyannote[882].end 7818.13409375
transcript.pyannote[883].speaker SPEAKER_36
transcript.pyannote[883].start 7819.45034375
transcript.pyannote[883].end 7821.22221875
transcript.pyannote[884].speaker SPEAKER_23
transcript.pyannote[884].start 7822.62284375
transcript.pyannote[884].end 7832.89971875
transcript.pyannote[885].speaker SPEAKER_36
transcript.pyannote[885].start 7833.05159375
transcript.pyannote[885].end 7839.95346875
transcript.pyannote[886].speaker SPEAKER_36
transcript.pyannote[886].start 7840.27409375
transcript.pyannote[886].end 7842.70409375
transcript.pyannote[887].speaker SPEAKER_36
transcript.pyannote[887].start 7843.02471875
transcript.pyannote[887].end 7844.62784375
transcript.pyannote[888].speaker SPEAKER_36
transcript.pyannote[888].start 7845.20159375
transcript.pyannote[888].end 7847.39534375
transcript.pyannote[889].speaker SPEAKER_36
transcript.pyannote[889].start 7847.69909375
transcript.pyannote[889].end 7848.62721875
transcript.pyannote[890].speaker SPEAKER_36
transcript.pyannote[890].start 7848.96471875
transcript.pyannote[890].end 7851.96846875
transcript.pyannote[891].speaker SPEAKER_36
transcript.pyannote[891].start 7852.55909375
transcript.pyannote[891].end 7857.95909375
transcript.pyannote[892].speaker SPEAKER_36
transcript.pyannote[892].start 7858.80284375
transcript.pyannote[892].end 7862.71784375
transcript.pyannote[893].speaker SPEAKER_36
transcript.pyannote[893].start 7863.44346875
transcript.pyannote[893].end 7866.98721875
transcript.pyannote[894].speaker SPEAKER_23
transcript.pyannote[894].start 7867.10534375
transcript.pyannote[894].end 7904.78721875
transcript.pyannote[895].speaker SPEAKER_36
transcript.pyannote[895].start 7905.46221875
transcript.pyannote[895].end 7907.13284375
transcript.pyannote[896].speaker SPEAKER_36
transcript.pyannote[896].start 7907.79096875
transcript.pyannote[896].end 7910.67659375
transcript.pyannote[897].speaker SPEAKER_36
transcript.pyannote[897].start 7911.06471875
transcript.pyannote[897].end 7914.32159375
transcript.pyannote[898].speaker SPEAKER_36
transcript.pyannote[898].start 7914.97971875
transcript.pyannote[898].end 7914.99659375
transcript.pyannote[899].speaker SPEAKER_37
transcript.pyannote[899].start 7914.99659375
transcript.pyannote[899].end 7974.07596875
transcript.pyannote[900].speaker SPEAKER_36
transcript.pyannote[900].start 7974.36284375
transcript.pyannote[900].end 7982.85096875
transcript.pyannote[901].speaker SPEAKER_36
transcript.pyannote[901].start 7983.05346875
transcript.pyannote[901].end 7987.15409375
transcript.pyannote[902].speaker SPEAKER_36
transcript.pyannote[902].start 7987.62659375
transcript.pyannote[902].end 8001.36284375
transcript.pyannote[903].speaker SPEAKER_36
transcript.pyannote[903].start 8001.76784375
transcript.pyannote[903].end 8007.65721875
transcript.pyannote[904].speaker SPEAKER_36
transcript.pyannote[904].start 8008.11284375
transcript.pyannote[904].end 8010.18846875
transcript.pyannote[905].speaker SPEAKER_36
transcript.pyannote[905].start 8010.50909375
transcript.pyannote[905].end 8013.24284375
transcript.pyannote[906].speaker SPEAKER_36
transcript.pyannote[906].start 8013.34409375
transcript.pyannote[906].end 8017.25909375
transcript.pyannote[907].speaker SPEAKER_36
transcript.pyannote[907].start 8017.69784375
transcript.pyannote[907].end 8023.48596875
transcript.pyannote[908].speaker SPEAKER_36
transcript.pyannote[908].start 8024.14409375
transcript.pyannote[908].end 8029.89846875
transcript.pyannote[909].speaker SPEAKER_23
transcript.pyannote[909].start 8030.11784375
transcript.pyannote[909].end 8064.74534375
transcript.pyannote[910].speaker SPEAKER_36
transcript.pyannote[910].start 8065.16721875
transcript.pyannote[910].end 8067.59721875
transcript.pyannote[911].speaker SPEAKER_23
transcript.pyannote[911].start 8067.59721875
transcript.pyannote[911].end 8067.91784375
transcript.pyannote[912].speaker SPEAKER_36
transcript.pyannote[912].start 8068.25534375
transcript.pyannote[912].end 8087.91471875
transcript.pyannote[913].speaker SPEAKER_36
transcript.pyannote[913].start 8088.60659375
transcript.pyannote[913].end 8105.14409375
transcript.pyannote[914].speaker SPEAKER_23
transcript.pyannote[914].start 8104.57034375
transcript.pyannote[914].end 8215.06784375
transcript.pyannote[915].speaker SPEAKER_36
transcript.pyannote[915].start 8215.23659375
transcript.pyannote[915].end 8221.98659375
transcript.pyannote[916].speaker SPEAKER_36
transcript.pyannote[916].start 8222.52659375
transcript.pyannote[916].end 8228.46659375
transcript.pyannote[917].speaker SPEAKER_36
transcript.pyannote[917].start 8228.65221875
transcript.pyannote[917].end 8228.66909375
transcript.pyannote[918].speaker SPEAKER_36
transcript.pyannote[918].start 8228.70284375
transcript.pyannote[918].end 8256.05721875
transcript.pyannote[919].speaker SPEAKER_36
transcript.pyannote[919].start 8256.42846875
transcript.pyannote[919].end 8256.90096875
transcript.pyannote[920].speaker SPEAKER_36
transcript.pyannote[920].start 8256.96846875
transcript.pyannote[920].end 8266.75596875
transcript.pyannote[921].speaker SPEAKER_23
transcript.pyannote[921].start 8266.75596875
transcript.pyannote[921].end 8305.75409375
transcript.pyannote[922].speaker SPEAKER_36
transcript.pyannote[922].start 8306.20971875
transcript.pyannote[922].end 8311.40721875
transcript.pyannote[923].speaker SPEAKER_36
transcript.pyannote[923].start 8312.09909375
transcript.pyannote[923].end 8329.42971875
transcript.pyannote[924].speaker SPEAKER_36
transcript.pyannote[924].start 8329.93596875
transcript.pyannote[924].end 8350.25346875
transcript.pyannote[925].speaker SPEAKER_36
transcript.pyannote[925].start 8350.59096875
transcript.pyannote[925].end 8353.76346875
transcript.pyannote[926].speaker SPEAKER_36
transcript.pyannote[926].start 8353.91534375
transcript.pyannote[926].end 8353.98284375
transcript.pyannote[927].speaker SPEAKER_23
transcript.pyannote[927].start 8353.98284375
transcript.pyannote[927].end 8354.84346875
transcript.pyannote[928].speaker SPEAKER_36
transcript.pyannote[928].start 8354.10096875
transcript.pyannote[928].end 8354.69159375
transcript.pyannote[929].speaker SPEAKER_36
transcript.pyannote[929].start 8355.07971875
transcript.pyannote[929].end 8355.82221875
transcript.pyannote[930].speaker SPEAKER_23
transcript.pyannote[930].start 8355.92346875
transcript.pyannote[930].end 8356.26096875
transcript.pyannote[931].speaker SPEAKER_30
transcript.pyannote[931].start 8356.68284375
transcript.pyannote[931].end 8359.99034375
transcript.pyannote[932].speaker SPEAKER_30
transcript.pyannote[932].start 8990.87909375
transcript.pyannote[932].end 8992.76909375
transcript.pyannote[933].speaker SPEAKER_30
transcript.pyannote[933].start 8993.88284375
transcript.pyannote[933].end 8996.09346875
transcript.pyannote[934].speaker SPEAKER_09
transcript.pyannote[934].start 9005.84721875
transcript.pyannote[934].end 9007.93971875
transcript.pyannote[935].speaker SPEAKER_30
transcript.pyannote[935].start 9008.15909375
transcript.pyannote[935].end 9008.96909375
transcript.pyannote[936].speaker SPEAKER_09
transcript.pyannote[936].start 9011.75346875
transcript.pyannote[936].end 9012.52971875
transcript.pyannote[937].speaker SPEAKER_09
transcript.pyannote[937].start 9013.37346875
transcript.pyannote[937].end 9020.03909375
transcript.pyannote[938].speaker SPEAKER_23
transcript.pyannote[938].start 9020.03909375
transcript.pyannote[938].end 9029.52284375
transcript.pyannote[939].speaker SPEAKER_09
transcript.pyannote[939].start 9029.52284375
transcript.pyannote[939].end 9032.83034375
transcript.pyannote[940].speaker SPEAKER_09
transcript.pyannote[940].start 9032.99909375
transcript.pyannote[940].end 9033.35346875
transcript.pyannote[941].speaker SPEAKER_09
transcript.pyannote[941].start 9033.80909375
transcript.pyannote[941].end 9039.74909375
transcript.pyannote[942].speaker SPEAKER_23
transcript.pyannote[942].start 9040.15409375
transcript.pyannote[942].end 9073.68471875
transcript.pyannote[943].speaker SPEAKER_09
transcript.pyannote[943].start 9074.14034375
transcript.pyannote[943].end 9088.56846875
transcript.pyannote[944].speaker SPEAKER_23
transcript.pyannote[944].start 9088.56846875
transcript.pyannote[944].end 9118.03221875
transcript.pyannote[945].speaker SPEAKER_31
transcript.pyannote[945].start 9107.31659375
transcript.pyannote[945].end 9107.40096875
transcript.pyannote[946].speaker SPEAKER_00
transcript.pyannote[946].start 9107.40096875
transcript.pyannote[946].end 9107.43471875
transcript.pyannote[947].speaker SPEAKER_09
transcript.pyannote[947].start 9118.31909375
transcript.pyannote[947].end 9139.07534375
transcript.pyannote[948].speaker SPEAKER_09
transcript.pyannote[948].start 9139.39596875
transcript.pyannote[948].end 9141.64034375
transcript.pyannote[949].speaker SPEAKER_09
transcript.pyannote[949].start 9141.77534375
transcript.pyannote[949].end 9148.03596875
transcript.pyannote[950].speaker SPEAKER_23
transcript.pyannote[950].start 9148.03596875
transcript.pyannote[950].end 9148.44096875
transcript.pyannote[951].speaker SPEAKER_09
transcript.pyannote[951].start 9148.44096875
transcript.pyannote[951].end 9148.54221875
transcript.pyannote[952].speaker SPEAKER_23
transcript.pyannote[952].start 9148.54221875
transcript.pyannote[952].end 9148.62659375
transcript.pyannote[953].speaker SPEAKER_23
transcript.pyannote[953].start 9149.31846875
transcript.pyannote[953].end 9172.06596875
transcript.pyannote[954].speaker SPEAKER_23
transcript.pyannote[954].start 9172.15034375
transcript.pyannote[954].end 9185.97096875
transcript.pyannote[955].speaker SPEAKER_09
transcript.pyannote[955].start 9184.06409375
transcript.pyannote[955].end 9184.58721875
transcript.pyannote[956].speaker SPEAKER_09
transcript.pyannote[956].start 9185.97096875
transcript.pyannote[956].end 9196.28159375
transcript.pyannote[957].speaker SPEAKER_23
transcript.pyannote[957].start 9196.01159375
transcript.pyannote[957].end 9204.63471875
transcript.pyannote[958].speaker SPEAKER_09
transcript.pyannote[958].start 9204.63471875
transcript.pyannote[958].end 9211.97534375
transcript.pyannote[959].speaker SPEAKER_23
transcript.pyannote[959].start 9211.97534375
transcript.pyannote[959].end 9212.05971875
transcript.pyannote[960].speaker SPEAKER_23
transcript.pyannote[960].start 9212.46471875
transcript.pyannote[960].end 9238.62096875
transcript.pyannote[961].speaker SPEAKER_09
transcript.pyannote[961].start 9238.60409375
transcript.pyannote[961].end 9253.15034375
transcript.pyannote[962].speaker SPEAKER_09
transcript.pyannote[962].start 9253.48784375
transcript.pyannote[962].end 9256.08659375
transcript.pyannote[963].speaker SPEAKER_09
transcript.pyannote[963].start 9256.62659375
transcript.pyannote[963].end 9258.44909375
transcript.pyannote[964].speaker SPEAKER_09
transcript.pyannote[964].start 9259.63034375
transcript.pyannote[964].end 9261.21659375
transcript.pyannote[965].speaker SPEAKER_09
transcript.pyannote[965].start 9261.52034375
transcript.pyannote[965].end 9268.03409375
transcript.pyannote[966].speaker SPEAKER_23
transcript.pyannote[966].start 9268.03409375
transcript.pyannote[966].end 9269.78909375
transcript.pyannote[967].speaker SPEAKER_23
transcript.pyannote[967].start 9270.10971875
transcript.pyannote[967].end 9292.97534375
transcript.pyannote[968].speaker SPEAKER_09
transcript.pyannote[968].start 9292.97534375
transcript.pyannote[968].end 9294.57846875
transcript.pyannote[969].speaker SPEAKER_09
transcript.pyannote[969].start 9294.91596875
transcript.pyannote[969].end 9318.87846875
transcript.pyannote[970].speaker SPEAKER_09
transcript.pyannote[970].start 9319.13159375
transcript.pyannote[970].end 9342.03096875
transcript.pyannote[971].speaker SPEAKER_23
transcript.pyannote[971].start 9342.03096875
transcript.pyannote[971].end 9367.49534375
transcript.pyannote[972].speaker SPEAKER_23
transcript.pyannote[972].start 9367.84971875
transcript.pyannote[972].end 9368.98034375
transcript.pyannote[973].speaker SPEAKER_09
transcript.pyannote[973].start 9368.98034375
transcript.pyannote[973].end 9372.40596875
transcript.pyannote[974].speaker SPEAKER_09
transcript.pyannote[974].start 9372.57471875
transcript.pyannote[974].end 9376.35471875
transcript.pyannote[975].speaker SPEAKER_09
transcript.pyannote[975].start 9376.43909375
transcript.pyannote[975].end 9377.92409375
transcript.pyannote[976].speaker SPEAKER_09
transcript.pyannote[976].start 9378.10971875
transcript.pyannote[976].end 9393.02721875
transcript.pyannote[977].speaker SPEAKER_23
transcript.pyannote[977].start 9393.02721875
transcript.pyannote[977].end 9424.70159375
transcript.pyannote[978].speaker SPEAKER_23
transcript.pyannote[978].start 9424.75221875
transcript.pyannote[978].end 9424.76909375
transcript.pyannote[979].speaker SPEAKER_23
transcript.pyannote[979].start 9424.78596875
transcript.pyannote[979].end 9424.81971875
transcript.pyannote[980].speaker SPEAKER_09
transcript.pyannote[980].start 9424.81971875
transcript.pyannote[980].end 9461.03346875
transcript.pyannote[981].speaker SPEAKER_23
transcript.pyannote[981].start 9461.03346875
transcript.pyannote[981].end 9462.61971875
transcript.pyannote[982].speaker SPEAKER_23
transcript.pyannote[982].start 9462.87284375
transcript.pyannote[982].end 9486.09284375
transcript.pyannote[983].speaker SPEAKER_09
transcript.pyannote[983].start 9486.09284375
transcript.pyannote[983].end 9499.98096875
transcript.pyannote[984].speaker SPEAKER_31
transcript.pyannote[984].start 9492.16784375
transcript.pyannote[984].end 9492.18471875
transcript.pyannote[985].speaker SPEAKER_01
transcript.pyannote[985].start 9492.18471875
transcript.pyannote[985].end 9492.43784375
transcript.pyannote[986].speaker SPEAKER_31
transcript.pyannote[986].start 9492.43784375
transcript.pyannote[986].end 9492.45471875
transcript.pyannote[987].speaker SPEAKER_09
transcript.pyannote[987].start 9500.70659375
transcript.pyannote[987].end 9502.20846875
transcript.pyannote[988].speaker SPEAKER_23
transcript.pyannote[988].start 9502.20846875
transcript.pyannote[988].end 9502.25909375
transcript.pyannote[989].speaker SPEAKER_09
transcript.pyannote[989].start 9502.25909375
transcript.pyannote[989].end 9502.32659375
transcript.pyannote[990].speaker SPEAKER_23
transcript.pyannote[990].start 9502.32659375
transcript.pyannote[990].end 9513.80159375
transcript.pyannote[991].speaker SPEAKER_09
transcript.pyannote[991].start 9513.80159375
transcript.pyannote[991].end 9521.15909375
transcript.pyannote[992].speaker SPEAKER_09
transcript.pyannote[992].start 9521.58096875
transcript.pyannote[992].end 9524.68596875
transcript.pyannote[993].speaker SPEAKER_09
transcript.pyannote[993].start 9524.77034375
transcript.pyannote[993].end 9530.06909375
transcript.pyannote[994].speaker SPEAKER_09
transcript.pyannote[994].start 9530.40659375
transcript.pyannote[994].end 9550.13346875
transcript.pyannote[995].speaker SPEAKER_09
transcript.pyannote[995].start 9550.31909375
transcript.pyannote[995].end 9562.73909375
transcript.pyannote[996].speaker SPEAKER_09
transcript.pyannote[996].start 9563.11034375
transcript.pyannote[996].end 9564.03846875
transcript.pyannote[997].speaker SPEAKER_23
transcript.pyannote[997].start 9564.03846875
transcript.pyannote[997].end 9585.06471875
transcript.pyannote[998].speaker SPEAKER_09
transcript.pyannote[998].start 9584.81159375
transcript.pyannote[998].end 9603.08721875
transcript.pyannote[999].speaker SPEAKER_23
transcript.pyannote[999].start 9603.08721875
transcript.pyannote[999].end 9619.32096875
transcript.pyannote[1000].speaker SPEAKER_23
transcript.pyannote[1000].start 9619.81034375
transcript.pyannote[1000].end 9619.82721875
transcript.pyannote[1001].speaker SPEAKER_09
transcript.pyannote[1001].start 9619.82721875
transcript.pyannote[1001].end 9628.50096875
transcript.pyannote[1002].speaker SPEAKER_31
transcript.pyannote[1002].start 9627.74159375
transcript.pyannote[1002].end 9628.72034375
transcript.pyannote[1003].speaker SPEAKER_09
transcript.pyannote[1003].start 9628.55159375
transcript.pyannote[1003].end 9636.02721875
transcript.pyannote[1004].speaker SPEAKER_09
transcript.pyannote[1004].start 9636.14534375
transcript.pyannote[1004].end 9646.72596875
transcript.pyannote[1005].speaker SPEAKER_09
transcript.pyannote[1005].start 9647.09721875
transcript.pyannote[1005].end 9647.94096875
transcript.pyannote[1006].speaker SPEAKER_09
transcript.pyannote[1006].start 9648.41346875
transcript.pyannote[1006].end 9663.04409375
transcript.pyannote[1007].speaker SPEAKER_23
transcript.pyannote[1007].start 9663.04409375
transcript.pyannote[1007].end 9681.64034375
transcript.pyannote[1008].speaker SPEAKER_09
transcript.pyannote[1008].start 9679.88534375
transcript.pyannote[1008].end 9680.69534375
transcript.pyannote[1009].speaker SPEAKER_09
transcript.pyannote[1009].start 9681.58971875
transcript.pyannote[1009].end 9700.69221875
transcript.pyannote[1010].speaker SPEAKER_23
transcript.pyannote[1010].start 9700.69221875
transcript.pyannote[1010].end 9700.70909375
transcript.pyannote[1011].speaker SPEAKER_23
transcript.pyannote[1011].start 9700.74284375
transcript.pyannote[1011].end 9705.04596875
transcript.pyannote[1012].speaker SPEAKER_23
transcript.pyannote[1012].start 9705.26534375
transcript.pyannote[1012].end 9707.99909375
transcript.pyannote[1013].speaker SPEAKER_09
transcript.pyannote[1013].start 9705.36659375
transcript.pyannote[1013].end 9705.63659375
transcript.pyannote[1014].speaker SPEAKER_09
transcript.pyannote[1014].start 9706.29471875
transcript.pyannote[1014].end 9711.27284375
transcript.pyannote[1015].speaker SPEAKER_30
transcript.pyannote[1015].start 9713.44971875
transcript.pyannote[1015].end 9718.42784375
transcript.pyannote[1016].speaker SPEAKER_28
transcript.pyannote[1016].start 9723.96284375
transcript.pyannote[1016].end 9727.27034375
transcript.pyannote[1017].speaker SPEAKER_23
transcript.pyannote[1017].start 9729.73409375
transcript.pyannote[1017].end 9730.57784375
transcript.pyannote[1018].speaker SPEAKER_28
transcript.pyannote[1018].start 9730.93221875
transcript.pyannote[1018].end 9731.43846875
transcript.pyannote[1019].speaker SPEAKER_28
transcript.pyannote[1019].start 9731.70846875
transcript.pyannote[1019].end 9738.94784375
transcript.pyannote[1020].speaker SPEAKER_23
transcript.pyannote[1020].start 9739.87596875
transcript.pyannote[1020].end 9740.68596875
transcript.pyannote[1021].speaker SPEAKER_28
transcript.pyannote[1021].start 9741.47909375
transcript.pyannote[1021].end 9741.78284375
transcript.pyannote[1022].speaker SPEAKER_28
transcript.pyannote[1022].start 9742.08659375
transcript.pyannote[1022].end 9742.10346875
transcript.pyannote[1023].speaker SPEAKER_23
transcript.pyannote[1023].start 9742.10346875
transcript.pyannote[1023].end 9742.96409375
transcript.pyannote[1024].speaker SPEAKER_28
transcript.pyannote[1024].start 9742.20471875
transcript.pyannote[1024].end 9742.45784375
transcript.pyannote[1025].speaker SPEAKER_28
transcript.pyannote[1025].start 9742.77846875
transcript.pyannote[1025].end 9743.40284375
transcript.pyannote[1026].speaker SPEAKER_23
transcript.pyannote[1026].start 9744.58409375
transcript.pyannote[1026].end 9747.57096875
transcript.pyannote[1027].speaker SPEAKER_28
transcript.pyannote[1027].start 9745.00596875
transcript.pyannote[1027].end 9778.03034375
transcript.pyannote[1028].speaker SPEAKER_23
transcript.pyannote[1028].start 9748.16159375
transcript.pyannote[1028].end 9748.71846875
transcript.pyannote[1029].speaker SPEAKER_23
transcript.pyannote[1029].start 9778.80659375
transcript.pyannote[1029].end 9785.13471875
transcript.pyannote[1030].speaker SPEAKER_28
transcript.pyannote[1030].start 9778.87409375
transcript.pyannote[1030].end 9779.32971875
transcript.pyannote[1031].speaker SPEAKER_28
transcript.pyannote[1031].start 9783.97034375
transcript.pyannote[1031].end 9783.98721875
transcript.pyannote[1032].speaker SPEAKER_28
transcript.pyannote[1032].start 9784.00409375
transcript.pyannote[1032].end 9784.22346875
transcript.pyannote[1033].speaker SPEAKER_28
transcript.pyannote[1033].start 9785.13471875
transcript.pyannote[1033].end 9788.10471875
transcript.pyannote[1034].speaker SPEAKER_23
transcript.pyannote[1034].start 9788.17221875
transcript.pyannote[1034].end 9823.99784375
transcript.pyannote[1035].speaker SPEAKER_00
transcript.pyannote[1035].start 9809.78909375
transcript.pyannote[1035].end 9809.80596875
transcript.pyannote[1036].speaker SPEAKER_31
transcript.pyannote[1036].start 9809.80596875
transcript.pyannote[1036].end 9809.83971875
transcript.pyannote[1037].speaker SPEAKER_00
transcript.pyannote[1037].start 9809.83971875
transcript.pyannote[1037].end 9810.16034375
transcript.pyannote[1038].speaker SPEAKER_28
transcript.pyannote[1038].start 9822.09096875
transcript.pyannote[1038].end 9822.66471875
transcript.pyannote[1039].speaker SPEAKER_28
transcript.pyannote[1039].start 9823.99784375
transcript.pyannote[1039].end 9833.95409375
transcript.pyannote[1040].speaker SPEAKER_23
transcript.pyannote[1040].start 9827.86221875
transcript.pyannote[1040].end 9828.70596875
transcript.pyannote[1041].speaker SPEAKER_28
transcript.pyannote[1041].start 9834.61221875
transcript.pyannote[1041].end 9834.64596875
transcript.pyannote[1042].speaker SPEAKER_31
transcript.pyannote[1042].start 9834.64596875
transcript.pyannote[1042].end 9834.98346875
transcript.pyannote[1043].speaker SPEAKER_28
transcript.pyannote[1043].start 9834.67971875
transcript.pyannote[1043].end 9844.19721875
transcript.pyannote[1044].speaker SPEAKER_28
transcript.pyannote[1044].start 9844.56846875
transcript.pyannote[1044].end 9846.59346875
transcript.pyannote[1045].speaker SPEAKER_28
transcript.pyannote[1045].start 9846.69471875
transcript.pyannote[1045].end 9853.52909375
transcript.pyannote[1046].speaker SPEAKER_24
transcript.pyannote[1046].start 9851.72346875
transcript.pyannote[1046].end 9855.60471875
transcript.pyannote[1047].speaker SPEAKER_24
transcript.pyannote[1047].start 9855.75659375
transcript.pyannote[1047].end 9859.62096875
transcript.pyannote[1048].speaker SPEAKER_24
transcript.pyannote[1048].start 9859.73909375
transcript.pyannote[1048].end 9859.75596875
transcript.pyannote[1049].speaker SPEAKER_28
transcript.pyannote[1049].start 9859.75596875
transcript.pyannote[1049].end 9860.16096875
transcript.pyannote[1050].speaker SPEAKER_24
transcript.pyannote[1050].start 9860.02596875
transcript.pyannote[1050].end 9860.95409375
transcript.pyannote[1051].speaker SPEAKER_28
transcript.pyannote[1051].start 9861.29159375
transcript.pyannote[1051].end 9862.03409375
transcript.pyannote[1052].speaker SPEAKER_28
transcript.pyannote[1052].start 9862.42221875
transcript.pyannote[1052].end 9871.80471875
transcript.pyannote[1053].speaker SPEAKER_28
transcript.pyannote[1053].start 9872.53034375
transcript.pyannote[1053].end 9884.98409375
transcript.pyannote[1054].speaker SPEAKER_28
transcript.pyannote[1054].start 9885.37221875
transcript.pyannote[1054].end 9890.94096875
transcript.pyannote[1055].speaker SPEAKER_28
transcript.pyannote[1055].start 9891.29534375
transcript.pyannote[1055].end 9896.20596875
transcript.pyannote[1056].speaker SPEAKER_28
transcript.pyannote[1056].start 9896.35784375
transcript.pyannote[1056].end 9899.76659375
transcript.pyannote[1057].speaker SPEAKER_28
transcript.pyannote[1057].start 9900.10409375
transcript.pyannote[1057].end 9900.66096875
transcript.pyannote[1058].speaker SPEAKER_28
transcript.pyannote[1058].start 9902.09534375
transcript.pyannote[1058].end 9905.57159375
transcript.pyannote[1059].speaker SPEAKER_28
transcript.pyannote[1059].start 9905.75721875
transcript.pyannote[1059].end 9911.03909375
transcript.pyannote[1060].speaker SPEAKER_23
transcript.pyannote[1060].start 9911.49471875
transcript.pyannote[1060].end 9911.76471875
transcript.pyannote[1061].speaker SPEAKER_23
transcript.pyannote[1061].start 9912.45659375
transcript.pyannote[1061].end 9913.60409375
transcript.pyannote[1062].speaker SPEAKER_28
transcript.pyannote[1062].start 9912.55784375
transcript.pyannote[1062].end 9913.62096875
transcript.pyannote[1063].speaker SPEAKER_23
transcript.pyannote[1063].start 9913.62096875
transcript.pyannote[1063].end 9914.54909375
transcript.pyannote[1064].speaker SPEAKER_28
transcript.pyannote[1064].start 9915.86534375
transcript.pyannote[1064].end 9917.94096875
transcript.pyannote[1065].speaker SPEAKER_28
transcript.pyannote[1065].start 9917.97471875
transcript.pyannote[1065].end 9917.99159375
transcript.pyannote[1066].speaker SPEAKER_28
transcript.pyannote[1066].start 9918.14346875
transcript.pyannote[1066].end 9918.17721875
transcript.pyannote[1067].speaker SPEAKER_23
transcript.pyannote[1067].start 9918.17721875
transcript.pyannote[1067].end 9918.48096875
transcript.pyannote[1068].speaker SPEAKER_28
transcript.pyannote[1068].start 9919.27409375
transcript.pyannote[1068].end 9923.69534375
transcript.pyannote[1069].speaker SPEAKER_24
transcript.pyannote[1069].start 9923.08784375
transcript.pyannote[1069].end 9926.24346875
transcript.pyannote[1070].speaker SPEAKER_24
transcript.pyannote[1070].start 9926.59784375
transcript.pyannote[1070].end 9928.92659375
transcript.pyannote[1071].speaker SPEAKER_24
transcript.pyannote[1071].start 9929.12909375
transcript.pyannote[1071].end 9938.93346875
transcript.pyannote[1072].speaker SPEAKER_28
transcript.pyannote[1072].start 9938.93346875
transcript.pyannote[1072].end 9938.95034375
transcript.pyannote[1073].speaker SPEAKER_28
transcript.pyannote[1073].start 9939.38909375
transcript.pyannote[1073].end 9939.72659375
transcript.pyannote[1074].speaker SPEAKER_28
transcript.pyannote[1074].start 9940.06409375
transcript.pyannote[1074].end 9962.50784375
transcript.pyannote[1075].speaker SPEAKER_23
transcript.pyannote[1075].start 9962.99721875
transcript.pyannote[1075].end 9963.06471875
transcript.pyannote[1076].speaker SPEAKER_23
transcript.pyannote[1076].start 9963.26721875
transcript.pyannote[1076].end 9989.30534375
transcript.pyannote[1077].speaker SPEAKER_28
transcript.pyannote[1077].start 9987.95534375
transcript.pyannote[1077].end 9990.94221875
transcript.pyannote[1078].speaker SPEAKER_23
transcript.pyannote[1078].start 9991.07721875
transcript.pyannote[1078].end 9996.27471875
transcript.pyannote[1079].speaker SPEAKER_28
transcript.pyannote[1079].start 9996.64596875
transcript.pyannote[1079].end 9997.10159375
transcript.pyannote[1080].speaker SPEAKER_28
transcript.pyannote[1080].start 9997.37159375
transcript.pyannote[1080].end 10017.77346875
transcript.pyannote[1081].speaker SPEAKER_28
transcript.pyannote[1081].start 10018.21221875
transcript.pyannote[1081].end 10019.35971875
transcript.pyannote[1082].speaker SPEAKER_28
transcript.pyannote[1082].start 10019.73096875
transcript.pyannote[1082].end 10022.85284375
transcript.pyannote[1083].speaker SPEAKER_23
transcript.pyannote[1083].start 10023.05534375
transcript.pyannote[1083].end 10031.44221875
transcript.pyannote[1084].speaker SPEAKER_28
transcript.pyannote[1084].start 10031.50971875
transcript.pyannote[1084].end 10052.02971875
transcript.pyannote[1085].speaker SPEAKER_23
transcript.pyannote[1085].start 10052.08034375
transcript.pyannote[1085].end 10057.14284375
transcript.pyannote[1086].speaker SPEAKER_28
transcript.pyannote[1086].start 10057.32846875
transcript.pyannote[1086].end 10057.46346875
transcript.pyannote[1087].speaker SPEAKER_28
transcript.pyannote[1087].start 10057.75034375
transcript.pyannote[1087].end 10082.11784375
transcript.pyannote[1088].speaker SPEAKER_23
transcript.pyannote[1088].start 10081.30784375
transcript.pyannote[1088].end 10091.28096875
transcript.pyannote[1089].speaker SPEAKER_28
transcript.pyannote[1089].start 10084.96971875
transcript.pyannote[1089].end 10085.20596875
transcript.pyannote[1090].speaker SPEAKER_28
transcript.pyannote[1090].start 10091.71971875
transcript.pyannote[1090].end 10091.73659375
transcript.pyannote[1091].speaker SPEAKER_31
transcript.pyannote[1091].start 10091.73659375
transcript.pyannote[1091].end 10091.92221875
transcript.pyannote[1092].speaker SPEAKER_28
transcript.pyannote[1092].start 10092.12471875
transcript.pyannote[1092].end 10092.59721875
transcript.pyannote[1093].speaker SPEAKER_28
transcript.pyannote[1093].start 10092.86721875
transcript.pyannote[1093].end 10100.71409375
transcript.pyannote[1094].speaker SPEAKER_27
transcript.pyannote[1094].start 10100.71409375
transcript.pyannote[1094].end 10100.73096875
transcript.pyannote[1095].speaker SPEAKER_23
transcript.pyannote[1095].start 10100.95034375
transcript.pyannote[1095].end 10102.45221875
transcript.pyannote[1096].speaker SPEAKER_28
transcript.pyannote[1096].start 10102.51971875
transcript.pyannote[1096].end 10102.53659375
transcript.pyannote[1097].speaker SPEAKER_27
transcript.pyannote[1097].start 10102.53659375
transcript.pyannote[1097].end 10117.75784375
transcript.pyannote[1098].speaker SPEAKER_27
transcript.pyannote[1098].start 10118.16284375
transcript.pyannote[1098].end 10133.02971875
transcript.pyannote[1099].speaker SPEAKER_28
transcript.pyannote[1099].start 10129.11471875
transcript.pyannote[1099].end 10129.55346875
transcript.pyannote[1100].speaker SPEAKER_28
transcript.pyannote[1100].start 10133.02971875
transcript.pyannote[1100].end 10139.91471875
transcript.pyannote[1101].speaker SPEAKER_28
transcript.pyannote[1101].start 10139.98221875
transcript.pyannote[1101].end 10143.45846875
transcript.pyannote[1102].speaker SPEAKER_28
transcript.pyannote[1102].start 10143.98159375
transcript.pyannote[1102].end 10147.10346875
transcript.pyannote[1103].speaker SPEAKER_28
transcript.pyannote[1103].start 10147.27221875
transcript.pyannote[1103].end 10164.95721875
transcript.pyannote[1104].speaker SPEAKER_28
transcript.pyannote[1104].start 10165.49721875
transcript.pyannote[1104].end 10170.54284375
transcript.pyannote[1105].speaker SPEAKER_23
transcript.pyannote[1105].start 10171.28534375
transcript.pyannote[1105].end 10188.19409375
transcript.pyannote[1106].speaker SPEAKER_28
transcript.pyannote[1106].start 10173.78284375
transcript.pyannote[1106].end 10174.89659375
transcript.pyannote[1107].speaker SPEAKER_28
transcript.pyannote[1107].start 10187.83971875
transcript.pyannote[1107].end 10192.09221875
transcript.pyannote[1108].speaker SPEAKER_23
transcript.pyannote[1108].start 10191.75471875
transcript.pyannote[1108].end 10192.44659375
transcript.pyannote[1109].speaker SPEAKER_28
transcript.pyannote[1109].start 10192.44659375
transcript.pyannote[1109].end 10195.53471875
transcript.pyannote[1110].speaker SPEAKER_28
transcript.pyannote[1110].start 10195.78784375
transcript.pyannote[1110].end 10196.86784375
transcript.pyannote[1111].speaker SPEAKER_28
transcript.pyannote[1111].start 10198.53846875
transcript.pyannote[1111].end 10206.50346875
transcript.pyannote[1112].speaker SPEAKER_31
transcript.pyannote[1112].start 10206.45284375
transcript.pyannote[1112].end 10206.48659375
transcript.pyannote[1113].speaker SPEAKER_31
transcript.pyannote[1113].start 10206.50346875
transcript.pyannote[1113].end 10206.55409375
transcript.pyannote[1114].speaker SPEAKER_28
transcript.pyannote[1114].start 10206.55409375
transcript.pyannote[1114].end 10221.03284375
transcript.pyannote[1115].speaker SPEAKER_31
transcript.pyannote[1115].start 10206.62159375
transcript.pyannote[1115].end 10206.65534375
transcript.pyannote[1116].speaker SPEAKER_23
transcript.pyannote[1116].start 10221.64034375
transcript.pyannote[1116].end 10231.44471875
transcript.pyannote[1117].speaker SPEAKER_28
transcript.pyannote[1117].start 10231.56284375
transcript.pyannote[1117].end 10232.84534375
transcript.pyannote[1118].speaker SPEAKER_28
transcript.pyannote[1118].start 10233.36846875
transcript.pyannote[1118].end 10233.77346875
transcript.pyannote[1119].speaker SPEAKER_28
transcript.pyannote[1119].start 10235.22471875
transcript.pyannote[1119].end 10235.44409375
transcript.pyannote[1120].speaker SPEAKER_28
transcript.pyannote[1120].start 10235.52846875
transcript.pyannote[1120].end 10238.09346875
transcript.pyannote[1121].speaker SPEAKER_23
transcript.pyannote[1121].start 10238.39721875
transcript.pyannote[1121].end 10257.88784375
transcript.pyannote[1122].speaker SPEAKER_28
transcript.pyannote[1122].start 10253.78721875
transcript.pyannote[1122].end 10254.37784375
transcript.pyannote[1123].speaker SPEAKER_28
transcript.pyannote[1123].start 10257.80346875
transcript.pyannote[1123].end 10267.74284375
transcript.pyannote[1124].speaker SPEAKER_23
transcript.pyannote[1124].start 10268.51909375
transcript.pyannote[1124].end 10284.31409375
transcript.pyannote[1125].speaker SPEAKER_28
transcript.pyannote[1125].start 10283.79096875
transcript.pyannote[1125].end 10287.95909375
transcript.pyannote[1126].speaker SPEAKER_23
transcript.pyannote[1126].start 10288.48221875
transcript.pyannote[1126].end 10289.10659375
transcript.pyannote[1127].speaker SPEAKER_28
transcript.pyannote[1127].start 10289.10659375
transcript.pyannote[1127].end 10317.08534375
transcript.pyannote[1128].speaker SPEAKER_28
transcript.pyannote[1128].start 10317.42284375
transcript.pyannote[1128].end 10333.53846875
transcript.pyannote[1129].speaker SPEAKER_23
transcript.pyannote[1129].start 10333.79159375
transcript.pyannote[1129].end 10334.28096875
transcript.pyannote[1130].speaker SPEAKER_23
transcript.pyannote[1130].start 10335.15846875
transcript.pyannote[1130].end 10337.14971875
transcript.pyannote[1131].speaker SPEAKER_01
transcript.pyannote[1131].start 10336.39034375
transcript.pyannote[1131].end 10336.54221875
transcript.pyannote[1132].speaker SPEAKER_01
transcript.pyannote[1132].start 10337.45346875
transcript.pyannote[1132].end 10354.15971875
transcript.pyannote[1133].speaker SPEAKER_28
transcript.pyannote[1133].start 10352.23596875
transcript.pyannote[1133].end 10356.04971875
transcript.pyannote[1134].speaker SPEAKER_01
transcript.pyannote[1134].start 10354.88534375
transcript.pyannote[1134].end 10355.10471875
transcript.pyannote[1135].speaker SPEAKER_01
transcript.pyannote[1135].start 10356.18471875
transcript.pyannote[1135].end 10385.27721875
transcript.pyannote[1136].speaker SPEAKER_28
transcript.pyannote[1136].start 10385.12534375
transcript.pyannote[1136].end 10396.58346875
transcript.pyannote[1137].speaker SPEAKER_23
transcript.pyannote[1137].start 10396.36409375
transcript.pyannote[1137].end 10397.10659375
transcript.pyannote[1138].speaker SPEAKER_28
transcript.pyannote[1138].start 10397.10659375
transcript.pyannote[1138].end 10399.53659375
transcript.pyannote[1139].speaker SPEAKER_23
transcript.pyannote[1139].start 10399.53659375
transcript.pyannote[1139].end 10400.70096875
transcript.pyannote[1140].speaker SPEAKER_23
transcript.pyannote[1140].start 10401.35909375
transcript.pyannote[1140].end 10402.23659375
transcript.pyannote[1141].speaker SPEAKER_28
transcript.pyannote[1141].start 10402.27034375
transcript.pyannote[1141].end 10403.06346875
transcript.pyannote[1142].speaker SPEAKER_28
transcript.pyannote[1142].start 10403.14784375
transcript.pyannote[1142].end 10407.40034375
transcript.pyannote[1143].speaker SPEAKER_28
transcript.pyannote[1143].start 10407.73784375
transcript.pyannote[1143].end 10410.91034375
transcript.pyannote[1144].speaker SPEAKER_00
transcript.pyannote[1144].start 10409.56034375
transcript.pyannote[1144].end 10409.81346875
transcript.pyannote[1145].speaker SPEAKER_28
transcript.pyannote[1145].start 10411.50096875
transcript.pyannote[1145].end 10413.96471875
transcript.pyannote[1146].speaker SPEAKER_28
transcript.pyannote[1146].start 10414.42034375
transcript.pyannote[1146].end 10418.97659375
transcript.pyannote[1147].speaker SPEAKER_30
transcript.pyannote[1147].start 10418.97659375
transcript.pyannote[1147].end 10420.17471875
transcript.pyannote[1148].speaker SPEAKER_28
transcript.pyannote[1148].start 10419.39846875
transcript.pyannote[1148].end 10420.15784375
transcript.pyannote[1149].speaker SPEAKER_31
transcript.pyannote[1149].start 10420.17471875
transcript.pyannote[1149].end 10420.69784375
transcript.pyannote[1150].speaker SPEAKER_30
transcript.pyannote[1150].start 10421.11971875
transcript.pyannote[1150].end 10435.48034375
transcript.pyannote[1151].speaker SPEAKER_20
transcript.pyannote[1151].start 10443.27659375
transcript.pyannote[1151].end 10449.97596875
transcript.pyannote[1152].speaker SPEAKER_23
transcript.pyannote[1152].start 10446.09471875
transcript.pyannote[1152].end 10446.16221875
transcript.pyannote[1153].speaker SPEAKER_14
transcript.pyannote[1153].start 10446.16221875
transcript.pyannote[1153].end 10446.33096875
transcript.pyannote[1154].speaker SPEAKER_23
transcript.pyannote[1154].start 10446.33096875
transcript.pyannote[1154].end 10446.76971875
transcript.pyannote[1155].speaker SPEAKER_14
transcript.pyannote[1155].start 10446.76971875
transcript.pyannote[1155].end 10447.03971875
transcript.pyannote[1156].speaker SPEAKER_23
transcript.pyannote[1156].start 10447.03971875
transcript.pyannote[1156].end 10447.30971875
transcript.pyannote[1157].speaker SPEAKER_14
transcript.pyannote[1157].start 10447.30971875
transcript.pyannote[1157].end 10448.55846875
transcript.pyannote[1158].speaker SPEAKER_23
transcript.pyannote[1158].start 10448.55846875
transcript.pyannote[1158].end 10448.60909375
transcript.pyannote[1159].speaker SPEAKER_20
transcript.pyannote[1159].start 10450.11096875
transcript.pyannote[1159].end 10450.12784375
transcript.pyannote[1160].speaker SPEAKER_23
transcript.pyannote[1160].start 10450.12784375
transcript.pyannote[1160].end 10450.14471875
transcript.pyannote[1161].speaker SPEAKER_14
transcript.pyannote[1161].start 10450.14471875
transcript.pyannote[1161].end 10450.16159375
transcript.pyannote[1162].speaker SPEAKER_23
transcript.pyannote[1162].start 10450.16159375
transcript.pyannote[1162].end 10450.65096875
transcript.pyannote[1163].speaker SPEAKER_20
transcript.pyannote[1163].start 10451.39346875
transcript.pyannote[1163].end 10459.20659375
transcript.pyannote[1164].speaker SPEAKER_23
transcript.pyannote[1164].start 10458.91971875
transcript.pyannote[1164].end 10460.43846875
transcript.pyannote[1165].speaker SPEAKER_20
transcript.pyannote[1165].start 10459.47659375
transcript.pyannote[1165].end 10459.96596875
transcript.pyannote[1166].speaker SPEAKER_20
transcript.pyannote[1166].start 10460.28659375
transcript.pyannote[1166].end 10491.75846875
transcript.pyannote[1167].speaker SPEAKER_23
transcript.pyannote[1167].start 10491.99471875
transcript.pyannote[1167].end 10496.11221875
transcript.pyannote[1168].speaker SPEAKER_20
transcript.pyannote[1168].start 10495.87596875
transcript.pyannote[1168].end 10496.87159375
transcript.pyannote[1169].speaker SPEAKER_23
transcript.pyannote[1169].start 10496.83784375
transcript.pyannote[1169].end 10505.19096875
transcript.pyannote[1170].speaker SPEAKER_20
transcript.pyannote[1170].start 10504.81971875
transcript.pyannote[1170].end 10509.46034375
transcript.pyannote[1171].speaker SPEAKER_20
transcript.pyannote[1171].start 10509.76409375
transcript.pyannote[1171].end 10550.17971875
transcript.pyannote[1172].speaker SPEAKER_20
transcript.pyannote[1172].start 10550.46659375
transcript.pyannote[1172].end 10557.03096875
transcript.pyannote[1173].speaker SPEAKER_20
transcript.pyannote[1173].start 10557.53721875
transcript.pyannote[1173].end 10558.44846875
transcript.pyannote[1174].speaker SPEAKER_20
transcript.pyannote[1174].start 10559.08971875
transcript.pyannote[1174].end 10560.05159375
transcript.pyannote[1175].speaker SPEAKER_20
transcript.pyannote[1175].start 10560.23721875
transcript.pyannote[1175].end 10578.59721875
transcript.pyannote[1176].speaker SPEAKER_23
transcript.pyannote[1176].start 10578.66471875
transcript.pyannote[1176].end 10584.50346875
transcript.pyannote[1177].speaker SPEAKER_20
transcript.pyannote[1177].start 10582.93409375
transcript.pyannote[1177].end 10583.44034375
transcript.pyannote[1178].speaker SPEAKER_20
transcript.pyannote[1178].start 10583.81159375
transcript.pyannote[1178].end 10588.63784375
transcript.pyannote[1179].speaker SPEAKER_23
transcript.pyannote[1179].start 10588.73909375
transcript.pyannote[1179].end 10590.71346875
transcript.pyannote[1180].speaker SPEAKER_20
transcript.pyannote[1180].start 10590.03846875
transcript.pyannote[1180].end 10637.32221875
transcript.pyannote[1181].speaker SPEAKER_24
transcript.pyannote[1181].start 10605.61409375
transcript.pyannote[1181].end 10606.25534375
transcript.pyannote[1182].speaker SPEAKER_23
transcript.pyannote[1182].start 10637.64284375
transcript.pyannote[1182].end 10642.31721875
transcript.pyannote[1183].speaker SPEAKER_20
transcript.pyannote[1183].start 10641.77721875
transcript.pyannote[1183].end 10642.35096875
transcript.pyannote[1184].speaker SPEAKER_23
transcript.pyannote[1184].start 10642.35096875
transcript.pyannote[1184].end 10658.23034375
transcript.pyannote[1185].speaker SPEAKER_20
transcript.pyannote[1185].start 10642.36784375
transcript.pyannote[1185].end 10642.50284375
transcript.pyannote[1186].speaker SPEAKER_20
transcript.pyannote[1186].start 10658.02784375
transcript.pyannote[1186].end 10662.12846875
transcript.pyannote[1187].speaker SPEAKER_23
transcript.pyannote[1187].start 10662.22971875
transcript.pyannote[1187].end 10674.21096875
transcript.pyannote[1188].speaker SPEAKER_20
transcript.pyannote[1188].start 10670.73471875
transcript.pyannote[1188].end 10671.07221875
transcript.pyannote[1189].speaker SPEAKER_20
transcript.pyannote[1189].start 10673.46846875
transcript.pyannote[1189].end 10713.44534375
transcript.pyannote[1190].speaker SPEAKER_20
transcript.pyannote[1190].start 10713.90096875
transcript.pyannote[1190].end 10748.71409375
transcript.pyannote[1191].speaker SPEAKER_23
transcript.pyannote[1191].start 10749.27096875
transcript.pyannote[1191].end 10758.45096875
transcript.pyannote[1192].speaker SPEAKER_20
transcript.pyannote[1192].start 10756.39221875
transcript.pyannote[1192].end 10756.99971875
transcript.pyannote[1193].speaker SPEAKER_20
transcript.pyannote[1193].start 10758.45096875
transcript.pyannote[1193].end 10812.14721875
transcript.pyannote[1194].speaker SPEAKER_23
transcript.pyannote[1194].start 10810.79721875
transcript.pyannote[1194].end 10818.22221875
transcript.pyannote[1195].speaker SPEAKER_20
transcript.pyannote[1195].start 10815.33659375
transcript.pyannote[1195].end 10816.11284375
transcript.pyannote[1196].speaker SPEAKER_20
transcript.pyannote[1196].start 10817.09159375
transcript.pyannote[1196].end 10843.12971875
transcript.pyannote[1197].speaker SPEAKER_23
transcript.pyannote[1197].start 10842.13409375
transcript.pyannote[1197].end 10851.41534375
transcript.pyannote[1198].speaker SPEAKER_20
transcript.pyannote[1198].start 10851.46596875
transcript.pyannote[1198].end 10853.06909375
transcript.pyannote[1199].speaker SPEAKER_20
transcript.pyannote[1199].start 10853.20409375
transcript.pyannote[1199].end 10892.92784375
transcript.pyannote[1200].speaker SPEAKER_23
transcript.pyannote[1200].start 10893.19784375
transcript.pyannote[1200].end 10893.80534375
transcript.pyannote[1201].speaker SPEAKER_30
transcript.pyannote[1201].start 10894.05846875
transcript.pyannote[1201].end 10896.42096875
transcript.pyannote[1202].speaker SPEAKER_30
transcript.pyannote[1202].start 10896.75846875
transcript.pyannote[1202].end 10899.17159375
transcript.pyannote[1203].speaker SPEAKER_07
transcript.pyannote[1203].start 10907.86221875
transcript.pyannote[1203].end 10909.88721875
transcript.pyannote[1204].speaker SPEAKER_30
transcript.pyannote[1204].start 10909.95471875
transcript.pyannote[1204].end 10910.69721875
transcript.pyannote[1205].speaker SPEAKER_07
transcript.pyannote[1205].start 10913.90346875
transcript.pyannote[1205].end 10916.70471875
transcript.pyannote[1206].speaker SPEAKER_07
transcript.pyannote[1206].start 10917.05909375
transcript.pyannote[1206].end 10921.07534375
transcript.pyannote[1207].speaker SPEAKER_07
transcript.pyannote[1207].start 10921.22721875
transcript.pyannote[1207].end 10930.79534375
transcript.pyannote[1208].speaker SPEAKER_07
transcript.pyannote[1208].start 10931.26784375
transcript.pyannote[1208].end 10933.09034375
transcript.pyannote[1209].speaker SPEAKER_07
transcript.pyannote[1209].start 10933.41096875
transcript.pyannote[1209].end 10944.93659375
transcript.pyannote[1210].speaker SPEAKER_23
transcript.pyannote[1210].start 10944.83534375
transcript.pyannote[1210].end 10945.54409375
transcript.pyannote[1211].speaker SPEAKER_07
transcript.pyannote[1211].start 10945.54409375
transcript.pyannote[1211].end 10969.81034375
transcript.pyannote[1212].speaker SPEAKER_07
transcript.pyannote[1212].start 10969.92846875
transcript.pyannote[1212].end 11001.02909375
transcript.pyannote[1213].speaker SPEAKER_23
transcript.pyannote[1213].start 11001.02909375
transcript.pyannote[1213].end 11073.96284375
transcript.pyannote[1214].speaker SPEAKER_31
transcript.pyannote[1214].start 11019.59159375
transcript.pyannote[1214].end 11019.69284375
transcript.pyannote[1215].speaker SPEAKER_34
transcript.pyannote[1215].start 11019.69284375
transcript.pyannote[1215].end 11019.74346875
transcript.pyannote[1216].speaker SPEAKER_31
transcript.pyannote[1216].start 11019.74346875
transcript.pyannote[1216].end 11019.84471875
transcript.pyannote[1217].speaker SPEAKER_00
transcript.pyannote[1217].start 11029.41284375
transcript.pyannote[1217].end 11029.69971875
transcript.pyannote[1218].speaker SPEAKER_07
transcript.pyannote[1218].start 11073.96284375
transcript.pyannote[1218].end 11091.42846875
transcript.pyannote[1219].speaker SPEAKER_23
transcript.pyannote[1219].start 11079.98721875
transcript.pyannote[1219].end 11080.91534375
transcript.pyannote[1220].speaker SPEAKER_07
transcript.pyannote[1220].start 11091.64784375
transcript.pyannote[1220].end 11104.33784375
transcript.pyannote[1221].speaker SPEAKER_31
transcript.pyannote[1221].start 11097.13221875
transcript.pyannote[1221].end 11097.50346875
transcript.pyannote[1222].speaker SPEAKER_07
transcript.pyannote[1222].start 11104.67534375
transcript.pyannote[1222].end 11106.75096875
transcript.pyannote[1223].speaker SPEAKER_07
transcript.pyannote[1223].start 11106.83534375
transcript.pyannote[1223].end 11111.59409375
transcript.pyannote[1224].speaker SPEAKER_23
transcript.pyannote[1224].start 11111.59409375
transcript.pyannote[1224].end 11111.62784375
transcript.pyannote[1225].speaker SPEAKER_23
transcript.pyannote[1225].start 11112.03284375
transcript.pyannote[1225].end 11128.21596875
transcript.pyannote[1226].speaker SPEAKER_07
transcript.pyannote[1226].start 11115.64409375
transcript.pyannote[1226].end 11115.89721875
transcript.pyannote[1227].speaker SPEAKER_00
transcript.pyannote[1227].start 11119.81221875
transcript.pyannote[1227].end 11120.01471875
transcript.pyannote[1228].speaker SPEAKER_07
transcript.pyannote[1228].start 11120.63909375
transcript.pyannote[1228].end 11121.17909375
transcript.pyannote[1229].speaker SPEAKER_07
transcript.pyannote[1229].start 11128.21596875
transcript.pyannote[1229].end 11128.40159375
transcript.pyannote[1230].speaker SPEAKER_23
transcript.pyannote[1230].start 11128.40159375
transcript.pyannote[1230].end 11128.70534375
transcript.pyannote[1231].speaker SPEAKER_07
transcript.pyannote[1231].start 11128.70534375
transcript.pyannote[1231].end 11132.46846875
transcript.pyannote[1232].speaker SPEAKER_07
transcript.pyannote[1232].start 11132.53596875
transcript.pyannote[1232].end 11157.29159375
transcript.pyannote[1233].speaker SPEAKER_23
transcript.pyannote[1233].start 11133.34596875
transcript.pyannote[1233].end 11133.97034375
transcript.pyannote[1234].speaker SPEAKER_31
transcript.pyannote[1234].start 11133.97034375
transcript.pyannote[1234].end 11134.79721875
transcript.pyannote[1235].speaker SPEAKER_31
transcript.pyannote[1235].start 11145.39471875
transcript.pyannote[1235].end 11145.95159375
transcript.pyannote[1236].speaker SPEAKER_00
transcript.pyannote[1236].start 11149.44471875
transcript.pyannote[1236].end 11150.27159375
transcript.pyannote[1237].speaker SPEAKER_07
transcript.pyannote[1237].start 11157.57846875
transcript.pyannote[1237].end 11161.13909375
transcript.pyannote[1238].speaker SPEAKER_23
transcript.pyannote[1238].start 11161.13909375
transcript.pyannote[1238].end 11161.15596875
transcript.pyannote[1239].speaker SPEAKER_07
transcript.pyannote[1239].start 11161.47659375
transcript.pyannote[1239].end 11163.72096875
transcript.pyannote[1240].speaker SPEAKER_23
transcript.pyannote[1240].start 11163.72096875
transcript.pyannote[1240].end 11171.36534375
transcript.pyannote[1241].speaker SPEAKER_07
transcript.pyannote[1241].start 11168.24346875
transcript.pyannote[1241].end 11168.47971875
transcript.pyannote[1242].speaker SPEAKER_10
transcript.pyannote[1242].start 11168.47971875
transcript.pyannote[1242].end 11168.49659375
transcript.pyannote[1243].speaker SPEAKER_07
transcript.pyannote[1243].start 11168.49659375
transcript.pyannote[1243].end 11168.51346875
transcript.pyannote[1244].speaker SPEAKER_10
transcript.pyannote[1244].start 11171.26409375
transcript.pyannote[1244].end 11171.31471875
transcript.pyannote[1245].speaker SPEAKER_10
transcript.pyannote[1245].start 11171.36534375
transcript.pyannote[1245].end 11171.39909375
transcript.pyannote[1246].speaker SPEAKER_23
transcript.pyannote[1246].start 11171.39909375
transcript.pyannote[1246].end 11192.96534375
transcript.pyannote[1247].speaker SPEAKER_10
transcript.pyannote[1247].start 11171.43284375
transcript.pyannote[1247].end 11171.51721875
transcript.pyannote[1248].speaker SPEAKER_10
transcript.pyannote[1248].start 11173.71096875
transcript.pyannote[1248].end 11174.03159375
transcript.pyannote[1249].speaker SPEAKER_31
transcript.pyannote[1249].start 11174.03159375
transcript.pyannote[1249].end 11174.38596875
transcript.pyannote[1250].speaker SPEAKER_10
transcript.pyannote[1250].start 11174.38596875
transcript.pyannote[1250].end 11174.45346875
transcript.pyannote[1251].speaker SPEAKER_31
transcript.pyannote[1251].start 11174.45346875
transcript.pyannote[1251].end 11174.48721875
transcript.pyannote[1252].speaker SPEAKER_00
transcript.pyannote[1252].start 11187.63284375
transcript.pyannote[1252].end 11187.68346875
transcript.pyannote[1253].speaker SPEAKER_07
transcript.pyannote[1253].start 11187.68346875
transcript.pyannote[1253].end 11187.75096875
transcript.pyannote[1254].speaker SPEAKER_00
transcript.pyannote[1254].start 11187.75096875
transcript.pyannote[1254].end 11187.76784375
transcript.pyannote[1255].speaker SPEAKER_07
transcript.pyannote[1255].start 11187.76784375
transcript.pyannote[1255].end 11187.80159375
transcript.pyannote[1256].speaker SPEAKER_00
transcript.pyannote[1256].start 11187.80159375
transcript.pyannote[1256].end 11187.88596875
transcript.pyannote[1257].speaker SPEAKER_07
transcript.pyannote[1257].start 11192.96534375
transcript.pyannote[1257].end 11216.86034375
transcript.pyannote[1258].speaker SPEAKER_23
transcript.pyannote[1258].start 11195.68221875
transcript.pyannote[1258].end 11195.95221875
transcript.pyannote[1259].speaker SPEAKER_07
transcript.pyannote[1259].start 11217.33284375
transcript.pyannote[1259].end 11219.12159375
transcript.pyannote[1260].speaker SPEAKER_07
transcript.pyannote[1260].start 11219.52659375
transcript.pyannote[1260].end 11229.02721875
transcript.pyannote[1261].speaker SPEAKER_23
transcript.pyannote[1261].start 11229.02721875
transcript.pyannote[1261].end 11240.94096875
transcript.pyannote[1262].speaker SPEAKER_07
transcript.pyannote[1262].start 11240.94096875
transcript.pyannote[1262].end 11241.27846875
transcript.pyannote[1263].speaker SPEAKER_23
transcript.pyannote[1263].start 11241.44721875
transcript.pyannote[1263].end 11241.46409375
transcript.pyannote[1264].speaker SPEAKER_07
transcript.pyannote[1264].start 11241.46409375
transcript.pyannote[1264].end 11246.39159375
transcript.pyannote[1265].speaker SPEAKER_07
transcript.pyannote[1265].start 11246.44221875
transcript.pyannote[1265].end 11247.30284375
transcript.pyannote[1266].speaker SPEAKER_07
transcript.pyannote[1266].start 11247.38721875
transcript.pyannote[1266].end 11249.12534375
transcript.pyannote[1267].speaker SPEAKER_07
transcript.pyannote[1267].start 11249.37846875
transcript.pyannote[1267].end 11253.02346875
transcript.pyannote[1268].speaker SPEAKER_23
transcript.pyannote[1268].start 11253.02346875
transcript.pyannote[1268].end 11289.30471875
transcript.pyannote[1269].speaker SPEAKER_32
transcript.pyannote[1269].start 11259.19971875
transcript.pyannote[1269].end 11259.35159375
transcript.pyannote[1270].speaker SPEAKER_07
transcript.pyannote[1270].start 11289.30471875
transcript.pyannote[1270].end 11289.32159375
transcript.pyannote[1271].speaker SPEAKER_23
transcript.pyannote[1271].start 11289.81096875
transcript.pyannote[1271].end 11289.96284375
transcript.pyannote[1272].speaker SPEAKER_07
transcript.pyannote[1272].start 11289.96284375
transcript.pyannote[1272].end 11290.30034375
transcript.pyannote[1273].speaker SPEAKER_23
transcript.pyannote[1273].start 11290.65471875
transcript.pyannote[1273].end 11290.68846875
transcript.pyannote[1274].speaker SPEAKER_07
transcript.pyannote[1274].start 11290.68846875
transcript.pyannote[1274].end 11305.03221875
transcript.pyannote[1275].speaker SPEAKER_23
transcript.pyannote[1275].start 11291.58284375
transcript.pyannote[1275].end 11291.63346875
transcript.pyannote[1276].speaker SPEAKER_31
transcript.pyannote[1276].start 11291.63346875
transcript.pyannote[1276].end 11292.20721875
transcript.pyannote[1277].speaker SPEAKER_23
transcript.pyannote[1277].start 11292.20721875
transcript.pyannote[1277].end 11292.22409375
transcript.pyannote[1278].speaker SPEAKER_31
transcript.pyannote[1278].start 11292.22409375
transcript.pyannote[1278].end 11292.24096875
transcript.pyannote[1279].speaker SPEAKER_23
transcript.pyannote[1279].start 11305.03221875
transcript.pyannote[1279].end 11305.52159375
transcript.pyannote[1280].speaker SPEAKER_23
transcript.pyannote[1280].start 11305.65659375
transcript.pyannote[1280].end 11305.67346875
transcript.pyannote[1281].speaker SPEAKER_07
transcript.pyannote[1281].start 11305.67346875
transcript.pyannote[1281].end 11305.69034375
transcript.pyannote[1282].speaker SPEAKER_23
transcript.pyannote[1282].start 11305.69034375
transcript.pyannote[1282].end 11316.01784375
transcript.pyannote[1283].speaker SPEAKER_07
transcript.pyannote[1283].start 11316.01784375
transcript.pyannote[1283].end 11316.05159375
transcript.pyannote[1284].speaker SPEAKER_30
transcript.pyannote[1284].start 11316.18659375
transcript.pyannote[1284].end 11324.43846875
transcript.pyannote[1285].speaker SPEAKER_30
transcript.pyannote[1285].start 11324.53971875
transcript.pyannote[1285].end 11329.23096875
transcript.pyannote[1286].speaker SPEAKER_30
transcript.pyannote[1286].start 11329.50096875
transcript.pyannote[1286].end 11332.01534375
transcript.pyannote[1287].speaker SPEAKER_03
transcript.pyannote[1287].start 11336.82471875
transcript.pyannote[1287].end 11342.27534375
transcript.pyannote[1288].speaker SPEAKER_23
transcript.pyannote[1288].start 11340.06471875
transcript.pyannote[1288].end 11341.21221875
transcript.pyannote[1289].speaker SPEAKER_23
transcript.pyannote[1289].start 11343.77721875
transcript.pyannote[1289].end 11344.28346875
transcript.pyannote[1290].speaker SPEAKER_03
transcript.pyannote[1290].start 11344.28346875
transcript.pyannote[1290].end 11365.91721875
transcript.pyannote[1291].speaker SPEAKER_23
transcript.pyannote[1291].start 11361.95159375
transcript.pyannote[1291].end 11362.40721875
transcript.pyannote[1292].speaker SPEAKER_23
transcript.pyannote[1292].start 11366.01846875
transcript.pyannote[1292].end 11374.00034375
transcript.pyannote[1293].speaker SPEAKER_03
transcript.pyannote[1293].start 11373.62909375
transcript.pyannote[1293].end 11378.59034375
transcript.pyannote[1294].speaker SPEAKER_23
transcript.pyannote[1294].start 11379.09659375
transcript.pyannote[1294].end 11379.92346875
transcript.pyannote[1295].speaker SPEAKER_03
transcript.pyannote[1295].start 11379.31596875
transcript.pyannote[1295].end 11380.81784375
transcript.pyannote[1296].speaker SPEAKER_23
transcript.pyannote[1296].start 11380.88534375
transcript.pyannote[1296].end 11391.17909375
transcript.pyannote[1297].speaker SPEAKER_03
transcript.pyannote[1297].start 11392.10721875
transcript.pyannote[1297].end 11398.18221875
transcript.pyannote[1298].speaker SPEAKER_31
transcript.pyannote[1298].start 11398.26659375
transcript.pyannote[1298].end 11399.76846875
transcript.pyannote[1299].speaker SPEAKER_03
transcript.pyannote[1299].start 11398.68846875
transcript.pyannote[1299].end 11438.02409375
transcript.pyannote[1300].speaker SPEAKER_31
transcript.pyannote[1300].start 11404.39221875
transcript.pyannote[1300].end 11404.67909375
transcript.pyannote[1301].speaker SPEAKER_23
transcript.pyannote[1301].start 11431.88159375
transcript.pyannote[1301].end 11433.09659375
transcript.pyannote[1302].speaker SPEAKER_23
transcript.pyannote[1302].start 11438.91846875
transcript.pyannote[1302].end 11441.33159375
transcript.pyannote[1303].speaker SPEAKER_03
transcript.pyannote[1303].start 11441.19659375
transcript.pyannote[1303].end 11467.21784375
transcript.pyannote[1304].speaker SPEAKER_23
transcript.pyannote[1304].start 11467.35284375
transcript.pyannote[1304].end 11471.57159375
transcript.pyannote[1305].speaker SPEAKER_03
transcript.pyannote[1305].start 11470.49159375
transcript.pyannote[1305].end 11495.39909375
transcript.pyannote[1306].speaker SPEAKER_23
transcript.pyannote[1306].start 11496.07409375
transcript.pyannote[1306].end 11498.41971875
transcript.pyannote[1307].speaker SPEAKER_03
transcript.pyannote[1307].start 11498.38596875
transcript.pyannote[1307].end 11501.60909375
transcript.pyannote[1308].speaker SPEAKER_23
transcript.pyannote[1308].start 11502.09846875
transcript.pyannote[1308].end 11503.22909375
transcript.pyannote[1309].speaker SPEAKER_03
transcript.pyannote[1309].start 11502.75659375
transcript.pyannote[1309].end 11534.71784375
transcript.pyannote[1310].speaker SPEAKER_03
transcript.pyannote[1310].start 11536.42221875
transcript.pyannote[1310].end 11545.70346875
transcript.pyannote[1311].speaker SPEAKER_03
transcript.pyannote[1311].start 11546.14221875
transcript.pyannote[1311].end 11588.61659375
transcript.pyannote[1312].speaker SPEAKER_23
transcript.pyannote[1312].start 11588.59971875
transcript.pyannote[1312].end 11589.29159375
transcript.pyannote[1313].speaker SPEAKER_03
transcript.pyannote[1313].start 11589.05534375
transcript.pyannote[1313].end 11615.09346875
transcript.pyannote[1314].speaker SPEAKER_23
transcript.pyannote[1314].start 11615.09346875
transcript.pyannote[1314].end 11619.12659375
transcript.pyannote[1315].speaker SPEAKER_03
transcript.pyannote[1315].start 11617.55721875
transcript.pyannote[1315].end 11648.89409375
transcript.pyannote[1316].speaker SPEAKER_23
transcript.pyannote[1316].start 11649.06284375
transcript.pyannote[1316].end 11651.96534375
transcript.pyannote[1317].speaker SPEAKER_03
transcript.pyannote[1317].start 11650.51409375
transcript.pyannote[1317].end 11651.79659375
transcript.pyannote[1318].speaker SPEAKER_03
transcript.pyannote[1318].start 11652.03284375
transcript.pyannote[1318].end 11658.86721875
transcript.pyannote[1319].speaker SPEAKER_30
transcript.pyannote[1319].start 11659.55909375
transcript.pyannote[1319].end 11668.55346875
transcript.pyannote[1320].speaker SPEAKER_30
transcript.pyannote[1320].start 11668.94159375
transcript.pyannote[1320].end 11671.38846875
transcript.pyannote[1321].speaker SPEAKER_12
transcript.pyannote[1321].start 11691.06471875
transcript.pyannote[1321].end 11693.24159375
transcript.pyannote[1322].speaker SPEAKER_30
transcript.pyannote[1322].start 11693.35971875
transcript.pyannote[1322].end 11694.32159375
transcript.pyannote[1323].speaker SPEAKER_12
transcript.pyannote[1323].start 11697.56159375
transcript.pyannote[1323].end 11698.20284375
transcript.pyannote[1324].speaker SPEAKER_12
transcript.pyannote[1324].start 11699.21534375
transcript.pyannote[1324].end 11700.04221875
transcript.pyannote[1325].speaker SPEAKER_12
transcript.pyannote[1325].start 11700.97034375
transcript.pyannote[1325].end 11702.30346875
transcript.pyannote[1326].speaker SPEAKER_12
transcript.pyannote[1326].start 11703.04596875
transcript.pyannote[1326].end 11705.59409375
transcript.pyannote[1327].speaker SPEAKER_12
transcript.pyannote[1327].start 11706.20159375
transcript.pyannote[1327].end 11713.60971875
transcript.pyannote[1328].speaker SPEAKER_12
transcript.pyannote[1328].start 11714.01471875
transcript.pyannote[1328].end 11718.30096875
transcript.pyannote[1329].speaker SPEAKER_12
transcript.pyannote[1329].start 11718.82409375
transcript.pyannote[1329].end 11723.46471875
transcript.pyannote[1330].speaker SPEAKER_12
transcript.pyannote[1330].start 11724.12284375
transcript.pyannote[1330].end 11729.16846875
transcript.pyannote[1331].speaker SPEAKER_12
transcript.pyannote[1331].start 11730.06284375
transcript.pyannote[1331].end 11733.67409375
transcript.pyannote[1332].speaker SPEAKER_12
transcript.pyannote[1332].start 11734.61909375
transcript.pyannote[1332].end 11735.44596875
transcript.pyannote[1333].speaker SPEAKER_12
transcript.pyannote[1333].start 11735.88471875
transcript.pyannote[1333].end 11745.63846875
transcript.pyannote[1334].speaker SPEAKER_12
transcript.pyannote[1334].start 11746.24596875
transcript.pyannote[1334].end 11747.08971875
transcript.pyannote[1335].speaker SPEAKER_12
transcript.pyannote[1335].start 11747.57909375
transcript.pyannote[1335].end 11748.20346875
transcript.pyannote[1336].speaker SPEAKER_12
transcript.pyannote[1336].start 11749.04721875
transcript.pyannote[1336].end 11751.88221875
transcript.pyannote[1337].speaker SPEAKER_12
transcript.pyannote[1337].start 11752.38846875
transcript.pyannote[1337].end 11755.03784375
transcript.pyannote[1338].speaker SPEAKER_12
transcript.pyannote[1338].start 11755.51034375
transcript.pyannote[1338].end 11759.59409375
transcript.pyannote[1339].speaker SPEAKER_12
transcript.pyannote[1339].start 11760.23534375
transcript.pyannote[1339].end 11762.00721875
transcript.pyannote[1340].speaker SPEAKER_12
transcript.pyannote[1340].start 11763.39096875
transcript.pyannote[1340].end 11766.64784375
transcript.pyannote[1341].speaker SPEAKER_12
transcript.pyannote[1341].start 11766.98534375
transcript.pyannote[1341].end 11768.84159375
transcript.pyannote[1342].speaker SPEAKER_12
transcript.pyannote[1342].start 11768.97659375
transcript.pyannote[1342].end 11768.99346875
transcript.pyannote[1343].speaker SPEAKER_12
transcript.pyannote[1343].start 11769.06096875
transcript.pyannote[1343].end 11771.52471875
transcript.pyannote[1344].speaker SPEAKER_12
transcript.pyannote[1344].start 11771.98034375
transcript.pyannote[1344].end 11774.20784375
transcript.pyannote[1345].speaker SPEAKER_12
transcript.pyannote[1345].start 11774.68034375
transcript.pyannote[1345].end 11782.89846875
transcript.pyannote[1346].speaker SPEAKER_12
transcript.pyannote[1346].start 11783.82659375
transcript.pyannote[1346].end 11785.91909375
transcript.pyannote[1347].speaker SPEAKER_12
transcript.pyannote[1347].start 11786.91471875
transcript.pyannote[1347].end 11787.79221875
transcript.pyannote[1348].speaker SPEAKER_12
transcript.pyannote[1348].start 11788.24784375
transcript.pyannote[1348].end 11789.85096875
transcript.pyannote[1349].speaker SPEAKER_12
transcript.pyannote[1349].start 11790.66096875
transcript.pyannote[1349].end 11795.67284375
transcript.pyannote[1350].speaker SPEAKER_12
transcript.pyannote[1350].start 11796.39846875
transcript.pyannote[1350].end 11797.73159375
transcript.pyannote[1351].speaker SPEAKER_12
transcript.pyannote[1351].start 11798.22096875
transcript.pyannote[1351].end 11799.13221875
transcript.pyannote[1352].speaker SPEAKER_12
transcript.pyannote[1352].start 11799.72284375
transcript.pyannote[1352].end 11801.30909375
transcript.pyannote[1353].speaker SPEAKER_12
transcript.pyannote[1353].start 11801.96721875
transcript.pyannote[1353].end 11802.94596875
transcript.pyannote[1354].speaker SPEAKER_12
transcript.pyannote[1354].start 11803.53659375
transcript.pyannote[1354].end 11805.74721875
transcript.pyannote[1355].speaker SPEAKER_12
transcript.pyannote[1355].start 11807.09721875
transcript.pyannote[1355].end 11811.48471875
transcript.pyannote[1356].speaker SPEAKER_12
transcript.pyannote[1356].start 11812.04159375
transcript.pyannote[1356].end 11813.37471875
transcript.pyannote[1357].speaker SPEAKER_12
transcript.pyannote[1357].start 11814.20159375
transcript.pyannote[1357].end 11820.61409375
transcript.pyannote[1358].speaker SPEAKER_12
transcript.pyannote[1358].start 11820.96846875
transcript.pyannote[1358].end 11823.48284375
transcript.pyannote[1359].speaker SPEAKER_12
transcript.pyannote[1359].start 11824.30971875
transcript.pyannote[1359].end 11826.03096875
transcript.pyannote[1360].speaker SPEAKER_12
transcript.pyannote[1360].start 11826.77346875
transcript.pyannote[1360].end 11827.73534375
transcript.pyannote[1361].speaker SPEAKER_12
transcript.pyannote[1361].start 11827.85346875
transcript.pyannote[1361].end 11828.24159375
transcript.pyannote[1362].speaker SPEAKER_12
transcript.pyannote[1362].start 11831.14409375
transcript.pyannote[1362].end 11833.79346875
transcript.pyannote[1363].speaker SPEAKER_12
transcript.pyannote[1363].start 11834.62034375
transcript.pyannote[1363].end 11835.21096875
transcript.pyannote[1364].speaker SPEAKER_12
transcript.pyannote[1364].start 11836.05471875
transcript.pyannote[1364].end 11836.71284375
transcript.pyannote[1365].speaker SPEAKER_12
transcript.pyannote[1365].start 11837.23596875
transcript.pyannote[1365].end 11838.02909375
transcript.pyannote[1366].speaker SPEAKER_12
transcript.pyannote[1366].start 11838.83909375
transcript.pyannote[1366].end 11843.58096875
transcript.pyannote[1367].speaker SPEAKER_12
transcript.pyannote[1367].start 11844.42471875
transcript.pyannote[1367].end 11847.54659375
transcript.pyannote[1368].speaker SPEAKER_12
transcript.pyannote[1368].start 11847.95159375
transcript.pyannote[1368].end 11848.42409375
transcript.pyannote[1369].speaker SPEAKER_31
transcript.pyannote[1369].start 11848.42409375
transcript.pyannote[1369].end 11848.66034375
transcript.pyannote[1370].speaker SPEAKER_12
transcript.pyannote[1370].start 11848.66034375
transcript.pyannote[1370].end 11849.36909375
transcript.pyannote[1371].speaker SPEAKER_12
transcript.pyannote[1371].start 11850.16221875
transcript.pyannote[1371].end 11851.66409375
transcript.pyannote[1372].speaker SPEAKER_12
transcript.pyannote[1372].start 11852.72721875
transcript.pyannote[1372].end 11855.17409375
transcript.pyannote[1373].speaker SPEAKER_12
transcript.pyannote[1373].start 11856.06846875
transcript.pyannote[1373].end 11857.21596875
transcript.pyannote[1374].speaker SPEAKER_12
transcript.pyannote[1374].start 11858.54909375
transcript.pyannote[1374].end 11859.25784375
transcript.pyannote[1375].speaker SPEAKER_12
transcript.pyannote[1375].start 11860.00034375
transcript.pyannote[1375].end 11861.23221875
transcript.pyannote[1376].speaker SPEAKER_12
transcript.pyannote[1376].start 11863.54409375
transcript.pyannote[1376].end 11864.55659375
transcript.pyannote[1377].speaker SPEAKER_12
transcript.pyannote[1377].start 11865.73784375
transcript.pyannote[1377].end 11867.00346875
transcript.pyannote[1378].speaker SPEAKER_23
transcript.pyannote[1378].start 11868.13409375
transcript.pyannote[1378].end 11868.47159375
transcript.pyannote[1379].speaker SPEAKER_23
transcript.pyannote[1379].start 11868.67409375
transcript.pyannote[1379].end 11877.53346875
transcript.pyannote[1380].speaker SPEAKER_23
transcript.pyannote[1380].start 11878.49534375
transcript.pyannote[1380].end 11879.82846875
transcript.pyannote[1381].speaker SPEAKER_12
transcript.pyannote[1381].start 11879.82846875
transcript.pyannote[1381].end 11879.86221875
transcript.pyannote[1382].speaker SPEAKER_23
transcript.pyannote[1382].start 11880.79034375
transcript.pyannote[1382].end 11880.97596875
transcript.pyannote[1383].speaker SPEAKER_12
transcript.pyannote[1383].start 11880.97596875
transcript.pyannote[1383].end 11881.39784375
transcript.pyannote[1384].speaker SPEAKER_12
transcript.pyannote[1384].start 11881.97159375
transcript.pyannote[1384].end 11883.25409375
transcript.pyannote[1385].speaker SPEAKER_12
transcript.pyannote[1385].start 11883.54096875
transcript.pyannote[1385].end 11884.80659375
transcript.pyannote[1386].speaker SPEAKER_12
transcript.pyannote[1386].start 11885.81909375
transcript.pyannote[1386].end 11887.62471875
transcript.pyannote[1387].speaker SPEAKER_12
transcript.pyannote[1387].start 11888.38409375
transcript.pyannote[1387].end 11889.58221875
transcript.pyannote[1388].speaker SPEAKER_12
transcript.pyannote[1388].start 11890.42596875
transcript.pyannote[1388].end 11891.35409375
transcript.pyannote[1389].speaker SPEAKER_12
transcript.pyannote[1389].start 11892.01221875
transcript.pyannote[1389].end 11893.29471875
transcript.pyannote[1390].speaker SPEAKER_12
transcript.pyannote[1390].start 11894.44221875
transcript.pyannote[1390].end 11896.61909375
transcript.pyannote[1391].speaker SPEAKER_12
transcript.pyannote[1391].start 11897.41221875
transcript.pyannote[1391].end 11899.82534375
transcript.pyannote[1392].speaker SPEAKER_12
transcript.pyannote[1392].start 11900.17971875
transcript.pyannote[1392].end 11900.83784375
transcript.pyannote[1393].speaker SPEAKER_12
transcript.pyannote[1393].start 11901.74909375
transcript.pyannote[1393].end 11902.98096875
transcript.pyannote[1394].speaker SPEAKER_12
transcript.pyannote[1394].start 11903.38596875
transcript.pyannote[1394].end 11903.70659375
transcript.pyannote[1395].speaker SPEAKER_12
transcript.pyannote[1395].start 11904.33096875
transcript.pyannote[1395].end 11905.09034375
transcript.pyannote[1396].speaker SPEAKER_12
transcript.pyannote[1396].start 11905.95096875
transcript.pyannote[1396].end 11906.64284375
transcript.pyannote[1397].speaker SPEAKER_12
transcript.pyannote[1397].start 11906.79471875
transcript.pyannote[1397].end 11910.55784375
transcript.pyannote[1398].speaker SPEAKER_12
transcript.pyannote[1398].start 11911.48596875
transcript.pyannote[1398].end 11913.94971875
transcript.pyannote[1399].speaker SPEAKER_12
transcript.pyannote[1399].start 11914.97909375
transcript.pyannote[1399].end 11916.48096875
transcript.pyannote[1400].speaker SPEAKER_12
transcript.pyannote[1400].start 11917.34159375
transcript.pyannote[1400].end 11918.37096875
transcript.pyannote[1401].speaker SPEAKER_12
transcript.pyannote[1401].start 11918.72534375
transcript.pyannote[1401].end 11920.95284375
transcript.pyannote[1402].speaker SPEAKER_23
transcript.pyannote[1402].start 11920.88534375
transcript.pyannote[1402].end 11935.51596875
transcript.pyannote[1403].speaker SPEAKER_12
transcript.pyannote[1403].start 11933.05221875
transcript.pyannote[1403].end 11934.03096875
transcript.pyannote[1404].speaker SPEAKER_12
transcript.pyannote[1404].start 11935.39784375
transcript.pyannote[1404].end 11940.81471875
transcript.pyannote[1405].speaker SPEAKER_12
transcript.pyannote[1405].start 11940.88221875
transcript.pyannote[1405].end 11947.29471875
transcript.pyannote[1406].speaker SPEAKER_12
transcript.pyannote[1406].start 11947.41284375
transcript.pyannote[1406].end 11947.85159375
transcript.pyannote[1407].speaker SPEAKER_12
transcript.pyannote[1407].start 11949.52221875
transcript.pyannote[1407].end 11952.00284375
transcript.pyannote[1408].speaker SPEAKER_12
transcript.pyannote[1408].start 11952.55971875
transcript.pyannote[1408].end 11958.11159375
transcript.pyannote[1409].speaker SPEAKER_12
transcript.pyannote[1409].start 11958.53346875
transcript.pyannote[1409].end 11960.15346875
transcript.pyannote[1410].speaker SPEAKER_12
transcript.pyannote[1410].start 11960.67659375
transcript.pyannote[1410].end 11963.51159375
transcript.pyannote[1411].speaker SPEAKER_12
transcript.pyannote[1411].start 11965.26659375
transcript.pyannote[1411].end 11966.61659375
transcript.pyannote[1412].speaker SPEAKER_12
transcript.pyannote[1412].start 11968.11846875
transcript.pyannote[1412].end 11969.16471875
transcript.pyannote[1413].speaker SPEAKER_12
transcript.pyannote[1413].start 11969.41784375
transcript.pyannote[1413].end 11971.57784375
transcript.pyannote[1414].speaker SPEAKER_12
transcript.pyannote[1414].start 11972.23596875
transcript.pyannote[1414].end 11975.00346875
transcript.pyannote[1415].speaker SPEAKER_12
transcript.pyannote[1415].start 11975.64471875
transcript.pyannote[1415].end 11976.69096875
transcript.pyannote[1416].speaker SPEAKER_12
transcript.pyannote[1416].start 11977.72034375
transcript.pyannote[1416].end 11979.28971875
transcript.pyannote[1417].speaker SPEAKER_12
transcript.pyannote[1417].start 11979.81284375
transcript.pyannote[1417].end 11981.85471875
transcript.pyannote[1418].speaker SPEAKER_12
transcript.pyannote[1418].start 11982.37784375
transcript.pyannote[1418].end 11986.22534375
transcript.pyannote[1419].speaker SPEAKER_12
transcript.pyannote[1419].start 11986.64721875
transcript.pyannote[1419].end 11995.40534375
transcript.pyannote[1420].speaker SPEAKER_12
transcript.pyannote[1420].start 11996.09721875
transcript.pyannote[1420].end 11997.27846875
transcript.pyannote[1421].speaker SPEAKER_12
transcript.pyannote[1421].start 11998.13909375
transcript.pyannote[1421].end 11999.77596875
transcript.pyannote[1422].speaker SPEAKER_12
transcript.pyannote[1422].start 12000.45096875
transcript.pyannote[1422].end 12000.87284375
transcript.pyannote[1423].speaker SPEAKER_12
transcript.pyannote[1423].start 12001.09221875
transcript.pyannote[1423].end 12001.81784375
transcript.pyannote[1424].speaker SPEAKER_12
transcript.pyannote[1424].start 12002.37471875
transcript.pyannote[1424].end 12004.77096875
transcript.pyannote[1425].speaker SPEAKER_12
transcript.pyannote[1425].start 12005.64846875
transcript.pyannote[1425].end 12007.26846875
transcript.pyannote[1426].speaker SPEAKER_12
transcript.pyannote[1426].start 12007.72409375
transcript.pyannote[1426].end 12015.53721875
transcript.pyannote[1427].speaker SPEAKER_12
transcript.pyannote[1427].start 12015.90846875
transcript.pyannote[1427].end 12017.66346875
transcript.pyannote[1428].speaker SPEAKER_31
transcript.pyannote[1428].start 12017.66346875
transcript.pyannote[1428].end 12017.68034375
transcript.pyannote[1429].speaker SPEAKER_23
transcript.pyannote[1429].start 12017.68034375
transcript.pyannote[1429].end 12017.96721875
transcript.pyannote[1430].speaker SPEAKER_12
transcript.pyannote[1430].start 12017.95034375
transcript.pyannote[1430].end 12022.99596875
transcript.pyannote[1431].speaker SPEAKER_31
transcript.pyannote[1431].start 12017.96721875
transcript.pyannote[1431].end 12017.98409375
transcript.pyannote[1432].speaker SPEAKER_23
transcript.pyannote[1432].start 12022.99596875
transcript.pyannote[1432].end 12025.20659375
transcript.pyannote[1433].speaker SPEAKER_30
transcript.pyannote[1433].start 12026.03346875
transcript.pyannote[1433].end 12030.55596875
transcript.pyannote[1434].speaker SPEAKER_33
transcript.pyannote[1434].start 12037.39034375
transcript.pyannote[1434].end 12038.79096875
transcript.pyannote[1435].speaker SPEAKER_30
transcript.pyannote[1435].start 12037.50846875
transcript.pyannote[1435].end 12038.23409375
transcript.pyannote[1436].speaker SPEAKER_33
transcript.pyannote[1436].start 12039.09471875
transcript.pyannote[1436].end 12040.24221875
transcript.pyannote[1437].speaker SPEAKER_30
transcript.pyannote[1437].start 12039.16221875
transcript.pyannote[1437].end 12039.95534375
transcript.pyannote[1438].speaker SPEAKER_33
transcript.pyannote[1438].start 12040.79909375
transcript.pyannote[1438].end 12043.85346875
transcript.pyannote[1439].speaker SPEAKER_30
transcript.pyannote[1439].start 12041.91284375
transcript.pyannote[1439].end 12044.29221875
transcript.pyannote[1440].speaker SPEAKER_30
transcript.pyannote[1440].start 12044.71409375
transcript.pyannote[1440].end 12045.03471875
transcript.pyannote[1441].speaker SPEAKER_33
transcript.pyannote[1441].start 12045.03471875
transcript.pyannote[1441].end 12045.52409375
transcript.pyannote[1442].speaker SPEAKER_30
transcript.pyannote[1442].start 12045.52409375
transcript.pyannote[1442].end 12045.57471875
transcript.pyannote[1443].speaker SPEAKER_33
transcript.pyannote[1443].start 12045.57471875
transcript.pyannote[1443].end 12045.60846875
transcript.pyannote[1444].speaker SPEAKER_30
transcript.pyannote[1444].start 12045.60846875
transcript.pyannote[1444].end 12045.65909375
transcript.pyannote[1445].speaker SPEAKER_23
transcript.pyannote[1445].start 12046.19909375
transcript.pyannote[1445].end 12046.23284375
transcript.pyannote[1446].speaker SPEAKER_33
transcript.pyannote[1446].start 12046.23284375
transcript.pyannote[1446].end 12046.80659375
transcript.pyannote[1447].speaker SPEAKER_23
transcript.pyannote[1447].start 12046.80659375
transcript.pyannote[1447].end 12046.82346875
transcript.pyannote[1448].speaker SPEAKER_23
transcript.pyannote[1448].start 12047.16096875
transcript.pyannote[1448].end 12047.19471875
transcript.pyannote[1449].speaker SPEAKER_33
transcript.pyannote[1449].start 12047.19471875
transcript.pyannote[1449].end 12048.64596875
transcript.pyannote[1450].speaker SPEAKER_37
transcript.pyannote[1450].start 12049.70909375
transcript.pyannote[1450].end 12049.72596875
transcript.pyannote[1451].speaker SPEAKER_33
transcript.pyannote[1451].start 12049.72596875
transcript.pyannote[1451].end 12049.86096875
transcript.pyannote[1452].speaker SPEAKER_37
transcript.pyannote[1452].start 12049.86096875
transcript.pyannote[1452].end 12050.09721875
transcript.pyannote[1453].speaker SPEAKER_33
transcript.pyannote[1453].start 12050.09721875
transcript.pyannote[1453].end 12050.31659375
transcript.pyannote[1454].speaker SPEAKER_33
transcript.pyannote[1454].start 12050.92409375
transcript.pyannote[1454].end 12052.15596875
transcript.pyannote[1455].speaker SPEAKER_33
transcript.pyannote[1455].start 12052.74659375
transcript.pyannote[1455].end 12056.13846875
transcript.pyannote[1456].speaker SPEAKER_33
transcript.pyannote[1456].start 12056.88096875
transcript.pyannote[1456].end 12064.08659375
transcript.pyannote[1457].speaker SPEAKER_33
transcript.pyannote[1457].start 12064.55909375
transcript.pyannote[1457].end 12068.79471875
transcript.pyannote[1458].speaker SPEAKER_23
transcript.pyannote[1458].start 12068.79471875
transcript.pyannote[1458].end 12076.30409375
transcript.pyannote[1459].speaker SPEAKER_33
transcript.pyannote[1459].start 12075.91596875
transcript.pyannote[1459].end 12076.91159375
transcript.pyannote[1460].speaker SPEAKER_23
transcript.pyannote[1460].start 12077.16471875
transcript.pyannote[1460].end 12081.19784375
transcript.pyannote[1461].speaker SPEAKER_23
transcript.pyannote[1461].start 12081.50159375
transcript.pyannote[1461].end 12082.21034375
transcript.pyannote[1462].speaker SPEAKER_33
transcript.pyannote[1462].start 12081.53534375
transcript.pyannote[1462].end 12082.83471875
transcript.pyannote[1463].speaker SPEAKER_23
transcript.pyannote[1463].start 12082.83471875
transcript.pyannote[1463].end 12084.43784375
transcript.pyannote[1464].speaker SPEAKER_33
transcript.pyannote[1464].start 12083.40846875
transcript.pyannote[1464].end 12083.86409375
transcript.pyannote[1465].speaker SPEAKER_33
transcript.pyannote[1465].start 12084.87659375
transcript.pyannote[1465].end 12088.48784375
transcript.pyannote[1466].speaker SPEAKER_33
transcript.pyannote[1466].start 12088.72409375
transcript.pyannote[1466].end 12090.32721875
transcript.pyannote[1467].speaker SPEAKER_31
transcript.pyannote[1467].start 12090.32721875
transcript.pyannote[1467].end 12090.61409375
transcript.pyannote[1468].speaker SPEAKER_33
transcript.pyannote[1468].start 12090.61409375
transcript.pyannote[1468].end 12092.55471875
transcript.pyannote[1469].speaker SPEAKER_33
transcript.pyannote[1469].start 12093.06096875
transcript.pyannote[1469].end 12097.07721875
transcript.pyannote[1470].speaker SPEAKER_33
transcript.pyannote[1470].start 12097.97159375
transcript.pyannote[1470].end 12101.02596875
transcript.pyannote[1471].speaker SPEAKER_33
transcript.pyannote[1471].start 12101.34659375
transcript.pyannote[1471].end 12103.03409375
transcript.pyannote[1472].speaker SPEAKER_33
transcript.pyannote[1472].start 12103.30409375
transcript.pyannote[1472].end 12108.29909375
transcript.pyannote[1473].speaker SPEAKER_33
transcript.pyannote[1473].start 12108.67034375
transcript.pyannote[1473].end 12110.99909375
transcript.pyannote[1474].speaker SPEAKER_23
transcript.pyannote[1474].start 12111.21846875
transcript.pyannote[1474].end 12135.33284375
transcript.pyannote[1475].speaker SPEAKER_33
transcript.pyannote[1475].start 12116.95596875
transcript.pyannote[1475].end 12117.02346875
transcript.pyannote[1476].speaker SPEAKER_33
transcript.pyannote[1476].start 12134.69159375
transcript.pyannote[1476].end 12137.10471875
transcript.pyannote[1477].speaker SPEAKER_23
transcript.pyannote[1477].start 12137.15534375
transcript.pyannote[1477].end 12140.44596875
transcript.pyannote[1478].speaker SPEAKER_33
transcript.pyannote[1478].start 12139.63596875
transcript.pyannote[1478].end 12142.23471875
transcript.pyannote[1479].speaker SPEAKER_23
transcript.pyannote[1479].start 12141.86346875
transcript.pyannote[1479].end 12151.54971875
transcript.pyannote[1480].speaker SPEAKER_33
transcript.pyannote[1480].start 12150.85784375
transcript.pyannote[1480].end 12155.76846875
transcript.pyannote[1481].speaker SPEAKER_33
transcript.pyannote[1481].start 12156.12284375
transcript.pyannote[1481].end 12163.86846875
transcript.pyannote[1482].speaker SPEAKER_23
transcript.pyannote[1482].start 12157.89471875
transcript.pyannote[1482].end 12158.26596875
transcript.pyannote[1483].speaker SPEAKER_23
transcript.pyannote[1483].start 12162.97409375
transcript.pyannote[1483].end 12165.92721875
transcript.pyannote[1484].speaker SPEAKER_33
transcript.pyannote[1484].start 12165.16784375
transcript.pyannote[1484].end 12168.30659375
transcript.pyannote[1485].speaker SPEAKER_33
transcript.pyannote[1485].start 12168.71159375
transcript.pyannote[1485].end 12170.63534375
transcript.pyannote[1486].speaker SPEAKER_33
transcript.pyannote[1486].start 12171.31034375
transcript.pyannote[1486].end 12172.81221875
transcript.pyannote[1487].speaker SPEAKER_33
transcript.pyannote[1487].start 12173.16659375
transcript.pyannote[1487].end 12173.48721875
transcript.pyannote[1488].speaker SPEAKER_33
transcript.pyannote[1488].start 12173.77409375
transcript.pyannote[1488].end 12175.93409375
transcript.pyannote[1489].speaker SPEAKER_33
transcript.pyannote[1489].start 12176.13659375
transcript.pyannote[1489].end 12178.53284375
transcript.pyannote[1490].speaker SPEAKER_33
transcript.pyannote[1490].start 12178.58346875
transcript.pyannote[1490].end 12178.75221875
transcript.pyannote[1491].speaker SPEAKER_33
transcript.pyannote[1491].start 12178.87034375
transcript.pyannote[1491].end 12179.47784375
transcript.pyannote[1492].speaker SPEAKER_33
transcript.pyannote[1492].start 12179.83221875
transcript.pyannote[1492].end 12182.58284375
transcript.pyannote[1493].speaker SPEAKER_33
transcript.pyannote[1493].start 12183.20721875
transcript.pyannote[1493].end 12184.89471875
transcript.pyannote[1494].speaker SPEAKER_33
transcript.pyannote[1494].start 12184.96221875
transcript.pyannote[1494].end 12186.66659375
transcript.pyannote[1495].speaker SPEAKER_23
transcript.pyannote[1495].start 12186.66659375
transcript.pyannote[1495].end 12202.49534375
transcript.pyannote[1496].speaker SPEAKER_33
transcript.pyannote[1496].start 12201.29721875
transcript.pyannote[1496].end 12209.73471875
transcript.pyannote[1497].speaker SPEAKER_33
transcript.pyannote[1497].start 12210.89909375
transcript.pyannote[1497].end 12211.89471875
transcript.pyannote[1498].speaker SPEAKER_23
transcript.pyannote[1498].start 12212.45159375
transcript.pyannote[1498].end 12221.85096875
transcript.pyannote[1499].speaker SPEAKER_31
transcript.pyannote[1499].start 12219.70784375
transcript.pyannote[1499].end 12222.13784375
transcript.pyannote[1500].speaker SPEAKER_23
transcript.pyannote[1500].start 12222.37409375
transcript.pyannote[1500].end 12233.15721875
transcript.pyannote[1501].speaker SPEAKER_33
transcript.pyannote[1501].start 12231.80721875
transcript.pyannote[1501].end 12233.24159375
transcript.pyannote[1502].speaker SPEAKER_33
transcript.pyannote[1502].start 12233.64659375
transcript.pyannote[1502].end 12238.37159375
transcript.pyannote[1503].speaker SPEAKER_33
transcript.pyannote[1503].start 12238.45596875
transcript.pyannote[1503].end 12240.71721875
transcript.pyannote[1504].speaker SPEAKER_23
transcript.pyannote[1504].start 12238.55721875
transcript.pyannote[1504].end 12246.75846875
transcript.pyannote[1505].speaker SPEAKER_33
transcript.pyannote[1505].start 12242.57346875
transcript.pyannote[1505].end 12244.41284375
transcript.pyannote[1506].speaker SPEAKER_33
transcript.pyannote[1506].start 12246.35346875
transcript.pyannote[1506].end 12248.39534375
transcript.pyannote[1507].speaker SPEAKER_23
transcript.pyannote[1507].start 12247.97346875
transcript.pyannote[1507].end 12249.99846875
transcript.pyannote[1508].speaker SPEAKER_33
transcript.pyannote[1508].start 12250.16721875
transcript.pyannote[1508].end 12260.27534375
transcript.pyannote[1509].speaker SPEAKER_23
transcript.pyannote[1509].start 12251.41596875
transcript.pyannote[1509].end 12251.58471875
transcript.pyannote[1510].speaker SPEAKER_23
transcript.pyannote[1510].start 12260.52846875
transcript.pyannote[1510].end 12262.90784375
transcript.pyannote[1511].speaker SPEAKER_33
transcript.pyannote[1511].start 12262.90784375
transcript.pyannote[1511].end 12263.78534375
transcript.pyannote[1512].speaker SPEAKER_23
transcript.pyannote[1512].start 12263.78534375
transcript.pyannote[1512].end 12265.23659375
transcript.pyannote[1513].speaker SPEAKER_33
transcript.pyannote[1513].start 12265.23659375
transcript.pyannote[1513].end 12271.91909375
transcript.pyannote[1514].speaker SPEAKER_23
transcript.pyannote[1514].start 12271.91909375
transcript.pyannote[1514].end 12276.15471875
transcript.pyannote[1515].speaker SPEAKER_33
transcript.pyannote[1515].start 12271.93596875
transcript.pyannote[1515].end 12271.96971875
transcript.pyannote[1516].speaker SPEAKER_33
transcript.pyannote[1516].start 12272.03721875
transcript.pyannote[1516].end 12272.10471875
transcript.pyannote[1517].speaker SPEAKER_33
transcript.pyannote[1517].start 12272.12159375
transcript.pyannote[1517].end 12272.13846875
transcript.pyannote[1518].speaker SPEAKER_33
transcript.pyannote[1518].start 12272.15534375
transcript.pyannote[1518].end 12272.64471875
transcript.pyannote[1519].speaker SPEAKER_33
transcript.pyannote[1519].start 12274.48409375
transcript.pyannote[1519].end 12275.20971875
transcript.pyannote[1520].speaker SPEAKER_33
transcript.pyannote[1520].start 12276.74534375
transcript.pyannote[1520].end 12280.01909375
transcript.pyannote[1521].speaker SPEAKER_33
transcript.pyannote[1521].start 12280.60971875
transcript.pyannote[1521].end 12282.02721875
transcript.pyannote[1522].speaker SPEAKER_23
transcript.pyannote[1522].start 12282.02721875
transcript.pyannote[1522].end 12293.72159375
transcript.pyannote[1523].speaker SPEAKER_33
transcript.pyannote[1523].start 12282.04409375
transcript.pyannote[1523].end 12282.19596875
transcript.pyannote[1524].speaker SPEAKER_33
transcript.pyannote[1524].start 12293.01284375
transcript.pyannote[1524].end 12294.41346875
transcript.pyannote[1525].speaker SPEAKER_33
transcript.pyannote[1525].start 12294.83534375
transcript.pyannote[1525].end 12298.29471875
transcript.pyannote[1526].speaker SPEAKER_33
transcript.pyannote[1526].start 12298.54784375
transcript.pyannote[1526].end 12299.93159375
transcript.pyannote[1527].speaker SPEAKER_33
transcript.pyannote[1527].start 12300.35346875
transcript.pyannote[1527].end 12308.08221875
transcript.pyannote[1528].speaker SPEAKER_33
transcript.pyannote[1528].start 12308.58846875
transcript.pyannote[1528].end 12309.51659375
transcript.pyannote[1529].speaker SPEAKER_33
transcript.pyannote[1529].start 12310.56284375
transcript.pyannote[1529].end 12312.48659375
transcript.pyannote[1530].speaker SPEAKER_33
transcript.pyannote[1530].start 12313.36409375
transcript.pyannote[1530].end 12319.21971875
transcript.pyannote[1531].speaker SPEAKER_23
transcript.pyannote[1531].start 12318.34221875
transcript.pyannote[1531].end 12324.43409375
transcript.pyannote[1532].speaker SPEAKER_33
transcript.pyannote[1532].start 12323.18534375
transcript.pyannote[1532].end 12325.93596875
transcript.pyannote[1533].speaker SPEAKER_23
transcript.pyannote[1533].start 12325.68284375
transcript.pyannote[1533].end 12334.74471875
transcript.pyannote[1534].speaker SPEAKER_23
transcript.pyannote[1534].start 12334.96409375
transcript.pyannote[1534].end 12336.85409375
transcript.pyannote[1535].speaker SPEAKER_33
transcript.pyannote[1535].start 12336.28034375
transcript.pyannote[1535].end 12338.15346875
transcript.pyannote[1536].speaker SPEAKER_23
transcript.pyannote[1536].start 12338.64284375
transcript.pyannote[1536].end 12342.11909375
transcript.pyannote[1537].speaker SPEAKER_33
transcript.pyannote[1537].start 12341.37659375
transcript.pyannote[1537].end 12345.66284375
transcript.pyannote[1538].speaker SPEAKER_23
transcript.pyannote[1538].start 12345.74721875
transcript.pyannote[1538].end 12349.08846875
transcript.pyannote[1539].speaker SPEAKER_33
transcript.pyannote[1539].start 12349.52721875
transcript.pyannote[1539].end 12349.54409375
transcript.pyannote[1540].speaker SPEAKER_23
transcript.pyannote[1540].start 12349.54409375
transcript.pyannote[1540].end 12350.16846875
transcript.pyannote[1541].speaker SPEAKER_33
transcript.pyannote[1541].start 12350.23596875
transcript.pyannote[1541].end 12351.07971875
transcript.pyannote[1542].speaker SPEAKER_33
transcript.pyannote[1542].start 12351.53534375
transcript.pyannote[1542].end 12353.83034375
transcript.pyannote[1543].speaker SPEAKER_33
transcript.pyannote[1543].start 12354.57284375
transcript.pyannote[1543].end 12357.12096875
transcript.pyannote[1544].speaker SPEAKER_33
transcript.pyannote[1544].start 12357.27284375
transcript.pyannote[1544].end 12359.66909375
transcript.pyannote[1545].speaker SPEAKER_23
transcript.pyannote[1545].start 12358.58909375
transcript.pyannote[1545].end 12362.80784375
transcript.pyannote[1546].speaker SPEAKER_33
transcript.pyannote[1546].start 12360.20909375
transcript.pyannote[1546].end 12363.22971875
transcript.pyannote[1547].speaker SPEAKER_23
transcript.pyannote[1547].start 12364.66409375
transcript.pyannote[1547].end 12370.33409375
transcript.pyannote[1548].speaker SPEAKER_33
transcript.pyannote[1548].start 12365.74409375
transcript.pyannote[1548].end 12366.36846875
transcript.pyannote[1549].speaker SPEAKER_33
transcript.pyannote[1549].start 12368.79846875
transcript.pyannote[1549].end 12371.29596875
transcript.pyannote[1550].speaker SPEAKER_33
transcript.pyannote[1550].start 12371.48159375
transcript.pyannote[1550].end 12373.42221875
transcript.pyannote[1551].speaker SPEAKER_33
transcript.pyannote[1551].start 12373.48971875
transcript.pyannote[1551].end 12381.25221875
transcript.pyannote[1552].speaker SPEAKER_23
transcript.pyannote[1552].start 12381.37034375
transcript.pyannote[1552].end 12385.77471875
transcript.pyannote[1553].speaker SPEAKER_33
transcript.pyannote[1553].start 12384.37409375
transcript.pyannote[1553].end 12392.87909375
transcript.pyannote[1554].speaker SPEAKER_23
transcript.pyannote[1554].start 12388.57596875
transcript.pyannote[1554].end 12388.89659375
transcript.pyannote[1555].speaker SPEAKER_33
transcript.pyannote[1555].start 12393.79034375
transcript.pyannote[1555].end 12395.61284375
transcript.pyannote[1556].speaker SPEAKER_33
transcript.pyannote[1556].start 12395.74784375
transcript.pyannote[1556].end 12397.68846875
transcript.pyannote[1557].speaker SPEAKER_33
transcript.pyannote[1557].start 12398.00909375
transcript.pyannote[1557].end 12399.66284375
transcript.pyannote[1558].speaker SPEAKER_33
transcript.pyannote[1558].start 12400.25346875
transcript.pyannote[1558].end 12401.83971875
transcript.pyannote[1559].speaker SPEAKER_23
transcript.pyannote[1559].start 12401.97471875
transcript.pyannote[1559].end 12403.67909375
transcript.pyannote[1560].speaker SPEAKER_33
transcript.pyannote[1560].start 12404.26971875
transcript.pyannote[1560].end 12405.41721875
transcript.pyannote[1561].speaker SPEAKER_23
transcript.pyannote[1561].start 12405.41721875
transcript.pyannote[1561].end 12406.00784375
transcript.pyannote[1562].speaker SPEAKER_23
transcript.pyannote[1562].start 12407.37471875
transcript.pyannote[1562].end 12409.29846875
transcript.pyannote[1563].speaker SPEAKER_33
transcript.pyannote[1563].start 12409.41659375
transcript.pyannote[1563].end 12413.41596875
transcript.pyannote[1564].speaker SPEAKER_33
transcript.pyannote[1564].start 12413.85471875
transcript.pyannote[1564].end 12413.90534375
transcript.pyannote[1565].speaker SPEAKER_23
transcript.pyannote[1565].start 12413.90534375
transcript.pyannote[1565].end 12418.27596875
transcript.pyannote[1566].speaker SPEAKER_33
transcript.pyannote[1566].start 12414.05721875
transcript.pyannote[1566].end 12415.40721875
transcript.pyannote[1567].speaker SPEAKER_33
transcript.pyannote[1567].start 12417.16221875
transcript.pyannote[1567].end 12418.74846875
transcript.pyannote[1568].speaker SPEAKER_33
transcript.pyannote[1568].start 12419.00159375
transcript.pyannote[1568].end 12426.96659375
transcript.pyannote[1569].speaker SPEAKER_30
transcript.pyannote[1569].start 12428.95784375
transcript.pyannote[1569].end 12429.24471875
transcript.pyannote[1570].speaker SPEAKER_30
transcript.pyannote[1570].start 12430.08846875
transcript.pyannote[1570].end 12437.19284375
transcript.pyannote[1571].speaker SPEAKER_26
transcript.pyannote[1571].start 12437.46284375
transcript.pyannote[1571].end 12479.02596875
transcript.pyannote[1572].speaker SPEAKER_30
transcript.pyannote[1572].start 12479.02596875
transcript.pyannote[1572].end 12480.32534375
transcript.pyannote[1573].speaker SPEAKER_30
transcript.pyannote[1573].start 12481.06784375
transcript.pyannote[1573].end 12482.46846875
transcript.pyannote[1574].speaker SPEAKER_30
transcript.pyannote[1574].start 12483.34596875
transcript.pyannote[1574].end 12487.96971875
transcript.pyannote[1575].speaker SPEAKER_27
transcript.pyannote[1575].start 12487.96971875
transcript.pyannote[1575].end 12506.90346875
transcript.pyannote[1576].speaker SPEAKER_27
transcript.pyannote[1576].start 12507.12284375
transcript.pyannote[1576].end 12509.73846875
transcript.pyannote[1577].speaker SPEAKER_27
transcript.pyannote[1577].start 12510.21096875
transcript.pyannote[1577].end 12516.18471875
transcript.pyannote[1578].speaker SPEAKER_27
transcript.pyannote[1578].start 12516.58971875
transcript.pyannote[1578].end 12517.50096875
transcript.pyannote[1579].speaker SPEAKER_27
transcript.pyannote[1579].start 12517.63596875
transcript.pyannote[1579].end 12519.40784375
transcript.pyannote[1580].speaker SPEAKER_30
transcript.pyannote[1580].start 12519.40784375
transcript.pyannote[1580].end 12519.42471875
transcript.pyannote[1581].speaker SPEAKER_32
transcript.pyannote[1581].start 12523.06971875
transcript.pyannote[1581].end 12523.74471875
transcript.pyannote[1582].speaker SPEAKER_32
transcript.pyannote[1582].start 12524.57159375
transcript.pyannote[1582].end 12529.53284375
transcript.pyannote[1583].speaker SPEAKER_32
transcript.pyannote[1583].start 12530.41034375
transcript.pyannote[1583].end 12533.24534375
transcript.pyannote[1584].speaker SPEAKER_32
transcript.pyannote[1584].start 12534.22409375
transcript.pyannote[1584].end 12535.65846875
transcript.pyannote[1585].speaker SPEAKER_31
transcript.pyannote[1585].start 12537.29534375
transcript.pyannote[1585].end 12537.41346875
transcript.pyannote[1586].speaker SPEAKER_31
transcript.pyannote[1586].start 12537.48096875
transcript.pyannote[1586].end 12538.86471875
transcript.pyannote[1587].speaker SPEAKER_32
transcript.pyannote[1587].start 12539.97846875
transcript.pyannote[1587].end 12543.57284375
transcript.pyannote[1588].speaker SPEAKER_32
transcript.pyannote[1588].start 12544.95659375
transcript.pyannote[1588].end 12545.36159375
transcript.pyannote[1589].speaker SPEAKER_32
transcript.pyannote[1589].start 12545.81721875
transcript.pyannote[1589].end 12546.15471875
transcript.pyannote[1590].speaker SPEAKER_32
transcript.pyannote[1590].start 12547.01534375
transcript.pyannote[1590].end 12550.06971875
transcript.pyannote[1591].speaker SPEAKER_32
transcript.pyannote[1591].start 12550.35659375
transcript.pyannote[1591].end 12551.21721875
transcript.pyannote[1592].speaker SPEAKER_30
transcript.pyannote[1592].start 12552.65159375
transcript.pyannote[1592].end 12553.00596875
transcript.pyannote[1593].speaker SPEAKER_30
transcript.pyannote[1593].start 12553.20846875
transcript.pyannote[1593].end 12553.66409375
transcript.pyannote[1594].speaker SPEAKER_30
transcript.pyannote[1594].start 12555.16596875
transcript.pyannote[1594].end 12565.12221875
transcript.pyannote[1595].speaker SPEAKER_30
transcript.pyannote[1595].start 12566.25284375
transcript.pyannote[1595].end 12571.58534375
transcript.pyannote[1596].speaker SPEAKER_25
transcript.pyannote[1596].start 12579.78659375
transcript.pyannote[1596].end 12581.23784375
transcript.pyannote[1597].speaker SPEAKER_25
transcript.pyannote[1597].start 12581.27159375
transcript.pyannote[1597].end 12581.30534375
transcript.pyannote[1598].speaker SPEAKER_25
transcript.pyannote[1598].start 12581.38971875
transcript.pyannote[1598].end 12588.25784375
transcript.pyannote[1599].speaker SPEAKER_25
transcript.pyannote[1599].start 12588.71346875
transcript.pyannote[1599].end 12589.42221875
transcript.pyannote[1600].speaker SPEAKER_23
transcript.pyannote[1600].start 12590.14784375
transcript.pyannote[1600].end 12590.29971875
transcript.pyannote[1601].speaker SPEAKER_23
transcript.pyannote[1601].start 12590.56971875
transcript.pyannote[1601].end 12590.62034375
transcript.pyannote[1602].speaker SPEAKER_31
transcript.pyannote[1602].start 12590.62034375
transcript.pyannote[1602].end 12590.65409375
transcript.pyannote[1603].speaker SPEAKER_23
transcript.pyannote[1603].start 12590.65409375
transcript.pyannote[1603].end 12591.02534375
transcript.pyannote[1604].speaker SPEAKER_31
transcript.pyannote[1604].start 12591.02534375
transcript.pyannote[1604].end 12591.85221875
transcript.pyannote[1605].speaker SPEAKER_23
transcript.pyannote[1605].start 12591.85221875
transcript.pyannote[1605].end 12591.90284375
transcript.pyannote[1606].speaker SPEAKER_23
transcript.pyannote[1606].start 12591.97034375
transcript.pyannote[1606].end 12592.49346875
transcript.pyannote[1607].speaker SPEAKER_25
transcript.pyannote[1607].start 12592.81409375
transcript.pyannote[1607].end 12594.50159375
transcript.pyannote[1608].speaker SPEAKER_23
transcript.pyannote[1608].start 12594.85596875
transcript.pyannote[1608].end 12595.68284375
transcript.pyannote[1609].speaker SPEAKER_23
transcript.pyannote[1609].start 12595.81784375
transcript.pyannote[1609].end 12595.91909375
transcript.pyannote[1610].speaker SPEAKER_25
transcript.pyannote[1610].start 12595.91909375
transcript.pyannote[1610].end 12595.93596875
transcript.pyannote[1611].speaker SPEAKER_23
transcript.pyannote[1611].start 12595.93596875
transcript.pyannote[1611].end 12595.96971875
transcript.pyannote[1612].speaker SPEAKER_25
transcript.pyannote[1612].start 12595.96971875
transcript.pyannote[1612].end 12596.15534375
transcript.pyannote[1613].speaker SPEAKER_25
transcript.pyannote[1613].start 12596.50971875
transcript.pyannote[1613].end 12597.75846875
transcript.pyannote[1614].speaker SPEAKER_23
transcript.pyannote[1614].start 12597.75846875
transcript.pyannote[1614].end 12598.19721875
transcript.pyannote[1615].speaker SPEAKER_25
transcript.pyannote[1615].start 12598.19721875
transcript.pyannote[1615].end 12598.24784375
transcript.pyannote[1616].speaker SPEAKER_25
transcript.pyannote[1616].start 12598.38284375
transcript.pyannote[1616].end 12598.92284375
transcript.pyannote[1617].speaker SPEAKER_25
transcript.pyannote[1617].start 12599.20971875
transcript.pyannote[1617].end 12602.88846875
transcript.pyannote[1618].speaker SPEAKER_25
transcript.pyannote[1618].start 12603.19221875
transcript.pyannote[1618].end 12629.55096875
transcript.pyannote[1619].speaker SPEAKER_25
transcript.pyannote[1619].start 12629.92221875
transcript.pyannote[1619].end 12644.94096875
transcript.pyannote[1620].speaker SPEAKER_25
transcript.pyannote[1620].start 12645.27846875
transcript.pyannote[1620].end 12648.06284375
transcript.pyannote[1621].speaker SPEAKER_25
transcript.pyannote[1621].start 12648.40034375
transcript.pyannote[1621].end 12649.41284375
transcript.pyannote[1622].speaker SPEAKER_25
transcript.pyannote[1622].start 12649.85159375
transcript.pyannote[1622].end 12660.56721875
transcript.pyannote[1623].speaker SPEAKER_25
transcript.pyannote[1623].start 12660.87096875
transcript.pyannote[1623].end 12661.91721875
transcript.pyannote[1624].speaker SPEAKER_25
transcript.pyannote[1624].start 12661.95096875
transcript.pyannote[1624].end 12675.63659375
transcript.pyannote[1625].speaker SPEAKER_25
transcript.pyannote[1625].start 12675.82221875
transcript.pyannote[1625].end 12685.44096875
transcript.pyannote[1626].speaker SPEAKER_25
transcript.pyannote[1626].start 12685.76159375
transcript.pyannote[1626].end 12689.01846875
transcript.pyannote[1627].speaker SPEAKER_23
transcript.pyannote[1627].start 12690.06471875
transcript.pyannote[1627].end 12691.73534375
transcript.pyannote[1628].speaker SPEAKER_25
transcript.pyannote[1628].start 12692.00534375
transcript.pyannote[1628].end 12693.43971875
transcript.pyannote[1629].speaker SPEAKER_25
transcript.pyannote[1629].start 12694.19909375
transcript.pyannote[1629].end 12694.97534375
transcript.pyannote[1630].speaker SPEAKER_31
transcript.pyannote[1630].start 12695.16096875
transcript.pyannote[1630].end 12695.21159375
transcript.pyannote[1631].speaker SPEAKER_31
transcript.pyannote[1631].start 12695.22846875
transcript.pyannote[1631].end 12695.29596875
transcript.pyannote[1632].speaker SPEAKER_25
transcript.pyannote[1632].start 12695.29596875
transcript.pyannote[1632].end 12695.80221875
transcript.pyannote[1633].speaker SPEAKER_25
transcript.pyannote[1633].start 12696.52784375
transcript.pyannote[1633].end 12697.43909375
transcript.pyannote[1634].speaker SPEAKER_25
transcript.pyannote[1634].start 12697.91159375
transcript.pyannote[1634].end 12699.78471875
transcript.pyannote[1635].speaker SPEAKER_25
transcript.pyannote[1635].start 12700.27409375
transcript.pyannote[1635].end 12721.14846875
transcript.pyannote[1636].speaker SPEAKER_25
transcript.pyannote[1636].start 12721.45221875
transcript.pyannote[1636].end 12725.77221875
transcript.pyannote[1637].speaker SPEAKER_25
transcript.pyannote[1637].start 12726.14346875
transcript.pyannote[1637].end 12732.31971875
transcript.pyannote[1638].speaker SPEAKER_25
transcript.pyannote[1638].start 12732.57284375
transcript.pyannote[1638].end 12736.57221875
transcript.pyannote[1639].speaker SPEAKER_25
transcript.pyannote[1639].start 12736.74096875
transcript.pyannote[1639].end 12740.77409375
transcript.pyannote[1640].speaker SPEAKER_25
transcript.pyannote[1640].start 12741.55034375
transcript.pyannote[1640].end 12742.88346875
transcript.pyannote[1641].speaker SPEAKER_25
transcript.pyannote[1641].start 12743.17034375
transcript.pyannote[1641].end 12751.38846875
transcript.pyannote[1642].speaker SPEAKER_25
transcript.pyannote[1642].start 12751.67534375
transcript.pyannote[1642].end 12758.52659375
transcript.pyannote[1643].speaker SPEAKER_25
transcript.pyannote[1643].start 12758.84721875
transcript.pyannote[1643].end 12763.03221875
transcript.pyannote[1644].speaker SPEAKER_25
transcript.pyannote[1644].start 12763.30221875
transcript.pyannote[1644].end 12765.02346875
transcript.pyannote[1645].speaker SPEAKER_25
transcript.pyannote[1645].start 12765.34409375
transcript.pyannote[1645].end 12768.98909375
transcript.pyannote[1646].speaker SPEAKER_25
transcript.pyannote[1646].start 12769.76534375
transcript.pyannote[1646].end 12771.50346875
transcript.pyannote[1647].speaker SPEAKER_25
transcript.pyannote[1647].start 12772.06034375
transcript.pyannote[1647].end 12775.16534375
transcript.pyannote[1648].speaker SPEAKER_25
transcript.pyannote[1648].start 12775.51971875
transcript.pyannote[1648].end 12783.23159375
transcript.pyannote[1649].speaker SPEAKER_25
transcript.pyannote[1649].start 12783.56909375
transcript.pyannote[1649].end 12785.32409375
transcript.pyannote[1650].speaker SPEAKER_25
transcript.pyannote[1650].start 12785.59409375
transcript.pyannote[1650].end 12787.97346875
transcript.pyannote[1651].speaker SPEAKER_25
transcript.pyannote[1651].start 12788.26034375
transcript.pyannote[1651].end 12795.19596875
transcript.pyannote[1652].speaker SPEAKER_37
transcript.pyannote[1652].start 12796.84971875
transcript.pyannote[1652].end 12804.57846875
transcript.pyannote[1653].speaker SPEAKER_25
transcript.pyannote[1653].start 12804.29159375
transcript.pyannote[1653].end 12804.96659375
transcript.pyannote[1654].speaker SPEAKER_37
transcript.pyannote[1654].start 12804.96659375
transcript.pyannote[1654].end 12814.99034375
transcript.pyannote[1655].speaker SPEAKER_25
transcript.pyannote[1655].start 12814.50096875
transcript.pyannote[1655].end 12816.10409375
transcript.pyannote[1656].speaker SPEAKER_37
transcript.pyannote[1656].start 12815.96909375
transcript.pyannote[1656].end 12816.07034375
transcript.pyannote[1657].speaker SPEAKER_37
transcript.pyannote[1657].start 12816.10409375
transcript.pyannote[1657].end 12816.20534375
transcript.pyannote[1658].speaker SPEAKER_37
transcript.pyannote[1658].start 12816.62721875
transcript.pyannote[1658].end 12816.91409375
transcript.pyannote[1659].speaker SPEAKER_25
transcript.pyannote[1659].start 12816.91409375
transcript.pyannote[1659].end 12835.13909375
transcript.pyannote[1660].speaker SPEAKER_25
transcript.pyannote[1660].start 12835.61159375
transcript.pyannote[1660].end 12837.41721875
transcript.pyannote[1661].speaker SPEAKER_25
transcript.pyannote[1661].start 12837.68721875
transcript.pyannote[1661].end 12838.31159375
transcript.pyannote[1662].speaker SPEAKER_25
transcript.pyannote[1662].start 12838.66596875
transcript.pyannote[1662].end 12840.62346875
transcript.pyannote[1663].speaker SPEAKER_25
transcript.pyannote[1663].start 12841.36596875
transcript.pyannote[1663].end 12843.13784375
transcript.pyannote[1664].speaker SPEAKER_25
transcript.pyannote[1664].start 12843.61034375
transcript.pyannote[1664].end 12849.78659375
transcript.pyannote[1665].speaker SPEAKER_25
transcript.pyannote[1665].start 12850.52909375
transcript.pyannote[1665].end 12851.84534375
transcript.pyannote[1666].speaker SPEAKER_25
transcript.pyannote[1666].start 12851.94659375
transcript.pyannote[1666].end 12852.68909375
transcript.pyannote[1667].speaker SPEAKER_25
transcript.pyannote[1667].start 12853.19534375
transcript.pyannote[1667].end 12854.74784375
transcript.pyannote[1668].speaker SPEAKER_25
transcript.pyannote[1668].start 12855.60846875
transcript.pyannote[1668].end 12862.64534375
transcript.pyannote[1669].speaker SPEAKER_25
transcript.pyannote[1669].start 12862.93221875
transcript.pyannote[1669].end 12865.02471875
transcript.pyannote[1670].speaker SPEAKER_25
transcript.pyannote[1670].start 12865.10909375
transcript.pyannote[1670].end 12867.23534375
transcript.pyannote[1671].speaker SPEAKER_25
transcript.pyannote[1671].start 12867.37034375
transcript.pyannote[1671].end 12873.36096875
transcript.pyannote[1672].speaker SPEAKER_25
transcript.pyannote[1672].start 12873.83346875
transcript.pyannote[1672].end 12877.47846875
transcript.pyannote[1673].speaker SPEAKER_23
transcript.pyannote[1673].start 12878.17034375
transcript.pyannote[1673].end 12902.23409375
transcript.pyannote[1674].speaker SPEAKER_25
transcript.pyannote[1674].start 12878.62596875
transcript.pyannote[1674].end 12879.92534375
transcript.pyannote[1675].speaker SPEAKER_25
transcript.pyannote[1675].start 12880.58346875
transcript.pyannote[1675].end 12881.62971875
transcript.pyannote[1676].speaker SPEAKER_25
transcript.pyannote[1676].start 12902.08221875
transcript.pyannote[1676].end 12913.30409375
transcript.pyannote[1677].speaker SPEAKER_23
transcript.pyannote[1677].start 12913.77659375
transcript.pyannote[1677].end 12915.73409375
transcript.pyannote[1678].speaker SPEAKER_25
transcript.pyannote[1678].start 12915.66659375
transcript.pyannote[1678].end 12922.48409375
transcript.pyannote[1679].speaker SPEAKER_25
transcript.pyannote[1679].start 12922.97346875
transcript.pyannote[1679].end 12924.82971875
transcript.pyannote[1680].speaker SPEAKER_23
transcript.pyannote[1680].start 12923.15909375
transcript.pyannote[1680].end 12937.60409375
transcript.pyannote[1681].speaker SPEAKER_25
transcript.pyannote[1681].start 12938.00909375
transcript.pyannote[1681].end 12940.50659375
transcript.pyannote[1682].speaker SPEAKER_23
transcript.pyannote[1682].start 12938.02596875
transcript.pyannote[1682].end 12938.36346875
transcript.pyannote[1683].speaker SPEAKER_25
transcript.pyannote[1683].start 12941.08034375
transcript.pyannote[1683].end 12948.89346875
transcript.pyannote[1684].speaker SPEAKER_23
transcript.pyannote[1684].start 12942.26159375
transcript.pyannote[1684].end 12946.24409375
transcript.pyannote[1685].speaker SPEAKER_25
transcript.pyannote[1685].start 12949.48409375
transcript.pyannote[1685].end 12950.00721875
transcript.pyannote[1686].speaker SPEAKER_23
transcript.pyannote[1686].start 12950.91846875
transcript.pyannote[1686].end 12955.42409375
transcript.pyannote[1687].speaker SPEAKER_25
transcript.pyannote[1687].start 12950.96909375
transcript.pyannote[1687].end 12951.23909375
transcript.pyannote[1688].speaker SPEAKER_25
transcript.pyannote[1688].start 12955.89659375
transcript.pyannote[1688].end 12964.21596875
transcript.pyannote[1689].speaker SPEAKER_23
transcript.pyannote[1689].start 12959.91284375
transcript.pyannote[1689].end 12965.00909375
transcript.pyannote[1690].speaker SPEAKER_25
transcript.pyannote[1690].start 12965.00909375
transcript.pyannote[1690].end 12966.76409375
transcript.pyannote[1691].speaker SPEAKER_25
transcript.pyannote[1691].start 12967.06784375
transcript.pyannote[1691].end 12968.90721875
transcript.pyannote[1692].speaker SPEAKER_25
transcript.pyannote[1692].start 12969.27846875
transcript.pyannote[1692].end 12974.30721875
transcript.pyannote[1693].speaker SPEAKER_25
transcript.pyannote[1693].start 12974.94846875
transcript.pyannote[1693].end 12977.29409375
transcript.pyannote[1694].speaker SPEAKER_25
transcript.pyannote[1694].start 12977.76659375
transcript.pyannote[1694].end 12984.82034375
transcript.pyannote[1695].speaker SPEAKER_30
transcript.pyannote[1695].start 12986.11971875
transcript.pyannote[1695].end 12990.99659375
transcript.pyannote[1696].speaker SPEAKER_08
transcript.pyannote[1696].start 12998.33721875
transcript.pyannote[1696].end 13000.90221875
transcript.pyannote[1697].speaker SPEAKER_30
transcript.pyannote[1697].start 13001.12159375
transcript.pyannote[1697].end 13002.84284375
transcript.pyannote[1698].speaker SPEAKER_08
transcript.pyannote[1698].start 13004.95221875
transcript.pyannote[1698].end 13005.64409375
transcript.pyannote[1699].speaker SPEAKER_08
transcript.pyannote[1699].start 13006.21784375
transcript.pyannote[1699].end 13007.04471875
transcript.pyannote[1700].speaker SPEAKER_08
transcript.pyannote[1700].start 13007.56784375
transcript.pyannote[1700].end 13011.53346875
transcript.pyannote[1701].speaker SPEAKER_08
transcript.pyannote[1701].start 13011.93846875
transcript.pyannote[1701].end 13019.97096875
transcript.pyannote[1702].speaker SPEAKER_08
transcript.pyannote[1702].start 13020.29159375
transcript.pyannote[1702].end 13021.50659375
transcript.pyannote[1703].speaker SPEAKER_08
transcript.pyannote[1703].start 13021.91159375
transcript.pyannote[1703].end 13054.37909375
transcript.pyannote[1704].speaker SPEAKER_08
transcript.pyannote[1704].start 13054.95284375
transcript.pyannote[1704].end 13081.75034375
transcript.pyannote[1705].speaker SPEAKER_31
transcript.pyannote[1705].start 13069.58346875
transcript.pyannote[1705].end 13069.61721875
transcript.pyannote[1706].speaker SPEAKER_31
transcript.pyannote[1706].start 13069.63409375
transcript.pyannote[1706].end 13069.83659375
transcript.pyannote[1707].speaker SPEAKER_08
transcript.pyannote[1707].start 13082.17221875
transcript.pyannote[1707].end 13085.34471875
transcript.pyannote[1708].speaker SPEAKER_08
transcript.pyannote[1708].start 13086.10409375
transcript.pyannote[1708].end 13098.22034375
transcript.pyannote[1709].speaker SPEAKER_08
transcript.pyannote[1709].start 13098.69284375
transcript.pyannote[1709].end 13108.26096875
transcript.pyannote[1710].speaker SPEAKER_08
transcript.pyannote[1710].start 13108.78409375
transcript.pyannote[1710].end 13113.52596875
transcript.pyannote[1711].speaker SPEAKER_23
transcript.pyannote[1711].start 13113.52596875
transcript.pyannote[1711].end 13113.55971875
transcript.pyannote[1712].speaker SPEAKER_08
transcript.pyannote[1712].start 13113.55971875
transcript.pyannote[1712].end 13113.57659375
transcript.pyannote[1713].speaker SPEAKER_23
transcript.pyannote[1713].start 13113.57659375
transcript.pyannote[1713].end 13113.59346875
transcript.pyannote[1714].speaker SPEAKER_08
transcript.pyannote[1714].start 13113.59346875
transcript.pyannote[1714].end 13114.74096875
transcript.pyannote[1715].speaker SPEAKER_23
transcript.pyannote[1715].start 13114.74096875
transcript.pyannote[1715].end 13146.16221875
transcript.pyannote[1716].speaker SPEAKER_08
transcript.pyannote[1716].start 13146.16221875
transcript.pyannote[1716].end 13172.03159375
transcript.pyannote[1717].speaker SPEAKER_23
transcript.pyannote[1717].start 13146.19596875
transcript.pyannote[1717].end 13146.22971875
transcript.pyannote[1718].speaker SPEAKER_13
transcript.pyannote[1718].start 13146.22971875
transcript.pyannote[1718].end 13146.83721875
transcript.pyannote[1719].speaker SPEAKER_23
transcript.pyannote[1719].start 13146.83721875
transcript.pyannote[1719].end 13146.92159375
transcript.pyannote[1720].speaker SPEAKER_23
transcript.pyannote[1720].start 13172.03159375
transcript.pyannote[1720].end 13180.14846875
transcript.pyannote[1721].speaker SPEAKER_08
transcript.pyannote[1721].start 13179.20346875
transcript.pyannote[1721].end 13184.75534375
transcript.pyannote[1722].speaker SPEAKER_23
transcript.pyannote[1722].start 13180.95846875
transcript.pyannote[1722].end 13181.17784375
transcript.pyannote[1723].speaker SPEAKER_08
transcript.pyannote[1723].start 13185.27846875
transcript.pyannote[1723].end 13185.70034375
transcript.pyannote[1724].speaker SPEAKER_08
transcript.pyannote[1724].start 13186.05471875
transcript.pyannote[1724].end 13215.73784375
transcript.pyannote[1725].speaker SPEAKER_08
transcript.pyannote[1725].start 13216.07534375
transcript.pyannote[1725].end 13217.05409375
transcript.pyannote[1726].speaker SPEAKER_08
transcript.pyannote[1726].start 13217.44221875
transcript.pyannote[1726].end 13219.02846875
transcript.pyannote[1727].speaker SPEAKER_23
transcript.pyannote[1727].start 13219.02846875
transcript.pyannote[1727].end 13245.75846875
transcript.pyannote[1728].speaker SPEAKER_08
transcript.pyannote[1728].start 13245.28596875
transcript.pyannote[1728].end 13245.47159375
transcript.pyannote[1729].speaker SPEAKER_08
transcript.pyannote[1729].start 13245.75846875
transcript.pyannote[1729].end 13245.79221875
transcript.pyannote[1730].speaker SPEAKER_23
transcript.pyannote[1730].start 13245.79221875
transcript.pyannote[1730].end 13245.84284375
transcript.pyannote[1731].speaker SPEAKER_08
transcript.pyannote[1731].start 13245.84284375
transcript.pyannote[1731].end 13255.69784375
transcript.pyannote[1732].speaker SPEAKER_13
transcript.pyannote[1732].start 13251.96846875
transcript.pyannote[1732].end 13252.17096875
transcript.pyannote[1733].speaker SPEAKER_08
transcript.pyannote[1733].start 13255.73159375
transcript.pyannote[1733].end 13269.45096875
transcript.pyannote[1734].speaker SPEAKER_23
transcript.pyannote[1734].start 13264.97909375
transcript.pyannote[1734].end 13266.22784375
transcript.pyannote[1735].speaker SPEAKER_23
transcript.pyannote[1735].start 13266.91971875
transcript.pyannote[1735].end 13267.94909375
transcript.pyannote[1736].speaker SPEAKER_23
transcript.pyannote[1736].start 13268.26971875
transcript.pyannote[1736].end 13270.66596875
transcript.pyannote[1737].speaker SPEAKER_08
transcript.pyannote[1737].start 13270.66596875
transcript.pyannote[1737].end 13270.68284375
transcript.pyannote[1738].speaker SPEAKER_23
transcript.pyannote[1738].start 13270.68284375
transcript.pyannote[1738].end 13271.08784375
transcript.pyannote[1739].speaker SPEAKER_08
transcript.pyannote[1739].start 13270.73346875
transcript.pyannote[1739].end 13276.70721875
transcript.pyannote[1740].speaker SPEAKER_23
transcript.pyannote[1740].start 13271.10471875
transcript.pyannote[1740].end 13271.13846875
transcript.pyannote[1741].speaker SPEAKER_23
transcript.pyannote[1741].start 13271.15534375
transcript.pyannote[1741].end 13271.30721875
transcript.pyannote[1742].speaker SPEAKER_08
transcript.pyannote[1742].start 13276.79159375
transcript.pyannote[1742].end 13282.95096875
transcript.pyannote[1743].speaker SPEAKER_08
transcript.pyannote[1743].start 13283.71034375
transcript.pyannote[1743].end 13302.98159375
transcript.pyannote[1744].speaker SPEAKER_37
transcript.pyannote[1744].start 13300.24784375
transcript.pyannote[1744].end 13300.43346875
transcript.pyannote[1745].speaker SPEAKER_37
transcript.pyannote[1745].start 13302.37409375
transcript.pyannote[1745].end 13305.74909375
transcript.pyannote[1746].speaker SPEAKER_08
transcript.pyannote[1746].start 13305.19221875
transcript.pyannote[1746].end 13311.23346875
transcript.pyannote[1747].speaker SPEAKER_37
transcript.pyannote[1747].start 13311.53721875
transcript.pyannote[1747].end 13320.86909375
transcript.pyannote[1748].speaker SPEAKER_08
transcript.pyannote[1748].start 13320.46409375
transcript.pyannote[1748].end 13341.42284375
transcript.pyannote[1749].speaker SPEAKER_37
transcript.pyannote[1749].start 13321.79721875
transcript.pyannote[1749].end 13322.30346875
transcript.pyannote[1750].speaker SPEAKER_30
transcript.pyannote[1750].start 13342.21596875
transcript.pyannote[1750].end 13346.45159375
transcript.pyannote[1751].speaker SPEAKER_15
transcript.pyannote[1751].start 13360.55909375
transcript.pyannote[1751].end 13361.75721875
transcript.pyannote[1752].speaker SPEAKER_30
transcript.pyannote[1752].start 13361.84159375
transcript.pyannote[1752].end 13362.65159375
transcript.pyannote[1753].speaker SPEAKER_15
transcript.pyannote[1753].start 13365.94221875
transcript.pyannote[1753].end 13366.54971875
transcript.pyannote[1754].speaker SPEAKER_15
transcript.pyannote[1754].start 13367.05596875
transcript.pyannote[1754].end 13367.66346875
transcript.pyannote[1755].speaker SPEAKER_15
transcript.pyannote[1755].start 13367.93346875
transcript.pyannote[1755].end 13369.48596875
transcript.pyannote[1756].speaker SPEAKER_15
transcript.pyannote[1756].start 13369.68846875
transcript.pyannote[1756].end 13399.65846875
transcript.pyannote[1757].speaker SPEAKER_23
transcript.pyannote[1757].start 13399.65846875
transcript.pyannote[1757].end 13405.42971875
transcript.pyannote[1758].speaker SPEAKER_23
transcript.pyannote[1758].start 13405.46346875
transcript.pyannote[1758].end 13405.49721875
transcript.pyannote[1759].speaker SPEAKER_15
transcript.pyannote[1759].start 13405.66596875
transcript.pyannote[1759].end 13441.69409375
transcript.pyannote[1760].speaker SPEAKER_15
transcript.pyannote[1760].start 13442.16659375
transcript.pyannote[1760].end 13450.60409375
transcript.pyannote[1761].speaker SPEAKER_15
transcript.pyannote[1761].start 13451.12721875
transcript.pyannote[1761].end 13469.97659375
transcript.pyannote[1762].speaker SPEAKER_31
transcript.pyannote[1762].start 13469.97659375
transcript.pyannote[1762].end 13470.48284375
transcript.pyannote[1763].speaker SPEAKER_15
transcript.pyannote[1763].start 13470.11159375
transcript.pyannote[1763].end 13492.04909375
transcript.pyannote[1764].speaker SPEAKER_31
transcript.pyannote[1764].start 13475.20784375
transcript.pyannote[1764].end 13475.66346875
transcript.pyannote[1765].speaker SPEAKER_15
transcript.pyannote[1765].start 13492.20096875
transcript.pyannote[1765].end 13503.06846875
transcript.pyannote[1766].speaker SPEAKER_15
transcript.pyannote[1766].start 13503.43971875
transcript.pyannote[1766].end 13515.96096875
transcript.pyannote[1767].speaker SPEAKER_15
transcript.pyannote[1767].start 13516.72034375
transcript.pyannote[1767].end 13523.95971875
transcript.pyannote[1768].speaker SPEAKER_15
transcript.pyannote[1768].start 13524.29721875
transcript.pyannote[1768].end 13527.63846875
transcript.pyannote[1769].speaker SPEAKER_23
transcript.pyannote[1769].start 13527.63846875
transcript.pyannote[1769].end 13527.75659375
transcript.pyannote[1770].speaker SPEAKER_15
transcript.pyannote[1770].start 13527.75659375
transcript.pyannote[1770].end 13527.82409375
transcript.pyannote[1771].speaker SPEAKER_23
transcript.pyannote[1771].start 13527.82409375
transcript.pyannote[1771].end 13549.33971875
transcript.pyannote[1772].speaker SPEAKER_00
transcript.pyannote[1772].start 13538.26971875
transcript.pyannote[1772].end 13538.64096875
transcript.pyannote[1773].speaker SPEAKER_15
transcript.pyannote[1773].start 13549.33971875
transcript.pyannote[1773].end 13580.49096875
transcript.pyannote[1774].speaker SPEAKER_15
transcript.pyannote[1774].start 13580.79471875
transcript.pyannote[1774].end 13587.29159375
transcript.pyannote[1775].speaker SPEAKER_15
transcript.pyannote[1775].start 13587.64596875
transcript.pyannote[1775].end 13588.87784375
transcript.pyannote[1776].speaker SPEAKER_15
transcript.pyannote[1776].start 13589.46846875
transcript.pyannote[1776].end 13590.09284375
transcript.pyannote[1777].speaker SPEAKER_15
transcript.pyannote[1777].start 13590.68346875
transcript.pyannote[1777].end 13597.46721875
transcript.pyannote[1778].speaker SPEAKER_15
transcript.pyannote[1778].start 13598.17596875
transcript.pyannote[1778].end 13609.97159375
transcript.pyannote[1779].speaker SPEAKER_15
transcript.pyannote[1779].start 13610.81534375
transcript.pyannote[1779].end 13618.13909375
transcript.pyannote[1780].speaker SPEAKER_15
transcript.pyannote[1780].start 13619.20221875
transcript.pyannote[1780].end 13624.24784375
transcript.pyannote[1781].speaker SPEAKER_15
transcript.pyannote[1781].start 13624.68659375
transcript.pyannote[1781].end 13637.51159375
transcript.pyannote[1782].speaker SPEAKER_15
transcript.pyannote[1782].start 13638.23721875
transcript.pyannote[1782].end 13641.62909375
transcript.pyannote[1783].speaker SPEAKER_15
transcript.pyannote[1783].start 13642.15221875
transcript.pyannote[1783].end 13650.20159375
transcript.pyannote[1784].speaker SPEAKER_15
transcript.pyannote[1784].start 13650.92721875
transcript.pyannote[1784].end 13655.09534375
transcript.pyannote[1785].speaker SPEAKER_15
transcript.pyannote[1785].start 13655.44971875
transcript.pyannote[1785].end 13690.81971875
transcript.pyannote[1786].speaker SPEAKER_15
transcript.pyannote[1786].start 13692.00096875
transcript.pyannote[1786].end 13696.33784375
transcript.pyannote[1787].speaker SPEAKER_15
transcript.pyannote[1787].start 13696.74284375
transcript.pyannote[1787].end 13715.30534375
transcript.pyannote[1788].speaker SPEAKER_15
transcript.pyannote[1788].start 13716.01409375
transcript.pyannote[1788].end 13719.22034375
transcript.pyannote[1789].speaker SPEAKER_37
transcript.pyannote[1789].start 13721.31284375
transcript.pyannote[1789].end 13726.54409375
transcript.pyannote[1790].speaker SPEAKER_15
transcript.pyannote[1790].start 13726.44284375
transcript.pyannote[1790].end 13733.04096875
transcript.pyannote[1791].speaker SPEAKER_23
transcript.pyannote[1791].start 13733.36159375
transcript.pyannote[1791].end 13739.20034375
transcript.pyannote[1792].speaker SPEAKER_15
transcript.pyannote[1792].start 13736.71971875
transcript.pyannote[1792].end 13736.93909375
transcript.pyannote[1793].speaker SPEAKER_15
transcript.pyannote[1793].start 13738.06971875
transcript.pyannote[1793].end 13738.27221875
transcript.pyannote[1794].speaker SPEAKER_15
transcript.pyannote[1794].start 13738.91346875
transcript.pyannote[1794].end 13739.16659375
transcript.pyannote[1795].speaker SPEAKER_15
transcript.pyannote[1795].start 13739.20034375
transcript.pyannote[1795].end 13739.23409375
transcript.pyannote[1796].speaker SPEAKER_23
transcript.pyannote[1796].start 13739.23409375
transcript.pyannote[1796].end 13740.46596875
transcript.pyannote[1797].speaker SPEAKER_15
transcript.pyannote[1797].start 13739.40284375
transcript.pyannote[1797].end 13739.97659375
transcript.pyannote[1798].speaker SPEAKER_30
transcript.pyannote[1798].start 13740.92159375
transcript.pyannote[1798].end 13744.90409375
transcript.pyannote[1799].speaker SPEAKER_02
transcript.pyannote[1799].start 13751.58659375
transcript.pyannote[1799].end 13754.33721875
transcript.pyannote[1800].speaker SPEAKER_02
transcript.pyannote[1800].start 13754.84346875
transcript.pyannote[1800].end 13755.67034375
transcript.pyannote[1801].speaker SPEAKER_23
transcript.pyannote[1801].start 13758.37034375
transcript.pyannote[1801].end 13759.16346875
transcript.pyannote[1802].speaker SPEAKER_02
transcript.pyannote[1802].start 13759.39971875
transcript.pyannote[1802].end 13759.93971875
transcript.pyannote[1803].speaker SPEAKER_02
transcript.pyannote[1803].start 13760.24346875
transcript.pyannote[1803].end 13763.51721875
transcript.pyannote[1804].speaker SPEAKER_02
transcript.pyannote[1804].start 13763.61846875
transcript.pyannote[1804].end 13771.60034375
transcript.pyannote[1805].speaker SPEAKER_02
transcript.pyannote[1805].start 13772.56221875
transcript.pyannote[1805].end 13777.57409375
transcript.pyannote[1806].speaker SPEAKER_02
transcript.pyannote[1806].start 13778.31659375
transcript.pyannote[1806].end 13779.36284375
transcript.pyannote[1807].speaker SPEAKER_02
transcript.pyannote[1807].start 13779.76784375
transcript.pyannote[1807].end 13783.09221875
transcript.pyannote[1808].speaker SPEAKER_23
transcript.pyannote[1808].start 13783.91909375
transcript.pyannote[1808].end 13783.98659375
transcript.pyannote[1809].speaker SPEAKER_02
transcript.pyannote[1809].start 13783.98659375
transcript.pyannote[1809].end 13784.39159375
transcript.pyannote[1810].speaker SPEAKER_23
transcript.pyannote[1810].start 13784.39159375
transcript.pyannote[1810].end 13784.61096875
transcript.pyannote[1811].speaker SPEAKER_02
transcript.pyannote[1811].start 13784.61096875
transcript.pyannote[1811].end 13785.31971875
transcript.pyannote[1812].speaker SPEAKER_23
transcript.pyannote[1812].start 13784.72909375
transcript.pyannote[1812].end 13794.44909375
transcript.pyannote[1813].speaker SPEAKER_02
transcript.pyannote[1813].start 13792.94721875
transcript.pyannote[1813].end 13795.83284375
transcript.pyannote[1814].speaker SPEAKER_23
transcript.pyannote[1814].start 13795.83284375
transcript.pyannote[1814].end 13799.32596875
transcript.pyannote[1815].speaker SPEAKER_02
transcript.pyannote[1815].start 13796.30534375
transcript.pyannote[1815].end 13804.59096875
transcript.pyannote[1816].speaker SPEAKER_02
transcript.pyannote[1816].start 13805.09721875
transcript.pyannote[1816].end 13807.66221875
transcript.pyannote[1817].speaker SPEAKER_23
transcript.pyannote[1817].start 13808.43846875
transcript.pyannote[1817].end 13813.11284375
transcript.pyannote[1818].speaker SPEAKER_02
transcript.pyannote[1818].start 13811.88096875
transcript.pyannote[1818].end 13814.31096875
transcript.pyannote[1819].speaker SPEAKER_23
transcript.pyannote[1819].start 13814.61471875
transcript.pyannote[1819].end 13817.71971875
transcript.pyannote[1820].speaker SPEAKER_23
transcript.pyannote[1820].start 13819.10346875
transcript.pyannote[1820].end 13822.03971875
transcript.pyannote[1821].speaker SPEAKER_02
transcript.pyannote[1821].start 13821.36471875
transcript.pyannote[1821].end 13823.37284375
transcript.pyannote[1822].speaker SPEAKER_23
transcript.pyannote[1822].start 13822.17471875
transcript.pyannote[1822].end 13822.79909375
transcript.pyannote[1823].speaker SPEAKER_02
transcript.pyannote[1823].start 13824.06471875
transcript.pyannote[1823].end 13824.21659375
transcript.pyannote[1824].speaker SPEAKER_02
transcript.pyannote[1824].start 13824.41909375
transcript.pyannote[1824].end 13829.19471875
transcript.pyannote[1825].speaker SPEAKER_23
transcript.pyannote[1825].start 13829.85284375
transcript.pyannote[1825].end 13838.72909375
transcript.pyannote[1826].speaker SPEAKER_02
transcript.pyannote[1826].start 13836.45096875
transcript.pyannote[1826].end 13836.53534375
transcript.pyannote[1827].speaker SPEAKER_02
transcript.pyannote[1827].start 13836.55221875
transcript.pyannote[1827].end 13837.04159375
transcript.pyannote[1828].speaker SPEAKER_02
transcript.pyannote[1828].start 13838.50971875
transcript.pyannote[1828].end 13840.06221875
transcript.pyannote[1829].speaker SPEAKER_02
transcript.pyannote[1829].start 13840.29846875
transcript.pyannote[1829].end 13840.50096875
transcript.pyannote[1830].speaker SPEAKER_23
transcript.pyannote[1830].start 13840.87221875
transcript.pyannote[1830].end 13841.90159375
transcript.pyannote[1831].speaker SPEAKER_02
transcript.pyannote[1831].start 13841.49659375
transcript.pyannote[1831].end 13844.87159375
transcript.pyannote[1832].speaker SPEAKER_37
transcript.pyannote[1832].start 13841.90159375
transcript.pyannote[1832].end 13841.91846875
transcript.pyannote[1833].speaker SPEAKER_37
transcript.pyannote[1833].start 13845.17534375
transcript.pyannote[1833].end 13865.07096875
transcript.pyannote[1834].speaker SPEAKER_02
transcript.pyannote[1834].start 13846.17096875
transcript.pyannote[1834].end 13847.70659375
transcript.pyannote[1835].speaker SPEAKER_00
transcript.pyannote[1835].start 13854.28784375
transcript.pyannote[1835].end 13854.89534375
transcript.pyannote[1836].speaker SPEAKER_02
transcript.pyannote[1836].start 13863.68721875
transcript.pyannote[1836].end 13866.42096875
transcript.pyannote[1837].speaker SPEAKER_37
transcript.pyannote[1837].start 13866.80909375
transcript.pyannote[1837].end 13867.53471875
transcript.pyannote[1838].speaker SPEAKER_02
transcript.pyannote[1838].start 13867.02846875
transcript.pyannote[1838].end 13868.78346875
transcript.pyannote[1839].speaker SPEAKER_37
transcript.pyannote[1839].start 13868.05784375
transcript.pyannote[1839].end 13870.31909375
transcript.pyannote[1840].speaker SPEAKER_02
transcript.pyannote[1840].start 13868.90159375
transcript.pyannote[1840].end 13872.29346875
transcript.pyannote[1841].speaker SPEAKER_37
transcript.pyannote[1841].start 13871.95596875
transcript.pyannote[1841].end 13875.24659375
transcript.pyannote[1842].speaker SPEAKER_02
transcript.pyannote[1842].start 13873.91346875
transcript.pyannote[1842].end 13882.13159375
transcript.pyannote[1843].speaker SPEAKER_02
transcript.pyannote[1843].start 13882.38471875
transcript.pyannote[1843].end 13884.27471875
transcript.pyannote[1844].speaker SPEAKER_02
transcript.pyannote[1844].start 13884.44346875
transcript.pyannote[1844].end 13891.17659375
transcript.pyannote[1845].speaker SPEAKER_02
transcript.pyannote[1845].start 13891.56471875
transcript.pyannote[1845].end 13894.92284375
transcript.pyannote[1846].speaker SPEAKER_23
transcript.pyannote[1846].start 13895.22659375
transcript.pyannote[1846].end 13896.05346875
transcript.pyannote[1847].speaker SPEAKER_02
transcript.pyannote[1847].start 13896.05346875
transcript.pyannote[1847].end 13900.67721875
transcript.pyannote[1848].speaker SPEAKER_23
transcript.pyannote[1848].start 13900.67721875
transcript.pyannote[1848].end 13901.31846875
transcript.pyannote[1849].speaker SPEAKER_02
transcript.pyannote[1849].start 13901.31846875
transcript.pyannote[1849].end 13915.00409375
transcript.pyannote[1850].speaker SPEAKER_31
transcript.pyannote[1850].start 13911.73034375
transcript.pyannote[1850].end 13911.74721875
transcript.pyannote[1851].speaker SPEAKER_23
transcript.pyannote[1851].start 13911.74721875
transcript.pyannote[1851].end 13912.60784375
transcript.pyannote[1852].speaker SPEAKER_23
transcript.pyannote[1852].start 13915.00409375
transcript.pyannote[1852].end 13916.23596875
transcript.pyannote[1853].speaker SPEAKER_02
transcript.pyannote[1853].start 13915.76346875
transcript.pyannote[1853].end 13940.33346875
transcript.pyannote[1854].speaker SPEAKER_23
transcript.pyannote[1854].start 13916.50596875
transcript.pyannote[1854].end 13917.01221875
transcript.pyannote[1855].speaker SPEAKER_31
transcript.pyannote[1855].start 13940.33346875
transcript.pyannote[1855].end 13941.14346875
transcript.pyannote[1856].speaker SPEAKER_02
transcript.pyannote[1856].start 13940.70471875
transcript.pyannote[1856].end 13946.96534375
transcript.pyannote[1857].speaker SPEAKER_02
transcript.pyannote[1857].start 13947.43784375
transcript.pyannote[1857].end 13948.19721875
transcript.pyannote[1858].speaker SPEAKER_23
transcript.pyannote[1858].start 13948.99034375
transcript.pyannote[1858].end 13949.58096875
transcript.pyannote[1859].speaker SPEAKER_02
transcript.pyannote[1859].start 13949.58096875
transcript.pyannote[1859].end 13951.01534375
transcript.pyannote[1860].speaker SPEAKER_23
transcript.pyannote[1860].start 13951.06596875
transcript.pyannote[1860].end 13952.33159375
transcript.pyannote[1861].speaker SPEAKER_02
transcript.pyannote[1861].start 13952.07846875
transcript.pyannote[1861].end 13953.66471875
transcript.pyannote[1862].speaker SPEAKER_02
transcript.pyannote[1862].start 13953.88409375
transcript.pyannote[1862].end 13954.81221875
transcript.pyannote[1863].speaker SPEAKER_02
transcript.pyannote[1863].start 13955.38596875
transcript.pyannote[1863].end 13956.43221875
transcript.pyannote[1864].speaker SPEAKER_23
transcript.pyannote[1864].start 13956.43221875
transcript.pyannote[1864].end 13956.61784375
transcript.pyannote[1865].speaker SPEAKER_02
transcript.pyannote[1865].start 13956.61784375
transcript.pyannote[1865].end 13957.90034375
transcript.pyannote[1866].speaker SPEAKER_02
transcript.pyannote[1866].start 13958.27159375
transcript.pyannote[1866].end 13959.33471875
transcript.pyannote[1867].speaker SPEAKER_02
transcript.pyannote[1867].start 13960.11096875
transcript.pyannote[1867].end 13961.17409375
transcript.pyannote[1868].speaker SPEAKER_23
transcript.pyannote[1868].start 13961.22471875
transcript.pyannote[1868].end 13961.79846875
transcript.pyannote[1869].speaker SPEAKER_02
transcript.pyannote[1869].start 13962.18659375
transcript.pyannote[1869].end 13965.96659375
transcript.pyannote[1870].speaker SPEAKER_27
transcript.pyannote[1870].start 13965.96659375
transcript.pyannote[1870].end 13977.88034375
transcript.pyannote[1871].speaker SPEAKER_23
transcript.pyannote[1871].start 13967.82284375
transcript.pyannote[1871].end 13967.85659375
transcript.pyannote[1872].speaker SPEAKER_31
transcript.pyannote[1872].start 13967.85659375
transcript.pyannote[1872].end 13968.27846875
transcript.pyannote[1873].speaker SPEAKER_23
transcript.pyannote[1873].start 13968.27846875
transcript.pyannote[1873].end 13968.32909375
transcript.pyannote[1874].speaker SPEAKER_02
transcript.pyannote[1874].start 13977.54284375
transcript.pyannote[1874].end 13979.82096875
transcript.pyannote[1875].speaker SPEAKER_27
transcript.pyannote[1875].start 13979.19659375
transcript.pyannote[1875].end 13979.87159375
transcript.pyannote[1876].speaker SPEAKER_02
transcript.pyannote[1876].start 13979.87159375
transcript.pyannote[1876].end 13979.90534375
transcript.pyannote[1877].speaker SPEAKER_27
transcript.pyannote[1877].start 13979.90534375
transcript.pyannote[1877].end 13979.92221875
transcript.pyannote[1878].speaker SPEAKER_02
transcript.pyannote[1878].start 13979.92221875
transcript.pyannote[1878].end 13979.97284375
transcript.pyannote[1879].speaker SPEAKER_27
transcript.pyannote[1879].start 13979.97284375
transcript.pyannote[1879].end 13980.14159375
transcript.pyannote[1880].speaker SPEAKER_02
transcript.pyannote[1880].start 13980.14159375
transcript.pyannote[1880].end 13980.37784375
transcript.pyannote[1881].speaker SPEAKER_27
transcript.pyannote[1881].start 13980.37784375
transcript.pyannote[1881].end 13987.22909375
transcript.pyannote[1882].speaker SPEAKER_02
transcript.pyannote[1882].start 13980.81659375
transcript.pyannote[1882].end 13983.02721875
transcript.pyannote[1883].speaker SPEAKER_02
transcript.pyannote[1883].start 13986.65534375
transcript.pyannote[1883].end 13990.89096875
transcript.pyannote[1884].speaker SPEAKER_02
transcript.pyannote[1884].start 13991.86971875
transcript.pyannote[1884].end 13994.83971875
transcript.pyannote[1885].speaker SPEAKER_31
transcript.pyannote[1885].start 13995.27846875
transcript.pyannote[1885].end 13995.76784375
transcript.pyannote[1886].speaker SPEAKER_02
transcript.pyannote[1886].start 13995.73409375
transcript.pyannote[1886].end 13996.96596875
transcript.pyannote[1887].speaker SPEAKER_24
transcript.pyannote[1887].start 13995.76784375
transcript.pyannote[1887].end 13996.12221875
transcript.pyannote[1888].speaker SPEAKER_24
transcript.pyannote[1888].start 13996.96596875
transcript.pyannote[1888].end 14001.08346875
transcript.pyannote[1889].speaker SPEAKER_27
transcript.pyannote[1889].start 13998.38346875
transcript.pyannote[1889].end 14005.58909375
transcript.pyannote[1890].speaker SPEAKER_02
transcript.pyannote[1890].start 14003.69909375
transcript.pyannote[1890].end 14010.04409375
transcript.pyannote[1891].speaker SPEAKER_27
transcript.pyannote[1891].start 14010.39846875
transcript.pyannote[1891].end 14018.24534375
transcript.pyannote[1892].speaker SPEAKER_02
transcript.pyannote[1892].start 14015.83221875
transcript.pyannote[1892].end 14016.54096875
transcript.pyannote[1893].speaker SPEAKER_02
transcript.pyannote[1893].start 14016.96284375
transcript.pyannote[1893].end 14017.23284375
transcript.pyannote[1894].speaker SPEAKER_02
transcript.pyannote[1894].start 14018.24534375
transcript.pyannote[1894].end 14021.94096875
transcript.pyannote[1895].speaker SPEAKER_27
transcript.pyannote[1895].start 14018.31284375
transcript.pyannote[1895].end 14018.56596875
transcript.pyannote[1896].speaker SPEAKER_27
transcript.pyannote[1896].start 14019.59534375
transcript.pyannote[1896].end 14020.92846875
transcript.pyannote[1897].speaker SPEAKER_02
transcript.pyannote[1897].start 14022.37971875
transcript.pyannote[1897].end 14028.04971875
transcript.pyannote[1898].speaker SPEAKER_23
transcript.pyannote[1898].start 14026.76721875
transcript.pyannote[1898].end 14030.39534375
transcript.pyannote[1899].speaker SPEAKER_02
transcript.pyannote[1899].start 14029.88909375
transcript.pyannote[1899].end 14042.88284375
transcript.pyannote[1900].speaker SPEAKER_23
transcript.pyannote[1900].start 14036.16659375
transcript.pyannote[1900].end 14036.50409375
transcript.pyannote[1901].speaker SPEAKER_02
transcript.pyannote[1901].start 14043.49034375
transcript.pyannote[1901].end 14045.56596875
transcript.pyannote[1902].speaker SPEAKER_00
transcript.pyannote[1902].start 14044.38471875
transcript.pyannote[1902].end 14044.85721875
transcript.pyannote[1903].speaker SPEAKER_02
transcript.pyannote[1903].start 14045.98784375
transcript.pyannote[1903].end 14050.20659375
transcript.pyannote[1904].speaker SPEAKER_02
transcript.pyannote[1904].start 14050.76346875
transcript.pyannote[1904].end 14051.72534375
transcript.pyannote[1905].speaker SPEAKER_02
transcript.pyannote[1905].start 14052.56909375
transcript.pyannote[1905].end 14054.71221875
transcript.pyannote[1906].speaker SPEAKER_23
transcript.pyannote[1906].start 14055.26909375
transcript.pyannote[1906].end 14059.77471875
transcript.pyannote[1907].speaker SPEAKER_02
transcript.pyannote[1907].start 14058.81284375
transcript.pyannote[1907].end 14060.36534375
transcript.pyannote[1908].speaker SPEAKER_23
transcript.pyannote[1908].start 14061.17534375
transcript.pyannote[1908].end 14064.90471875
transcript.pyannote[1909].speaker SPEAKER_02
transcript.pyannote[1909].start 14065.34346875
transcript.pyannote[1909].end 14070.97971875
transcript.pyannote[1910].speaker SPEAKER_23
transcript.pyannote[1910].start 14072.07659375
transcript.pyannote[1910].end 14082.57284375
transcript.pyannote[1911].speaker SPEAKER_02
transcript.pyannote[1911].start 14081.91471875
transcript.pyannote[1911].end 14089.30596875
transcript.pyannote[1912].speaker SPEAKER_02
transcript.pyannote[1912].start 14089.50846875
transcript.pyannote[1912].end 14090.35221875
transcript.pyannote[1913].speaker SPEAKER_23
transcript.pyannote[1913].start 14089.98096875
transcript.pyannote[1913].end 14091.92159375
transcript.pyannote[1914].speaker SPEAKER_02
transcript.pyannote[1914].start 14091.92159375
transcript.pyannote[1914].end 14092.83284375
transcript.pyannote[1915].speaker SPEAKER_02
transcript.pyannote[1915].start 14093.50784375
transcript.pyannote[1915].end 14097.45659375
transcript.pyannote[1916].speaker SPEAKER_23
transcript.pyannote[1916].start 14095.31346875
transcript.pyannote[1916].end 14096.17409375
transcript.pyannote[1917].speaker SPEAKER_02
transcript.pyannote[1917].start 14097.92909375
transcript.pyannote[1917].end 14107.12596875
transcript.pyannote[1918].speaker SPEAKER_02
transcript.pyannote[1918].start 14107.73346875
transcript.pyannote[1918].end 14109.57284375
transcript.pyannote[1919].speaker SPEAKER_02
transcript.pyannote[1919].start 14110.38284375
transcript.pyannote[1919].end 14125.72221875
transcript.pyannote[1920].speaker SPEAKER_02
transcript.pyannote[1920].start 14126.29596875
transcript.pyannote[1920].end 14130.73409375
transcript.pyannote[1921].speaker SPEAKER_23
transcript.pyannote[1921].start 14131.25721875
transcript.pyannote[1921].end 14131.59471875
transcript.pyannote[1922].speaker SPEAKER_02
transcript.pyannote[1922].start 14131.59471875
transcript.pyannote[1922].end 14131.78034375
transcript.pyannote[1923].speaker SPEAKER_23
transcript.pyannote[1923].start 14131.96596875
transcript.pyannote[1923].end 14134.34534375
transcript.pyannote[1924].speaker SPEAKER_23
transcript.pyannote[1924].start 14134.80096875
transcript.pyannote[1924].end 14142.83346875
transcript.pyannote[1925].speaker SPEAKER_02
transcript.pyannote[1925].start 14141.55096875
transcript.pyannote[1925].end 14144.89221875
transcript.pyannote[1926].speaker SPEAKER_02
transcript.pyannote[1926].start 14145.02721875
transcript.pyannote[1926].end 14163.26909375
transcript.pyannote[1927].speaker SPEAKER_23
transcript.pyannote[1927].start 14150.10659375
transcript.pyannote[1927].end 14153.17784375
transcript.pyannote[1928].speaker SPEAKER_02
transcript.pyannote[1928].start 14163.30284375
transcript.pyannote[1928].end 14175.04784375
transcript.pyannote[1929].speaker SPEAKER_02
transcript.pyannote[1929].start 14175.55409375
transcript.pyannote[1929].end 14202.21659375
transcript.pyannote[1930].speaker SPEAKER_02
transcript.pyannote[1930].start 14202.58784375
transcript.pyannote[1930].end 14211.02534375
transcript.pyannote[1931].speaker SPEAKER_02
transcript.pyannote[1931].start 14211.86909375
transcript.pyannote[1931].end 14212.25721875
transcript.pyannote[1932].speaker SPEAKER_23
transcript.pyannote[1932].start 14212.71284375
transcript.pyannote[1932].end 14216.25659375
transcript.pyannote[1933].speaker SPEAKER_02
transcript.pyannote[1933].start 14215.05846875
transcript.pyannote[1933].end 14234.12721875
transcript.pyannote[1934].speaker SPEAKER_30
transcript.pyannote[1934].start 14234.12721875
transcript.pyannote[1934].end 14234.17784375
transcript.pyannote[1935].speaker SPEAKER_30
transcript.pyannote[1935].start 14234.34659375
transcript.pyannote[1935].end 14244.18471875
transcript.pyannote[1936].speaker SPEAKER_06
transcript.pyannote[1936].start 14255.82846875
transcript.pyannote[1936].end 14257.36409375
transcript.pyannote[1937].speaker SPEAKER_06
transcript.pyannote[1937].start 14257.58346875
transcript.pyannote[1937].end 14257.60034375
transcript.pyannote[1938].speaker SPEAKER_30
transcript.pyannote[1938].start 14257.60034375
transcript.pyannote[1938].end 14258.51159375
transcript.pyannote[1939].speaker SPEAKER_23
transcript.pyannote[1939].start 14261.22846875
transcript.pyannote[1939].end 14262.03846875
transcript.pyannote[1940].speaker SPEAKER_06
transcript.pyannote[1940].start 14263.11846875
transcript.pyannote[1940].end 14263.64159375
transcript.pyannote[1941].speaker SPEAKER_23
transcript.pyannote[1941].start 14263.64159375
transcript.pyannote[1941].end 14263.92846875
transcript.pyannote[1942].speaker SPEAKER_06
transcript.pyannote[1942].start 14264.28284375
transcript.pyannote[1942].end 14267.50596875
transcript.pyannote[1943].speaker SPEAKER_23
transcript.pyannote[1943].start 14267.26971875
transcript.pyannote[1943].end 14268.11346875
transcript.pyannote[1944].speaker SPEAKER_06
transcript.pyannote[1944].start 14268.06284375
transcript.pyannote[1944].end 14269.54784375
transcript.pyannote[1945].speaker SPEAKER_06
transcript.pyannote[1945].start 14270.39159375
transcript.pyannote[1945].end 14274.12096875
transcript.pyannote[1946].speaker SPEAKER_23
transcript.pyannote[1946].start 14272.45034375
transcript.pyannote[1946].end 14272.46721875
transcript.pyannote[1947].speaker SPEAKER_06
transcript.pyannote[1947].start 14274.54284375
transcript.pyannote[1947].end 14279.04846875
transcript.pyannote[1948].speaker SPEAKER_06
transcript.pyannote[1948].start 14279.50409375
transcript.pyannote[1948].end 14283.84096875
transcript.pyannote[1949].speaker SPEAKER_23
transcript.pyannote[1949].start 14283.92534375
transcript.pyannote[1949].end 14284.63409375
transcript.pyannote[1950].speaker SPEAKER_06
transcript.pyannote[1950].start 14284.78596875
transcript.pyannote[1950].end 14285.19096875
transcript.pyannote[1951].speaker SPEAKER_23
transcript.pyannote[1951].start 14285.19096875
transcript.pyannote[1951].end 14286.62534375
transcript.pyannote[1952].speaker SPEAKER_06
transcript.pyannote[1952].start 14286.13596875
transcript.pyannote[1952].end 14288.54909375
transcript.pyannote[1953].speaker SPEAKER_06
transcript.pyannote[1953].start 14289.40971875
transcript.pyannote[1953].end 14290.43909375
transcript.pyannote[1954].speaker SPEAKER_23
transcript.pyannote[1954].start 14290.52346875
transcript.pyannote[1954].end 14290.94534375
transcript.pyannote[1955].speaker SPEAKER_31
transcript.pyannote[1955].start 14290.94534375
transcript.pyannote[1955].end 14290.97909375
transcript.pyannote[1956].speaker SPEAKER_06
transcript.pyannote[1956].start 14291.43471875
transcript.pyannote[1956].end 14291.75534375
transcript.pyannote[1957].speaker SPEAKER_06
transcript.pyannote[1957].start 14292.24471875
transcript.pyannote[1957].end 14295.02909375
transcript.pyannote[1958].speaker SPEAKER_06
transcript.pyannote[1958].start 14295.36659375
transcript.pyannote[1958].end 14298.13409375
transcript.pyannote[1959].speaker SPEAKER_06
transcript.pyannote[1959].start 14298.20159375
transcript.pyannote[1959].end 14301.47534375
transcript.pyannote[1960].speaker SPEAKER_23
transcript.pyannote[1960].start 14302.45409375
transcript.pyannote[1960].end 14303.82096875
transcript.pyannote[1961].speaker SPEAKER_06
transcript.pyannote[1961].start 14303.11221875
transcript.pyannote[1961].end 14303.53409375
transcript.pyannote[1962].speaker SPEAKER_23
transcript.pyannote[1962].start 14304.56346875
transcript.pyannote[1962].end 14310.73971875
transcript.pyannote[1963].speaker SPEAKER_06
transcript.pyannote[1963].start 14310.97596875
transcript.pyannote[1963].end 14313.65909375
transcript.pyannote[1964].speaker SPEAKER_06
transcript.pyannote[1964].start 14313.79409375
transcript.pyannote[1964].end 14315.83596875
transcript.pyannote[1965].speaker SPEAKER_06
transcript.pyannote[1965].start 14316.30846875
transcript.pyannote[1965].end 14319.90284375
transcript.pyannote[1966].speaker SPEAKER_06
transcript.pyannote[1966].start 14320.54409375
transcript.pyannote[1966].end 14323.17659375
transcript.pyannote[1967].speaker SPEAKER_06
transcript.pyannote[1967].start 14323.51409375
transcript.pyannote[1967].end 14330.82096875
transcript.pyannote[1968].speaker SPEAKER_06
transcript.pyannote[1968].start 14331.31034375
transcript.pyannote[1968].end 14333.08221875
transcript.pyannote[1969].speaker SPEAKER_06
transcript.pyannote[1969].start 14334.04409375
transcript.pyannote[1969].end 14335.24221875
transcript.pyannote[1970].speaker SPEAKER_06
transcript.pyannote[1970].start 14335.52909375
transcript.pyannote[1970].end 14336.25471875
transcript.pyannote[1971].speaker SPEAKER_06
transcript.pyannote[1971].start 14337.41909375
transcript.pyannote[1971].end 14338.27971875
transcript.pyannote[1972].speaker SPEAKER_06
transcript.pyannote[1972].start 14338.92096875
transcript.pyannote[1972].end 14341.13159375
transcript.pyannote[1973].speaker SPEAKER_06
transcript.pyannote[1973].start 14341.89096875
transcript.pyannote[1973].end 14342.53221875
transcript.pyannote[1974].speaker SPEAKER_06
transcript.pyannote[1974].start 14343.17346875
transcript.pyannote[1974].end 14347.02096875
transcript.pyannote[1975].speaker SPEAKER_06
transcript.pyannote[1975].start 14348.62409375
transcript.pyannote[1975].end 14352.74159375
transcript.pyannote[1976].speaker SPEAKER_06
transcript.pyannote[1976].start 14353.63596875
transcript.pyannote[1976].end 14355.05346875
transcript.pyannote[1977].speaker SPEAKER_06
transcript.pyannote[1977].start 14356.77471875
transcript.pyannote[1977].end 14360.14971875
transcript.pyannote[1978].speaker SPEAKER_06
transcript.pyannote[1978].start 14361.07784375
transcript.pyannote[1978].end 14364.67221875
transcript.pyannote[1979].speaker SPEAKER_06
transcript.pyannote[1979].start 14365.36409375
transcript.pyannote[1979].end 14366.39346875
transcript.pyannote[1980].speaker SPEAKER_06
transcript.pyannote[1980].start 14367.10221875
transcript.pyannote[1980].end 14370.66284375
transcript.pyannote[1981].speaker SPEAKER_06
transcript.pyannote[1981].start 14370.86534375
transcript.pyannote[1981].end 14374.02096875
transcript.pyannote[1982].speaker SPEAKER_06
transcript.pyannote[1982].start 14374.72971875
transcript.pyannote[1982].end 14376.24846875
transcript.pyannote[1983].speaker SPEAKER_06
transcript.pyannote[1983].start 14376.58596875
transcript.pyannote[1983].end 14377.63221875
transcript.pyannote[1984].speaker SPEAKER_06
transcript.pyannote[1984].start 14378.69534375
transcript.pyannote[1984].end 14380.95659375
transcript.pyannote[1985].speaker SPEAKER_06
transcript.pyannote[1985].start 14381.96909375
transcript.pyannote[1985].end 14384.06159375
transcript.pyannote[1986].speaker SPEAKER_06
transcript.pyannote[1986].start 14384.92221875
transcript.pyannote[1986].end 14386.12034375
transcript.pyannote[1987].speaker SPEAKER_06
transcript.pyannote[1987].start 14387.13284375
transcript.pyannote[1987].end 14389.76534375
transcript.pyannote[1988].speaker SPEAKER_06
transcript.pyannote[1988].start 14390.32221875
transcript.pyannote[1988].end 14391.43596875
transcript.pyannote[1989].speaker SPEAKER_06
transcript.pyannote[1989].start 14391.62159375
transcript.pyannote[1989].end 14392.93784375
transcript.pyannote[1990].speaker SPEAKER_06
transcript.pyannote[1990].start 14393.54534375
transcript.pyannote[1990].end 14395.19909375
transcript.pyannote[1991].speaker SPEAKER_06
transcript.pyannote[1991].start 14395.95846875
transcript.pyannote[1991].end 14396.49846875
transcript.pyannote[1992].speaker SPEAKER_06
transcript.pyannote[1992].start 14397.27471875
transcript.pyannote[1992].end 14400.61596875
transcript.pyannote[1993].speaker SPEAKER_06
transcript.pyannote[1993].start 14401.49346875
transcript.pyannote[1993].end 14401.88159375
transcript.pyannote[1994].speaker SPEAKER_06
transcript.pyannote[1994].start 14403.06284375
transcript.pyannote[1994].end 14403.87284375
transcript.pyannote[1995].speaker SPEAKER_06
transcript.pyannote[1995].start 14404.29471875
transcript.pyannote[1995].end 14406.28596875
transcript.pyannote[1996].speaker SPEAKER_23
transcript.pyannote[1996].start 14407.80471875
transcript.pyannote[1996].end 14432.66159375
transcript.pyannote[1997].speaker SPEAKER_06
transcript.pyannote[1997].start 14408.27721875
transcript.pyannote[1997].end 14408.93534375
transcript.pyannote[1998].speaker SPEAKER_06
transcript.pyannote[1998].start 14432.81346875
transcript.pyannote[1998].end 14436.18846875
transcript.pyannote[1999].speaker SPEAKER_23
transcript.pyannote[1999].start 14436.55971875
transcript.pyannote[1999].end 14448.97971875
transcript.pyannote[2000].speaker SPEAKER_06
transcript.pyannote[2000].start 14436.62721875
transcript.pyannote[2000].end 14437.04909375
transcript.pyannote[2001].speaker SPEAKER_06
transcript.pyannote[2001].start 14445.43596875
transcript.pyannote[2001].end 14446.00971875
transcript.pyannote[2002].speaker SPEAKER_06
transcript.pyannote[2002].start 14449.41846875
transcript.pyannote[2002].end 14451.96659375
transcript.pyannote[2003].speaker SPEAKER_06
transcript.pyannote[2003].start 14451.98346875
transcript.pyannote[2003].end 14454.71721875
transcript.pyannote[2004].speaker SPEAKER_23
transcript.pyannote[2004].start 14454.36284375
transcript.pyannote[2004].end 14454.41346875
transcript.pyannote[2005].speaker SPEAKER_31
transcript.pyannote[2005].start 14454.41346875
transcript.pyannote[2005].end 14455.20659375
transcript.pyannote[2006].speaker SPEAKER_06
transcript.pyannote[2006].start 14454.91971875
transcript.pyannote[2006].end 14455.32471875
transcript.pyannote[2007].speaker SPEAKER_06
transcript.pyannote[2007].start 14455.56096875
transcript.pyannote[2007].end 14459.10471875
transcript.pyannote[2008].speaker SPEAKER_06
transcript.pyannote[2008].start 14460.10034375
transcript.pyannote[2008].end 14467.74471875
transcript.pyannote[2009].speaker SPEAKER_06
transcript.pyannote[2009].start 14469.28034375
transcript.pyannote[2009].end 14470.46159375
transcript.pyannote[2010].speaker SPEAKER_06
transcript.pyannote[2010].start 14470.81596875
transcript.pyannote[2010].end 14473.26284375
transcript.pyannote[2011].speaker SPEAKER_06
transcript.pyannote[2011].start 14473.95471875
transcript.pyannote[2011].end 14476.94159375
transcript.pyannote[2012].speaker SPEAKER_06
transcript.pyannote[2012].start 14477.38034375
transcript.pyannote[2012].end 14477.92034375
transcript.pyannote[2013].speaker SPEAKER_06
transcript.pyannote[2013].start 14479.23659375
transcript.pyannote[2013].end 14481.31221875
transcript.pyannote[2014].speaker SPEAKER_06
transcript.pyannote[2014].start 14482.37534375
transcript.pyannote[2014].end 14482.96596875
transcript.pyannote[2015].speaker SPEAKER_06
transcript.pyannote[2015].start 14483.94471875
transcript.pyannote[2015].end 14490.49221875
transcript.pyannote[2016].speaker SPEAKER_06
transcript.pyannote[2016].start 14490.79596875
transcript.pyannote[2016].end 14491.92659375
transcript.pyannote[2017].speaker SPEAKER_06
transcript.pyannote[2017].start 14492.43284375
transcript.pyannote[2017].end 14497.59659375
transcript.pyannote[2018].speaker SPEAKER_23
transcript.pyannote[2018].start 14498.35596875
transcript.pyannote[2018].end 14505.27471875
transcript.pyannote[2019].speaker SPEAKER_06
transcript.pyannote[2019].start 14504.58284375
transcript.pyannote[2019].end 14505.61221875
transcript.pyannote[2020].speaker SPEAKER_23
transcript.pyannote[2020].start 14505.56159375
transcript.pyannote[2020].end 14505.57846875
transcript.pyannote[2021].speaker SPEAKER_23
transcript.pyannote[2021].start 14505.59534375
transcript.pyannote[2021].end 14515.23096875
transcript.pyannote[2022].speaker SPEAKER_06
transcript.pyannote[2022].start 14507.40096875
transcript.pyannote[2022].end 14507.43471875
transcript.pyannote[2023].speaker SPEAKER_06
transcript.pyannote[2023].start 14510.42159375
transcript.pyannote[2023].end 14510.50596875
transcript.pyannote[2024].speaker SPEAKER_06
transcript.pyannote[2024].start 14510.60721875
transcript.pyannote[2024].end 14510.70846875
transcript.pyannote[2025].speaker SPEAKER_06
transcript.pyannote[2025].start 14515.82159375
transcript.pyannote[2025].end 14519.55096875
transcript.pyannote[2026].speaker SPEAKER_06
transcript.pyannote[2026].start 14519.88846875
transcript.pyannote[2026].end 14525.50784375
transcript.pyannote[2027].speaker SPEAKER_23
transcript.pyannote[2027].start 14525.94659375
transcript.pyannote[2027].end 14536.24034375
transcript.pyannote[2028].speaker SPEAKER_06
transcript.pyannote[2028].start 14526.06471875
transcript.pyannote[2028].end 14526.58784375
transcript.pyannote[2029].speaker SPEAKER_06
transcript.pyannote[2029].start 14527.38096875
transcript.pyannote[2029].end 14528.29221875
transcript.pyannote[2030].speaker SPEAKER_06
transcript.pyannote[2030].start 14536.67909375
transcript.pyannote[2030].end 14539.42971875
transcript.pyannote[2031].speaker SPEAKER_06
transcript.pyannote[2031].start 14540.59409375
transcript.pyannote[2031].end 14543.09159375
transcript.pyannote[2032].speaker SPEAKER_06
transcript.pyannote[2032].start 14544.59346875
transcript.pyannote[2032].end 14549.01471875
transcript.pyannote[2033].speaker SPEAKER_06
transcript.pyannote[2033].start 14549.79096875
transcript.pyannote[2033].end 14550.90471875
transcript.pyannote[2034].speaker SPEAKER_06
transcript.pyannote[2034].start 14551.64721875
transcript.pyannote[2034].end 14554.12784375
transcript.pyannote[2035].speaker SPEAKER_06
transcript.pyannote[2035].start 14554.49909375
transcript.pyannote[2035].end 14555.83221875
transcript.pyannote[2036].speaker SPEAKER_06
transcript.pyannote[2036].start 14558.46471875
transcript.pyannote[2036].end 14560.81034375
transcript.pyannote[2037].speaker SPEAKER_06
transcript.pyannote[2037].start 14561.73846875
transcript.pyannote[2037].end 14568.16784375
transcript.pyannote[2038].speaker SPEAKER_06
transcript.pyannote[2038].start 14569.26471875
transcript.pyannote[2038].end 14572.25159375
transcript.pyannote[2039].speaker SPEAKER_06
transcript.pyannote[2039].start 14572.63971875
transcript.pyannote[2039].end 14574.05721875
transcript.pyannote[2040].speaker SPEAKER_06
transcript.pyannote[2040].start 14574.83346875
transcript.pyannote[2040].end 14575.22159375
transcript.pyannote[2041].speaker SPEAKER_06
transcript.pyannote[2041].start 14577.02721875
transcript.pyannote[2041].end 14578.17471875
transcript.pyannote[2042].speaker SPEAKER_06
transcript.pyannote[2042].start 14579.86221875
transcript.pyannote[2042].end 14580.53721875
transcript.pyannote[2043].speaker SPEAKER_06
transcript.pyannote[2043].start 14580.90846875
transcript.pyannote[2043].end 14585.41409375
transcript.pyannote[2044].speaker SPEAKER_06
transcript.pyannote[2044].start 14585.43096875
transcript.pyannote[2044].end 14586.51096875
transcript.pyannote[2045].speaker SPEAKER_06
transcript.pyannote[2045].start 14587.16909375
transcript.pyannote[2045].end 14589.16034375
transcript.pyannote[2046].speaker SPEAKER_06
transcript.pyannote[2046].start 14590.18971875
transcript.pyannote[2046].end 14591.08409375
transcript.pyannote[2047].speaker SPEAKER_06
transcript.pyannote[2047].start 14591.40471875
transcript.pyannote[2047].end 14592.78846875
transcript.pyannote[2048].speaker SPEAKER_06
transcript.pyannote[2048].start 14592.92346875
transcript.pyannote[2048].end 14594.86409375
transcript.pyannote[2049].speaker SPEAKER_06
transcript.pyannote[2049].start 14596.48409375
transcript.pyannote[2049].end 14598.89721875
transcript.pyannote[2050].speaker SPEAKER_06
transcript.pyannote[2050].start 14599.40346875
transcript.pyannote[2050].end 14602.81221875
transcript.pyannote[2051].speaker SPEAKER_06
transcript.pyannote[2051].start 14603.01471875
transcript.pyannote[2051].end 14604.04409375
transcript.pyannote[2052].speaker SPEAKER_06
transcript.pyannote[2052].start 14606.18721875
transcript.pyannote[2052].end 14606.54159375
transcript.pyannote[2053].speaker SPEAKER_37
transcript.pyannote[2053].start 14608.07721875
transcript.pyannote[2053].end 14608.24596875
transcript.pyannote[2054].speaker SPEAKER_06
transcript.pyannote[2054].start 14608.24596875
transcript.pyannote[2054].end 14612.73471875
transcript.pyannote[2055].speaker SPEAKER_37
transcript.pyannote[2055].start 14608.26284375
transcript.pyannote[2055].end 14610.32159375
transcript.pyannote[2056].speaker SPEAKER_31
transcript.pyannote[2056].start 14610.32159375
transcript.pyannote[2056].end 14610.37221875
transcript.pyannote[2057].speaker SPEAKER_37
transcript.pyannote[2057].start 14610.37221875
transcript.pyannote[2057].end 14610.40596875
transcript.pyannote[2058].speaker SPEAKER_31
transcript.pyannote[2058].start 14610.40596875
transcript.pyannote[2058].end 14610.59159375
transcript.pyannote[2059].speaker SPEAKER_37
transcript.pyannote[2059].start 14610.59159375
transcript.pyannote[2059].end 14612.66721875
transcript.pyannote[2060].speaker SPEAKER_37
transcript.pyannote[2060].start 14612.73471875
transcript.pyannote[2060].end 14618.03346875
transcript.pyannote[2061].speaker SPEAKER_06
transcript.pyannote[2061].start 14616.17721875
transcript.pyannote[2061].end 14617.03784375
transcript.pyannote[2062].speaker SPEAKER_31
transcript.pyannote[2062].start 14617.03784375
transcript.pyannote[2062].end 14617.10534375
transcript.pyannote[2063].speaker SPEAKER_06
transcript.pyannote[2063].start 14617.10534375
transcript.pyannote[2063].end 14617.13909375
transcript.pyannote[2064].speaker SPEAKER_06
transcript.pyannote[2064].start 14618.74221875
transcript.pyannote[2064].end 14627.26409375
transcript.pyannote[2065].speaker SPEAKER_06
transcript.pyannote[2065].start 14627.87159375
transcript.pyannote[2065].end 14633.08596875
transcript.pyannote[2066].speaker SPEAKER_31
transcript.pyannote[2066].start 14633.22096875
transcript.pyannote[2066].end 14633.54159375
transcript.pyannote[2067].speaker SPEAKER_06
transcript.pyannote[2067].start 14633.52471875
transcript.pyannote[2067].end 14636.25846875
transcript.pyannote[2068].speaker SPEAKER_06
transcript.pyannote[2068].start 14637.59159375
transcript.pyannote[2068].end 14641.92846875
transcript.pyannote[2069].speaker SPEAKER_31
transcript.pyannote[2069].start 14639.41409375
transcript.pyannote[2069].end 14639.59971875
transcript.pyannote[2070].speaker SPEAKER_31
transcript.pyannote[2070].start 14639.63346875
transcript.pyannote[2070].end 14639.65034375
transcript.pyannote[2071].speaker SPEAKER_06
transcript.pyannote[2071].start 14642.51909375
transcript.pyannote[2071].end 14645.57346875
transcript.pyannote[2072].speaker SPEAKER_06
transcript.pyannote[2072].start 14645.79284375
transcript.pyannote[2072].end 14647.96971875
transcript.pyannote[2073].speaker SPEAKER_06
transcript.pyannote[2073].start 14648.18909375
transcript.pyannote[2073].end 14649.35346875
transcript.pyannote[2074].speaker SPEAKER_06
transcript.pyannote[2074].start 14649.97784375
transcript.pyannote[2074].end 14651.64846875
transcript.pyannote[2075].speaker SPEAKER_06
transcript.pyannote[2075].start 14651.90159375
transcript.pyannote[2075].end 14657.21721875
transcript.pyannote[2076].speaker SPEAKER_23
transcript.pyannote[2076].start 14657.38596875
transcript.pyannote[2076].end 14675.67846875
transcript.pyannote[2077].speaker SPEAKER_23
transcript.pyannote[2077].start 14675.83034375
transcript.pyannote[2077].end 14675.88096875
transcript.pyannote[2078].speaker SPEAKER_06
transcript.pyannote[2078].start 14675.88096875
transcript.pyannote[2078].end 14691.27096875
transcript.pyannote[2079].speaker SPEAKER_23
transcript.pyannote[2079].start 14685.41534375
transcript.pyannote[2079].end 14687.82846875
transcript.pyannote[2080].speaker SPEAKER_23
transcript.pyannote[2080].start 14688.87471875
transcript.pyannote[2080].end 14689.65096875
transcript.pyannote[2081].speaker SPEAKER_31
transcript.pyannote[2081].start 14689.65096875
transcript.pyannote[2081].end 14689.78596875
transcript.pyannote[2082].speaker SPEAKER_30
transcript.pyannote[2082].start 14691.27096875
transcript.pyannote[2082].end 14693.38034375
transcript.pyannote[2083].speaker SPEAKER_06
transcript.pyannote[2083].start 14691.59159375
transcript.pyannote[2083].end 14692.01346875
transcript.pyannote[2084].speaker SPEAKER_30
transcript.pyannote[2084].start 14693.73471875
transcript.pyannote[2084].end 14695.86096875
transcript.pyannote[2085].speaker SPEAKER_13
transcript.pyannote[2085].start 14706.66096875
transcript.pyannote[2085].end 14708.61846875
transcript.pyannote[2086].speaker SPEAKER_30
transcript.pyannote[2086].start 14708.90534375
transcript.pyannote[2086].end 14709.66471875
transcript.pyannote[2087].speaker SPEAKER_13
transcript.pyannote[2087].start 14712.55034375
transcript.pyannote[2087].end 14713.29284375
transcript.pyannote[2088].speaker SPEAKER_13
transcript.pyannote[2088].start 14713.93409375
transcript.pyannote[2088].end 14714.13659375
transcript.pyannote[2089].speaker SPEAKER_13
transcript.pyannote[2089].start 14714.25471875
transcript.pyannote[2089].end 14714.76096875
transcript.pyannote[2090].speaker SPEAKER_13
transcript.pyannote[2090].start 14715.21659375
transcript.pyannote[2090].end 14715.52034375
transcript.pyannote[2091].speaker SPEAKER_13
transcript.pyannote[2091].start 14715.53721875
transcript.pyannote[2091].end 14717.84909375
transcript.pyannote[2092].speaker SPEAKER_13
transcript.pyannote[2092].start 14718.37221875
transcript.pyannote[2092].end 14719.63784375
transcript.pyannote[2093].speaker SPEAKER_13
transcript.pyannote[2093].start 14720.04284375
transcript.pyannote[2093].end 14721.02159375
transcript.pyannote[2094].speaker SPEAKER_13
transcript.pyannote[2094].start 14721.66284375
transcript.pyannote[2094].end 14724.10971875
transcript.pyannote[2095].speaker SPEAKER_13
transcript.pyannote[2095].start 14724.54846875
transcript.pyannote[2095].end 14725.08846875
transcript.pyannote[2096].speaker SPEAKER_13
transcript.pyannote[2096].start 14725.32471875
transcript.pyannote[2096].end 14726.77596875
transcript.pyannote[2097].speaker SPEAKER_23
transcript.pyannote[2097].start 14726.77596875
transcript.pyannote[2097].end 14726.79284375
transcript.pyannote[2098].speaker SPEAKER_23
transcript.pyannote[2098].start 14727.09659375
transcript.pyannote[2098].end 14734.97721875
transcript.pyannote[2099].speaker SPEAKER_13
transcript.pyannote[2099].start 14733.98159375
transcript.pyannote[2099].end 14734.60596875
transcript.pyannote[2100].speaker SPEAKER_13
transcript.pyannote[2100].start 14734.97721875
transcript.pyannote[2100].end 14735.26409375
transcript.pyannote[2101].speaker SPEAKER_23
transcript.pyannote[2101].start 14735.26409375
transcript.pyannote[2101].end 14746.82346875
transcript.pyannote[2102].speaker SPEAKER_13
transcript.pyannote[2102].start 14748.13971875
transcript.pyannote[2102].end 14756.47596875
transcript.pyannote[2103].speaker SPEAKER_13
transcript.pyannote[2103].start 14756.74596875
transcript.pyannote[2103].end 14757.85971875
transcript.pyannote[2104].speaker SPEAKER_13
transcript.pyannote[2104].start 14758.24784375
transcript.pyannote[2104].end 14762.06159375
transcript.pyannote[2105].speaker SPEAKER_13
transcript.pyannote[2105].start 14762.55096875
transcript.pyannote[2105].end 14774.66721875
transcript.pyannote[2106].speaker SPEAKER_13
transcript.pyannote[2106].start 14775.30846875
transcript.pyannote[2106].end 14778.70034375
transcript.pyannote[2107].speaker SPEAKER_23
transcript.pyannote[2107].start 14778.70034375
transcript.pyannote[2107].end 14786.14221875
transcript.pyannote[2108].speaker SPEAKER_13
transcript.pyannote[2108].start 14786.14221875
transcript.pyannote[2108].end 14786.22659375
transcript.pyannote[2109].speaker SPEAKER_13
transcript.pyannote[2109].start 14786.29409375
transcript.pyannote[2109].end 14786.36159375
transcript.pyannote[2110].speaker SPEAKER_23
transcript.pyannote[2110].start 14786.36159375
transcript.pyannote[2110].end 14786.96909375
transcript.pyannote[2111].speaker SPEAKER_13
transcript.pyannote[2111].start 14786.96909375
transcript.pyannote[2111].end 14795.55846875
transcript.pyannote[2112].speaker SPEAKER_23
transcript.pyannote[2112].start 14795.67659375
transcript.pyannote[2112].end 14798.81534375
transcript.pyannote[2113].speaker SPEAKER_23
transcript.pyannote[2113].start 14799.01784375
transcript.pyannote[2113].end 14799.60846875
transcript.pyannote[2114].speaker SPEAKER_27
transcript.pyannote[2114].start 14799.82784375
transcript.pyannote[2114].end 14842.97721875
transcript.pyannote[2115].speaker SPEAKER_13
transcript.pyannote[2115].start 14842.70721875
transcript.pyannote[2115].end 14847.93846875
transcript.pyannote[2116].speaker SPEAKER_13
transcript.pyannote[2116].start 14848.37721875
transcript.pyannote[2116].end 14856.49409375
transcript.pyannote[2117].speaker SPEAKER_27
transcript.pyannote[2117].start 14856.35909375
transcript.pyannote[2117].end 14859.71721875
transcript.pyannote[2118].speaker SPEAKER_13
transcript.pyannote[2118].start 14857.25346875
transcript.pyannote[2118].end 14858.43471875
transcript.pyannote[2119].speaker SPEAKER_13
transcript.pyannote[2119].start 14858.51909375
transcript.pyannote[2119].end 14872.12034375
transcript.pyannote[2120].speaker SPEAKER_13
transcript.pyannote[2120].start 14872.84596875
transcript.pyannote[2120].end 14874.46596875
transcript.pyannote[2121].speaker SPEAKER_31
transcript.pyannote[2121].start 14874.70221875
transcript.pyannote[2121].end 14874.71909375
transcript.pyannote[2122].speaker SPEAKER_13
transcript.pyannote[2122].start 14874.71909375
transcript.pyannote[2122].end 14877.28409375
transcript.pyannote[2123].speaker SPEAKER_13
transcript.pyannote[2123].start 14877.85784375
transcript.pyannote[2123].end 14879.37659375
transcript.pyannote[2124].speaker SPEAKER_13
transcript.pyannote[2124].start 14879.39346875
transcript.pyannote[2124].end 14888.77596875
transcript.pyannote[2125].speaker SPEAKER_13
transcript.pyannote[2125].start 14889.55221875
transcript.pyannote[2125].end 14891.72909375
transcript.pyannote[2126].speaker SPEAKER_13
transcript.pyannote[2126].start 14892.10034375
transcript.pyannote[2126].end 14892.91034375
transcript.pyannote[2127].speaker SPEAKER_13
transcript.pyannote[2127].start 14893.56846875
transcript.pyannote[2127].end 14903.35596875
transcript.pyannote[2128].speaker SPEAKER_27
transcript.pyannote[2128].start 14904.19971875
transcript.pyannote[2128].end 14930.37284375
transcript.pyannote[2129].speaker SPEAKER_27
transcript.pyannote[2129].start 14930.59221875
transcript.pyannote[2129].end 14943.99096875
transcript.pyannote[2130].speaker SPEAKER_13
transcript.pyannote[2130].start 14943.85596875
transcript.pyannote[2130].end 14957.20409375
transcript.pyannote[2131].speaker SPEAKER_23
transcript.pyannote[2131].start 14950.72409375
transcript.pyannote[2131].end 14953.57596875
transcript.pyannote[2132].speaker SPEAKER_23
transcript.pyannote[2132].start 14955.78659375
transcript.pyannote[2132].end 14957.32221875
transcript.pyannote[2133].speaker SPEAKER_13
transcript.pyannote[2133].start 14957.32221875
transcript.pyannote[2133].end 14957.57534375
transcript.pyannote[2134].speaker SPEAKER_23
transcript.pyannote[2134].start 14957.57534375
transcript.pyannote[2134].end 14957.69346875
transcript.pyannote[2135].speaker SPEAKER_13
transcript.pyannote[2135].start 14957.69346875
transcript.pyannote[2135].end 14957.72721875
transcript.pyannote[2136].speaker SPEAKER_23
transcript.pyannote[2136].start 14957.72721875
transcript.pyannote[2136].end 14974.53471875
transcript.pyannote[2137].speaker SPEAKER_13
transcript.pyannote[2137].start 14973.80909375
transcript.pyannote[2137].end 14985.84096875
transcript.pyannote[2138].speaker SPEAKER_23
transcript.pyannote[2138].start 14978.75346875
transcript.pyannote[2138].end 14978.97284375
transcript.pyannote[2139].speaker SPEAKER_13
transcript.pyannote[2139].start 14986.63409375
transcript.pyannote[2139].end 15006.79971875
transcript.pyannote[2140].speaker SPEAKER_23
transcript.pyannote[2140].start 15001.02846875
transcript.pyannote[2140].end 15003.37409375
transcript.pyannote[2141].speaker SPEAKER_23
transcript.pyannote[2141].start 15006.79971875
transcript.pyannote[2141].end 15014.41034375
transcript.pyannote[2142].speaker SPEAKER_13
transcript.pyannote[2142].start 15006.83346875
transcript.pyannote[2142].end 15006.85034375
transcript.pyannote[2143].speaker SPEAKER_13
transcript.pyannote[2143].start 15006.98534375
transcript.pyannote[2143].end 15007.08659375
transcript.pyannote[2144].speaker SPEAKER_23
transcript.pyannote[2144].start 15014.64659375
transcript.pyannote[2144].end 15015.92909375
transcript.pyannote[2145].speaker SPEAKER_13
transcript.pyannote[2145].start 15014.91659375
transcript.pyannote[2145].end 15015.37221875
transcript.pyannote[2146].speaker SPEAKER_13
transcript.pyannote[2146].start 15016.01346875
transcript.pyannote[2146].end 15016.58721875
transcript.pyannote[2147].speaker SPEAKER_13
transcript.pyannote[2147].start 15017.00909375
transcript.pyannote[2147].end 15019.16909375
transcript.pyannote[2148].speaker SPEAKER_13
transcript.pyannote[2148].start 15020.53596875
transcript.pyannote[2148].end 15028.72034375
transcript.pyannote[2149].speaker SPEAKER_23
transcript.pyannote[2149].start 15025.54784375
transcript.pyannote[2149].end 15027.03284375
transcript.pyannote[2150].speaker SPEAKER_30
transcript.pyannote[2150].start 15030.44159375
transcript.pyannote[2150].end 15032.71971875
transcript.pyannote[2151].speaker SPEAKER_30
transcript.pyannote[2151].start 15033.07409375
transcript.pyannote[2151].end 15035.03159375
transcript.pyannote[2152].speaker SPEAKER_11
transcript.pyannote[2152].start 15044.34659375
transcript.pyannote[2152].end 15045.46034375
transcript.pyannote[2153].speaker SPEAKER_30
transcript.pyannote[2153].start 15045.88221875
transcript.pyannote[2153].end 15046.74284375
transcript.pyannote[2154].speaker SPEAKER_11
transcript.pyannote[2154].start 15049.79721875
transcript.pyannote[2154].end 15050.48909375
transcript.pyannote[2155].speaker SPEAKER_11
transcript.pyannote[2155].start 15051.90659375
transcript.pyannote[2155].end 15065.92971875
transcript.pyannote[2156].speaker SPEAKER_23
transcript.pyannote[2156].start 15065.92971875
transcript.pyannote[2156].end 15066.30096875
transcript.pyannote[2157].speaker SPEAKER_11
transcript.pyannote[2157].start 15066.40221875
transcript.pyannote[2157].end 15066.45284375
transcript.pyannote[2158].speaker SPEAKER_23
transcript.pyannote[2158].start 15066.45284375
transcript.pyannote[2158].end 15075.97034375
transcript.pyannote[2159].speaker SPEAKER_11
transcript.pyannote[2159].start 15066.89159375
transcript.pyannote[2159].end 15066.99284375
transcript.pyannote[2160].speaker SPEAKER_14
transcript.pyannote[2160].start 15071.73471875
transcript.pyannote[2160].end 15072.07221875
transcript.pyannote[2161].speaker SPEAKER_11
transcript.pyannote[2161].start 15072.07221875
transcript.pyannote[2161].end 15072.13971875
transcript.pyannote[2162].speaker SPEAKER_14
transcript.pyannote[2162].start 15073.89471875
transcript.pyannote[2162].end 15074.21534375
transcript.pyannote[2163].speaker SPEAKER_11
transcript.pyannote[2163].start 15075.97034375
transcript.pyannote[2163].end 15088.17096875
transcript.pyannote[2164].speaker SPEAKER_23
transcript.pyannote[2164].start 15087.71534375
transcript.pyannote[2164].end 15089.92596875
transcript.pyannote[2165].speaker SPEAKER_11
transcript.pyannote[2165].start 15089.92596875
transcript.pyannote[2165].end 15089.95971875
transcript.pyannote[2166].speaker SPEAKER_23
transcript.pyannote[2166].start 15089.95971875
transcript.pyannote[2166].end 15091.51221875
transcript.pyannote[2167].speaker SPEAKER_11
transcript.pyannote[2167].start 15091.51221875
transcript.pyannote[2167].end 15098.05971875
transcript.pyannote[2168].speaker SPEAKER_11
transcript.pyannote[2168].start 15098.68409375
transcript.pyannote[2168].end 15141.52971875
transcript.pyannote[2169].speaker SPEAKER_23
transcript.pyannote[2169].start 15138.94784375
transcript.pyannote[2169].end 15138.96471875
transcript.pyannote[2170].speaker SPEAKER_23
transcript.pyannote[2170].start 15138.98159375
transcript.pyannote[2170].end 15139.18409375
transcript.pyannote[2171].speaker SPEAKER_23
transcript.pyannote[2171].start 15141.52971875
transcript.pyannote[2171].end 15142.91346875
transcript.pyannote[2172].speaker SPEAKER_11
transcript.pyannote[2172].start 15142.91346875
transcript.pyannote[2172].end 15147.09846875
transcript.pyannote[2173].speaker SPEAKER_23
transcript.pyannote[2173].start 15147.01409375
transcript.pyannote[2173].end 15153.02159375
transcript.pyannote[2174].speaker SPEAKER_11
transcript.pyannote[2174].start 15147.11534375
transcript.pyannote[2174].end 15147.13221875
transcript.pyannote[2175].speaker SPEAKER_11
transcript.pyannote[2175].start 15152.49846875
transcript.pyannote[2175].end 15187.21034375
transcript.pyannote[2176].speaker SPEAKER_23
transcript.pyannote[2176].start 15155.09721875
transcript.pyannote[2176].end 15156.07596875
transcript.pyannote[2177].speaker SPEAKER_23
transcript.pyannote[2177].start 15187.21034375
transcript.pyannote[2177].end 15193.21784375
transcript.pyannote[2178].speaker SPEAKER_11
transcript.pyannote[2178].start 15193.36971875
transcript.pyannote[2178].end 15199.05659375
transcript.pyannote[2179].speaker SPEAKER_23
transcript.pyannote[2179].start 15198.28034375
transcript.pyannote[2179].end 15203.02221875
transcript.pyannote[2180].speaker SPEAKER_23
transcript.pyannote[2180].start 15203.49471875
transcript.pyannote[2180].end 15203.96721875
transcript.pyannote[2181].speaker SPEAKER_11
transcript.pyannote[2181].start 15203.96721875
transcript.pyannote[2181].end 15205.11471875
transcript.pyannote[2182].speaker SPEAKER_23
transcript.pyannote[2182].start 15204.76034375
transcript.pyannote[2182].end 15204.89534375
transcript.pyannote[2183].speaker SPEAKER_31
transcript.pyannote[2183].start 15204.89534375
transcript.pyannote[2183].end 15205.26659375
transcript.pyannote[2184].speaker SPEAKER_11
transcript.pyannote[2184].start 15205.26659375
transcript.pyannote[2184].end 15211.12221875
transcript.pyannote[2185].speaker SPEAKER_23
transcript.pyannote[2185].start 15211.07159375
transcript.pyannote[2185].end 15211.67909375
transcript.pyannote[2186].speaker SPEAKER_11
transcript.pyannote[2186].start 15211.67909375
transcript.pyannote[2186].end 15214.75034375
transcript.pyannote[2187].speaker SPEAKER_23
transcript.pyannote[2187].start 15215.64471875
transcript.pyannote[2187].end 15217.07909375
transcript.pyannote[2188].speaker SPEAKER_11
transcript.pyannote[2188].start 15216.64034375
transcript.pyannote[2188].end 15237.21096875
transcript.pyannote[2189].speaker SPEAKER_11
transcript.pyannote[2189].start 15237.39659375
transcript.pyannote[2189].end 15240.01221875
transcript.pyannote[2190].speaker SPEAKER_31
transcript.pyannote[2190].start 15240.72096875
transcript.pyannote[2190].end 15241.14284375
transcript.pyannote[2191].speaker SPEAKER_11
transcript.pyannote[2191].start 15241.14284375
transcript.pyannote[2191].end 15241.15971875
transcript.pyannote[2192].speaker SPEAKER_11
transcript.pyannote[2192].start 15241.17659375
transcript.pyannote[2192].end 15254.18721875
transcript.pyannote[2193].speaker SPEAKER_11
transcript.pyannote[2193].start 15254.33909375
transcript.pyannote[2193].end 15267.14721875
transcript.pyannote[2194].speaker SPEAKER_23
transcript.pyannote[2194].start 15267.38346875
transcript.pyannote[2194].end 15288.96659375
transcript.pyannote[2195].speaker SPEAKER_11
transcript.pyannote[2195].start 15271.61909375
transcript.pyannote[2195].end 15271.63596875
transcript.pyannote[2196].speaker SPEAKER_31
transcript.pyannote[2196].start 15271.63596875
transcript.pyannote[2196].end 15271.65284375
transcript.pyannote[2197].speaker SPEAKER_11
transcript.pyannote[2197].start 15271.65284375
transcript.pyannote[2197].end 15271.68659375
transcript.pyannote[2198].speaker SPEAKER_31
transcript.pyannote[2198].start 15271.68659375
transcript.pyannote[2198].end 15271.95659375
transcript.pyannote[2199].speaker SPEAKER_11
transcript.pyannote[2199].start 15271.95659375
transcript.pyannote[2199].end 15272.00721875
transcript.pyannote[2200].speaker SPEAKER_11
transcript.pyannote[2200].start 15286.06409375
transcript.pyannote[2200].end 15286.41846875
transcript.pyannote[2201].speaker SPEAKER_11
transcript.pyannote[2201].start 15288.96659375
transcript.pyannote[2201].end 15292.56096875
transcript.pyannote[2202].speaker SPEAKER_11
transcript.pyannote[2202].start 15292.94909375
transcript.pyannote[2202].end 15296.56034375
transcript.pyannote[2203].speaker SPEAKER_23
transcript.pyannote[2203].start 15296.79659375
transcript.pyannote[2203].end 15298.02846875
transcript.pyannote[2204].speaker SPEAKER_23
transcript.pyannote[2204].start 15298.36596875
transcript.pyannote[2204].end 15298.78784375
transcript.pyannote[2205].speaker SPEAKER_11
transcript.pyannote[2205].start 15298.78784375
transcript.pyannote[2205].end 15302.14596875
transcript.pyannote[2206].speaker SPEAKER_23
transcript.pyannote[2206].start 15302.14596875
transcript.pyannote[2206].end 15302.87159375
transcript.pyannote[2207].speaker SPEAKER_11
transcript.pyannote[2207].start 15302.87159375
transcript.pyannote[2207].end 15317.62034375
transcript.pyannote[2208].speaker SPEAKER_23
transcript.pyannote[2208].start 15303.10784375
transcript.pyannote[2208].end 15305.52096875
transcript.pyannote[2209].speaker SPEAKER_11
transcript.pyannote[2209].start 15318.09284375
transcript.pyannote[2209].end 15322.22721875
transcript.pyannote[2210].speaker SPEAKER_23
transcript.pyannote[2210].start 15322.29471875
transcript.pyannote[2210].end 15322.81784375
transcript.pyannote[2211].speaker SPEAKER_11
transcript.pyannote[2211].start 15323.34096875
transcript.pyannote[2211].end 15323.71221875
transcript.pyannote[2212].speaker SPEAKER_23
transcript.pyannote[2212].start 15323.71221875
transcript.pyannote[2212].end 15323.96534375
transcript.pyannote[2213].speaker SPEAKER_11
transcript.pyannote[2213].start 15323.96534375
transcript.pyannote[2213].end 15325.28159375
transcript.pyannote[2214].speaker SPEAKER_23
transcript.pyannote[2214].start 15325.28159375
transcript.pyannote[2214].end 15325.61909375
transcript.pyannote[2215].speaker SPEAKER_11
transcript.pyannote[2215].start 15325.99034375
transcript.pyannote[2215].end 15326.95221875
transcript.pyannote[2216].speaker SPEAKER_11
transcript.pyannote[2216].start 15327.71159375
transcript.pyannote[2216].end 15333.24659375
transcript.pyannote[2217].speaker SPEAKER_23
transcript.pyannote[2217].start 15333.55034375
transcript.pyannote[2217].end 15339.38909375
transcript.pyannote[2218].speaker SPEAKER_11
transcript.pyannote[2218].start 15339.38909375
transcript.pyannote[2218].end 15352.23096875
transcript.pyannote[2219].speaker SPEAKER_23
transcript.pyannote[2219].start 15351.57284375
transcript.pyannote[2219].end 15360.97221875
transcript.pyannote[2220].speaker SPEAKER_11
transcript.pyannote[2220].start 15360.97221875
transcript.pyannote[2220].end 15364.16159375
transcript.pyannote[2221].speaker SPEAKER_11
transcript.pyannote[2221].start 15364.60034375
transcript.pyannote[2221].end 15368.21159375
transcript.pyannote[2222].speaker SPEAKER_11
transcript.pyannote[2222].start 15369.00471875
transcript.pyannote[2222].end 15370.47284375
transcript.pyannote[2223].speaker SPEAKER_11
transcript.pyannote[2223].start 15370.69221875
transcript.pyannote[2223].end 15380.34471875
transcript.pyannote[2224].speaker SPEAKER_23
transcript.pyannote[2224].start 15375.24846875
transcript.pyannote[2224].end 15377.89784375
transcript.pyannote[2225].speaker SPEAKER_23
transcript.pyannote[2225].start 15380.34471875
transcript.pyannote[2225].end 15380.41221875
transcript.pyannote[2226].speaker SPEAKER_11
transcript.pyannote[2226].start 15380.41221875
transcript.pyannote[2226].end 15380.54721875
transcript.pyannote[2227].speaker SPEAKER_23
transcript.pyannote[2227].start 15380.54721875
transcript.pyannote[2227].end 15388.96784375
transcript.pyannote[2228].speaker SPEAKER_11
transcript.pyannote[2228].start 15388.96784375
transcript.pyannote[2228].end 15396.83159375
transcript.pyannote[2229].speaker SPEAKER_11
transcript.pyannote[2229].start 15397.25346875
transcript.pyannote[2229].end 15407.66534375
transcript.pyannote[2230].speaker SPEAKER_23
transcript.pyannote[2230].start 15406.93971875
transcript.pyannote[2230].end 15407.53034375
transcript.pyannote[2231].speaker SPEAKER_23
transcript.pyannote[2231].start 15407.66534375
transcript.pyannote[2231].end 15408.27284375
transcript.pyannote[2232].speaker SPEAKER_23
transcript.pyannote[2232].start 15408.52596875
transcript.pyannote[2232].end 15408.89721875
transcript.pyannote[2233].speaker SPEAKER_30
transcript.pyannote[2233].start 15408.98159375
transcript.pyannote[2233].end 15413.45346875
transcript.pyannote[2234].speaker SPEAKER_10
transcript.pyannote[2234].start 15421.16534375
transcript.pyannote[2234].end 15425.11409375
transcript.pyannote[2235].speaker SPEAKER_30
transcript.pyannote[2235].start 15425.21534375
transcript.pyannote[2235].end 15426.00846875
transcript.pyannote[2236].speaker SPEAKER_10
transcript.pyannote[2236].start 15429.41721875
transcript.pyannote[2236].end 15430.05846875
transcript.pyannote[2237].speaker SPEAKER_10
transcript.pyannote[2237].start 15430.42971875
transcript.pyannote[2237].end 15459.13409375
transcript.pyannote[2238].speaker SPEAKER_10
transcript.pyannote[2238].start 15459.69096875
transcript.pyannote[2238].end 15478.92846875
transcript.pyannote[2239].speaker SPEAKER_10
transcript.pyannote[2239].start 15479.41784375
transcript.pyannote[2239].end 15487.55159375
transcript.pyannote[2240].speaker SPEAKER_10
transcript.pyannote[2240].start 15487.87221875
transcript.pyannote[2240].end 15489.37409375
transcript.pyannote[2241].speaker SPEAKER_10
transcript.pyannote[2241].start 15489.44159375
transcript.pyannote[2241].end 15489.55971875
transcript.pyannote[2242].speaker SPEAKER_10
transcript.pyannote[2242].start 15489.59346875
transcript.pyannote[2242].end 15490.84221875
transcript.pyannote[2243].speaker SPEAKER_10
transcript.pyannote[2243].start 15490.89284375
transcript.pyannote[2243].end 15505.91159375
transcript.pyannote[2244].speaker SPEAKER_10
transcript.pyannote[2244].start 15505.96221875
transcript.pyannote[2244].end 15506.01284375
transcript.pyannote[2245].speaker SPEAKER_10
transcript.pyannote[2245].start 15506.02971875
transcript.pyannote[2245].end 15517.69034375
transcript.pyannote[2246].speaker SPEAKER_23
transcript.pyannote[2246].start 15517.69034375
transcript.pyannote[2246].end 15525.73971875
transcript.pyannote[2247].speaker SPEAKER_10
transcript.pyannote[2247].start 15526.09409375
transcript.pyannote[2247].end 15529.89096875
transcript.pyannote[2248].speaker SPEAKER_23
transcript.pyannote[2248].start 15529.73909375
transcript.pyannote[2248].end 15530.44784375
transcript.pyannote[2249].speaker SPEAKER_10
transcript.pyannote[2249].start 15529.90784375
transcript.pyannote[2249].end 15529.97534375
transcript.pyannote[2250].speaker SPEAKER_10
transcript.pyannote[2250].start 15530.22846875
transcript.pyannote[2250].end 15533.68784375
transcript.pyannote[2251].speaker SPEAKER_10
transcript.pyannote[2251].start 15533.83971875
transcript.pyannote[2251].end 15541.56846875
transcript.pyannote[2252].speaker SPEAKER_10
transcript.pyannote[2252].start 15541.65284375
transcript.pyannote[2252].end 15545.60159375
transcript.pyannote[2253].speaker SPEAKER_10
transcript.pyannote[2253].start 15546.07409375
transcript.pyannote[2253].end 15547.62659375
transcript.pyannote[2254].speaker SPEAKER_10
transcript.pyannote[2254].start 15547.84596875
transcript.pyannote[2254].end 15551.54159375
transcript.pyannote[2255].speaker SPEAKER_10
transcript.pyannote[2255].start 15551.62596875
transcript.pyannote[2255].end 15558.19034375
transcript.pyannote[2256].speaker SPEAKER_23
transcript.pyannote[2256].start 15557.59971875
transcript.pyannote[2256].end 15562.34159375
transcript.pyannote[2257].speaker SPEAKER_10
transcript.pyannote[2257].start 15562.67909375
transcript.pyannote[2257].end 15567.38721875
transcript.pyannote[2258].speaker SPEAKER_23
transcript.pyannote[2258].start 15566.84721875
transcript.pyannote[2258].end 15567.01596875
transcript.pyannote[2259].speaker SPEAKER_31
transcript.pyannote[2259].start 15567.01596875
transcript.pyannote[2259].end 15567.96096875
transcript.pyannote[2260].speaker SPEAKER_10
transcript.pyannote[2260].start 15567.96096875
transcript.pyannote[2260].end 15572.70284375
transcript.pyannote[2261].speaker SPEAKER_10
transcript.pyannote[2261].start 15573.20909375
transcript.pyannote[2261].end 15580.56659375
transcript.pyannote[2262].speaker SPEAKER_10
transcript.pyannote[2262].start 15580.80284375
transcript.pyannote[2262].end 15594.35346875
transcript.pyannote[2263].speaker SPEAKER_10
transcript.pyannote[2263].start 15594.53909375
transcript.pyannote[2263].end 15603.41534375
transcript.pyannote[2264].speaker SPEAKER_23
transcript.pyannote[2264].start 15603.61784375
transcript.pyannote[2264].end 15612.74721875
transcript.pyannote[2265].speaker SPEAKER_27
transcript.pyannote[2265].start 15613.01721875
transcript.pyannote[2265].end 15622.33221875
transcript.pyannote[2266].speaker SPEAKER_10
transcript.pyannote[2266].start 15620.81346875
transcript.pyannote[2266].end 15631.27596875
transcript.pyannote[2267].speaker SPEAKER_27
transcript.pyannote[2267].start 15630.87096875
transcript.pyannote[2267].end 15650.09159375
transcript.pyannote[2268].speaker SPEAKER_10
transcript.pyannote[2268].start 15650.41221875
transcript.pyannote[2268].end 15672.65346875
transcript.pyannote[2269].speaker SPEAKER_10
transcript.pyannote[2269].start 15673.14284375
transcript.pyannote[2269].end 15696.46409375
transcript.pyannote[2270].speaker SPEAKER_23
transcript.pyannote[2270].start 15696.78471875
transcript.pyannote[2270].end 15713.45721875
transcript.pyannote[2271].speaker SPEAKER_10
transcript.pyannote[2271].start 15712.96784375
transcript.pyannote[2271].end 15714.35159375
transcript.pyannote[2272].speaker SPEAKER_10
transcript.pyannote[2272].start 15714.58784375
transcript.pyannote[2272].end 15726.63659375
transcript.pyannote[2273].speaker SPEAKER_10
transcript.pyannote[2273].start 15727.04159375
transcript.pyannote[2273].end 15753.65346875
transcript.pyannote[2274].speaker SPEAKER_23
transcript.pyannote[2274].start 15736.49159375
transcript.pyannote[2274].end 15737.74034375
transcript.pyannote[2275].speaker SPEAKER_10
transcript.pyannote[2275].start 15754.02471875
transcript.pyannote[2275].end 15760.52159375
transcript.pyannote[2276].speaker SPEAKER_23
transcript.pyannote[2276].start 15754.07534375
transcript.pyannote[2276].end 15755.15534375
transcript.pyannote[2277].speaker SPEAKER_23
transcript.pyannote[2277].start 15758.17596875
transcript.pyannote[2277].end 15758.20971875
transcript.pyannote[2278].speaker SPEAKER_23
transcript.pyannote[2278].start 15760.31909375
transcript.pyannote[2278].end 15761.88846875
transcript.pyannote[2279].speaker SPEAKER_10
transcript.pyannote[2279].start 15761.21346875
transcript.pyannote[2279].end 15761.90534375
transcript.pyannote[2280].speaker SPEAKER_23
transcript.pyannote[2280].start 15761.90534375
transcript.pyannote[2280].end 15762.32721875
transcript.pyannote[2281].speaker SPEAKER_10
transcript.pyannote[2281].start 15762.32721875
transcript.pyannote[2281].end 15762.85034375
transcript.pyannote[2282].speaker SPEAKER_10
transcript.pyannote[2282].start 15763.05284375
transcript.pyannote[2282].end 15764.94284375
transcript.pyannote[2283].speaker SPEAKER_23
transcript.pyannote[2283].start 15763.37346875
transcript.pyannote[2283].end 15763.84596875
transcript.pyannote[2284].speaker SPEAKER_30
transcript.pyannote[2284].start 15765.43221875
transcript.pyannote[2284].end 15765.48284375
transcript.pyannote[2285].speaker SPEAKER_10
transcript.pyannote[2285].start 15765.48284375
transcript.pyannote[2285].end 15767.45721875
transcript.pyannote[2286].speaker SPEAKER_30
transcript.pyannote[2286].start 15765.56721875
transcript.pyannote[2286].end 15766.52909375
transcript.pyannote[2287].speaker SPEAKER_30
transcript.pyannote[2287].start 15769.63409375
transcript.pyannote[2287].end 15770.27534375
transcript.pyannote[2288].speaker SPEAKER_30
transcript.pyannote[2288].start 15770.61284375
transcript.pyannote[2288].end 15773.22846875
transcript.pyannote[2289].speaker SPEAKER_30
transcript.pyannote[2289].start 15773.56596875
transcript.pyannote[2289].end 15775.69221875
transcript.pyannote[2290].speaker SPEAKER_21
transcript.pyannote[2290].start 15785.00721875
transcript.pyannote[2290].end 15788.82096875
transcript.pyannote[2291].speaker SPEAKER_14
transcript.pyannote[2291].start 15792.06096875
transcript.pyannote[2291].end 15792.85409375
transcript.pyannote[2292].speaker SPEAKER_21
transcript.pyannote[2292].start 15793.15784375
transcript.pyannote[2292].end 15805.17284375
transcript.pyannote[2293].speaker SPEAKER_21
transcript.pyannote[2293].start 15805.32471875
transcript.pyannote[2293].end 15814.33596875
transcript.pyannote[2294].speaker SPEAKER_21
transcript.pyannote[2294].start 15814.57221875
transcript.pyannote[2294].end 15828.39284375
transcript.pyannote[2295].speaker SPEAKER_21
transcript.pyannote[2295].start 15828.78096875
transcript.pyannote[2295].end 15838.83846875
transcript.pyannote[2296].speaker SPEAKER_21
transcript.pyannote[2296].start 15839.39534375
transcript.pyannote[2296].end 15845.13284375
transcript.pyannote[2297].speaker SPEAKER_23
transcript.pyannote[2297].start 15845.57159375
transcript.pyannote[2297].end 15850.81971875
transcript.pyannote[2298].speaker SPEAKER_21
transcript.pyannote[2298].start 15850.81971875
transcript.pyannote[2298].end 15851.74784375
transcript.pyannote[2299].speaker SPEAKER_21
transcript.pyannote[2299].start 15852.28784375
transcript.pyannote[2299].end 15856.20284375
transcript.pyannote[2300].speaker SPEAKER_23
transcript.pyannote[2300].start 15853.04721875
transcript.pyannote[2300].end 15853.87409375
transcript.pyannote[2301].speaker SPEAKER_21
transcript.pyannote[2301].start 15856.27034375
transcript.pyannote[2301].end 15857.75534375
transcript.pyannote[2302].speaker SPEAKER_31
transcript.pyannote[2302].start 15857.67096875
transcript.pyannote[2302].end 15857.77221875
transcript.pyannote[2303].speaker SPEAKER_21
transcript.pyannote[2303].start 15857.77221875
transcript.pyannote[2303].end 15864.35346875
transcript.pyannote[2304].speaker SPEAKER_31
transcript.pyannote[2304].start 15857.90721875
transcript.pyannote[2304].end 15858.07596875
transcript.pyannote[2305].speaker SPEAKER_21
transcript.pyannote[2305].start 15867.12096875
transcript.pyannote[2305].end 15879.06846875
transcript.pyannote[2306].speaker SPEAKER_21
transcript.pyannote[2306].start 15879.67596875
transcript.pyannote[2306].end 15887.42159375
transcript.pyannote[2307].speaker SPEAKER_21
transcript.pyannote[2307].start 15887.97846875
transcript.pyannote[2307].end 15914.25284375
transcript.pyannote[2308].speaker SPEAKER_21
transcript.pyannote[2308].start 15914.57346875
transcript.pyannote[2308].end 15920.54721875
transcript.pyannote[2309].speaker SPEAKER_21
transcript.pyannote[2309].start 15921.17159375
transcript.pyannote[2309].end 15924.69846875
transcript.pyannote[2310].speaker SPEAKER_23
transcript.pyannote[2310].start 15924.76596875
transcript.pyannote[2310].end 15926.60534375
transcript.pyannote[2311].speaker SPEAKER_21
transcript.pyannote[2311].start 15926.21721875
transcript.pyannote[2311].end 15934.60409375
transcript.pyannote[2312].speaker SPEAKER_21
transcript.pyannote[2312].start 15934.67159375
transcript.pyannote[2312].end 15936.46034375
transcript.pyannote[2313].speaker SPEAKER_21
transcript.pyannote[2313].start 15937.00034375
transcript.pyannote[2313].end 15972.35346875
transcript.pyannote[2314].speaker SPEAKER_21
transcript.pyannote[2314].start 15972.47159375
transcript.pyannote[2314].end 15978.25971875
transcript.pyannote[2315].speaker SPEAKER_21
transcript.pyannote[2315].start 15978.81659375
transcript.pyannote[2315].end 15992.41784375
transcript.pyannote[2316].speaker SPEAKER_23
transcript.pyannote[2316].start 15992.95784375
transcript.pyannote[2316].end 15994.39221875
transcript.pyannote[2317].speaker SPEAKER_21
transcript.pyannote[2317].start 15994.39221875
transcript.pyannote[2317].end 15996.23159375
transcript.pyannote[2318].speaker SPEAKER_21
transcript.pyannote[2318].start 15997.07534375
transcript.pyannote[2318].end 16008.41534375
transcript.pyannote[2319].speaker SPEAKER_23
transcript.pyannote[2319].start 16010.18721875
transcript.pyannote[2319].end 16011.26721875
transcript.pyannote[2320].speaker SPEAKER_21
transcript.pyannote[2320].start 16010.94659375
transcript.pyannote[2320].end 16017.49409375
transcript.pyannote[2321].speaker SPEAKER_21
transcript.pyannote[2321].start 16018.16909375
transcript.pyannote[2321].end 16024.81784375
transcript.pyannote[2322].speaker SPEAKER_21
transcript.pyannote[2322].start 16025.30721875
transcript.pyannote[2322].end 16033.47471875
transcript.pyannote[2323].speaker SPEAKER_21
transcript.pyannote[2323].start 16033.98096875
transcript.pyannote[2323].end 16036.69784375
transcript.pyannote[2324].speaker SPEAKER_21
transcript.pyannote[2324].start 16037.00159375
transcript.pyannote[2324].end 16038.58784375
transcript.pyannote[2325].speaker SPEAKER_21
transcript.pyannote[2325].start 16039.16159375
transcript.pyannote[2325].end 16044.05534375
transcript.pyannote[2326].speaker SPEAKER_21
transcript.pyannote[2326].start 16045.45596875
transcript.pyannote[2326].end 16050.01221875
transcript.pyannote[2327].speaker SPEAKER_21
transcript.pyannote[2327].start 16051.17659375
transcript.pyannote[2327].end 16057.63971875
transcript.pyannote[2328].speaker SPEAKER_21
transcript.pyannote[2328].start 16057.67346875
transcript.pyannote[2328].end 16084.63971875
transcript.pyannote[2329].speaker SPEAKER_21
transcript.pyannote[2329].start 16085.61846875
transcript.pyannote[2329].end 16099.94534375
transcript.pyannote[2330].speaker SPEAKER_21
transcript.pyannote[2330].start 16100.51909375
transcript.pyannote[2330].end 16114.81221875
transcript.pyannote[2331].speaker SPEAKER_23
transcript.pyannote[2331].start 16115.50409375
transcript.pyannote[2331].end 16116.38159375
transcript.pyannote[2332].speaker SPEAKER_23
transcript.pyannote[2332].start 16116.75284375
transcript.pyannote[2332].end 16119.25034375
transcript.pyannote[2333].speaker SPEAKER_21
transcript.pyannote[2333].start 16118.89596875
transcript.pyannote[2333].end 16126.21971875
transcript.pyannote[2334].speaker SPEAKER_23
transcript.pyannote[2334].start 16127.35034375
transcript.pyannote[2334].end 16127.36721875
transcript.pyannote[2335].speaker SPEAKER_21
transcript.pyannote[2335].start 16127.36721875
transcript.pyannote[2335].end 16128.73409375
transcript.pyannote[2336].speaker SPEAKER_21
transcript.pyannote[2336].start 16129.24034375
transcript.pyannote[2336].end 16130.89409375
transcript.pyannote[2337].speaker SPEAKER_23
transcript.pyannote[2337].start 16131.21471875
transcript.pyannote[2337].end 16131.82221875
transcript.pyannote[2338].speaker SPEAKER_23
transcript.pyannote[2338].start 16132.10909375
transcript.pyannote[2338].end 16133.25659375
transcript.pyannote[2339].speaker SPEAKER_21
transcript.pyannote[2339].start 16133.32409375
transcript.pyannote[2339].end 16135.43346875
transcript.pyannote[2340].speaker SPEAKER_21
transcript.pyannote[2340].start 16135.97346875
transcript.pyannote[2340].end 16138.08284375
transcript.pyannote[2341].speaker SPEAKER_21
transcript.pyannote[2341].start 16138.60596875
transcript.pyannote[2341].end 16171.39409375
transcript.pyannote[2342].speaker SPEAKER_21
transcript.pyannote[2342].start 16171.78221875
transcript.pyannote[2342].end 16178.46471875
transcript.pyannote[2343].speaker SPEAKER_21
transcript.pyannote[2343].start 16179.39284375
transcript.pyannote[2343].end 16181.19846875
transcript.pyannote[2344].speaker SPEAKER_21
transcript.pyannote[2344].start 16181.60346875
transcript.pyannote[2344].end 16183.83096875
transcript.pyannote[2345].speaker SPEAKER_21
transcript.pyannote[2345].start 16184.26971875
transcript.pyannote[2345].end 16187.00346875
transcript.pyannote[2346].speaker SPEAKER_21
transcript.pyannote[2346].start 16187.66159375
transcript.pyannote[2346].end 16191.66096875
transcript.pyannote[2347].speaker SPEAKER_21
transcript.pyannote[2347].start 16191.81284375
transcript.pyannote[2347].end 16193.83784375
transcript.pyannote[2348].speaker SPEAKER_21
transcript.pyannote[2348].start 16194.69846875
transcript.pyannote[2348].end 16198.98471875
transcript.pyannote[2349].speaker SPEAKER_21
transcript.pyannote[2349].start 16199.77784375
transcript.pyannote[2349].end 16203.16971875
transcript.pyannote[2350].speaker SPEAKER_21
transcript.pyannote[2350].start 16204.03034375
transcript.pyannote[2350].end 16206.10596875
transcript.pyannote[2351].speaker SPEAKER_23
transcript.pyannote[2351].start 16206.10596875
transcript.pyannote[2351].end 16217.91846875
transcript.pyannote[2352].speaker SPEAKER_21
transcript.pyannote[2352].start 16215.30284375
transcript.pyannote[2352].end 16216.95659375
transcript.pyannote[2353].speaker SPEAKER_21
transcript.pyannote[2353].start 16218.62721875
transcript.pyannote[2353].end 16246.35284375
transcript.pyannote[2354].speaker SPEAKER_21
transcript.pyannote[2354].start 16247.02784375
transcript.pyannote[2354].end 16266.50159375
transcript.pyannote[2355].speaker SPEAKER_21
transcript.pyannote[2355].start 16267.26096875
transcript.pyannote[2355].end 16288.57409375
transcript.pyannote[2356].speaker SPEAKER_21
transcript.pyannote[2356].start 16289.01284375
transcript.pyannote[2356].end 16291.10534375
transcript.pyannote[2357].speaker SPEAKER_21
transcript.pyannote[2357].start 16293.63659375
transcript.pyannote[2357].end 16300.74096875
transcript.pyannote[2358].speaker SPEAKER_31
transcript.pyannote[2358].start 16293.73784375
transcript.pyannote[2358].end 16294.49721875
transcript.pyannote[2359].speaker SPEAKER_23
transcript.pyannote[2359].start 16294.49721875
transcript.pyannote[2359].end 16294.53096875
transcript.pyannote[2360].speaker SPEAKER_23
transcript.pyannote[2360].start 16302.68159375
transcript.pyannote[2360].end 16307.18721875
transcript.pyannote[2361].speaker SPEAKER_21
transcript.pyannote[2361].start 16305.76971875
transcript.pyannote[2361].end 16305.98909375
transcript.pyannote[2362].speaker SPEAKER_31
transcript.pyannote[2362].start 16305.98909375
transcript.pyannote[2362].end 16306.02284375
transcript.pyannote[2363].speaker SPEAKER_21
transcript.pyannote[2363].start 16306.02284375
transcript.pyannote[2363].end 16306.07346875
transcript.pyannote[2364].speaker SPEAKER_31
transcript.pyannote[2364].start 16306.07346875
transcript.pyannote[2364].end 16306.46159375
transcript.pyannote[2365].speaker SPEAKER_21
transcript.pyannote[2365].start 16306.46159375
transcript.pyannote[2365].end 16311.70971875
transcript.pyannote[2366].speaker SPEAKER_21
transcript.pyannote[2366].start 16312.89096875
transcript.pyannote[2366].end 16314.86534375
transcript.pyannote[2367].speaker SPEAKER_23
transcript.pyannote[2367].start 16314.86534375
transcript.pyannote[2367].end 16314.88221875
transcript.pyannote[2368].speaker SPEAKER_23
transcript.pyannote[2368].start 16315.38846875
transcript.pyannote[2368].end 16321.66596875
transcript.pyannote[2369].speaker SPEAKER_21
transcript.pyannote[2369].start 16320.56909375
transcript.pyannote[2369].end 16333.46159375
transcript.pyannote[2370].speaker SPEAKER_21
transcript.pyannote[2370].start 16333.79909375
transcript.pyannote[2370].end 16340.41409375
transcript.pyannote[2371].speaker SPEAKER_21
transcript.pyannote[2371].start 16340.63346875
transcript.pyannote[2371].end 16357.55909375
transcript.pyannote[2372].speaker SPEAKER_21
transcript.pyannote[2372].start 16358.21721875
transcript.pyannote[2372].end 16397.94096875
transcript.pyannote[2373].speaker SPEAKER_21
transcript.pyannote[2373].start 16398.22784375
transcript.pyannote[2373].end 16402.02471875
transcript.pyannote[2374].speaker SPEAKER_21
transcript.pyannote[2374].start 16402.78409375
transcript.pyannote[2374].end 16406.22659375
transcript.pyannote[2375].speaker SPEAKER_23
transcript.pyannote[2375].start 16406.81721875
transcript.pyannote[2375].end 16411.89659375
transcript.pyannote[2376].speaker SPEAKER_21
transcript.pyannote[2376].start 16411.40721875
transcript.pyannote[2376].end 16413.09471875
transcript.pyannote[2377].speaker SPEAKER_23
transcript.pyannote[2377].start 16413.04409375
transcript.pyannote[2377].end 16425.05909375
transcript.pyannote[2378].speaker SPEAKER_21
transcript.pyannote[2378].start 16425.14346875
transcript.pyannote[2378].end 16436.90534375
transcript.pyannote[2379].speaker SPEAKER_23
transcript.pyannote[2379].start 16437.14159375
transcript.pyannote[2379].end 16438.00221875
transcript.pyannote[2380].speaker SPEAKER_23
transcript.pyannote[2380].start 16438.25534375
transcript.pyannote[2380].end 16439.57159375
transcript.pyannote[2381].speaker SPEAKER_21
transcript.pyannote[2381].start 16438.28909375
transcript.pyannote[2381].end 16442.37284375
transcript.pyannote[2382].speaker SPEAKER_23
transcript.pyannote[2382].start 16441.74846875
transcript.pyannote[2382].end 16442.11971875
transcript.pyannote[2383].speaker SPEAKER_23
transcript.pyannote[2383].start 16442.72721875
transcript.pyannote[2383].end 16445.08971875
transcript.pyannote[2384].speaker SPEAKER_21
transcript.pyannote[2384].start 16444.06034375
transcript.pyannote[2384].end 16451.68784375
transcript.pyannote[2385].speaker SPEAKER_21
transcript.pyannote[2385].start 16452.26159375
transcript.pyannote[2385].end 16471.48221875
transcript.pyannote[2386].speaker SPEAKER_21
transcript.pyannote[2386].start 16471.63409375
transcript.pyannote[2386].end 16476.89909375
transcript.pyannote[2387].speaker SPEAKER_21
transcript.pyannote[2387].start 16477.16909375
transcript.pyannote[2387].end 16479.41346875
transcript.pyannote[2388].speaker SPEAKER_21
transcript.pyannote[2388].start 16479.80159375
transcript.pyannote[2388].end 16487.39534375
transcript.pyannote[2389].speaker SPEAKER_23
transcript.pyannote[2389].start 16487.74971875
transcript.pyannote[2389].end 16494.61784375
transcript.pyannote[2390].speaker SPEAKER_21
transcript.pyannote[2390].start 16492.96409375
transcript.pyannote[2390].end 16493.52096875
transcript.pyannote[2391].speaker SPEAKER_21
transcript.pyannote[2391].start 16494.46596875
transcript.pyannote[2391].end 16508.38784375
transcript.pyannote[2392].speaker SPEAKER_21
transcript.pyannote[2392].start 16509.28221875
transcript.pyannote[2392].end 16510.56471875
transcript.pyannote[2393].speaker SPEAKER_21
transcript.pyannote[2393].start 16511.74596875
transcript.pyannote[2393].end 16517.24721875
transcript.pyannote[2394].speaker SPEAKER_21
transcript.pyannote[2394].start 16517.63534375
transcript.pyannote[2394].end 16551.80721875
transcript.pyannote[2395].speaker SPEAKER_21
transcript.pyannote[2395].start 16552.02659375
transcript.pyannote[2395].end 16553.57909375
transcript.pyannote[2396].speaker SPEAKER_21
transcript.pyannote[2396].start 16554.06846875
transcript.pyannote[2396].end 16569.15471875
transcript.pyannote[2397].speaker SPEAKER_21
transcript.pyannote[2397].start 16570.47096875
transcript.pyannote[2397].end 16570.85909375
transcript.pyannote[2398].speaker SPEAKER_21
transcript.pyannote[2398].start 16571.33159375
transcript.pyannote[2398].end 16572.66471875
transcript.pyannote[2399].speaker SPEAKER_31
transcript.pyannote[2399].start 16572.27659375
transcript.pyannote[2399].end 16572.29346875
transcript.pyannote[2400].speaker SPEAKER_23
transcript.pyannote[2400].start 16572.29346875
transcript.pyannote[2400].end 16572.32721875
transcript.pyannote[2401].speaker SPEAKER_31
transcript.pyannote[2401].start 16572.32721875
transcript.pyannote[2401].end 16572.95159375
transcript.pyannote[2402].speaker SPEAKER_23
transcript.pyannote[2402].start 16572.95159375
transcript.pyannote[2402].end 16572.96846875
transcript.pyannote[2403].speaker SPEAKER_21
transcript.pyannote[2403].start 16573.17096875
transcript.pyannote[2403].end 16577.74409375
transcript.pyannote[2404].speaker SPEAKER_21
transcript.pyannote[2404].start 16578.08159375
transcript.pyannote[2404].end 16579.98846875
transcript.pyannote[2405].speaker SPEAKER_23
transcript.pyannote[2405].start 16579.44846875
transcript.pyannote[2405].end 16581.43971875
transcript.pyannote[2406].speaker SPEAKER_21
transcript.pyannote[2406].start 16581.43971875
transcript.pyannote[2406].end 16585.20284375
transcript.pyannote[2407].speaker SPEAKER_23
transcript.pyannote[2407].start 16584.86534375
transcript.pyannote[2407].end 16586.24909375
transcript.pyannote[2408].speaker SPEAKER_31
transcript.pyannote[2408].start 16585.20284375
transcript.pyannote[2408].end 16585.21971875
transcript.pyannote[2409].speaker SPEAKER_31
transcript.pyannote[2409].start 16585.65846875
transcript.pyannote[2409].end 16585.70909375
transcript.pyannote[2410].speaker SPEAKER_21
transcript.pyannote[2410].start 16587.09284375
transcript.pyannote[2410].end 16587.10971875
transcript.pyannote[2411].speaker SPEAKER_30
transcript.pyannote[2411].start 16587.10971875
transcript.pyannote[2411].end 16591.27784375
transcript.pyannote[2412].speaker SPEAKER_16
transcript.pyannote[2412].start 16599.93471875
transcript.pyannote[2412].end 16601.57159375
transcript.pyannote[2413].speaker SPEAKER_30
transcript.pyannote[2413].start 16601.74034375
transcript.pyannote[2413].end 16602.49971875
transcript.pyannote[2414].speaker SPEAKER_16
transcript.pyannote[2414].start 16605.90846875
transcript.pyannote[2414].end 16637.04284375
transcript.pyannote[2415].speaker SPEAKER_16
transcript.pyannote[2415].start 16637.51534375
transcript.pyannote[2415].end 16638.39284375
transcript.pyannote[2416].speaker SPEAKER_16
transcript.pyannote[2416].start 16638.71346875
transcript.pyannote[2416].end 16641.14346875
transcript.pyannote[2417].speaker SPEAKER_16
transcript.pyannote[2417].start 16641.59909375
transcript.pyannote[2417].end 16648.14659375
transcript.pyannote[2418].speaker SPEAKER_16
transcript.pyannote[2418].start 16648.36596875
transcript.pyannote[2418].end 16657.74846875
transcript.pyannote[2419].speaker SPEAKER_16
transcript.pyannote[2419].start 16658.01846875
transcript.pyannote[2419].end 16667.70471875
transcript.pyannote[2420].speaker SPEAKER_23
transcript.pyannote[2420].start 16658.25471875
transcript.pyannote[2420].end 16658.27159375
transcript.pyannote[2421].speaker SPEAKER_23
transcript.pyannote[2421].start 16660.09409375
transcript.pyannote[2421].end 16660.11096875
transcript.pyannote[2422].speaker SPEAKER_11
transcript.pyannote[2422].start 16660.11096875
transcript.pyannote[2422].end 16660.73534375
transcript.pyannote[2423].speaker SPEAKER_23
transcript.pyannote[2423].start 16660.73534375
transcript.pyannote[2423].end 16660.76909375
transcript.pyannote[2424].speaker SPEAKER_16
transcript.pyannote[2424].start 16667.87346875
transcript.pyannote[2424].end 16695.75096875
transcript.pyannote[2425].speaker SPEAKER_16
transcript.pyannote[2425].start 16695.98721875
transcript.pyannote[2425].end 16699.91909375
transcript.pyannote[2426].speaker SPEAKER_16
transcript.pyannote[2426].start 16700.66159375
transcript.pyannote[2426].end 16703.34471875
transcript.pyannote[2427].speaker SPEAKER_23
transcript.pyannote[2427].start 16703.39534375
transcript.pyannote[2427].end 16704.66096875
transcript.pyannote[2428].speaker SPEAKER_16
transcript.pyannote[2428].start 16704.91409375
transcript.pyannote[2428].end 16705.77471875
transcript.pyannote[2429].speaker SPEAKER_23
transcript.pyannote[2429].start 16705.48784375
transcript.pyannote[2429].end 16708.82909375
transcript.pyannote[2430].speaker SPEAKER_16
transcript.pyannote[2430].start 16706.65221875
transcript.pyannote[2430].end 16707.76596875
transcript.pyannote[2431].speaker SPEAKER_16
transcript.pyannote[2431].start 16708.82909375
transcript.pyannote[2431].end 16710.70221875
transcript.pyannote[2432].speaker SPEAKER_16
transcript.pyannote[2432].start 16711.09034375
transcript.pyannote[2432].end 16717.28346875
transcript.pyannote[2433].speaker SPEAKER_23
transcript.pyannote[2433].start 16717.95846875
transcript.pyannote[2433].end 16721.06346875
transcript.pyannote[2434].speaker SPEAKER_16
transcript.pyannote[2434].start 16718.71784375
transcript.pyannote[2434].end 16732.43721875
transcript.pyannote[2435].speaker SPEAKER_23
transcript.pyannote[2435].start 16732.43721875
transcript.pyannote[2435].end 16742.76471875
transcript.pyannote[2436].speaker SPEAKER_16
transcript.pyannote[2436].start 16733.02784375
transcript.pyannote[2436].end 16733.63534375
transcript.pyannote[2437].speaker SPEAKER_16
transcript.pyannote[2437].start 16734.19221875
transcript.pyannote[2437].end 16734.91784375
transcript.pyannote[2438].speaker SPEAKER_31
transcript.pyannote[2438].start 16742.76471875
transcript.pyannote[2438].end 16743.06846875
transcript.pyannote[2439].speaker SPEAKER_23
transcript.pyannote[2439].start 16743.06846875
transcript.pyannote[2439].end 16753.19346875
transcript.pyannote[2440].speaker SPEAKER_16
transcript.pyannote[2440].start 16753.19346875
transcript.pyannote[2440].end 16753.22721875
transcript.pyannote[2441].speaker SPEAKER_16
transcript.pyannote[2441].start 16753.83471875
transcript.pyannote[2441].end 16762.13721875
transcript.pyannote[2442].speaker SPEAKER_16
transcript.pyannote[2442].start 16762.47471875
transcript.pyannote[2442].end 16764.36471875
transcript.pyannote[2443].speaker SPEAKER_16
transcript.pyannote[2443].start 16764.85409375
transcript.pyannote[2443].end 16770.87846875
transcript.pyannote[2444].speaker SPEAKER_16
transcript.pyannote[2444].start 16771.11471875
transcript.pyannote[2444].end 16777.89846875
transcript.pyannote[2445].speaker SPEAKER_16
transcript.pyannote[2445].start 16778.16846875
transcript.pyannote[2445].end 16780.68284375
transcript.pyannote[2446].speaker SPEAKER_16
transcript.pyannote[2446].start 16781.32409375
transcript.pyannote[2446].end 16795.02659375
transcript.pyannote[2447].speaker SPEAKER_17
transcript.pyannote[2447].start 16783.73721875
transcript.pyannote[2447].end 16783.80471875
transcript.pyannote[2448].speaker SPEAKER_23
transcript.pyannote[2448].start 16783.80471875
transcript.pyannote[2448].end 16784.02409375
transcript.pyannote[2449].speaker SPEAKER_17
transcript.pyannote[2449].start 16784.02409375
transcript.pyannote[2449].end 16785.20534375
transcript.pyannote[2450].speaker SPEAKER_16
transcript.pyannote[2450].start 16795.33034375
transcript.pyannote[2450].end 16797.79409375
transcript.pyannote[2451].speaker SPEAKER_16
transcript.pyannote[2451].start 16798.04721875
transcript.pyannote[2451].end 16799.58284375
transcript.pyannote[2452].speaker SPEAKER_23
transcript.pyannote[2452].start 16801.16909375
transcript.pyannote[2452].end 16804.00409375
transcript.pyannote[2453].speaker SPEAKER_16
transcript.pyannote[2453].start 16803.16034375
transcript.pyannote[2453].end 16803.70034375
transcript.pyannote[2454].speaker SPEAKER_16
transcript.pyannote[2454].start 16804.00409375
transcript.pyannote[2454].end 16806.38346875
transcript.pyannote[2455].speaker SPEAKER_16
transcript.pyannote[2455].start 16806.73784375
transcript.pyannote[2455].end 16812.54284375
transcript.pyannote[2456].speaker SPEAKER_16
transcript.pyannote[2456].start 16813.04909375
transcript.pyannote[2456].end 16827.03846875
transcript.pyannote[2457].speaker SPEAKER_33
transcript.pyannote[2457].start 16819.78221875
transcript.pyannote[2457].end 16819.79909375
transcript.pyannote[2458].speaker SPEAKER_31
transcript.pyannote[2458].start 16819.79909375
transcript.pyannote[2458].end 16821.70596875
transcript.pyannote[2459].speaker SPEAKER_23
transcript.pyannote[2459].start 16828.43909375
transcript.pyannote[2459].end 16835.05409375
transcript.pyannote[2460].speaker SPEAKER_16
transcript.pyannote[2460].start 16835.05409375
transcript.pyannote[2460].end 16835.15534375
transcript.pyannote[2461].speaker SPEAKER_16
transcript.pyannote[2461].start 16836.31971875
transcript.pyannote[2461].end 16840.45409375
transcript.pyannote[2462].speaker SPEAKER_16
transcript.pyannote[2462].start 16840.87596875
transcript.pyannote[2462].end 16854.35909375
transcript.pyannote[2463].speaker SPEAKER_16
transcript.pyannote[2463].start 16854.74721875
transcript.pyannote[2463].end 16857.41346875
transcript.pyannote[2464].speaker SPEAKER_23
transcript.pyannote[2464].start 16856.67096875
transcript.pyannote[2464].end 16857.31221875
transcript.pyannote[2465].speaker SPEAKER_23
transcript.pyannote[2465].start 16857.41346875
transcript.pyannote[2465].end 16857.49784375
transcript.pyannote[2466].speaker SPEAKER_16
transcript.pyannote[2466].start 16857.49784375
transcript.pyannote[2466].end 16857.51471875
transcript.pyannote[2467].speaker SPEAKER_23
transcript.pyannote[2467].start 16857.51471875
transcript.pyannote[2467].end 16868.80409375
transcript.pyannote[2468].speaker SPEAKER_16
transcript.pyannote[2468].start 16858.24034375
transcript.pyannote[2468].end 16858.79721875
transcript.pyannote[2469].speaker SPEAKER_16
transcript.pyannote[2469].start 16868.80409375
transcript.pyannote[2469].end 16868.93909375
transcript.pyannote[2470].speaker SPEAKER_23
transcript.pyannote[2470].start 16868.93909375
transcript.pyannote[2470].end 16868.95596875
transcript.pyannote[2471].speaker SPEAKER_16
transcript.pyannote[2471].start 16868.95596875
transcript.pyannote[2471].end 16879.19909375
transcript.pyannote[2472].speaker SPEAKER_23
transcript.pyannote[2472].start 16879.19909375
transcript.pyannote[2472].end 16880.11034375
transcript.pyannote[2473].speaker SPEAKER_16
transcript.pyannote[2473].start 16879.75596875
transcript.pyannote[2473].end 16879.94159375
transcript.pyannote[2474].speaker SPEAKER_31
transcript.pyannote[2474].start 16880.11034375
transcript.pyannote[2474].end 16880.12721875
transcript.pyannote[2475].speaker SPEAKER_16
transcript.pyannote[2475].start 16880.12721875
transcript.pyannote[2475].end 16880.14409375
transcript.pyannote[2476].speaker SPEAKER_16
transcript.pyannote[2476].start 16880.36346875
transcript.pyannote[2476].end 16882.87784375
transcript.pyannote[2477].speaker SPEAKER_16
transcript.pyannote[2477].start 16883.18159375
transcript.pyannote[2477].end 16884.22784375
transcript.pyannote[2478].speaker SPEAKER_16
transcript.pyannote[2478].start 16884.63284375
transcript.pyannote[2478].end 16888.00784375
transcript.pyannote[2479].speaker SPEAKER_16
transcript.pyannote[2479].start 16888.29471875
transcript.pyannote[2479].end 16890.74159375
transcript.pyannote[2480].speaker SPEAKER_16
transcript.pyannote[2480].start 16891.33221875
transcript.pyannote[2480].end 16891.72034375
transcript.pyannote[2481].speaker SPEAKER_16
transcript.pyannote[2481].start 16892.20971875
transcript.pyannote[2481].end 16896.69846875
transcript.pyannote[2482].speaker SPEAKER_16
transcript.pyannote[2482].start 16897.01909375
transcript.pyannote[2482].end 16898.28471875
transcript.pyannote[2483].speaker SPEAKER_16
transcript.pyannote[2483].start 16898.94284375
transcript.pyannote[2483].end 16899.53346875
transcript.pyannote[2484].speaker SPEAKER_23
transcript.pyannote[2484].start 16900.14096875
transcript.pyannote[2484].end 16901.71034375
transcript.pyannote[2485].speaker SPEAKER_23
transcript.pyannote[2485].start 16901.81159375
transcript.pyannote[2485].end 16901.82846875
transcript.pyannote[2486].speaker SPEAKER_16
transcript.pyannote[2486].start 16901.82846875
transcript.pyannote[2486].end 16901.96346875
transcript.pyannote[2487].speaker SPEAKER_23
transcript.pyannote[2487].start 16901.96346875
transcript.pyannote[2487].end 16902.03096875
transcript.pyannote[2488].speaker SPEAKER_16
transcript.pyannote[2488].start 16902.03096875
transcript.pyannote[2488].end 16902.14909375
transcript.pyannote[2489].speaker SPEAKER_23
transcript.pyannote[2489].start 16902.14909375
transcript.pyannote[2489].end 16903.24596875
transcript.pyannote[2490].speaker SPEAKER_16
transcript.pyannote[2490].start 16902.57096875
transcript.pyannote[2490].end 16903.38096875
transcript.pyannote[2491].speaker SPEAKER_23
transcript.pyannote[2491].start 16903.38096875
transcript.pyannote[2491].end 16903.87034375
transcript.pyannote[2492].speaker SPEAKER_16
transcript.pyannote[2492].start 16903.87034375
transcript.pyannote[2492].end 16905.06846875
transcript.pyannote[2493].speaker SPEAKER_16
transcript.pyannote[2493].start 16905.13596875
transcript.pyannote[2493].end 16905.15284375
transcript.pyannote[2494].speaker SPEAKER_23
transcript.pyannote[2494].start 16905.15284375
transcript.pyannote[2494].end 16905.16971875
transcript.pyannote[2495].speaker SPEAKER_16
transcript.pyannote[2495].start 16905.16971875
transcript.pyannote[2495].end 16905.18659375
transcript.pyannote[2496].speaker SPEAKER_23
transcript.pyannote[2496].start 16905.18659375
transcript.pyannote[2496].end 16905.33846875
transcript.pyannote[2497].speaker SPEAKER_16
transcript.pyannote[2497].start 16905.33846875
transcript.pyannote[2497].end 16905.59159375
transcript.pyannote[2498].speaker SPEAKER_23
transcript.pyannote[2498].start 16907.00909375
transcript.pyannote[2498].end 16907.46471875
transcript.pyannote[2499].speaker SPEAKER_23
transcript.pyannote[2499].start 16907.65034375
transcript.pyannote[2499].end 16907.97096875
transcript.pyannote[2500].speaker SPEAKER_16
transcript.pyannote[2500].start 16907.97096875
transcript.pyannote[2500].end 16909.97909375
transcript.pyannote[2501].speaker SPEAKER_16
transcript.pyannote[2501].start 16910.31659375
transcript.pyannote[2501].end 16911.98721875
transcript.pyannote[2502].speaker SPEAKER_16
transcript.pyannote[2502].start 16912.57784375
transcript.pyannote[2502].end 16912.59471875
transcript.pyannote[2503].speaker SPEAKER_23
transcript.pyannote[2503].start 16912.59471875
transcript.pyannote[2503].end 16915.78409375
transcript.pyannote[2504].speaker SPEAKER_16
transcript.pyannote[2504].start 16915.26096875
transcript.pyannote[2504].end 16915.71659375
transcript.pyannote[2505].speaker SPEAKER_23
transcript.pyannote[2505].start 16916.05409375
transcript.pyannote[2505].end 16916.98221875
transcript.pyannote[2506].speaker SPEAKER_16
transcript.pyannote[2506].start 16916.08784375
transcript.pyannote[2506].end 16917.11721875
transcript.pyannote[2507].speaker SPEAKER_23
transcript.pyannote[2507].start 16917.11721875
transcript.pyannote[2507].end 16917.13409375
transcript.pyannote[2508].speaker SPEAKER_16
transcript.pyannote[2508].start 16917.13409375
transcript.pyannote[2508].end 16920.37409375
transcript.pyannote[2509].speaker SPEAKER_16
transcript.pyannote[2509].start 16920.69471875
transcript.pyannote[2509].end 16921.38659375
transcript.pyannote[2510].speaker SPEAKER_16
transcript.pyannote[2510].start 16922.14596875
transcript.pyannote[2510].end 16923.90096875
transcript.pyannote[2511].speaker SPEAKER_23
transcript.pyannote[2511].start 16924.42409375
transcript.pyannote[2511].end 16926.93846875
transcript.pyannote[2512].speaker SPEAKER_23
transcript.pyannote[2512].start 16926.97221875
transcript.pyannote[2512].end 16927.02284375
transcript.pyannote[2513].speaker SPEAKER_23
transcript.pyannote[2513].start 16927.03971875
transcript.pyannote[2513].end 16928.03534375
transcript.pyannote[2514].speaker SPEAKER_16
transcript.pyannote[2514].start 16928.03534375
transcript.pyannote[2514].end 16928.11971875
transcript.pyannote[2515].speaker SPEAKER_23
transcript.pyannote[2515].start 16928.11971875
transcript.pyannote[2515].end 16929.14909375
transcript.pyannote[2516].speaker SPEAKER_16
transcript.pyannote[2516].start 16929.14909375
transcript.pyannote[2516].end 16929.18284375
transcript.pyannote[2517].speaker SPEAKER_27
transcript.pyannote[2517].start 16930.49909375
transcript.pyannote[2517].end 16932.18659375
transcript.pyannote[2518].speaker SPEAKER_16
transcript.pyannote[2518].start 16932.18659375
transcript.pyannote[2518].end 16935.79784375
transcript.pyannote[2519].speaker SPEAKER_16
transcript.pyannote[2519].start 16936.62471875
transcript.pyannote[2519].end 16937.90721875
transcript.pyannote[2520].speaker SPEAKER_23
transcript.pyannote[2520].start 16936.79346875
transcript.pyannote[2520].end 16938.32909375
transcript.pyannote[2521].speaker SPEAKER_16
transcript.pyannote[2521].start 16938.32909375
transcript.pyannote[2521].end 16938.68346875
transcript.pyannote[2522].speaker SPEAKER_27
transcript.pyannote[2522].start 16939.47659375
transcript.pyannote[2522].end 16946.14221875
transcript.pyannote[2523].speaker SPEAKER_23
transcript.pyannote[2523].start 16939.76346875
transcript.pyannote[2523].end 16939.78034375
transcript.pyannote[2524].speaker SPEAKER_16
transcript.pyannote[2524].start 16939.78034375
transcript.pyannote[2524].end 16940.15159375
transcript.pyannote[2525].speaker SPEAKER_23
transcript.pyannote[2525].start 16940.15159375
transcript.pyannote[2525].end 16940.18534375
transcript.pyannote[2526].speaker SPEAKER_31
transcript.pyannote[2526].start 16944.48846875
transcript.pyannote[2526].end 16945.07909375
transcript.pyannote[2527].speaker SPEAKER_31
transcript.pyannote[2527].start 16946.37846875
transcript.pyannote[2527].end 16946.76659375
transcript.pyannote[2528].speaker SPEAKER_27
transcript.pyannote[2528].start 16946.76659375
transcript.pyannote[2528].end 16952.08221875
transcript.pyannote[2529].speaker SPEAKER_16
transcript.pyannote[2529].start 16952.09909375
transcript.pyannote[2529].end 16952.62221875
transcript.pyannote[2530].speaker SPEAKER_16
transcript.pyannote[2530].start 16953.11159375
transcript.pyannote[2530].end 16958.35971875
transcript.pyannote[2531].speaker SPEAKER_27
transcript.pyannote[2531].start 16956.38534375
transcript.pyannote[2531].end 16956.80721875
transcript.pyannote[2532].speaker SPEAKER_27
transcript.pyannote[2532].start 16958.47784375
transcript.pyannote[2532].end 16959.06846875
transcript.pyannote[2533].speaker SPEAKER_16
transcript.pyannote[2533].start 16958.59596875
transcript.pyannote[2533].end 16960.41846875
transcript.pyannote[2534].speaker SPEAKER_27
transcript.pyannote[2534].start 16960.60409375
transcript.pyannote[2534].end 16968.61971875
transcript.pyannote[2535].speaker SPEAKER_16
transcript.pyannote[2535].start 16968.19784375
transcript.pyannote[2535].end 16972.92284375
transcript.pyannote[2536].speaker SPEAKER_27
transcript.pyannote[2536].start 16972.92284375
transcript.pyannote[2536].end 16980.41534375
transcript.pyannote[2537].speaker SPEAKER_16
transcript.pyannote[2537].start 16980.61784375
transcript.pyannote[2537].end 16981.14096875
transcript.pyannote[2538].speaker SPEAKER_16
transcript.pyannote[2538].start 16981.42784375
transcript.pyannote[2538].end 16982.77784375
transcript.pyannote[2539].speaker SPEAKER_27
transcript.pyannote[2539].start 16983.14909375
transcript.pyannote[2539].end 16984.97159375
transcript.pyannote[2540].speaker SPEAKER_16
transcript.pyannote[2540].start 16984.76909375
transcript.pyannote[2540].end 16988.43096875
transcript.pyannote[2541].speaker SPEAKER_27
transcript.pyannote[2541].start 16988.43096875
transcript.pyannote[2541].end 16989.03846875
transcript.pyannote[2542].speaker SPEAKER_31
transcript.pyannote[2542].start 16989.03846875
transcript.pyannote[2542].end 16989.32534375
transcript.pyannote[2543].speaker SPEAKER_27
transcript.pyannote[2543].start 16989.32534375
transcript.pyannote[2543].end 16989.96659375
transcript.pyannote[2544].speaker SPEAKER_16
transcript.pyannote[2544].start 16989.32534375
transcript.pyannote[2544].end 16997.00346875
transcript.pyannote[2545].speaker SPEAKER_31
transcript.pyannote[2545].start 16989.96659375
transcript.pyannote[2545].end 16990.92846875
transcript.pyannote[2546].speaker SPEAKER_31
transcript.pyannote[2546].start 16993.34159375
transcript.pyannote[2546].end 16994.03346875
transcript.pyannote[2547].speaker SPEAKER_16
transcript.pyannote[2547].start 16998.72471875
transcript.pyannote[2547].end 17000.59784375
transcript.pyannote[2548].speaker SPEAKER_16
transcript.pyannote[2548].start 17000.81721875
transcript.pyannote[2548].end 17001.18846875
transcript.pyannote[2549].speaker SPEAKER_16
transcript.pyannote[2549].start 17001.94784375
transcript.pyannote[2549].end 17003.19659375
transcript.pyannote[2550].speaker SPEAKER_16
transcript.pyannote[2550].start 17003.65221875
transcript.pyannote[2550].end 17014.75596875
transcript.pyannote[2551].speaker SPEAKER_16
transcript.pyannote[2551].start 17015.00909375
transcript.pyannote[2551].end 17015.53221875
transcript.pyannote[2552].speaker SPEAKER_16
transcript.pyannote[2552].start 17016.44346875
transcript.pyannote[2552].end 17024.42534375
transcript.pyannote[2553].speaker SPEAKER_16
transcript.pyannote[2553].start 17024.98221875
transcript.pyannote[2553].end 17030.60159375
transcript.pyannote[2554].speaker SPEAKER_16
transcript.pyannote[2554].start 17031.09096875
transcript.pyannote[2554].end 17045.56971875
transcript.pyannote[2555].speaker SPEAKER_16
transcript.pyannote[2555].start 17046.41346875
transcript.pyannote[2555].end 17048.86034375
transcript.pyannote[2556].speaker SPEAKER_16
transcript.pyannote[2556].start 17049.41721875
transcript.pyannote[2556].end 17050.44659375
transcript.pyannote[2557].speaker SPEAKER_16
transcript.pyannote[2557].start 17050.85159375
transcript.pyannote[2557].end 17054.32784375
transcript.pyannote[2558].speaker SPEAKER_16
transcript.pyannote[2558].start 17054.76659375
transcript.pyannote[2558].end 17061.34784375
transcript.pyannote[2559].speaker SPEAKER_16
transcript.pyannote[2559].start 17062.83284375
transcript.pyannote[2559].end 17068.09784375
transcript.pyannote[2560].speaker SPEAKER_16
transcript.pyannote[2560].start 17068.46909375
transcript.pyannote[2560].end 17076.60284375
transcript.pyannote[2561].speaker SPEAKER_16
transcript.pyannote[2561].start 17076.87284375
transcript.pyannote[2561].end 17082.01971875
transcript.pyannote[2562].speaker SPEAKER_16
transcript.pyannote[2562].start 17082.37409375
transcript.pyannote[2562].end 17083.53846875
transcript.pyannote[2563].speaker SPEAKER_16
transcript.pyannote[2563].start 17085.17534375
transcript.pyannote[2563].end 17085.52971875
transcript.pyannote[2564].speaker SPEAKER_16
transcript.pyannote[2564].start 17087.14971875
transcript.pyannote[2564].end 17095.57034375
transcript.pyannote[2565].speaker SPEAKER_16
transcript.pyannote[2565].start 17095.82346875
transcript.pyannote[2565].end 17116.39409375
transcript.pyannote[2566].speaker SPEAKER_23
transcript.pyannote[2566].start 17108.44596875
transcript.pyannote[2566].end 17111.09534375
transcript.pyannote[2567].speaker SPEAKER_30
transcript.pyannote[2567].start 17115.48284375
transcript.pyannote[2567].end 17115.97221875
transcript.pyannote[2568].speaker SPEAKER_30
transcript.pyannote[2568].start 17116.81596875
transcript.pyannote[2568].end 17118.41909375
transcript.pyannote[2569].speaker SPEAKER_30
transcript.pyannote[2569].start 17120.12346875
transcript.pyannote[2569].end 17121.99659375
transcript.pyannote[2570].speaker SPEAKER_34
transcript.pyannote[2570].start 17132.12159375
transcript.pyannote[2570].end 17134.28159375
transcript.pyannote[2571].speaker SPEAKER_30
transcript.pyannote[2571].start 17134.48409375
transcript.pyannote[2571].end 17135.27721875
transcript.pyannote[2572].speaker SPEAKER_34
transcript.pyannote[2572].start 17138.93909375
transcript.pyannote[2572].end 17139.52971875
transcript.pyannote[2573].speaker SPEAKER_34
transcript.pyannote[2573].start 17139.96846875
transcript.pyannote[2573].end 17140.66034375
transcript.pyannote[2574].speaker SPEAKER_34
transcript.pyannote[2574].start 17141.50409375
transcript.pyannote[2574].end 17142.53346875
transcript.pyannote[2575].speaker SPEAKER_34
transcript.pyannote[2575].start 17142.73596875
transcript.pyannote[2575].end 17144.47409375
transcript.pyannote[2576].speaker SPEAKER_34
transcript.pyannote[2576].start 17145.14909375
transcript.pyannote[2576].end 17148.62534375
transcript.pyannote[2577].speaker SPEAKER_34
transcript.pyannote[2577].start 17148.97971875
transcript.pyannote[2577].end 17151.35909375
transcript.pyannote[2578].speaker SPEAKER_23
transcript.pyannote[2578].start 17150.80221875
transcript.pyannote[2578].end 17152.40534375
transcript.pyannote[2579].speaker SPEAKER_34
transcript.pyannote[2579].start 17153.14784375
transcript.pyannote[2579].end 17156.70846875
transcript.pyannote[2580].speaker SPEAKER_34
transcript.pyannote[2580].start 17156.97846875
transcript.pyannote[2580].end 17159.08784375
transcript.pyannote[2581].speaker SPEAKER_31
transcript.pyannote[2581].start 17159.86409375
transcript.pyannote[2581].end 17160.08346875
transcript.pyannote[2582].speaker SPEAKER_34
transcript.pyannote[2582].start 17160.08346875
transcript.pyannote[2582].end 17161.75409375
transcript.pyannote[2583].speaker SPEAKER_34
transcript.pyannote[2583].start 17164.87596875
transcript.pyannote[2583].end 17165.85471875
transcript.pyannote[2584].speaker SPEAKER_34
transcript.pyannote[2584].start 17166.73221875
transcript.pyannote[2584].end 17184.43409375
transcript.pyannote[2585].speaker SPEAKER_34
transcript.pyannote[2585].start 17184.73784375
transcript.pyannote[2585].end 17192.33159375
transcript.pyannote[2586].speaker SPEAKER_34
transcript.pyannote[2586].start 17192.71971875
transcript.pyannote[2586].end 17200.68471875
transcript.pyannote[2587].speaker SPEAKER_34
transcript.pyannote[2587].start 17201.56221875
transcript.pyannote[2587].end 17209.27409375
transcript.pyannote[2588].speaker SPEAKER_34
transcript.pyannote[2588].start 17209.67909375
transcript.pyannote[2588].end 17215.36596875
transcript.pyannote[2589].speaker SPEAKER_34
transcript.pyannote[2589].start 17216.04096875
transcript.pyannote[2589].end 17217.00284375
transcript.pyannote[2590].speaker SPEAKER_34
transcript.pyannote[2590].start 17217.17159375
transcript.pyannote[2590].end 17217.74534375
transcript.pyannote[2591].speaker SPEAKER_34
transcript.pyannote[2591].start 17218.08284375
transcript.pyannote[2591].end 17219.14596875
transcript.pyannote[2592].speaker SPEAKER_34
transcript.pyannote[2592].start 17219.39909375
transcript.pyannote[2592].end 17234.80596875
transcript.pyannote[2593].speaker SPEAKER_34
transcript.pyannote[2593].start 17235.46409375
transcript.pyannote[2593].end 17235.59909375
transcript.pyannote[2594].speaker SPEAKER_34
transcript.pyannote[2594].start 17236.51034375
transcript.pyannote[2594].end 17236.83096875
transcript.pyannote[2595].speaker SPEAKER_34
transcript.pyannote[2595].start 17237.65784375
transcript.pyannote[2595].end 17243.66534375
transcript.pyannote[2596].speaker SPEAKER_34
transcript.pyannote[2596].start 17243.90159375
transcript.pyannote[2596].end 17248.10346875
transcript.pyannote[2597].speaker SPEAKER_34
transcript.pyannote[2597].start 17249.03159375
transcript.pyannote[2597].end 17257.30034375
transcript.pyannote[2598].speaker SPEAKER_34
transcript.pyannote[2598].start 17257.60409375
transcript.pyannote[2598].end 17260.33784375
transcript.pyannote[2599].speaker SPEAKER_34
transcript.pyannote[2599].start 17260.79346875
transcript.pyannote[2599].end 17270.80034375
transcript.pyannote[2600].speaker SPEAKER_34
transcript.pyannote[2600].start 17271.55971875
transcript.pyannote[2600].end 17271.98159375
transcript.pyannote[2601].speaker SPEAKER_34
transcript.pyannote[2601].start 17273.26409375
transcript.pyannote[2601].end 17281.39784375
transcript.pyannote[2602].speaker SPEAKER_34
transcript.pyannote[2602].start 17281.85346875
transcript.pyannote[2602].end 17291.87721875
transcript.pyannote[2603].speaker SPEAKER_34
transcript.pyannote[2603].start 17291.97846875
transcript.pyannote[2603].end 17297.71596875
transcript.pyannote[2604].speaker SPEAKER_34
transcript.pyannote[2604].start 17298.28971875
transcript.pyannote[2604].end 17300.71971875
transcript.pyannote[2605].speaker SPEAKER_34
transcript.pyannote[2605].start 17301.44534375
transcript.pyannote[2605].end 17304.93846875
transcript.pyannote[2606].speaker SPEAKER_01
transcript.pyannote[2606].start 17304.93846875
transcript.pyannote[2606].end 17305.44471875
transcript.pyannote[2607].speaker SPEAKER_34
transcript.pyannote[2607].start 17305.44471875
transcript.pyannote[2607].end 17305.84971875
transcript.pyannote[2608].speaker SPEAKER_34
transcript.pyannote[2608].start 17306.27159375
transcript.pyannote[2608].end 17309.02221875
transcript.pyannote[2609].speaker SPEAKER_34
transcript.pyannote[2609].start 17310.06846875
transcript.pyannote[2609].end 17313.12284375
transcript.pyannote[2610].speaker SPEAKER_34
transcript.pyannote[2610].start 17313.27471875
transcript.pyannote[2610].end 17314.30409375
transcript.pyannote[2611].speaker SPEAKER_34
transcript.pyannote[2611].start 17316.32909375
transcript.pyannote[2611].end 17318.03346875
transcript.pyannote[2612].speaker SPEAKER_23
transcript.pyannote[2612].start 17318.30346875
transcript.pyannote[2612].end 17321.57721875
transcript.pyannote[2613].speaker SPEAKER_34
transcript.pyannote[2613].start 17319.02909375
transcript.pyannote[2613].end 17319.60284375
transcript.pyannote[2614].speaker SPEAKER_34
transcript.pyannote[2614].start 17320.76721875
transcript.pyannote[2614].end 17330.72346875
transcript.pyannote[2615].speaker SPEAKER_34
transcript.pyannote[2615].start 17331.06096875
transcript.pyannote[2615].end 17333.69346875
transcript.pyannote[2616].speaker SPEAKER_34
transcript.pyannote[2616].start 17334.26721875
transcript.pyannote[2616].end 17335.44846875
transcript.pyannote[2617].speaker SPEAKER_34
transcript.pyannote[2617].start 17335.81971875
transcript.pyannote[2617].end 17338.67159375
transcript.pyannote[2618].speaker SPEAKER_23
transcript.pyannote[2618].start 17338.67159375
transcript.pyannote[2618].end 17376.92721875
transcript.pyannote[2619].speaker SPEAKER_34
transcript.pyannote[2619].start 17339.93721875
transcript.pyannote[2619].end 17340.03846875
transcript.pyannote[2620].speaker SPEAKER_34
transcript.pyannote[2620].start 17344.34159375
transcript.pyannote[2620].end 17344.57784375
transcript.pyannote[2621].speaker SPEAKER_00
transcript.pyannote[2621].start 17344.57784375
transcript.pyannote[2621].end 17344.61159375
transcript.pyannote[2622].speaker SPEAKER_34
transcript.pyannote[2622].start 17375.03721875
transcript.pyannote[2622].end 17375.23971875
transcript.pyannote[2623].speaker SPEAKER_34
transcript.pyannote[2623].start 17376.45471875
transcript.pyannote[2623].end 17379.03659375
transcript.pyannote[2624].speaker SPEAKER_34
transcript.pyannote[2624].start 17379.30659375
transcript.pyannote[2624].end 17382.00659375
transcript.pyannote[2625].speaker SPEAKER_34
transcript.pyannote[2625].start 17382.76596875
transcript.pyannote[2625].end 17383.69409375
transcript.pyannote[2626].speaker SPEAKER_34
transcript.pyannote[2626].start 17384.26784375
transcript.pyannote[2626].end 17396.28284375
transcript.pyannote[2627].speaker SPEAKER_34
transcript.pyannote[2627].start 17396.45159375
transcript.pyannote[2627].end 17398.69596875
transcript.pyannote[2628].speaker SPEAKER_27
transcript.pyannote[2628].start 17398.78034375
transcript.pyannote[2628].end 17400.88971875
transcript.pyannote[2629].speaker SPEAKER_34
transcript.pyannote[2629].start 17401.12596875
transcript.pyannote[2629].end 17402.56034375
transcript.pyannote[2630].speaker SPEAKER_23
transcript.pyannote[2630].start 17402.56034375
transcript.pyannote[2630].end 17402.59409375
transcript.pyannote[2631].speaker SPEAKER_27
transcript.pyannote[2631].start 17402.64471875
transcript.pyannote[2631].end 17403.89346875
transcript.pyannote[2632].speaker SPEAKER_23
transcript.pyannote[2632].start 17403.85971875
transcript.pyannote[2632].end 17412.48284375
transcript.pyannote[2633].speaker SPEAKER_34
transcript.pyannote[2633].start 17403.89346875
transcript.pyannote[2633].end 17403.96096875
transcript.pyannote[2634].speaker SPEAKER_27
transcript.pyannote[2634].start 17403.96096875
transcript.pyannote[2634].end 17403.97784375
transcript.pyannote[2635].speaker SPEAKER_34
transcript.pyannote[2635].start 17403.97784375
transcript.pyannote[2635].end 17404.09596875
transcript.pyannote[2636].speaker SPEAKER_34
transcript.pyannote[2636].start 17412.04409375
transcript.pyannote[2636].end 17413.56284375
transcript.pyannote[2637].speaker SPEAKER_34
transcript.pyannote[2637].start 17413.98471875
transcript.pyannote[2637].end 17414.71034375
transcript.pyannote[2638].speaker SPEAKER_34
transcript.pyannote[2638].start 17415.28409375
transcript.pyannote[2638].end 17416.60034375
transcript.pyannote[2639].speaker SPEAKER_34
transcript.pyannote[2639].start 17416.90409375
transcript.pyannote[2639].end 17418.08534375
transcript.pyannote[2640].speaker SPEAKER_23
transcript.pyannote[2640].start 17418.54096875
transcript.pyannote[2640].end 17422.32096875
transcript.pyannote[2641].speaker SPEAKER_34
transcript.pyannote[2641].start 17419.63784375
transcript.pyannote[2641].end 17420.97096875
transcript.pyannote[2642].speaker SPEAKER_34
transcript.pyannote[2642].start 17422.54034375
transcript.pyannote[2642].end 17423.24909375
transcript.pyannote[2643].speaker SPEAKER_34
transcript.pyannote[2643].start 17424.46409375
transcript.pyannote[2643].end 17425.13909375
transcript.pyannote[2644].speaker SPEAKER_23
transcript.pyannote[2644].start 17426.05034375
transcript.pyannote[2644].end 17428.53096875
transcript.pyannote[2645].speaker SPEAKER_34
transcript.pyannote[2645].start 17427.16409375
transcript.pyannote[2645].end 17428.63221875
transcript.pyannote[2646].speaker SPEAKER_34
transcript.pyannote[2646].start 17429.18909375
transcript.pyannote[2646].end 17436.86721875
transcript.pyannote[2647].speaker SPEAKER_34
transcript.pyannote[2647].start 17436.88409375
transcript.pyannote[2647].end 17437.98096875
transcript.pyannote[2648].speaker SPEAKER_34
transcript.pyannote[2648].start 17438.80784375
transcript.pyannote[2648].end 17458.51784375
transcript.pyannote[2649].speaker SPEAKER_34
transcript.pyannote[2649].start 17459.12534375
transcript.pyannote[2649].end 17459.61471875
transcript.pyannote[2650].speaker SPEAKER_34
transcript.pyannote[2650].start 17460.62721875
transcript.pyannote[2650].end 17466.53346875
transcript.pyannote[2651].speaker SPEAKER_34
transcript.pyannote[2651].start 17466.98909375
transcript.pyannote[2651].end 17470.98846875
transcript.pyannote[2652].speaker SPEAKER_34
transcript.pyannote[2652].start 17471.66346875
transcript.pyannote[2652].end 17493.34784375
transcript.pyannote[2653].speaker SPEAKER_23
transcript.pyannote[2653].start 17493.34784375
transcript.pyannote[2653].end 17493.46596875
transcript.pyannote[2654].speaker SPEAKER_34
transcript.pyannote[2654].start 17493.46596875
transcript.pyannote[2654].end 17493.73596875
transcript.pyannote[2655].speaker SPEAKER_23
transcript.pyannote[2655].start 17493.73596875
transcript.pyannote[2655].end 17515.04909375
transcript.pyannote[2656].speaker SPEAKER_34
transcript.pyannote[2656].start 17512.72034375
transcript.pyannote[2656].end 17512.83846875
transcript.pyannote[2657].speaker SPEAKER_34
transcript.pyannote[2657].start 17512.88909375
transcript.pyannote[2657].end 17512.92284375
transcript.pyannote[2658].speaker SPEAKER_34
transcript.pyannote[2658].start 17512.95659375
transcript.pyannote[2658].end 17513.10846875
transcript.pyannote[2659].speaker SPEAKER_34
transcript.pyannote[2659].start 17515.04909375
transcript.pyannote[2659].end 17521.90034375
transcript.pyannote[2660].speaker SPEAKER_34
transcript.pyannote[2660].start 17522.03534375
transcript.pyannote[2660].end 17523.53721875
transcript.pyannote[2661].speaker SPEAKER_34
transcript.pyannote[2661].start 17524.54971875
transcript.pyannote[2661].end 17534.06721875
transcript.pyannote[2662].speaker SPEAKER_34
transcript.pyannote[2662].start 17534.62409375
transcript.pyannote[2662].end 17535.67034375
transcript.pyannote[2663].speaker SPEAKER_34
transcript.pyannote[2663].start 17535.90659375
transcript.pyannote[2663].end 17541.07034375
transcript.pyannote[2664].speaker SPEAKER_31
transcript.pyannote[2664].start 17541.07034375
transcript.pyannote[2664].end 17541.67784375
transcript.pyannote[2665].speaker SPEAKER_34
transcript.pyannote[2665].start 17541.79596875
transcript.pyannote[2665].end 17542.23471875
transcript.pyannote[2666].speaker SPEAKER_34
transcript.pyannote[2666].start 17542.58909375
transcript.pyannote[2666].end 17546.16659375
transcript.pyannote[2667].speaker SPEAKER_34
transcript.pyannote[2667].start 17546.90909375
transcript.pyannote[2667].end 17549.27159375
transcript.pyannote[2668].speaker SPEAKER_34
transcript.pyannote[2668].start 17549.55846875
transcript.pyannote[2668].end 17550.68909375
transcript.pyannote[2669].speaker SPEAKER_34
transcript.pyannote[2669].start 17550.94221875
transcript.pyannote[2669].end 17551.34721875
transcript.pyannote[2670].speaker SPEAKER_34
transcript.pyannote[2670].start 17552.14034375
transcript.pyannote[2670].end 17555.26221875
transcript.pyannote[2671].speaker SPEAKER_23
transcript.pyannote[2671].start 17555.98784375
transcript.pyannote[2671].end 17572.13721875
transcript.pyannote[2672].speaker SPEAKER_23
transcript.pyannote[2672].start 17572.62659375
transcript.pyannote[2672].end 17574.70221875
transcript.pyannote[2673].speaker SPEAKER_34
transcript.pyannote[2673].start 17574.85409375
transcript.pyannote[2673].end 17585.80596875
transcript.pyannote[2674].speaker SPEAKER_34
transcript.pyannote[2674].start 17590.15971875
transcript.pyannote[2674].end 17591.83034375
transcript.pyannote[2675].speaker SPEAKER_34
transcript.pyannote[2675].start 17592.20159375
transcript.pyannote[2675].end 17595.39096875
transcript.pyannote[2676].speaker SPEAKER_37
transcript.pyannote[2676].start 17593.36596875
transcript.pyannote[2676].end 17594.02409375
transcript.pyannote[2677].speaker SPEAKER_37
transcript.pyannote[2677].start 17594.07471875
transcript.pyannote[2677].end 17595.32346875
transcript.pyannote[2678].speaker SPEAKER_37
transcript.pyannote[2678].start 17595.39096875
transcript.pyannote[2678].end 17595.62721875
transcript.pyannote[2679].speaker SPEAKER_34
transcript.pyannote[2679].start 17597.06159375
transcript.pyannote[2679].end 17599.32284375
transcript.pyannote[2680].speaker SPEAKER_37
transcript.pyannote[2680].start 17597.09534375
transcript.pyannote[2680].end 17598.00659375
transcript.pyannote[2681].speaker SPEAKER_34
transcript.pyannote[2681].start 17600.08221875
transcript.pyannote[2681].end 17602.44471875
transcript.pyannote[2682].speaker SPEAKER_34
transcript.pyannote[2682].start 17602.81596875
transcript.pyannote[2682].end 17603.05221875
transcript.pyannote[2683].speaker SPEAKER_34
transcript.pyannote[2683].start 17604.62159375
transcript.pyannote[2683].end 17615.82659375
transcript.pyannote[2684].speaker SPEAKER_34
transcript.pyannote[2684].start 17616.43409375
transcript.pyannote[2684].end 17616.88971875
transcript.pyannote[2685].speaker SPEAKER_34
transcript.pyannote[2685].start 17618.94846875
transcript.pyannote[2685].end 17620.53471875
transcript.pyannote[2686].speaker SPEAKER_34
transcript.pyannote[2686].start 17620.68659375
transcript.pyannote[2686].end 17645.59409375
transcript.pyannote[2687].speaker SPEAKER_37
transcript.pyannote[2687].start 17645.93159375
transcript.pyannote[2687].end 17645.96534375
transcript.pyannote[2688].speaker SPEAKER_34
transcript.pyannote[2688].start 17645.96534375
transcript.pyannote[2688].end 17646.47159375
transcript.pyannote[2689].speaker SPEAKER_37
transcript.pyannote[2689].start 17646.03284375
transcript.pyannote[2689].end 17646.28596875
transcript.pyannote[2690].speaker SPEAKER_37
transcript.pyannote[2690].start 17647.14659375
transcript.pyannote[2690].end 17656.54596875
transcript.pyannote[2691].speaker SPEAKER_34
transcript.pyannote[2691].start 17653.84596875
transcript.pyannote[2691].end 17653.86284375
transcript.pyannote[2692].speaker SPEAKER_31
transcript.pyannote[2692].start 17653.86284375
transcript.pyannote[2692].end 17654.33534375
transcript.pyannote[2693].speaker SPEAKER_31
transcript.pyannote[2693].start 17654.84159375
transcript.pyannote[2693].end 17655.24659375
transcript.pyannote[2694].speaker SPEAKER_31
transcript.pyannote[2694].start 17656.54596875
transcript.pyannote[2694].end 17656.76534375
transcript.pyannote[2695].speaker SPEAKER_37
transcript.pyannote[2695].start 17656.76534375
transcript.pyannote[2695].end 17657.22096875
transcript.pyannote[2696].speaker SPEAKER_37
transcript.pyannote[2696].start 17657.76096875
transcript.pyannote[2696].end 17658.55409375
transcript.pyannote[2697].speaker SPEAKER_37
transcript.pyannote[2697].start 17658.79034375
transcript.pyannote[2697].end 17659.95471875
transcript.pyannote[2698].speaker SPEAKER_37
transcript.pyannote[2698].start 17660.37659375
transcript.pyannote[2698].end 17669.33721875
transcript.pyannote[2699].speaker SPEAKER_31
transcript.pyannote[2699].start 17660.44409375
transcript.pyannote[2699].end 17661.43971875
transcript.pyannote[2700].speaker SPEAKER_34
transcript.pyannote[2700].start 17661.43971875
transcript.pyannote[2700].end 17661.47346875
transcript.pyannote[2701].speaker SPEAKER_34
transcript.pyannote[2701].start 17664.79784375
transcript.pyannote[2701].end 17665.18596875
transcript.pyannote[2702].speaker SPEAKER_34
transcript.pyannote[2702].start 17669.33721875
transcript.pyannote[2702].end 17669.97846875
transcript.pyannote[2703].speaker SPEAKER_37
transcript.pyannote[2703].start 17669.97846875
transcript.pyannote[2703].end 17670.02909375
transcript.pyannote[2704].speaker SPEAKER_34
transcript.pyannote[2704].start 17670.02909375
transcript.pyannote[2704].end 17670.97409375
transcript.pyannote[2705].speaker SPEAKER_37
transcript.pyannote[2705].start 17670.97409375
transcript.pyannote[2705].end 17671.02471875
transcript.pyannote[2706].speaker SPEAKER_34
transcript.pyannote[2706].start 17671.02471875
transcript.pyannote[2706].end 17671.32846875
transcript.pyannote[2707].speaker SPEAKER_37
transcript.pyannote[2707].start 17671.69971875
transcript.pyannote[2707].end 17681.58846875
transcript.pyannote[2708].speaker SPEAKER_34
transcript.pyannote[2708].start 17681.63909375
transcript.pyannote[2708].end 17683.27596875
transcript.pyannote[2709].speaker SPEAKER_34
transcript.pyannote[2709].start 17684.37284375
transcript.pyannote[2709].end 17685.53721875
transcript.pyannote[2710].speaker SPEAKER_34
transcript.pyannote[2710].start 17686.78596875
transcript.pyannote[2710].end 17689.28346875
transcript.pyannote[2711].speaker SPEAKER_34
transcript.pyannote[2711].start 17689.77284375
transcript.pyannote[2711].end 17690.81909375
transcript.pyannote[2712].speaker SPEAKER_34
transcript.pyannote[2712].start 17690.97096875
transcript.pyannote[2712].end 17728.23096875
transcript.pyannote[2713].speaker SPEAKER_37
transcript.pyannote[2713].start 17721.46409375
transcript.pyannote[2713].end 17721.66659375
transcript.pyannote[2714].speaker SPEAKER_34
transcript.pyannote[2714].start 17728.38284375
transcript.pyannote[2714].end 17728.97346875
transcript.pyannote[2715].speaker SPEAKER_37
transcript.pyannote[2715].start 17728.97346875
transcript.pyannote[2715].end 17729.39534375
transcript.pyannote[2716].speaker SPEAKER_34
transcript.pyannote[2716].start 17729.47971875
transcript.pyannote[2716].end 17730.42471875
transcript.pyannote[2717].speaker SPEAKER_37
transcript.pyannote[2717].start 17729.68221875
transcript.pyannote[2717].end 17730.12096875
transcript.pyannote[2718].speaker SPEAKER_37
transcript.pyannote[2718].start 17730.15471875
transcript.pyannote[2718].end 17730.50909375
transcript.pyannote[2719].speaker SPEAKER_34
transcript.pyannote[2719].start 17730.50909375
transcript.pyannote[2719].end 17731.48784375
transcript.pyannote[2720].speaker SPEAKER_37
transcript.pyannote[2720].start 17730.67784375
transcript.pyannote[2720].end 17731.42034375
transcript.pyannote[2721].speaker SPEAKER_37
transcript.pyannote[2721].start 17731.48784375
transcript.pyannote[2721].end 17731.62284375
transcript.pyannote[2722].speaker SPEAKER_34
transcript.pyannote[2722].start 17731.62284375
transcript.pyannote[2722].end 17731.69034375
transcript.pyannote[2723].speaker SPEAKER_37
transcript.pyannote[2723].start 17731.69034375
transcript.pyannote[2723].end 17731.75784375
transcript.pyannote[2724].speaker SPEAKER_37
transcript.pyannote[2724].start 17731.94346875
transcript.pyannote[2724].end 17731.97721875
transcript.pyannote[2725].speaker SPEAKER_34
transcript.pyannote[2725].start 17731.97721875
transcript.pyannote[2725].end 17732.41596875
transcript.pyannote[2726].speaker SPEAKER_30
transcript.pyannote[2726].start 17733.63096875
transcript.pyannote[2726].end 17735.01471875
transcript.pyannote[2727].speaker SPEAKER_34
transcript.pyannote[2727].start 17738.96346875
transcript.pyannote[2727].end 17739.03096875
transcript.pyannote[2728].speaker SPEAKER_34
transcript.pyannote[2728].start 17744.34659375
transcript.pyannote[2728].end 17746.87784375
transcript.pyannote[2729].speaker SPEAKER_30
transcript.pyannote[2729].start 17750.62409375
transcript.pyannote[2729].end 17752.21034375
transcript.pyannote[2730].speaker SPEAKER_23
transcript.pyannote[2730].start 17756.37846875
transcript.pyannote[2730].end 17757.28971875
transcript.pyannote[2731].speaker SPEAKER_30
transcript.pyannote[2731].start 17757.28971875
transcript.pyannote[2731].end 17762.65596875
transcript.pyannote[2732].speaker SPEAKER_30
transcript.pyannote[2732].start 17762.70659375
transcript.pyannote[2732].end 17767.90409375
transcript.pyannote[2733].speaker SPEAKER_30
transcript.pyannote[2733].start 17767.98846875
transcript.pyannote[2733].end 17784.61034375
transcript.pyannote[2734].speaker SPEAKER_14
transcript.pyannote[2734].start 17784.18846875
transcript.pyannote[2734].end 17784.86346875
transcript.pyannote[2735].speaker SPEAKER_30
transcript.pyannote[2735].start 17784.86346875
transcript.pyannote[2735].end 17784.89721875
transcript.pyannote[2736].speaker SPEAKER_30
transcript.pyannote[2736].start 17784.96471875
transcript.pyannote[2736].end 17788.60971875
transcript.pyannote[2737].speaker SPEAKER_30
transcript.pyannote[2737].start 17789.63909375
transcript.pyannote[2737].end 17793.40221875
transcript.pyannote[2738].speaker SPEAKER_23
transcript.pyannote[2738].start 17793.03096875
transcript.pyannote[2738].end 17795.10659375
transcript.pyannote[2739].speaker SPEAKER_30
transcript.pyannote[2739].start 17794.71846875
transcript.pyannote[2739].end 17798.46471875
transcript.pyannote[2740].speaker SPEAKER_23
transcript.pyannote[2740].start 17796.38909375
transcript.pyannote[2740].end 17804.35409375
transcript.pyannote[2741].speaker SPEAKER_30
transcript.pyannote[2741].start 17800.13534375
transcript.pyannote[2741].end 17802.07596875
transcript.pyannote[2742].speaker SPEAKER_30
transcript.pyannote[2742].start 17804.35409375
transcript.pyannote[2742].end 17804.82659375
transcript.pyannote[2743].speaker SPEAKER_23
transcript.pyannote[2743].start 17804.82659375
transcript.pyannote[2743].end 17805.13034375
transcript.pyannote[2744].speaker SPEAKER_30
transcript.pyannote[2744].start 17805.13034375
transcript.pyannote[2744].end 17808.23534375
transcript.pyannote[2745].speaker SPEAKER_30
transcript.pyannote[2745].start 17808.69096875
transcript.pyannote[2745].end 17831.43846875
transcript.pyannote[2746].speaker SPEAKER_30
transcript.pyannote[2746].start 17831.65784375
transcript.pyannote[2746].end 17834.45909375
transcript.pyannote[2747].speaker SPEAKER_30
transcript.pyannote[2747].start 17834.94846875
transcript.pyannote[2747].end 17861.45909375
transcript.pyannote[2748].speaker SPEAKER_30
transcript.pyannote[2748].start 17861.62784375
transcript.pyannote[2748].end 17868.44534375
transcript.pyannote[2749].speaker SPEAKER_30
transcript.pyannote[2749].start 17868.81659375
transcript.pyannote[2749].end 17870.97659375
transcript.pyannote[2750].speaker SPEAKER_30
transcript.pyannote[2750].start 17871.73596875
transcript.pyannote[2750].end 17872.68096875
transcript.pyannote[2751].speaker SPEAKER_30
transcript.pyannote[2751].start 17873.25471875
transcript.pyannote[2751].end 17880.59534375
transcript.pyannote[2752].speaker SPEAKER_30
transcript.pyannote[2752].start 17880.78096875
transcript.pyannote[2752].end 17881.84409375
transcript.pyannote[2753].speaker SPEAKER_30
transcript.pyannote[2753].start 17882.11409375
transcript.pyannote[2753].end 17888.49284375
transcript.pyannote[2754].speaker SPEAKER_30
transcript.pyannote[2754].start 17888.83034375
transcript.pyannote[2754].end 17891.02409375
transcript.pyannote[2755].speaker SPEAKER_30
transcript.pyannote[2755].start 17891.31096875
transcript.pyannote[2755].end 17891.76659375
transcript.pyannote[2756].speaker SPEAKER_30
transcript.pyannote[2756].start 17892.10409375
transcript.pyannote[2756].end 17899.59659375
transcript.pyannote[2757].speaker SPEAKER_30
transcript.pyannote[2757].start 17900.11971875
transcript.pyannote[2757].end 17914.78409375
transcript.pyannote[2758].speaker SPEAKER_30
transcript.pyannote[2758].start 17914.93596875
transcript.pyannote[2758].end 17916.43784375
transcript.pyannote[2759].speaker SPEAKER_30
transcript.pyannote[2759].start 17916.58971875
transcript.pyannote[2759].end 17928.26721875
transcript.pyannote[2760].speaker SPEAKER_23
transcript.pyannote[2760].start 17928.77346875
transcript.pyannote[2760].end 17975.58471875
transcript.pyannote[2761].speaker SPEAKER_00
transcript.pyannote[2761].start 17965.24034375
transcript.pyannote[2761].end 17965.35846875
transcript.pyannote[2762].speaker SPEAKER_31
transcript.pyannote[2762].start 17965.35846875
transcript.pyannote[2762].end 17965.98284375
transcript.pyannote[2763].speaker SPEAKER_00
transcript.pyannote[2763].start 17965.98284375
transcript.pyannote[2763].end 17966.01659375
transcript.pyannote[2764].speaker SPEAKER_30
transcript.pyannote[2764].start 17975.58471875
transcript.pyannote[2764].end 17992.03784375
transcript.pyannote[2765].speaker SPEAKER_30
transcript.pyannote[2765].start 17992.32471875
transcript.pyannote[2765].end 18039.15284375
transcript.pyannote[2766].speaker SPEAKER_30
transcript.pyannote[2766].start 18039.30471875
transcript.pyannote[2766].end 18039.33846875
transcript.pyannote[2767].speaker SPEAKER_18
transcript.pyannote[2767].start 18039.33846875
transcript.pyannote[2767].end 18039.37221875
transcript.pyannote[2768].speaker SPEAKER_30
transcript.pyannote[2768].start 18039.37221875
transcript.pyannote[2768].end 18039.38909375
transcript.pyannote[2769].speaker SPEAKER_18
transcript.pyannote[2769].start 18039.38909375
transcript.pyannote[2769].end 18039.65909375
transcript.pyannote[2770].speaker SPEAKER_30
transcript.pyannote[2770].start 18039.42284375
transcript.pyannote[2770].end 18046.10534375
transcript.pyannote[2771].speaker SPEAKER_30
transcript.pyannote[2771].start 18046.44284375
transcript.pyannote[2771].end 18052.53471875
transcript.pyannote[2772].speaker SPEAKER_31
transcript.pyannote[2772].start 18052.53471875
transcript.pyannote[2772].end 18053.09159375
transcript.pyannote[2773].speaker SPEAKER_30
transcript.pyannote[2773].start 18052.68659375
transcript.pyannote[2773].end 18063.92534375
transcript.pyannote[2774].speaker SPEAKER_31
transcript.pyannote[2774].start 18053.47971875
transcript.pyannote[2774].end 18053.69909375
transcript.pyannote[2775].speaker SPEAKER_31
transcript.pyannote[2775].start 18055.15034375
transcript.pyannote[2775].end 18055.38659375
transcript.pyannote[2776].speaker SPEAKER_30
transcript.pyannote[2776].start 18063.95909375
transcript.pyannote[2776].end 18063.97596875
transcript.pyannote[2777].speaker SPEAKER_31
transcript.pyannote[2777].start 18063.97596875
transcript.pyannote[2777].end 18064.26284375
transcript.pyannote[2778].speaker SPEAKER_30
transcript.pyannote[2778].start 18064.21221875
transcript.pyannote[2778].end 18069.15659375
transcript.pyannote[2779].speaker SPEAKER_30
transcript.pyannote[2779].start 18069.74721875
transcript.pyannote[2779].end 18084.96846875
transcript.pyannote[2780].speaker SPEAKER_31
transcript.pyannote[2780].start 18077.40846875
transcript.pyannote[2780].end 18077.52659375
transcript.pyannote[2781].speaker SPEAKER_23
transcript.pyannote[2781].start 18077.52659375
transcript.pyannote[2781].end 18077.54346875
transcript.pyannote[2782].speaker SPEAKER_31
transcript.pyannote[2782].start 18077.54346875
transcript.pyannote[2782].end 18077.71221875
transcript.pyannote[2783].speaker SPEAKER_23
transcript.pyannote[2783].start 18077.71221875
transcript.pyannote[2783].end 18077.79659375
transcript.pyannote[2784].speaker SPEAKER_00
transcript.pyannote[2784].start 18079.01159375
transcript.pyannote[2784].end 18079.02846875
transcript.pyannote[2785].speaker SPEAKER_23
transcript.pyannote[2785].start 18079.02846875
transcript.pyannote[2785].end 18080.59784375
transcript.pyannote[2786].speaker SPEAKER_00
transcript.pyannote[2786].start 18080.59784375
transcript.pyannote[2786].end 18080.61471875
transcript.pyannote[2787].speaker SPEAKER_23
transcript.pyannote[2787].start 18084.85034375
transcript.pyannote[2787].end 18139.96409375
transcript.pyannote[2788].speaker SPEAKER_30
transcript.pyannote[2788].start 18139.96409375
transcript.pyannote[2788].end 18151.55721875
transcript.pyannote[2789].speaker SPEAKER_23
transcript.pyannote[2789].start 18151.55721875
transcript.pyannote[2789].end 18153.07596875
transcript.pyannote[2790].speaker SPEAKER_30
transcript.pyannote[2790].start 18152.36721875
transcript.pyannote[2790].end 18156.19784375
transcript.pyannote[2791].speaker SPEAKER_23
transcript.pyannote[2791].start 18156.29909375
transcript.pyannote[2791].end 18156.51846875
transcript.pyannote[2792].speaker SPEAKER_23
transcript.pyannote[2792].start 18156.78846875
transcript.pyannote[2792].end 18157.68284375
transcript.pyannote[2793].speaker SPEAKER_30
transcript.pyannote[2793].start 18157.76721875
transcript.pyannote[2793].end 18159.52221875
transcript.pyannote[2794].speaker SPEAKER_23
transcript.pyannote[2794].start 18159.55596875
transcript.pyannote[2794].end 18180.21096875
transcript.pyannote[2795].speaker SPEAKER_13
transcript.pyannote[2795].start 18171.57096875
transcript.pyannote[2795].end 18172.14471875
transcript.pyannote[2796].speaker SPEAKER_13
transcript.pyannote[2796].start 18174.62534375
transcript.pyannote[2796].end 18174.94596875
transcript.pyannote[2797].speaker SPEAKER_30
transcript.pyannote[2797].start 18176.17784375
transcript.pyannote[2797].end 18176.65034375
transcript.pyannote[2798].speaker SPEAKER_30
transcript.pyannote[2798].start 18177.34221875
transcript.pyannote[2798].end 18177.83159375
transcript.pyannote[2799].speaker SPEAKER_30
transcript.pyannote[2799].start 18179.56971875
transcript.pyannote[2799].end 18195.73596875
transcript.pyannote[2800].speaker SPEAKER_15
transcript.pyannote[2800].start 18188.95221875
transcript.pyannote[2800].end 18189.03659375
transcript.pyannote[2801].speaker SPEAKER_31
transcript.pyannote[2801].start 18189.03659375
transcript.pyannote[2801].end 18189.32346875
transcript.pyannote[2802].speaker SPEAKER_30
transcript.pyannote[2802].start 18196.12409375
transcript.pyannote[2802].end 18198.73971875
transcript.pyannote[2803].speaker SPEAKER_30
transcript.pyannote[2803].start 18198.97596875
transcript.pyannote[2803].end 18208.22346875
transcript.pyannote[2804].speaker SPEAKER_23
transcript.pyannote[2804].start 18208.22346875
transcript.pyannote[2804].end 18219.93471875
transcript.pyannote[2805].speaker SPEAKER_30
transcript.pyannote[2805].start 18208.91534375
transcript.pyannote[2805].end 18209.18534375
transcript.pyannote[2806].speaker SPEAKER_30
transcript.pyannote[2806].start 18217.84221875
transcript.pyannote[2806].end 18218.11221875
transcript.pyannote[2807].speaker SPEAKER_30
transcript.pyannote[2807].start 18220.18784375
transcript.pyannote[2807].end 18220.66034375
transcript.pyannote[2808].speaker SPEAKER_30
transcript.pyannote[2808].start 18220.81221875
transcript.pyannote[2808].end 18233.83971875
transcript.pyannote[2809].speaker SPEAKER_23
transcript.pyannote[2809].start 18224.08596875
transcript.pyannote[2809].end 18224.27159375
transcript.pyannote[2810].speaker SPEAKER_31
transcript.pyannote[2810].start 18224.27159375
transcript.pyannote[2810].end 18224.32221875
transcript.pyannote[2811].speaker SPEAKER_30
transcript.pyannote[2811].start 18234.58221875
transcript.pyannote[2811].end 18252.57096875
transcript.pyannote[2812].speaker SPEAKER_23
transcript.pyannote[2812].start 18253.14471875
transcript.pyannote[2812].end 18285.64596875
transcript.pyannote[2813].speaker SPEAKER_30
transcript.pyannote[2813].start 18259.97909375
transcript.pyannote[2813].end 18259.99596875
transcript.pyannote[2814].speaker SPEAKER_31
transcript.pyannote[2814].start 18259.99596875
transcript.pyannote[2814].end 18260.01284375
transcript.pyannote[2815].speaker SPEAKER_30
transcript.pyannote[2815].start 18260.01284375
transcript.pyannote[2815].end 18260.08034375
transcript.pyannote[2816].speaker SPEAKER_15
transcript.pyannote[2816].start 18269.64846875
transcript.pyannote[2816].end 18269.96909375
transcript.pyannote[2817].speaker SPEAKER_00
transcript.pyannote[2817].start 18269.96909375
transcript.pyannote[2817].end 18270.03659375
transcript.pyannote[2818].speaker SPEAKER_00
transcript.pyannote[2818].start 18271.16721875
transcript.pyannote[2818].end 18271.38659375
transcript.pyannote[2819].speaker SPEAKER_00
transcript.pyannote[2819].start 18275.74034375
transcript.pyannote[2819].end 18276.02721875
transcript.pyannote[2820].speaker SPEAKER_30
transcript.pyannote[2820].start 18282.57471875
transcript.pyannote[2820].end 18283.23284375
transcript.pyannote[2821].speaker SPEAKER_30
transcript.pyannote[2821].start 18284.97096875
transcript.pyannote[2821].end 18285.40971875
transcript.pyannote[2822].speaker SPEAKER_30
transcript.pyannote[2822].start 18285.64596875
transcript.pyannote[2822].end 18287.67096875
transcript.pyannote[2823].speaker SPEAKER_23
transcript.pyannote[2823].start 18286.38846875
transcript.pyannote[2823].end 18287.06346875
transcript.pyannote[2824].speaker SPEAKER_34
transcript.pyannote[2824].start 18290.28659375
transcript.pyannote[2824].end 18292.02471875
transcript.pyannote[2825].speaker SPEAKER_34
transcript.pyannote[2825].start 18292.69971875
transcript.pyannote[2825].end 18306.43596875
transcript.pyannote[2826].speaker SPEAKER_34
transcript.pyannote[2826].start 18307.24596875
transcript.pyannote[2826].end 18316.00409375
transcript.pyannote[2827].speaker SPEAKER_31
transcript.pyannote[2827].start 18321.96096875
transcript.pyannote[2827].end 18321.97784375
transcript.pyannote[2828].speaker SPEAKER_09
transcript.pyannote[2828].start 18321.97784375
transcript.pyannote[2828].end 18322.02846875
transcript.pyannote[2829].speaker SPEAKER_30
transcript.pyannote[2829].start 18327.27659375
transcript.pyannote[2829].end 18330.14534375
transcript.pyannote[2830].speaker SPEAKER_14
transcript.pyannote[2830].start 18339.40971875
transcript.pyannote[2830].end 18341.58659375
transcript.pyannote[2831].speaker SPEAKER_30
transcript.pyannote[2831].start 18341.58659375
transcript.pyannote[2831].end 18342.24471875
transcript.pyannote[2832].speaker SPEAKER_14
transcript.pyannote[2832].start 18344.59034375
transcript.pyannote[2832].end 18361.02659375
transcript.pyannote[2833].speaker SPEAKER_23
transcript.pyannote[2833].start 18361.02659375
transcript.pyannote[2833].end 18377.96909375
transcript.pyannote[2834].speaker SPEAKER_14
transcript.pyannote[2834].start 18377.96909375
transcript.pyannote[2834].end 18385.09034375
transcript.pyannote[2835].speaker SPEAKER_14
transcript.pyannote[2835].start 18385.24221875
transcript.pyannote[2835].end 18388.46534375
transcript.pyannote[2836].speaker SPEAKER_14
transcript.pyannote[2836].start 18389.00534375
transcript.pyannote[2836].end 18391.03034375
transcript.pyannote[2837].speaker SPEAKER_23
transcript.pyannote[2837].start 18391.03034375
transcript.pyannote[2837].end 18410.01471875
transcript.pyannote[2838].speaker SPEAKER_23
transcript.pyannote[2838].start 18410.36909375
transcript.pyannote[2838].end 18410.72346875
transcript.pyannote[2839].speaker SPEAKER_23
transcript.pyannote[2839].start 18411.02721875
transcript.pyannote[2839].end 18411.06096875
transcript.pyannote[2840].speaker SPEAKER_14
transcript.pyannote[2840].start 18411.06096875
transcript.pyannote[2840].end 18417.33846875
transcript.pyannote[2841].speaker SPEAKER_14
transcript.pyannote[2841].start 18417.54096875
transcript.pyannote[2841].end 18418.95846875
transcript.pyannote[2842].speaker SPEAKER_14
transcript.pyannote[2842].start 18419.31284375
transcript.pyannote[2842].end 18426.45096875
transcript.pyannote[2843].speaker SPEAKER_14
transcript.pyannote[2843].start 18426.78846875
transcript.pyannote[2843].end 18427.49721875
transcript.pyannote[2844].speaker SPEAKER_14
transcript.pyannote[2844].start 18428.30721875
transcript.pyannote[2844].end 18429.20159375
transcript.pyannote[2845].speaker SPEAKER_14
transcript.pyannote[2845].start 18429.97784375
transcript.pyannote[2845].end 18431.86784375
transcript.pyannote[2846].speaker SPEAKER_14
transcript.pyannote[2846].start 18432.18846875
transcript.pyannote[2846].end 18433.55534375
transcript.pyannote[2847].speaker SPEAKER_14
transcript.pyannote[2847].start 18434.01096875
transcript.pyannote[2847].end 18435.39471875
transcript.pyannote[2848].speaker SPEAKER_14
transcript.pyannote[2848].start 18435.64784375
transcript.pyannote[2848].end 18438.02721875
transcript.pyannote[2849].speaker SPEAKER_23
transcript.pyannote[2849].start 18438.02721875
transcript.pyannote[2849].end 18467.22096875
transcript.pyannote[2850].speaker SPEAKER_23
transcript.pyannote[2850].start 18467.86221875
transcript.pyannote[2850].end 18468.97596875
transcript.pyannote[2851].speaker SPEAKER_14
transcript.pyannote[2851].start 18467.87909375
transcript.pyannote[2851].end 18468.60471875
transcript.pyannote[2852].speaker SPEAKER_14
transcript.pyannote[2852].start 18468.67221875
transcript.pyannote[2852].end 18468.92534375
transcript.pyannote[2853].speaker SPEAKER_14
transcript.pyannote[2853].start 18468.97596875
transcript.pyannote[2853].end 18473.02596875
transcript.pyannote[2854].speaker SPEAKER_23
transcript.pyannote[2854].start 18473.27909375
transcript.pyannote[2854].end 18473.31284375
transcript.pyannote[2855].speaker SPEAKER_31
transcript.pyannote[2855].start 18473.31284375
transcript.pyannote[2855].end 18473.66721875
transcript.pyannote[2856].speaker SPEAKER_14
transcript.pyannote[2856].start 18473.66721875
transcript.pyannote[2856].end 18477.56534375
transcript.pyannote[2857].speaker SPEAKER_14
transcript.pyannote[2857].start 18477.97034375
transcript.pyannote[2857].end 18480.78846875
transcript.pyannote[2858].speaker SPEAKER_14
transcript.pyannote[2858].start 18481.24409375
transcript.pyannote[2858].end 18484.48409375
transcript.pyannote[2859].speaker SPEAKER_23
transcript.pyannote[2859].start 18484.60221875
transcript.pyannote[2859].end 18484.63596875
transcript.pyannote[2860].speaker SPEAKER_14
transcript.pyannote[2860].start 18484.63596875
transcript.pyannote[2860].end 18484.65284375
transcript.pyannote[2861].speaker SPEAKER_23
transcript.pyannote[2861].start 18484.65284375
transcript.pyannote[2861].end 18485.31096875
transcript.pyannote[2862].speaker SPEAKER_14
transcript.pyannote[2862].start 18484.70346875
transcript.pyannote[2862].end 18485.26034375
transcript.pyannote[2863].speaker SPEAKER_14
transcript.pyannote[2863].start 18485.31096875
transcript.pyannote[2863].end 18486.03659375
transcript.pyannote[2864].speaker SPEAKER_23
transcript.pyannote[2864].start 18486.03659375
transcript.pyannote[2864].end 18505.96596875
transcript.pyannote[2865].speaker SPEAKER_14
transcript.pyannote[2865].start 18505.96596875
transcript.pyannote[2865].end 18516.04034375
transcript.pyannote[2866].speaker SPEAKER_14
transcript.pyannote[2866].start 18516.93471875
transcript.pyannote[2866].end 18520.20846875
transcript.pyannote[2867].speaker SPEAKER_14
transcript.pyannote[2867].start 18520.41096875
transcript.pyannote[2867].end 18522.63846875
transcript.pyannote[2868].speaker SPEAKER_14
transcript.pyannote[2868].start 18522.95909375
transcript.pyannote[2868].end 18536.07096875
transcript.pyannote[2869].speaker SPEAKER_14
transcript.pyannote[2869].start 18536.30721875
transcript.pyannote[2869].end 18537.65721875
transcript.pyannote[2870].speaker SPEAKER_14
transcript.pyannote[2870].start 18537.75846875
transcript.pyannote[2870].end 18542.43284375
transcript.pyannote[2871].speaker SPEAKER_14
transcript.pyannote[2871].start 18542.53409375
transcript.pyannote[2871].end 18549.97596875
transcript.pyannote[2872].speaker SPEAKER_23
transcript.pyannote[2872].start 18549.97596875
transcript.pyannote[2872].end 18561.97409375
transcript.pyannote[2873].speaker SPEAKER_14
transcript.pyannote[2873].start 18561.97409375
transcript.pyannote[2873].end 18567.49221875
transcript.pyannote[2874].speaker SPEAKER_14
transcript.pyannote[2874].start 18567.77909375
transcript.pyannote[2874].end 18569.87159375
transcript.pyannote[2875].speaker SPEAKER_14
transcript.pyannote[2875].start 18570.09096875
transcript.pyannote[2875].end 18570.51284375
transcript.pyannote[2876].speaker SPEAKER_14
transcript.pyannote[2876].start 18570.68159375
transcript.pyannote[2876].end 18574.56284375
transcript.pyannote[2877].speaker SPEAKER_14
transcript.pyannote[2877].start 18574.91721875
transcript.pyannote[2877].end 18580.31721875
transcript.pyannote[2878].speaker SPEAKER_14
transcript.pyannote[2878].start 18580.67159375
transcript.pyannote[2878].end 18584.62034375
transcript.pyannote[2879].speaker SPEAKER_23
transcript.pyannote[2879].start 18584.62034375
transcript.pyannote[2879].end 18600.83721875
transcript.pyannote[2880].speaker SPEAKER_14
transcript.pyannote[2880].start 18599.90909375
transcript.pyannote[2880].end 18602.03534375
transcript.pyannote[2881].speaker SPEAKER_23
transcript.pyannote[2881].start 18601.46159375
transcript.pyannote[2881].end 18632.64659375
transcript.pyannote[2882].speaker SPEAKER_14
transcript.pyannote[2882].start 18629.92971875
transcript.pyannote[2882].end 18631.04346875
transcript.pyannote[2883].speaker SPEAKER_23
transcript.pyannote[2883].start 18633.05159375
transcript.pyannote[2883].end 18647.36159375
transcript.pyannote[2884].speaker SPEAKER_14
transcript.pyannote[2884].start 18633.13596875
transcript.pyannote[2884].end 18633.49034375
transcript.pyannote[2885].speaker SPEAKER_14
transcript.pyannote[2885].start 18634.38471875
transcript.pyannote[2885].end 18634.87409375
transcript.pyannote[2886].speaker SPEAKER_14
transcript.pyannote[2886].start 18637.35471875
transcript.pyannote[2886].end 18638.55284375
transcript.pyannote[2887].speaker SPEAKER_14
transcript.pyannote[2887].start 18641.15159375
transcript.pyannote[2887].end 18641.69159375
transcript.pyannote[2888].speaker SPEAKER_23
transcript.pyannote[2888].start 18647.86784375
transcript.pyannote[2888].end 18648.96471875
transcript.pyannote[2889].speaker SPEAKER_14
transcript.pyannote[2889].start 18648.96471875
transcript.pyannote[2889].end 18652.23846875
transcript.pyannote[2890].speaker SPEAKER_14
transcript.pyannote[2890].start 18652.49159375
transcript.pyannote[2890].end 18690.61221875
transcript.pyannote[2891].speaker SPEAKER_14
transcript.pyannote[2891].start 18690.91596875
transcript.pyannote[2891].end 18693.02534375
transcript.pyannote[2892].speaker SPEAKER_23
transcript.pyannote[2892].start 18693.02534375
transcript.pyannote[2892].end 18693.22784375
transcript.pyannote[2893].speaker SPEAKER_14
transcript.pyannote[2893].start 18693.22784375
transcript.pyannote[2893].end 18693.56534375
transcript.pyannote[2894].speaker SPEAKER_23
transcript.pyannote[2894].start 18693.24471875
transcript.pyannote[2894].end 18710.62596875
transcript.pyannote[2895].speaker SPEAKER_14
transcript.pyannote[2895].start 18709.96784375
transcript.pyannote[2895].end 18720.48096875
transcript.pyannote[2896].speaker SPEAKER_23
transcript.pyannote[2896].start 18711.57096875
transcript.pyannote[2896].end 18711.90846875
transcript.pyannote[2897].speaker SPEAKER_14
transcript.pyannote[2897].start 18721.07159375
transcript.pyannote[2897].end 18728.98596875
transcript.pyannote[2898].speaker SPEAKER_23
transcript.pyannote[2898].start 18728.98596875
transcript.pyannote[2898].end 18729.79596875
transcript.pyannote[2899].speaker SPEAKER_30
transcript.pyannote[2899].start 18731.04471875
transcript.pyannote[2899].end 18732.98534375
transcript.pyannote[2900].speaker SPEAKER_30
transcript.pyannote[2900].start 18733.15409375
transcript.pyannote[2900].end 18740.49471875
transcript.pyannote[2901].speaker SPEAKER_19
transcript.pyannote[2901].start 18743.71784375
transcript.pyannote[2901].end 18750.09659375
transcript.pyannote[2902].speaker SPEAKER_30
transcript.pyannote[2902].start 18747.04221875
transcript.pyannote[2902].end 18747.05909375
transcript.pyannote[2903].speaker SPEAKER_14
transcript.pyannote[2903].start 18747.05909375
transcript.pyannote[2903].end 18748.84784375
transcript.pyannote[2904].speaker SPEAKER_14
transcript.pyannote[2904].start 18750.09659375
transcript.pyannote[2904].end 18750.88971875
transcript.pyannote[2905].speaker SPEAKER_19
transcript.pyannote[2905].start 18751.00784375
transcript.pyannote[2905].end 18753.01596875
transcript.pyannote[2906].speaker SPEAKER_19
transcript.pyannote[2906].start 18753.16784375
transcript.pyannote[2906].end 18753.28596875
transcript.pyannote[2907].speaker SPEAKER_31
transcript.pyannote[2907].start 18753.28596875
transcript.pyannote[2907].end 18753.33659375
transcript.pyannote[2908].speaker SPEAKER_19
transcript.pyannote[2908].start 18753.33659375
transcript.pyannote[2908].end 18753.99471875
transcript.pyannote[2909].speaker SPEAKER_31
transcript.pyannote[2909].start 18753.42096875
transcript.pyannote[2909].end 18753.50534375
transcript.pyannote[2910].speaker SPEAKER_19
transcript.pyannote[2910].start 18754.58534375
transcript.pyannote[2910].end 18761.40284375
transcript.pyannote[2911].speaker SPEAKER_19
transcript.pyannote[2911].start 18761.99346875
transcript.pyannote[2911].end 18771.03846875
transcript.pyannote[2912].speaker SPEAKER_19
transcript.pyannote[2912].start 18771.66284375
transcript.pyannote[2912].end 18778.64909375
transcript.pyannote[2913].speaker SPEAKER_23
transcript.pyannote[2913].start 18779.10471875
transcript.pyannote[2913].end 18797.59971875
transcript.pyannote[2914].speaker SPEAKER_19
transcript.pyannote[2914].start 18783.18846875
transcript.pyannote[2914].end 18783.61034375
transcript.pyannote[2915].speaker SPEAKER_19
transcript.pyannote[2915].start 18784.79159375
transcript.pyannote[2915].end 18785.19659375
transcript.pyannote[2916].speaker SPEAKER_19
transcript.pyannote[2916].start 18786.12471875
transcript.pyannote[2916].end 18786.42846875
transcript.pyannote[2917].speaker SPEAKER_19
transcript.pyannote[2917].start 18797.34659375
transcript.pyannote[2917].end 18809.36159375
transcript.pyannote[2918].speaker SPEAKER_19
transcript.pyannote[2918].start 18809.85096875
transcript.pyannote[2918].end 18818.59221875
transcript.pyannote[2919].speaker SPEAKER_31
transcript.pyannote[2919].start 18818.25471875
transcript.pyannote[2919].end 18819.28409375
transcript.pyannote[2920].speaker SPEAKER_19
transcript.pyannote[2920].start 18819.28409375
transcript.pyannote[2920].end 18843.22971875
transcript.pyannote[2921].speaker SPEAKER_31
transcript.pyannote[2921].start 18819.30096875
transcript.pyannote[2921].end 18819.33471875
transcript.pyannote[2922].speaker SPEAKER_23
transcript.pyannote[2922].start 18843.75284375
transcript.pyannote[2922].end 18851.43096875
transcript.pyannote[2923].speaker SPEAKER_19
transcript.pyannote[2923].start 18845.99721875
transcript.pyannote[2923].end 18846.08159375
transcript.pyannote[2924].speaker SPEAKER_19
transcript.pyannote[2924].start 18849.49034375
transcript.pyannote[2924].end 18855.04221875
transcript.pyannote[2925].speaker SPEAKER_23
transcript.pyannote[2925].start 18855.22784375
transcript.pyannote[2925].end 18860.47596875
transcript.pyannote[2926].speaker SPEAKER_19
transcript.pyannote[2926].start 18859.78409375
transcript.pyannote[2926].end 18859.85159375
transcript.pyannote[2927].speaker SPEAKER_19
transcript.pyannote[2927].start 18860.30721875
transcript.pyannote[2927].end 18868.60971875
transcript.pyannote[2928].speaker SPEAKER_26
transcript.pyannote[2928].start 18867.41159375
transcript.pyannote[2928].end 18868.25534375
transcript.pyannote[2929].speaker SPEAKER_19
transcript.pyannote[2929].start 18869.28471875
transcript.pyannote[2929].end 18871.09034375
transcript.pyannote[2930].speaker SPEAKER_19
transcript.pyannote[2930].start 18871.22534375
transcript.pyannote[2930].end 18871.74846875
transcript.pyannote[2931].speaker SPEAKER_19
transcript.pyannote[2931].start 18872.37284375
transcript.pyannote[2931].end 18873.25034375
transcript.pyannote[2932].speaker SPEAKER_19
transcript.pyannote[2932].start 18880.57409375
transcript.pyannote[2932].end 18880.99596875
transcript.pyannote[2933].speaker SPEAKER_19
transcript.pyannote[2933].start 18883.10534375
transcript.pyannote[2933].end 18889.18034375
transcript.pyannote[2934].speaker SPEAKER_19
transcript.pyannote[2934].start 18911.40471875
transcript.pyannote[2934].end 18912.53534375
transcript.pyannote[2935].speaker SPEAKER_19
transcript.pyannote[2935].start 18913.09221875
transcript.pyannote[2935].end 18915.89346875
transcript.pyannote[2936].speaker SPEAKER_19
transcript.pyannote[2936].start 18916.34909375
transcript.pyannote[2936].end 18916.72034375
transcript.pyannote[2937].speaker SPEAKER_19
transcript.pyannote[2937].start 18917.76659375
transcript.pyannote[2937].end 18924.02721875
transcript.pyannote[2938].speaker SPEAKER_19
transcript.pyannote[2938].start 18924.19596875
transcript.pyannote[2938].end 18937.96596875
transcript.pyannote[2939].speaker SPEAKER_19
transcript.pyannote[2939].start 18938.55659375
transcript.pyannote[2939].end 18950.72346875
transcript.pyannote[2940].speaker SPEAKER_19
transcript.pyannote[2940].start 18950.99346875
transcript.pyannote[2940].end 18953.08596875
transcript.pyannote[2941].speaker SPEAKER_19
transcript.pyannote[2941].start 18953.79471875
transcript.pyannote[2941].end 18964.13909375
transcript.pyannote[2942].speaker SPEAKER_19
transcript.pyannote[2942].start 18964.89846875
transcript.pyannote[2942].end 18970.68659375
transcript.pyannote[2943].speaker SPEAKER_19
transcript.pyannote[2943].start 18970.88909375
transcript.pyannote[2943].end 18977.70659375
transcript.pyannote[2944].speaker SPEAKER_23
transcript.pyannote[2944].start 18977.84159375
transcript.pyannote[2944].end 18980.45721875
transcript.pyannote[2945].speaker SPEAKER_19
transcript.pyannote[2945].start 18981.21659375
transcript.pyannote[2945].end 18983.52846875
transcript.pyannote[2946].speaker SPEAKER_23
transcript.pyannote[2946].start 18983.41034375
transcript.pyannote[2946].end 18984.00096875
transcript.pyannote[2947].speaker SPEAKER_19
transcript.pyannote[2947].start 18983.61284375
transcript.pyannote[2947].end 18986.29596875
transcript.pyannote[2948].speaker SPEAKER_19
transcript.pyannote[2948].start 18986.31284375
transcript.pyannote[2948].end 18992.79284375
transcript.pyannote[2949].speaker SPEAKER_31
transcript.pyannote[2949].start 18989.45159375
transcript.pyannote[2949].end 18989.78909375
transcript.pyannote[2950].speaker SPEAKER_19
transcript.pyannote[2950].start 18993.21471875
transcript.pyannote[2950].end 19010.47784375
transcript.pyannote[2951].speaker SPEAKER_19
transcript.pyannote[2951].start 19010.86596875
transcript.pyannote[2951].end 19012.72221875
transcript.pyannote[2952].speaker SPEAKER_19
transcript.pyannote[2952].start 19013.21159375
transcript.pyannote[2952].end 19019.20221875
transcript.pyannote[2953].speaker SPEAKER_37
transcript.pyannote[2953].start 19019.86034375
transcript.pyannote[2953].end 19038.32159375
transcript.pyannote[2954].speaker SPEAKER_19
transcript.pyannote[2954].start 19031.08221875
transcript.pyannote[2954].end 19031.21721875
transcript.pyannote[2955].speaker SPEAKER_19
transcript.pyannote[2955].start 19036.70159375
transcript.pyannote[2955].end 19056.42846875
transcript.pyannote[2956].speaker SPEAKER_19
transcript.pyannote[2956].start 19056.86721875
transcript.pyannote[2956].end 19062.70596875
transcript.pyannote[2957].speaker SPEAKER_23
transcript.pyannote[2957].start 19063.21221875
transcript.pyannote[2957].end 19071.04221875
transcript.pyannote[2958].speaker SPEAKER_19
transcript.pyannote[2958].start 19068.17346875
transcript.pyannote[2958].end 19068.29159375
transcript.pyannote[2959].speaker SPEAKER_19
transcript.pyannote[2959].start 19071.14346875
transcript.pyannote[2959].end 19072.20659375
transcript.pyannote[2960].speaker SPEAKER_23
transcript.pyannote[2960].start 19071.51471875
transcript.pyannote[2960].end 19071.76784375
transcript.pyannote[2961].speaker SPEAKER_23
transcript.pyannote[2961].start 19072.20659375
transcript.pyannote[2961].end 19093.38471875
transcript.pyannote[2962].speaker SPEAKER_33
transcript.pyannote[2962].start 19079.80034375
transcript.pyannote[2962].end 19080.17159375
transcript.pyannote[2963].speaker SPEAKER_19
transcript.pyannote[2963].start 19091.35971875
transcript.pyannote[2963].end 19134.07034375
transcript.pyannote[2964].speaker SPEAKER_05
transcript.pyannote[2964].start 19124.73846875
transcript.pyannote[2964].end 19124.97471875
transcript.pyannote[2965].speaker SPEAKER_00
transcript.pyannote[2965].start 19124.97471875
transcript.pyannote[2965].end 19126.02096875
transcript.pyannote[2966].speaker SPEAKER_19
transcript.pyannote[2966].start 19134.32346875
transcript.pyannote[2966].end 19136.04471875
transcript.pyannote[2967].speaker SPEAKER_23
transcript.pyannote[2967].start 19136.17971875
transcript.pyannote[2967].end 19144.06034375
transcript.pyannote[2968].speaker SPEAKER_19
transcript.pyannote[2968].start 19143.79034375
transcript.pyannote[2968].end 19155.65346875
transcript.pyannote[2969].speaker SPEAKER_23
transcript.pyannote[2969].start 19149.42659375
transcript.pyannote[2969].end 19149.61221875
transcript.pyannote[2970].speaker SPEAKER_31
transcript.pyannote[2970].start 19149.61221875
transcript.pyannote[2970].end 19149.78096875
transcript.pyannote[2971].speaker SPEAKER_23
transcript.pyannote[2971].start 19149.78096875
transcript.pyannote[2971].end 19150.00034375
transcript.pyannote[2972].speaker SPEAKER_31
transcript.pyannote[2972].start 19150.00034375
transcript.pyannote[2972].end 19150.03409375
transcript.pyannote[2973].speaker SPEAKER_30
transcript.pyannote[2973].start 19150.03409375
transcript.pyannote[2973].end 19150.15221875
transcript.pyannote[2974].speaker SPEAKER_31
transcript.pyannote[2974].start 19150.15221875
transcript.pyannote[2974].end 19150.16909375
transcript.pyannote[2975].speaker SPEAKER_30
transcript.pyannote[2975].start 19152.27846875
transcript.pyannote[2975].end 19152.58221875
transcript.pyannote[2976].speaker SPEAKER_30
transcript.pyannote[2976].start 19154.86034375
transcript.pyannote[2976].end 19158.72471875
transcript.pyannote[2977].speaker SPEAKER_19
transcript.pyannote[2977].start 19155.82221875
transcript.pyannote[2977].end 19156.17659375
transcript.pyannote[2978].speaker SPEAKER_30
transcript.pyannote[2978].start 19159.11284375
transcript.pyannote[2978].end 19166.99346875
transcript.pyannote[2979].speaker SPEAKER_29
transcript.pyannote[2979].start 19175.09346875
transcript.pyannote[2979].end 19182.63659375
transcript.pyannote[2980].speaker SPEAKER_26
transcript.pyannote[2980].start 19179.17721875
transcript.pyannote[2980].end 19180.10534375
transcript.pyannote[2981].speaker SPEAKER_23
transcript.pyannote[2981].start 19185.85971875
transcript.pyannote[2981].end 19186.78784375
transcript.pyannote[2982].speaker SPEAKER_29
transcript.pyannote[2982].start 19186.78784375
transcript.pyannote[2982].end 19188.34034375
transcript.pyannote[2983].speaker SPEAKER_29
transcript.pyannote[2983].start 19188.67784375
transcript.pyannote[2983].end 19196.13659375
transcript.pyannote[2984].speaker SPEAKER_29
transcript.pyannote[2984].start 19196.79471875
transcript.pyannote[2984].end 19211.67846875
transcript.pyannote[2985].speaker SPEAKER_29
transcript.pyannote[2985].start 19212.58971875
transcript.pyannote[2985].end 19238.30721875
transcript.pyannote[2986].speaker SPEAKER_23
transcript.pyannote[2986].start 19219.33971875
transcript.pyannote[2986].end 19220.53784375
transcript.pyannote[2987].speaker SPEAKER_29
transcript.pyannote[2987].start 19238.37471875
transcript.pyannote[2987].end 19255.43534375
transcript.pyannote[2988].speaker SPEAKER_26
transcript.pyannote[2988].start 19255.48596875
transcript.pyannote[2988].end 19255.90784375
transcript.pyannote[2989].speaker SPEAKER_29
transcript.pyannote[2989].start 19255.84034375
transcript.pyannote[2989].end 19256.19471875
transcript.pyannote[2990].speaker SPEAKER_29
transcript.pyannote[2990].start 19256.29596875
transcript.pyannote[2990].end 19258.48971875
transcript.pyannote[2991].speaker SPEAKER_29
transcript.pyannote[2991].start 19258.84409375
transcript.pyannote[2991].end 19290.34971875
transcript.pyannote[2992].speaker SPEAKER_29
transcript.pyannote[2992].start 19290.80534375
transcript.pyannote[2992].end 19315.08846875
transcript.pyannote[2993].speaker SPEAKER_29
transcript.pyannote[2993].start 19315.34159375
transcript.pyannote[2993].end 19317.61971875
transcript.pyannote[2994].speaker SPEAKER_23
transcript.pyannote[2994].start 19317.61971875
transcript.pyannote[2994].end 19335.97971875
transcript.pyannote[2995].speaker SPEAKER_29
transcript.pyannote[2995].start 19337.19471875
transcript.pyannote[2995].end 19340.33346875
transcript.pyannote[2996].speaker SPEAKER_24
transcript.pyannote[2996].start 19339.82721875
transcript.pyannote[2996].end 19340.08034375
transcript.pyannote[2997].speaker SPEAKER_24
transcript.pyannote[2997].start 19340.68784375
transcript.pyannote[2997].end 19346.86409375
transcript.pyannote[2998].speaker SPEAKER_24
transcript.pyannote[2998].start 19347.18471875
transcript.pyannote[2998].end 19356.06096875
transcript.pyannote[2999].speaker SPEAKER_24
transcript.pyannote[2999].start 19356.92159375
transcript.pyannote[2999].end 19356.97221875
transcript.pyannote[3000].speaker SPEAKER_29
transcript.pyannote[3000].start 19356.97221875
transcript.pyannote[3000].end 19366.84409375
transcript.pyannote[3001].speaker SPEAKER_29
transcript.pyannote[3001].start 19369.12221875
transcript.pyannote[3001].end 19391.51534375
transcript.pyannote[3002].speaker SPEAKER_29
transcript.pyannote[3002].start 19392.57846875
transcript.pyannote[3002].end 19395.98721875
transcript.pyannote[3003].speaker SPEAKER_29
transcript.pyannote[3003].start 19396.42596875
transcript.pyannote[3003].end 19397.65784375
transcript.pyannote[3004].speaker SPEAKER_23
transcript.pyannote[3004].start 19396.45971875
transcript.pyannote[3004].end 19396.93221875
transcript.pyannote[3005].speaker SPEAKER_23
transcript.pyannote[3005].start 19397.70846875
transcript.pyannote[3005].end 19411.37721875
transcript.pyannote[3006].speaker SPEAKER_29
transcript.pyannote[3006].start 19403.32784375
transcript.pyannote[3006].end 19403.81721875
transcript.pyannote[3007].speaker SPEAKER_29
transcript.pyannote[3007].start 19410.78659375
transcript.pyannote[3007].end 19423.00409375
transcript.pyannote[3008].speaker SPEAKER_29
transcript.pyannote[3008].start 19423.78034375
transcript.pyannote[3008].end 19424.47221875
transcript.pyannote[3009].speaker SPEAKER_23
transcript.pyannote[3009].start 19425.16409375
transcript.pyannote[3009].end 19428.53909375
transcript.pyannote[3010].speaker SPEAKER_29
transcript.pyannote[3010].start 19426.14284375
transcript.pyannote[3010].end 19428.25221875
transcript.pyannote[3011].speaker SPEAKER_29
transcript.pyannote[3011].start 19429.23096875
transcript.pyannote[3011].end 19442.35971875
transcript.pyannote[3012].speaker SPEAKER_29
transcript.pyannote[3012].start 19442.66346875
transcript.pyannote[3012].end 19463.33534375
transcript.pyannote[3013].speaker SPEAKER_29
transcript.pyannote[3013].start 19463.68971875
transcript.pyannote[3013].end 19468.80284375
transcript.pyannote[3014].speaker SPEAKER_31
transcript.pyannote[3014].start 19467.68909375
transcript.pyannote[3014].end 19468.02659375
transcript.pyannote[3015].speaker SPEAKER_23
transcript.pyannote[3015].start 19468.02659375
transcript.pyannote[3015].end 19468.85346875
transcript.pyannote[3016].speaker SPEAKER_31
transcript.pyannote[3016].start 19468.85346875
transcript.pyannote[3016].end 19468.87034375
transcript.pyannote[3017].speaker SPEAKER_23
transcript.pyannote[3017].start 19468.87034375
transcript.pyannote[3017].end 19468.88721875
transcript.pyannote[3018].speaker SPEAKER_31
transcript.pyannote[3018].start 19468.88721875
transcript.pyannote[3018].end 19468.90409375
transcript.pyannote[3019].speaker SPEAKER_23
transcript.pyannote[3019].start 19468.90409375
transcript.pyannote[3019].end 19468.93784375
transcript.pyannote[3020].speaker SPEAKER_29
transcript.pyannote[3020].start 19469.12346875
transcript.pyannote[3020].end 19526.81909375
transcript.pyannote[3021].speaker SPEAKER_29
transcript.pyannote[3021].start 19527.13971875
transcript.pyannote[3021].end 19528.06784375
transcript.pyannote[3022].speaker SPEAKER_23
transcript.pyannote[3022].start 19528.06784375
transcript.pyannote[3022].end 19549.61721875
transcript.pyannote[3023].speaker SPEAKER_29
transcript.pyannote[3023].start 19547.15346875
transcript.pyannote[3023].end 19547.65971875
transcript.pyannote[3024].speaker SPEAKER_29
transcript.pyannote[3024].start 19549.76909375
transcript.pyannote[3024].end 19554.42659375
transcript.pyannote[3025].speaker SPEAKER_23
transcript.pyannote[3025].start 19554.42659375
transcript.pyannote[3025].end 19565.42909375
transcript.pyannote[3026].speaker SPEAKER_29
transcript.pyannote[3026].start 19565.42909375
transcript.pyannote[3026].end 19593.69471875
transcript.pyannote[3027].speaker SPEAKER_31
transcript.pyannote[3027].start 19592.71596875
transcript.pyannote[3027].end 19593.98159375
transcript.pyannote[3028].speaker SPEAKER_29
transcript.pyannote[3028].start 19593.71159375
transcript.pyannote[3028].end 19593.72846875
transcript.pyannote[3029].speaker SPEAKER_29
transcript.pyannote[3029].start 19593.93096875
transcript.pyannote[3029].end 19620.20534375
transcript.pyannote[3030].speaker SPEAKER_23
transcript.pyannote[3030].start 19620.44159375
transcript.pyannote[3030].end 19631.59596875
transcript.pyannote[3031].speaker SPEAKER_29
transcript.pyannote[3031].start 19632.16971875
transcript.pyannote[3031].end 19635.35909375
transcript.pyannote[3032].speaker SPEAKER_29
transcript.pyannote[3032].start 19635.91596875
transcript.pyannote[3032].end 19636.79346875
transcript.pyannote[3033].speaker SPEAKER_23
transcript.pyannote[3033].start 19636.86096875
transcript.pyannote[3033].end 19640.32034375
transcript.pyannote[3034].speaker SPEAKER_29
transcript.pyannote[3034].start 19638.54846875
transcript.pyannote[3034].end 19639.88159375
transcript.pyannote[3035].speaker SPEAKER_29
transcript.pyannote[3035].start 19640.43846875
transcript.pyannote[3035].end 19646.68221875
transcript.pyannote[3036].speaker SPEAKER_29
transcript.pyannote[3036].start 19647.10409375
transcript.pyannote[3036].end 19648.11659375
transcript.pyannote[3037].speaker SPEAKER_29
transcript.pyannote[3037].start 19648.74096875
transcript.pyannote[3037].end 19649.92221875
transcript.pyannote[3038].speaker SPEAKER_29
transcript.pyannote[3038].start 19650.88409375
transcript.pyannote[3038].end 19678.45784375
transcript.pyannote[3039].speaker SPEAKER_29
transcript.pyannote[3039].start 19679.41971875
transcript.pyannote[3039].end 19680.07784375
transcript.pyannote[3040].speaker SPEAKER_31
transcript.pyannote[3040].start 19680.41534375
transcript.pyannote[3040].end 19680.75284375
transcript.pyannote[3041].speaker SPEAKER_29
transcript.pyannote[3041].start 19680.75284375
transcript.pyannote[3041].end 19681.59659375
transcript.pyannote[3042].speaker SPEAKER_31
transcript.pyannote[3042].start 19681.10721875
transcript.pyannote[3042].end 19681.32659375
transcript.pyannote[3043].speaker SPEAKER_29
transcript.pyannote[3043].start 19681.74846875
transcript.pyannote[3043].end 19682.10284375
transcript.pyannote[3044].speaker SPEAKER_29
transcript.pyannote[3044].start 19682.60909375
transcript.pyannote[3044].end 19683.53721875
transcript.pyannote[3045].speaker SPEAKER_29
transcript.pyannote[3045].start 19683.80721875
transcript.pyannote[3045].end 19692.54846875
transcript.pyannote[3046].speaker SPEAKER_29
transcript.pyannote[3046].start 19692.97034375
transcript.pyannote[3046].end 19703.85471875
transcript.pyannote[3047].speaker SPEAKER_27
transcript.pyannote[3047].start 19704.56346875
transcript.pyannote[3047].end 19729.26846875
transcript.pyannote[3048].speaker SPEAKER_29
transcript.pyannote[3048].start 19729.26846875
transcript.pyannote[3048].end 19729.31909375
transcript.pyannote[3049].speaker SPEAKER_27
transcript.pyannote[3049].start 19730.31471875
transcript.pyannote[3049].end 19730.33159375
transcript.pyannote[3050].speaker SPEAKER_29
transcript.pyannote[3050].start 19730.33159375
transcript.pyannote[3050].end 19742.11034375
transcript.pyannote[3051].speaker SPEAKER_31
transcript.pyannote[3051].start 19742.11034375
transcript.pyannote[3051].end 19742.95409375
transcript.pyannote[3052].speaker SPEAKER_29
transcript.pyannote[3052].start 19742.41409375
transcript.pyannote[3052].end 19743.52784375
transcript.pyannote[3053].speaker SPEAKER_31
transcript.pyannote[3053].start 19743.39284375
transcript.pyannote[3053].end 19743.71346875
transcript.pyannote[3054].speaker SPEAKER_29
transcript.pyannote[3054].start 19743.71346875
transcript.pyannote[3054].end 19745.02971875
transcript.pyannote[3055].speaker SPEAKER_29
transcript.pyannote[3055].start 19745.33346875
transcript.pyannote[3055].end 19745.95784375
transcript.pyannote[3056].speaker SPEAKER_29
transcript.pyannote[3056].start 19746.46409375
transcript.pyannote[3056].end 19761.85409375
transcript.pyannote[3057].speaker SPEAKER_29
transcript.pyannote[3057].start 19762.10721875
transcript.pyannote[3057].end 19763.38971875
transcript.pyannote[3058].speaker SPEAKER_27
transcript.pyannote[3058].start 19762.73159375
transcript.pyannote[3058].end 19763.03534375
transcript.pyannote[3059].speaker SPEAKER_27
transcript.pyannote[3059].start 19763.38971875
transcript.pyannote[3059].end 19770.44346875
transcript.pyannote[3060].speaker SPEAKER_29
transcript.pyannote[3060].start 19770.44346875
transcript.pyannote[3060].end 19795.89096875
transcript.pyannote[3061].speaker SPEAKER_29
transcript.pyannote[3061].start 19796.80221875
transcript.pyannote[3061].end 19797.51096875
transcript.pyannote[3062].speaker SPEAKER_29
transcript.pyannote[3062].start 19798.25346875
transcript.pyannote[3062].end 19807.80471875
transcript.pyannote[3063].speaker SPEAKER_27
transcript.pyannote[3063].start 19807.06221875
transcript.pyannote[3063].end 19823.39721875
transcript.pyannote[3064].speaker SPEAKER_29
transcript.pyannote[3064].start 19814.68971875
transcript.pyannote[3064].end 19815.29721875
transcript.pyannote[3065].speaker SPEAKER_00
transcript.pyannote[3065].start 19815.29721875
transcript.pyannote[3065].end 19815.33096875
transcript.pyannote[3066].speaker SPEAKER_29
transcript.pyannote[3066].start 19823.46471875
transcript.pyannote[3066].end 19831.15971875
transcript.pyannote[3067].speaker SPEAKER_23
transcript.pyannote[3067].start 19830.51846875
transcript.pyannote[3067].end 19831.12596875
transcript.pyannote[3068].speaker SPEAKER_23
transcript.pyannote[3068].start 19831.15971875
transcript.pyannote[3068].end 19831.42971875
transcript.pyannote[3069].speaker SPEAKER_29
transcript.pyannote[3069].start 19831.42971875
transcript.pyannote[3069].end 19831.91909375
transcript.pyannote[3070].speaker SPEAKER_23
transcript.pyannote[3070].start 19831.46346875
transcript.pyannote[3070].end 19831.90221875
transcript.pyannote[3071].speaker SPEAKER_23
transcript.pyannote[3071].start 19831.91909375
transcript.pyannote[3071].end 19840.23846875
transcript.pyannote[3072].speaker SPEAKER_29
transcript.pyannote[3072].start 19840.62659375
transcript.pyannote[3072].end 19842.33096875
transcript.pyannote[3073].speaker SPEAKER_29
transcript.pyannote[3073].start 19842.97221875
transcript.pyannote[3073].end 19845.65534375
transcript.pyannote[3074].speaker SPEAKER_29
transcript.pyannote[3074].start 19845.70596875
transcript.pyannote[3074].end 19845.72284375
transcript.pyannote[3075].speaker SPEAKER_29
transcript.pyannote[3075].start 19845.73971875
transcript.pyannote[3075].end 19845.77346875
transcript.pyannote[3076].speaker SPEAKER_23
transcript.pyannote[3076].start 19845.90846875
transcript.pyannote[3076].end 19845.94221875
transcript.pyannote[3077].speaker SPEAKER_23
transcript.pyannote[3077].start 19846.04346875
transcript.pyannote[3077].end 19846.07721875
transcript.pyannote[3078].speaker SPEAKER_31
transcript.pyannote[3078].start 19846.07721875
transcript.pyannote[3078].end 19846.09409375
transcript.pyannote[3079].speaker SPEAKER_23
transcript.pyannote[3079].start 19846.09409375
transcript.pyannote[3079].end 19846.16159375
transcript.pyannote[3080].speaker SPEAKER_31
transcript.pyannote[3080].start 19846.16159375
transcript.pyannote[3080].end 19846.54971875
transcript.pyannote[3081].speaker SPEAKER_29
transcript.pyannote[3081].start 19846.54971875
transcript.pyannote[3081].end 19860.64034375
transcript.pyannote[3082].speaker SPEAKER_20
transcript.pyannote[3082].start 19855.03784375
transcript.pyannote[3082].end 19855.25721875
transcript.pyannote[3083].speaker SPEAKER_29
transcript.pyannote[3083].start 19861.82159375
transcript.pyannote[3083].end 19863.34034375
transcript.pyannote[3084].speaker SPEAKER_29
transcript.pyannote[3084].start 19864.53846875
transcript.pyannote[3084].end 19879.54034375
transcript.pyannote[3085].speaker SPEAKER_29
transcript.pyannote[3085].start 19881.07596875
transcript.pyannote[3085].end 19885.02471875
transcript.pyannote[3086].speaker SPEAKER_29
transcript.pyannote[3086].start 19885.73346875
transcript.pyannote[3086].end 19887.47159375
transcript.pyannote[3087].speaker SPEAKER_29
transcript.pyannote[3087].start 19887.75846875
transcript.pyannote[3087].end 19907.36721875
transcript.pyannote[3088].speaker SPEAKER_29
transcript.pyannote[3088].start 19907.87346875
transcript.pyannote[3088].end 19921.37346875
transcript.pyannote[3089].speaker SPEAKER_15
transcript.pyannote[3089].start 19912.76721875
transcript.pyannote[3089].end 19914.33659375
transcript.pyannote[3090].speaker SPEAKER_29
transcript.pyannote[3090].start 19921.64346875
transcript.pyannote[3090].end 19925.37284375
transcript.pyannote[3091].speaker SPEAKER_29
transcript.pyannote[3091].start 19925.99721875
transcript.pyannote[3091].end 19941.74159375
transcript.pyannote[3092].speaker SPEAKER_29
transcript.pyannote[3092].start 19942.21409375
transcript.pyannote[3092].end 19945.15034375
transcript.pyannote[3093].speaker SPEAKER_23
transcript.pyannote[3093].start 19946.12909375
transcript.pyannote[3093].end 19946.87159375
transcript.pyannote[3094].speaker SPEAKER_23
transcript.pyannote[3094].start 19947.49596875
transcript.pyannote[3094].end 19949.35221875
transcript.pyannote[3095].speaker SPEAKER_29
transcript.pyannote[3095].start 19950.39846875
transcript.pyannote[3095].end 19951.96784375
transcript.pyannote[3096].speaker SPEAKER_23
transcript.pyannote[3096].start 19951.96784375
transcript.pyannote[3096].end 19952.38971875
transcript.pyannote[3097].speaker SPEAKER_23
transcript.pyannote[3097].start 19952.42346875
transcript.pyannote[3097].end 19952.81159375
transcript.pyannote[3098].speaker SPEAKER_29
transcript.pyannote[3098].start 19953.48659375
transcript.pyannote[3098].end 19954.19534375
transcript.pyannote[3099].speaker SPEAKER_23
transcript.pyannote[3099].start 19953.52034375
transcript.pyannote[3099].end 19954.34721875
transcript.pyannote[3100].speaker SPEAKER_29
transcript.pyannote[3100].start 19954.34721875
transcript.pyannote[3100].end 19956.10221875
transcript.pyannote[3101].speaker SPEAKER_29
transcript.pyannote[3101].start 19956.72659375
transcript.pyannote[3101].end 19958.36346875
transcript.pyannote[3102].speaker SPEAKER_29
transcript.pyannote[3102].start 19959.10596875
transcript.pyannote[3102].end 19961.40096875
transcript.pyannote[3103].speaker SPEAKER_23
transcript.pyannote[3103].start 19961.08034375
transcript.pyannote[3103].end 19963.30784375
transcript.pyannote[3104].speaker SPEAKER_29
transcript.pyannote[3104].start 19962.32909375
transcript.pyannote[3104].end 19963.07159375
transcript.pyannote[3105].speaker SPEAKER_29
transcript.pyannote[3105].start 19963.61159375
transcript.pyannote[3105].end 19966.05846875
transcript.pyannote[3106].speaker SPEAKER_29
transcript.pyannote[3106].start 19966.81784375
transcript.pyannote[3106].end 19970.02409375
transcript.pyannote[3107].speaker SPEAKER_29
transcript.pyannote[3107].start 19970.68221875
transcript.pyannote[3107].end 19974.79971875
transcript.pyannote[3108].speaker SPEAKER_23
transcript.pyannote[3108].start 19974.79971875
transcript.pyannote[3108].end 19975.06971875
transcript.pyannote[3109].speaker SPEAKER_29
transcript.pyannote[3109].start 19975.71096875
transcript.pyannote[3109].end 19977.31409375
transcript.pyannote[3110].speaker SPEAKER_23
transcript.pyannote[3110].start 19976.82471875
transcript.pyannote[3110].end 19977.68534375
transcript.pyannote[3111].speaker SPEAKER_23
transcript.pyannote[3111].start 19978.05659375
transcript.pyannote[3111].end 19979.89596875
transcript.pyannote[3112].speaker SPEAKER_29
transcript.pyannote[3112].start 19978.52909375
transcript.pyannote[3112].end 19979.94659375
transcript.pyannote[3113].speaker SPEAKER_29
transcript.pyannote[3113].start 19980.52034375
transcript.pyannote[3113].end 19981.70159375
transcript.pyannote[3114].speaker SPEAKER_29
transcript.pyannote[3114].start 19981.83659375
transcript.pyannote[3114].end 19982.98409375
transcript.pyannote[3115].speaker SPEAKER_29
transcript.pyannote[3115].start 19983.22034375
transcript.pyannote[3115].end 19994.44221875
transcript.pyannote[3116].speaker SPEAKER_29
transcript.pyannote[3116].start 19994.96534375
transcript.pyannote[3116].end 19997.39534375
transcript.pyannote[3117].speaker SPEAKER_29
transcript.pyannote[3117].start 19997.93534375
transcript.pyannote[3117].end 19999.67346875
transcript.pyannote[3118].speaker SPEAKER_29
transcript.pyannote[3118].start 20000.75346875
transcript.pyannote[3118].end 20018.96159375
transcript.pyannote[3119].speaker SPEAKER_29
transcript.pyannote[3119].start 20019.34971875
transcript.pyannote[3119].end 20023.29846875
transcript.pyannote[3120].speaker SPEAKER_31
transcript.pyannote[3120].start 20025.13784375
transcript.pyannote[3120].end 20025.54284375
transcript.pyannote[3121].speaker SPEAKER_29
transcript.pyannote[3121].start 20026.74096875
transcript.pyannote[3121].end 20027.31471875
transcript.pyannote[3122].speaker SPEAKER_29
transcript.pyannote[3122].start 20027.55096875
transcript.pyannote[3122].end 20030.63909375
transcript.pyannote[3123].speaker SPEAKER_23
transcript.pyannote[3123].start 20031.11159375
transcript.pyannote[3123].end 20035.39784375
transcript.pyannote[3124].speaker SPEAKER_29
transcript.pyannote[3124].start 20034.89159375
transcript.pyannote[3124].end 20037.57471875
transcript.pyannote[3125].speaker SPEAKER_00
transcript.pyannote[3125].start 20036.29221875
transcript.pyannote[3125].end 20037.03471875
transcript.pyannote[3126].speaker SPEAKER_23
transcript.pyannote[3126].start 20037.03471875
transcript.pyannote[3126].end 20037.42284375
transcript.pyannote[3127].speaker SPEAKER_23
transcript.pyannote[3127].start 20037.72659375
transcript.pyannote[3127].end 20043.95346875
transcript.pyannote[3128].speaker SPEAKER_29
transcript.pyannote[3128].start 20038.87409375
transcript.pyannote[3128].end 20039.12721875
transcript.pyannote[3129].speaker SPEAKER_29
transcript.pyannote[3129].start 20041.13534375
transcript.pyannote[3129].end 20041.47284375
transcript.pyannote[3130].speaker SPEAKER_29
transcript.pyannote[3130].start 20041.94534375
transcript.pyannote[3130].end 20052.12096875
transcript.pyannote[3131].speaker SPEAKER_29
transcript.pyannote[3131].start 20052.62721875
transcript.pyannote[3131].end 20059.37721875
transcript.pyannote[3132].speaker SPEAKER_29
transcript.pyannote[3132].start 20059.42784375
transcript.pyannote[3132].end 20065.63784375
transcript.pyannote[3133].speaker SPEAKER_23
transcript.pyannote[3133].start 20063.41034375
transcript.pyannote[3133].end 20071.59471875
transcript.pyannote[3134].speaker SPEAKER_23
transcript.pyannote[3134].start 20072.15159375
transcript.pyannote[3134].end 20072.42159375
transcript.pyannote[3135].speaker SPEAKER_23
transcript.pyannote[3135].start 20073.26534375
transcript.pyannote[3135].end 20074.42971875
transcript.pyannote[3136].speaker SPEAKER_29
transcript.pyannote[3136].start 20074.42971875
transcript.pyannote[3136].end 20078.42909375
transcript.pyannote[3137].speaker SPEAKER_23
transcript.pyannote[3137].start 20080.87596875
transcript.pyannote[3137].end 20080.89284375
transcript.pyannote[3138].speaker SPEAKER_31
transcript.pyannote[3138].start 20080.89284375
transcript.pyannote[3138].end 20081.07846875
transcript.pyannote[3139].speaker SPEAKER_29
transcript.pyannote[3139].start 20080.94346875
transcript.pyannote[3139].end 20087.71034375
transcript.pyannote[3140].speaker SPEAKER_23
transcript.pyannote[3140].start 20081.07846875
transcript.pyannote[3140].end 20081.09534375
transcript.pyannote[3141].speaker SPEAKER_31
transcript.pyannote[3141].start 20081.09534375
transcript.pyannote[3141].end 20081.11221875
transcript.pyannote[3142].speaker SPEAKER_31
transcript.pyannote[3142].start 20082.17534375
transcript.pyannote[3142].end 20082.41159375
transcript.pyannote[3143].speaker SPEAKER_31
transcript.pyannote[3143].start 20082.46221875
transcript.pyannote[3143].end 20082.47909375
transcript.pyannote[3144].speaker SPEAKER_31
transcript.pyannote[3144].start 20082.86721875
transcript.pyannote[3144].end 20082.96846875
transcript.pyannote[3145].speaker SPEAKER_31
transcript.pyannote[3145].start 20087.71034375
transcript.pyannote[3145].end 20090.71409375
transcript.pyannote[3146].speaker SPEAKER_29
transcript.pyannote[3146].start 20087.99721875
transcript.pyannote[3146].end 20089.07721875
transcript.pyannote[3147].speaker SPEAKER_30
transcript.pyannote[3147].start 20089.07721875
transcript.pyannote[3147].end 20089.21221875
transcript.pyannote[3148].speaker SPEAKER_29
transcript.pyannote[3148].start 20089.21221875
transcript.pyannote[3148].end 20089.22909375
transcript.pyannote[3149].speaker SPEAKER_30
transcript.pyannote[3149].start 20089.22909375
transcript.pyannote[3149].end 20089.27971875
transcript.pyannote[3150].speaker SPEAKER_29
transcript.pyannote[3150].start 20089.27971875
transcript.pyannote[3150].end 20089.63409375
transcript.pyannote[3151].speaker SPEAKER_30
transcript.pyannote[3151].start 20089.63409375
transcript.pyannote[3151].end 20090.39346875
transcript.pyannote[3152].speaker SPEAKER_30
transcript.pyannote[3152].start 20091.10221875
transcript.pyannote[3152].end 20105.44596875
transcript.pyannote[3153].speaker SPEAKER_30
transcript.pyannote[3153].start 20105.78346875
transcript.pyannote[3153].end 20107.50471875
transcript.pyannote[3154].speaker SPEAKER_30
transcript.pyannote[3154].start 20107.79159375
transcript.pyannote[3154].end 20109.98534375
transcript.pyannote[3155].speaker SPEAKER_30
transcript.pyannote[3155].start 20111.03159375
transcript.pyannote[3155].end 20111.52096875
transcript.pyannote[3156].speaker SPEAKER_30
transcript.pyannote[3156].start 20112.04409375
transcript.pyannote[3156].end 20142.95909375
transcript.pyannote[3157].speaker SPEAKER_37
transcript.pyannote[3157].start 20201.75159375
transcript.pyannote[3157].end 20201.97096875
transcript.pyannote[3158].speaker SPEAKER_10
transcript.pyannote[3158].start 20201.97096875
transcript.pyannote[3158].end 20202.08909375
transcript.pyannote[3159].speaker SPEAKER_10
transcript.pyannote[3159].start 20202.61221875
transcript.pyannote[3159].end 20202.62909375
transcript.pyannote[3160].speaker SPEAKER_10
transcript.pyannote[3160].start 20203.89471875
transcript.pyannote[3160].end 20205.53159375
transcript.whisperx[0].start 351.621
transcript.whisperx[0].end 352.025
transcript.whisperx[0].text 多滿足了
transcript.whisperx[1].start 780.213
transcript.whisperx[1].end 780.315
transcript.whisperx[1].text 本集完
transcript.whisperx[2].start 811.458
transcript.whisperx[2].end 817.498
transcript.whisperx[2].text 委員會主席
transcript.whisperx[3].start 1266.394
transcript.whisperx[3].end 1279.458
transcript.whisperx[3].text 委員會主席
transcript.whisperx[4].start 1532.663
transcript.whisperx[4].end 1532.943
transcript.whisperx[4].text 委員會主席
transcript.whisperx[5].start 1542.875
transcript.whisperx[5].end 1551.39
transcript.whisperx[5].text 委員會主席
transcript.whisperx[6].start 1854.107
transcript.whisperx[6].end 1869.496
transcript.whisperx[6].text 初席委員以主法定人數現在開會,請議事人員宣讀上次會議議事錄。立法院第11屆第2會期社會福利及衛生環境委員會第2次全體委員會議議事錄,時間113年10月7日星期一,9時1分至13時14分,10月9日星期三,9時1分至14時42分,
transcript.whisperx[7].start 1874.759
transcript.whisperx[7].end 1898.922
transcript.whisperx[7].text 地點、群閒樓801會議室出席委員、陳委員、趙姿等15人列席委員、麥委員、郁真等31人列席官員10月7日環境部部長、彭啟明等相關人員10月9日衛生福利部部長、邱太元等相關人員主席、蘇趙吉委員、清泉10月7日報告事項宣讀上次會議議事錄決定、確定邀請環境部部長針對
transcript.whisperx[8].start 1900.043
transcript.whisperx[8].end 1921.655
transcript.whisperx[8].text 垃圾裸露堆製及災後垃圾妥善處理對策進行專題報告.並備質詢。本日會議由環境部部長報告後委員陳昭芝等23人提出質詢。均經環境部部長及各相關主管等及其答覆委員蘇巧慧、林倩啟、牛許廷及謝一鳳所提書面質詢列入紀錄、刊登公報
transcript.whisperx[9].start 1922.575
transcript.whisperx[9].end 1948.848
transcript.whisperx[9].text 決定一、報告及詢答完畢二、委員質詢未及答覆或請補充資料者請相關機關於二周內以書面答覆、委員令要求期限者從其鎖定通過臨時提案三項10月9日邀請衛生福利部部長就我國人工生殖法制化作業進度衛生福利部落實中央政府我國少子女化對策計畫之成效與未來規劃及衛生福利部本月因疏於督導地方評估
transcript.whisperx[10].start 1949.648
transcript.whisperx[10].end 1979.257
transcript.whisperx[10].text 特殊需求而照利益所受監察院糾正之檢討.進行專題報告.並備質詢本日會議由衛生福利部部長報告後委員林月琴等30人提出質詢軍警衛生福利部部長幾個相關主管等即席答覆委員張家俊所提書面質詢列入紀錄刊登公報決定一報告及詢答完畢二委員質詢未及答覆或請補充資料者請相關機關於二周內以書面答覆委員另要求期限者從其鎖定
transcript.whisperx[11].start 1979.717
transcript.whisperx[11].end 2008.165
transcript.whisperx[11].text 通過臨時提案6項,宣讀完畢。請問委員會上次議事錄有無錯誤或遺漏之處?沒有。那議事錄確定。本日會議議程為邀請環境部部長、經濟部就《台灣的碳費收費標準決議》進行專題報告.並備質詢。那現在介紹在場的委員及列席官員。陳昭斯委員林月琴委員
transcript.whisperx[12].start 2010.1
transcript.whisperx[12].end 2036.965
transcript.whisperx[12].text 王振旭委員、蘇清泉委員那接下來請環境部彭部長報告時間5分鐘介紹官員 喔 抱歉抱歉抱歉好好好我忘了要介紹列席官員那列席官員有環境部部長彭啟明、彭部長
transcript.whisperx[13].start 2038.619
transcript.whisperx[13].end 2063.799
transcript.whisperx[13].text 環境部政務次長施文貞政務次長、氣候變遷署蔡雲怡署長、資源循環署賴盈盈署長、環境管理署顏旭明署長、國家環境研究院劉忠勇院長、大氣環境司張順清司長、水質保護司王月斌司長、
transcript.whisperx[14].start 2066.346
transcript.whisperx[14].end 2092.045
transcript.whisperx[14].text 監測資訊司胡明輝副司長、經濟部產業發展署楊志清署長、綜合規劃司蘇惠君專門委員、標準檢驗局洪一生組長、能源署廖芳林組長、台灣電力股份有限公司郭天和副總經理、台灣中油股份有限公司謝茂傑處長、
transcript.whisperx[15].start 2094.295
transcript.whisperx[15].end 2098.182
transcript.whisperx[15].text 好那接下來請環境部彭部長報告時間5分鐘
transcript.whisperx[16].start 2106.278
transcript.whisperx[16].end 2121.745
transcript.whisperx[16].text 主席、各位委員還有在座的政府官員還有媒體朋友大家早安我環境部長來報告台灣的碳費收費標準還有決議主要的內容如這個4個所附大家知道其實碳定價在全世界是一個非常重要的一環目前在亞洲來說的話我們已經有5個國家這樣做我們是第6個國家來實施碳定價
transcript.whisperx[17].start 2127.148
transcript.whisperx[17].end 2150.419
transcript.whisperx[17].text 那碳定價有分碳費稅是一種那另外一個就是所謂碳交易碳交易種目前大概多數的國家是選擇兩位並行是主要的一個原因那我們國家因為過去這幾年推動碳費有一段的過程所以我們還是以碳費我上任之後就是還是努力的在過去這四個多月把這個後面的過程把它接手完成
transcript.whisperx[18].start 2150.859
transcript.whisperx[18].end 2165.534
transcript.whisperx[18].text 那最重要的是說我們這個碳費是為了要達成我們國家減碳目標NDC24-1的重要一個里程碑我們算過如果我們每個企業都提自主減碳計畫的話大概可以減到14%這個是比過去自主減碳都來得有效
transcript.whisperx[19].start 2166.135
transcript.whisperx[19].end 2194.23
transcript.whisperx[19].text 那我們目前大家一定很懷疑說這個碳費是不是收得太高或太低其實我們針對國際的定義,碳定價裡面包含了這種所謂的平均化石的燃料稅還有我們所定義的碳費的制度各位可以看得到我們日本跟韓國它的排碳量比我們的多它的這種所謂的化石燃料稅其實也比我們多了是我們的兩倍到三倍左右一個幅度所以其實我們台灣的這個碳費的這個比例是高或低其實還是屬於偏低的但是各位還是會從這個費率的價錢覺得
transcript.whisperx[20].start 2196.011
transcript.whisperx[20].end 2218.237
transcript.whisperx[20].text 我們似乎比日本高一點點但是你要以整體的來看雖然說我們的碳費的用途是為了減碳那所謂的這個燃料稅還有一些別的用途但是在廣義上碳定價都是把這個算成裡面的一個一環那我們預計呢我們未來碳費徵收之後在未來幾年內也會開始實施這個碳交易的這個制度因為我們從碳費的溝通過程當中所有的產業都告訴我們說
transcript.whisperx[21].start 2219.677
transcript.whisperx[21].end 2244.977
transcript.whisperx[21].text 他們還是認為碳交易是一個未來的一個國際上的主要的主軸他們也願意來做這個事情那目前呢我們這個碳費的這個主要是根植於氣候法所以三個執法呢我們在8月底的時候已經完成了那碳費徵收費率呢上個禮拜開完徵收費率委員會我們在10月9號也進行這個預告的工作那目前呢這個三執法跟碳費的徵收都是因為氣候變遷因應法提供的28條跟29條的一個內容
transcript.whisperx[22].start 2247.139
transcript.whisperx[22].end 2268.71
transcript.whisperx[22].text 我們已經如期的一個公布那事實上就是符合這裡面的標準那碳費是什麼時候開始開徵明年1月1號開始開徵但是呢我們在今年的費率上的話我們會給企業一點試行的這個機會也就是說明年5月就要申報今年的費率但是不交錢這個是我們的讓企業能夠來習慣這個碳費制度那如果我們明年1月1號開始徵收這個
transcript.whisperx[23].start 2271.252
transcript.whisperx[23].end 2284.052
transcript.whisperx[23].text 這個起徵的開點的話他預計的是114年等於後年的5月我們才會真是收到這個實質上的一個費用那目前呢我必須說碳費是一個減量工具不是財政工具所以他其實是一個減量為出發點並不是說
transcript.whisperx[24].start 2286.655
transcript.whisperx[24].end 2307.63
transcript.whisperx[24].text 來做一個政府的稅收他是一個過度轉型的一個功能所以其實我們設計的就是鼓勵企業他如果提出自己減量的目標這個就是說企業如果很努力的減肥那這個其實他我們會把你說你是不是體質上好不好或是說你要如何去減高碳洩漏的指的是說這些企業如果我們沒有給他優惠他可能就跑到這種所謂不排碳的
transcript.whisperx[25].start 2308.07
transcript.whisperx[25].end 2325.622
transcript.whisperx[25].text 排碳沒有這種所謂碳費的國家像越南、東南亞一些國家去所以我們給他一些高碳洩漏風險的這個比例那裡面的還有一個係數0.2、0.4、0.6目前初期是0.2但是各位知道全世界有這樣的制度的都有所以慢慢的就會把它拉回來拉到一個正常的標準值
transcript.whisperx[26].start 2326.122
transcript.whisperx[26].end 2329.764
transcript.whisperx[26].text 非乾化洩漏優惠值2.5萬噸其他如果什麼都不做就是乘以一般的費率這個費率規劃的重點有一個K值這個也會隨著未來調整例如說現在是2.5萬噸未來可能減到1萬噸甚至不減
transcript.whisperx[27].start 2348.336
transcript.whisperx[27].end 2348.516
transcript.whisperx[27].text 自主減碳計畫
transcript.whisperx[28].start 2363.904
transcript.whisperx[28].end 2384.511
transcript.whisperx[28].text 說真的他要付出這樣的這個成本會更高但是他大家都知道說我做這個是我自己去體制的調整這個比實際上費率他來的來的重要那我目前呢我們現在有標竿一標負負表一負表二就削減率這個部分呢就是一個是42一個是23就適用於優惠費率這個目前我們可以預期可以減到3700萬噸等於是說這個對我們減量是很有一個成效的
transcript.whisperx[29].start 2388.132
transcript.whisperx[29].end 2388.572
transcript.whisperx[29].text 主席再給我一分鐘
transcript.whisperx[30].start 2410.543
transcript.whisperx[30].end 2428.352
transcript.whisperx[30].text 我第6次的本議委員會我們就決定了這個300塊跟100塊跟50塊那這個一般費率是300塊優惠費率是100塊那這個都有參考到臨近的一個國家的費率那如果要得到最低的50塊的這個優惠費率其實它的挑戰性是42%是有一定的挑戰性的
transcript.whisperx[31].start 2428.852
transcript.whisperx[31].end 2457.443
transcript.whisperx[31].text 那這個裡面對於我們的這個經濟的物價的影響我們都有算過CPI GDP的影響都不是很高所以各位請可以放心那我們也算過多少的碳費繳多少的情境所以例如說你排在那1000萬噸的企業如果如果你很努力大概最後只要繳到1億這個不是說如同很多人會繳個30億這樣的一個額度所以基本上我們都有把它試算出來那今天的經濟日報也特別算出來對企業的毛利造成多少的衝擊他也是引述我們的資料
transcript.whisperx[32].start 2458.223
transcript.whisperx[32].end 2482.924
transcript.whisperx[32].text 其實也特別強調說企業只要努力去做這個其實影響毛利不會那麼的大的這個是一個很正面的一個報導那未來我們會跟經濟部合作來提供輔導的力道例如說我們減碳的減斷或是碳費的一個收入那未來我們會提供三大的基金前面兩個基金綠色成長我們正在申請當中然後跟金管會的綠色金融創新保險業的資金我們也正在進行當中已經在談一些細節了
transcript.whisperx[33].start 2483.704
transcript.whisperx[33].end 2498.369
transcript.whisperx[33].text 那這個兩個完成之後跟創投業者的近年的基金我們也會同步來啟動這個都不是花政府現在除了這個國發基金是我們政府的基金之外其他都是來自於民間導向的基金當然我也希望貴院可以在預算上面給我們未來的支持喔
transcript.whisperx[34].start 2499.089
transcript.whisperx[34].end 2525.263
transcript.whisperx[34].text 我們這個另外一個大家最關心的CBAN其實我們目前已經跟歐盟談好一個實際上的一個溝通協調上個月我也去了上個禮拜我也到了日本談這些事情其實獲得非常正面的一個回饋完全可以抵沒有問題但是各位知道人家是收70塊歐元我們是只有300塊所以未來我們會慢慢慢慢2027年接軌了之後開始我們應該就可以有一定的費率可以更接近一點點那目前這個我們會推動
transcript.whisperx[35].start 2526.904
transcript.whisperx[35].end 2546.253
transcript.whisperx[35].text 臺版的CBAN,那當然臺北CBAN是很複雜的事情,我們明年會開始,我們會整合各個部會,要求我們的競爭對手,例如說水泥的進口業者要在事情申報這個排放強度,那很多的業者提供的建議,例如說排放強度為主,不是總量為主,我們也會來考慮,那最重要的是說,因為現在社會上對於這個
transcript.whisperx[36].start 2548.474
transcript.whisperx[36].end 2571.513
transcript.whisperx[36].text 減碳已經是一頭熱那但是呢其實我必須說我必須想要把它降溫起來各位知道我們這碳費這次只針對281家公司那事實上我們上市櫃公司在金管會要求之下1800餘家公司他也必須未來再幾年要推動碳盤查、碳申報、查驗證那另外一個呢就是供應鏈的要求例如說蘋果的手機他需要他要求你提供他的排碳係數除了這個之外
transcript.whisperx[37].start 2573.775
transcript.whisperx[37].end 2601.233
transcript.whisperx[37].text 都不需要做你只要真的我們政府環境部或是我們經濟部的碳盤查的驗證的系統就夠了所以現在的的確是個社會上一團亂很多的課程我們在這邊也藉由這個機會公開的喊話不必要浪費時間而且會造成整個查驗證的系統的混亂目前我們有115家的查驗證的公司大概有兩千一百五十幾位從業人員在做這個事情只要我們台灣願意這樣做我們把外面這個炒作的降溫
transcript.whisperx[38].start 2604.035
transcript.whisperx[38].end 2608.681
transcript.whisperx[38].text 以上所有的報告 這個挑戰非常的大 也希望貴院可以給我們更多的一個支持 謝謝
transcript.whisperx[39].start 2610.762
transcript.whisperx[39].end 2634.995
transcript.whisperx[39].text 好謝謝彭部長的報告那有關本次會議各項書面資料均列入記錄刊登公報現在開始詢答做一下宣告本位委員詢答6加2分鐘列席委員4加1分鐘10點30分截止發言登記委員如果有書面質詢請於散會前提出預期不受理那暫定10點30分休息10分鐘原則上10點30分處理臨時提案
transcript.whisperx[40].start 2639.878
transcript.whisperx[40].end 2645.462
transcript.whisperx[40].text 10點30分截止收案好那現在請登記第一位委員陳昭芝委員發言謝謝主席有請彭部長
transcript.whisperx[41].start 2657.817
transcript.whisperx[41].end 2676.278
transcript.whisperx[41].text 陳委員早部長早今天您報告了這個碳費的收費標準那碳費就是為了因應整個氣候變遷的這個關係那環境部竟然從早期的環保署升格為環境部我想國人跟民眾對於環境部是會期許說要承擔更大的責任那我今天有幾個議題跟
transcript.whisperx[42].start 2678.079
transcript.whisperx[42].end 2691.789
transcript.whisperx[42].text 部長做討論,第一個就是都市的熱島效應現在越來越嚴重了,不知道部長您對這個部分有沒有一個基本的解方,就是都市熱島效應需要哪一些部門、哪一些政府機構來配合
transcript.whisperx[43].start 2693.546
transcript.whisperx[43].end 2704.115
transcript.whisperx[43].text 報告委員 這個其實我在民間的時候就在做這個事情所以其實第一個他是地方政府跟中央政府一起要來合作所以其實目前我必須跟委員談成關於熱 熱傷害並沒有一個中央組織部會是負責這個熱的事情
transcript.whisperx[44].start 2708.959
transcript.whisperx[44].end 2726.189
transcript.whisperx[44].text 那我也會再到時候再跟行政院那邊報告是不是誰要來主責但是如果未來要希望環境部來主責我個人是非常願意來進行這樣協同的規劃因為都市最多的就是這個建築物和道路的路面因為白天會吸收非常多的這個太陽熱能
transcript.whisperx[45].start 2726.969
transcript.whisperx[45].end 2726.989
transcript.whisperx[45].text :文貴議員
transcript.whisperx[46].start 2743.297
transcript.whisperx[46].end 2753.223
transcript.whisperx[46].text 那內政部但是事實上我們了解他並沒有把這件事當作優先的這個項目那您在今年7月31要跟環境部跟衛福部還有勞動部有共同主辦的一個一場氣候邊遷高溫調適的對策研討會所以就你也提到剛剛你也這樣說了對於極端熱這個做法目前並看不出哪一個部會會來主責所以我自己想要拜託部長我也剛剛也聽到你有這樣的回應就是說是不是由部長跟部長帶領環境部
transcript.whisperx[47].start 2772.534
transcript.whisperx[47].end 2773.174
transcript.whisperx[47].text 提出了修法的草案我在第5條第3項的第9款
transcript.whisperx[48].start 2800.02
transcript.whisperx[48].end 2816.662
transcript.whisperx[48].text 所以讓環境部可以依此來要求內政部等部會來配合推動都市的環境綠化覆蓋率的提升還有從這個建築的技術、工法跟它的建材來提升建築的能效請問部長您支持我這樣的一個修法建議嗎
transcript.whisperx[49].start 2817.923
transcript.whisperx[49].end 2832.976
transcript.whisperx[49].text 謝謝委員 委員你這個方式非常的好但是我也回去跟因為這個是氣候變遷整個行政院氣候變遷的這個永續會的一個主要的一個功項但是我也坦承這個熱我們並沒有去重視
transcript.whisperx[50].start 2833.696
transcript.whisperx[50].end 2849.286
transcript.whisperx[50].text 所以委員再給我們一點時間我待會去延商但是我非常肯定委員能夠給我們一樣一個實際上的建議董事、行政跟立法部門一起來努力部長另外一個議題就是前幾天有一個報告內容是來自環境部的檢測報告那很多人看了非常驚訝就是醫院的放流水
transcript.whisperx[51].start 2849.906
transcript.whisperx[51].end 2852.088
transcript.whisperx[51].text 臺中榮總市黃岸類藥品超標2、3倍其每醫院有3項抗生素嚴重超標其中頭包子菌類抗生素超標3700多倍
transcript.whisperx[52].start 2868.101
transcript.whisperx[52].end 2894.028
transcript.whisperx[52].text 連衛福部的桃園醫院也被驗出中文叫福奎諾同類的抗生素也高出標準許多這兩天中融跟部桃都陸續對外公開澄清行政院退伍會說他們檢驗的結果都符合標準這件事有點嚴重部長他說他們沒有但是環境部的檢測報告是有
transcript.whisperx[53].start 2894.528
transcript.whisperx[53].end 2912.913
transcript.whisperx[53].text 那是不是說要有個公正的第3次再做一次還是說大家可以比對一下你檢驗的方法檢驗的時間點等等等等就是這個是有關中融中融他說他是符合標準的就是退伏會來說明那衛福桃醫院講的就是水中抗生素可能來自服用病人的
transcript.whisperx[54].start 2915.475
transcript.whisperx[54].end 2931.231
transcript.whisperx[54].text 本來就是這樣啊醫院照顧病人病人這個擔心病人會感染不管是預防性使用或是治療性使用抗生素使用是跑不掉的就是說這只是說明來源但是這個還是要處理因為這麼嚴重的這個抗生素超標它不是水汙染的問題
transcript.whisperx[55].start 2932.532
transcript.whisperx[55].end 2932.652
transcript.whisperx[55].text 主席
transcript.whisperx[56].start 2948.579
transcript.whisperx[56].end 2961.245
transcript.whisperx[56].text 無藥可用的結果大家就知道所以抗藥性一直是一個非常重要的問題那醫院這個環境跑出這個問題所以部長到底就發生什麼事情就是說為什麼他們會有不一致的說法部長你可以稍微簡單的說明一下這個發現嗎其實這個我們是用
transcript.whisperx[57].start 2965.247
transcript.whisperx[57].end 2989.234
transcript.whisperx[57].text 第一個大家相信環境部的這個中立的客觀的態度我們檢驗方法是用最嚴格的標準來看那這個是針對這個所謂的抗生素的標準不是放流水的標準所以醫院的確他有些超過基本的數值然後非常的多有些醫院但是我也必須說他沒有立即的危害但是我們長期來看對環境一定會有一些影響所以我們其實未來我們也希望醫院可以主動的能夠來檢討然後持續的追蹤
transcript.whisperx[58].start 2989.394
transcript.whisperx[58].end 2989.614
transcript.whisperx[58].text 環境部都用代號稱呼
transcript.whisperx[59].start 3005.484
transcript.whisperx[59].end 3026.237
transcript.whisperx[59].text 或是說把這個醫院的名稱遮掩起來為什麼要用代號或遮掩起來呢這是問題蠻嚴重的為什麼要遮掩起來呢你知道美國食品藥管理局他們只要查任何藥廠哪一些不合格的他就馬上公告上網上網他可以改善啊改善以後就沒有啦就大家就會用這個方式來檢驗啊就是以示公正啊也讓國人有知的權利啊為什麼把名字遮起來呢吳清水報4張來回答
transcript.whisperx[60].start 3032.16
transcript.whisperx[60].end 3036.181
transcript.whisperx[60].text 關注的項目90項分年做了一些調查因為它還是在調查當中那還不是一個標準的方法
transcript.whisperx[61].start 3061.627
transcript.whisperx[61].end 3070.375
transcript.whisperx[61].text 因為他的項目非常的多,然後對象也非常的多,所以一般我們參考國外的做法,就是分年會做調查那這就是分年調查到一個階段之後呢,我們把它公告為我們接下來要強制遞減申報、削減的一些項目那為什麼現在已經有建議啦,就是說對這些醫院他有提出這個自主管理的建議,但是沒有裁判,建議都提出來了耶
transcript.whisperx[62].start 3083.806
transcript.whisperx[62].end 3104.497
transcript.whisperx[62].text 就是建議他們要怎麼做但是沒有裁法就算說最後研究計畫結束我們真正要進行去處理的話部長那是不是說應該要有裁法也許你可以說第一次發現第一次發現我們是限期改善那沒有改善這裁法還是最有用的因為這個抗生素抗藥性產生是不得了的好嗎部長就是要往這個方向去做管理可以嗎
transcript.whisperx[63].start 3105.517
transcript.whisperx[63].end 3121.329
transcript.whisperx[63].text 我們9月26日預告這個草案的草案出來然後預計如果未來超過的話會罰一萬以上六百萬以下的罰款我們下面還有一個很重要的議題去年開始除了馬祖那個臺南的這個沿海也開始出現藍眼淚那近期有這個學者指出
transcript.whisperx[64].start 3121.989
transcript.whisperx[64].end 3141.859
transcript.whisperx[64].text 事實上藍眼類它是工業排放這個磷酸鹽或矽酸鹽所累積的生態反撲學者說藍眼類應該是一種環境污染的指標它不是奇蹟它是警訊就是排放的高濃度的磷酸鹽會造成河口沿海的這些生態跟養殖的負面影響
transcript.whisperx[65].start 3142.739
transcript.whisperx[65].end 3157.575
transcript.whisperx[65].text 那環境部對於這個水源保護區、零酸鹽的排放還是有管理,但水源保護區以外呢?部長,你認為水源保護區以外的這個零酸鹽的這個管理,是不是要納管呢?因為這個目前沒有管理耶。
transcript.whisperx[66].start 3158.215
transcript.whisperx[66].end 3169.378
transcript.whisperx[66].text 報告委員其實自然的這個磷酸鹽這樣這個藍眼淚這個其實OK的但是如果像這樣的它非自然的是屬於工廠工業牌上的都跑出藍眼淚了所以我們其實8月24號已經修改了這個預告的這個法案年底會開始公告所以這個磷酸鹽我們已經設定的標準所以部長已經在這個這件事已經在進行已經進行了
transcript.whisperx[67].start 3178.74
transcript.whisperx[67].end 3195.796
transcript.whisperx[67].text 那這樣我要談到高科技工業重地、國科會科學園區零酸鹽的管理問題我們先就中科臺中園區環境小組不錯在2016年他有會議上率先請中科管理局訂定了零酸鹽的自主管理但我們沒有簽到其他的科學園區有跟進你看右邊這個小表格你看看我們從這個資訊可以來看兩件事情第一個
transcript.whisperx[68].start 3202.342
transcript.whisperx[68].end 3224.989
transcript.whisperx[68].text 單一管理區各園區標準不一你看竹科園區它是60mg每一升但是這個榮潭園區它是120差了兩倍這第一個管理標準不一同一個園區第二個國科會有放任北中南三個科學園區各自為政有些有管理有些沒管理有些有定有些沒有定所以這樣的一個放任結果就是一國多治
transcript.whisperx[69].start 3226.009
transcript.whisperx[69].end 3246.502
transcript.whisperx[69].text 那環境部是不是要把總齡這個要做一個管理有一定的標準進行總量管制還是說讓國科會自己去管理部長其實我們已經預告了年底會發布我們第一階段是150然後25我們會分階段來進行所以包括不會讓國家這個放任這個過去的總齡管制是一國多制囉
transcript.whisperx[70].start 3247.233
transcript.whisperx[70].end 3264.033
transcript.whisperx[70].text 沒有,現在以我們為準那我再確定一下,就是總領館這件事不是國科會是環境部,是嗎?我這樣解釋對嗎?這個是環評,這個是環境影響評估裡面的當時個別的要求的一個標準那部長覺得03管制要不要這個入法?
transcript.whisperx[71].start 3265.09
transcript.whisperx[71].end 3290.475
transcript.whisperx[71].text 我們現在的這個草案裡面已經年底就會重視報告如果你不重視這件事你一定是重視你才會把這次的這個失業廢水調查局屋苑管房居管理機關這個有把列入嘛把零算列入就是你們重視這件事情嘛所以是不是部長一定要去執行不要說科學園區他的標準比較寬鬆那環境部的比較嚴那一國多治沒有就全部以我們為準以我們為準這個年底會公告謝謝謝謝部長謝謝謝謝委員謝謝
transcript.whisperx[72].start 3293.516
transcript.whisperx[72].end 3297.779
transcript.whisperx[72].text 好 謝謝陳昭芝委員的發言 接下來請林月琴委員發言主席好 麻煩部長 請彭部長林委員早部長早 我們今天要討論的 我想也是全國關注的
transcript.whisperx[73].start 3320.458
transcript.whisperx[73].end 3342.63
transcript.whisperx[73].text 那這個議題在你上任我就有質詢那當時我很在意三件事也是今天要質詢追問的就是我們的碳費每公噸定價多少錢上週已經10月7號已經出來了那可是這每公噸300元雖然剛剛你報告講說好像事實上是比其他國家事實上還算
transcript.whisperx[74].start 3343.697
transcript.whisperx[74].end 3346.019
transcript.whisperx[74].text 未來是不是能夠實質達到我們講的排碳效果還是虛擬了事 不知道第三個碳費收到之後到底作為什麼樣的用途
transcript.whisperx[75].start 3359.983
transcript.whisperx[75].end 3386.631
transcript.whisperx[75].text 那確實我們看到環境部的簡報的時候我跟我們辦公室的夥伴討論說我們覺得這個定價呢雖然跟公民團體的期待有很大的落差公民團體是期待到500可是我覺得勉強接受因為你剛剛講說這300塊上的確很簡單很大膽也相對於比較於日本跟韓國跟新加坡的確事實上我們不是太高
transcript.whisperx[76].start 3388.513
transcript.whisperx[76].end 3388.533
transcript.whisperx[76].text 致詢
transcript.whisperx[77].start 3397.483
transcript.whisperx[77].end 3424.898
transcript.whisperx[77].text 所謂參考其他國家訂出300塊那訂出來的又比其他國家高這是什麼原因是不是請部長解釋一下報告委員我剛剛的簡報裡面就有說其實碳淨價還包含了這個化石燃料稅等等那我們日本跟韓國他的化石燃料稅是我們的大概將近2.5倍到3倍左右所以其實那個要統一來看那我們其實碳費的這個價格是考量到企業的競爭力所以基本上我們應該可以兩個分開來看
transcript.whisperx[78].start 3425.658
transcript.whisperx[78].end 3450.404
transcript.whisperx[78].text 那我們300塊的定義呢是其實委員當時委員是上一次第5次是300到500然後後來呢他們最後討論是不是一個價格價格出來然後後來他們定義300當然我知道環團很不滿意我也很清楚但是我們其實也考量到未來如果國際競爭上如果不往上走的話其實那個錢都要繳到國外去所以我們還是折衷有一個費率那委員可以跟你報告我上禮拜在日本日本也覺得他們現在的這個稅
transcript.whisperx[79].start 3451.544
transcript.whisperx[79].end 3455.705
transcript.whisperx[79].text 所以我這邊寫我們的定價很國際可是優惠很台灣就是說為什麼我也講說很有台灣味因為台灣人喜歡逛夜市、特賣會就像最近百貨公司週年期我相信每個假日都蜂擁而上很多我們的買重會去買
transcript.whisperx[80].start 3481.169
transcript.whisperx[80].end 3502.056
transcript.whisperx[80].text 編譯
transcript.whisperx[81].start 3503.086
transcript.whisperx[81].end 3526.893
transcript.whisperx[81].text 每公噸只要收100元那又因為擔心我們的高排排碳產業的那個所謂可以導致的所謂碳洩漏的風險所以我們又訂出了一個排份量調整係數50元再打兩折所以一公噸只剩下10塊錢比我們早餐店去加一個蛋還要便宜
transcript.whisperx[82].start 3527.577
transcript.whisperx[82].end 3549.526
transcript.whisperx[82].text 所以部長我的看法是一公噸的那個排碳外部的成本根據美國環保署的研究來看的話每噸的那個排碳所造成的外部成本事實上是190塊約新台幣5800塊所以我們要定價打折的結果對台灣的環境跟我們的廠商這樣的減碳是不是有效果
transcript.whisperx[83].start 3550.326
transcript.whisperx[83].end 3577.276
transcript.whisperx[83].text 其實報告委員我們不能只看那個價格因為例如說我舉例某一些一千萬噸的這個排炭的業者來看的話他要做到減個一百萬噸他的花的成本就是如同你說的可能是一噸要五千塊那我們其實是呢是不要一下子就給你拉到這麼的高初步的讓你有一個誘因來做所以我們是設計一種打折的原理所以其實我跟委員報告我們跟日本討論的結果他們反而羨慕他覺得我們的制度比較有彈性他們要來跟我們學習
transcript.whisperx[84].start 3578.576
transcript.whisperx[84].end 3592.81
transcript.whisperx[84].text 所以這個其實是一個折衷後的一個結果,鼓勵的結果我剛講是外部成本會造成外部那所以我不要質疑這一點,原因很簡單是因為對比這些公司的營收尤其這三大戶
transcript.whisperx[85].start 3595.071
transcript.whisperx[85].end 3611.599
transcript.whisperx[85].text 臺碩石化跟中國鋼鐵跟我們的台積電那你如果以比照你剛剛這邊表單裡邊剛剛你自己的報告裡邊有特別去提的因為如果按照這個排碳大戶我覺得排碳到1000萬公噸的工廠的話最低只要繳交
transcript.whisperx[86].start 3612.6
transcript.whisperx[86].end 3627.482
transcript.whisperx[86].text 一億可是他們收的是上兆的一個營收可是你只要繳到一億那這樣子到底有效果嗎所以想問一下部長這樣子營收數千億碳費只佔他的九牛一毛的你覺得這樣力道誘因是否足夠
transcript.whisperx[87].start 3628.403
transcript.whisperx[87].end 3648.316
transcript.whisperx[87].text 報告委員其實這個事情就牽涉到說有些台灣的企業其實我們跟經濟部也討論過他們也完整的瞭解讓我們瞭解說我們的確AI的產業很不錯可是有很多傳產像中鋼、中石化其實他們遇到經營很大的困難所以其實我們這次完全是採一個誘因的方式來進行
transcript.whisperx[88].start 3649.256
transcript.whisperx[88].end 3671.643
transcript.whisperx[88].text 但是也跟委員報告其實我們發現其實這個制度很困難很辛苦沒有辦法兼顧每一個企業所以其實我自己未來我們期許是要走到總量管制的碳交易會比較有人性會比較更符合這個需求部長我還是說一聲辛苦了因為碳費制定當然很不容易可是也必須要深刻檢討了因為從質詢一開始到現在就質疑
transcript.whisperx[89].start 3672.028
transcript.whisperx[89].end 3678.774
transcript.whisperx[89].text 10月7日定價一出,工商團體、環保團體甚至連我們的行政部門、經濟部通通都不買單那大家最有共識的就是一字不諒解這樣的定價跟做法
transcript.whisperx[90].start 3695.427
transcript.whisperx[90].end 3721.425
transcript.whisperx[90].text 所以部長你自己來自我們的民間團體那過去呢你對這很多甚至這碳費你也知道未來事實上是應該是台灣必經之路可是很少過去我們很少看到一個政策出來沒有一方有時候是政府會滿意或者是民間團體會滿意可是現在是沒有一方是滿意所以我覺得這對新政府來講是一個警訊所以這點我覺得必須要深深警惕
transcript.whisperx[91].start 3722.285
transcript.whisperx[91].end 3738.817
transcript.whisperx[91].text 千萬不能忽視要嘛就是及時調整我們的政策方向要嘛就是要講清楚說明白否則現在民間事實上還是存在很大的疑慮所以千萬不要存在行政部門的傲慢來逼民間就是吞了你的這樣的一個結果
transcript.whisperx[92].start 3740.154
transcript.whisperx[92].end 3755.16
transcript.whisperx[92].text 未來大概我這邊有4個來問我們的部長第一個目前根據環境部給我的資訊因為這也是上個會期我就有問的問題就是說我們的徵收碳費的範圍大概只佔全國排碳量的55%可是還有45%的那個預計何時會擴大
transcript.whisperx[93].start 3759.227
transcript.whisperx[93].end 3784.756
transcript.whisperx[93].text 目前這個我們兩年會檢討一次那其實我們也會觀察國際的趨勢像我舉例像歐盟他們大概ETS的第二階段大概2027年他涵蓋到85%那個影響層面就很大了所以我們會兩年會檢討一次來觀察這個走向好 第二齁因為這也是上個會期我一直在很關心就是說當初比較不希望有免徵2.5萬公噸可是現在已經確定是40那何時降為1.5到1萬公噸
transcript.whisperx[94].start 3791.162
transcript.whisperx[94].end 3796.108
transcript.whisperx[94].text 環保團體比較關心的是我們的排放量的調整係數所以二三期大概何時會去啟動
transcript.whisperx[95].start 3798.586
transcript.whisperx[95].end 3820.679
transcript.whisperx[95].text 這個大概也是要兩年目前其實初期應該不會那麼的快我們希望經營到可能有兩三年以後有一個這個基準年有一個成效之後我們再來看但是我也必須跟委員報告這個其實做這個決定一個數字沒有辦法滿足所有的產業這個是最大的問題所以我們是比較期待總量管制的碳交易才會製造減碳的生態系
transcript.whisperx[96].start 3821.954
transcript.whisperx[96].end 3848.718
transcript.whisperx[96].text 好,第三就是,雖然剛剛你有講說,我們在媒體被採訪的時候也講是說跟歐盟的官員有這樣子的一個交談是交換意見是說他未來事實上是會可以去銜接可是第二我要問的是我們台灣版的剛剛你也提過說我們要做那這個到底是明年會去炒你台灣版的CBank還是還有什麼時候完成?
transcript.whisperx[97].start 3850.399
transcript.whisperx[97].end 3877.914
transcript.whisperx[97].text 有議據嗎?有已經規劃了嗎?第一個我們要求進口的這種我們跟我們本地要收碳費的業者如果競爭對手進口來的一定要去申報這個我們會協調經濟部還有這個財政部一起來做這個事情那第二個呢這個台版的CBAN其實這個是很複雜的我們也在觀察歐盟然後歐盟明年年終細節才會出來所以現在都還是一個事情申報的階段所以我們希望明年他們出來全世界整個趨勢之後我們就會一定會來做這個事情
transcript.whisperx[98].start 3878.427
transcript.whisperx[98].end 3902.14
transcript.whisperx[98].text 因為這是工商團體問嘛因為他也擔心說如果我們自己國內可是如果國外的進到台灣來的話你沒有管制的話一樣啊那對他們來講也是不利最後就是畢竟這些碳費的徵收我覺得未來到底你的用途是什麼因為根據國際勞工組織他今年4月就提出一份報告在整個氣候變遷裡邊
transcript.whisperx[99].start 3903.43
transcript.whisperx[99].end 3904.351
transcript.whisperx[99].text 工作環境
transcript.whisperx[100].start 3923.693
transcript.whisperx[100].end 3926.494
transcript.whisperx[100].text 不過我還是期待未來碳費收到的使用我還是希望有部分是用到照顧國人的健康
transcript.whisperx[101].start 3949.842
transcript.whisperx[101].end 3950.903
transcript.whisperx[101].text 謝謝林月琴委員的發言,接下來請王育民委員發言
transcript.whisperx[102].start 3977.332
transcript.whisperx[102].end 3981.213
transcript.whisperx[102].text 謝謝主席 我們是不是有請彭部長請彭部長王委員早部長早我想這個碳費的徵收這件事情的確是非常的不容易那基本上我還是要肯定至少我們是踏出了這一步因為我要講相較於日本、韓國還有新加坡台灣我們啟動的這個碳定價時代
transcript.whisperx[103].start 4004.577
transcript.whisperx[103].end 4005.618
transcript.whisperx[103].text 其實是太晚了我們到114年才正式啟動但是看看鄰近的國家人家日本從2008就開始韓國2015就在做新加坡2019也開始了我們是晚了人家很多時間
transcript.whisperx[104].start 4021.77
transcript.whisperx[104].end 4030.814
transcript.whisperx[104].text 而晚了其他國家很多時間就造成我們在準備跟因應的工作其實是會變得我們時間壓縮的很短像歐盟他在2026年他就啟動了他的CBAN那在這樣的情況底下我們台灣準備時間這麼短我們怎麼樣在落實這個我們啟動的這個碳定價時代達到雙贏的目標所謂雙贏是要求企業有效的減碳
transcript.whisperx[105].start 4050.623
transcript.whisperx[105].end 4065.732
transcript.whisperx[105].text 而且也要保有我們臺灣企業的競爭力這件工作坦白講是非常的不簡單而這當中現在可以發揮的關鍵因素就是我們政府可以去加大你的輔導的力道
transcript.whisperx[106].start 4066.793
transcript.whisperx[106].end 4068.254
transcript.whisperx[106].text 總共要投入多少的經費預算
transcript.whisperx[107].start 4095.313
transcript.whisperx[107].end 4095.653
transcript.whisperx[107].text 請問加起來有多少錢?
transcript.whisperx[108].start 4112.154
transcript.whisperx[108].end 4130.442
transcript.whisperx[108].text 經濟部跟委員做一個說明我們在議後條例的預算有框了大概100多億然後是針對我們製造業從說明會開始讓他知道什麼是碳盤茶然後從老闆CEO班一直到員工到總經理你說100億是一年的經費還是幾年的經費?三年
transcript.whisperx[109].start 4133.483
transcript.whisperx[109].end 4143.012
transcript.whisperx[109].text 一年平均下來大概只有30億嗎?那這樣真的不夠啊?剛剛部長自己說各縣市政府跟他要求的錢就到1000億了
transcript.whisperx[110].start 4145.046
transcript.whisperx[110].end 4145.066
transcript.whisperx[110].text 致詢問題
transcript.whisperx[111].start 4175.386
transcript.whisperx[111].end 4200.227
transcript.whisperx[111].text 那我們這樣子怎麼樣去推動有效的減碳呢?為什麼你的預算反而是倒退的?好,包委員,我們環境部的企業屬是做整個政策的規劃那很多的這個執行,包含要跟經濟部還有各個部位合作是大家一起來推動的,所以不是說我們這邊少減但是減劣也不合理啊照道理來講,你這個要上路你要做的事情很多你基本上你的公務預算不應該還減劣啊
transcript.whisperx[112].start 4202.028
transcript.whisperx[112].end 4223.453
transcript.whisperx[112].text 那另外一個要額外增加其他的預算才對啊所以經濟部現在一年也增加了30億那部長我請問你環境部額外的針對這件事情你們要增加的預算在哪裡你如果公務預算都是簡略的那你其他還有哪一些經費來輔導包括地方政府包括這一些企業做這個有效的轉型
transcript.whisperx[113].start 4224.366
transcript.whisperx[113].end 4231.512
transcript.whisperx[113].text 報告委員我們的基金有增加第一個就是我們有一個溫管基金那這個費用有顯著的增加增加了多少
transcript.whisperx[114].start 4234.644
transcript.whisperx[114].end 4256.405
transcript.whisperx[114].text 跟委員報告我們現在溫管基金113年的這個編列是5億多那明年的話有稍微增加到6億多還增加了1億啊所以我要講的是說我們現在一個是啟動的時間太晚一個是準備的配套不足第三個我們看到的是我們真的可以提列出來這些錢其實相較於各國都是少的
transcript.whisperx[115].start 4259.127
transcript.whisperx[115].end 4276.772
transcript.whisperx[115].text 像歐盟2023年它是超過百億歐元這樣的一個資金美國它是240億美元用於低碳轉型跟付稅避免日本施發行了20兆的日元的綠色債券韓國它是擴大企業投資補貼活絡碳權市場
transcript.whisperx[116].start 4279.193
transcript.whisperx[116].end 4306.605
transcript.whisperx[116].text 所以相較底下我覺得我們現在經濟部跟環境部我們所推出來的這些輔導措施都是力道不足所以這個也會造成剛剛部長我有聽到您在回答您在講到說這件事情很困難的確很困難但是如果我們政府如果行政院沒有這樣的意識我們整體投入的資金不足我覺得真正落實還會更加困難
transcript.whisperx[117].start 4307.705
transcript.whisperx[117].end 4332.294
transcript.whisperx[117].text 因為就是你畫了一個很好的圖但是實質上企業他們遇到很多的困難根本落實不了然後政府又沒有資金去補助跟輔導所以最後的減碳就會一事無成就是說我們空有這樣的一個碳費制度但實質它達到的效果成效恐怕會大打折扣這個是一個最大的問題部長你有沒有跟行政院長、卓院長反映這樣的問題
transcript.whisperx[118].start 4333.394
transcript.whisperx[118].end 4350.778
transcript.whisperx[118].text 報告委員其實我上禮拜在日本就是去關注委員你所關注的事情日本結合了經濟部、環境部、環境省、經產省還有財務財政廳他們一起三個部會合作成立一個綠色成長基金發行未來10年要發行20兆日幣的公債
transcript.whisperx[119].start 4354.039
transcript.whisperx[119].end 4382.496
transcript.whisperx[119].text 氣候債券,然後也帶動民間的投資,總共是150兆那這件事情我也跟我們卓院長報告,所以他要我不斷的去研析因為這個東西其實在也需要這個立法院對大院的一個同意支持我們才可能轉型的過來那的確我們從我們上任我就跟院長報告這件事情那院長也非常的支持但是裡面有很多細節,包含預算還有它的效率怎麼去進行我們都一直在觀察成功國家的所謂的新的制度
transcript.whisperx[120].start 4383.116
transcript.whisperx[120].end 4399.361
transcript.whisperx[120].text 以我們現在政府的預算來編列來做淨領我必須說全世界所有的國家照正常的預算都很難做得到都需要一個新的方法探定價完了之後才有辦法做得到這個也是我看到的問題以我們現在的力道我可以在這邊講就是沒有辦法做到沒有辦法做到這樣的力道
transcript.whisperx[121].start 4401.582
transcript.whisperx[121].end 4409.609
transcript.whisperx[121].text 是非常的不足的所以這個部分我希望您跟經濟部還有國發會這個應該你們是要三位一體的在這件事情上要有一套很完整的制度很強的我們來輔助這一些台灣特別中小企業又很多你應該是要好好的這部分要好好去演你一套計畫出來
transcript.whisperx[122].start 4421.4
transcript.whisperx[122].end 4445.115
transcript.whisperx[122].text 最後我要問你的是在碳費的部分你們估算你說縣市政府需要1000億然後你現在其實只有60億那這60億就顯得很可貴了就是你這個60億要怎麼優先去運用那你應該我這邊建議幾個重點第一個就是我們的碳費應該要考量你徵收來源的比例特別是排碳大戶周遭
transcript.whisperx[123].start 4446.016
transcript.whisperx[123].end 4469.344
transcript.whisperx[123].text 就代表說它這邊需要更多的減碳的設施跟設備所以你在分配資源的時候應該要優先從這些區域開始去落實它周邊相關的減碳設施應該是要好好的來強化第二個是地方政府你應該要有一套機制讓他們來申請你剛剛講過這件事情中央做也做不到
transcript.whisperx[124].start 4469.764
transcript.whisperx[124].end 4480.571
transcript.whisperx[124].text 要中央跟地方一起做所以要開放讓地方政府有一個計畫一個很明確的標準讓他們來申請然後透過這個計畫申請有效的在地方回過頭去輔導各地的這個經發局他們應該在地的產業他們透過這個計畫有效的去輔導企業來落實這樣的一個相關的檢探這樣子才能達到雙贏這樣的一個標準是不是部長可以承諾未來納入你在
transcript.whisperx[125].start 4498.881
transcript.whisperx[125].end 4525.787
transcript.whisperx[125].text 這個將來至少這一筆60億你的專款專用應該要有一個標準來落實跟實施沒問題委員我們會照這樣的政策來做謝謝好那我想這個要落實這件事情真的很困難所以我們希望這個環境部跟經濟部就是加把勁然後這個行政院的部分也不能袖手旁觀就是要給這個兩個部會更多的資源那才有可能把這件事情就是達到我們想要達到的
transcript.whisperx[126].start 4526.827
transcript.whisperx[126].end 4553.033
transcript.whisperx[126].text 真的實質減碳的目標。好不好?好,謝謝委員,謝謝。好,接下來請廖偉祥委員發言。謝謝主席,有請我們的彭部長。彭部長。
transcript.whisperx[127].start 4557.638
transcript.whisperx[127].end 4578.531
transcript.whisperx[127].text 委員早部長好部長早部長辛苦了但是說真的我們國家的這個碳費終於出來那真的也從這個2023、2024到2025真的也是很久那你也說國內的碳費屬於歐盟這個CBAN定義有效的碳價形式之一確定可以抵扣但我這裡想要請問那請問折抵的乘數到底是多少呢
transcript.whisperx[128].start 4579.695
transcript.whisperx[128].end 4605.42
transcript.whisperx[128].text 現在其實他的細節大概明年年中才會出來那其實必須說他是一個國家一個國家會來談那我們台灣並不是歐盟前十大的這個進出口國所以我們有跟他談到就是委員提到我我明年環境部已經獲得行政院外交部的同意我們會派助人專門來協商這個事情對啊因為如果沒有辦法提高成數沒有達到百分之百的話那是不是出口到歐盟的廠商都需要另外再付一筆錢
transcript.whisperx[129].start 4606.48
transcript.whisperx[129].end 4622.188
transcript.whisperx[129].text 部長如果說超過2.5萬噸的排放的287頁面臨的問題但是低於2.5萬噸要出口到歐盟那大概就只能像歐盟的CBAN買那個憑證對不對請問部長現在歐盟是針對我們產品課徵的這個CBAN針對我們的產品那我國的碳費是針對企業組織做課徵所以未來在和歐盟的制度接軌上會不會有什麼潛在的問題
transcript.whisperx[130].start 4635.185
transcript.whisperx[130].end 4640.893
transcript.whisperx[130].text 那還是說這個部分也要等到歐盟公佈我國的這個碳費的折抵陳述之後才有辦法因應
transcript.whisperx[131].start 4641.682
transcript.whisperx[131].end 4667.266
transcript.whisperx[131].text 第一個委員你擔心的例如說中部很多的扣件包括螺絲螺帽等等那個的確因為很多歐洲的進口車都是用台灣的所以其實他們的確是我們要關切輔導的那這個部分我未來派因為他們的細節還沒有出來那我們也希望能夠跟他們早日協商然後早一點幫助台灣的產業所以這個是我們絕對會跟經濟部共同來合作做這個事情
transcript.whisperx[132].start 4667.386
transcript.whisperx[132].end 4695.395
transcript.whisperx[132].text 那我就想請問一下那這樣子兩個的時程上會不會導致這些企業會不會面臨到一些就是有許多轉型上的問題然後以及時程上還沒辦法因應或甚至到時候出來的時候到底要怎麼幫助他們在去出口到歐洲的時候還有這個競爭力報委員其實這個是2026才正式實施現在都在試申報2027才要繳錢所以我們還有大概有兩年的因應時間但是兩年說真的也非常的緊迫所以我們會加緊的來做
transcript.whisperx[133].start 4697.042
transcript.whisperx[133].end 4718.44
transcript.whisperx[133].text 好那依照現在我們公告的碳費的收費辦法的第3條也就是所謂的範疇一加上範疇二這個超過2.5萬噸的就是徵收碳費嘛部長那製程與設施我覺得是提升改善啊當然一方面需要企業自己的努力另外一方面政府應該有足夠的資源去協助他們轉型對不對
transcript.whisperx[134].start 4719.801
transcript.whisperx[134].end 4733.899
transcript.whisperx[134].text 但是現在講到範疇二能源的部分我覺得這就對企業是非常的不公平原因是我國的能源結構我們的碳排氣數過高現在你們決定要把天然氣拉到50%火力可能還有20%、30%這個幾乎就是
transcript.whisperx[135].start 4736.983
transcript.whisperx[135].end 4762.568
transcript.whisperx[135].text 未來在能源轉型要增加天然氣還排除核能這個選項會導致所有企業在未來的我們能源政策不變的情況之下他在範疇二的計算會越來越增加那基本上就會變成是我企業該改的也改了我自己努力了也努力了但是我們的這個能源政策不變還是增加了他很多的成本和降低了他競爭力部長你覺得這樣合理嗎以及身為環境部你覺得應該怎麼做
transcript.whisperx[136].start 4764.329
transcript.whisperx[136].end 4781.668
transcript.whisperx[136].text 報告委員其實第一個是說燃煤改燃氣它大幅降低供屋它的排碳量也減少了1⅓所以它的排碳量我們現在是0.495那預期呢大概到2030年希望我們是希望台電可以降到0.3、0.4左右甚至要更低那不想跟其他國家有核能的國家比呢
transcript.whisperx[137].start 4782.408
transcript.whisperx[137].end 4802.621
transcript.whisperx[137].text 當然啦有些國家的核能他是有經過很穩定穩健的溝通跟處理核廢料安全都沒有問題才可以這樣做那我們也希望如果委員你們的想法其實如果按照這個程序當然這個是一個親近能源我們也都尊重但是其實這個還是需要大家的溝通跟共識因為核廢料所以基本上現在就是
transcript.whisperx[138].start 4803.101
transcript.whisperx[138].end 4825.877
transcript.whisperx[138].text 就是在這個部分還是沒有共識還是無解嗎以現在執政黨來講我是環境部長我還沒有接到任何的這個指示要做任何的調整但是如果從淨零的角度所以部長我這部分就是要提醒你從淨零的角度這的確是會有問題對不對就是比起其他有在核能的務實的配比之下我們這樣子的確也會未來走下去也是會有問題
transcript.whisperx[139].start 4826.557
transcript.whisperx[139].end 4838.234
transcript.whisperx[139].text 不見得是一個問題這是一個選擇的問題因為任何的能源推動都有它的困難點例如說太陽能或是風力發電每一個能源轉型都很困難所以這個就必須要找到一個適合台灣的路
transcript.whisperx[140].start 4838.854
transcript.whisperx[140].end 4862.266
transcript.whisperx[140].text 但這個還是沒有回答問題好沒關係我大概知道你的立場你也不方便說太多沒關係部長那請教現在依碳費收費的這個五六條我們的排放量的調整係數何時會跟經濟佈定出來也就是我們這個高洩漏的這個係數來我們請我們部長我們現在排放量係數就是0.2那調整未來要調整我們兩年會調整一次
transcript.whisperx[141].start 4866.871
transcript.whisperx[141].end 4892.942
transcript.whisperx[141].text 現在第一期就是0.2當然是0.2、0.4、0.6那個嘛對不對對對對對所以你們現在但是我要講的是意思就是說你們現在規定企業要在明年6月30前提交這個自主減量計畫那通過環境部合訂之後再申請這個高碳洩漏風險事業就是說才能適用什麼方案每噸是50嘛50元或是方案B每噸100元嘛可是你們現在的這個碳排係數
transcript.whisperx[142].start 4894.423
transcript.whisperx[142].end 4913.265
transcript.whisperx[142].text 你們要在6月30以前請這些企業交交這自主減量計畫會不會有點太強人所難?明年6月30喔?對阿明年阿明年6月30當然是明年6月30阿但是你要想他們現在很多還是搞不清楚到底應該怎麼做然後細節是什麼那再加上你們要壓縮到你們同仁也要審查的時間這樣子的時間會不會不足夠
transcript.whisperx[143].start 4915.487
transcript.whisperx[143].end 4930.343
transcript.whisperx[143].text 包委其實我們的上市規公司還有我們觀察這些企業他的ESG報告寫的都很詳細而且都非常有雄心所以我相信他們寫的都不是都不是票率啦但是都是真實在做所以這個問題應該是不大
transcript.whisperx[144].start 4932.245
transcript.whisperx[144].end 4949.478
transcript.whisperx[144].text 那當然有些企業他不是上市過公司他可能沒有寫業績報告相對的壓力就會比較多那我們會給他特別的輔導所以我們環境部有一個專線如果企業有問題我們手把手教甚至我們現在都在辦巡迴的這種說明會教你怎麼寫這個事情這個是我們跟經濟部一定會合力來做
transcript.whisperx[145].start 4950.086
transcript.whisperx[145].end 4965.459
transcript.whisperx[145].text OK,那另外你們現在這個溫管基金的估算收入是60億吧,對不對?呃,到後年會可能...對,那你們現在...但是你們政策目標也是希望說要求企業達成最嚴格的減量目標那應該是想辦法讓企業有辦法採行這個A方案,是不是?
transcript.whisperx[146].start 4965.979
transcript.whisperx[146].end 4986.601
transcript.whisperx[146].text A或B對A或B但你們現在是用計算是B嘛但是移到我們偵測目標我們當然希望說他們都可以達到用A方案的這個標準對不對那這個部分就是我覺得也是比較奇怪的邏輯啦當然你用B方案可能是你覺得這樣比較合理但大部分可能是以B方案為主體然後去計算這個溫管收入喔
transcript.whisperx[147].start 4987.242
transcript.whisperx[147].end 5013.711
transcript.whisperx[147].text 那這個部分是不是可以請這個我們講解一下說那我們是不是我們怎麼樣要投入多少資源可以想辦法讓他們達到這個A方案因為A方案其實他是國際上最嚴格的一個減量的標準啦行業別其實要減到42%所以對於很多的這個徵收對象來講這個用A方案真的挑戰非常非常的多
transcript.whisperx[148].start 5013.871
transcript.whisperx[148].end 5014.371
transcript.whisperx[148].text 中文字幕組
transcript.whisperx[149].start 5031.224
transcript.whisperx[149].end 5060.166
transcript.whisperx[149].text 我們會想辦法跟他一起去討論所以這個同樣是同樣的問題就是說我們到底應該怎麼具體的方案怎麼去指導我們民間企業的轉型因為現在我們在民間還是聽到非常多的企業覺得說很多東西好像不是很明確那比起像不管是歐盟他們收到這些國家挹注的資金去幫助他們轉型我們是遠遠不足的部分這部分我是希望說部長你們要好好再回去跨部會的去整合好另外就是
transcript.whisperx[150].start 5060.851
transcript.whisperx[150].end 5082.612
transcript.whisperx[150].text 我們COP28這個城市氣候峰會也指出國家減碳目標是要納入地方政府參與所以也有學者或是地方政府說應該政府的比例應該是希望比照空汙基金的這個6比4那我想請教部長我們碳費的支用辦法和這個獎補助我們地方的政府的比例何時會公告
transcript.whisperx[151].start 5083.58
transcript.whisperx[151].end 5105.415
transcript.whisperx[151].text 這個大概是我們溫本基金大概明年應該明年會開會但是我也跟委員報告因為其實我們在跟企業溝通的時候他們也跟我們說這個碳費我們他們要他們交可以但是不能隨便去蓋公園隨便做一些很基本上地方建設的事他們是有一些要求的所以基本上其實這個東西都還在溝通當中我們一定會廣納大家的意見
transcript.whisperx[152].start 5105.555
transcript.whisperx[152].end 5129.779
transcript.whisperx[152].text 我是覺得這當然也是一個合理的地方你給地方但是重點是比例你要他去投資不管是這個淨零轉型的部分你也得讓地方有一些就是要有這樣的經費去做因為這是中央地方要一起聯心的那主要我在講的就是比例的問題當然你那些細節和辦法我覺得你們可以深深去思考畢竟溫暖基金我們這個碳費收來就是希望做到淨零轉型的用途
transcript.whisperx[153].start 5131.04
transcript.whisperx[153].end 5142.333
transcript.whisperx[153].text 但是我想要講的事情就是我舉例好了就直接用我台中來講我們中火是全世界非常大的火力發電廠前幾大的那也是空污排名非常前19名吧19大但是
transcript.whisperx[154].start 5143.26
transcript.whisperx[154].end 5163.263
transcript.whisperx[154].text 你們現在收的這些碳費其實像有幾台電你最後是轉嫁到這個終端消費者身上可是你在地方上我們受到這個環境的影響這碳排的影響都是地方政府所以這部分我覺得是不是應該要給予地方更多的補助然後也想辦法要求他們在這個部分可以做更多的投資
transcript.whisperx[155].start 5164.464
transcript.whisperx[155].end 5190.981
transcript.whisperx[155].text 甚至是投資國人、健康等等的這都是一個用途所以這部分我是不是可以請部長從寬的去思考一下應該要給地方更多尤其是這種碳排的這個設施中央碳排設施在那個地方很嚴重的地方好委員中央地方是一定要攜手合作的啦那其實我們也算了一下剛剛這個15億是錯的啦其實大概是大概1億左右對但是這個問題這個新聞的確是這樣但我剛剛有講到其實它是轉嫁到這個
transcript.whisperx[156].start 5192.242
transcript.whisperx[156].end 5214.597
transcript.whisperx[156].text 他所有的這個碳費他會透過你發電到那個用戶身上嘛可能會轉嫁到他身上嘛對不對可是你只有一億多在地方可能他本身那個電廠要付的碳牌的部分可是他中間有很多他製造出來的電製造出來的碳牌都已經都已經都已經在終端啦可是真正承受這個碳牌的污染的是在地方啊你懂我意思嗎
transcript.whisperx[157].start 5216.938
transcript.whisperx[157].end 5217.838
transcript.whisperx[157].text 主席好,我們一樣請彭部長
transcript.whisperx[158].start 5243.977
transcript.whisperx[158].end 5268.662
transcript.whisperx[158].text 邱委員好 部長好首先先謝謝環境部跟經濟部到最後有聽盡各界的聲音比較務實地制定了碳費一般費率及優惠費率但是我這邊覺得開增碳費還是對我們的產業造成了一個非常重大的變數所以各國都非常的小心
transcript.whisperx[159].start 5270.382
transcript.whisperx[159].end 5298.317
transcript.whisperx[159].text 本席剛剛也仔細的昨天也看了我們環境部的這個提供的這個報告目前全世界只有75個國家實施制定這個定價的制度那整個比例來講只佔我們全球的24%不到四分之一那其中採徵收碳費的只有39個國家大部分的國家都還在觀望
transcript.whisperx[160].start 5299.386
transcript.whisperx[160].end 5315.994
transcript.whisperx[160].text 那本席在想會不會我們人家一講我們很努力的往前衝結果衝到前面一回頭我們竟然沒有別的國家跟著我們走你懂我意思嗎部長我只希望說我們在做事情的時候一定要當然
transcript.whisperx[161].start 5317.729
transcript.whisperx[161].end 5343.231
transcript.whisperx[161].text 檢探是必要的但是我們也要顧及我們產業的一個生存的一個基本的一個權益不要說我們自己國家在搞我們目的是在減少這個碳排不要搞成好像是在講到我們在收碳費這部分不是為了錢是為了減碳這個最終的目的請部長這邊一定要
transcript.whisperx[162].start 5346.434
transcript.whisperx[162].end 5356.46
transcript.whisperx[162].text 抓緊一定要暫穩這個利基點不要為了收費而收費啦應該這樣講才對那我看到韓國這個實質收費每公噸只有5.7但我國一般的費率高達300
transcript.whisperx[163].start 5362.1
transcript.whisperx[163].end 5375.725
transcript.whisperx[163].text 優惠方案B也要到100當然優惠方案A也是50元兩年是調整一次的那未來當然我看到是上看上千元那重點是這些優惠條件我們業者到底有沒有辦法做到
transcript.whisperx[164].start 5376.69
transcript.whisperx[164].end 5393.772
transcript.whisperx[164].text 報告委員,其實你委員剛才說的都是重點,但是我也必須說,台灣大概是亞洲第6個有碳定價的國家,所以我們其實是慢了,我們的確也會觀察說,會不會不公平的現象,例如說有些像越南、印尼有,越南、東南亞有些國家,
transcript.whisperx[165].start 5394.893
transcript.whisperx[165].end 5416.067
transcript.whisperx[165].text 其實我們台灣的碳費的量,如果碳定價的話還要看化石燃料稅,其實我們台灣各項的化石燃料稅遠比日本跟韓國都來的低。韓國委員看到這個5.7是對的,但是韓國是進行總量管制的碳交易,他的一噸的碳在市面上超過排蛋的話,大概是18塊美金,500多塊台幣。
transcript.whisperx[166].start 5418.348
transcript.whisperx[166].end 5418.508
transcript.whisperx[166].text 臺灣現在的這個
transcript.whisperx[167].start 5436.505
transcript.whisperx[167].end 5461.557
transcript.whisperx[167].text 處境比較尷尬在很多國際的一些組織裡面我們都是被排除的都是被排除的他們是享有零關稅的一個待遇但是我們台灣你看我們從兩岸的APEC今年對台取消了146項的這個產品的優惠關稅那其實對我們的產業來講是壓力非常大的另外3年的電費連漲42%
transcript.whisperx[168].start 5464.564
transcript.whisperx[168].end 5484.682
transcript.whisperx[168].text 對我傳統的產業已經形成非常不利的一個環境那如果再加上這個開增碳費恐怕會壓垮尤其我們的基本的傳統產業像我們石化水泥產業的最後一根稻草所以我再想到一個我剛才也看到您報告裡面有提到就是我們高碳洩漏的業者
transcript.whisperx[169].start 5486.223
transcript.whisperx[169].end 5511.138
transcript.whisperx[169].text 當然我也收到陳情就是說希望在第一期對這些業者能夠百分之百的免費合配那本席認為這些國內國外因素都應該列入碳費的一個制定的一個參考我也看到環境部也是在說明年中應該也要比較歐盟正面表列公告高碳洩漏的這個行業別那請問部長你同不同意將
transcript.whisperx[170].start 5516.892
transcript.whisperx[170].end 5535.746
transcript.whisperx[170].text 那我想我們在那個徵收的辦法裡面有提到說如果是高碳洩漏的產業他的徵收排放量其實是可以達到兩折那他的概念就很像其他國家的免費配額
transcript.whisperx[171].start 5536.627
transcript.whisperx[171].end 5551.538
transcript.whisperx[171].text 那我在跟委員報告是說比如說以歐盟來講他的製造業是有免費配額但是他的發電業是百分之百要到市場上去買這個排放量的那因為我們的制度是這個發電就是範疇一跟範疇二全部都是要繳碳費所以這個這樣子稍微換算下來我們的這個排放量調整讓他範疇一加範疇二的
transcript.whisperx[172].start 5566.471
transcript.whisperx[172].end 5580.042
transcript.whisperx[172].text 對,因為我看到歐盟他們都把這些都列入還有我們的日韓他好像也是把這些都已經做了一個非常一個規範已經非常完整那我希望我們在制定標準的時候能夠參考他們的一個標準好不好
transcript.whisperx[173].start 5580.282
transcript.whisperx[173].end 5581.102
transcript.whisperx[173].text 有些業者其實在2005年就已經跟經濟部有合作
transcript.whisperx[174].start 5607.808
transcript.whisperx[174].end 5622.202
transcript.whisperx[174].text 然後投入大量經費推動自願減量的一個工作的計畫那麼到後面這個減碳的成本越來越大但現在基準年我們卻定在是2018到2022年我們現在是這樣定讓業者很難達到這個優惠條件造成這個不公平因為這些人是早期響應政府推動減碳的這些業者
transcript.whisperx[175].start 5633.112
transcript.whisperx[175].end 5634.713
transcript.whisperx[175].text 跟委員報告就是在2005年之後有一些業者跟經濟部還有當時環保署有合作做這個自願減量
transcript.whisperx[176].start 5656.806
transcript.whisperx[176].end 5676.754
transcript.whisperx[176].text 那當時他們這個做比技術標杆要好的減量成效我們有發他一個類似減量憑證那現在這個減量憑證其實我們收費辦法裡面是可以允許他來使用某一個比例來抵他的這個證收對啦我希望你標準還沒出來嘛對不對到時候我希望你們能夠把這些考量進去
transcript.whisperx[177].start 5678.335
transcript.whisperx[177].end 5706.253
transcript.whisperx[177].text 剛剛有講到我們說我們台灣要達到2050年淨零碳排的一個目標那最有效的減碳方法您覺得是從哪裡開始最有效的減碳方法是節能啦還是節能啦節省這個各種冰水主機各方面電力的改善那個是最大宗所以我們現在跟經濟部在合作做深度節能的工作剛剛我們次長有提到就是說歐盟他們電力的供應者他們是要繳碳費的對不對我們台灣是不用
transcript.whisperx[178].start 5707.864
transcript.whisperx[178].end 5712.926
transcript.whisperx[178].text 臺電要嗎?臺電要嗎?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也要繳?臺電也
transcript.whisperx[179].start 5736.195
transcript.whisperx[179].end 5756.513
transcript.whisperx[179].text 公己民生的那個就可以不用?基本上那個是他自己動的那那個其實佔他所有的營收比例我們有算過臺電大概加起來大概只要繳個5因為臺電的減碳績效很好他大概是大概5億左右對因為我們知道啦就是說其實電力供應我們臺灣大概有24家24廠那在500大這個碳排
transcript.whisperx[180].start 5760.296
transcript.whisperx[180].end 5783.912
transcript.whisperx[180].text 量中佔了45%以上所以這個比例是非常高的為了要有效的能夠這個減碳我覺得我們這部分也要應該好好的來斟酌一下這樣才對其他的這個業者才比較公平當然如果是涉及到民生的我當然也贊成因為他是配合政府一些政策當然他有些尤其台電他有一些是可以有彈性的
transcript.whisperx[181].start 5784.432
transcript.whisperx[181].end 5794.7
transcript.whisperx[181].text 其他業者如果不是在針對這個部分的時候,我覺得我們必須要公平對待,這樣可以嗎?好,可以。謝謝。謝謝邱政軍委員發言。接下來請蘇清泉委員發言。好,謝謝主席。我請部長。請彭部長。
transcript.whisperx[182].start 5814.578
transcript.whisperx[182].end 5814.94
transcript.whisperx[182].text 所有人好
transcript.whisperx[183].start 5818.23
transcript.whisperx[183].end 5841.725
transcript.whisperx[183].text 我今天問你三個問題很清楚第一個問題就是你根據這個氣候變遷因應法第32條就成立這個基金嘛 對不對那這個基金明年後年開始收你的預估這個基金到最後差不多會有多少規模60億後年後年5月會收到60億那最後也是60億
transcript.whisperx[184].start 5845.134
transcript.whisperx[184].end 5847.258
transcript.whisperx[184].text 大概是60億,如果大家都很認真檢探的話。
transcript.whisperx[185].start 5856.443
transcript.whisperx[185].end 5880.852
transcript.whisperx[185].text 就是如果說大家都不減碳的話那當然就會到300億、300、400億左右不會到1000億啦那這個基金的管理是你成立一個委員會來管理就是環境部會成立一個溫室氣體管理基金那這個也會納入各個部會一起來參與所以有包括人民團體的捐贈啊什麼都變成這個基金的規模嗎
transcript.whisperx[186].start 5883.16
transcript.whisperx[186].end 5905.744
transcript.whisperx[186].text 我看你1、2、3、4、5、6條還有其他收入等等好那這個基金就是有多久要來立法院報告一次這個就是我們每年的這個預算審議的時候就會把預算的規模提出來今天有臨時提案好那第二個問題就是碳費碳費是剛剛我有聽你講台電所發出來的電賣給
transcript.whisperx[187].start 5911.095
transcript.whisperx[187].end 5913.917
transcript.whisperx[187].text 臺電一年的收入差不多7000出頭億它的支出是8000多億所以它每年虧損1000億
transcript.whisperx[188].start 5938.337
transcript.whisperx[188].end 5949.306
transcript.whisperx[188].text 那這樣的話他台電這樣搞出來的七八千億的那個東西他一年的碳是差不多多少是幾千萬噸還是幾
transcript.whisperx[189].start 5951.074
transcript.whisperx[189].end 5968.153
transcript.whisperx[189].text 臺電大概總個排電量大概是1億噸左右大概1億噸左右1億噸對我們國家大概是2億6啦但是他是讓我們大家用啊所以他自己用自己排放他自己也會排放嘛
transcript.whisperx[190].start 5969.414
transcript.whisperx[190].end 5982.683
transcript.whisperx[190].text 這個產生一個問題我們像歐盟他Codex就是華典委員會他我們醫療在用的食品衛生的什麼萊克多巴胺的是有一個華典委員會那現在歐盟
transcript.whisperx[191].start 5984.164
transcript.whisperx[191].end 6013.559
transcript.whisperx[191].text 到底是什麼委員會在界定這個還有這個委員會的認定比如說今天中午一個便當來這個便當產生多少碳或者是說這個便當用紙盒或者是用環環境部的用鋼盒那這樣它的碳是多少是誰在說了算誰在定考試規則誰在定那個標準我接過新加坡來的他們也在定那到底這是什麼情形
transcript.whisperx[192].start 6014.159
transcript.whisperx[192].end 6033.173
transcript.whisperx[192].text 報告委員這個是每個國家他的制度不一樣啦吼所以像有些像歐洲有些國家他就直接電力業就直接就課了他是上游就課了的確有些國家是這個樣子那有些國家跟我們一樣每個國家都不一樣對我說這個產生多少碳這個產生多少碳那是誰在頂說他多少那是誰在頂啊
transcript.whisperx[193].start 6036.215
transcript.whisperx[193].end 6039.34
transcript.whisperx[193].text 好像...我都說完整會議都我不會說的咧應該是說...我們請正式來
transcript.whisperx[194].start 6045.723
transcript.whisperx[194].end 6073.493
transcript.whisperx[194].text 跟委員報告就是說什麼樣的活動會產生多少排放或是做一個東西出來有的變成是組織的盤查有的是產品的盤查那這個都是首先有這個國際上的標準有ISO的標準我看現在也沒什麼標準啊現在新加坡來的來跟我談的他自己定一套標準啊歐盟要一套標準啊我們台灣是認誰認誰的是彭部長你自己認還是怎樣
transcript.whisperx[195].start 6076.614
transcript.whisperx[195].end 6095.939
transcript.whisperx[195].text 國際的標準比較有彈性所以每一個國家它內化成比如說我們說產品碳足跡我們還會用本國的係數去做一個調整所以如果是自願性的產品碳足跡我們會用這個方式處理那如果說比如說像歐盟CBAN他要求產品要申報產品碳含量那歐盟就會定規這個才跟委員報告就有點像CODEX這個味道是不是
transcript.whisperx[196].start 6099.48
transcript.whisperx[196].end 6102.722
transcript.whisperx[196].text 那第二個問題就是你說要補助各縣市那各縣市是用什麼標準補助各縣市啊各縣市是要幹什麼事
transcript.whisperx[197].start 6123.263
transcript.whisperx[197].end 6141.702
transcript.whisperx[197].text 報告委員其實因為大家對於這個碳費過去都有一個想像空間會有個幾千億那的確有些縣市首長就跟我說他要因為他也是排蛋大屋要跟我要很多但是我必須說其實這個國際上對於這種減碳一定要有一個真的去減碳有一個量出來
transcript.whisperx[198].start 6142.482
transcript.whisperx[198].end 6163.539
transcript.whisperx[198].text 因為高屏那邊工廠都在高屏,然後公司設在台北市,然後在台北市繳稅,然後在高屏那邊放雞腮,沒有生雞腮,所以現在地方政府都嘩嘩叫,那台北市市政府稅收的那麼多的稅,250萬人口他可以收到兩三千億,
transcript.whisperx[199].start 6165.866
transcript.whisperx[199].end 6179.303
transcript.whisperx[199].text 這個以後要補助各縣市你是用省人頭還是省工廠還是省汙染的程度這個都要講清楚到時候會飛所以這個部長你要注意一下
transcript.whisperx[200].start 6180.004
transcript.whisperx[200].end 6186.046
transcript.whisperx[200].text 最後一個問題要問你醫療的你上次有跟邱太仁有參加一個會你說醫療部門佔的排放比例是0.9然後如果加上一些供應鏈來的胃藥耗材等等會達到4.4
transcript.whisperx[201].start 6208.018
transcript.whisperx[201].end 6231.523
transcript.whisperx[201].text 那這個醫療院所有在做減碳啊比如說像高雄大同醫院啊他們說再怎麼減怎麼減也能減到18%而已這到底是怎麼一回事因為我們醫療院所都是那些都是要低溫像核磁共振什麼什麼那些轉流照射那個都是要18、19度的冷氣吹24小時365天的這要減碳你也沒辦法減
transcript.whisperx[202].start 6234.344
transcript.whisperx[202].end 6253.096
transcript.whisperx[202].text 我那空調是佔50%的所有電費阿傑你跟我講的是說要讓空調啦什麼的耗電能夠減低嘛所以叫醫療院所安心的跟著彭副董去做阿不然就剩你了阿醫療院所幹不下去要怎麼處理
transcript.whisperx[203].start 6254.916
transcript.whisperx[203].end 6275.727
transcript.whisperx[203].text 醫療院所呢,我也特別這個問題有去問過,有些收碳稅稅的國家,醫療院所都沒有收啦,所以各位委員可以放心但是未來會不會有馬上收,因為這個是救人的,所以我們不會主動來處理這一塊那目前我們現在是幫醫療院所,如果是8000千瓦以上的公私立醫院,我們現在跟經濟部合組一個深度節能團隊
transcript.whisperx[204].start 6276.847
transcript.whisperx[204].end 6279.929
transcript.whisperx[204].text 所以你是找民間的一些資源來做一個團隊來輔導所有大中小型醫院如何來檢探嗎對沒錯
transcript.whisperx[205].start 6301.86
transcript.whisperx[205].end 6322.204
transcript.whisperx[205].text 好,那這樣的話,我們要如何轉述給所有的醫療院所,就是,要這樣說,叫他們大家稍安勿躁,因為那個環境部會做最好妥適的安排,然後會幫我們組團隊來輔導,然後看看能不能再減碳,再減。
transcript.whisperx[206].start 6325.285
transcript.whisperx[206].end 6344.282
transcript.whisperx[206].text 最後一個問題還是問,像這個醫療耗材、胃藥耗材那個產生的碳的,到底一個東西出來,譬如一瓶點滴出來,耗了多少碳,碳足跡等等,這個要界定清楚啦。我看你都這樣阿札公公的、青菜公公的,有的說3噸就3噸,你做2噸掉2噸,這樣是不良化的。
transcript.whisperx[207].start 6349.145
transcript.whisperx[207].end 6376.641
transcript.whisperx[207].text 有兩種,一個是自願性減碳,那個是大家自己去提,漢族記我們這邊是碳費是比較嚴格的,一定要真的去盤查認證,碳費出來才可以,所以那個都有一定的標準這個是方面部長要用心好,謝謝好,我在這邊做以下宣告,在王振旭委員發言完畢之後休息10分鐘接下來請盧憲伊委員發言
transcript.whisperx[208].start 6387.555
transcript.whisperx[208].end 6388.075
transcript.whisperx[208].text 主席有請部長請彭部長
transcript.whisperx[209].start 6395.553
transcript.whisperx[209].end 6418.379
transcript.whisperx[209].text 我們先談這個碳費的時候我們先看一下世界的趨勢因為我在大運的時候有講過很奇怪就是我們的World Bank它在5月29號就已經預告我們的碳費的價值是在大概是9塊美金那我們是10月7號才宣布的也就是說這個300塊是很早就決定了嗎?
transcript.whisperx[210].start 6418.979
transcript.whisperx[210].end 6426.164
transcript.whisperx[210].text 沒有沒有沒有這個期刊是5月29號的期刊他就已經知道我們是9塊美金了
transcript.whisperx[211].start 6427.086
transcript.whisperx[211].end 6448.68
transcript.whisperx[211].text 這是人家建議的啦 那我們還是委員 委員給我們那個神醫委員會的委員共同做的決定那我們現在看最高的目前是烏拉圭167塊 我們是在9塊 那大陸的話是在北京的話是在15塊那我們訂這個300塊的那個 是你之前有先去做盤查嗎 還是做調查 還是做怎麼樣的一個結論 會有300塊的這樣一個定價
transcript.whisperx[212].start 6451.842
transcript.whisperx[212].end 6469.919
transcript.whisperx[212].text 這是我們的碳費審議委員會然後跟各方面的討論出來的一個因為他們有考慮到這個我們的對於這個CPI GDP的衝擊然後我們他共同當然我必須說這個最後不見得每個人都2030年你是要到1200到1600的水準建議建議那你要怎麼樣逐漸上升呢
transcript.whisperx[213].start 6470.519
transcript.whisperx[213].end 6485.777
transcript.whisperx[213].text 每兩年會調整一次那50塊跟100塊也會逐年調整?會 這個是要審議委員會他們來共同討論還要看實際上執行的狀況我剛剛聽你說你去了日本知道他們要發行債券就是20兆的那你認為他20兆是怎麼訂來的?
transcript.whisperx[214].start 6487.08
transcript.whisperx[214].end 6504.873
transcript.whisperx[214].text 20兆是看實際的需求例如說他們是三個部會一起來合作那我們台灣是不是也要做這樣子的一個規劃不然你說這個61太少對其實真的減碳是真的是你聽到了這樣的一個說法我們台灣是不是也要跟著來想一下我們的模式
transcript.whisperx[215].start 6505.353
transcript.whisperx[215].end 6520.008
transcript.whisperx[215].text 對 我們的確在520之後就在動起來但是我必須跟委員說這是一撇很大的預算那到時候也希望委員的多支持我比較想知道說森林的台灣的森林有210萬公頃那這個有沒有算作我們的綠色存底
transcript.whisperx[216].start 6521.208
transcript.whisperx[216].end 6545.045
transcript.whisperx[216].text 如果有一些既定的已經開發的已經繼承的在那個地方是沒有辦法算但是過去如果是有一些空地或是沒有辦法好好維繫的好的話所以我們的210萬公頃的森林不能當作是綠色存底某一部分是但是這個到底量或多少我還要再調查因為目前是有農業部、內政部和海委會三個部會在對他們是負責自然碳
transcript.whisperx[217].start 6545.265
transcript.whisperx[217].end 6563.157
transcript.whisperx[217].text 如果說這個214萬公頃是大家的資產那是不是國家要去付這筆錢在你的基金裡面應該這裡面要有一個部分來做這個事情啦全世界都是一樣特別是這種所謂的公正轉型例如說很多的這個原住民的朋友這個都必須考慮的所以我的意思就是要
transcript.whisperx[218].start 6563.897
transcript.whisperx[218].end 6583.766
transcript.whisperx[218].text 拉到這一點就是說是不是有可能我們的淨化補償會從這個所謂的我們的綠色存底來做一個結合或者是說去考量一個方法能不能把這個淨化補償也當作是一個綠色存底然後當作是基金的一個規模然後以後如果再運用金額的上面是不是也可以援助我們人民會這邊的經費籌措
transcript.whisperx[219].start 6586.287
transcript.whisperx[219].end 6612.003
transcript.whisperx[219].text 如果未來是跟減碳有實質上相關的那我相信我們溫室棲林管理基金都會願意來考慮做這個事啦因為我們原住民畢竟是都住在森林每天看到的都是樹木可是它的價值到底在哪裡現在又被國家還是認定在院長所說的4萬塊那我們還是想說去想辦法讓它這個森林有價值所以才會想到這個綠色的所謂的存底的部分
transcript.whisperx[220].start 6612.543
transcript.whisperx[220].end 6624.72
transcript.whisperx[220].text 那我知道台電跟中油要負擔大概15億到19億那我們的最大的產業也就是這個那我想要知道是產業界還是認為300塊太高你要怎麼來拯救我們這些傳統的產業界
transcript.whisperx[221].start 6627.199
transcript.whisperx[221].end 6640.609
transcript.whisperx[221].text 報告委員,其實這裡面如果產業願意去做減碳的話,它的費率是很低的,而且還有很多的折扣我剛剛看了就是說你是減掉所謂的K值,然後再乘以,那K值是2.5萬噸嗎?所以你的第16頁Page16是扣掉那個2.5萬噸算出來的嗎?對對對
transcript.whisperx[222].start 6648.919
transcript.whisperx[222].end 6675.632
transcript.whisperx[222].text 那你說一年的收入大概是60億對不對?對對對那我剛有去算了一下如果說60億的話你這個就剛剛蘇委員講的你有去盤點說這個產業是在哪裡以後要怎麼分配嗎?目前你說基金的使用嗎?目前還沒有我們現在等著屋管基金因為新的一屆準備也會要來成立然後我們應該是明年的時候會來討論這個問題因為過年才有錢那專款專用的意思是用在?
transcript.whisperx[223].start 6676.305
transcript.whisperx[223].end 6677.606
transcript.whisperx[223].text 我想知道的是50塊這個費率是如何來達到?
transcript.whisperx[224].start 6700.168
transcript.whisperx[224].end 6700.568
transcript.whisperx[224].text 所以這個難易度
transcript.whisperx[225].start 6724.907
transcript.whisperx[225].end 6744.112
transcript.whisperx[225].text 有差別,但是委員可以看一下我們很多前20大排碳大戶的ESG報告其實他們寫的都很清楚,他們的企圖心是很旺盛的所以有些企業是沒有問題的但是我也坦承有些企業傳統產業他本身經營就比較辛苦了所以這個部分我們會跟經濟部一起來討論說如何幫忙這個企業但是這個部分還是屬於經濟部要幫忙的層次
transcript.whisperx[226].start 6750.054
transcript.whisperx[226].end 6751.695
transcript.whisperx[226].text 大家比較緊張的就是說我到底要不要繳碳費
transcript.whisperx[227].start 6762.677
transcript.whisperx[227].end 6765.718
transcript.whisperx[227].text 每個國家不一樣,歐洲的負稅很高,收入也很高,例如瑞典是137美元
transcript.whisperx[228].start 6782.023
transcript.whisperx[228].end 6799.628
transcript.whisperx[228].text 那他們是涵蓋了大概六成左右就看了期刊來說每一個人願意負擔也就是說他認為這個森林很有價值他願意保存這樣一個大森林他願意負擔的價值是4塊美金也就是說我們如果2300萬人願意付4塊錢美金的話這就是我們的一個底嘛
transcript.whisperx[229].start 6800.288
transcript.whisperx[229].end 6820.83
transcript.whisperx[229].text 所以如果我們的環境教育做得夠好認為每一個人都要付出這樣的一個價值來承擔我們這個所謂的減碳的一個活動或者是這個我們遠大的夢想那是不是你也要開始要著手去計劃這個4塊錢的美金要怎麼來讓大家來願意付出
transcript.whisperx[230].start 6822.017
transcript.whisperx[230].end 6837.902
transcript.whisperx[230].text 包括委員因為我收這個這次281家我們就快要半條命了要跟每個人收我相信你2050年要達到零排放你一定要有這個適當的一個規劃產業的規劃說我們國人是不是以後也要有這樣的一個付出
transcript.whisperx[231].start 6838.522
transcript.whisperx[231].end 6863.825
transcript.whisperx[231].text 目前全世界還沒有一個針對每個人要課碳稅或碳費的這個算是一個夢想嗎?是不是也要開始有這樣的一個想法?委員報委員那個真的很辛苦啊這個要到每個人跟每個人收個4塊美金這個是很辛苦發4塊美金比較快樂比較容易當然是啊你要作為一個零排放的國家一定要做出相當的努力啊所以這個方向也要考慮好不好?我研究一下好不好?謝謝部長
transcript.whisperx[232].start 6866.052
transcript.whisperx[232].end 6888.927
transcript.whisperx[232].text 好,謝謝盧憲伊委員的發言接下來請接下來請劉建國委員發言謝謝主席,有請部長請部長劉委員,早
transcript.whisperx[233].start 6896.178
transcript.whisperx[233].end 6910.397
transcript.whisperx[233].text 部長早部長你可以大概跟委員會做個報告114年度的環境部的總預算案含基金就全部大約是多少然後113年又是多少112年又是多少3年就好
transcript.whisperx[234].start 6912.119
transcript.whisperx[234].end 6938.218
transcript.whisperx[234].text 明年的預算177億韓基金然後去年的話應該是170就今年的話173左右我們少了一點多億少了一點多億那112呢112就是112應該也是173億左右是這樣嗎因為我只看這兩年我印象這兩年處理這兩年我知道那我問三年嘛不然可以提供嗎
transcript.whisperx[235].start 6940.526
transcript.whisperx[235].end 6942.406
transcript.whisperx[235].text 為什麼要把環保署變成環境部?理由何在?
transcript.whisperx[236].start 6971.69
transcript.whisperx[236].end 6982.259
transcript.whisperx[236].text 理由何在新部長來有沒有什麼新的政策有沒有什麼新鮮的項目是有別於在環保署的那個年代
transcript.whisperx[237].start 6985.216
transcript.whisperx[237].end 7012.869
transcript.whisperx[237].text 部長請簡單回答報委員其實這個部分我上任之後我也觀察到但是其實委員知道我們的各種的政府的工建計畫、科技預算其實大概都要提早半年前都要送進去所以我其實上任之後我真的也很努力想要增加一些預算但是行政院的額度也告訴我說額度已經滿了增加是非常有限所以那加上說我們這兩年其實有些計畫剛好銜接所以我們有一些數是預算增加的有些是反而是減少的
transcript.whisperx[238].start 7013.189
transcript.whisperx[238].end 7029.577
transcript.whisperx[238].text 因為那個計畫剛好銜接期沒有搭得上所以其實我也希望所以目前跟委員報告我的確在我們內部啟動一個機制我們希望每個部會都要提計畫因為要提計畫要做事才能夠申請到錢所以目前我們希望在115年預算可以增加
transcript.whisperx[239].start 7032.855
transcript.whisperx[239].end 7056.61
transcript.whisperx[239].text 應該這麼說啦,我知道部長一定會去爭取嘛,對不對?但是怎麼會沒有爭取到,反而不正完檢?這個絕對是有問題的啦。相關的數據增檢,這個很正常的事情,因為執行的效益嘛,績效等等的一些問題,你們去說相關的一些調整。明天開始要,開始來執行這個碳費的徵收。
transcript.whisperx[240].start 7057.671
transcript.whisperx[240].end 7079.899
transcript.whisperx[240].text 我想我想在某一個程度上然後你又貴為新部長應該有些新興的項目阿這些新興項目是不是一定要增加預算那倒也未必啦但是屬變成部之後我想我想基本上那個整個格局啦跟你要去掌理的事項一定是一定是增加的嘛對不對所以他是他從預算面要去看到你這個部
transcript.whisperx[241].start 7080.879
transcript.whisperx[241].end 7108.56
transcript.whisperx[241].text 的未來的整個你的執行面也好你的執行目標也好還有你相關要做的更積極的一些事項應該他都是要增加的啦所以我是簡單從預算面要來跟部長討論我們現在還沒有進到實質的預算審查那我剛剛就講了如果說我們連這個都不清楚還是各個單位都把這個事情當成不是一件事情那審預算的時候我覺得大家就會很難過了啦這第一點
transcript.whisperx[242].start 7110.922
transcript.whisperx[242].end 7134.028
transcript.whisperx[242].text 第二點,上週台灣碳匯的價格終於定案,一般匯率是每噸300元,同時提供優惠利率,有AB兩種方案,分別為每噸50還有30。那台電、中油、中鋼,他們都已經有出估他們自己可能要繳得碳匯,那如果依照300元來計算,台電可能要繳15、中油19、中鋼則是2到4億,這是國營事業這個碳排大戶的出估金額。
transcript.whisperx[243].start 7140.03
transcript.whisperx[243].end 7145.154
transcript.whisperx[243].text 臺電、中油都表示再可負擔的範圍同時這些碳排大戶都還會再去爭取優惠方案所以最終需要繳交的價格應該都會再壓低
transcript.whisperx[244].start 7158.144
transcript.whisperx[244].end 7178.349
transcript.whisperx[244].text 但是在環境部提供的碳費的簡報當中最後有放上很多報導來證明這個碳費不會影響民生經濟的波動部長也是這樣主張嗎?對 沒錯但是在昨天有沒有報去委區看這個東西這個碳費恐令翁部長葉子優綠色通本
transcript.whisperx[245].start 7179.129
transcript.whisperx[245].end 7195.075
transcript.whisperx[245].text 他是引用這個臺中經發局這個局長的說法他認為多項項目這個價格多項價格的因素會造成企業營運成本的提高然後由於這是重點由於我國的碳費價格比國際匯率高
transcript.whisperx[246].start 7196.315
transcript.whisperx[246].end 7217.771
transcript.whisperx[246].text 加上基本工資、電費同步調升那企業營運成本勢必要調高嘛那最後一句話喔最後一句話中小企業面臨成本漲也會順勢調整價格最後帶動萬物皆漲你還沒回答之前我先肯定不啦還不漲在昨天禮拜天大家就放棄休假的日子馬上
transcript.whisperx[247].start 7219.713
transcript.whisperx[247].end 7238.699
transcript.whisperx[247].text 就用相關的數據來做這個打臉這個我是要肯定但是這個簡單政策怎麼會搞成中央要再滅這種火地方一直要放這種火那怎麼辦?包委員其實第一個啦大家對於這個碳費新的制度都不了解所以我上禮拜才在日本其實某一個建商大佬
transcript.whisperx[248].start 7239.219
transcript.whisperx[248].end 7262.891
transcript.whisperx[248].text 也喊出了這個一樣的話所以我也要求說我一定要澄清要平衡言論所以我們強力做下去那我也發現說其實大家對碳費國人是不了解的所以我要求我們的同仁要做出這一本而且要公開讓全民知道所以今天這本第一次是在院會讓委員先可以看到我們會讓所有的民眾都可以來了解這個那其實我必須說很多人是對這個是真的不了解的
transcript.whisperx[249].start 7263.231
transcript.whisperx[249].end 7264.533
transcript.whisperx[249].text 不是大佬勒,他是地方政府勒
transcript.whisperx[250].start 7283.09
transcript.whisperx[250].end 7302.712
transcript.whisperx[250].text 地方政府他其實下午有澄清了他說他有一個新的說法出來了OK好但是不知道你看你們的溝通你如果總預算案環境部總預算案不減少1.7億其實你那1.7億就可以做很多宣傳的事情溝通的事情你看你們整體的溝通案
transcript.whisperx[251].start 7303.803
transcript.whisperx[251].end 7317.697
transcript.whisperx[251].text 到目前為止,你說溝通就困難了那不溝通會有更困難嗎?對不對?這是部長講的嘛NGO7場、產業溝通26場、專家學院4場、大大大總共47場,獨缺地方政府那地方政府要不要辦?
transcript.whisperx[252].start 7318.85
transcript.whisperx[252].end 7347.734
transcript.whisperx[252].text 我們會努力想要來辦理那也希望說未來如果說地方上因為委員比我們更了解地方能夠找到一些有這個需求的也希望能夠能夠積極來結合辦理所以在這邊是不是要跟部長特別要求嘛地方政府22個縣市嘛一個月內溝通完成好不好可以嗎一個月內嘛因為這個月會期我們都在立法院啦所以再給我們多幾個月可以嗎我們坐在立法院的時間不多啦
transcript.whisperx[253].start 7348.474
transcript.whisperx[253].end 7361.973
transcript.whisperx[253].text 都幫你們算過了第一個沒有預算可是省嘛第二個你們預算增加不增加你們也都沒有在緊張嘛然後待會也不一定會每次的委員會都排你們嘛一個半月啦22場一個半月OK吧
transcript.whisperx[254].start 7366.938
transcript.whisperx[254].end 7371.46
transcript.whisperx[254].text 第二件事情 匯率訂立後第一場要跟產業界再做溝通的我這邊具體要求 是不是可以從雲林開始
transcript.whisperx[255].start 7382.623
transcript.whisperx[255].end 7405.355
transcript.whisperx[255].text 好 謝謝謝謝部長再來 你看齁 部長你也講了吼 碳水如鞭越快上路越好到過去齁 過去務務部也在這對淵娟吼 她也是淵娟如鞭了她希望越快上路越好 但是初期可能大家都會朝這個方向這個目的目標去做 她減量 她也會一直持續做
transcript.whisperx[256].start 7406.135
transcript.whisperx[256].end 7424.664
transcript.whisperx[256].text 但他如果把它當作是成本化之後他會成本化之後他覺得他可以負擔就像剛才中油還有台電他們講的那些話那未來就不是在減減碳的這個方向走反而是他可負擔的範圍裡面去繳費那環境部變成什麼收費大副
transcript.whisperx[257].start 7425.66
transcript.whisperx[257].end 7446.732
transcript.whisperx[257].text 還是你們讓預算減少未來的碳費可以收所以你們對種預算案你覺得減少是不為過的事情我講話絕對有邏輯啦如果是這個樣子的話那最後碳費成本的話會導致什麼問題發生部長你應該比我更清楚因為我在你的相關報告裡面完全沒有看到你如何嚇阻讓碳費
transcript.whisperx[258].start 7447.893
transcript.whisperx[258].end 7473.706
transcript.whisperx[258].text 不是從要去做積極減碳的方向走如果他把它變成商業,企業把它也變成成本化之後你們有什麼樣的因應的作為我沒有看到這個報告好,委員其實這個裡面碳費的精神就是他自主減碳他就有很大的這個優惠利率那個就是委員說的這個內容那我也產生這個我們的對外的論述溝通齁還真的有待加強啦因為我們環境部沒那個公關那個預算的經費啦
transcript.whisperx[259].start 7475.367
transcript.whisperx[259].end 7475.567
transcript.whisperx[259].text 委員會主席
transcript.whisperx[260].start 7489.821
transcript.whisperx[260].end 7513.713
transcript.whisperx[260].text 所謂這樣說嘛對不對還有一點啦這個編辭你一定要弄出來我想這個距離計畫可能部長你要我距離要求部長要提供給委員會做參考嘛企業一定要朝向真正去做減碳嘛對不對而不是把它可接受可負擔換來把它成本化那這樣我們的目標就不對了啦那另外一點還有一個蠻嚴重的問題啦
transcript.whisperx[261].start 7515.114
transcript.whisperx[261].end 7542.392
transcript.whisperx[261].text 碳費審議會議有建議啦兩年一期的碳費調整方案預計2031年預計2031年每噸是要達到1200塊喔那等於是明年開始嘛2526就一期嘛對不對2728就是第二期嘛2930就是第三期嘛三期從現在明年開始300元到第三期就是百分之四百成長了1200塊
transcript.whisperx[262].start 7545.374
transcript.whisperx[262].end 7568.285
transcript.whisperx[262].text 是確定這樣做嗎?報告委員其實這個制度如果按照這樣設計的話的確是大家壓力會很大但是我也跟大眾承諾過其實全世界好的制度都是總量管制的碳交易比較有效率那由政府這樣收其實不見得效率好所以我們也期待未來在4年內能夠延期總量管制的排放交易這個會比較好
transcript.whisperx[263].start 7569.486
transcript.whisperx[263].end 7580.043
transcript.whisperx[263].text 所以如果按照這個1200塊收的確委員你說的問題就會跑出來這個我們也考慮進去了所以我們4年內會慢慢的雙軌並行最後走到總量管制的排放交易
transcript.whisperx[264].start 7581.49
transcript.whisperx[264].end 7607.55
transcript.whisperx[264].text 為什麼相關的企業也會有相對應的作為嗎?對不對?阿他如果有充分的時間,他也把他計算在他的成本裡面,阿就不像剛剛你處理的那樣現在就是說,如果一千二的話,我相信所有企業是沒辦法接受,現在的企業沒辦法接受的所以其實我們還是希望,因為總量管制的排放交易是可以跟國際接軌的然後我們有一些本地的產業可以給他一些免費的配額,所以其實這個部分會效率或管理會比較好
transcript.whisperx[265].start 7607.79
transcript.whisperx[265].end 7611.094
transcript.whisperx[265].text 總量管制的排放交易不是收這個碳費碳稅像新加坡也是跟我們收目前預計也是到2030年要收到1500
transcript.whisperx[266].start 7625.996
transcript.whisperx[266].end 7650.324
transcript.whisperx[266].text 但是部長你這麼講就代表說我們還有另外新的制度新的制度希望同步來實施那你的新的制度什麼時候出來我們新的制度等於是說目前我們希望明年我們明年6月就會組一個團到德國去來整個產業跟我們政府部門還有我們媒體界一起來學習總量管制的排放交易ETS啦我們要有一個ETS的制度出來
transcript.whisperx[267].start 7652.685
transcript.whisperx[267].end 7666.192
transcript.whisperx[267].text 我覺得這是有些問題,因為時間的關係,主席再給我一分鐘就好,那個精華署署長是不是有來?部長你先聽一下,我請教楊署長,楊署長對嗎?是那個麥寮海蛋廠是什麼狀況?他2018年通過環評,並要啟動新的計畫,預估2022年8月要完成了對不對?
transcript.whisperx[268].start 7673.191
transcript.whisperx[268].end 7693.669
transcript.whisperx[268].text 那2022年5月,台碩六清就要播消息,因疫情影響這個氮化廠的興建,要延後一年嘛。然後到了2023年,又延到今年的10月31號,現在台碩又要提出展延18個月嘛。也就是說要到2026年4月30。大盤建部是不同意喔。那你們,你們經發署勒?
transcript.whisperx[269].start 7696.102
transcript.whisperx[269].end 7714.832
transcript.whisperx[269].text 跟委員報告,這是在我們產業延期管理局在處理,當初進度因為疫情影響慢了,所以提出這樣的一個展延的要求這個是業者他不得已的一個措施,那我們會來看他實際提出的情況,因為當初他是環評承諾執行進度已經到96.5了
transcript.whisperx[270].start 7719.954
transcript.whisperx[270].end 7735.75
transcript.whisperx[270].text 他為了剩下這3點多趴他要再展延18個月你們經濟部沒有意見我知道齁這是產業局在管沒有錯啦齁但是當時在整個組織下過在調整調整的過程裡面我在那個第在四網法治委員會我特別要求這件事情
transcript.whisperx[271].start 7736.789
transcript.whisperx[271].end 7753.861
transcript.whisperx[271].text 那你們要怎麼處理?委員我回去請產業人去管理局做一個了解再提供一份書面報告給你我麻煩你回去跟部長打個招呼啦跟他回報這件事情不能這樣啦不能這樣處理啦然後我也覺得經濟部有督導的缺失啦是不是也提出相關報告給我們做參考?
transcript.whisperx[272].start 7754.827
transcript.whisperx[272].end 7755.908
transcript.whisperx[272].text 接下來請王振旭委員發言
transcript.whisperx[273].start 7783.61
transcript.whisperx[273].end 7786.873
transcript.whisperx[273].text 謝謝主席有請彭部長還有經濟部產業發展署楊署長王委員早
transcript.whisperx[274].start 7795.15
transcript.whisperx[274].end 7821.042
transcript.whisperx[274].text 部長早讓地球可以深呼吸所有地球上的生物可以深呼吸台灣的民眾可以放心地深呼吸我想這是今天要跟部長討論的事情那近年減碳的政策真的非常重要所以我們要走對的路做對的事那部長有多少信心
transcript.whisperx[275].start 7822.602
transcript.whisperx[275].end 7823.822
transcript.whisperx[275].text 關於碳費的部分先請教一下有關於當這個碳費拍板以後
transcript.whisperx[276].start 7845.508
transcript.whisperx[276].end 7865.253
transcript.whisperx[276].text 當然各界反應會有不一樣的一些想法那請問部長在這個拍板之前有跟經濟部這邊有做多少的一些互相的討論那為什麼碳會拍板定案以後經濟部會表達遺憾這部分可不可以請兩位簡單做個說明
transcript.whisperx[277].start 7867.713
transcript.whisperx[277].end 7889.41
transcript.whisperx[277].text 報告委員這個費率的制定是碳費審議委員會來定義但是我們在形成一個決策的時候的確有進行跨部會的協商包含跟我院長也都有報告過這個事情不過最後其實還是審議委員會來決定那其實我也很尊重這個經濟部因為經濟部是從產業的角度發聲所以其實我們也會跟著他們積極來協調討論這個事情
transcript.whisperx[278].start 7891.511
transcript.whisperx[278].end 7892.992
transcript.whisperx[278].text 請問經濟部,你們如何替產業發聲?遺憾跟未來發生中間有沒有什麼連結?
transcript.whisperx[279].start 7915.069
transcript.whisperx[279].end 7930.038
transcript.whisperx[279].text 是 謝謝經濟部也是碳費審議委員會裡面的一個成員那我們是針對目前各行各業所面對的一個產業環境認為大家應該要可以負擔得起然後可以用穩健的方式來做處理
transcript.whisperx[280].start 7930.538
transcript.whisperx[280].end 7930.718
transcript.whisperx[280].text 主席
transcript.whisperx[281].start 7956.544
transcript.whisperx[281].end 7961.345
transcript.whisperx[281].text 了解,所以希望往後就不要遺憾,而是如何共同努力往前走。好,那謝謝署長
transcript.whisperx[282].start 7983.208
transcript.whisperx[282].end 8009.958
transcript.whisperx[282].text 那再過來是有關的請教 署長可以請回座 謝謝碳費專款的使用剛剛很多委員都有請教了部長那針對於未來碳費預計會有60億元左右的這個碳費的收取那請問一下這個部長有列這麼多的層面需要去處理的部分那在執行過程當中目前有沒有計畫要怎麼分配
transcript.whisperx[283].start 8010.918
transcript.whisperx[283].end 8029.236
transcript.whisperx[283].text 剛剛部長也提到很多教育面還有相關的調試面等等那部長也很用心的在部裡面做了這一個這麼好的資料可以讓民眾做參考所以如何分配這個碳費的收入目前部長有沒有初步的規劃
transcript.whisperx[284].start 8030.697
transcript.whisperx[284].end 8048.208
transcript.whisperx[284].text 報告委員這個其實全球我個人是希望說這個60億放大10倍啦600億就是把民眾的錢這個大家的企業錢有更好的效益來做使用但是呢這個如何按照氣候變遷因應法的這個原則去定義那這個是要成立一個委員會
transcript.whisperx[285].start 8049.108
transcript.whisperx[285].end 8064.565
transcript.whisperx[285].text 目前委員會我所知道是說我會來擔任這個主席然後來訂這個規則請一些各方面的委員來參與還有各個部會所以目前細節怎麼用我們還沒有訂那預計明年才會開始草擬這些事情
transcript.whisperx[286].start 8065.259
transcript.whisperx[286].end 8087.287
transcript.whisperx[286].text 好,我們希望這個效益可以極大化對那再過來有關於成立基金的部分部長目前也規劃有3個基金可以來協助整體的這些處理的要求那包括綠色成長基金預計預計或者是說會預注100億元那可是我們看到好像要爭取
transcript.whisperx[287].start 8088.649
transcript.whisperx[287].end 8104.427
transcript.whisperx[287].text 那到底這兩者之間有多少的落差那再過來就是綠色金融創新的部分什麼時候有好的平台的產生讓這個保險業者可以把這樣的資金搭上綠色產業那這兩部分也麻煩部長幫忙說明
transcript.whisperx[288].start 8105.308
transcript.whisperx[288].end 8122.023
transcript.whisperx[288].text 委員第一個是國發基金我們是已經獲得國發會主委口頭上的承諾他覺得這是非常好的而且他也承諾我100億用完之後還可以再想辦法然後第一個是這個現在我們正在寫申請書然後因為我們國發基金已經有好幾個部會
transcript.whisperx[289].start 8122.944
transcript.whisperx[289].end 8126.887
transcript.whisperx[289].text 致於綠色金融創新是跟金管會那金管會其實他也很熱心的協助我們找保險公司能夠來談這個資金的取得這個都不是政府的原來預算的錢
transcript.whisperx[290].start 8153.027
transcript.whisperx[290].end 8174.812
transcript.whisperx[290].text 目前的確已經還不做得成效但是也遇到一些問題就是說裡面的細節上例如說做S口做深入節能有一定的風險如何去擔保我們還是遇到一些細節上的問題我們還在解決當中但是這個應該未來一兩個月內會有結果那第三個因為前面兩個如果完成之後我們更希望的是鼓勵我們國內的創投業者
transcript.whisperx[291].start 8176.132
transcript.whisperx[291].end 8204.098
transcript.whisperx[291].text 能夠來投資進來因為國際上這種氣候科技這種進領的量非常的大一年全球大概有一千億美金的這個數值所以我們也希望我們國內的創投業者也可以來關心國內的這樣的相關的業者可以來做這個事情那其實呢也跟委員報告我們剛剛統計的一個資料我們國內在一些這個求職平臺這種所謂綠色工作的人才一個月平均大概有兩萬個新的工作的這個機會我們也就希望
transcript.whisperx[292].start 8205.319
transcript.whisperx[292].end 8214.905
transcript.whisperx[292].text 從這個綠色這個就是賴清德賴總統的綠色成長的戰略裡面我們是不是可以創造一些新的動能來幫助台灣這個是現在我們環境部面對這樣的一個新的態度
transcript.whisperx[293].start 8215.667
transcript.whisperx[293].end 8238.736
transcript.whisperx[293].text 我們也希望讓這些需求在人力上的供應或者是未來的發展可以更全面再過來就是要請教部長有關於醫療機構減碳的部分非常謝謝也非常肯定部長在最後面幫我們的醫療機構在這個費用的部分做了一些正向的一種允諾剛剛蘇委員也談到這個事情
transcript.whisperx[294].start 8242.457
transcript.whisperx[294].end 8266.494
transcript.whisperx[294].text 請教一下我們也知道其實醫療部門雖然所佔的這個使用的量不是很大 氣體排放佔了0.9可是如果把醫療供應鏈加進去事實上真的是不少 有到4.4%那未來在這部分的政策方向如何能夠具體協助醫院來做節能的這個方案 不知道目前的規劃如何
transcript.whisperx[295].start 8267.074
transcript.whisperx[295].end 8283.198
transcript.whisperx[295].text 目前跟委員報告就是說我們現在經濟部跟環境部正在研議一個就是深度節能就是X口的下一代那目前來看的話我們經濟部的團隊會負責公立醫院、部立醫院那整個私立醫院是由環境部這邊來負責所以我們會針對全台灣的這個醫院的
transcript.whisperx[296].start 8287.179
transcript.whisperx[296].end 8287.199
transcript.whisperx[296].text 委員會議
transcript.whisperx[297].start 8306.209
transcript.whisperx[297].end 8329.183
transcript.whisperx[297].text 好,因為我們也知道醫學中心那個能源佔用真的是電力的部分非常的高的爬速,將近有八成那在電力耗用裡面空調又佔了55%其他照明、插座等等那在要更新啦,或者是要讓這些設備可以更為發揮它的效能真的是也是一筆重大的費用所以我們很期待
transcript.whisperx[298].start 8330.223
transcript.whisperx[298].end 8330.343
transcript.whisperx[298].text 謝謝委員謝謝部長
transcript.whisperx[299].start 8357.294
transcript.whisperx[299].end 8359.663
transcript.whisperx[299].text 謝謝王振旭委員,現在休息10分鐘
transcript.whisperx[300].start 8990.896
transcript.whisperx[300].end 8995.379
transcript.whisperx[300].text 好,現在繼續開會接下來請圖全級委員發言好,謝謝主席,請我們彭部長請彭部長圖委員,早
transcript.whisperx[301].start 9013.624
transcript.whisperx[301].end 9034.337
transcript.whisperx[301].text 部長我請問一下上個禮拜我們有確定未來5年碳費費率的標準已經確定了嗎?是不是?沒有沒有,就是指現在起徵點的費率那如果2030年以後的費率他是一個建議並不是說一定要這樣所以我們現在起徵就是以每噸300元對那針對這個起徵一般的費率每噸300元部長針對這部分你滿意嗎?
transcript.whisperx[302].start 9040.48
transcript.whisperx[302].end 9041.741
transcript.whisperx[302].text 那你覺得這實施以後對減碳上有什麼具體的幫助嗎?
transcript.whisperx[303].start 9057.853
transcript.whisperx[303].end 9073.428
transcript.whisperx[303].text 如果說大家很願意減碳,我們其實希望大家能夠走到優惠費率如果每一家企業,我們也評估過這些企業應該都可以走到優惠費率如果都走到優惠費率的話,可以幫我們國家減碳14%就是比我們過去NDC減碳的成效還要來得好
transcript.whisperx[304].start 9074.192
transcript.whisperx[304].end 9077.153
transcript.whisperx[304].text 報告委員其實我們算的整體而言其實大概對CPI的衝擊是很低
transcript.whisperx[305].start 9093.621
transcript.whisperx[305].end 9117.428
transcript.whisperx[305].text 而且其實大多數的企業是可以接受的但是我也必須跟委員談成仍然有一些可能最近經營比較困難的企業他又是排攤大戶他也積極面臨到這個轉型的困難所以某一些企業的確我們有觀察到這個所謂公正轉型的問題所以其實我們內部已經在討論是不是有一些更好的機制能夠幫助某些真的非常辛苦的產業
transcript.whisperx[306].start 9118.428
transcript.whisperx[306].end 9138.763
transcript.whisperx[306].text 所以我們現在看起來感覺我們環境部一直在減碳的部分部長這邊也推動很多的各項政策來減碳可是真的我覺得我國的能源政策跟我們環境部真的是相衝突只能透過調整、自主減碳一些被動的方式來去做
transcript.whisperx[307].start 9139.483
transcript.whisperx[307].end 9147.941
transcript.whisperx[307].text 那對減碳有直接影響的調整能源政策我覺得環境部在這邊好像一點角色都沒有完全好像都是受制於經濟部
transcript.whisperx[308].start 9149.506
transcript.whisperx[308].end 9171.393
transcript.whisperx[308].text 報告委員其實不會的因為我們行政院有一個永續會永續會下面有一個氣候變遷與淨零小組那我本身呢也是裡面的這個這個副召集人所以其實我也在裡面每個月大概每個禮拜大概有兩次的會議所以我們都積極參與各種檢探的工作我們也有一些發言權有一些建議權所以很多的部位的檢探我們
transcript.whisperx[309].start 9172.333
transcript.whisperx[309].end 9175.394
transcript.whisperx[309].text 所以部長的說法針對這次的碳費草案上路所以你說經濟部跟環境部還有企業界各界你們都在費率上有進行充分的討論是不是?
transcript.whisperx[310].start 9196.118
transcript.whisperx[310].end 9197.239
transcript.whisperx[310].text 因為剛剛我聽部長這樣講照理來講好像你們針對這部分都討論過那應該有達成一些共識吧?
transcript.whisperx[311].start 9212.769
transcript.whisperx[311].end 9238.403
transcript.whisperx[311].text 其實基本上齁,這個一個價錢能夠訂出來齁,要讓大家完全滿意齁,這個是不可能的事情啦,我也有充滿的認知。那委員在那邊寫的說不停,我覺得是某些企業應該都很理解我們在做什麼事情,但是畢竟要收費齁,這個要課稅齁,收費課稅在任何一個國家,都是會被不習慣的,被討厭的,所以我必須說我們還是做了一個最痛苦的決定啦。
transcript.whisperx[312].start 9238.683
transcript.whisperx[312].end 9252.799
transcript.whisperx[312].text 所以因為我們去看到經濟部對外公開的發言我覺得經濟部的說法其實是洗臉環境部因為他一直說這個碳費這個上路之後絕對會嚴重影響台灣產業國際競爭力那針對這部分
transcript.whisperx[313].start 9259.633
transcript.whisperx[313].end 9285.195
transcript.whisperx[313].text 那個部長你有沒有覺得好像在恐嚇環境部好像意思說如果這個實施的話對我國經濟好像會有重大的傷害不會 報告委員其實保護環境保護地球本來就是這個環境部的工作所以我的力道會當然會大一點那經濟部門是保護產業這兩個的確會有一點點的相通途但是我們認為在這個某些環節我必須堅持我的理念但是我也尊重他們這幫產業爭取的這個理念所以
transcript.whisperx[314].start 9287.837
transcript.whisperx[314].end 9315.695
transcript.whisperx[314].text 這個的確會有一點不一樣但是我不會有這種被洗臉的感覺啦好其實針對我們看到我國針對這個碳定價制度喔在其實在亞洲國家我們已經算慢的據我們了解喔你看日本、韓國、中國、新加坡、印尼他們最早的從2008年就已經開始訂定那我們到現在才開始實施那經濟部還用競爭力下降啊
transcript.whisperx[315].start 9316.275
transcript.whisperx[315].end 9342.014
transcript.whisperx[315].text 然後針對這部分我覺得好像有點在恐嚇民眾恐嚇環境部好像這個實施對我們整體經濟不利其實我倒覺得是不是顯示經濟部應該是在非核家園這個部分我覺得沒有完整的配套措施而且在碳費這個問題經濟部好像也沒有針對環境部要實施好像他也沒有什麼配套
transcript.whisperx[316].start 9342.934
transcript.whisperx[316].end 9366.619
transcript.whisperx[316].text 包委員其實我們不會再對企業的輔導是一體的來做啦吼那碳定價呢其實本身就是一個非常困難的過程我們已經討論了3、4年了才完成這個事情所以這是一件蠻難的事因為這是一個新的制度那我覺得委員提到的這個其實經濟部跟我們一直在一體的兩面一直在推動啦那委員談到的核能的問題那又是另外一個能源署的這個問題啦
transcript.whisperx[317].start 9367.939
transcript.whisperx[317].end 9388.307
transcript.whisperx[317].text 我覺得我們尤其我們現在執政應該要有一個同樣的目標同樣的方向現在讓我感覺就是經濟部的政策經濟部做他的然後環境部的目標做環境部的兩個根本感覺就是背道而馳所以我想了解在國際氣候變遷對策委員會上針對碳費這個問題部長到底有沒有拿出來充分討論
transcript.whisperx[318].start 9394.609
transcript.whisperx[318].end 9411.257
transcript.whisperx[318].text 碳費是在我們這個行政團隊執行裡面重要的一個問題那我們第一次委員會議裡面我有報告說今年一定會上路那至於說我們這幾個月努力的成果我應該在月底的這個氣候變遷對策委員會我會跟委員再做一次報告
transcript.whisperx[319].start 9411.897
transcript.whisperx[319].end 9439.275
transcript.whisperx[319].text 因為這個事實上是一個里程碑啦雖然說大家可能會對費率上希望有他自己想要的數字但是這個是台灣的開始我們必須還是給予我們的這個制度我們國人我們國家是一個肯定的所以我們現在擔心的就是說我們覺得說這個委員會應該要有達到調和點賴的功能去協調這些問題可是我覺得這次碳費費率出來我們看到的經濟部、企業界
transcript.whisperx[320].start 9440.215
transcript.whisperx[320].end 9456.793
transcript.whisperx[320].text 甚至連環團當然他們的說法不一樣企業界覺得訂這個太高環團覺得太低那都來抨擊這個碳費費率那我們部長是執行秘書我們郭部長也是委員那環團裡面也有委員代表
transcript.whisperx[321].start 9457.293
transcript.whisperx[321].end 9485.847
transcript.whisperx[321].text 那不知道這個部分到底委員會有沒有達到這充分協調的功能報告委員其實我們跟郭部長跟例如說一些的部會首長我們常常就針對這個議題會去討論但是我也必須說其實每個部會有他的這個保護的對象他既定的立場那事實上我們都尊重其實我們是討論的過程當中是對國家有利的我們都會彼此互相的這個協調啦所以委員其實倒衝突倒是沒有那麼的大所以委員放心
transcript.whisperx[322].start 9486.147
transcript.whisperx[322].end 9502.596
transcript.whisperx[322].text 所以我覺得部長你還是要站在我們針對我們全民的健康還有我們環境的問題一定要為我們民眾來把關那針對這部分我們碳排10大污染源請問部長你知道這個10大污染源最多的是哪些產業嗎
transcript.whisperx[323].start 9503.856
transcript.whisperx[323].end 9505.298
transcript.whisperx[323].text 所以我們看這個從2023統計前兩年的資料來看這10大碳排其實
transcript.whisperx[324].start 9521.896
transcript.whisperx[324].end 9542.885
transcript.whisperx[324].text 幾乎都集中在我們的發電廠那除了台塑中鋼跟中農鋼鐵是民營的以外你看中火跟麥寮發電廠這全世界都排名一個28名一個55名所以是不是我國的能源比燃煤天然氣為主這個高碳排政策
transcript.whisperx[325].start 9544.085
transcript.whisperx[325].end 9562.471
transcript.whisperx[325].text 假設這些我們看得出來它是10大污染源最多的那這個碳費上路之後發電廠是最多最大的污染源那台電一樣火力全開那每年資額這高額的碳費給環境部不就是台電把這些錢就轉到環境部去
transcript.whisperx[326].start 9563.231
transcript.whisperx[326].end 9584.872
transcript.whisperx[326].text 是否變成這樣子?報告委員不一樣吼,這個碳排跟污染是兩件不一樣的事情只要一個工廠他這種所謂的雖然是燒煤他用超超零件或各種的管道他還是其實可以很乾淨的所以這個是碳排的係數那基本上因為我們國家幾十年來的這種產業的政策累積到現在為止現在的確也面臨到轉型的時候
transcript.whisperx[327].start 9584.892
transcript.whisperx[327].end 9602.405
transcript.whisperx[327].text 所以部長我的意思說看起來會繳這個高額碳費看起來這個發電廠應該是最多那發電廠基本上這些都是屬於台電所以我說台電繳這些碳費這些錢也都是我們納稅人的錢那你還是全民買單啊
transcript.whisperx[328].start 9603.366
transcript.whisperx[328].end 9619.147
transcript.whisperx[328].text 沒有報告委員這個其實算法上像昨天臺中市政府他們稍微有點搞錯了那經發局局長其實最主要就是說像臺電發電自己發電自己用的那個就要課碳費給大家用的那個就不用所以其實這個算法是很清楚的
transcript.whisperx[329].start 9620.101
transcript.whisperx[329].end 9645.085
transcript.whisperx[329].text 希望這部分針對這個高的碳費我們很擔心台電繳的錢還是全民買單那這個碳費的部分我有看到希望說是以專款專用我這邊建議啦那針對我們有蓋發電廠的地方還有高碳排的縣市像現在我們桃園大潭電廠是我們全國最大的天然氣發電廠那個台中的
transcript.whisperx[330].start 9648.479
transcript.whisperx[330].end 9662.731
transcript.whisperx[330].text 中火是我國最大的火力發電廠針對這些部分他們有被蓋發電廠而且是高碳排的縣市我們碳費應該針對這個部分補助地方做一些減碳的設施
transcript.whisperx[331].start 9664.313
transcript.whisperx[331].end 9677.671
transcript.whisperx[331].text 這個我們會來考量就是說這個畢竟還是要從減碳的源頭去減要有效率這是最重要的所以這個部分例如說如何去幫助這些排碳大戶能夠快速的減碳當然我必須說這個還有別的用途這個要經過溫室氣體的審議委員會能夠來決定所以我個人的建議我們會考慮
transcript.whisperx[332].start 9681.736
transcript.whisperx[332].end 9710.662
transcript.whisperx[332].text 對阿我建議喔專款專用啦他居然發電廠最多表示他的基本上的污染也最多那居然有收這個碳費很多都是從他們那邊去繳交的因為污染也在他們那邊我們應該從這個碳費去補助地方去多做一些減碳的設施給他們報告委員其實這個部分已經有空污費有大量的補助了好這部分希望部長針對民眾的健康的部分幫我們多參考一下好謝謝
transcript.whisperx[333].start 9713.476
transcript.whisperx[333].end 9717.677
transcript.whisperx[333].text 十月是環境部一個很特別的月份也是許多年輕人會關心的你知道叫什麼月嗎十月
transcript.whisperx[334].start 9746.019
transcript.whisperx[334].end 9770.478
transcript.whisperx[334].text 這是很多年輕人會關心的議題所以全台灣每年的手機銷售量是500到600萬台但是我們的回收率卻只有12%您在這個月的許許多多的新聞稿都有宣導這件事情因為手機裡面有很多貴重金屬對於資源的永續非常的重要那我在許多新聞稿都有找到說
transcript.whisperx[335].start 9771.198
transcript.whisperx[335].end 9777.749
transcript.whisperx[335].text 我們的手機回收率只有12%那您知道跟世界各國比起來我們的
transcript.whisperx[336].start 9779.32
transcript.whisperx[336].end 9805.437
transcript.whisperx[336].text 數據是?我所掌握的資料是像歐美日他們大概是15%我們有一段落差對那為什麼我們做不到呢?從實際上來看的話如何手機賣出去如何回收其實還是要從源頭來做起所以其實這段時間我們跟手機的廠商一個一個去談因為其實有些的產業每個產業不一樣像有些大牌的大家常用的其實他們都想要自己的回收體系算他自己的
transcript.whisperx[337].start 9805.737
transcript.whisperx[337].end 9808.158
transcript.whisperx[337].text 你有定一個目標是2026年要提升3%提升到大概是日韓歐美的低標會不會覺得這個定的有點太低了
transcript.whisperx[338].start 9834.773
transcript.whisperx[338].end 9860.783
transcript.whisperx[338].text 因為我一直跟貴部門要一些RAW DATA來看我想知道說從一開始有手機回收你們來統計這個比率至今可是網站也沒有然後這個RAW DATA也沒有所以其實不知道你們這個12%是怎麼計算出來的我們這個手機回收月是由我們各業者提供另外就是我們在經濟隊回收的這個數量來加起來的
transcript.whisperx[339].start 9862.887
transcript.whisperx[339].end 9871.064
transcript.whisperx[339].text 我有稍微查了一下,其實回收的比例這麼低,大概因為管道很麻煩,誘因不足,還有其實民眾很擔心自己的個資
transcript.whisperx[340].start 9872.574
transcript.whisperx[340].end 9899.264
transcript.whisperx[340].text 因此我看了一下國外的做法在這邊也提供給部長因為你們是AI內閣你們更應該要創新有創意所以歐美的經驗是他們常常會在手機的訊息通知這個民眾回來回收還有一些回收的管道另外他們的廠商是會開立這個手機刪除的證明等等讓他們安心還有一些足夠的誘因下一張給您看一下這個
transcript.whisperx[341].start 9902.188
transcript.whisperx[341].end 9918.337
transcript.whisperx[341].text 手機回收月等等活動內容其實是很豐富的可是呢你知道你們缺了最大的市佔率叫做蘋果嗎?哈囉對這個你知道嗎?我知道可是以前有蘋果你知道嗎?知道
transcript.whisperx[342].start 9919.97
transcript.whisperx[342].end 9938.725
transcript.whisperx[342].text 原因在哪裡?這個是很多人很好奇的地方。這個就是因為在一個做法上面,可能他們覺得這樣的方式比較想要自己創一套。所以這個才是為什麼我們要把手機法式化的關係,就是你不能有些人他覺得認同就來做,那不認同就不做,這樣不行。
transcript.whisperx[343].start 9940.146
transcript.whisperx[343].end 9961.018
transcript.whisperx[343].text 因為他現在的市佔率大概是24.3%而且很多直營門市呢他持續做救機換新機的方案他會發現民間二手機的回收量蘋果回收佔了56.3%排行是第一名所以你如果沒有把Apple納進來的話其實你要達到你希望跟國際接軌的數據是很難的
transcript.whisperx[344].start 9963.808
transcript.whisperx[344].end 9990.727
transcript.whisperx[344].text 對,方委員其實我剛好前幾個禮拜幫家人去換手機那家人手機摔壞了那我去我以前去蘋果他就會把我回收走了那我們去一般的這個通訊行他就說回收率一支300塊那就以消費者的角度來說的話所以這個就是造成說一般的企業他主動像你主席仔細看這個蘋果的這個業績報告他的回收率是他重要的指標對,所以你真的應該要說服他可以跟你配合嗎?
transcript.whisperx[345].start 9991.327
transcript.whisperx[345].end 10019.207
transcript.whisperx[345].text 但是因為手機業者他是最主動的但是有些的業者沒有那麼的主動這個是您之前環境部以前叫做環保署的時候110年的活動是有跟所有的10大品牌還有5大電信合作這個發布在之前110年的新聞稿中包括有Apple可是現在升格到環境部照理說應該有更大規模更高層級的合作案這個是今天希望可以
transcript.whisperx[346].start 10020.007
transcript.whisperx[346].end 10041.578
transcript.whisperx[346].text 請你們可以注意的然後未來可以多加改善我們未來會把它提升但是委員提到說能不能有更好的目標我會再跟我們團隊再仔細再討論有沒有更精進的作為這是近期有看到在前瞻計畫第5期裡面看到部長有提出一個淨零排碳氣候法制策略精進計畫只規劃做8個月但是花了1.7億
transcript.whisperx[347].start 10046.741
transcript.whisperx[347].end 10056.277
transcript.whisperx[347].text 其中主要的工作就是包括建立碳足跡係數資料庫這件事,您知道嗎?知道,這個是我們要呼應國際的要求,有一個冷卻行動的計畫
transcript.whisperx[348].start 10057.841
transcript.whisperx[348].end 10058.842
transcript.whisperx[348].text 那請問這兩個的計畫內容是不是有重疊的部分
transcript.whisperx[349].start 10082.302
transcript.whisperx[349].end 10109.929
transcript.whisperx[349].text 報告委員這兩個不一樣一個是這個是範疇三啦範疇三是很難去計算的那這個是這個是冷卻行動雖然名稱上面是一樣的但是針對這個碳足跡還有係數資料庫這個項目是不是您想要再擴充1111更多還是有什麼其他的我們請我們署長跟委員報告因為目前在網站上公佈的這個碳足跡的係數都是民間他們自願性要做碳足跡的這個
transcript.whisperx[350].start 10110.669
transcript.whisperx[350].end 10111.309
transcript.whisperx[350].text 所以這1.7是專門針對範疇3還是之前那個?
transcript.whisperx[351].start 10141.069
transcript.whisperx[351].end 10164.668
transcript.whisperx[351].text 1.7有一部分是針對範疇3然後另外呢看這個這是您的網站裡面有14個單位啊有跟你們合作做這些探索系的揭露那當然比如說高鐵或是華航這些有關股為主的單位都覺得是理所當然很能理解可是剛有許多委員提到的台鐵台電也都是公家機關但為什麼你們
transcript.whisperx[352].start 10165.549
transcript.whisperx[352].end 10170.374
transcript.whisperx[352].text 到目前只有合作了14個而沒有一些指標可以再往上增加呢?
transcript.whisperx[353].start 10171.338
transcript.whisperx[353].end 10172.399
transcript.whisperx[353].text 這個早上有許多委員已經關心了所有這個
transcript.whisperx[354].start 10198.924
transcript.whisperx[354].end 10199.385
transcript.whisperx[354].text 提出具體的改善措施
transcript.whisperx[355].start 10222.304
transcript.whisperx[355].end 10237.893
transcript.whisperx[355].text 這個我們跟這個八家醫院都有開會啦衛福部都有開會啦齁那事實上我們也希望說讓他們做源頭管制是最重要的對可是衛福部說跟跟這個醫院不相關您覺得呢
transcript.whisperx[356].start 10238.444
transcript.whisperx[356].end 10242.225
transcript.whisperx[356].text 那正在環境部的立場你有沒有一些想法對於我們周遭醫院周遭這些住戶有沒有產生一些健康的影響做出評估或是調查
transcript.whisperx[357].start 10269.004
transcript.whisperx[357].end 10287.651
transcript.whisperx[357].text 這個是我們先對水的部分,他們放流水,然後他對環境的這個影響,雖然說他們現在沒有立即的危害,但是委員提到的所以附近的這個住戶水體的,我們是針對水體啦,沒有對醫院附近的這個住戶的衝擊。對,但是我們調查這個其實主要就是害怕未來這些抗藥性嗎?
transcript.whisperx[358].start 10289.15
transcript.whisperx[358].end 10315.642
transcript.whisperx[358].text 沒關係這邊有一個具體的建議這邊有提供部長一個想法行政院近期有核定一個國家級防疫一體抗生素的抗藥性管理行動計畫等等會在114年正式啟動總共編列了19億元那其中呢 疾管署的副署長羅一鈞就有講到說醫療機構的放流水管理並沒有納入在這樣子的計畫內左院長特別要求環境部應該主動監控
transcript.whisperx[359].start 10317.483
transcript.whisperx[359].end 10317.503
transcript.whisperx[359].text 市長﹖
transcript.whisperx[360].start 10337.609
transcript.whisperx[360].end 10364.73
transcript.whisperx[360].text 跟委員報告這個我們例行都有一個這個調查的一個計畫只是分年度在做但當然資源越多我們的這個範圍跟頻度會加強那這一部分的至於預算的部分我們都有在相關的計畫裡面有所以你們已經夠了嗎因為你們兩年才找了8家而且這8家還都有問題不是我我們是在109到112基本上就已經用了34年的時間那做了
transcript.whisperx[361].start 10365.27
transcript.whisperx[361].end 10365.29
transcript.whisperx[361].text 委員會長
transcript.whisperx[362].start 10385.169
transcript.whisperx[362].end 10410.685
transcript.whisperx[362].text 有,我現在已經找到你們有預告草案,你們想要修正這個水汙染的防治措施還有管理辦法,但是施行日期要等到115年1月1號才開始,這個部長您知道嗎?知道,知道對,所以其實有一年的時間是...讓他們改善啦,讓他們改善好,感覺這有點太久啦,所以在這邊希望是可以請你們可以積極主動爭取,因為行政院那個預算的
transcript.whisperx[363].start 10411.425
transcript.whisperx[363].end 10411.785
transcript.whisperx[363].text 請柯之恩委員發言
transcript.whisperx[364].start 10443.331
transcript.whisperx[364].end 10444.011
transcript.whisperx[364].text 第一回合很顯然是環境部領先
transcript.whisperx[365].start 10459.016
transcript.whisperx[365].end 10464.318
transcript.whisperx[365].text 我們比較好奇的地方就是你看我們目前為止大概做到300雖然我必須要強調經濟部還有環團都不太滿意但是呢你特別規劃到5年之後可能要從300拉到3000但我的重點是你目前碳費的徵收的對象竟涵蓋全國的50%的排放量
transcript.whisperx[366].start 10488.766
transcript.whisperx[366].end 10504.758
transcript.whisperx[366].text 所以你這樣有辦法達到你明顯減碳的成效嗎?部長報委員其實如果說大家願意用優惠費率不要繳那麼多錢的話五十一百對那那個是有效的14%我們是鼓勵而且我們也其實看了這些企業的業績報告他們大概都可以符合優惠費率
transcript.whisperx[367].start 10504.838
transcript.whisperx[367].end 10529.08
transcript.whisperx[367].text 但是我也看到報告我還是要特別強調你看以我們剛剛很多委員都問到這個問題到底你2026年你拿到60億你到底要怎麼樣來做分配可是我看看你的回應都是說我們會有個專門的委員會我們有一些事情的細則我們在討論對我們來說我們同樣問同樣的問題同樣關切的問題可是你的回應都好像要拖到明年才有辦法解決包括大家所
transcript.whisperx[368].start 10529.52
transcript.whisperx[368].end 10558.165
transcript.whisperx[368].text 告知的這個這個綠色的這個環境部的小金庫你當然不同意這是一個綠色國發經濟100億還有另外的3個所謂的基金但是我還是要強調你這個部分裡面你永遠告訴我是明年才有包括大家非常關切的這個這個一些的方式那我為什麼要特別提出來你看看到底你有沒有辦法保障這個高污染的地方可以得到適度的一個分配像以高雄為例它就是三高啊高排碳
transcript.whisperx[369].start 10559.125
transcript.whisperx[369].end 10578.332
transcript.whisperx[369].text 高污染高碳費那我也沒辦法保證你看我們的排放量是佔全國的20%喔光是我們所有的企業要繳交110億元喔那你到底有多少比例你可以回饋到我們地方部長我要求的是有多少比例你起碼要告訴我們一下否則你永遠告訴我明年明年沒有那麼多明年
transcript.whisperx[370].start 10578.712
transcript.whisperx[370].end 10605.406
transcript.whisperx[370].text 報告委員那個碳費後年年中才可能會進帳所以我們現在提的那你現在後年但是大家要插雷彈那你告訴我多少比例可以回饋到地方這個現在我沒有辦法給委員發布這就是為什麼你們剛剛公佈裡面300說大家都想要看到細節然後你永遠告訴我們拋出一個300然後呢後面到什麼我們再看這就是為什麼你的政策沒有辦法第一時間大家認為永續非常重要你們沒有辦法第一時間可以說服大家的
transcript.whisperx[371].start 10606.727
transcript.whisperx[371].end 10621.851
transcript.whisperx[371].text 我會讓那個部長跟這個署長有機會包括我已經特別提到了你的碳鏈殘很多人藉機來開課你的碳認證因為我們不知道我們這個上游的部分到底有沒有得到合法的認證還有碳洩漏我認為應該改名叫碳破口會比較好進口的產品沒有得不需要去繳納而且你告訴我2025年你有臺版的CPAM臺費上路這些都是目前為止我們所看到你因為碳費
transcript.whisperx[372].start 10634.974
transcript.whisperx[372].end 10636.155
transcript.whisperx[372].text 您有辦法保證2025年我們台版的CBAN就可以有辦法上路嗎?
transcript.whisperx[373].start 10662.27
transcript.whisperx[373].end 10684.24
transcript.whisperx[373].text 我們會先試行這種所謂進口業者要來先申報所以基本上因為CBAN事實上現在歐盟也是只有一個大概要試行申報他明年年中才會出來他的細節所以你就告訴我明年2025上半年你就可以所以我覺得這個東西每一個政策講出來我們都要追問到底有沒有辦法做到包括你的配套接下來你可以看一下我們接下來看一下下面你看我們碳費大家已經講得非常多了
transcript.whisperx[374].start 10687.742
transcript.whisperx[374].end 10695.988
transcript.whisperx[374].text 光是我們的電力跟燃氣的這個供應業大概是真的佔57.1那當然也會影響到我們的電子產業你看臺電跟中油光是繳費就要繳15跟19難怪每個人都會怕這個經濟這個代表可能署長都要特別提到很多人怕他會轉交到消費者臺電可以比照這個水費的發法裡面叫做代收中油可以把他這個碳費放在他的計算工資裡面更換到下面一個
transcript.whisperx[375].start 10714.002
transcript.whisperx[375].end 10720.245
transcript.whisperx[375].text 所以你看看,然後最主要是你讓我們的傳統產業,這經濟部應該很有話講嘛,你們當初所辯論的部分就是來到這個地方嘛,因為我們這個石化跟鋼鐵的傳統產業,你沒有受到貿易的保護,而且你根本進口的地方你不受碳費的這樣的一個負擔,所以你對於我們國內的這個產業來說是非常不公平的,而且我們台灣不僅碳費是高於日、韓。
transcript.whisperx[376].start 10735.812
transcript.whisperx[376].end 10745.802
transcript.whisperx[376].text 當然這個都有留待空間最重要是我們購買零碳電力的來源是比日本、韓國還要少的這就是我們目前為止所以經濟部難道不怕這些石化鋼鐵業紛紛的走向國外嗎這是傳統產業
transcript.whisperx[377].start 10749.315
transcript.whisperx[377].end 10762.045
transcript.whisperx[377].text 報告委員其實你說的數據15億19億其實如果他按照他的企業的自主減量計劃他不用繳那麼的多的大概是你的三分之一到四分之一左右我要特別提出來你的自主自主的你去看到數據我們興達電廠自主的這樣的結果之後他的碳排放量反而比過去增加了4.98你可以看得出來
transcript.whisperx[378].start 10769.471
transcript.whisperx[378].end 10787.197
transcript.whisperx[378].text 所以到底有沒有達到這個效果看一下數據我最後要特別提到因為時間的關係你看對經濟跟物價有沒有辦法造成一些的衝突最重要的是你看一下這個數據裡面GDP減損的這個層面都是我們預先也是透過經濟部算出來的最重要的是為什麼經濟部會有一些的想法就是
transcript.whisperx[379].start 10787.597
transcript.whisperx[379].end 10787.957
transcript.whisperx[379].text 我們有一本這個細節在裡面全部都有
transcript.whisperx[380].start 10814.958
transcript.whisperx[380].end 10814.978
transcript.whisperx[380].text 委員8
transcript.whisperx[381].start 10842.165
transcript.whisperx[381].end 10871.343
transcript.whisperx[381].text 報告委員西貝明年年中才會開始生效然後我們是預先的要探深報比照歐盟的敬禮我沒有落後我是照那個方式在進行的對我剛剛只問你說剛剛我所涵蓋這個部分包括我說你對於我們地方高污染地方你的怎麼分配的比例等等之類的我們起碼在知道你提出300這個數字之完之後我們可以進一步的了解而不是等到明年所以我們大家覺得說以高雄來說我們所有的產業都炒在蛋啊因為我們不知道你最後的速報
transcript.whisperx[382].start 10871.843
transcript.whisperx[382].end 10873.463
transcript.whisperx[382].text 謝謝科智恩委員的發言接下來請李坤城委員發言
transcript.whisperx[383].start 10908.496
transcript.whisperx[383].end 10910.48
transcript.whisperx[383].text 謝謝主席,我們請彭部長請彭部長議員好部長好,辛苦了這一個預計2026年要開增碳費
transcript.whisperx[384].start 10921.363
transcript.whisperx[384].end 10921.383
transcript.whisperx[384].text 對 沒錯
transcript.whisperx[385].start 10946.33
transcript.whisperx[385].end 10947.752
transcript.whisperx[385].text 根據臺灣永續能源研究基金會的資料顯示臺灣的醫療照護碳
transcript.whisperx[386].start 10956.055
transcript.whisperx[386].end 10961.696
transcript.whisperx[386].text 主機佔全國比例高於全球平均4.6%全世界平均4.4%台灣醫院用電量在非生產事業性試驗排名第一佔比16.9%比車站、軌道等運輸合計13.54%還要高
transcript.whisperx[387].start 10979.061
transcript.whisperx[387].end 10999.118
transcript.whisperx[387].text 總統才會相當的關心醫療院所檢探的一些事情,也曾經打電話給部長講這件事情。從打電話到現在,一個多月了,想請教一下部長,關於醫療院所檢探這方面的事情,有做了哪一些改變?
transcript.whisperx[388].start 10999.258
transcript.whisperx[388].end 11003.563
transcript.whisperx[388].text 臺灣第一次環境部跟衛福部合辦一個活動,然後總統看到新聞之後,其實總統跟院長都有打電話給我,說這個活動不錯
transcript.whisperx[389].start 11017.099
transcript.whisperx[389].end 11044.056
transcript.whisperx[389].text 但是後面的這個給醫院的資金在哪裡所以其實也謝謝總統跟院長關心這個事情讓我們有一個動力所以其實第一個是國發基金所以他們我們就協調了這個國發基金是不是有一個100億能夠來做這種幫助這種能減碳的工作的投資那第二個呢就是我們找了金管會找這個保險基金能夠來合作因為這個ESCO其實要蠻多錢的過去我們政府都是用補助的形式從馬政府時代就是用補助可是這個補助的量
transcript.whisperx[390].start 11044.616
transcript.whisperx[390].end 11047.197
transcript.whisperx[390].text 目前的成果是應該在近期應該就會來公布目前的確是有成果
transcript.whisperx[391].start 11072.483
transcript.whisperx[391].end 11090.899
transcript.whisperx[391].text 那所以總統跟院長關心之後就去想辦法說那個錢從哪裡來要怎麼樣去協助我們醫院來做這個減碳是不是對沒錯沒錯這就是你剛回答大概就是我想問你的三個問題就是第一個環境部會採取哪一些措施跟衛福部合作協助醫院減碳那我們有投入多少資源跟經費呢
transcript.whisperx[392].start 11091.859
transcript.whisperx[392].end 11106.233
transcript.whisperx[392].text 還是都沒有?都是完全靠你剛才講的一個是國發基金100億那也還沒有確定嘛現在正在申請當中申請當中國發會有同意了嗎?口頭上同意口頭上同意那恭喜你那第二個就是說
transcript.whisperx[393].start 11107.154
transcript.whisperx[393].end 11127.797
transcript.whisperx[393].text 這個有沒有規劃將碳費的部分收入協助醫院執行一月十幾的改革目前其實是因為衛福部的預算是我們的好幾十倍啊所以這其實這個部分哪一方面的預算是你的好幾十倍整體預算啊所以基本上這個邱部長跟我說碳費有沒有辦法給他其實我是說碳費我們現在才目前規劃才60億恐怕有點困難
transcript.whisperx[394].start 11128.658
transcript.whisperx[394].end 11147.869
transcript.whisperx[394].text 但是他的預算這麼多也不是說都拿來做這一個減碳的或是ESG的改革嘛所以你當初這樣回答的話那邱部長當然覺得說那你這個給我們一些資源投入這個協助醫院來改善這個ESG他的用意應該是這樣子啦不是在比較說兩個部會的這個預算誰多誰寡我們現在講說是投入這個減碳的這個費用
transcript.whisperx[395].start 11153.192
transcript.whisperx[395].end 11170.07
transcript.whisperx[395].text 到底有多少?當然環境部是負責這方面的所以說還是沒有規劃說如果預計收到的這個碳費之後要來協助這一個醫院作業時機的改革?報告委員其實如果我用保險的資金來幫忙的話其實不用花到醫院的錢這是一個比較市場化的一個做法
transcript.whisperx[396].start 11170.39
transcript.whisperx[396].end 11193.189
transcript.whisperx[396].text 那就是第三個那有跟金管會討論過了嗎?有,討論過了我們跟主委還有他們保險公司我們都密集的在開會但是我也跟委員談成還是遇到一些小問題需要政府的擔保等等我們正在處理這個細節那金管會的態度勒?金管會是樂觀其成那他有沒有協助你找一些保險業者過來談?有那個彭主委非常的這個認真熱心幫我們處理這個事情
transcript.whisperx[397].start 11194.81
transcript.whisperx[397].end 11208.023
transcript.whisperx[397].text 那我是希望說當然希望藉由民間的資金來做這個深度節能就是你剛才講的EXCO這部分因為民間資金投進來那其實政府也不用付這麼多的錢進去有一些是保險業他們先帶電然後節能之後這個錢我們再還回去沒錯
transcript.whisperx[398].start 11211.967
transcript.whisperx[398].end 11227.936
transcript.whisperx[398].text 那現在我看大家也很關心那個CBAN的問題那我就直接先問了這個你有提到說這個產品在我國繳交的碳費確認已經可以支付這個CBAN的碳價了那請問一下有這個官方的書面文字嗎還是只有口頭
transcript.whisperx[399].start 11228.716
transcript.whisperx[399].end 11245.307
transcript.whisperx[399].text 他們書面文字有包含了碳費、碳稅都可以,只要ETS都可以。這有確定嗎?確定確定,那我們不覺得這個書面不完整,我當面的問了非常高層的官員,獲得非常肯定的答案。這就確認了,因為就是你那口頭問是一部分,我是說有這個書面的確定就是說,我們徵收了這個碳費,
transcript.whisperx[400].start 11249.309
transcript.whisperx[400].end 11249.629
transcript.whisperx[400].text 臺灣的西貝因為第一個是
transcript.whisperx[401].start 11268.348
transcript.whisperx[401].end 11268.488
transcript.whisperx[401].text 這個就是說齁
transcript.whisperx[402].start 11290.736
transcript.whisperx[402].end 11314.194
transcript.whisperx[402].text 有來有往啦 大家有做我們當然也要做保護台灣的產業最後一個問題請教 歐盟的碳稅徵收的對象是進口商台灣的碳費的徵收對象是國內業者那未來台灣的碳費的徵收會不會涵蓋進口的貨品主要還是所謂我們碳費徵收的對象他的對應的這種進口商進口的這個業者那就要來收所以會收就對了對對對對好OK好謝謝
transcript.whisperx[403].start 11316.195
transcript.whisperx[403].end 11319.377
transcript.whisperx[403].text 謝謝主席,今天的發言只有5分鐘,我們請部長,所以你回應說盡量快一點好不好?
transcript.whisperx[404].start 11344.24
transcript.whisperx[404].end 11365.538
transcript.whisperx[404].text 好,氣候變遷因應法在立法院通過了之後,環境部裡面也制定了碳費徵收的費率,碳費要從115年開始正式的開徵了。那針對氣候變遷因應法裡面涉及原住民的條文內容,部長你清楚這有哪些條文嗎?針對這些條文,環境部在政策上做了哪些因應,知道嗎?
transcript.whisperx[405].start 11366.078
transcript.whisperx[405].end 11371.601
transcript.whisperx[405].text 為推動自然碳會,政府要跟原住民民族共同推動與管理原住民地區的自然碳會,該區域的新增碳會及相關權益應與原住民族共享。
transcript.whisperx[406].start 11392.645
transcript.whisperx[406].end 11411.096
transcript.whisperx[406].text 政府應該與原住民族共同推動及管理原住民族地區內的自然碳匯。該區域內新增的碳匯的相關權益應該要跟原住民族共享。涉及原住民族土地的開發、利用或限制應與當地的原住民族諮商並取得同意。
transcript.whisperx[407].start 11414.958
transcript.whisperx[407].end 11417.519
transcript.whisperx[407].text 環境部以前的相關公務人員知道嗎?
transcript.whisperx[408].start 11440.506
transcript.whisperx[408].end 11466.786
transcript.whisperx[408].text 請我們署長回答好,署長你知道嗎?105年不清楚好,你看,你們都不清楚不清楚難怪我們的行政院長他會跟原住民的族人說進法補償是找不到裁員啊我想這就是執政團隊你們根本不知道早在10年前本席就已經在立法院針對原住民進法補償的部分討論我們就在討論碳費的議題了現在知道了吧部長
transcript.whisperx[409].start 11467.786
transcript.whisperx[409].end 11495.094
transcript.whisperx[409].text 報告委員,那個時候該概念是碳稅啦好了,就是已經跟你講過了嘛如果經法補償的金額要提高的話必須要由開徵碳稅之印嘛那你現在碳稅裡面已經有基金了嗎?對吧?112年通過了氣候變遷因應法環境部裡面也按照第32條設立了溫室氣體管理基金然後請問一下基金施政的用途包括哪些呢?
transcript.whisperx[410].start 11496.845
transcript.whisperx[410].end 11501.292
transcript.whisperx[410].text 呃就前委員提的這6項好123456對不對有沒有原住民的部分
transcript.whisperx[411].start 11502.796
transcript.whisperx[411].end 11528.622
transcript.whisperx[411].text 沒有當我們的碳費定價之後在115年開始正式開尊了我們看一下原住民有為政府守護7萬公頃碳匯的原住民經法補償的私有林地同時也有原民匯11萬公頃的公有林地加起來總共18萬公頃的原住民保留地對於台灣的碳排放這個是非常好的
transcript.whisperx[412].start 11529.262
transcript.whisperx[412].end 11557.19
transcript.whisperx[412].text 它是屬於溫室氣體管理基金施政重點的哪一項?你知道嗎?好,你不知道,所以我現在要告訴你涉及原住民族的碳會更包含了森林碳還有位於原住民傳統海域的燃炭我了解的是,碳會的來源是由農業部主責但是部長你更必須清楚了解不管是原住民的私有領地或者是我們的傳統海域
transcript.whisperx[413].start 11558.61
transcript.whisperx[413].end 11579.176
transcript.whisperx[413].text 農業部主管的國有林還有海域還有很多目的事業主管機關要推動的政策他必須回歸到氣候變遷因應法來一起推動而不是你自己環境部啊林業署他在推動國產財我們的竹林更新還有竹產業
transcript.whisperx[414].start 11580.336
transcript.whisperx[414].end 11598.472
transcript.whisperx[414].text 你知道這些政策嗎?你不知道?你可能也不知道森林會根據不同的樹種有不同的碳吸存能力吧?你知道竟然知道竹林是屬於短年生的同時你知道竹林它的碳吸存能力是非常強的所以在產業面也都需要國產材跟竹材
transcript.whisperx[415].start 11603.256
transcript.whisperx[415].end 11606.778
transcript.whisperx[415].text 環境部你作為氣候變遷因應主管的機關,你在精靈碳排的政策上面,難道不應該在政策上面作為統合嗎?部長。報告委員這個是農業部在主責,他也提出放大學。我知道啦,你是主責,那你不應該和鄉聯繫這些嗎?所以,
transcript.whisperx[416].start 11623.869
transcript.whisperx[416].end 11648.593
transcript.whisperx[416].text 契簽法第33條基金的用途根本就沒有用在禁法補償上面嘛所以我在這裡要要求你經營談判還有碳會的更像政策請環境部你要承擔起這個責任你在一個月之內要儘速邀請人民會、農業部、相關部會提出將碳會最大化的執行政策可不可以
transcript.whisperx[417].start 11649.513
transcript.whisperx[417].end 11670.747
transcript.whisperx[417].text 好,委員這個沒有問題,我們會來協調,謝謝謝謝你,一個月之內,好嗎?也把你們開會最後的文字來告訴本席,謝謝好,謝謝高金樹梅委員的發言那我在這邊再做一個重新宣告,等一下在賴士寶委員發言完畢之後處理臨時提案好,接下來請鄭天才委員發言
transcript.whisperx[418].start 11691.295
transcript.whisperx[418].end 11699.677
transcript.whisperx[418].text 主席、各位委員、有請部長。請彭部長。委員早。部長好。
transcript.whisperx[419].start 11703.613
transcript.whisperx[419].end 11725.069
transcript.whisperx[419].text 《最後變遷因應法》第一條定的很清楚落實世代正義、環境正義及公正轉型不論是我們原住民族在台灣一直守護我們的森林所以我們一直善盡的保護台灣環境的責任
transcript.whisperx[420].start 11730.114
transcript.whisperx[420].end 11747.965
transcript.whisperx[420].text 我們看這個氣候變遷因應法的第3條(碳匯只將二氧化碳或其他溫室氣體自排放演化大氣中持續移除或吸收或儲存之樹木、森林、土壤
transcript.whisperx[421].start 11749.553
transcript.whisperx[421].end 11761.761
transcript.whisperx[421].text 海洋地層設施或長守所以這個部分我們不要忘了這個部分然後第11款也提到什麼叫公正轉型這裡面也特別提到
transcript.whisperx[422].start 11763.462
transcript.whisperx[422].end 11788.839
transcript.whisperx[422].text 沿逐民主的穩定的轉型所以這個部分要請當初欽惑變遷因應法本席要提出草案當然有幾條條文是有通過但是也有沒有通過的部分是我們未來要繼續努力的地方欽惑變遷因應法第5條政府應秉持
transcript.whisperx[423].start 11792.101
transcript.whisperx[423].end 11804.792
transcript.whisperx[423].text 減緩與調適並種植原則,確保國土資源永續利用。這裡面也特別要兼顧原住民族的權益。所以這個部分,這個我們看這個整個
transcript.whisperx[424].start 11807.31
transcript.whisperx[424].end 11833.003
transcript.whisperx[424].text 《氣候變遷因應法》第5條也特別提到相關的這些推動自然碳匯政府應以援助民主共同推動及管理援助民主第7次自然碳匯所以這樣的一個前提之下我們看這個我們看這次的整個
transcript.whisperx[425].start 11836.124
transcript.whisperx[425].end 11864.321
transcript.whisperx[425].text 有關碳費所以你們在估算60億的碳費收入60億這樣的一個碳費收入我剛念了這麼多原住民族的條款原住民族對整個碳費的貢獻但是這個基金
transcript.whisperx[426].start 11865.928
transcript.whisperx[426].end 11892.863
transcript.whisperx[426].text 會用到原住民族嗎?這個後年年終才會正式的收到所以我們預計大概是明年會開始會組成這個委員會會來討論這個基金的用途這個部長基金的用途訂的很清楚當初本席有提案但是沒有被接受被碾壓表決沒有通過
transcript.whisperx[427].start 11895.092
transcript.whisperx[427].end 11913.628
transcript.whisperx[427].text 所以這裡面完全沒有完全沒有原住民族的部分但是也不是不能做還是可以畢竟這裡面補助給地方政府地方政府要怎麼去用怎麼樣在裡面的相關的這些
transcript.whisperx[428].start 11915.791
transcript.whisperx[428].end 11929.837
transcript.whisperx[428].text 規定裡面去致應,可以往這個方向去努力嗎?委員這個第3條就是補助中央目的事業主管機關執行溫馨體減量工作的事項那原民如果森林碳會的部分的話可以透過這3項我們來補助給原民會來處理
transcript.whisperx[429].start 11933.639
transcript.whisperx[429].end 11946.393
transcript.whisperx[429].text 當然有這個項目,我剛剛不是講了很多嗎?我們相關的條文也都有提到我們很多原住民族在這個
transcript.whisperx[430].start 11949.571
transcript.whisperx[430].end 11976.434
transcript.whisperx[430].text 包括相關第17條都有相關的這些所以這個部分要請環境部事實上農業部講得很清楚農業部講得很清楚研究民主所附山林當然現在我們的環境部的方向就是說怎麼樣去
transcript.whisperx[431].start 11978.079
transcript.whisperx[431].end 11996.78
transcript.whisperx[431].text 這個去收這個錢然後這個收的錢當然各有各的論點到底這個60億到底算不算多當然這是第一次這個也經過相關的這些程序來辦理但是就整個
transcript.whisperx[432].start 11998.488
transcript.whisperx[432].end 12023.993
transcript.whisperx[432].text 原住民族對碳費的一個貢獻是不可謀滅的所以這個部分要請環境部再訂相關的比較細的規定的時候就成如剛剛部長所講的地方政府執行的時候怎麼能夠給予考量好不好好謝謝
transcript.whisperx[433].start 12026.084
transcript.whisperx[433].end 12030.989
transcript.whisperx[433].text 好謝謝鄭天才委員發言接下來請賴世寶委員發言謝謝主席各位先進有請我們環境部的彭部長以及經濟部的梁署長署長委員好兩位長官好兩位長官好
transcript.whisperx[434].start 12049.973
transcript.whisperx[434].end 12068.58
transcript.whisperx[434].text 委員好,我先請教彭部長,你今天來講的話,你現在碳費要收,當然有些人就提出來了齁,我們現在環境部門過去都有收啊,空污費、水污費、土污費,基本上是污染的,所以CO2是不是就是污染的,是不是?
transcript.whisperx[435].start 12069.04
transcript.whisperx[435].end 12087.41
transcript.whisperx[435].text 過去在環保署時代曾經有一度把這個變成是CO2是污染物但是它是一個溫室氣體不應該變成一個污染物它是不是污染物過去是有這樣定義啦但是其實在國際上應該不是污染物就是一個溫體溫室氣體那現在來講我們看到你現在訂的是碳費一噸300塊對不對對但是針對國內的企業可是國際來講類似歐盟其他我也有提到CBANK
transcript.whisperx[436].start 12098.216
transcript.whisperx[436].end 12124.814
transcript.whisperx[436].text 這個是對於進口的產品來講的話要課這個這個碳費啊那我們這一部分為什麼沒有辦法同時訂出來這讓國內的企業感覺感覺是我競爭已經非常不利了現在更加不利報告委員其實這個是2026年他們才正式實施現在都是事行申報所以其實還有一點時間那他預計他的細節等於是CBAN就是碳邊境調整機制他預計是明年的年終才會把細節提出來
transcript.whisperx[437].start 12125.575
transcript.whisperx[437].end 12126.336
transcript.whisperx[437].text 臺灣版的CBank什麼時候可以出爐?
transcript.whisperx[438].start 12141.915
transcript.whisperx[438].end 12166.854
transcript.whisperx[438].text 出爐等於是研議完了就會很快來出爐但是我們會先用進口的商品就要等於是說例如說水泥進口的水泥就要同時申報它的碳的價值當然是這樣子啊你現在對於水泥現在來講的話水泥就已經課碳費啦是不是來講的話實話一樣啊那國外的這個水泥也進來的國外的實話也進來的為什麼不課當然會啊當然未來會朝這個方向去洗所以可不可以在這裡承諾2026如果來當補充的話
transcript.whisperx[439].start 12171.357
transcript.whisperx[439].end 12180.249
transcript.whisperx[439].text 我們跟歐盟同時同步同步就是我開始實施我開始實施對國內的這些產業我課碳費的同時我就對進口的產品一樣課碳費可以嗎
transcript.whisperx[440].start 12186.778
transcript.whisperx[440].end 12208.954
transcript.whisperx[440].text 我會保障國內產業的要求這個是我一定會承諾那另外一個是立法或是修正的係數其實我們要貼近歐盟所以我一直在觀察歐盟還有鄰近國家其實我們也跟日本上禮拜我也跟日本的官員在討論這個事情既然你看到鄰近國家包括日本、新加坡、歐洲的瑞典、瑞士芬蘭、挪威都是課碳稅不是碳費為什麼你跟人家不一樣
transcript.whisperx[441].start 12212.686
transcript.whisperx[441].end 12231.983
transcript.whisperx[441].text 這個是過去他們制定的但是我是接續他所以我努力把它完整政策的延續但是碳稅跟碳費是有點不一樣稅是大水庫理論就進到財政部去費是專款專用但是整個國際的精神上碳費稅是一體的所以我們基本上是就是可以說是碳稅的一體
transcript.whisperx[442].start 12233.704
transcript.whisperx[442].end 12260.143
transcript.whisperx[442].text 碳費錢在你手上,五百億在你手上,碳費不在你手上,本位主義當然不要啊!報告委員,新加坡的就是碳稅,他們是專款專用,一個是專款專用,一個不是專款專用。日本呢?日本是不是?日本是地球溫暖化對策稅。對嘛,它是稅嘛,進去財政部不一樣,這個來講答案就很簡單嘛,因為你環境部中亂嘛,那你這個五百億你怎麼用?
transcript.whisperx[443].start 12260.583
transcript.whisperx[443].end 12264.345
transcript.whisperx[443].text 沒有500億60億60億那個錯的訊息錯的訊息那再一個錯的訊息啊什麼CPI會增加0.18GDP會增加0.48我有這本的書我再送給委員這裡面只有0.00幾而已
transcript.whisperx[444].start 12276.973
transcript.whisperx[444].end 12277.013
transcript.whisperx[444].text 請問你請問你
transcript.whisperx[445].start 12295.393
transcript.whisperx[445].end 12312.284
transcript.whisperx[445].text 有沒有這種你的message,現在碳費,有人講說你先行,主要3塊嘛,一個碳費一個碳稅,一個是碳排放的總量管制的交易,這3大塊,你現在說我碳費先行
transcript.whisperx[446].start 12313.547
transcript.whisperx[446].end 12315.849
transcript.whisperx[446].text 總量管制就是碳權交易嘛
transcript.whisperx[447].start 12339.104
transcript.whisperx[447].end 12344.671
transcript.whisperx[447].text 對,總量管制的排放交易,就ETS,符合歐洲或是...那個不一樣,那個現在他們推的是這個自主減量的,不一樣。
transcript.whisperx[448].start 12354.883
transcript.whisperx[448].end 12362.447
transcript.whisperx[448].text 這裡面來講國內的企業都不能用也不能買不能賣委員不能這樣說他們是屬於自主減量的自主減量的但是他們未來如果走到總量管制的碳交易他們就有存在的價值跟你講這不一樣他做的就是針對外國外的這個碳權的買賣交易讓你在那裡類似在那裡這個炒股票而已
transcript.whisperx[449].start 12381.537
transcript.whisperx[449].end 12405.31
transcript.whisperx[449].text 他們沒有炒股票,是可以買到比較公信力的你講說可以買到,我就說這個買賣,只要有買賣就有炒作了所以我要跟你強調一個東西就是後面的總量管制的交易是非常重要的沒有這一塊,其實你這總能做什麼我現在正在往那個方向走什麼時候可以有成績?4年內
transcript.whisperx[450].start 12407.543
transcript.whisperx[450].end 12411.004
transcript.whisperx[450].text 我相信這個政策是延續的我們現在處理臨時提案總共有兩案請一併宣讀
transcript.whisperx[451].start 12437.506
transcript.whisperx[451].end 12458.133
transcript.whisperx[451].text 第一案 要求環境部每一年因鄉立法院社會福利及衛生環境委員會提交一份溫室氣體管理基金執行計改善計畫書面報告以維護溫室氣體管理基金使用的震盪性及執行績效提案人委員蘇清泉、廖偉祥、陳金輝第二案 要求環境部應立即協調相關機關
transcript.whisperx[452].start 12459.774
transcript.whisperx[452].end 12461.835
transcript.whisperx[452].text 請問第一案行政單位有沒有意見?遵照辦理
transcript.whisperx[453].start 12484.173
transcript.whisperx[453].end 12507.287
transcript.whisperx[453].text 無異議就遭案通過,那第二案呢?行政單位有沒有意見?跟委員報告,第二案就是有關這個台版C-BAN,那因為剛剛部長的說明,就是我們一定要跟這個歐盟一樣要先從申報開始,所以我們建議在這個文字上面,就是從後面緊述確定台版C-BAN方案,我們建議修改為研議
transcript.whisperx[454].start 12508.447
transcript.whisperx[454].end 12519.43
transcript.whisperx[454].text 臺板西邊方案與國內啟動碳費徵收時同步規劃臺板西邊申報制度那後面一樣那委員有沒有意見主席我其他的文字我沒什麼意見就是那個同步推動你們說要改成規劃我覺得這有差嗎我沒有說你同步實施啊
transcript.whisperx[455].start 12540.034
transcript.whisperx[455].end 12542.556
transcript.whisperx[455].text 就照剛剛委員的文字修正通過第二案就照剛剛的文字修正通過
transcript.whisperx[456].start 12566.291
transcript.whisperx[456].end 12582.036
transcript.whisperx[456].text 那臨時提案全部處理完畢.接下來請王洪威委員發言謝謝主席我請我們的彭部長請彭部長經濟部是誰啊楊署長產發署
transcript.whisperx[457].start 12595.129
transcript.whisperx[457].end 12595.369
transcript.whisperx[457].text 委員好
transcript.whisperx[458].start 12624.889
transcript.whisperx[458].end 12625.089
transcript.whisperx[458].text 國際社會福利局局長
transcript.whisperx[459].start 12645.914
transcript.whisperx[459].end 12657.205
transcript.whisperx[459].text 我們再來看這個第二頁其實我們一直在說就是錯誤的能源政策他會的影響層面很大不僅僅只是台電的虧損不僅僅只是漲電價而已而且呢他對於我們要去達成我們的一個就是減碳
transcript.whisperx[460].start 12667.355
transcript.whisperx[460].end 12668.155
transcript.whisperx[460].text 電力業、能源業電力以及燃氣業 對不對
transcript.whisperx[461].start 12696.533
transcript.whisperx[461].end 12720.447
transcript.whisperx[461].text 他的占比將近6成之多所以我們現在的問題是說如果我們繼續去擁抱非核家園繼續的去依賴不管是這個天然氣也好或者是用燒煤也好這些火力發電會使得我們現在台電根本無法減碳
transcript.whisperx[462].start 12721.988
transcript.whisperx[462].end 12740.114
transcript.whisperx[462].text 臺電無法減碳你如何去達到你的排碳的目標呢?好那我現在最主要的問題是在於來我為什麼請我們經濟部的長官來因為事實上如果根據你們現在科徵的費率臺電和中油都是排碳大戶
transcript.whisperx[463].start 12741.601
transcript.whisperx[463].end 12768.741
transcript.whisperx[463].text 都是排碳大戶你說台電可以一直跟我們立法院要求怎麼追加預算補貼可是事實上有很多的民營電廠不是嗎對不對還是有很多的民營電廠所以我在這邊要請教我們經濟部的長官請問一下當我們這個碳費實施之後能不能保證我們的油電價格的成本
transcript.whisperx[464].start 12769.83
transcript.whisperx[464].end 12795.132
transcript.whisperx[464].text 可以完全控制呢?我們油電價格會不會因此而提高?我剛剛講我最關心的是我們消費者現油電這個漲價大家就已經受不了了好未來在碳費實施會不會轉嫁到我們的電價轉嫁到我們的油價所以可不可以保證油電價格不因為我們碳費的徵收而因此提高可不可以
transcript.whisperx[465].start 12797.152
transcript.whisperx[465].end 12807.101
transcript.whisperx[465].text 跟委員報告,那油電價格在我們經濟部裡面會有人員署跟台電、中油這邊會很詳實的評估啦,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那,那
transcript.whisperx[466].start 12823.294
transcript.whisperx[466].end 12825.795
transcript.whisperx[466].text 非核家園就是我們沒辦法達成排碳減量目標的最大破口啦!
transcript.whisperx[467].start 12850.9
transcript.whisperx[467].end 12876.741
transcript.whisperx[467].text 錯誤能源政策真的影響一大堆啊這個其實是現在大家比較少去注視到的那未來你油電價格要不要漲嗎那個我們環境部部長來你在整個的這個評估裡面對產業的影響裡面剛才你也承認電力是最大的這個排放量那未來油電價格要不要漲啊他要被徵收碳費啊
transcript.whisperx[468].start 12878.223
transcript.whisperx[468].end 12901.962
transcript.whisperx[468].text 報告委員,你說的數字是有問題的,如果按照目前台電的電力規劃,它是可以自主減量的,它只要繳5億桌左右而已所以其實第一個是它跟過去能源價格上漲,基本上造成的波動是完全不一樣那我們其實委員你剛剛提供的CPI數字,其實我們算出來也只有0.08而已,所以並沒有像委員說的那麼的高
transcript.whisperx[469].start 12902.222
transcript.whisperx[469].end 12912.269
transcript.whisperx[469].text 這是經濟來自於經濟部的計算那我最後一句話我時間到了所以那麼環境部長可以幫我保證就是碳費實施之後然後我們的油電價格不漲嗎
transcript.whisperx[470].start 12914.183
transcript.whisperx[470].end 12935.557
transcript.whisperx[470].text 這個不是我的工作啊,報告委員。好啊,大家都不是你的工作,你推到經濟部,經濟部推到什麼什麼能源署,所以我們消費者繼續要當,怎麼樣?談吶?報告委員,這個其實第一個,這個只有5億多,還有其實它是自己這個發電的使用,自己線路的潰損的使用,所以基本上不會影響到每個人,而且我們也對外說,其實我們目前的CPI的衝擊只有0.08%,
transcript.whisperx[471].start 12938.069
transcript.whisperx[471].end 12942.371
transcript.whisperx[471].text 我只要你保證油電價格不會因此漲價一句話60億的碳費的規模怎麼可能造成各種的漲價
transcript.whisperx[472].start 12955.936
transcript.whisperx[472].end 12983.083
transcript.whisperx[472].text 我今天問你油電價格你不要跟我顧左右而言他嘛沒有辦法保證就代表問題存在啊對不對什麼叫政治語言啊你還是政治語言啊你不能保證就是不能保證油電價格不能漲價最後不是虧損虧損還是我納稅人來那個來貼補你永遠都是納稅人在付款啦錯誤的能源政策造成我們納稅人一隻牛線包被剝幾層皮啦好 謝謝
transcript.whisperx[473].start 12986.138
transcript.whisperx[473].end 12990.883
transcript.whisperx[473].text 好,謝謝王宏威委員的發言。接下來請牛許廷委員發言。謝謝主席。彭部長、產發署長有請。請彭部長、楊署長。各位好。部長午安。
transcript.whisperx[474].start 13007.748
transcript.whisperx[474].end 13028.367
transcript.whisperx[474].text 這本期今天質詢的主題叫做碳費不能變成贖罪券我們應該要讓這個政策能夠具體的導引所謂的減碳措施部長為什麼我們今天要搞出這麼多的這個制度的設計其實核心的目標是什麼探聽下要符合跟國際接軌國際接軌對不對也就是說大家基於國際上共同的目標我們有一個減量的專約義務
transcript.whisperx[475].start 13029.668
transcript.whisperx[475].end 13054.188
transcript.whisperx[475].text 對,我們所有的政策應該是要符合這樣子的一個目標,對不對所以你包含碳費,有些人講碳稅,有些人講碳交易其實都是完成這個減量專業義務的政策手段部長應該不反對這樣的說法,對不對?沒錯好,那我們就進到所謂的制度設計的地方現在看起來我們是減量跟繳費的專業義務是可以脫鉤的嘛也就是說考量產業實際上發展的一個狀況你如果真的減量在實務上有些困難的時候,你可以用
transcript.whisperx[476].start 13055.209
transcript.whisperx[476].end 13081.542
transcript.whisperx[476].text 講碳費的方式來做來等於說我也實踐了這樣子的一個責任嘛所以你等於除了碳費的這個收取之外你也提供了企業用自主減量然後加上優惠費率的這樣一個方式來做對不對這是我們現在的制度設計好我現在就要問這制度設計可能導致的一些問題因為本期請教一些學者專家也對業界做了一些了解那很多人其實是講啊很擔心啊就是說你這個優惠費率啊
transcript.whisperx[477].start 13082.282
transcript.whisperx[477].end 13106.728
transcript.whisperx[477].text 真的會讓大家去做所謂的自主減量嗎?就是說你現在比如說281家先做對不對?我們就以這281家為範圍就好請問以目前的優惠機制因為你現在有行業別的指定削減跟技術標竿指定削減對不對?請問有多少家?你們政府的估計啊有多少家會去做行業別的指定削減?42%的有多少家會去做國家認定的技術標竿的23%的指定削減?
transcript.whisperx[478].start 13108.829
transcript.whisperx[478].end 13136.736
transcript.whisperx[478].text 哪些人會,因為他為了要繳比較低的碳費所以他願意去做自主減量措施,你們有沒有估這樣的數字?好,包委員喔,因為141家裡面是上...281家裡面141家是上述的公司對,多數的企業有提供一頁資訊報告所以我自己也很認真的去一個一個去看他的這個減碳的計畫其實我們必須說,那前面20%家的公司,他佔的排在那80%他其實都是符合自主減量計畫的所以大多數,大...
transcript.whisperx[479].start 13137.376
transcript.whisperx[479].end 13165.499
transcript.whisperx[479].text 抓大放小都沒有問題的但是我必須說還是有一些落後的比較弱勢的企業這個部分呢我們有跟經濟部討論希望他們可以多幫忙以這20%很好部長足按去看喔這一點本席是肯定啦那但是我們希望在這一次的答詢聽到比如一個軍令狀啊比如說我這個制度上路之後我就確定這20%前面相對的大戶裡面你講前面20%281家大概前面有三四十家對不對願意去做自主減量他們真的願意嗎你有多大的把握
transcript.whisperx[480].start 13165.839
transcript.whisperx[480].end 13184.55
transcript.whisperx[480].text 他們最後真的是為了繳比較低的碳費,他們真的去做了自主減量你有多大的把握可以講,他們都會做這個事報告委員,這個我是一個族裔一個族裔的前20大的排碳源公司主動去跟他們說明,主動去拜訪希望他們那這20大公司,你都主動說明過了嗎都說過了他們直接回應說,那我們這樣做,有幾家
transcript.whisperx[481].start 13185.51
transcript.whisperx[481].end 13204.285
transcript.whisperx[481].text 幾乎都同意都同意好那你有沒有去算過再精算過我們講你說最大戶的你都處理好對不對那你剛剛講說後面對不對你有沒有去精算過你現在他們收要繳碳費對不對因為現在很多問題是講我寧願繳碳費啊我也不願意搞自主減量啊因為我要搞自主減量我的設備各方各面的成本加起來可能比繳碳費還高
transcript.whisperx[482].start 13205.206
transcript.whisperx[482].end 13223.838
transcript.whisperx[482].text 這就是我講的我擔心碳費最後變贖罪券我做不到減量我乾脆就繳錢了事然後最後我們還是沒有辦法達成國際減量的義務所以剛剛部長講前20大沒有問題後面的這些你有沒有做精算他們哪些符合然後差異在哪裡有沒有做一個相關的分析報告報告委員其實多數都是可以達得到的齁
transcript.whisperx[483].start 13224.498
transcript.whisperx[483].end 13224.779
transcript.whisperx[483].text 這樣就好了啊?
transcript.whisperx[484].start 13245.819
transcript.whisperx[484].end 13261.733
transcript.whisperx[484].text 部長因為這個題目很大我長期來做追蹤喔你就先從前20大開始喔因為你講你都主案拜訪過對不對是不是請環境部整理一份資料就是碳費跟他減量付出的成本比對有沒有減要的報告啦你的表格數字化的說法要去證明這20大是可以做這個事的可以嗎
transcript.whisperx[485].start 13262.954
transcript.whisperx[485].end 13282.768
transcript.whisperx[485].text 他們的ESG報告寫的都很清楚那你用協助會審一下也沒有關係啊我接受你用ESG報告一些數字來注意啊我們找經濟部一起來進行好不好好一起進行好不好那最後一個問題就是你如果沒有辦法順利導應減量的時候我希望環境部會有備案嘛你還是要有因應措施嘛萬一他們理論上他們願意做自主減量萬一他們不做呢你有沒有備案
transcript.whisperx[486].start 13283.969
transcript.whisperx[486].end 13311.07
transcript.whisperx[486].text 這個我希望部長因為還沒開始嘛我也不要都惡意推頂對不對但希望部長提醒一下環境部先做備案這個預備的方案就是要確保他還是要做減量這件事好最後一點點時間我問一下經濟部產發署欸福島減量他其實需要不少資源對不對我要投入很多的資金我們剛剛都在談成本的問題還有其他工具也可以應用比如說產創條例現在是吧是啊你經濟部有沒有足夠多而且足夠大額的政策資源去鼓勵他做減量夠不夠啊
transcript.whisperx[487].start 13311.59
transcript.whisperx[487].end 13339.789
transcript.whisperx[487].text 跟委員報告,其實減碳的這件事是在112年我們就開始做了,我們那時候就協助企業從低碳化,包括...剛剛部長已經講了,就是經濟部也要一起來協助,因為我要的就是說,它實際上可能在碳費的支出跟它因應成本的一個對比,所以經濟部,你有提供哪些政策這個協助,哪些資源挹注,也要一併寫進報告裡面嘛,這樣我們才能夠讓這個東西它順利上路的時候,可以確實的導引減量,好不好?這一點還是要請環境部跟經濟部一起來合作啦,好不好?
transcript.whisperx[488].start 13341.51
transcript.whisperx[488].end 13341.59
transcript.whisperx[488].text 請彭部長
transcript.whisperx[489].start 13365.97
transcript.whisperx[489].end 13375.588
transcript.whisperx[489].text 侯委員好部長我們碳費的整個包括費率、機制當然現在對外有一定程度的公告了
transcript.whisperx[490].start 13376.636
transcript.whisperx[490].end 13405.009
transcript.whisperx[490].text 那我剛才其實前面也聽到部長很多的答詢下一張那我大概整理一下其實我們在碳定價其實碳定價當然不只是碳費那整體的碳定價其實在台灣我認為有最重要的三個考量點這三個第一個是要達成氣候目標第二個對接國際第三個是維持境內外產業的公平性部長你同不同意?非常同意委員你完全說出我心裡面因為要把這個弄成平衡不容易
transcript.whisperx[491].start 13405.871
transcript.whisperx[491].end 13433.473
transcript.whisperx[491].text 這三個是我們在規劃碳定價最重要的關鍵是在這三件事情上面那當然這幾天我也看到前面有些委員都很關注所謂臺板CBAN的問題簡單來說臺板CBAN在處理的問題就是剛才說的第三項維持境內外產業的公平性其實這個議題在今年的上半年的時候在應該是3月的時候我其實就有跟上一任的薛部長來去做討論那我知道之前環境部也把是把
transcript.whisperx[492].start 13434.893
transcript.whisperx[492].end 13449.98
transcript.whisperx[492].text 臺版的不管是碳關稅或臺版的碳邊境調整機制是放在我整體的比較後面才會去來考慮的那我們現在看到產業上不管是水泥也鋼鐵也有很多的討論部長我剛才聽到你在前面的回答但你回答是說
transcript.whisperx[493].start 13451.922
transcript.whisperx[493].end 13471.974
transcript.whisperx[493].text 會等2026年歐盟的CBAN正式實施以後那我們來看我們怎麼去處理這個問題可是部長我只想提醒一件事情其實我們現在臺灣產業最主要在臺版CBAN上面的需求他主要並不是處理臺灣跟歐盟之間的關係您也很清楚主要是因應可能是我們臺灣跟東南亞生產之間的關係
transcript.whisperx[494].start 13475.516
transcript.whisperx[494].end 13502.592
transcript.whisperx[494].text 所以它不一定是直接對應到跟歐盟的CBAN的關係所以我們並不是說等到歐盟開始收了CBAN以後我們才要開始我覺得這個邏輯上面不是一個等價的其實這只是一個間接的關係當我們的碳費開始收了以後就開始會產生像跟東南亞國家的水泥或鋼鐵之間這個價格上面的或成本上面的落差所以我自己還是覺得恐怕不能夠
transcript.whisperx[495].start 13503.553
transcript.whisperx[495].end 13522.48
transcript.whisperx[495].text 等到是歐盟的CBAN在開始的時候那我們才開始來大張旗鼓來去處理這個問題恐怕我們還要再提前尤其是當我們現在碳費的機制已經相對應清楚了以後我們現在碳費機制已經相對應清楚以後收的水準、收的費率都相對清楚以後我們現在其實就該來規劃這件事情
transcript.whisperx[496].start 13524.381
transcript.whisperx[496].end 13548.602
transcript.whisperx[496].text 那部長,所以你覺得我們有沒有可能再往前一點?好,委員這個我會來努力啦齁,那我其實我剛才還沒有對外說的是說我們在行政部門也在討論一個事,就是說進口的水泥除了我們要要求他排放係數的申報之外,我們在所有的採購裡面也要要求說要有更強烈的這個所謂的低碳的水泥的這個策略行動方案在裡面,這是行政部門正在討論這個事情
transcript.whisperx[497].start 13549.643
transcript.whisperx[497].end 13568.159
transcript.whisperx[497].text 市長我這邊有兩個事情想提醒第一個是我們當然支持第一個包括台版資源包括進口水泥鋼筋的申報這我們都絕對支持但一個地方是一定要留意尤其是國外他們申報的邊界跟標準是什麼我想這是現在產業很擔心的事情或產業正在苦惱這個事情就是說
transcript.whisperx[498].start 13568.679
transcript.whisperx[498].end 13568.799
transcript.whisperx[498].text 下一則報告
transcript.whisperx[499].start 13590.714
transcript.whisperx[499].end 13617.969
transcript.whisperx[499].text 再來一點是部長我們剛有講到你剛也講到說跟經濟部接下來有一個深度節能計畫我還是要提醒一個事情深度節能計畫最重要的基礎建設其實是能源管理資訊系統這個經濟部的產發局包括跟能源局能源署是不是也有在場可不可以一起上來這是最重要的事情尤其是剛剛部長你講到你接下來會想要引導包括國發基金包括保險基金投入
transcript.whisperx[500].start 13619.469
transcript.whisperx[500].end 13636.12
transcript.whisperx[500].text 當你要引導這些基金投入的時候他就會跟你算那我的效益我的利潤怎麼去算這時候對不起喔剛剛說的能源管理資訊系統就是關鍵因為我如果沒有辦法清楚把效益給算清楚的時候請問你那些資金的投入尤其是私人資金的投入他要怎麼來算風險他沒辦法評估風險啊
transcript.whisperx[501].start 13638.314
transcript.whisperx[501].end 13648.581
transcript.whisperx[501].text 所以部長我這邊想要再跟你提醒一個事情下一張吼我有看到在你的自主減量計劃管理辦法裡面有把提升能源效率包括裝設能源管理資訊系統有放進去成為
transcript.whisperx[502].start 13650.953
transcript.whisperx[502].end 13674.117
transcript.whisperx[502].text 可以選擇的其中一項但是接下來下一個我自己是希望環境部也好環境部我們現在手上有碳費誘因機制能源署現在手上有深度節能推動計畫產發署有很多產業輔導的工具這三個部會這三個單位應該綜合起來跨部會的整合到底能夠在我們深度節能的工作裡面
transcript.whisperx[503].start 13674.677
transcript.whisperx[503].end 13690.037
transcript.whisperx[503].text 能夠再推進多少尤其是下一張我希望是不是可以在一個月內提出一個更積極更普及的EMIS就是剛才說能源管理資訊系統的推廣的政策目標跟計畫因為我現在在不管是經濟部的
transcript.whisperx[504].start 13692.045
transcript.whisperx[504].end 13718.954
transcript.whisperx[504].text 深度節能計畫裡面我沒有看到我目前都沒有看到明確的推廣目標跟政策目標我覺得是可惜的我還是要提醒現在我們各部會包括總統、院長大家都講深度節能可是只要沒有這個EMIS這個系統的話其實深度節能很可能只是留於概念上面的口號而已這部分希望可不可以我們三個單位一個月內來提出一個更完整EMIS推廣的目標跟計畫這可以嗎
transcript.whisperx[505].start 13721.734
transcript.whisperx[505].end 13743.588
transcript.whisperx[505].text 我們剛剛有跟部內單位討論,我們提一個報告給委員這邊,再請委員來幫我們指導不是你,我要是三個單位一起整合,你們剛剛上一張,三個單位相關的計畫跟資源一起來提出,可以嗎?因為我們三個單位是要合在一起提深度減能計畫,我會把它放在裡面,一起跟委員報告好,謝謝部長,謝謝好,謝謝洪森漢委員的發言,接下來請楊瓊英委員發言
transcript.whisperx[506].start 13751.636
transcript.whisperx[506].end 13755.339
transcript.whisperx[506].text 今天我們討論這個碳費開徵碳費開徵你們跟經濟部你們跟經濟部兩個呢那請經濟部也上來你們兩個呢當說碳費開徵經濟部稱
transcript.whisperx[507].start 13778.896
transcript.whisperx[507].end 13798.691
transcript.whisperx[507].text 這一個遺憾那現在你們協商的進度到底怎麼回 怎麼呢來 部長你先說吧委員我們跟經濟部我說說很好大家可能又不滿意阿說不好大家又見縫插針不見縫插針你就講實質的問題實質的面向因為經濟部遺憾怎麼會很好呢你們兩個是風馬牛不相對的阿在這個議題上面你們怎麼樣去把它融合在一起
transcript.whisperx[508].start 13809.079
transcript.whisperx[508].end 13829.014
transcript.whisperx[508].text 這個其實我們是相互尊重他們的意見啦相互尊重,當他申表遺憾,你的看法呢?但是這個是碳費審議委員會共同的決議啦共同的決議,碳費審議會定的這個價錢請教,針對本席的提問當碳費開徵經濟部表遺憾,你環境部部長你的看法呢?
transcript.whisperx[509].start 13830.292
transcript.whisperx[509].end 13844.708
transcript.whisperx[509].text 當然我們會希望說未來也多聽他們的意見,共同來聽產業的意見,其實我也跟聽了很多產業的意見。那經濟部,表姨和他繼續跟你溝通你現在的看法呢?
transcript.whisperx[510].start 13845.248
transcript.whisperx[510].end 13865.768
transcript.whisperx[510].text 是,跟委員報告,因為產業面對大環境的競爭,不是每一個行業都比較跟AI能夠有連結,所以有一些比較辛苦的,我們是希望國內的機制它是一體適用的,所以是不是可以穩健的從第一然後開始來做證收。你要不要再給環境部建議?
transcript.whisperx[511].start 13867.509
transcript.whisperx[511].end 13894.782
transcript.whisperx[511].text 現在都在討論,經濟部會不會在跟環境部在溝通?我們會持續的做溝通。持續繼續溝通,還好有這個持續溝通。那我們實際在講,部長,2026年開始要繳交,收費的對象是直接跟使用電力間接溫室氣體排放,要達到多少以上的電力業、燃氣供應業以及製造業要課呢?
transcript.whisperx[512].start 13897.505
transcript.whisperx[512].end 13913.444
transcript.whisperx[512].text 2.5萬噸那你現在一般費率是1公噸多少錢?300塊是以300塊那你提出也就是符合減量指定目標的自主減量計畫者可以適用優惠嗎?是嗎?對對對可以適用優惠有兩個階段AB兩岸
transcript.whisperx[513].start 13917.789
transcript.whisperx[513].end 13932.824
transcript.whisperx[513].text 在這樣的情況之下目前經濟部仍就認為是有困難的那政府是議題的必須要好好的去檢討那在這樣的一個情況之下本是要告訴你也就是高碳洩漏事業的單位
transcript.whisperx[514].start 13934.165
transcript.whisperx[514].end 13958.756
transcript.whisperx[514].text 在碳費公司當中,最初可以想排放係數的一個折扣,對不對?這是全球各個國家都朝這個方向那請問,你何時可以拍板?你的項目?你的項目何時可以拍板?什麼時候可以給社會大眾?給產業說明?何時可以拍板?國外都已經有囉!國外都已經有囉!
transcript.whisperx[515].start 13960.148
transcript.whisperx[515].end 13978.858
transcript.whisperx[515].text 何時可以排版高碳洩漏的這個部分項目?何時可以排版?跟我們報告,因為我們現在在等那個主計處把產業關聯表11月要公告,那因為他會是我們計算高碳洩漏風險的一個很重要的資料。11月下個月
transcript.whisperx[516].start 13979.238
transcript.whisperx[516].end 13990.553
transcript.whisperx[516].text 主席主委出來對出來那你們預計什麼時候會我們會跟經濟部就這個資料再去做溝通那預計什麼時候會公告因為你們一定有一個指標啊比如說
transcript.whisperx[517].start 13993.874
transcript.whisperx[517].end 14000.941
transcript.whisperx[517].text 這個鋼鐵製煉業有沒有報告在裡面?有沒有?國際上現在高碳洩漏風險 經濟部有點頭鋼鐵跟水泥是各國都普遍認定是有高碳洩漏所以換句話說11月主計單會出來你們預計什麼時候可以宣布?
transcript.whisperx[518].start 14010.831
transcript.whisperx[518].end 14026.469
transcript.whisperx[518].text 我們應該希望明年的上半年可以有把那個認定的準則做一個公告時間要加快你們經濟部跟環境部在這裡因為產業很緊張明年你現在說的是明年的上半年時間要加快
transcript.whisperx[519].start 14027.53
transcript.whisperx[519].end 14040.94
transcript.whisperx[519].text 這是第一個第一個時間要加快不要拖在明年中了好不好讓業者趕快能夠應對好不好這第一個第二個碳費開徵你的碳費藍圖你什麼時候要公佈要明確化來請教你看了這個圖第5次的會議審議會議當中你2026年到2030年你在這邊有說那你什麼時候要公佈你的碳費藍圖
transcript.whisperx[520].start 14055.763
transcript.whisperx[520].end 14070.825
transcript.whisperx[520].text 這個是每兩年有碳費審議委員會會討論一次你告訴我你什麼時候要公佈這個事實上每兩年就要檢討一次它的成效你告訴我你近期什麼時候要公佈你連公佈都沒有你還講兩年之後的事情
transcript.whisperx[521].start 14072.128
transcript.whisperx[521].end 14078.233
transcript.whisperx[521].text 報告委員,其實這個委員都討論到最後一個階段2030年可能是1200到1800這個當中是不是一個協力的路徑協力的路徑到底你是不是承載你的2026年到2030年從300漲到1800噸這個是跟國際接軌的一個數字我請問
transcript.whisperx[522].start 14093.564
transcript.whisperx[522].end 14109.318
transcript.whisperx[522].text 我們政府是不是如此你要明確地告訴民眾因為我們必須要以價自量這個概念從根源以價自量這個非常的重要如果你沒有給人家公佈我現在300我可以吸收
transcript.whisperx[523].start 14110.439
transcript.whisperx[523].end 14131.714
transcript.whisperx[523].text 但是我如果到我就不減碳我如果到1800我吸收不了我做價給消費者這怎麼辦這不是政府應該要做的所以我具體說明具體說明第一個也就是說你什麼時候可以讓碳費的藍圖明確化請你告訴我這一點非常的重要請告訴我
transcript.whisperx[524].start 14132.134
transcript.whisperx[524].end 14147.66
transcript.whisperx[524].text 關委員這個其實這種制度不見得是一個國際上最好的制度所以我們承諾在4年內會推動總量管制的排放交易所以我給你功課因為時間的關係我給你功課請你要儘快你現在沒有要公佈碳費藍圖你沒有我請你要公佈我請你要公佈
transcript.whisperx[525].start 14153.422
transcript.whisperx[525].end 14174.059
transcript.whisperx[525].text 上路不公布人家怎麼預定怎麼應對呢所以這個就是民間非常的憂心那拜託拜託碳費藍圖你一定要去公布我這個功課給你好不好這個功課一定要給你不是先上路再講沒有那回事的那未來產業要怎麼應對很重要所以最後一個功課給你
transcript.whisperx[526].start 14175.8
transcript.whisperx[526].end 14201.979
transcript.whisperx[526].text 給我,也就是我們臺中中火市世界最高的碳排這個電廠而且我們臺中也是製造業精密業發展最重要的重鎮也是都市企業排碳屬全國第三名我們的碳費是專款專用我要拜託部長在這邊你們在分配的時候一定要對臺中一個公平的分配我們是全世界曾經剛剛我說過的這樣的一個背景
transcript.whisperx[527].start 14202.739
transcript.whisperx[527].end 14210.131
transcript.whisperx[527].text 我們付出那麼多一定要好好的讓我們有更多的補助額專案的來作為我們檢探可以嗎
transcript.whisperx[528].start 14213.102
transcript.whisperx[528].end 14230.579
transcript.whisperx[528].text 這個我們碳費審議會會來考量這個事情你一定要考量喔我一定會追蹤好不好那以上剛剛所說的拜託尤其是我們的碳費藍圖一定要公佈全世界沒有一個國家說上了再講這個是不負責任的一個態度嘛好不好一定要去將碳費藍圖要公佈給社會大眾瞭解好不好謝謝
transcript.whisperx[529].start 14234.423
transcript.whisperx[529].end 14258.231
transcript.whisperx[529].text 好 謝謝楊瓊英委員那我請等一下質詢的委員時間稍微控制一下好 接下來請張祺凱委員發言請彭部長張委員好彭部長好
transcript.whisperx[530].start 14264.335
transcript.whisperx[530].end 14288.055
transcript.whisperx[530].text 你是內閣裡面大家對你比較相當有期待的啦謝謝謝謝你任內應該有個目標排碳污染一定是要降低嘛對不對我問你一個數字齁2025年啊我們的火力發電占台灣所有的發電的量75.5%你知道2023年的年底是多少嗎80應該可以接近吧很接近啦齁很接近再高一點點81.8
transcript.whisperx[531].start 14293.479
transcript.whisperx[531].end 14319.666
transcript.whisperx[531].text 2005年是75.5喔我們一直在說我們要建立碳排要盡量去推動結果推到去年底變81.8包委員這個不一樣喔排碳的跟排燃氣的這個排碳係數差了三分之一喔阿燃氣是一個過渡的一個階段阿現在過渡會太久了啦對不對不一定你的任內我不曉得你會當多久你任內到時候大概就算了你上來的時候污染有多少
transcript.whisperx[532].start 14320.606
transcript.whisperx[532].end 14345.988
transcript.whisperx[532].text 你離開的時候,污染有沒有降下來?我剛才說的若是最近這幾年看起來在往下在往上漲嘛,對不對?這才是現在最大的問題來,我們來看一個最近通常的新聞最近有一個知名的藝人啊王建民過世了,肺腺癌嘛我們的民醫啊出來講,雖然他講很多很重要的事情他講啊以前是以核養綠,現在是什麼?用肺去養綠嗎?
transcript.whisperx[533].start 14348.749
transcript.whisperx[533].end 14377.384
transcript.whisperx[533].text 現在癌症每一年多了一萬多個新的這個患者台灣現在有兩個世界第一來 我兩個世界第一因為空氣汙染造成的EGFR的突變型的肺腺癌世界第一另外一個第一是什麼EGFR的突變的比例也是世界第一這個跟空氣汙染都有非常非常大的關係我相信你從民間來大家對你有期待
transcript.whisperx[534].start 14378.715
transcript.whisperx[534].end 14406.056
transcript.whisperx[534].text 大家都希望這個污染是要降低的我要提醒大家 站在人民的角度全台灣人每年罹患最多的癌症就是肺癌跟肺腺癌死亡最多的也是肺癌跟肺腺癌花最多錢的癌症也是所以你怎麼看民醫講的還有全國的民眾講的火電你那是民間你怎麼樣讓這個火力發電可以降低
transcript.whisperx[535].start 14407.844
transcript.whisperx[535].end 14409.144
transcript.whisperx[535].text 發電是我們北京全台灣污染源最嚴重的嘛 對不對
transcript.whisperx[536].start 14436.87
transcript.whisperx[536].end 14453.868
transcript.whisperx[536].text 市長發電你是從排炭量來看其實我們的這種所謂的發電的污染源在某一個地方不一樣像中部有的地方大概佔兩成一成左右那到多數是所謂交通污染源會比較多當然污染有很多種不過發電這邊的火力發電一定要盡力盡量去減少那這個我們有共識我再給你看進一步的因為今天在談這個
transcript.whisperx[537].start 14461.211
transcript.whisperx[537].end 14477.618
transcript.whisperx[537].text 談這個議題跟你要專款專用顯然 碳費的專款專用可能也有關係我們看看 全台灣離癌致死的 肺癌跟肺腺癌朋友、外島、朋友是最多的 在台灣啊就是賣寮那個燃煤那個發電廠 守在地的賣寮還有台南市 叫齊凱的故鄉 加義關
transcript.whisperx[538].start 14484.148
transcript.whisperx[538].end 14497.418
transcript.whisperx[538].text 剛剛在講你要降低這個污染的同時那如果因為污染你沒有做好那你現在又要收碳費嘛 對不對你碳費專款專用碳費裡面有沒有一部分的專款專用是會去補助人民的健康去預防他得到癌症
transcript.whisperx[539].start 14498.393
transcript.whisperx[539].end 14525.259
transcript.whisperx[539].text 報告委員 這個碳費是為了要減碳的那減碳跟減空污 空污有一個空污費也在處理 已經有 早就有一個空污費那其實這個是比較跟空污費比較有關聯性那我們是減碳為主 那碳跟空污這是不一樣有關聯性的東西那如果因為政府的錯誤政策 所以你說了人民的這個碳費那我的健康受影響 所以這筆費用收進來不會到在幫這些病患上面 不會有
transcript.whisperx[540].start 14526.55
transcript.whisperx[540].end 14548.767
transcript.whisperx[540].text 這個是屬於空汙費,因為空汙會造成這個可能的各種的因素,但是我必須跟委員說,造成這個癌症的這個原因有很多種,空汙只是其中的一項。好,那除了健康之外,另外一個就是費用,我們看一下。健康醫護,你如果做不到健康醫護就是費用。那個部長你知道,這個可能問你比較不清楚,經濟部比較能夠回答。
transcript.whisperx[541].start 14549.847
transcript.whisperx[541].end 14555.629
transcript.whisperx[541].text 古泥、錦泥、河山廠、一號機跟二號機幫台電賺了多少錢?時間不夠啦,我簡單講啦,300億對不對?那你今年經濟部去把合一的一號機已經停了二號機馬上五月份又要停了對不對?那你停完以後整個成本又增高啦這是不是又另外一個問題啦?市長,你們有沒有想過這個問題?
transcript.whisperx[542].start 14579.895
transcript.whisperx[542].end 14579.915
transcript.whisperx[542].text 市長
transcript.whisperx[543].start 14608.114
transcript.whisperx[543].end 14612.276
transcript.whisperx[543].text 現在我一直在看你說這個對CPI的影響非常的小對不對那我現在是要提醒一下要注意那個蝴蝶效應
transcript.whisperx[544].start 14637.845
transcript.whisperx[544].end 14656.552
transcript.whisperx[544].text 我用台鐵來做比擬給你聽啦對台鐵因為電價漲了之後電價漲了之後所以它幅度漲價不多喔明年才增加2.228億你們在講說什麼什麼那些電價那些不影響可是它就影響到台鐵馬上就要漲人民的票價了這整個物價就有衝擊了
transcript.whisperx[545].start 14657.412
transcript.whisperx[545].end 14675.293
transcript.whisperx[545].text 報告委員這個其實我一直針對某些的建商特別是大佬他一直喊說會漲5到10%我們一直強力的去跟那個房仲業者去談這個事情所以我也找了很多的業者談他們也告訴我沒有那麼多所以也在這個機會請所有的媒體對外說不要再用這種擴大的效益造成蝴蝶效應
transcript.whisperx[546].start 14675.854
transcript.whisperx[546].end 14676.274
transcript.whisperx[546].text 接下來請廖先祥委員發言
transcript.whisperx[547].start 14706.687
transcript.whisperx[547].end 14734.3
transcript.whisperx[547].text 好,謝謝召委,那一樣邀請部長請彭部長六委員好部長好,不然請教一下,我不知道剛剛有沒有委員問過就是我們碳費每公噸300塊這個300塊它的制定是怎麼樣制定出來的我們有一個碳費審議委員會然後涵蓋了這個政府部門還有專家學者還有NGO一起制定出來的理論理論
transcript.whisperx[548].start 14735.461
transcript.whisperx[548].end 14758.12
transcript.whisperx[548].text 理論喔,其實他們有算出各種的這種情境,然後對減碳的效果,然後甚至還有包含對CPI、GDP的衝擊,最後一個折衷的數字你有點抽象喔,呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵
transcript.whisperx[549].start 14758.64
transcript.whisperx[549].end 14773.312
transcript.whisperx[549].text 產生用電可能產生的碳我們要去把這個碳消米所需要付的成本還是說我們是站在抑制這個用電的方向來制定這個會有不同的面向去討論這個
transcript.whisperx[550].start 14775.353
transcript.whisperx[550].end 14776.854
transcript.whisperx[550].text 我們請我們的沈議委委員會的主席在這邊好不好 來 我們次長
transcript.whisperx[551].start 14800.115
transcript.whisperx[551].end 14819.734
transcript.whisperx[551].text 委員好其實我們在碳費審議會的時候我們有參考很多的包括其他國家的碳定價然後也包括我們詳細的以產業別去看這個不同的費率對於產業的毛利率的影響當作其中一個指標所以我們在第5次的碳費審議會是有建議說一般費率是大概300到500塊的區間
transcript.whisperx[552].start 14821.676
transcript.whisperx[552].end 14822.296
transcript.whisperx[552].text 所以依照主席講的我們這個300塊的碳費的訂定
transcript.whisperx[553].start 14849.651
transcript.whisperx[553].end 14870.936
transcript.whisperx[553].text 好像是用從對產業的影響的層面來當作一個主要定定的一個標準這是其中之一的影響那有沒有去考量到我們這個因為專款專用嘛對不對那我們譬如說生產一度電所生產的碳那可能需要多少的成本無論有沒有辦法完全消彌
transcript.whisperx[554].start 14872.898
transcript.whisperx[554].end 14887.995
transcript.whisperx[554].text 我們沒有從這方面來考慮嗎因為我們總是專款專用嘛我總不能去訂了一個價格然後沒有跟你說我這筆錢要怎麼用然後他要繳的心我的意思就是說你要讓繳的人繳得心甘情願而不是說我繳了這筆錢
transcript.whisperx[555].start 14889.608
transcript.whisperx[555].end 14903.194
transcript.whisperx[555].text 其實有點我繳這筆錢好像是你政府為了要減碳然後強制我來繳的一筆錢然後為了要減少我的支出我來減碳但是對於繳費的人來說他希望他繳的這筆費用他是有一個計算公式的嘛
transcript.whisperx[556].start 14904.264
transcript.whisperx[556].end 14928.879
transcript.whisperx[556].text 跟我們報告就是因為我們其他我們在參考其他國家的制度的時候每一個企業因為他的製程然後他的這個減碳的潛力不同所以要去幫每一家去算減碳成本其實可能要每一個企業他自己比較清楚那所以我們在做估算的時候我們變成是要用一些學術上能夠收集到的一般性的資訊來看
transcript.whisperx[557].start 14931.06
transcript.whisperx[557].end 14959.909
transcript.whisperx[557].text 減量成本確實不太容易成為一個比較具體的評估的水準所以我們變成是從這個毛利率是其中一個那參考其他國家已經在實施的經驗我們也從這個角度所以就感覺起來好像我們國家就是去增加了一個可能用電的一個成本來逼你減碳沒有沒有不是用電的成本是減碳減碳聽起來就是增加你的成本來逼你減碳這樣而已嗎沒有沒有好像沒有更好的意義在裡面報告委員這是碳定價碳定價全世界都這樣走
transcript.whisperx[558].start 14960.729
transcript.whisperx[558].end 14985.244
transcript.whisperx[558].text 那我也必須說因為我是520接手過去討論的一兩年就是所謂的碳費的這個制度所以其實我們觀察到全世界大概走到碳稅、廢稅或總量管制的碳交易都有在做所以其實從市場面我其實就是希望說300塊這個數字不是憑空蹦出來的剛剛講的一個可能對產業的衝擊這我可以理解這是必要的因素之一但是它不應該是
transcript.whisperx[559].start 14986.69
transcript.whisperx[559].end 15013.972
transcript.whisperx[559].text 我去考慮一個費率然後去算對你的充其多少挑一個對你減少比較少的一個費率你能夠接受的一個費率來訂定他我覺得他應該要賦予更多的一個精神在裡面而且我有更多的實際的一些計算在裡面好不好希望委員有這個就剛剛講的一句話心甘情願你要人家講碳費要人家講的心甘情願不過委員會報委員其實說很多的產業分割我說萬一這個費到處去分配給很多的地方他們就不大心甘情願
transcript.whisperx[560].start 15014.913
transcript.whisperx[560].end 15015.333
transcript.whisperx[560].text 接下來請羅志強委員發言
transcript.whisperx[561].start 15044.386
transcript.whisperx[561].end 15070.371
transcript.whisperx[561].text 主席有請部長請彭部長委員好部長原定2025年1月就要起徵的碳費現在環境部公告是每噸公噸300元的價格跟延後到2026年開徵這已經是最終版本了嗎?是不過我原是2025年起徵2026年交對
transcript.whisperx[562].start 15072.751
transcript.whisperx[562].end 15089.737
transcript.whisperx[562].text 就是2026年交嗎?但是我們今年的費率明年5月要市申報。好,非常好。反正你們的碳費其實當然不是你的任內啦。之前也是很多部分一言再言。希望這次能夠如期開始去進行,可以嗎?只要委員不反對就是如期的。
transcript.whisperx[563].start 15091.698
transcript.whisperx[563].end 15096.643
transcript.whisperx[563].text 今年4月的時候,我有向經濟部詢問,未來碳費開徵之後,台電是不是受到影響?當時經濟部回答我,一據7.0變遷因應法28條,
transcript.whisperx[564].start 15112.682
transcript.whisperx[564].end 15128.849
transcript.whisperx[564].text 徵收碳費的對象包括溫室氣體之直接間接排放源其中生產電力之直接排放源得檢據提供電力消費之排放量證明文件向中央主管機關申請公告扣除直接排放源之排放量所以
transcript.whisperx[565].start 15129.669
transcript.whisperx[565].end 15156.69
transcript.whisperx[565].text 電力業被徵收碳費的範疇要環境部公告收費辦法後才能夠確定那我想請教一下現在你們已經公告了嘛 對不對那有協助台電精算大概多少錢嗎大概5億左右5億左右是不是我看到一個資料寫15億為什麼有這個落差基本上他可能是沒有自主減量的計畫題的話可能是這樣所以他按照自主減量他可以就更低嘛 對不對好 那麼
transcript.whisperx[566].start 15159.271
transcript.whisperx[566].end 15176.637
transcript.whisperx[566].text 臺電發電主要供用戶使用按照臺電的說明實際電力事業排放量為盤查登錄排放量扣除外售電力排放量這也代表使用者付費干液所以最終是由電力使用者來負擔碳費成本
transcript.whisperx[567].start 15178.078
transcript.whisperx[567].end 15180.14
transcript.whisperx[567].text 一般民生用電因為我們是規律有幾個例如說發電業、製造業等等所以一般的家戶是沒有受到影響的
transcript.whisperx[568].start 15193.433
transcript.whisperx[568].end 15214.535
transcript.whisperx[568].text 那不是跟你前面講的這個使用者付費的概念是就是有例外啦因為我們徵收的對象是這種發電業還有製造業為主發電製造業為主一般的費率之外還定有優惠費率就是A50跟B100兩種方案嘛對不對那目前原本可適用的範圍有多大
transcript.whisperx[569].start 15217.385
transcript.whisperx[569].end 15239.131
transcript.whisperx[569].text 目前我們有提到說鼓勵業者盡量減免所以使用電力生產間接排放目標年排放如果削減達到6%或直接排放製程達到一定標準就可以使用A方案那我想要請教一下因為外界就認為說事實上這個其實並沒有定很明確的範圍
transcript.whisperx[570].start 15242.072
transcript.whisperx[570].end 15266.929
transcript.whisperx[570].text 這個範圍算很明確嘛,因為這樣做法的話,基本上有人也認為這是打假球,其實就會讓實際上很多費率定定,那變成是看起來是適用300元但其實你只要提出一些減量計劃,就計劃而已喔,那就可能是在100元、50元那高碳洩漏產業甚至可能只有10元跟20元,有沒有這個可能性?
transcript.whisperx[571].start 15267.609
transcript.whisperx[571].end 15291.368
transcript.whisperx[571].text 基本上報告委員這個是穩健上路最重要的先低後高所以當然這個我知道環保團體對這個數字的確不滿意希望拉到國外一樣的水準但是其實國外也有這樣的所謂的高碳洩漏或是整個優惠的方式先行都是先低開始所以我們先走一步我不反對從低開始可是我就要講下一個問題因為在到達我們2030年省立會建議是多少錢
transcript.whisperx[572].start 15296.852
transcript.whisperx[572].end 15310.257
transcript.whisperx[572].text 一千二到一千五一千二到一千五嘛我這邊為什麼又寫這資料是一千八哦一千八一千八不好意思我想說是我錯還是你錯好那請問你現在已經是2024年對不對你2026年開增然後一開始又我們剛剛講的就是我們環團所擔心的你那個起點那麼低的狀況那從2026年算到2023年剩幾年啦2030年六年
transcript.whisperx[573].start 15324.137
transcript.whisperx[573].end 15346.712
transcript.whisperx[573].text 我想2026年,四年而已啦。四年而已你可以在這麼短的時間內從300到1800元嗎?那個是建議啦,但是我也必須說國際的探定價有一定的規模。所以人家說你打假球也不能說是說假的。你現在跟我講那只是建議,意思是說你其實也沒打算做啦。
transcript.whisperx[574].start 15348.613
transcript.whisperx[574].end 15367.904
transcript.whisperx[574].text 三零年前做到一千二到一千八是這個意思嗎我們是希望是說讓這個碳定價制度先行然後走到總量管制的碳交易那你的審議會就不用建議一個什麼二零三零年一千二到一千八不是嗎那是審議委員會的建議嗎對啊那我要講就是說那你也是跟審議委員會的建議是基本上
transcript.whisperx[575].start 15369.505
transcript.whisperx[575].end 15396.483
transcript.whisperx[575].text 這樣講啦 部長你好像感覺上啦就比較沒有那麼有自信啦就是在說沒有 我很有自信所以很有自信在2030年可以到1200到1800因為其實在5、6年後其實全世界的探定價就會起來所以這個也是提醒每個企業真的要去做檢探這件事情好 因為時間到了齁後面的問題要用書面質詢來取代但是不管怎麼樣講齁當然我覺得兩邊平衡是為難的可是事實上
transcript.whisperx[576].start 15397.244
transcript.whisperx[576].end 15398.384
transcript.whisperx[576].text 主席好各位委員各位官員大家午安是不是有請彭部長請彭部長
transcript.whisperx[577].start 15429.574
transcript.whisperx[577].end 15451.576
transcript.whisperx[577].text 委員好部長好那今天大家在討論這個有關於碳費的一個問題那相信這個我還是要先跟部長報告我個人本席是認為就是因為政府錯誤的能源政策現在台灣主要是八成的火力發電兩成現在所謂這個政府所謂的綠能的發電我覺得現在才是這個碳費
transcript.whisperx[578].start 15452.435
transcript.whisperx[578].end 15476.265
transcript.whisperx[578].text 還有現在全台灣是一個大型的這個碳排放量很高的國家的我認為是主要的問題之一所以今天要先來請教我們這個部長的一個問題在第5次這個費率審議委員會以後我們現在的結論我們可以看到這張圖表這圖表裡面有顯示2025年到2029年的一個整體的費率那大家都知道現在2025年這個依照審議委員會的結論
transcript.whisperx[579].start 15480.126
transcript.whisperx[579].end 15505.518
transcript.whisperx[579].text 這個費率有分為每公噸300元那另外有個A跟B的優惠費率B是100元每噸100元跟這個優惠A的部分是500元每公噸的部分那我想要請教部長的是針對這個圖表而言是不是2025年到2027年目前來看這個費率一般費率是不會做調整的
transcript.whisperx[580].start 15506.358
transcript.whisperx[580].end 15524.988
transcript.whisperx[580].text 因為我看這個圖表是水平的是不會調整到2027年才會對費率來做一個調整我相信這是企業所關心的是不是這個費率就會定在這邊不會變動請部長回答對報告委員這個其實是我們也參考了新加坡新加坡大概就是類似這樣的額度在制定的每幾年每兩三年就調漲一次
transcript.whisperx[581].start 15526.118
transcript.whisperx[581].end 15542.65
transcript.whisperx[581].text 好,就是所以兩年內不會變動,這是肯定的?對對對好,那這個第一點我覺得是大家所關心的,兩年內不會變動那現在來講是有關有針對這個排放量這是兩萬五千公噸以上的企業才會做課徵那我請教部長這兩年內會不會這個其他的這個
transcript.whisperx[582].start 15546.132
transcript.whisperx[582].end 15558.036
transcript.whisperx[582].text 排放量會不會有改變會不會有其他的企業會因應這樣的這個審議會的結論會去做調整就是會不會增加其他新的企業除了這現在281家公司當然會可能因為這個281家或是500個廠都是變動每年都是變動的
transcript.whisperx[583].start 15563.185
transcript.whisperx[583].end 15579.616
transcript.whisperx[583].text 變動的方式就是依照它排放量如果有超過25000公噸那這一點就是我要請教部長的我突然跟我們同仁討論到一點那會不會有企業啊因為我跟部長報告未來這個從300每公噸300元會增加到2030年可能到1200元
transcript.whisperx[584].start 15580.917
transcript.whisperx[584].end 15602.997
transcript.whisperx[584].text 那會不會有一些企業很聰明啊,我不知道你們是怎麼樣去審查這個碳排放量,那會不會有一些企業它會不會拆分公司,或是它把這個工廠的部分分成再做一家工廠,拆成兩家工廠,導致你們在審查的部分的時候看不出來它的到底的排放量是多少,會不會有這樣的情況,那導致你們沒有辦法收到完整的碳稅,碳費。
transcript.whisperx[585].start 15603.858
transcript.whisperx[585].end 15631.018
transcript.whisperx[585].text 對,報告委員,這個其實也請以後的會計師不要用這樣的取巧的辦法啦細節我請我們正式主席來,他們當時有討論到這個問題好,請說委員好,其實因為我們在要求他們要做盤查的時候呢是以一個工廠作為邊界沒錯,那如果他們如果派成兩家工廠或者是直接未來做一個產業的變動感覺起來好像有沒有排碳可是事實上排碳量還是很高
transcript.whisperx[586].start 15632.218
transcript.whisperx[586].end 15649.85
transcript.whisperx[586].text 市長跟委員報告因為現在所有的這些工廠他其實都也有這個固定污染源的這個許可所以如果他們要去更動這一些他的這個為了碳費去更動這些數字他其實就會涉及到他的許可證的變更固定污染源許可證的變更這不是一件容易的事
transcript.whisperx[587].start 15650.458
transcript.whisperx[587].end 15675.699
transcript.whisperx[587].text 好,所以大家都解釋很清楚,所以我要跟部長講的,其實不是規劃的問題,就像我剛一開始提到的,台灣本身就是因為錯誤的能源政策,所以碳排放量我個人是居高不下,最近這10年,碳排放量我相信也是慢慢沒有任何的下降的一個狀況,所以我要這邊請教部長,你是不是可以來,我認為最大的問題就是全台灣的碳排放量,
transcript.whisperx[588].start 15676.429
transcript.whisperx[588].end 15679.931
transcript.whisperx[588].text 臺灣的碳排放量在未來的10年或5年或10年或20年,臺灣的碳排放量整體要下降到多少?
transcript.whisperx[589].start 15696.943
transcript.whisperx[589].end 15721.08
transcript.whisperx[589].text 報告委員其實在這個新訂定的例如說我們內部在檢討這個國家的這個第三階段的管制目標的時候我們目前推算到2035年那其實我也看到台電的數字有大幅度的這個減少但是這個其實還是要多元綠能各方面的能源的轉型所以部長我的意思是說你們只管企業啊企業一定要去課碳費啊那可是全台灣的整體的碳排放量不一定會減少
transcript.whisperx[590].start 15722.04
transcript.whisperx[590].end 15747.674
transcript.whisperx[590].text 就是因為企業當你收取很高的碳費的時候企業他們會想一些方式來自保嘛可是全台灣的整體碳排放量根本沒有變少啊例如說國際來看我們台灣是在打假球啊這要是一個很重要的問題你要定立一個目標啊就是說你在要求企業在收這些費率的時候其實台灣本身我們台灣要設定自己的一個本身的一個目標不然說那麼多碳費全台灣的碳排放量
transcript.whisperx[591].start 15748.935
transcript.whisperx[591].end 15775.015
transcript.whisperx[591].text 還是居高不下,我覺得這是一個很大的問題,部長你認同嗎?認同,我們現在也正在做這個事情,重新再盤點部長是不是說未來希望你訂定目標以後再跟所有的委員,我們所有委員來做分享好不好?可以可以可以,謝謝那第二個我來,結束了,時間太長,好,謝謝大家不好意思,好,謝謝張志倫委員的發言接下來請林淑芬委員發言
transcript.whisperx[592].start 15785.029
transcript.whisperx[592].end 15788.71
transcript.whisperx[592].text 好,謝謝,謝謝主席,是不是還是請我們彭部長請彭部長李委員好部長,我們現在供第6次的碳費費率審議會,確定了碳費徵收的費率但是這個決議,距離有效推動減碳的目標,相去甚遠今天質詢的委員都覺得說,這樣企業怎麼活啊,現在大家都沒競爭力啊但是我要持不同的意見,就是說
transcript.whisperx[593].start 15814.719
transcript.whisperx[593].end 15831.784
transcript.whisperx[593].text 你這個推動減碳的目標,相去甚遠以外,它可能還使台灣在國際碳邊境,就是C-band之下,處於不利的位置,而且會拖累了我國的綠色競爭力。你剛才也講了很多遍,我必須要再講說,以這個歐盟鋼鐵製品為例,台灣
transcript.whisperx[594].start 15839.826
transcript.whisperx[594].end 15851.395
transcript.whisperx[594].text 這3年平均的輸出到歐盟的有幾億美金的規模?我記得數字大概5、6億左右什麼5、6億?大概是39.72億美金美金!我們的鋼鐵輸出裡面我們輸出到歐盟佔了幾個%?
transcript.whisperx[595].start 15869.363
transcript.whisperx[595].end 15886.227
transcript.whisperx[595].text 18.79將近兩成我們鋼鐵外銷的將近兩成都是賣給歐盟啊所以這個CBAN的這個機制對台灣影響很大那我今天講說我們碳費你現在公告的費率也遠低於國際標準所以我們今天很害怕就是說
transcript.whisperx[596].start 15888.067
transcript.whisperx[596].end 15902.458
transcript.whisperx[596].text 明年還沒有要起徵喔那在這種狀況裡面你到底有沒有辦法有效去推動減碳那你們現在一般費率一公噸是300元優惠的方案B是一公噸100元優惠的方案A方案是一公噸50元那這些費率都遠低於國際標準和你們開會的時候專家所建議的
transcript.whisperx[597].start 15914.648
transcript.whisperx[597].end 15936.174
transcript.whisperx[597].text 那歐盟碳交易市場因為我們大概兩成的鋼鐵以鋼鐵業為例啦就不要講電子產品啦以鋼鐵業為例歐盟的碳交易市場一公噸是多少錢70塊歐元左右70塊歐元喔台幣新台幣2500元以美國環保署去估算每噸的碳排放它的外部成本
transcript.whisperx[598].start 15937.234
transcript.whisperx[598].end 15941.015
transcript.whisperx[598].text 外部成本丟給社會去承擔的一公噸是190美元就相當於新台幣6100元才有機會將升溫控制在不超過攝氏2度倫敦政經學院的研究團隊講說台灣碳費應該逐年提升到2030年的3000元當然倫敦政經學院講是他的事但是我們要根據台灣氣候行動
transcript.whisperx[599].start 15966.162
transcript.whisperx[599].end 15992.002
transcript.whisperx[599].text 網絡的研究人家民間有做了一個研究他說大部分的企業最終適用的都是費率較為寬鬆的優惠費率B啦一公噸一百塊啦然後大家都在講說高碳洩漏的風險企業還要享有排放量調整係數值的折扣所謂高碳洩漏的風險企業有可能他的費率會是繳多少錢一公噸
transcript.whisperx[600].start 15993.012
transcript.whisperx[600].end 15995.975
transcript.whisperx[600].text 所以剩下20元啦那我現在在跟你講我用的高碳洩漏這幾個字喔是以前的概念啦現在的概念一個台塑合淨廠拖幾年你跟我說從他們預計計劃興建到可以運作拖幾年高碳洩漏這假議題啦
transcript.whisperx[601].start 16018.24
transcript.whisperx[601].end 16032.95
transcript.whisperx[601].text 用高碳洩漏的概念然後來給企業打折,我也可以說是這樣子講啊你說一個石化業要遷出去,人家就不要你遷出去一個鋼鐵廠,台灣不好意思也要刷去外國,很簡單喔台塑合淨廠要搞幾年啊,不是10年而已啊所以我講說用高碳洩漏的這個風險,然後再給你打兩折
transcript.whisperx[602].start 16045.509
transcript.whisperx[602].end 16048.572
transcript.whisperx[602].text 所以我在講說,今天一公噸300元也是假議題,也是假的那高碳洩漏,無量用電商嚴重的石化鋼鐵業只需要繳實際的這個碳費可能繳不了多少都遠低於日本的碳價水準,更不要講其他國際標準啊
transcript.whisperx[603].start 16066.852
transcript.whisperx[603].end 16082.743
transcript.whisperx[603].text 那我現在講說你們優惠的費率制度根本就缺乏退場機制淪為這個產業逃避減碳的藉口你們的費率A方案低到一公噸50元相當於一公斤一公斤的排碳量只需要講0.05元
transcript.whisperx[604].start 16085.7
transcript.whisperx[604].end 16104.064
transcript.whisperx[604].text 你們的優惠費率A、B方案一公噸100元一公噸50元高碳洩漏再打折以後打兩折就是20元跟10元比茶葉蛋還要便宜啊這樣的費率大家在你們開會的時候就說對於實質推動實質減碳是沒有任何幫助的你們預計一年收60億你來告訴我如果再這樣推起來台塑一年要交多少錢
transcript.whisperx[605].start 16115.738
transcript.whisperx[605].end 16119.262
transcript.whisperx[605].text 人家民間也幫你賺了13.7億,台積電繳多少?10億,10.4億,中油繳多少?不到1億,中鋼繳多少?
transcript.whisperx[606].start 16133.427
transcript.whisperx[606].end 16148.093
transcript.whisperx[606].text 不到2億啦所以人家都幫你們算了所以在這種狀況裡面這些費率優惠費率的A方案B方案沒有設置明確的落日條款缺乏退款機制的優惠費率啊成為高碳排產業長期逃避減碳責任的藉口但是
transcript.whisperx[607].start 16156.037
transcript.whisperx[607].end 16163.963
transcript.whisperx[607].text 欸!不是這麼簡單啦!我們如果我們的碳費政策跟國際脫節影響產業的國際競爭力,不是說我們台灣如果比較少就好了就好了,我們才有競爭力,不是!我剛才講過了,你的鋼鐵業有將近19%,將近兩成是輸出往歐盟去的,人家2026開始的CBAN,
transcript.whisperx[608].start 16179.417
transcript.whisperx[608].end 16186.544
transcript.whisperx[608].text 都已經要執行了 如果說台灣一公噸課繳20元 優惠費率打兩折繳20元請問部長 這個到歐盟以後會怎麼樣 歐盟是一公噸2500我們在台灣只繳20元的話 那到CBAN的機制到歐盟是不是要再補課
transcript.whisperx[609].start 16204.339
transcript.whisperx[609].end 16216.472
transcript.whisperx[609].text 再去買憑證是不是報告委員那個不一樣歐盟是有一個是總量管制的排放交易但在那個底下他其實他也有這種高碳洩漏也有一些免費額度沒關係啦我再問你啦
transcript.whisperx[610].start 16218.703
transcript.whisperx[610].end 16245.779
transcript.whisperx[610].text 我現在說台灣的碳費相較於中日韓我們起步已經很晚了當然我們還要再延緩一年那各國都要制定更嚴格的這個碳定價連中國都預計在今年要把水泥業、鋼鐵業、電結、鋁綜合價格收盤價在今年他們都要突破100元人民幣韓國在今年制定第4階段要重新整頓運作不善的排放交易體系而且還要提升碳價
transcript.whisperx[611].start 16247.08
transcript.whisperx[611].end 16260.934
transcript.whisperx[611].text 丹麥、加拿大、這個河南,這個就不要講了,連新加坡的規劃碳價要在2030年提升到37到80美元,如果台灣的碳費費率偏低,沒有任何動力驅動企業減碳,他可能會錯失將危機化為轉機的契機。
transcript.whisperx[612].start 16267.318
transcript.whisperx[612].end 16290.831
transcript.whisperx[612].text 那現在這種碳費費率設計20塊、10塊難以推動產業轉型阻礙綠色經濟發展所以我們現在在講說2026你在講CBAN正式實施以後到底企業需不需要向歐盟繳交碳關稅如果我們的這個費率太低不管用什麼技術去換算差額是不是要繳到歐盟去
transcript.whisperx[613].start 16293.826
transcript.whisperx[613].end 16300.151
transcript.whisperx[613].text 你交給歐盟跟台灣交給台灣台灣還可以至少把這個錢留下來作為減碳使用欸委員這其實歐盟他也有一個免費額度他也有這種交換優惠系數對對但你覺得10塊錢跟人家那個Quota免費的額度
transcript.whisperx[614].start 16313.384
transcript.whisperx[614].end 16337.596
transcript.whisperx[614].text 會達不到那個標準嗎?委員其實這個不要政府做其實企業出口的他自己都有這個意思啦那要看什麼樣的企業現在的意思是說你在台灣你很要留在台灣站在台灣台灣政府可以來推動我們的食指減碳或者是氣候調適的政策用錢可以用你是搞企業才去啊去各國買還是去交代歐盟去去買那個憑證
transcript.whisperx[615].start 16340.817
transcript.whisperx[615].end 16350.327
transcript.whisperx[615].text 施工,錢就沒留在台灣啊所以碳費政策缺乏長期的規劃忽視了這個歷史性的不公平現在企增價過低,未來企業面臨更急劇的碳價上漲的壓力這不是我們立委大家親切公共,大多數都不用叫啦
transcript.whisperx[616].start 16358.974
transcript.whisperx[616].end 16366.738
transcript.whisperx[616].text 但是事實上呢 這個像油電價格補貼 享有排一噸碳高達1000元以上的補貼 在這個企業界都是這樣子啊所以當前每一噸新增的碳排都會加劇極端氣候上的發生 外部成本每噸是5700元 結果他們光是一個碳費 一噸20元說得過去嗎
transcript.whisperx[617].start 16383.186
transcript.whisperx[617].end 16405.203
transcript.whisperx[617].text 所以碳費的課徵,其實矯正這種不公平的第一步,留著讓我們來減量,或者是讓我們來調適用。當然部長,這樣一般費率300元,大多數事實上都課不到300元,遠低於國際水準,你覺得說我們這樣子競爭上的劣勢有沒有做過評估報告?
transcript.whisperx[618].start 16406.857
transcript.whisperx[618].end 16426.486
transcript.whisperx[618].text 報告委員因為歐盟是2026年才開始我們還有一點時間2026不會很久餒對啊還有兩年的時間所以其實我們先上路啦不然的話如果照委員那麼比較高的數字當然我也期待比較高但是如果這個高的話其實整個要推動起來是的確有一定的難度啦沒有很高啊因為你扣20元到10元啊大多數
transcript.whisperx[619].start 16428.547
transcript.whisperx[619].end 16433.629
transcript.whisperx[619].text 而且不要忘了你們盤點的繳費是一場一場比如說台塑它就不是整個全部台塑了它是一個場一個場去計算的整個台塑是嗎你們25000的Quota扣減額度25000一場一場你搞不清楚不是我搞不清楚每一場都擁有25000公噸的免費額
transcript.whisperx[620].start 16452.376
transcript.whisperx[620].end 16454.317
transcript.whisperx[620].text 所以整個台塑如果有20個廠他20個廠減掉2萬5跟20個廠每一廠減掉2萬5變成25萬噸的減碳欸那個免費額欸所以你們已經大大的在照顧這些業者了並不是沒有然後再高碳排再優惠再打兩折打一折打兩折竟然沒有100元啦
transcript.whisperx[621].start 16479.933
transcript.whisperx[621].end 16508.226
transcript.whisperx[621].text 所以這種狀況裡面優惠費率到底會不會有退場的機制你可不可以告訴我們我們未來會逐步的隨著這個時間進行每兩年會調整一次所以這個一定會有退場的機制這個可能會導致某些產業長期逃避減碳的責任還是說這個優惠費率你說兩年減到一次但是會不會像國土計劃法會不會像工廠管理輔導法一樣一言再言你覺得呢
transcript.whisperx[622].start 16509.315
transcript.whisperx[622].end 16510.362
transcript.whisperx[622].text 我們在這裡先講好喔
transcript.whisperx[623].start 16512.383
transcript.whisperx[623].end 16519.086
transcript.whisperx[623].text 所以事實上許多國家都在加速提高碳價中國、韓國、新加坡都這樣子了這種狀況裡面你優惠的、不落日的、難以落日的到時候其實對...不要講說對台灣不利了對這些企業本身就不利了所以我們需要的是破例始祖的政策而不這樣子為首為尾討好財團這些現在要站到都財團啦
transcript.whisperx[624].start 16540.814
transcript.whisperx[624].end 16545.256
transcript.whisperx[624].text 要不然一般中小企業都很少的所以我們希望看到更加完善根據前瞻性的碳費政策規劃兩萬五千公噸的免費額一個一場一場一場一場你如果是20個場的五十萬噸的免費額了啦所以這對大財團、大企業都非常優利啦不說三百塊啦一檔票二十塊到十塊而已啦大多少啦
transcript.whisperx[625].start 16571.407
transcript.whisperx[625].end 16572.728
transcript.whisperx[625].text 謝謝林淑根委員發言,接下來請洪孟楷委員發言
transcript.whisperx[626].start 16599.966
transcript.whisperx[626].end 16624.842
transcript.whisperx[626].text 主席謝謝 麻煩請部長請彭部長彭委員好部長好部長我想每個委員都一中心常講但我們不希望變狗肺火車但更希望是政府要拿出實際的作為真的來推動節能減碳的部分那我先請教一下在上禮拜千呼萬喚使出來這個碳費費率的時候我先看到一個新聞
transcript.whisperx[627].start 16625.963
transcript.whisperx[627].end 16646.124
transcript.whisperx[627].text 臺中經發局這邊有講是說中火因為它是排碳大戶所以說以換算它的排碳量來講的話它應該預計要繳15億的一個碳費但後來大家又講是說這個規則其實臺電所謂的我們的排碳大戶不管是藍煤電廠、燃氣電廠這個排碳大戶它本身制
transcript.whisperx[628].start 16648.466
transcript.whisperx[628].end 16649.767
transcript.whisperx[628].text 臺中火力發電廠最大的藍莓發電廠本席選區林口火力發電廠三部機組也是藍莓發電廠
transcript.whisperx[629].start 16672.538
transcript.whisperx[629].end 16699.353
transcript.whisperx[629].text 上一次在同一個地點委員會的時候我也跟你請教過如果說環境部沒有一個強而有力的一個目標政策的話沒有辦法引導或沒有辦法導正錯誤的能源政策啊當國際趨勢都是減碳2035年不再使用藍煤藍煤來發電結果我們國家還是背道而馳我們還是一樣火力發電要嘛藍煤要嘛藍氣那我只想請教如果依照這樣子的公式出來的話
transcript.whisperx[630].start 16700.748
transcript.whisperx[630].end 16717.015
transcript.whisperx[630].text 中火他預計他要繳多少的碳費?大概九千多萬九千多萬?對,他是整個是台電一起在繳對,九千多萬,不到一億九千多萬對比他一整整個台電不管人家講說虧損千億或者是說他每天發電要千億他根本
transcript.whisperx[631].start 16718.001
transcript.whisperx[631].end 16741.996
transcript.whisperx[631].text 報告委員,他其實...飛水車薪啊!所以他根本沒有...你這樣的話你根本沒有打算...沒有辦法有具體的方向去讓台電也去思考是說他是不是應該要符合國際趨勢潮流沒有,報告委員我們還是持續要擁抱火力發電中火如果按照他原來的這個排碳量的話大概要繳到6億如果他很努力做減碳的話最低最低可以繳到1億多
transcript.whisperx[632].start 16743.217
transcript.whisperx[632].end 16761.95
transcript.whisperx[632].text 所以其實他這個就是他願意來做的一個動力那整個台電來說的話他如果完全不做任何事情那他大概要繳到21億那如果很努力做的話大概是5億所以剛剛我們幾個委員都講啦但我的重點在於是我們的排碳大戶最大宗是不是能源的部分
transcript.whisperx[633].start 16762.563
transcript.whisperx[633].end 16762.823
transcript.whisperx[633].text 委員會主席
transcript.whisperx[634].start 16781.695
transcript.whisperx[634].end 16799.054
transcript.whisperx[634].text 開個巧門啊 開個後門啊他的發電量不用有任何的一個碳費的一個徵收就是他反正他攔多少沒發的電攔多少氣發的電他跟所謂的碳費完全沒有相關那這樣子我們有辦法來抑制我們所謂的排碳大戶嗎
transcript.whisperx[635].start 16801.449
transcript.whisperx[635].end 16826.819
transcript.whisperx[635].text 他是使用他自己的排碳在台灣台電的排碳就不會影響到我們的空汙就不會影響到我們的這個溫室效益他有辦法因為你不算他的錢你不算他的碳費他就不會影響到整個環境不可能嘛所以說其實我們就變成是我們悶在這個土地上就以為沒有收這個碳費以為就看不到
transcript.whisperx[636].start 16828.476
transcript.whisperx[636].end 16854.055
transcript.whisperx[636].text 沒有 報告委員 這個其實涵蓋了我們是涵蓋了54%喔不是只有台電而已喔部長 我可以再請教如果說有很多人講是說我們現在有A、B費率然後還有說如果說完全沒有的話就是一般費率啦那不管是300或是40、150那假設他有申請了但是實際上他沒有做這樣的一個部分
transcript.whisperx[637].start 16855.155
transcript.whisperx[637].end 16870.642
transcript.whisperx[637].text 誰能夠來去做集合我們的集合環境部我們的集合組會有一個小組來做集合我們的人力有多少我們人力現在大概是90位但是我們現在會增加人力來推動做這個事情覺得有辦法去抓因為我相信
transcript.whisperx[638].start 16871.442
transcript.whisperx[638].end 16899.405
transcript.whisperx[638].text 一般的這個企業如果說這樣看出來有300、有50、有100可以來申請那可能大家都會希望申請是最低的那我們之後我們的集合要怎麼做因為我們看到現在公平會有一個新聞是說如果票率最重罰2500萬對不對票率你最重罰2500萬但是公平會也好或是環境部也好環境部的罰單會有多少
transcript.whisperx[639].start 16900.308
transcript.whisperx[639].end 16928.697
transcript.whisperx[639].text 他要補繳這個碳費他只是補繳所以如果沒抓到他就逃過他沒有任何的罰還他沒有任何的加重處分這個碳費是一塊一塊就跟你的稅是一樣的是但我的意思說如果說對沒有錯我的意思說如果說他今天他申請那沒有沒有辦法去激增到勒我們就要回溯之前的全部要繳回來那有沒有加重的一個機制
transcript.whisperx[640].start 16930.387
transcript.whisperx[640].end 16935.33
transcript.whisperx[640].text 我們每年就是會去進行執行成果的查核那每一場都會查那按照現在的收費辦法的規定如果他有缺的這部分一定要補繳所以我們的人力
transcript.whisperx[641].start 16954.62
transcript.whisperx[641].end 16982.286
transcript.whisperx[641].text 現在這樣就變成是說人力的部分是確實剛剛部長要講90位對那我們預計要多少位才夠我們就依照我們當然我們依照目前的人力當然這會結合就是現在的盤茶跟這個茶宴的這個地方政府環保環保局會不會一起進來最主要是我們的部分那我們會請地方政府來透過這個協助的這個茶廠的部分一起來進行嗯哼好所以人力的規劃
transcript.whisperx[642].start 16983.186
transcript.whisperx[642].end 16983.907
transcript.whisperx[642].text 最後一分鐘我給大家看一個畫面
transcript.whisperx[643].start 16998.769
transcript.whisperx[643].end 17014.027
transcript.whisperx[643].text 有嗎?有照片嗎?沒有照片?好沒有照片沒關係我只要說啊因為本席上禮拜有收到也有公家機關啊我就不講哪個機關了他說基層同仁真的很辛苦為什麼這樣講這個
transcript.whisperx[644].start 17016.479
transcript.whisperx[644].end 17044.945
transcript.whisperx[644].text 大家傳出來說要節能減碳所以說呢有公家機關直接在辦公室裡面自製降溫工具冰桶裡水桶裡面裝冰塊電風扇裡面加冰塊然後再往前吹啊我說這他那個畫面就是一個水桶裡面放大冰塊然後電風扇吹啊我說不知道我以為是在廟口廟會你知道嗎好像戶外廟會那個降溫啊但沒想到他是我們其中真的是中華民國
transcript.whisperx[645].start 17046.865
transcript.whisperx[645].end 17060.57
transcript.whisperx[645].text 現在此時此刻的公家機關在辦公室裡面那我們又對比看到說明年的部會電費又每一個部會總統府也暴增600多萬監察院暴增100多萬行政院暴增300多萬
transcript.whisperx[646].start 17062.878
transcript.whisperx[646].end 17083.222
transcript.whisperx[646].text 我們真的想講是說環境部當然這可能跟還是一樣能源的一個部分但我真的講是說當我們看到上級單位冷氣該吹還是吹辦公室還是涼結果反而我們基層的第一線同仁基層的公務同仁需要用這個自製冰塊自製降溫工具我為他們感到不捨部長
transcript.whisperx[647].start 17087.202
transcript.whisperx[647].end 17087.222
transcript.whisperx[647].text 好,謝謝
transcript.whisperx[648].start 17116.869
transcript.whisperx[648].end 17117.049
transcript.whisperx[648].text 結名檢探
transcript.whisperx[649].start 17146.122
transcript.whisperx[649].end 17161.209
transcript.whisperx[649].text 剛剛鴻夢凱委員說有人自製冰塊冰塊、冰水吹我其實覺得最應該檢討的就是立法院立法院的冷氣太強了大家坐在這邊不冷嗎?
transcript.whisperx[650].start 17165.349
transcript.whisperx[650].end 17183.695
transcript.whisperx[650].text 這個就是我覺得我們討論一個這樣子的議題然後冷氣其實我也一直覺得官員來立法院是不是就是把尊重放在心裡不用放在衣著上
transcript.whisperx[651].start 17184.855
transcript.whisperx[651].end 17186.036
transcript.whisperx[651].text 官員為了要
transcript.whisperx[652].start 17201.616
transcript.whisperx[652].end 17213.705
transcript.whisperx[652].text 要表示尊重,所以穿著西裝打著領帶那民意機關為了待客所以必須要把冷氣降下來配合你們這個我一直覺得
transcript.whisperx[653].start 17218.228
transcript.whisperx[653].end 17234.515
transcript.whisperx[653].text 我們就是要減少碳台然後要減少公家的開支應該從我們自己本身做起才對這個立法院其實也不只委員會就是包括辦公室也一樣冷氣都強到不行
transcript.whisperx[654].start 17236.533
transcript.whisperx[654].end 17247.753
transcript.whisperx[654].text 好部長我們因為你們碳費的收費標準已經有了決議好那我們徵收碳費呢其實就是
transcript.whisperx[655].start 17250.937
transcript.whisperx[655].end 17270.424
transcript.whisperx[655].text 預計與爭我們的目的是要減少溫室氣體的排放來源對嗎?這樣子的概念沒錯那所以我今天還是跟部長來討論一下就我們有分階段的管制目標可是一直是
transcript.whisperx[656].start 17273.288
transcript.whisperx[656].end 17285.556
transcript.whisperx[656].text 好像沒有很完全的落實我們在第一階段我們是減量希望能夠減量百分之相對於2005的基準年現在基準年都是2005我們第一個階段我們希望減少2%可是我們並沒有達標
transcript.whisperx[657].start 17293.962
transcript.whisperx[657].end 17312.816
transcript.whisperx[657].text 那第二階段第二階段就是什麼時候呢就是從2021到2025我們的目標是要減降10%那我這邊的資料是只有到2022大概相比較大概只有減了1.77
transcript.whisperx[658].start 17316.36
transcript.whisperx[658].end 17338.236
transcript.whisperx[658].text 有2024的資料嗎?還沒有,那個通常會有一兩年的差距那還沒有的話,部長你接下來只剩下一年多怎麼跟各部會去做協調讓有效的來降低溫室氣的排放量,達到第二階段的目標
transcript.whisperx[659].start 17339.336
transcript.whisperx[659].end 17363.585
transcript.whisperx[659].text 報告委員這個議題是總統跟院長整個行政團隊都非常關心的議題所以我們現在其實的確我們受到一個新的壓力正在規劃盤點各個部會那有的部會的確是比較慢的比較不積極我們也主動說可不可以更積極一點所以等於是說的確行政院內部各個部會正在討論要設定一個新的目標那我也必須說由下而上
transcript.whisperx[660].start 17364.105
transcript.whisperx[660].end 17364.425
transcript.whisperx[660].text 三期的的的
transcript.whisperx[661].start 17383.01
transcript.whisperx[661].end 17402.256
transcript.whisperx[661].text 溫室氣體階段管制目標其實必須要在實施前兩年提出也就是說今年必須要提出那不知道氣候署這邊有沒有辦法如期在年底提出各位報告我們現在正在努力當中年底可以提出嗎
transcript.whisperx[662].start 17403.87
transcript.whisperx[662].end 17417.015
transcript.whisperx[662].text 一定要提出阿就是說如果照原先的規劃數字都不會太好看阿我們希望真的努力啦再努力啦所以原先的規劃你們是預估減量20到28就是24加減1啦203024加減1啦這個數字不漂亮阿
transcript.whisperx[663].start 17426.072
transcript.whisperx[663].end 17436.396
transcript.whisperx[663].text 就是希望能夠有再漂亮一點我們想像上不漂亮不過要達成很困難所以我們應該要更
transcript.whisperx[664].start 17438.874
transcript.whisperx[664].end 17459.297
transcript.whisperx[664].text 更實際一點啦就是說我了解部長的意思部長覺得24加減1這個目標不夠好看不過我現在從我們過去已經兩期了第二期已經也只剩下一點時間了就是我們的
transcript.whisperx[665].start 17460.663
transcript.whisperx[665].end 17478.931
transcript.whisperx[665].text 我們實際的減碳量並沒有辦法達到我們預估的目標啦所以我覺得就是不一定要鎖定在當然可以讓數據很漂亮然後又可以達到這個是
transcript.whisperx[666].start 17480.091
transcript.whisperx[666].end 17504.734
transcript.whisperx[666].text 是最高的追求方向,假如沒有的話,我覺得還是以實際的怎麼加速碳排的減量,這個才是重點好不好?方委員那個有一點真的很辛苦,例如說以立法院要減量來說的話,我們現在五天上班嘛,那就有一天不要吹冷氣,都不要開燈就這樣,這樣多痛苦啊!
transcript.whisperx[667].start 17505.294
transcript.whisperx[667].end 17533.468
transcript.whisperx[667].text 這個對於大家各行各業要檢視真的很辛苦所以我們現在各個部位的確我們很努力在找一些新的方法一些創新的方式來做這個事情這個當然部長跟執行團隊的困境企業的困境其實大家都可以想像不過就是面對一個新的課題大家總是要找到一個一條可以解決的方法
transcript.whisperx[668].start 17534.833
transcript.whisperx[668].end 17555.035
transcript.whisperx[668].text 還有一個就是臺電的估算AI的發展會增加未來用電的需求那這個勢必會影響到第3期的溫室氣體階段管制目標你們會氣候署這邊會把這個因素一起納入
transcript.whisperx[669].start 17556.295
transcript.whisperx[669].end 17556.695
transcript.whisperx[669].text 主席我找一下經濟部
transcript.whisperx[670].start 17590.262
transcript.whisperx[670].end 17597.526
transcript.whisperx[670].text 部長請坐部長我這邊問一個有關產業的問題我不知道我們經濟部這邊對於產業界的所有的國家平均
transcript.whisperx[671].start 17619.193
transcript.whisperx[671].end 17646.181
transcript.whisperx[671].text 韓碳量的調查目前有沒有進度?還是我們已經啟動了沒有?因為歐盟的碳邊境調整紀錄就是CBAN課徵除了實際韓碳量以及設計韓碳量以外為了要因應中小企業的困境所以他還提供了第三種選擇就是國家平均韓碳量對不對?
transcript.whisperx[672].start 17647.542
transcript.whisperx[672].end 17656.949
transcript.whisperx[672].text 跟委員報告我們臺灣的做法是國家排放清澈那這部分是由環境部這邊在整個在是環境部在做處理我
transcript.whisperx[673].start 17658.905
transcript.whisperx[673].end 17684.442
transcript.whisperx[673].text 我想說這個跟中小企業...那之前是以那個排放2.5萬噸會花比較久的一點時間那這個清澈都會放在網路上面那經濟部這邊負責什麼?經濟部這邊主要是針對產業的一些輔導機制那在更早之前就是協助產業做先期減碳這一些相關的工作就是協助減碳那...
transcript.whisperx[674].start 17689.863
transcript.whisperx[674].end 17708.663
transcript.whisperx[674].text 我的意思是說歐盟之所以會創設出國家平均的含碳量其實最主要是因應中小企業他可能規模比較小所以他要測自己產品的含碳量有比較困難創出來的嘛 對不對
transcript.whisperx[675].start 17709.344
transcript.whisperx[675].end 17731.418
transcript.whisperx[675].text 那不管是環境部也好,經濟部也好,我覺得我們,因為台灣還是有很多中小企業嘛,還是必須要盡可能的站在你們的職權上,盡量加以輔導跟協助啦,好不好?好,謝謝署長,謝謝委員,謝謝主席。謝謝楊耀委員。
transcript.whisperx[676].start 17744.604
transcript.whisperx[676].end 17744.944
transcript.whisperx[676].text 黃秀芳委員
transcript.whisperx[677].start 17756.674
transcript.whisperx[677].end 17782.472
transcript.whisperx[677].text 黃委員好部長好部長我從早上聽到現在其實很多委員都非常的關心這個可能有史以來衛環委員會第一次這麼多委員幾乎到目前為止都沒有人跳過就是直接有登記一定來質詢那就表示說這個議題是大家非常關心的那我在基層其實我也聽到很多就是說一般你現在是針對500就是500個廠
transcript.whisperx[678].start 17785.154
transcript.whisperx[678].end 17787.095
transcript.whisperx[678].text 明年開始申報明年1月1日開始開針後年才要繳錢
transcript.whisperx[679].start 17806.363
transcript.whisperx[679].end 17834.177
transcript.whisperx[679].text 其實在地方有一些我講的是這個中小企業那他們有的是有把他們的產品銷到國外去或者是銷到歐盟去那其實他們對這個政府要徵收碳費其實他們也有很多意見那剛剛我有看到就是說環境部也有針對這個有到地方去開說明會那劉建國委員有特別提到就是說地方政府開說明會的時候或者是跟溝通
transcript.whisperx[680].start 17835.017
transcript.whisperx[680].end 17862.784
transcript.whisperx[680].text 跟地方政府好像這個是缺法的所以我也希望就是說希望這個環境部能夠針對地方政府的這個部分應該要再去做一個加強可能就是去做跟地方政府可能要有一些溝通因為有時候民眾的疑問他第一時間他應該是打到地方政府去詢問所以如果說地方政府你們應該也要讓他有這樣的一個觀念跟概念
transcript.whisperx[681].start 17865.685
transcript.whisperx[681].end 17874.63
transcript.whisperx[681].text 中小企業解決一些問題當然環境部跟經濟部的立場是有點不一樣環境部當然希望整個排碳的部分能夠減少經濟部對於你們提出來的碳費徵收的
transcript.whisperx[682].start 17889.699
transcript.whisperx[682].end 17915.572
transcript.whisperx[682].text 這個價格可能會覺得說不太合理或者覺得太高那當然這個兩個立場不一樣我們可以理解那我想請教就是說未來就是說我們現在都已經定下來了那環境部跟經濟部如果說你們的立場不一樣的話那你們怎麼去溝通說服對方那讓經濟部也要去說服基層這些廠商你就是要誠實誠實來
transcript.whisperx[683].start 17919.376
transcript.whisperx[683].end 17927.632
transcript.whisperx[683].text 來報這個這個碳費或誠實來申報應該是你們環境部跟經濟部應該要如果說整個立場是不一樣的話那你們怎麼溝通
transcript.whisperx[684].start 17928.943
transcript.whisperx[684].end 17949.554
transcript.whisperx[684].text 報告委員其實如果說不一樣的話其實這個是我們彼此要互相的溝通妥協那我也特別感謝經濟部在這段過程給我們很大的支持不然的話其實這個制度是真的走不下去的所以這段過程我也真的非常謝謝經濟部也容忍很多所以其實我是覺得這個部分委員你點到一個重點
transcript.whisperx[685].start 17949.994
transcript.whisperx[685].end 17975.243
transcript.whisperx[685].text 那未來呢我也會跟這真的因為我們現在其實跟他們在很多減碳的機制是連協同作戰的所以這個部分我們會強化這個溝通那當然啦這個我也很尊重這個經濟部的意見因為他們有產業的壓力那我們也有環團的壓力那我們是政府是一體的所以其實我們未來會密切的再溝通這個因為楊署長其實我們也是長久的夥伴在各種方面我們會以後會多加溝通
transcript.whisperx[686].start 17976.144
transcript.whisperx[686].end 17991.204
transcript.whisperx[686].text 對,就是說我們看到這個碳費拍板之後那經濟部的立場跟你們的立場是完全不一樣而且是媒體直接寫出來那這個完全不一樣的情況之下那你們未來要推動就是應該
transcript.whisperx[687].start 17992.446
transcript.whisperx[687].end 18009.536
transcript.whisperx[687].text 就是經濟部你要去面對的是所有的廠家那環境部你面對的是所有的這個也許是環團那大家關心這個環境的這些這些人士那你們要怎麼樣達到一個平衡點那另外就是說明年開始申報那2026年開始開徵這個碳費
transcript.whisperx[688].start 18013.258
transcript.whisperx[688].end 18038.609
transcript.whisperx[688].text 所以如果能夠順利的話如果能夠順利就照這個部長講的可能就是一年可以有60億的這個碳費那當然如果說這個廠商他是要銷到他的產品是要銷到這個歐盟的話其實我覺得他會很樂意來配合政府的這樣的一個政策那如果說不是的話也許會有推動也許會有一些困難
transcript.whisperx[689].start 18039.929
transcript.whisperx[689].end 18068.148
transcript.whisperx[689].text 所以我覺得說應該對於你們跟地方的地方政府也好或者是你們其實我在之前薛部長的時候我就一直提到希望能夠跟地方要有充分的溝通因為很多人還不太清楚另外甚至還有人問我就是說他原本有一塊地然後上面原本就已經有種樹了那這個是不是可以抵啊所以我覺得說一般的民眾也不是那麼清楚
transcript.whisperx[690].start 18069.809
transcript.whisperx[690].end 18084.582
transcript.whisperx[690].text 地方政府應該你們要讓他知道這個整個狀況那因為民眾很多他是直接打到地方政府去詢問是不是可以請部長在短期之內趕快進速跟地方政府可能有一些座談會或一些說明會
transcript.whisperx[691].start 18085.562
transcript.whisperx[691].end 18108.576
transcript.whisperx[691].text 謝謝委員因為我們台灣有很多隱形冠軍那個隱形到我有時候問我們的同仁都找不到所以未來也希望委員在彰化因為彰化是台灣的隱形大冠軍的總部所以我也看委員能不能幫我們的忙等於是說找到那些隱形冠軍出來因為他們其實有些我們可能經濟部的數據不見得都有所以我們把那個找出來我們有一個很好的座談
transcript.whisperx[692].start 18109.156
transcript.whisperx[692].end 18132.764
transcript.whisperx[692].text 那因為歐盟的問題出口是很重要的例如說螺絲螺帽業、扣件業甚至很多特別的業其實他們的輔導幫忙所以我未來環境部我會派一個人到歐盟去有一組人來去做協調我這個協調不是為了說碳費多少而已而是說這個未來的螺絲螺帽業它在進出口的時候這個都需要一些氣候上的探權的談判
transcript.whisperx[693].start 18133.864
transcript.whisperx[693].end 18154.101
transcript.whisperx[693].text 這個我希望可以幫到他們的忙所以我們環境部會積極的做那這個未來也會跟這個經濟部一起協同作戰那剛剛也有特別提到就是說你們針對這個收碳費或者是碳盤查可能你們環境部這邊人員這樣總共是多少人?現在90個人左右那90個人目前來講這樣是夠嗎?不夠那不夠你們未來要怎麼辦?
transcript.whisperx[694].start 18159.765
transcript.whisperx[694].end 18177.294
transcript.whisperx[694].text 第一個是我們有爭取一些約聘的人力然後有些需要一些委外的人力來去做辦理那當然啦其實現在的人才工部門的預算人才這個薪水是很困難的所以未來我們還會再想一些辦法因為現在的同仁都很辛苦都是靠著使命來做啦
transcript.whisperx[695].start 18182.138
transcript.whisperx[695].end 18195.308
transcript.whisperx[695].text 前面有委員講說你們身為環境部之後的預算是不增反減那如果說你剛剛講的這個人力不足的話目前90個人那人力不足的話那你要怎麼樣
transcript.whisperx[696].start 18196.249
transcript.whisperx[696].end 18199.651
transcript.whisperx[696].text 委員會主動希望在後年的預算能夠有一些顯著的增長,也希望委員可以給我們支持或是指教。
transcript.whisperx[697].start 18220.965
transcript.whisperx[697].end 18247.637
transcript.whisperx[697].text 所以我是覺得說部長你應該要去爭取就是說我們明年開始這個碳費開始申報那2026年要徵收那我是覺得你應該可以以這樣的一個跟行政院這邊應該去爭取爭取經費下來那你要有足夠的人力啊要不然你有這麼多事情要做那你人力不足的話其實我覺得你要推動真的確實會很困難對
transcript.whisperx[698].start 18249.558
transcript.whisperx[698].end 18269.139
transcript.whisperx[698].text 那像這個的話,地方政府需要配合什麼嗎?他需要配合第一個是,未來這些知識地方政府也需要跟我們協同去參與這個討論或是參與這個調查,這個都是要中央跟地方,特別是環保局的單位,所以我們像這個是第一步,我們也昨天第一個發布的是給各縣市環保局局長
transcript.whisperx[699].start 18269.679
transcript.whisperx[699].end 18270.119
transcript.whisperx[699].text 希望有更明確的窗口來進行討論
transcript.whisperx[700].start 18290.522
transcript.whisperx[700].end 18315.268
transcript.whisperx[700].text 部長你在明年的預算上面應該要增加的還是要增加我們在這個委員會從環保署變成環境部結果預算不增反減這是一件很荒謬的事情我相信你們只要編出來委員會會支持的
transcript.whisperx[701].start 18327.972
transcript.whisperx[701].end 18341.26
transcript.whisperx[701].text 接下來請黃建豪委員發言主席好 那我先請這個彭部長
transcript.whisperx[702].start 18344.868
transcript.whisperx[702].end 18357.042
transcript.whisperx[702].text 黃委員好部長好陳儒剛剛我們黃委員所說的這個今天大家都非常關心這個碳費的問題那手一開始想先一個部長就叫現在這定價每噸頭真的大企業是每噸300塊嗎這個不怎麼折衝出來的這個數字
transcript.whisperx[703].start 18361.768
transcript.whisperx[703].end 18386.686
transcript.whisperx[703].text 這個是考量到國際的行情然後還有各方面願意接受的結果那我也必須坦承說各方面不見得都很滿意但是這個是一個當中又可以接受的數字部長因為前面幾位委員之前我有聽到一開始早上的時候大家有問就是你已經去拜會過這些第一階段要被徵收碳費的這些企業了那他們是不是對這300元都樂意的來
transcript.whisperx[704].start 18389.688
transcript.whisperx[704].end 18410.619
transcript.whisperx[704].text 對這300塊他們是接受的嗎?對目前第一階段的這些企業?其實當中很多的企業他內部的碳定價已經有1000塊、1000塊到3000塊的都有所以其實前面的20%大的公司他佔了排碳量的這54%的八成其實他內部碳定價他的減碳計畫他們都接受的所以
transcript.whisperx[705].start 18411.099
transcript.whisperx[705].end 18426.983
transcript.whisperx[705].text 有沒有想過一件事情是這件事情我擔心是什麼因為今天定300塊這件事情我們擔心的是道德風險啊就是說有一些企業當然優良企業沒問題嘛台積電他可能願意去買綠電好一些比較前面台灣比較前面的企業他會願意但是很多製造業他可能他寧願付這個300塊
transcript.whisperx[706].start 18430.034
transcript.whisperx[706].end 18459.286
transcript.whisperx[706].text 因為他去更新設備的這個費用遠遠不及這300塊啊遠遠超過300塊啊那遇到這問題的話環境部有什麼對策報告委員其實這個部分因為未來的費率全世界都一樣會逐漸往上走的除非他的這個東西他製造的東西是不出口也沒有任何的這個影響或是說企業沒有未來因為現在氣候變遷是每個企業都必須放在裡面很心上轉型的一個關鍵所以多數的企業都知道這樣的問題雖然很痛但是他願意去轉型
transcript.whisperx[707].start 18460.146
transcript.whisperx[707].end 18483.736
transcript.whisperx[707].text 當然我也不排除有些企業是很傳產的轉不過去的現在我們也跟經濟部希望能夠幫這些企業的忙確實有的所以現在這些那錢幾大我們現在提到第一階段就好你現在第一階段等於示範嘛對針對這些我們比較錢比較好的這些公司他們等於示範作用你這個300所謂的每頓300元超過部分你們確定能夠徵收的徵收的到嗎收的到嗎這筆錢大家都願意付這個錢
transcript.whisperx[708].start 18486.897
transcript.whisperx[708].end 18515.617
transcript.whisperx[708].text 其實徵收錢是每個人都不心甘情願就跟繳稅一樣但是這個還是必須要來進行做這個事那我們因為環境部過去已經有收過空屋費了所以這些的企業也大概都必須有繳納過空屋費我們也有過這樣的經驗所以也請委員放心好部長謝謝因為其實我們還在擔心這個道德風險問題是可能後續在執行面上等到正式上路可能還是要觀察一下甚至我覺得你們應該去比較一下就到底這個企業就是說有沒有貧困報告
transcript.whisperx[709].start 18517.017
transcript.whisperx[709].end 18535.003
transcript.whisperx[709].text 企業花錢去提升他的設備來減碳跟他每年去支付所謂的碳費他的比例是什麼對企業的對企業影響什麼這可能是你們或經濟部應該要去請他們提出相關的說明跟報告因為這樣子你才能知道說到底我訂這個300塊對於所謂大企業來講是真的有影響的還是他寧願
transcript.whisperx[710].start 18536.403
transcript.whisperx[710].end 18560.044
transcript.whisperx[710].text 就是我剛剛提到的,他寧願繼續把這個錢繳掉,就像是這個贖罪券,就是我就把錢付掉就好,反正就像罰單一樣嘛,我就付掉,但是我的設備我沒辦法花幾千萬或幾億去更新嘛,好這是笨,我覺得這個還是要精算一下啦,部長可以嗎?可以啊,這個企業其實他都有自己內部的減碳目標啦,大多數企業都知道要進行轉型,所以其實站到他的目標,搭配我們碳費做,會加速他的進行啦。
transcript.whisperx[711].start 18560.504
transcript.whisperx[711].end 18584.458
transcript.whisperx[711].text 好,再來這個針對中小企業部分,我想因為中部也是真的是我們非常多傳產業者在擔心,雖然第一階段沒有他們的事,但是我想後續他們遲早要面對的。這個中小企業想佔台灣的比例非常非常高,佔全體企業98%,那後續對於這個中小企業這個部分的話,我想問一下環境部對於到底這個費用跟他後續的,還要補助嗎?還是輔導?還是要怎麼做?這部分。
transcript.whisperx[712].start 18584.718
transcript.whisperx[712].end 18584.838
transcript.whisperx[712].text 現在不用擔心
transcript.whisperx[713].start 18601.818
transcript.whisperx[713].end 18626.31
transcript.whisperx[713].text 現在不用擔心當然減碳是全世界的這個義務減碳是一種壓力但是它也是一個轉型的這個機會所以其實我們也感謝很多的企業它自主性的去做例如說它會推出一些近年的產品或是企業有更好的形象來做已經有很多企業這樣做但是我也特別請還沒有進入的企業也可以趕快去學習但是不要那麼的急著去很憂慮很憂慮然後等於是會走腫了沒有騎乘嗎對於中小企業的部分
transcript.whisperx[714].start 18626.65
transcript.whisperx[714].end 18633.975
transcript.whisperx[714].text 目前我們大概是2.5萬噸,然後慢慢的可能往下減。我們兩年會檢討一次,就兩年檢討一次。所以現有的中小企業大概兩年會開始面,預估是兩年後會面臨到?要看它的排碳量,例如說我們現在2.5萬噸,接下來2萬或是1萬5,慢慢的往下降。
transcript.whisperx[715].start 18647.904
transcript.whisperx[715].end 18666.622
transcript.whisperx[715].text 部長最後因為我時間到我外委會的時間比較少但是我還是要給你這個提醒因為這個中小企業衝擊會最大因為你剛剛提到就算他們很積極的現在去做減碳的工作但是因為依照我們現行的法令這個碳費還是會有這個電廠的發電這個碳費的收取還是要有使用者來負擔嘛
transcript.whisperx[716].start 18667.483
transcript.whisperx[716].end 18692.858
transcript.whisperx[716].text 那也就是中小企業它的電、它的來源它就是火力發電它就是我們現在的不管是天然氣也好或煤炭也好就是我們整個能源政策裡面80%如果都是使用所謂的這個火力發電它在怎麼減碳它的產品它終究它會還是有碳的問題嗎所以這部分的話我不知道環境部的立場是什麼你有沒有機會跟經濟部去討論說怎麼樣去降低企業在面對這種電力電力的間接排放的問題嗎要怎麼處理
transcript.whisperx[717].start 18693.939
transcript.whisperx[717].end 18720.157
transcript.whisperx[717].text 報告委員其實這是一個轉型的過程我們過去從燃煤很高然後到燃氣轉煤等於是從煤轉氣然後慢慢的氣也是一個過渡慢慢到綠電或是更種新型態的能源這都是一個過程其實現在的排氮係數是在往下走當中80%都是燒這個慢慢大家定義不太一樣經濟慢慢可能不是兩年因為你剛剛說到中長期可能兩年後就要面對這個慢慢的問題所以我不知道台灣的
transcript.whisperx[718].start 18721.098
transcript.whisperx[718].end 18722.078
transcript.whisperx[718].text 黃建豪委員發言何欣淳委員何欣淳委員何欣淳委員不在賴慧媛委員發言
transcript.whisperx[719].start 18744.084
transcript.whisperx[719].end 18769.855
transcript.whisperx[719].text 謝謝主席,有請部長,還有我們經濟部產業發展署署長,楊署長。好,賴委員好。是,部長、署長午安。我想,那個,因為我們是很後段的一個質詢,那也聽到了很多委員的一個建議。那在這裡我想請教部長,就是說昨天宣布的一個碳費,就是收費的一個標準,每一噸300塊。
transcript.whisperx[720].start 18771.716
transcript.whisperx[720].end 18797.395
transcript.whisperx[720].text 那環團也不滿意業者也不滿意經濟部也不滿意為什麼會造成這麼多的單位的不滿意呢?部長因為這個事情是要收錢大家都不會滿意的啦就跟繳稅一樣啦最好不要繳啦大家最開心啦但是這個是必須要跟國際接軌所以環團跟這個業界的這個心聲其實我們都聽到了但是這個是一個大家不滿意但是又可以接受的數字啦
transcript.whisperx[721].start 18797.455
transcript.whisperx[721].end 18818.491
transcript.whisperx[721].text 所以是不甘願可是又不情不厭那可是是可以接受的那我想在這裡跟部長再做一個探討就是說碳費的收費的定期的一個檢討我覺得這個裡頭你剛才有講到了就是說250萬噸針對的中小企業你是兩年定期的檢討一次是不是
transcript.whisperx[722].start 18819.352
transcript.whisperx[722].end 18843.01
transcript.whisperx[722].text 那如果你這個氣候變遷因應法裡頭的28條第一項到第三項你又講到了就是說碳費的徵收費用是由中央主管機關所設定的這個審議委員會那就是審議了那送中央主管機關來核定公告定期檢討那到底你這個定期的檢討是多久檢討一次
transcript.whisperx[723].start 18844.023
transcript.whisperx[723].end 18868.321
transcript.whisperx[723].text 我們其實每年都會檢討,但是政策要有一定的穩定性,大概是兩年會調一次兩年會調一次,那兩年調的一個局劇也是300塊嗎?不會不會,應該其實這個到最後都要接軌國際啦要接軌國際,那就是看國際怎麼走,那像歐美他在2026他就是他已經上場了,那上場的對在這個上場的過程裡頭,那個都當機囉
transcript.whisperx[724].start 18880.609
transcript.whisperx[724].end 18887.193
transcript.whisperx[724].text 好主席那個暫停喔我們的電腦全部當機時間先暫停
transcript.whisperx[725].start 18911.445
transcript.whisperx[725].end 18934.979
transcript.whisperx[725].text 好,再下一頁。好,主席,我們接著再下一頁。那,對,好,那,部長,如果用碳匯的輔導各個產業的一個減碳,那我們從裡頭,你,就是說你會加大的那個減碳的一個力道的一個輔導的資源,在這裡寫得很清楚,你跟經濟部跟環境部,你們裡頭講到了,經濟部他講的是輔導的一個措施,
transcript.whisperx[726].start 18938.641
transcript.whisperx[726].end 18963.787
transcript.whisperx[726].text 那環境部講的是碳費收入的一個專款專用這個定格的非常的清楚可是如果我們這樣子來看它的話政府好像是有點過路財神啊這個把錢從這個經濟部搬到環境部這個要怎麼解釋呢事實上就是說很多委員在質疑就是你的收費標準已經是太低了那我們知道就是說
transcript.whisperx[727].start 18964.987
transcript.whisperx[727].end 18965.247
transcript.whisperx[727].text 這還是很多人會覺得太貴了
transcript.whisperx[728].start 18981.254
transcript.whisperx[728].end 18981.394
transcript.whisperx[728].text 國內高耗能產業
transcript.whisperx[729].start 19008.84
transcript.whisperx[729].end 19009.28
transcript.whisperx[729].text 委員會主席
transcript.whisperx[730].start 19037.836
transcript.whisperx[730].end 19062.277
transcript.whisperx[730].text 高耗能的產業它對國家的經濟是有重大的貢獻那就像陳儒署長講的就是說是不是讓產業留一些錢讓他去做他的產業的一個轉型這裡我特別要提到的就是跟部長跟署長提到的就是說畜牧業也需要減碳的一個輔導部長在所有的你這個產業裡頭你有沒有納入畜牧業
transcript.whisperx[731].start 19063.394
transcript.whisperx[731].end 19079.212
transcript.whisperx[731].text 報告委員,其實畜牧業雖然有排放這些甲烷,但是其實把它收集在一起,它還是可以發電的。我們現在正在研議這樣的措施,但是也要請委員多幫忙,因為我們的畜牧業分散非常的廣,
transcript.whisperx[732].start 19079.873
transcript.whisperx[732].end 19086.757
transcript.whisperx[732].text 所以就是說部長我在這裡特別請教你就是說對於畜牧業的一個減碳的一個輔導是不是有跟農業部進行就是多次的這個研擬譬如說我們讓牛就是說因為他牛如果在飼料裡頭吃有一些紅棗的一個
transcript.whisperx[733].start 19109.668
transcript.whisperx[733].end 19135.632
transcript.whisperx[733].text 施料的話他就比較不會打嗝啊不打嗝的話他就減少排放出甲烷這些我們其實都知道就是說養豬也是一樣啊豬的一個分量你剛剛就特別提到了就是豬也是可以讓他產生了一個早氣齁低塞齁產生了一個早氣那就是不知道就是說在這個畜牧產業的一個減碳的一個輔導是不是有一些有計劃性的一個推動
transcript.whisperx[734].start 19136.752
transcript.whisperx[734].end 19152.704
transcript.whisperx[734].text 我們現在在爭取保險業的預算其實我們希望找這個變成一個民間可以投資的機會除了民間的投資以外我們公務部門我想希望你們也有一些計畫我希望就三個月內提出這一些計畫跟本席報告 謝謝謝謝委員 謝謝賴會員、委員發言
transcript.whisperx[735].start 19159.144
transcript.whisperx[735].end 19166.008
transcript.whisperx[735].text 葉淵芝委員、葉淵芝委員、葉淵芝委員、葉淵芝委員不在陳穎委員發言麻煩請彭部長還有循環署賴署長賴署長
transcript.whisperx[736].start 19189.106
transcript.whisperx[736].end 19211.473
transcript.whisperx[736].text 在這個光輝十月我們的這個國慶日這個普天同慶的日子但是這個雲林有一家的資收廠有一位16年資歷的這個勞工摔進了這個機器裡面他的上半身是被絞碎的然後下半身是被打包起來的
transcript.whisperx[737].start 19213.168
transcript.whisperx[737].end 19242.268
transcript.whisperx[737].text 這個死狀是非常的淒慘這樣子的一個公安事件那部長這個新聞你有關注嗎有我有看到那我想為了協助推動這個循環經濟的這個國家重大政策勞動部在上個月13日同意環境部的這個無工廠登記證資源化產業開放移工目前呢已經列管的這個資收廠總共有600多家相信在日後可能也會越來越多啦
transcript.whisperx[738].start 19242.748
transcript.whisperx[738].end 19271.562
transcript.whisperx[738].text 他只是說這個當下本國勞工的這個工作環境已經差成這樣子那未來在引進外籍勞工的時候本席是會擔心就是說恐怕會有這個更差的這個狀況那環境部就是花了蠻多的經費在辦展覽但是對於這些特別是剛剛也提到這些這個資收業者的工作環境和安全衛生的問題卻關心的比例是非常失衡的
transcript.whisperx[739].start 19272.122
transcript.whisperx[739].end 19289.768
transcript.whisperx[739].text 所以因為環境部大概督查的這個對象大部分都是大廠還有這個模範廠那接下來呢環境部會編列數百億來補助這些廠商來做這個淨零碳排還有綠色成長所以本期是要求說
transcript.whisperx[740].start 19291.108
transcript.whisperx[740].end 19317.225
transcript.whisperx[740].text 部長你對於針對這些這個資收業者的處理及這個處理業者的這個挹注的資源的協助然後還有你要協助他們這些廠商來做這些危險老舊機械的汰換還有環境安全衛生以及勞動條件的提升然後來建構這個完善的循環經濟的政策目標部長我以上建議你能不能採納然後可以做到
transcript.whisperx[741].start 19318.446
transcript.whisperx[741].end 19335.804
transcript.whisperx[741].text 謝偉其實淨零碳排裡面資源循環是裡面一個很重大的推手所以我其實淨零裡面我要爭取的經費或是各項的資金其實都把循環經濟這種資源循環這種回收的把它放進去那這個細節關於這個案例是不是請我署長再做一個回覆
transcript.whisperx[742].start 19337.176
transcript.whisperx[742].end 19342.438
transcript.whisperx[742].text 那另外就是對於加強這個回收處理業我們也辦一些講習還有訓練好我想就以這個案例做為一個警惕好 那個賴署長請回座接下來我另外再請那個氣候變遷署的蔡署長
transcript.whisperx[743].start 19369.141
transcript.whisperx[743].end 19389.168
transcript.whisperx[743].text 那目前環境部已經針對這個碳費徵收的這個三項執法制定完成那表示說碳排放減少的方向已經就比較逐漸的在明朗化比較明確了那也有專屬的網頁說明這是一件好事啦只是說因為我在看這個網頁齁就是一看就是看到這個師師開講可不可以
transcript.whisperx[744].start 19392.625
transcript.whisperx[744].end 19420.796
transcript.whisperx[744].text 部長你可不可以解釋一下為什麼叫施施開獎施施有兩種因為我們施政是一個有名的這個國際貿易法的專家、探權的專家所以這個是我特別因為我們環境部公關費不多就特別請他來幫忙做這樣宣導那我也替大家謝謝你那只是說如果今天是換人他沒有在這個位置做這個工作換人開獎的時候那要叫什麼
transcript.whisperx[745].start 19421.536
transcript.whisperx[745].end 19428.354
transcript.whisperx[745].text 彭斯嗎?還是...好的我...這是一個短期的啦,就短期碳費的,你會不會很長期?
transcript.whisperx[746].start 19430.004
transcript.whisperx[746].end 19441.849
transcript.whisperx[746].text 我們的詩詩可以先回座只是因為體力需要這樣子在今天的專案報告前的詩詩開講是已經有講就是說收費的281家有500間工廠左右這個排放的碳量大約有155百萬公噸的二氧化碳當量
transcript.whisperx[747].start 19452.573
transcript.whisperx[747].end 19466.25
transcript.whisperx[747].text 這個呢 佔全國排放總量的54%那是不是表示說我們台灣一年的總碳排的總碳排是換算大概是287百萬公噸是這樣沒錯嗎對 沒錯沒錯
transcript.whisperx[748].start 19469.213
transcript.whisperx[748].end 19490.508
transcript.whisperx[748].text 那接下來我要請教部長就是說因為目前我們大概只是好像只是關注這個碳費要如何徵收所以在各個產業似乎只有那281家他們應該是最在意的公司可是呢這個歐盟跟英國他也會在2026年還有2027年來透過這個CBAN的制度來徵收碳稅
transcript.whisperx[749].start 19494.711
transcript.whisperx[749].end 19510.349
transcript.whisperx[749].text 環境部你們有沒有評估過說還有哪些企業有可能會受到衝擊還有這樣的狀況應該要如何因應因為畢竟這整個來說這個時間是非常有限的特別是就是說排放量不足2.5萬噸的這個製造業的廠商
transcript.whisperx[750].start 19515.294
transcript.whisperx[750].end 19542.296
transcript.whisperx[750].text 在確定台灣政府不會徵收的前提之下那未來會不會被歐盟或者其他的經濟體來徵稅或者收費有沒有這樣可能?其實第一個是我們的這個2.5未來會往下調這是確定的兩年調整一次那第二個是因為減碳是國際上一定要碳定價是國際的趨勢所以基本上如果他未來任何的企業他只要想外銷的話
transcript.whisperx[751].start 19542.836
transcript.whisperx[751].end 19565.309
transcript.whisperx[751].text 都有必須要被課到碳費稅的可能性存在所以其實這個都必須要做的啦好所以就比較不會有我剛剛擔心的那些問題對其實要逐步的就是說如果這個企業是內銷型的他當然影響比較小那如果他要出口到國際上的他當然就有一定的壓力所以要提早佈局就是這個的由來啦
transcript.whisperx[752].start 19566.049
transcript.whisperx[752].end 19590.043
transcript.whisperx[752].text 我另外要提一個問題就是說你們用詞你們環境部用詞的問題在你們的這個事實開講有講到就是114年114年的開徵但是實際上我們都知道就是比如說我們今年114年如果申報那真正的時間是到115年的5月我們才需要繳交114年的費用這樣沒有錯
transcript.whisperx[753].start 19594.005
transcript.whisperx[753].end 19619.704
transcript.whisperx[753].text 那到底什麼時候開始實行在你們報告第一段說中國已經開始實施碳費徵收那我要請教就是說他們現階段是申報還是已經在繳費了因為畢竟我們就是說雖然兩岸現況不是統一的但是環境部你們的用詞是必須要統一這樣才不會造成說國內業者的困擾
transcript.whisperx[754].start 19620.592
transcript.whisperx[754].end 19647.387
transcript.whisperx[754].text 報告委員其實中國是用這個碳交易的制度針對電力業首先是電力業他也逐步的在跨他們很早就開始在4點大概在10多年前就開始進行了所以現在所以他們算是已經繳費了已經用碳交易就是跟我們一樣用碳交易的制度好再來就是我另外要請教的是一個技術的問題就是收費公式這個好
transcript.whisperx[755].start 19650.99
transcript.whisperx[755].end 19677.122
transcript.whisperx[755].text 你們花了一點時間研究這個部分收費公式實際上涉及的是這個層面是非常專業那你們的這個高碳洩漏的行業定義是說要有這個碳排減量計劃的核定就可以有0.2的調整數值那是不是沒有核定通過的事業單位他就沒有0.2的調整
transcript.whisperx[756].start 19679.471
transcript.whisperx[756].end 19703.501
transcript.whisperx[756].text 是這樣嗎?對好那未來而且你這個0.2你還有2期、3期、0.4、0.6所以未來會逐步做這樣子的調整嗎?所以看起來是折扣越來越少那這樣子本席的質疑是說這樣會達到鼓勵的效果嗎?還是你們特別這樣規劃是有什麼特別的考量跟意義?
transcript.whisperx[757].start 19704.642
transcript.whisperx[757].end 19719.567
transcript.whisperx[757].text 跟委員報告 這個所謂高碳洩漏的行業我們是比照像歐盟或其他國家就是對一些比較貿易密集還有考慮到它的排放強度高的這些產業所以譬如說像我們現在國際間可能像鋼鐵水泥業因為這些產業它要減碳需要花比較長的時間所以我們有這樣一個轉型調整的一個0.2的係數
transcript.whisperx[758].start 19730.356
transcript.whisperx[758].end 19744.735
transcript.whisperx[758].text 我知道啊但是你的二期三期是變0.4、0.6意思就是我打完兩折我一起我打兩折然後第二期我打四折第三期我打六折你折扣是越來越少那當然就是說
transcript.whisperx[759].start 19745.436
transcript.whisperx[759].end 19749.4
transcript.whisperx[759].text 因為國際間對於這些高碳洩漏的行業它的免費的合併也會越來越少越來越嚴格
transcript.whisperx[760].start 19770.62
transcript.whisperx[760].end 19795.634
transcript.whisperx[760].text 因為我理解我理解但是這同樣我會對國際這樣子的規定我也會有質疑嘛你們的給我的回覆只是因為國際這樣子定所以我就這樣定但是通常我們如果一般的邏輯要達到那個就是鼓勵的效果我們說欸你先做這樣我跟你打八折之後我你再做更好跟你六折你再做到很完美我跟你打兩折
transcript.whisperx[761].start 19797.14
transcript.whisperx[761].end 19822.882
transcript.whisperx[761].text 但是但是只是說國際這樣子啊我們就這樣啊你你可不可以解釋幫我解釋解釋給我聽就是說那為什麼國際這樣子的計算是為什麼就是說這些產業他們一定要減碳只是一開始的時候我們希望說他可以有比較多的這些資金用在他自己的減碳但是未來他能夠受到的這個免費的就會越來越少他要趕快開始來做減碳
transcript.whisperx[762].start 19823.542
transcript.whisperx[762].end 19839.792
transcript.whisperx[762].text 所以這跟我設想就是說希望母數到時候是降低的嗎?所以他到時候...我們沒有這樣講,我們是覺得是說他先給他一個比較大的優因,減得更多然後減得更多完了之後慢慢慢慢的減少
transcript.whisperx[763].start 19840.8
transcript.whisperx[763].end 19859.727
transcript.whisperx[763].text 那你也可以維持阿就是我一直都打這樣的折扣阿沒有我只是拋出來因為你們很沒有你們講的很沒有說服力你們說國際怎麼樣就怎麼樣我們其實也可以有一些創舉如果他是對產業的檢探是好的你看我們的獅獅一直在點頭
transcript.whisperx[764].start 19862.006
transcript.whisperx[764].end 19879.293
transcript.whisperx[764].text 有我看到了阿所以下回詩詩開講或許可以針對這個部分可以來講一下好不好因為我們不是國際怎麼樣我們就一定怎麼樣如果我們有更好的我們也可以走在國際的尖端阿我這樣講有沒有詩詩有沒有道理
transcript.whisperx[765].start 19882.505
transcript.whisperx[765].end 19904.562
transcript.whisperx[765].text 謝謝 我也可以做一下陳詩嘛好不好那再來就是屬於這個非屬高碳洩漏風險行業好啦我跟你講我念音樂系我要看懂這個我真的花很多時間好嗎再來非屬這個高碳洩漏風險行業來最後講一下這個也就是2.5萬公噸的調整那麼在
transcript.whisperx[766].start 19907.944
transcript.whisperx[766].end 19922.65
transcript.whisperx[766].text 你們未來這個2.5萬剛剛前面是不是有講到說可能也是會調整慢慢減就是慢慢減那但是我還有一個疑問就是說為什麼一樣是通過自主減量計畫的核定那他們卻沒有這個0.2的數值
transcript.whisperx[767].start 19926.175
transcript.whisperx[767].end 19933.778
transcript.whisperx[767].text 因為我為什麼這樣問來做一下算數很簡單來誰誰部長你算給我聽3100萬我取平均這個500加除完之後就是3100萬這個平均值3100萬噸公噸減掉2.5萬公噸是多少29啊28點多28.5啊28.5百萬對啊
transcript.whisperx[768].start 19953.564
transcript.whisperx[768].end 19954.805
transcript.whisperx[768].text 2.5萬公噸是佔多少?很低
transcript.whisperx[769].start 19975.762
transcript.whisperx[769].end 19998.921
transcript.whisperx[769].text 很低多少我算好了我念給你聽啊百分之這是那個2.5萬除以31百萬是等於0.00008065這是皮毛吧我現在是套你們的公式去做就是數字套還是
transcript.whisperx[770].start 20001.099
transcript.whisperx[770].end 20020.714
transcript.whisperx[770].text 這就是皮毛阿那我如果只是2.5萬我31百萬然後減掉2.5萬而已欸我為什麼還要花那麼多業者為什麼還要花那麼多力氣還有那麼多錢去寫這個減量的計畫我就不用那個2.5萬真的是超級皮毛的餒還是你們的2.5萬是2.5百萬你是有沒有少寫一個字
transcript.whisperx[771].start 20026.786
transcript.whisperx[771].end 20030.341
transcript.whisperx[771].text 我真的花很多時間很認真在算這些東西啊
transcript.whisperx[772].start 20032.029
transcript.whisperx[772].end 20040.851
transcript.whisperx[772].text 我剛講的都沒有錯嘛就是結論就是你這個優惠方案試算之後非高碳洩漏風險事業只是陪榜嘛那所以我才質疑說你們2.5萬是不是2.5百萬是不是寫錯阿如果沒有的話那就是
transcript.whisperx[773].start 20059.514
transcript.whisperx[773].end 20059.894
transcript.whisperx[773].text 剪掉2.5萬也是很少啊?
transcript.whisperx[774].start 20080.985
transcript.whisperx[774].end 20109.817
transcript.whisperx[774].text 好啦,你們大家好好算一算啦,如果它是一個非常明顯的數字,我們大家不會愣在這,好不好?好,謝謝陳英委員。非常抱歉,因為今天時間真的非常的久。那下次如果在立法院這邊的話,如果超過吃飯時間,就是希望部會直接把便當發下去,讓各個同仁能夠吃飯,要不然真的從12點到現在已經超過兩個小時了,真的非常的辛苦。
transcript.whisperx[775].start 20111.212
transcript.whisperx[775].end 20129.493
transcript.whisperx[775].text 對阿好那接下來請蔡易瑜委員、蔡易瑜委員、蔡易瑜委員不在好那我們今天的會議詢答全部結束委員賴會員、葉元芝委員所提書面質詢列入記錄刊登公報現在做以下決定
transcript.whisperx[776].start 20130.153
transcript.whisperx[776].end 20142.497
transcript.whisperx[776].text 報告及詢答完畢,委員質詢,未及答覆或請補充資料者,請相關機關於兩週內以書面答覆,委員另要求期限者從其所定。今天的會議到此結束,現在散會。
transcript.whisperx[777].start 20175.328
transcript.whisperx[777].end 20175.548
transcript.whisperx[777].text 主席
transcript.whisperx[778].start 20194.302
transcript.whisperx[778].end 20195.943
transcript.whisperx[778].text 發了一個宣誓
會議時間 2024-10-14T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請環境部部長、經濟部就「台灣的碳費收費標準決議」進行專題報告,並備質詢。)
委員發言時間 08:29:58 - 14:05:00
IVOD_ID 16165
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16165
日期 2024-10-14
會議資料.會議代碼 委員會-11-2-26-3
會議資料.屆 11
會議資料.會期 2
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Full
開始時間 2024-10-14T08:29:58+08:00
結束時間 2024-10-14T14:05:00+08:00
支援功能[0] ai-transcript