iVOD / 161455

Field Value
IVOD_ID 161455
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161455
日期 2025-05-15
會議資料.會議代碼 委員會-11-3-20-12
會議資料.會議代碼:str 第11屆第3會期財政委員會第12次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 12
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第12次全體委員會議
影片種類 Clip
開始時間 2025-05-15T12:35:35+08:00
結束時間 2025-05-15T12:44:23+08:00
影片長度 00:08:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fcea13637980d1819ac064d370795efb139dba296d6b924fd866399efa143b97a5ef969bfb1957e05ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 12:35:35 - 12:44:23
會議時間 2025-05-15T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第12次全體委員會議(事由:一、處理中華民國114年度中央政府總預算決議有關財政部主管預算凍結書面報告案62案、有關審計部主管預算凍結書面報告案4案及有關行政院主計總處預算凍結書面報告案18案。【報告事項】 二、處理中華民國114年度中央政府總預算決議有關財政部主管預算凍結專案報告案17案及有關行政院主計總處預算凍結專案報告案1案。【討論事項】 【5月14日及15日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 2.91659375
transcript.pyannote[0].end 3.11909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 3.30471875
transcript.pyannote[1].end 5.59971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 6.00471875
transcript.pyannote[2].end 6.86534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 12.95721875
transcript.pyannote[3].end 14.30721875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 14.96534375
transcript.pyannote[4].end 16.34909375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 16.51784375
transcript.pyannote[5].end 21.10784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 21.66471875
transcript.pyannote[6].end 21.98534375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 22.42409375
transcript.pyannote[7].end 23.41971875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 23.80784375
transcript.pyannote[8].end 24.44909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 25.44471875
transcript.pyannote[9].end 26.94659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 27.36846875
transcript.pyannote[10].end 29.14034375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 29.41034375
transcript.pyannote[11].end 30.32159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 32.49846875
transcript.pyannote[12].end 35.55284375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 35.68784375
transcript.pyannote[13].end 37.32471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 38.15159375
transcript.pyannote[14].end 49.08659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 49.18784375
transcript.pyannote[15].end 51.44909375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 52.02284375
transcript.pyannote[16].end 56.41034375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 57.91221875
transcript.pyannote[17].end 58.85721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 59.38034375
transcript.pyannote[18].end 60.07221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 60.44346875
transcript.pyannote[19].end 63.09284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 63.81846875
transcript.pyannote[20].end 66.68721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 67.37909375
transcript.pyannote[21].end 71.98596875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 72.37409375
transcript.pyannote[22].end 76.15409375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 77.70659375
transcript.pyannote[23].end 80.72721875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 81.48659375
transcript.pyannote[24].end 83.93346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 84.47346875
transcript.pyannote[25].end 89.48534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 90.80159375
transcript.pyannote[26].end 93.63659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 94.58159375
transcript.pyannote[27].end 95.03721875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 95.22284375
transcript.pyannote[28].end 97.72034375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 99.49221875
transcript.pyannote[29].end 101.53409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 102.58034375
transcript.pyannote[30].end 103.44096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 104.01471875
transcript.pyannote[31].end 104.58846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 105.48284375
transcript.pyannote[32].end 107.17034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 107.82846875
transcript.pyannote[33].end 109.85346875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 110.68034375
transcript.pyannote[34].end 113.44784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 113.98784375
transcript.pyannote[35].end 116.31659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 117.00846875
transcript.pyannote[36].end 122.49284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 123.64034375
transcript.pyannote[37].end 129.73221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 130.01909375
transcript.pyannote[38].end 134.30534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 134.60909375
transcript.pyannote[39].end 138.84471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 139.92471875
transcript.pyannote[40].end 149.39159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 150.25221875
transcript.pyannote[41].end 153.08721875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 153.88034375
transcript.pyannote[42].end 160.51221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 160.81596875
transcript.pyannote[43].end 163.26284375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 164.00534375
transcript.pyannote[44].end 178.58534375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 179.58096875
transcript.pyannote[45].end 183.63096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 184.25534375
transcript.pyannote[46].end 185.70659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 186.87096875
transcript.pyannote[47].end 188.42346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 189.41909375
transcript.pyannote[48].end 192.01784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 192.60846875
transcript.pyannote[49].end 202.15971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 202.49721875
transcript.pyannote[50].end 204.42096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 205.12971875
transcript.pyannote[51].end 208.28534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 209.21346875
transcript.pyannote[52].end 212.14971875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 213.14534375
transcript.pyannote[53].end 220.06409375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 220.99221875
transcript.pyannote[54].end 222.59534375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 223.21971875
transcript.pyannote[55].end 225.90284375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 226.30784375
transcript.pyannote[56].end 229.31159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 230.74596875
transcript.pyannote[57].end 235.45409375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 236.09534375
transcript.pyannote[58].end 237.83346875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 238.79534375
transcript.pyannote[59].end 244.58346875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 245.24159375
transcript.pyannote[60].end 246.20346875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 247.06409375
transcript.pyannote[61].end 248.04284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 248.78534375
transcript.pyannote[62].end 249.86534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 250.69221875
transcript.pyannote[63].end 252.86909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 253.37534375
transcript.pyannote[64].end 254.74221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 255.73784375
transcript.pyannote[65].end 257.39159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 258.16784375
transcript.pyannote[66].end 259.04534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 259.63596875
transcript.pyannote[67].end 260.83409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 261.62721875
transcript.pyannote[68].end 270.30096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 270.92534375
transcript.pyannote[69].end 271.85346875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 272.83221875
transcript.pyannote[70].end 273.74346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 274.18221875
transcript.pyannote[71].end 274.80659375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 275.38034375
transcript.pyannote[72].end 277.45596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 278.77221875
transcript.pyannote[73].end 279.76784375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 280.57784375
transcript.pyannote[74].end 282.94034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 283.91909375
transcript.pyannote[75].end 288.00284375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 288.72846875
transcript.pyannote[76].end 291.19221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 291.93471875
transcript.pyannote[77].end 293.35221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 293.90909375
transcript.pyannote[78].end 302.46471875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 303.27471875
transcript.pyannote[79].end 304.69221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 305.23221875
transcript.pyannote[80].end 309.48471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 309.90659375
transcript.pyannote[81].end 313.99034375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 315.15471875
transcript.pyannote[82].end 317.36534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 318.04034375
transcript.pyannote[83].end 320.33534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 320.99346875
transcript.pyannote[84].end 323.35596875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 324.99284375
transcript.pyannote[85].end 326.34284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 326.59596875
transcript.pyannote[86].end 329.16096875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 329.90346875
transcript.pyannote[87].end 331.69221875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 332.41784375
transcript.pyannote[88].end 339.16784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 339.58971875
transcript.pyannote[89].end 340.78784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 341.41221875
transcript.pyannote[90].end 344.36534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 344.82096875
transcript.pyannote[91].end 348.26346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 348.92159375
transcript.pyannote[92].end 351.53721875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 351.60471875
transcript.pyannote[93].end 355.57034375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 356.14409375
transcript.pyannote[94].end 357.10596875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 357.88221875
transcript.pyannote[95].end 358.79346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 359.46846875
transcript.pyannote[96].end 366.43784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 367.29846875
transcript.pyannote[97].end 368.32784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 369.01971875
transcript.pyannote[98].end 370.08284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 370.33596875
transcript.pyannote[99].end 371.55096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 371.78721875
transcript.pyannote[100].end 372.81659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 373.15409375
transcript.pyannote[101].end 376.88346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 377.59221875
transcript.pyannote[102].end 378.57096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 378.89159375
transcript.pyannote[103].end 384.08909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 384.76409375
transcript.pyannote[104].end 388.96596875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 389.40471875
transcript.pyannote[105].end 390.50159375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 391.00784375
transcript.pyannote[106].end 394.43346875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 394.77096875
transcript.pyannote[107].end 395.24346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 396.32346875
transcript.pyannote[108].end 396.72846875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 397.47096875
transcript.pyannote[109].end 398.01096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 398.41596875
transcript.pyannote[110].end 401.18346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 402.02721875
transcript.pyannote[111].end 403.05659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 403.47846875
transcript.pyannote[112].end 405.97596875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 406.66784375
transcript.pyannote[113].end 410.92034375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 411.40971875
transcript.pyannote[114].end 418.61534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 419.79659375
transcript.pyannote[115].end 423.18846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 424.31909375
transcript.pyannote[116].end 426.32721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 426.54659375
transcript.pyannote[117].end 433.90409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 434.69721875
transcript.pyannote[118].end 436.01346875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 437.11034375
transcript.pyannote[119].end 462.35534375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 462.72659375
transcript.pyannote[120].end 468.46409375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 469.05471875
transcript.pyannote[121].end 480.59721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 481.05284375
transcript.pyannote[122].end 487.43159375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 488.17409375
transcript.pyannote[123].end 490.55346875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 491.04284375
transcript.pyannote[124].end 491.93721875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 492.59534375
transcript.pyannote[125].end 493.25346875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 494.13096875
transcript.pyannote[126].end 506.61846875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 504.66096875
transcript.pyannote[127].end 505.25159375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 506.92221875
transcript.pyannote[128].end 519.69659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 516.40596875
transcript.pyannote[129].end 517.18221875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 517.97534375
transcript.pyannote[130].end 518.43096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 520.84409375
transcript.pyannote[131].end 522.32909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 526.32846875
transcript.pyannote[132].end 528.58971875
transcript.whisperx[0].start 3.733
transcript.whisperx[0].end 30.113
transcript.whisperx[0].text 謝謝主席我請莊部長有請莊部長委員好部長好這個三天前主計處又公布了我們第一季今年前三個月的平均薪資這個平均薪資有提高提高到
transcript.whisperx[1].start 35.024
transcript.whisperx[1].end 54.693
transcript.whisperx[1].text 43589元可是相對的我們有69.77%也就是將近七成的民眾是領不到這個平均薪資的而這六年來從六年前當時領不到平均薪資的是66.75%這六年來
transcript.whisperx[2].start 59.457
transcript.whisperx[2].end 72.726
transcript.whisperx[2].text 再度擴大到69.77就是貧富差距再度擴大而傷腦筋的是我們受雇的民眾員工工時從110年的
transcript.whisperx[3].start 77.762
transcript.whisperx[3].end 97.49
transcript.whisperx[3].text 每個月166.7小時一支逐年增加到去年169.2小時到去年底的統計貧富差距再度擴大而工時再創新高那講到貧富差距擴大這個去年5月
transcript.whisperx[4].start 105.506
transcript.whisperx[4].end 119.646
transcript.whisperx[4].text 那土地基礎也公佈了這個家庭財富分配那這個我把它做一個表格後也就是說在34年前民國80年的時候當時啊當時
transcript.whisperx[5].start 123.723
transcript.whisperx[5].end 130.848
transcript.whisperx[5].text 前20%收入的家庭跟後20%的這個對照來講是16.8倍而現在擴大到民國110年擴大到66.9倍
transcript.whisperx[6].start 139.98
transcript.whisperx[6].end 144.163
transcript.whisperx[6].text 那前20%家庭的財富佔比由49.71%佔整個社會財富49.71%提高到62.68%後20%家庭的財富佔比從2.95%降低到連1%都沒有
transcript.whisperx[7].start 164.076
transcript.whisperx[7].end 170.658
transcript.whisperx[7].text 降低到連1%都沒有0.94那前20%的家庭財富民國80年的時候是1306萬到民國110年30年後5133萬然後後20%家庭從78萬降到77萬這很明顯的
transcript.whisperx[8].start 189.825
transcript.whisperx[8].end 208.044
transcript.whisperx[8].text 嚴重的財富分配不均那我個人認為財富分配不均很重要的一項我們政府可以做的照說我們從財稅負擔從稅收可以來做調整而現在我們的稅收裡面我們總計我們總收去年3.48兆
transcript.whisperx[9].start 214.267
transcript.whisperx[9].end 229.096
transcript.whisperx[9].text 3.45兆稅收裡面我們有高達21.8%是在綜合所得稅那在財產稅的部分不到10%只佔7.6%綜合所得稅遠高於財產稅3倍那也就是說
transcript.whisperx[10].start 238.857
transcript.whisperx[10].end 260.661
transcript.whisperx[10].text 真的享受到低稅負擔的好處的是這些地主 財閥 老闆們啊 這非常清楚而負擔大部分 稅負來源的是我們勞工 上班族 薪資所得者
transcript.whisperx[11].start 261.667
transcript.whisperx[11].end 287.113
transcript.whisperx[11].text 那這個部分當然說來話長啦也不能怪你一個人啦但是所以我具體我今天要講三件事我希望就是說第一件就是在於這個股利所得稅的計算方式我當時為了提高投資意願當時我們推動所謂股利所得分離課稅的新制
transcript.whisperx[12].start 289.283
transcript.whisperx[12].end 308.929
transcript.whisperx[12].text 那這個形式當然是好但是原本前50大高股利的所得戶我們在105年106年統計他們他們股利所得得到的有效稅率是38.41%38.41%隔一年37.96%那是在105年106年
transcript.whisperx[13].start 318.28
transcript.whisperx[13].end 322.302
transcript.whisperx[13].text 結果西治之後我們現在調降為28%從過去的38%降到28%對於鼓勵所得
transcript.whisperx[14].start 332.748
transcript.whisperx[14].end 354.66
transcript.whisperx[14].text 我們少課了10%那當時是為了鼓勵大家說啊就是去提高他投資院大家去購買股票嘛而相對的喔那個當年舊稅制的時候107年上市的股票總市值是29兆3100億當時是這樣
transcript.whisperx[15].start 359.5
transcript.whisperx[15].end 376.343
transcript.whisperx[15].text 就現在反而總市值算四塊總市值七十兆八千億啦我們反而把這個稅率降低所以我積極建議你今天帶回去研究我認為要階梯稅率
transcript.whisperx[16].start 377.919
transcript.whisperx[16].end 394.215
transcript.whisperx[16].text 階梯稅率也就是說我們不是說不能定單一稅率說28%應該根據他鼓勵所得定階梯式的有低有高那整個拉高不能只有28%因為這是財產利得這是投資利得啊
transcript.whisperx[17].start 402.062
transcript.whisperx[17].end 422.047
transcript.whisperx[17].text 那一般綜合所得稅是辛苦的勞苦的生斗小民上班勞工那這樣去得到的薪資所以遠低於這些鼓勵所得嘛希望階梯稅率再來另外一點就是說我們這個關於
transcript.whisperx[18].start 424.383
transcript.whisperx[18].end 435.483
transcript.whisperx[18].text 租金的抵稅那現在我認為我們訂的租金抵稅太低啦我們現在訂的租金抵稅房屋租金抵稅
transcript.whisperx[19].start 437.165
transcript.whisperx[19].end 461.107
transcript.whisperx[19].text 我們現在訂18萬元啦 18萬元那我認為啊 如果你橫估我們台北 新北 雙北實際的租金行情的話你可以看 在左邊這邊 這是台北而且這一部分 還是去年 還是低估的喔低估的 右邊是新北那我平均把它抓 平均把它抓一坪1500好了
transcript.whisperx[20].start 463.347
transcript.whisperx[20].end 484.397
transcript.whisperx[20].text 雙北的部分那一個正常的小家庭至少也要20坪那就3萬元一年小家庭租金至少都要在雙北都要一年要36萬元我覺得18萬元的這個抵稅額太低啦太低啦所以我希望這幾點這個關於階梯稅率
transcript.whisperx[21].start 488.561
transcript.whisperx[21].end 492.967
transcript.whisperx[21].text 鼓勵所得改文階梯稅率以及房屋
transcript.whisperx[22].start 494.461
transcript.whisperx[22].end 518.388
transcript.whisperx[22].text 租金的抵稅我認為要提高這兩點是不是你帶回去研究那你在最短期間給我答覆好不好好謝謝委員的建議你多久可以答覆我我們就兩個月可以嗎兩個月兩個月會期都結束啦一個月好了好不好一個月好一個月我就等你一個月好謝謝委員謝謝好謝謝王委員謝謝部長
transcript.whisperx[23].start 526.38
transcript.whisperx[23].end 528.256
transcript.whisperx[23].text 今日發言 今日正義發言委員