IVOD_ID |
161548 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161548 |
日期 |
2025-05-19 |
會議資料.會議代碼 |
委員會-11-3-19-13 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第13次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
13 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第13次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-19T10:55:05+08:00 |
結束時間 |
2025-05-19T11:04:28+08:00 |
影片長度 |
00:09:23 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ecb6f54fb5d604f0e20a13cdeaac5e3928de2cce2b28366a0be1aa9793fcacddd5025eb6a0fa74945ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
謝衣鳯 |
委員發言時間 |
10:55:05 - 11:04:28 |
會議時間 |
2025-05-19T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第13次全體委員會議(事由:一、處理或審查114年度中央政府總預算有關農業部及所屬主管預算凍結案等30案。
二、處理或審查114年度中央政府總預算有關公平交易委員會主管預算凍結案等8案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
2.14034375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
2.46096875 |
transcript.pyannote[1].end |
4.16534375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
9.76784375 |
transcript.pyannote[2].end |
10.83096875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
11.16846875 |
transcript.pyannote[3].end |
12.18096875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
12.53534375 |
transcript.pyannote[4].end |
13.90221875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
19.65659375 |
transcript.pyannote[5].end |
19.67346875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
19.67346875 |
transcript.pyannote[6].end |
19.69034375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
19.69034375 |
transcript.pyannote[7].end |
19.97721875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
19.97721875 |
transcript.pyannote[8].end |
20.02784375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
20.02784375 |
transcript.pyannote[9].end |
20.07846875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
20.07846875 |
transcript.pyannote[10].end |
20.11221875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
20.44971875 |
transcript.pyannote[11].end |
21.20909375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
21.59721875 |
transcript.pyannote[12].end |
22.84596875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
21.63096875 |
transcript.pyannote[13].end |
21.64784375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
21.71534375 |
transcript.pyannote[14].end |
21.78284375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
23.20034375 |
transcript.pyannote[15].end |
29.42721875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
29.93346875 |
transcript.pyannote[16].end |
35.48534375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
36.12659375 |
transcript.pyannote[17].end |
36.73409375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
37.52721875 |
transcript.pyannote[18].end |
39.90659375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
40.32846875 |
transcript.pyannote[19].end |
40.69971875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
41.23971875 |
transcript.pyannote[20].end |
50.87534375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
51.28034375 |
transcript.pyannote[21].end |
52.03971875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
52.07346875 |
transcript.pyannote[22].end |
52.95096875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
53.57534375 |
transcript.pyannote[23].end |
72.54284375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
72.93096875 |
transcript.pyannote[24].end |
74.78721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
75.05721875 |
transcript.pyannote[25].end |
76.47471875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
77.47034375 |
transcript.pyannote[26].end |
84.15284375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
84.49034375 |
transcript.pyannote[27].end |
86.38034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
84.79409375 |
transcript.pyannote[28].end |
89.97471875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
87.12284375 |
transcript.pyannote[29].end |
130.45784375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
100.63971875 |
transcript.pyannote[30].end |
101.11221875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
130.03596875 |
transcript.pyannote[31].end |
131.95971875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
131.97659375 |
transcript.pyannote[32].end |
136.54971875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
133.71471875 |
transcript.pyannote[33].end |
134.22096875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
135.08159375 |
transcript.pyannote[34].end |
141.10596875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
141.10596875 |
transcript.pyannote[35].end |
143.89034375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
143.14784375 |
transcript.pyannote[36].end |
148.59846875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
144.80159375 |
transcript.pyannote[37].end |
145.18971875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
147.48471875 |
transcript.pyannote[38].end |
157.96409375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
151.83846875 |
transcript.pyannote[39].end |
152.34471875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
157.96409375 |
transcript.pyannote[40].end |
158.53784375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
159.09471875 |
transcript.pyannote[41].end |
159.70221875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
159.14534375 |
transcript.pyannote[42].end |
160.14096875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
160.09034375 |
transcript.pyannote[43].end |
160.88346875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
160.88346875 |
transcript.pyannote[44].end |
162.28409375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
162.19971875 |
transcript.pyannote[45].end |
187.98471875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
168.03846875 |
transcript.pyannote[46].end |
169.11846875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
172.29096875 |
transcript.pyannote[47].end |
172.67909375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
179.22659375 |
transcript.pyannote[48].end |
180.66096875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
188.03534375 |
transcript.pyannote[49].end |
191.32596875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
191.32596875 |
transcript.pyannote[50].end |
204.20159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
198.81846875 |
transcript.pyannote[51].end |
198.97034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
199.00409375 |
transcript.pyannote[52].end |
199.20659375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
204.37034375 |
transcript.pyannote[53].end |
204.42096875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
204.42096875 |
transcript.pyannote[54].end |
204.75846875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
204.53909375 |
transcript.pyannote[55].end |
205.85534375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
206.12534375 |
transcript.pyannote[56].end |
209.16284375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
208.55534375 |
transcript.pyannote[57].end |
217.97159375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
210.78284375 |
transcript.pyannote[58].end |
211.27221875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
211.37346875 |
transcript.pyannote[59].end |
213.48284375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
215.10284375 |
transcript.pyannote[60].end |
224.94096875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
220.13159375 |
transcript.pyannote[61].end |
220.60409375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
224.63721875 |
transcript.pyannote[62].end |
226.27409375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
226.27409375 |
transcript.pyannote[63].end |
233.32784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
233.59784375 |
transcript.pyannote[64].end |
237.51284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
236.83784375 |
transcript.pyannote[65].end |
263.51721875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
239.16659375 |
transcript.pyannote[66].end |
239.58846875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
242.32221875 |
transcript.pyannote[67].end |
244.00971875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
246.37221875 |
transcript.pyannote[68].end |
247.55346875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
263.38221875 |
transcript.pyannote[69].end |
270.19971875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
269.50784375 |
transcript.pyannote[70].end |
290.16284375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
271.68471875 |
transcript.pyannote[71].end |
272.17409375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
275.85284375 |
transcript.pyannote[72].end |
276.30846875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
279.00846875 |
transcript.pyannote[73].end |
279.56534375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
290.16284375 |
transcript.pyannote[74].end |
290.53409375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
291.14159375 |
transcript.pyannote[75].end |
299.05596875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
297.40221875 |
transcript.pyannote[76].end |
297.90846875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
299.22471875 |
transcript.pyannote[77].end |
307.51034375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
307.76346875 |
transcript.pyannote[78].end |
313.33221875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
313.33221875 |
transcript.pyannote[79].end |
313.80471875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
313.66971875 |
transcript.pyannote[80].end |
314.32784375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
314.32784375 |
transcript.pyannote[81].end |
318.39471875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
318.68159375 |
transcript.pyannote[82].end |
335.15159375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
335.21909375 |
transcript.pyannote[83].end |
349.63034375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
335.47221875 |
transcript.pyannote[84].end |
335.57346875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
349.10721875 |
transcript.pyannote[85].end |
357.30846875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
357.27471875 |
transcript.pyannote[86].end |
357.29159375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
357.30846875 |
transcript.pyannote[87].end |
357.32534375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
357.32534375 |
transcript.pyannote[88].end |
357.34221875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
357.34221875 |
transcript.pyannote[89].end |
357.66284375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
357.54471875 |
transcript.pyannote[90].end |
365.86409375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
366.64034375 |
transcript.pyannote[91].end |
368.24346875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
366.70784375 |
transcript.pyannote[92].end |
368.22659375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
368.24346875 |
transcript.pyannote[93].end |
373.08659375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
372.49596875 |
transcript.pyannote[94].end |
372.93471875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
373.37346875 |
transcript.pyannote[95].end |
374.85846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
373.44096875 |
transcript.pyannote[96].end |
374.75721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
375.29721875 |
transcript.pyannote[97].end |
375.55034375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
376.03971875 |
transcript.pyannote[98].end |
416.20221875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
386.43471875 |
transcript.pyannote[99].end |
386.94096875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
416.97846875 |
transcript.pyannote[100].end |
432.46971875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
430.81596875 |
transcript.pyannote[101].end |
430.88346875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
431.05221875 |
transcript.pyannote[102].end |
431.20409375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
433.00971875 |
transcript.pyannote[103].end |
436.04721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
435.52409375 |
transcript.pyannote[104].end |
437.61659375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
436.84034375 |
transcript.pyannote[105].end |
458.81159375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
459.08159375 |
transcript.pyannote[106].end |
461.05596875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
461.39346875 |
transcript.pyannote[107].end |
463.03034375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
463.03034375 |
transcript.pyannote[108].end |
464.34659375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
464.34659375 |
transcript.pyannote[109].end |
464.73471875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
464.38034375 |
transcript.pyannote[110].end |
464.41409375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
464.58284375 |
transcript.pyannote[111].end |
469.37534375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
468.56534375 |
transcript.pyannote[112].end |
472.81784375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
470.28659375 |
transcript.pyannote[113].end |
471.95721875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
472.85159375 |
transcript.pyannote[114].end |
511.69784375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
476.71596875 |
transcript.pyannote[115].end |
477.15471875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
487.51596875 |
transcript.pyannote[116].end |
488.00534375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
511.30971875 |
transcript.pyannote[117].end |
516.05159375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
516.38909375 |
transcript.pyannote[118].end |
537.26346875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
521.58659375 |
transcript.pyannote[119].end |
521.94096875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
524.26971875 |
transcript.pyannote[120].end |
524.40471875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
524.48909375 |
transcript.pyannote[121].end |
524.72534375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
533.39909375 |
transcript.pyannote[122].end |
533.63534375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
537.60096875 |
transcript.pyannote[123].end |
539.79471875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
540.01409375 |
transcript.pyannote[124].end |
557.86784375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
546.56159375 |
transcript.pyannote[125].end |
546.98346875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
557.80034375 |
transcript.pyannote[126].end |
559.89284375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
559.63971875 |
transcript.pyannote[127].end |
560.09534375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
562.69409375 |
transcript.pyannote[128].end |
562.96409375 |
transcript.whisperx[0].start |
0.089 |
transcript.whisperx[0].end |
11.859 |
transcript.whisperx[0].text |
超明委員後我們休息五分鐘因為已經開很久好謝謝主席我想要請部長好有請陳部長 |
transcript.whisperx[1].start |
19.71 |
transcript.whisperx[1].end |
34.21 |
transcript.whisperx[1].text |
委員長部長早安我想要請問一下2018年農業部曾經決定要推動雞蛋全面洗選那希望把洗選蛋從三成提高到100% |
transcript.whisperx[2].start |
36.172 |
transcript.whisperx[2].end |
52.609 |
transcript.whisperx[2].text |
但是这么多年从2018到现在你看全面洗选其实还没有完全到位你们到底有没有想要推动现在到底遇到什么问题第一个是不是 |
transcript.whisperx[3].start |
53.67 |
transcript.whisperx[3].end |
76.301 |
transcript.whisperx[3].text |
我們現在飼養雞的機場有沒有辦法整體的配合我們洗選蛋的這樣子的一個供應的系統你雞蛋上面的噴墨到底會不會造成消費者相關他們在食用上的疑慮你是不是能說明清楚 |
transcript.whisperx[4].start |
77.643 |
transcript.whisperx[4].end |
104.11 |
transcript.whisperx[4].text |
謝委員非常關心這個雞蛋的洗選的部分那現在目前洗選的百分比大概是50到一半從2018年到現在從30%上升到50我們曾經檢討過第一個就是洗選的量能這是第一個第二個更重要就是說你後端的這個洗選蛋的供應量所以我們現在一直在努力看看可不可以將早餐店 |
transcript.whisperx[5].start |
104.99 |
transcript.whisperx[5].end |
120.84 |
transcript.whisperx[5].text |
因為藻攤店本身如果經過洗選它是比較安全衛生的如果它藻攤店能夠順利地用洗選單的時候那前端因為有需求所以牧場端就會進到洗選端所以兩個關鍵因素一個是洗選場的量能 |
transcript.whisperx[6].start |
121.32 |
transcript.whisperx[6].end |
140.855 |
transcript.whisperx[6].text |
那席選兩年現在大概起來了因為在過去幾年我們有做協助現在就是需求端如果拉得出來那就會往這邊繼續所以大家不喜歡用席選單大家還是喜歡傳統的買單用挑的所以我們現在就是說從市場端包括餐廳包括早餐店 |
transcript.whisperx[7].start |
141.175 |
transcript.whisperx[7].end |
154.059 |
transcript.whisperx[7].text |
那為什麼民眾會有這樣子的我們現在在溝通啦我比較不喜歡用強制的一下強制的人就能反彈為什麼民眾會喜歡這樣子不喜歡洗選蛋是不是有什麼原因有洗選蛋是他們覺得噴墨會造成影響還是說 |
transcript.whisperx[8].start |
162.456 |
transcript.whisperx[8].end |
186.704 |
transcript.whisperx[8].text |
還有是不是那對於我們現在養雞大家在談寵物福利的相關的問題嘛那國外很流行的是放牧雞嘛那我們在台灣其實放牧雞的方式我們沒有那麼多的就是說養雞場沒有那麼多的空間那未來我們新的現代化的養雞場要怎麼樣子能夠達到 |
transcript.whisperx[9].start |
188.904 |
transcript.whisperx[9].end |
207.413 |
transcript.whisperx[9].text |
動物福利的這樣子的一個設施呢我想我們後續在推養雞場的改建或興建的時候其實立體化的栽培是全世界一個趨勢包括養豬場、養雞場它的立體化栽培它的空間就有機會變大那這個部分我想台南已經有一個廠 |
transcript.whisperx[10].start |
208.813 |
transcript.whisperx[10].end |
226.017 |
transcript.whisperx[10].text |
你趕快來我們彰化弄一個啊是不是我們會努力找業者有三分之一顆的雞蛋全部都是彰化來的彰化本身的牌照是被鎖住的因為我們也不希望那個養雞場新增太快那立體化呢 |
transcript.whisperx[11].start |
226.377 |
transcript.whisperx[11].end |
250.671 |
transcript.whisperx[11].text |
但是改進立體化的話我們可以來考慮就是它立體化以後量變多了那是不是可以用其他的廠類式合作的方式來處理而且需要現代化嘛那現代化的方式你能夠增加投資那是不是可以結合企業的ESG相關的這樣子的誘因進去你才能促使這些飼養戶 |
transcript.whisperx[12].start |
251.812 |
transcript.whisperx[12].end |
271.419 |
transcript.whisperx[12].text |
能夠去投資嘛投資一定是需要成本的在這種成本沒有誘因的情況下養雞戶是不會要去做這相關的事情對 這個我想謝謝委員的提醒喔包括ESG的導入包括一些融資貸款的 低利貸款的誘因還有對於環境永續 |
transcript.whisperx[13].start |
272.519 |
transcript.whisperx[13].end |
289.944 |
transcript.whisperx[13].text |
對於不影響其他周邊的住戶這個都是我們需要改進的部分嘛是不是你沒有提供相關的誘因的情況下飼養戶怎麼會改進沒有改進的情況下影響的也是全部的居民啊是不是 |
transcript.whisperx[14].start |
291.412 |
transcript.whisperx[14].end |
318.049 |
transcript.whisperx[14].text |
我想謝謝委員的提醒我們後續如果有一個比較好的規劃也許可以到彰化去開一個說明會然後去讓這些這些基農就是養雞的這些最主要的大戶的部分讓他了解有什麼樣的方式可以讓環境更衛生然後不會變成零幣作用然後立體化栽培提高它的育成效率這個部分我想我們再來規劃來提供好那我再請教第二問題今天有非常多的 |
transcript.whisperx[15].start |
318.829 |
transcript.whisperx[15].end |
334.821 |
transcript.whisperx[15].text |
委員都講到了落農其實我們知道落農的就是說牛或者是羊他們影響乳量最大的部分就是他們的飼料就是牧草 |
transcript.whisperx[16].start |
336.282 |
transcript.whisperx[16].end |
356.645 |
transcript.whisperx[16].text |
過去我們有說到希望國內的青稞玉米的產量能夠提高那你有沒有辦法做到提高到46萬公噸這個就是在我們的雜糧轉做裡面他轉青稞玉米的政策誘因要下購 |
transcript.whisperx[17].start |
357.767 |
transcript.whisperx[17].end |
365.122 |
transcript.whisperx[17].text |
那這樣的話就會變成清割玉米然後讓它有一些木草可以還有一些蘭薇草的部分也是一樣這個我們正在設計 |
transcript.whisperx[18].start |
366.69 |
transcript.whisperx[18].end |
386.997 |
transcript.whisperx[18].text |
有没有什么样的政策要因你设计你有没有跟主要的乳品供应商共同来讨论他们对于乳量据我了解他们对于乳量的控制第一个就是从它的饲料的部分 |
transcript.whisperx[19].start |
388.237 |
transcript.whisperx[19].end |
414.927 |
transcript.whisperx[19].text |
如果他們的要求裡面沒有能夠接受國內我們的青稞玉米那當然我們有非常強大的改良廠啊我們可以就是製造出來就是我們的牛能夠生產出優質乳量的時候他所需要的這個甘草嘛那為什麼他們要用國外進口的百慕達草為什麼 |
transcript.whisperx[20].start |
417.068 |
transcript.whisperx[20].end |
431.59 |
transcript.whisperx[20].text |
我想基本上我們台灣的氣候的關係我們在木茶收割以後它的乾燥跟打包有沒有它的效率比較不好而且它的濕度水分含量比較高所以很容易台灣話叫凹到有沒有它就會比較 |
transcript.whisperx[21].start |
433.072 |
transcript.whisperx[21].end |
460.153 |
transcript.whisperx[21].text |
口感或質感都比較不好所以這個部分這也會影響乳量嘛對 然後我們在續長那個什麼我們的敘事所其實已經有一些比較新進的新進的技術所以我才會說我們在第一個轉做的部分把牧草納進去如果第一個鼓勵他們去種第二個就是在乾燥打包的那個技術如果能夠讓我們的畜牧業者認同的時候那相關的相關的這些飼料的轉移就會開始進行 |
transcript.whisperx[22].start |
461.474 |
transcript.whisperx[22].end |
476.331 |
transcript.whisperx[22].text |
那所以目前還沒有辦法現在有少部分每一年都還是有少部分的國內的這些牧草進到我們的飼料系統因為我們要雜糧轉做我希望說我們對於這個我們必須要就是優化我們整個就是農作業 |
transcript.whisperx[23].start |
477.311 |
transcript.whisperx[23].end |
492.656 |
transcript.whisperx[23].text |
也希望說在大家都仰賴進口的牧草的情況下是不是能夠採用就地的牧草那這個部分我相信以我們農業部的技術是有辦法去克服那是不是能夠設下一個目標 |
transcript.whisperx[24].start |
493.896 |
transcript.whisperx[24].end |
513.769 |
transcript.whisperx[24].text |
讓我們農業部對於我們的使用國內牧草就是我們的飼養使用國內牧草能不能有一個共同的目標那這個情況下是不是然後大家共同來做那當然也需要所有的乳品業者共同的配合是不是我想第一個就是我們回去會針對 |
transcript.whisperx[25].start |
516.471 |
transcript.whisperx[25].end |
539.317 |
transcript.whisperx[25].text |
牧草的政策由於就是轉作的時候是不是有機會把這個機器人打破只要他願意種就可以得到一些獎勵然後這個部分如果有的話面積會比較多然後會再跟飼養牛的畜牧場去合作我們先找一些示範願意來做的然後去做配方的調整那可以的話我們就會大力來推動 |
transcript.whisperx[26].start |
540.037 |
transcript.whisperx[26].end |
559.792 |
transcript.whisperx[26].text |
好我希望說我們可以建立這樣的目標不然過去我們在推動一段期間都沒有就是成效的情況下未來希望可以達到目標那當然也能夠讓台灣的農地做有效的利用然後能夠達到永續的這個發展好謝謝委員提醒我們會努力謝謝好 |