iVOD / 160975

Field Value
IVOD_ID 160975
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160975
日期 2025-05-06
會議資料.會議代碼 院會-11-3-10
會議資料.會議代碼:str 第11屆第3會期第10次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 院會
會議資料.標題 第11屆第3會期第10次會議
影片種類 Clip
開始時間 2025-05-06T16:23:59+08:00
結束時間 2025-05-06T16:39:45+08:00
影片長度 00:15:46
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/db1f27f7504920267fdbf38107cc685a5a34676b63038810a01ba0d305be83bc74ad0faf363c552f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 廖偉翔
委員發言時間 16:23:59 - 16:39:45
會議時間 2025-05-06T09:00:00+08:00
會議名稱 第11屆第3會期第10次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、5月2日上午9時至10時為國是論壇時間。三、5月6日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 13.04159375
transcript.pyannote[0].end 15.18471875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 15.67409375
transcript.pyannote[1].end 17.34471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 27.79034375
transcript.pyannote[2].end 28.34721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 28.75221875
transcript.pyannote[3].end 30.65909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 30.67596875
transcript.pyannote[4].end 37.00409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 37.52721875
transcript.pyannote[5].end 42.79221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 43.07909375
transcript.pyannote[6].end 52.51221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 52.81596875
transcript.pyannote[7].end 75.91784375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 76.17096875
transcript.pyannote[8].end 76.72784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 76.96409375
transcript.pyannote[9].end 98.63159375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 99.08721875
transcript.pyannote[10].end 102.12471875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 102.52971875
transcript.pyannote[11].end 105.56721875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 106.29284375
transcript.pyannote[12].end 117.02534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 112.55346875
transcript.pyannote[13].end 112.85721875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 114.22409375
transcript.pyannote[14].end 114.89909375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 115.25346875
transcript.pyannote[15].end 116.02971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 117.02534375
transcript.pyannote[16].end 117.04221875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 117.04221875
transcript.pyannote[17].end 117.21096875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 117.21096875
transcript.pyannote[18].end 122.74596875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 120.83909375
transcript.pyannote[19].end 121.44659375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 122.74596875
transcript.pyannote[20].end 123.60659375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 123.84284375
transcript.pyannote[21].end 128.55096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 128.55096875
transcript.pyannote[22].end 128.58471875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 128.58471875
transcript.pyannote[23].end 128.60159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 128.60159375
transcript.pyannote[24].end 135.21659375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 131.35221875
transcript.pyannote[25].end 132.83721875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 134.18721875
transcript.pyannote[26].end 138.54096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 135.62159375
transcript.pyannote[27].end 138.11909375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 138.54096875
transcript.pyannote[28].end 138.92909375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 139.48596875
transcript.pyannote[29].end 143.62034375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 143.77221875
transcript.pyannote[30].end 146.89409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 146.97846875
transcript.pyannote[31].end 153.27284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 154.01534375
transcript.pyannote[32].end 168.86534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 169.15221875
transcript.pyannote[33].end 173.53971875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 174.01221875
transcript.pyannote[34].end 186.68534375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 187.25909375
transcript.pyannote[35].end 193.08096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 193.33409375
transcript.pyannote[36].end 194.14409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 194.38034375
transcript.pyannote[37].end 196.10159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 196.64159375
transcript.pyannote[38].end 199.78034375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 200.48909375
transcript.pyannote[39].end 202.07534375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 202.39596875
transcript.pyannote[40].end 207.28971875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 207.34034375
transcript.pyannote[41].end 209.88846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 210.10784375
transcript.pyannote[42].end 210.85034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 211.50846875
transcript.pyannote[43].end 215.89596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 216.33471875
transcript.pyannote[44].end 218.44409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 219.01784375
transcript.pyannote[45].end 222.98346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 223.21971875
transcript.pyannote[46].end 229.15971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 229.59846875
transcript.pyannote[47].end 230.32409375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 230.67846875
transcript.pyannote[48].end 236.71971875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 237.32721875
transcript.pyannote[49].end 240.41534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 240.75284375
transcript.pyannote[50].end 243.08159375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 243.13221875
transcript.pyannote[51].end 252.78471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 253.20659375
transcript.pyannote[52].end 257.76284375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 258.28596875
transcript.pyannote[53].end 260.54721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 260.88471875
transcript.pyannote[54].end 265.06971875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 265.39034375
transcript.pyannote[55].end 268.47846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 269.62596875
transcript.pyannote[56].end 271.26284375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 271.33034375
transcript.pyannote[57].end 274.80659375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 275.32971875
transcript.pyannote[58].end 278.24909375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 278.24909375
transcript.pyannote[59].end 278.26596875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 279.41346875
transcript.pyannote[60].end 281.05034375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 281.06721875
transcript.pyannote[61].end 286.31534375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 286.70346875
transcript.pyannote[62].end 287.91846875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 288.23909375
transcript.pyannote[63].end 292.44096875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 289.42034375
transcript.pyannote[64].end 289.89284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 292.44096875
transcript.pyannote[65].end 293.33534375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 292.89659375
transcript.pyannote[66].end 293.16659375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 293.33534375
transcript.pyannote[67].end 294.04409375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 294.04409375
transcript.pyannote[68].end 295.93409375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 295.95096875
transcript.pyannote[69].end 297.52034375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 297.58784375
transcript.pyannote[70].end 301.41846875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 301.63784375
transcript.pyannote[71].end 303.51096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 303.73034375
transcript.pyannote[72].end 305.26596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 305.95784375
transcript.pyannote[73].end 313.38284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 313.75409375
transcript.pyannote[74].end 322.22534375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 322.41096875
transcript.pyannote[75].end 323.18721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 323.33909375
transcript.pyannote[76].end 326.34284375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 326.34284375
transcript.pyannote[77].end 326.35971875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 327.03471875
transcript.pyannote[78].end 340.19721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 329.92034375
transcript.pyannote[79].end 330.64596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 332.80596875
transcript.pyannote[80].end 335.55659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 340.60221875
transcript.pyannote[81].end 341.71596875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 340.85534375
transcript.pyannote[82].end 341.44596875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 341.71596875
transcript.pyannote[83].end 351.50346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 344.01096875
transcript.pyannote[84].end 344.21346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 349.29284375
transcript.pyannote[85].end 353.07284375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 352.92096875
transcript.pyannote[86].end 359.82284375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 357.51096875
transcript.pyannote[87].end 358.33784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 359.26596875
transcript.pyannote[88].end 361.24034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 361.93221875
transcript.pyannote[89].end 377.96346875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 364.61534375
transcript.pyannote[90].end 368.14221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 378.01409375
transcript.pyannote[91].end 383.43096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 383.58284375
transcript.pyannote[92].end 384.66284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 385.27034375
transcript.pyannote[93].end 391.63221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 392.02034375
transcript.pyannote[94].end 400.22159375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 400.33971875
transcript.pyannote[95].end 403.44471875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 403.47846875
transcript.pyannote[96].end 408.77721875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 409.30034375
transcript.pyannote[97].end 412.03409375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 412.00034375
transcript.pyannote[98].end 412.28721875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 412.27034375
transcript.pyannote[99].end 416.35409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 416.35409375
transcript.pyannote[100].end 420.25221875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 420.69096875
transcript.pyannote[101].end 427.54221875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 426.22596875
transcript.pyannote[102].end 431.99721875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 429.55034375
transcript.pyannote[103].end 431.74409375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 431.99721875
transcript.pyannote[104].end 443.64096875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 443.86034375
transcript.pyannote[105].end 448.02846875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 448.56846875
transcript.pyannote[106].end 452.39909375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 452.46659375
transcript.pyannote[107].end 461.61284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 462.00096875
transcript.pyannote[108].end 462.03471875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 462.03471875
transcript.pyannote[109].end 462.52409375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 462.52409375
transcript.pyannote[110].end 462.60846875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 462.60846875
transcript.pyannote[111].end 466.21971875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 466.65846875
transcript.pyannote[112].end 467.97471875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 468.21096875
transcript.pyannote[113].end 469.12221875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 469.25721875
transcript.pyannote[114].end 470.48909375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 470.72534375
transcript.pyannote[115].end 476.44596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 476.24346875
transcript.pyannote[116].end 480.00659375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 480.25971875
transcript.pyannote[117].end 483.63471875
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 482.52096875
transcript.pyannote[118].end 483.09471875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 484.03971875
transcript.pyannote[119].end 494.83971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 495.36284375
transcript.pyannote[120].end 537.07784375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 537.71909375
transcript.pyannote[121].end 541.00971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 541.48221875
transcript.pyannote[122].end 550.08846875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 550.45971875
transcript.pyannote[123].end 555.08346875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 555.37034375
transcript.pyannote[124].end 560.02784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 560.77034375
transcript.pyannote[125].end 567.03096875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 567.04784375
transcript.pyannote[126].end 571.14846875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 571.55346875
transcript.pyannote[127].end 575.23221875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 576.39659375
transcript.pyannote[128].end 580.22721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 580.76721875
transcript.pyannote[129].end 581.25659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 581.44221875
transcript.pyannote[130].end 583.87221875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 584.00721875
transcript.pyannote[131].end 586.36971875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 587.07846875
transcript.pyannote[132].end 589.87971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 589.91346875
transcript.pyannote[133].end 590.72346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 591.43221875
transcript.pyannote[134].end 591.97221875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 591.97221875
transcript.pyannote[135].end 592.63034375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 593.15346875
transcript.pyannote[136].end 593.17034375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 593.17034375
transcript.pyannote[137].end 596.68034375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 597.25409375
transcript.pyannote[138].end 606.26534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 605.10096875
transcript.pyannote[139].end 605.21909375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 606.48471875
transcript.pyannote[140].end 609.10034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 609.53909375
transcript.pyannote[141].end 609.82596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 610.41659375
transcript.pyannote[142].end 611.76659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 612.10409375
transcript.pyannote[143].end 620.86221875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 616.18784375
transcript.pyannote[144].end 616.96409375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 620.84534375
transcript.pyannote[145].end 622.66784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 620.87909375
transcript.pyannote[146].end 620.89596875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 623.20784375
transcript.pyannote[147].end 625.82346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 625.82346875
transcript.pyannote[148].end 625.85721875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 625.87409375
transcript.pyannote[149].end 641.09534375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 626.12721875
transcript.pyannote[150].end 626.24534375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 640.80846875
transcript.pyannote[151].end 646.15784375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 643.57596875
transcript.pyannote[152].end 659.06721875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 656.19846875
transcript.pyannote[153].end 663.23534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 660.88971875
transcript.pyannote[154].end 666.45846875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 666.96471875
transcript.pyannote[155].end 675.94221875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 676.14471875
transcript.pyannote[156].end 679.14846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 679.36784375
transcript.pyannote[157].end 683.31659375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 683.36721875
transcript.pyannote[158].end 686.05034375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 686.70846875
transcript.pyannote[159].end 688.69971875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 688.90221875
transcript.pyannote[160].end 695.77034375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 696.12471875
transcript.pyannote[161].end 701.13659375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 701.54159375
transcript.pyannote[162].end 703.34721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 703.53284375
transcript.pyannote[163].end 709.00034375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 709.28721875
transcript.pyannote[164].end 709.77659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 710.04659375
transcript.pyannote[165].end 712.13909375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 712.37534375
transcript.pyannote[166].end 718.65284375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 718.93971875
transcript.pyannote[167].end 721.23471875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 721.48784375
transcript.pyannote[168].end 724.39034375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 724.47471875
transcript.pyannote[169].end 734.58284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 734.97096875
transcript.pyannote[170].end 739.84784375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 739.88159375
transcript.pyannote[171].end 744.82596875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 745.18034375
transcript.pyannote[172].end 746.54721875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 746.91846875
transcript.pyannote[173].end 752.03159375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 752.26784375
transcript.pyannote[174].end 768.58596875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 769.59846875
transcript.pyannote[175].end 773.15909375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 773.46284375
transcript.pyannote[176].end 774.20534375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 774.37409375
transcript.pyannote[177].end 788.92034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 789.67971875
transcript.pyannote[178].end 791.70471875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 792.10971875
transcript.pyannote[179].end 792.85221875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 793.40909375
transcript.pyannote[180].end 795.40034375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 795.70409375
transcript.pyannote[181].end 797.17221875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 797.71221875
transcript.pyannote[182].end 822.31596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 822.73784375
transcript.pyannote[183].end 829.04909375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 829.36971875
transcript.pyannote[184].end 831.05721875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 832.47471875
transcript.pyannote[185].end 835.30971875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 835.71471875
transcript.pyannote[186].end 837.06471875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 837.21659375
transcript.pyannote[187].end 839.08971875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 839.56221875
transcript.pyannote[188].end 841.53659375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 841.90784375
transcript.pyannote[189].end 866.27534375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 866.54534375
transcript.pyannote[190].end 877.17659375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 877.56471875
transcript.pyannote[191].end 878.89784375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 879.33659375
transcript.pyannote[192].end 884.38221875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 884.46659375
transcript.pyannote[193].end 893.34284375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 889.10721875
transcript.pyannote[194].end 889.14096875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 893.41034375
transcript.pyannote[195].end 913.03596875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 913.03596875
transcript.pyannote[196].end 913.08659375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 913.08659375
transcript.pyannote[197].end 913.64346875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 913.64346875
transcript.pyannote[198].end 915.93846875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 915.97221875
transcript.pyannote[199].end 918.97596875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 918.62159375
transcript.pyannote[200].end 924.35909375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 921.50721875
transcript.pyannote[201].end 934.23096875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 935.58096875
transcript.pyannote[202].end 945.50346875
transcript.whisperx[0].start 13.386
transcript.whisperx[0].end 17.487
transcript.whisperx[0].text 謝謝主席 有請我們卓院長麻煩再請卓院長備詢廖委員好院長好 院長辛苦了院長第一題我想要請問一下有關明年度各級的學校寒假跟農曆春假中間有三天你可以看一下簡報上面
transcript.whisperx[1].start 43.223
transcript.whisperx[1].end 68.982
transcript.whisperx[1].text 還有2月11號到2月13號這個空窗期然後馬上又接著是農曆的過年所以這事情其實有很多的家長抱怨大家都覺得學校這樣子的放假安排是很荒謬行程的規劃會大亂然後返鄉的車票也不好買最重要是孩子學習的連貫性也是一個問題更不要忘記冬季還是流感的流行季
transcript.whisperx[2].start 69.542
transcript.whisperx[2].end 97.582
transcript.whisperx[2].text 那很多公衛的學者有說盡量不要大規模的人流移動也可能造成醫療體系的負荷所以希望院長您看到這個狀況是不是可以體諒跟理解家長老師和這個醫療體系他們相關的擔憂是不是這個部分因為休假部分行政部門應該就可以去修改這個相關的規則可不可以請院長在這部分體諒一下學生和這些家長們相關的擔憂
transcript.whisperx[3].start 99.407
transcript.whisperx[3].end 122.844
transcript.whisperx[3].text 確實因為明年這個春節的時間的提前所以變成說當有一天這個未來補假的問題會產生問題228好像這一天我如果沒有記錯的話228這一天如果補假會變成沒有放假又變成補假所以院長我是希望說 重點在大年初四這一天對我是希望說您這個這個部分是不是可以去調整有非常多的家長在反映我們現在這個
transcript.whisperx[4].start 124.766
transcript.whisperx[4].end 150.302
transcript.whisperx[4].text 過春節連假的當中這一天我們有在注意到這三天有空窗期啊再請院長是不是回去研議一下看怎麼把它調整不然連貫在一起這個要跟教育單位去各個提醒謝謝米倫的提醒好不好那院長再來我想要請教一下你你有沒有看過這個美國白宮的經濟顧問委員會的主席米倫在入閣前他有提出的報告中的一項計畫左邊這邊
transcript.whisperx[5].start 154.039
transcript.whisperx[5].end 174.51
transcript.whisperx[5].text 他其實就是現在的海湖莊園協議那他提到關稅作為談判工具那他的目的是要逼迫其他國家升值他們的匯率並購買美國國債最終讓美元大幅貶值那這份計畫就是所謂的海湖莊園協議那他裡面也提到經過一連串的這個關稅懲罰性關稅之後貿易夥伴
transcript.whisperx[6].start 181.174
transcript.whisperx[6].end 199.481
transcript.whisperx[6].text 更容易接受某種形式的貨幣協議來換取降低關稅那麼現在其實很多人也是幾乎所有的財經學者都在說這個海湖狀元協議其實就是廣場協議2.0的版本那這個海湖狀元協議裡面還有一個核心理念院長
transcript.whisperx[7].start 200.726
transcript.whisperx[7].end 208.777
transcript.whisperx[7].text 請聽一下就是美國提供軍事保護那貿易夥伴需要付出的代價包含配合美國讓貨幣升值以換取
transcript.whisperx[8].start 211.893
transcript.whisperx[8].end 235.463
transcript.whisperx[8].text 這個美元貶值然後購買低利率的超長期美國國債來減輕美國的債務壓力那其實這聽起來是很瘋狂可是其實他很符合川普覺得盟友應該為美國軍事保護買單他不喜歡美元太強的這個概念那根據上面的內容以及相關的報導其實台灣可以說對美國來講是一個
transcript.whisperx[9].start 237.805
transcript.whisperx[9].end 251
transcript.whisperx[9].text 這個有關商周也說,這叫做夢幻客戶那有幾個條件台灣都滿足第一個,我們高度仰賴美國市場第二個,需要美國的保護第三個,也深怕我們美國視為我們是匯率操縱國
transcript.whisperx[10].start 253.283
transcript.whisperx[10].end 277.373
transcript.whisperx[10].text 所以也是被認為說我們是很快迅速在這個慘判中會妥協的那院長在這部分也很巧在五月一號行政院五月一號的時候稱台美完成首輪磋商那隔天五月二號匯率就大升值所以因此根據前面所說我想大家最想問的就是究竟我們是否在這個匯率上面跟美國有達成某種協議嗎
transcript.whisperx[11].start 280.492
transcript.whisperx[11].end 303.071
transcript.whisperx[11].text 5月1號的這個由副院長領軍的談判團跟美方的協議談判過程當中我再次重調沒有涉及任何的關稅問題是 好 我知道對不起 匯率問題我有看你們這兩天的說法其實基本上您跟楊建宗總裁還有賴清德總統都說是沒有涉及到匯率可是我從上述的幾個論證 幾個事件
transcript.whisperx[12].start 305.993
transcript.whisperx[12].end 326.082
transcript.whisperx[12].text 告訴你其實很難讓民眾相信但因為這麼巧就在這個時候台幣的匯率暴升不過我就想追問那請問目前你們說沒有但未來是否會將匯率跟這個超長期的低利率美國國債當成談判籌碼之一以換取低關稅以及美國提供的軍事保護
transcript.whisperx[13].start 327.179
transcript.whisperx[13].end 351.645
transcript.whisperx[13].text 目前談判的內容當然我們不便對外說但是我們有說明的現在談判的內容就是在對等關稅、非關稅貿易障礙、出國管制、經濟安全等等那也就是說您不排除把這兩項當成是未來的籌碼之一這個說法我早上說過不能這麼武斷的說排除不排除還沒有發生的事情還沒發生就是不排除啦其實院長應該就是這樣啦關稅跟非關稅
transcript.whisperx[14].start 355.227
transcript.whisperx[14].end 360.661
transcript.whisperx[14].text 貿易障礙還有出國管制另外還有經濟安全來做討論院長我要提醒你啦 就是說
transcript.whisperx[15].start 361.997
transcript.whisperx[15].end 384.352
transcript.whisperx[15].text 你剛剛這句話其實就是在算是避重就重你不能這樣解讀我絕對沒有這樣的意思其實簡單來講你是說不能排除好沒關係我想要跟院長說的是在1985年的廣場協議之後其實可以看到日本的下場就是失落了30年不管是經濟房地產或者是產業外移所以其實有這次的前車之鑒你可以看到
transcript.whisperx[16].start 385.313
transcript.whisperx[16].end 406.166
transcript.whisperx[16].text 跟美日談判的時候日本首相是強硬的表示不會為了協議犧牲日本的利益那我這裡要再請院長因為你剛剛還是沒有辦法講清楚嘛那我還是說希望站在國家利益不要一味的妥協不要短視應該為了我們國家的利益長遠的利益來著想不要讓這個海湖狀元協議變成台灣的廣場協議2.0好嗎
transcript.whisperx[17].start 409.893
transcript.whisperx[17].end 425.126
transcript.whisperx[17].text 這個總統在聲明當中已經說過了他會爭取國家的利益他也不會放過任何一個產業但是院長我跟你講這前後這樣子講起來其實以上不管執政團隊有沒有談或者是有沒有把它未來變成是一個籌碼之一
transcript.whisperx[18].start 426.508
transcript.whisperx[18].end 447.649
transcript.whisperx[18].text 議員我們在這裡要對國人做一個正面的宣示就是談判的過程沒有匯率院長您先聽我講完吧好我現在沒有在講這個我現在告訴你說不管到底有沒有相不相信這個你們講你們覺得我也都相信你們講的話但是現在的重點事實擺在眼前的是還沒變成籌碼之一我們台幣就已經迅速的升值
transcript.whisperx[19].start 448.75
transcript.whisperx[19].end 455.643
transcript.whisperx[19].text 已經迅速的升值所以我想要請教院長在台幣迅速升值跟關稅的雙夾擊之下這樣對於我國出口產業的短期衝擊和長期衝擊是什麼請教院長
transcript.whisperx[20].start 462.162
transcript.whisperx[20].end 479.198
transcript.whisperx[20].text 最近一周以來台幣的強勁的升值當然對我們的產業造成相當大的衝擊那我們現在包括央行也從過去穩定貨幣的相關政策之下我們持續的加強各種觀察院長你曉得短期衝擊是什麼嗎您可以舉幾個例子嗎
transcript.whisperx[21].start 480.279
transcript.whisperx[21].end 492.898
transcript.whisperx[21].text 我說的是這個禮拜以來啦上個禮拜到現在我會說針對匯率急速升值這件事情照理說應該已經要去評估了吧好沒關係院長你如果沒有辦法條列式的講出來我跟你講有幾個衝擊第一個
transcript.whisperx[22].start 495.402
transcript.whisperx[22].end 524.662
transcript.whisperx[22].text 然後利率跟獲利縮水這個很嚴重部分的代工業和製造業他一夕就是轉成本來比如說5%好了他迅速拉升了10%他就虧錢了這個單就虧錢了甚至我們地方上有產業界的龍頭說他一年出口已經被下訂了5000個貨櫃就迅速升值可能會虧爆已經打到建股他本來還不是出口美國他本來是歐洲市場所以他連這個本來他本來沒有想到這麼嚴重
transcript.whisperx[23].start 526.063
transcript.whisperx[23].end 554.361
transcript.whisperx[23].text 連匯率都變成這樣的情況之下他基本上是被打到見骨這是第一個所以跟我們的院長報告第一個短期的衝擊第二個是現金流跟他的財務壓力那第三個就是訂單的成本和採購延後第四個是避險的成本跟他們要操作的難度很拉高這些中小企業大企業可能還可以小企業就很辛苦還有另外同業的競爭力跟市場的地位這五個是短期衝擊
transcript.whisperx[24].start 555.482
transcript.whisperx[24].end 574.223
transcript.whisperx[24].text 那再來長期衝擊長期這樣子維持我們的匯率往上走請問院長我要告訴你的是第一個長期的它的毛利跟獲利也會持續的壓縮再來我們國家出口量跟訂單會縮減再來就是我們生產的產地跟供應鏈要重組
transcript.whisperx[25].start 576.468
transcript.whisperx[25].end 592.142
transcript.whisperx[25].text 所以再來最後一個是我們的產業的結構轉型的壓力所以我就想要我剛剛問的問題就是顯示出院長你們好像對於這個評估並沒有很詳細的評估啊這讓我們的中小企業很擔心我以為你這個
transcript.whisperx[26].start 593.208
transcript.whisperx[26].end 608.917
transcript.whisperx[26].text 非常有學術專業但是我跟你們報告央行長期對匯率的掌握就是定期在做這樣的評估只是現在針對現在快速上漲的這幾個幾天以來央行昨天已經對外宣布了他的說法
transcript.whisperx[27].start 610.489
transcript.whisperx[27].end 624.986
transcript.whisperx[27].text 那我再進一步問你那對於勞工的評估勞工權益的衝擊因為剛剛講是產業的部分那接下來最重要最關心的也就是我們的勞工我們產業支持不下去的時候失業勞工的狀況就可能會發生
transcript.whisperx[28].start 626.047
transcript.whisperx[28].end 645.14
transcript.whisperx[28].text 所以我們其實現在很擔心這個我剛剛也苦口婆心的在問的就是看到目前為止行政院好像對於這個關稅之外對於這個匯率的雙重的夾擊並沒有去做一個很詳盡的評估剛剛已經說了這個是讓我們很擔心的央行長期以來定期在做這些評估你又說沒有評估這不對啊其實這個題目啊
transcript.whisperx[29].start 647.521
transcript.whisperx[29].end 667.916
transcript.whisperx[29].text 上週二這個牛許廷委員也問了問你們有沒有做關稅以外有沒有做匯率衝擊的評估其實你們那時候回答就是沒有所以過了一個禮拜之後也是這樣我回答一樣啊央行定期都有來報告相關的內容昨天央行已經對外說了我們要點出嚴重性所以想要問你其實在我國現在美國市場簡單來講我們衝擊很大本來關稅是第一個衝擊
transcript.whisperx[30].start 672.839
transcript.whisperx[30].end 685.525
transcript.whisperx[30].text 美國的衝擊再來就是匯率提升之外就是出口商等等的然後再來就是我們國人就業問題那還有一些所謂的這個上市公司鼓勵有一些股民的權益也可能會受到這個影響
transcript.whisperx[31].start 686.775
transcript.whisperx[31].end 708.037
transcript.whisperx[31].text 所以其實我上次在質詢的時候也說這次4100億的這個預算裡面你們針對這個農工產業的補助是930億那其實我是認為遠遠不夠那對於勞犬的部分是150億所以這個部分我想要請這個院長剛剛講到衝擊評估的部分第一個是不是可以請院長盡速的
transcript.whisperx[32].start 710.899
transcript.whisperx[32].end 734.19
transcript.whisperx[32].text 將這個有關於關稅以及匯率的雙重夾擊之下的不同情境可不可以有個比較這個嚴謹的評估報告可以調給本席包含譬如說1比30有沒有辦法維穩在1比30左右那如果調到1比28或是調到1比25會發生什麼事情受衝擊的產業規模跟人數勞工的人數這是我們現在關心的事情要拜託院長
transcript.whisperx[33].start 735.169
transcript.whisperx[33].end 754.958
transcript.whisperx[33].text 另外外界也普遍認為新台幣的30元就是維持在1比30的部分是心理跟經濟的雙重關卡如果守不住的話也會恐怕不只是無薪假的問題也可能引發大規模的失業所以包含我們中部的關鍵產業工具機來講所以2024年的時候其實我們比2014年的工具機產業已經下滑65%
transcript.whisperx[34].start 761.881
transcript.whisperx[34].end 788.678
transcript.whisperx[34].text 可是今年又遇到這樣子的匯率升值很可能會滅團很擔心會有大量的倒閉潮和滅團那張忠謀董事長曾經也說過新台幣如果對美元如果升值1%他們的營業利率就會減少0.4%甚至有一些評估就是關於上市櫃公司可能縮減的是7.5%其實我們要講的是這些詳細的數據這些是一些金融行業估出來的
transcript.whisperx[35].start 789.744
transcript.whisperx[35].end 813.578
transcript.whisperx[35].text 所以我們其實最擔心的就是最終吳興跟柴源草的來臨那本席這邊希望因為過去你們上次是編930億那支持勞工150億可是你同時有拿了1500億來做所謂的任性但是其實我們在看的時候跟所謂的關稅跟我們的匯率跟民生的關聯不大那我這邊是覺得這1500億應該是不是歸回公務總預算裡面那應該把這1500億立即注入
transcript.whisperx[36].start 819.341
transcript.whisperx[36].end 830.806
transcript.whisperx[36].text 跟這些勞工產業有關的急迫需求所以本席的具體建議包含我們勞工的部分因為勞工部長也上來嘛其實我很擔心的是這個那我們希望具體建議的是
transcript.whisperx[37].start 832.506
transcript.whisperx[37].end 854.441
transcript.whisperx[37].text 我們希望勞工權益的部分在這4100立面的益利可以加高那包含著什麼包含著產業的部分的話就是金融支持因為現在已經不只是對美出口的基期的問題你上次說是10%基期的問題現在已經不只是這個部分是全部出口產業所以這部分也要滾動調整要請院長回去金融支持的部分要加大
transcript.whisperx[38].start 854.901
transcript.whisperx[38].end 876.821
transcript.whisperx[38].text 第二個勞動的部分我們希望可以增加我們的勞工權益就是我們安心及時上工這個東西可以請我們的部長因為這個過去在疫情期間是有這樣子的支持那現在因為要還有一定的程序要走因為它不是常態性的所以這個部分是不是可以請院長和部長回去去盡速的研議
transcript.whisperx[39].start 879.407
transcript.whisperx[39].end 900.684
transcript.whisperx[39].text 其實過去相關有的就業工具其實我們都已經盤點都已經做相關的準備了可是每一個工具要實施的時間點適合的時間點可能不同現在可能比較會先要先處理的事情是關於減班休息這個企業如果發生減班休息的話我們怎麼如何因應來支持勞工那剛剛廖委員說的安心及時上工我們其實也做了相關的盤點
transcript.whisperx[40].start 901.585
transcript.whisperx[40].end 919.951
transcript.whisperx[40].text 可是這部分比較是要來創造比較多的公部門的就業的機會來容納失業的勞工那這個部分我們已經做相關的盤點了可是它的實施的時間點可能會跟請問你們現在盤點的時程跟這個規模有沒有反映到現在即將可能來臨的這是第一件事我們現在的工具都已經做了盤點了
transcript.whisperx[41].start 920.911
transcript.whisperx[41].end 945.212
transcript.whisperx[41].text 現在是來看哪一個工具不同的適合的時間點我現在提出這兩個具體的要求請您回去研議這兩件事第二個是長年有的請你擴大它的人數和它的規模那再請你們提供一份報告給本席班好 謝謝廖偉祥委員的資訊麻煩請行政院將廖偉祥委員所取的資料交給偉祥辦公室謝謝卓院長 謝謝勞動部長備詢我們現在休息五分鐘