iVOD / 160866

Field Value
IVOD_ID 160866
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160866
日期 2025-05-01
會議資料.會議代碼 委員會-11-3-19-11
會議資料.會議代碼:str 第11屆第3會期經濟委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第11次全體委員會議
影片種類 Clip
開始時間 2025-05-01T10:57:56+08:00
結束時間 2025-05-01T11:07:01+08:00
影片長度 00:09:05
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/872e8bbe37846fc054531937b5c43c094de01e9c6ce952975144d4d67ecd09c12f620ca07494474b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:57:56 - 11:07:01
會議時間 2025-05-01T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第11次全體委員會議(事由:審查: 一、本院委員魯明哲等 19 人擬具「再生能源發展條例第十三條條文修正草案」案。 二、本院委員謝衣鳯等 17人擬具「再生能源發展條例第十三條條文修正草案」案。 【4月30日及5月1日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 8.92409375
transcript.pyannote[0].end 14.02034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 14.50971875
transcript.pyannote[1].end 17.90159375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 18.76221875
transcript.pyannote[2].end 19.60596875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 26.96346875
transcript.pyannote[3].end 27.46971875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.55409375
transcript.pyannote[4].end 30.05159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 30.27096875
transcript.pyannote[5].end 30.62534375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 31.06409375
transcript.pyannote[6].end 33.13971875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 33.39284375
transcript.pyannote[7].end 34.00034375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 34.21971875
transcript.pyannote[8].end 38.33721875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 39.14721875
transcript.pyannote[9].end 39.92346875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 41.30721875
transcript.pyannote[10].end 41.84721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 43.18034375
transcript.pyannote[11].end 43.55159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 43.78784375
transcript.pyannote[12].end 46.69034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 47.07846875
transcript.pyannote[13].end 48.81659375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 49.30596875
transcript.pyannote[14].end 51.53346875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 51.60096875
transcript.pyannote[15].end 52.37721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 52.37721875
transcript.pyannote[16].end 53.38971875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 53.79471875
transcript.pyannote[17].end 55.63409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 55.65096875
transcript.pyannote[18].end 56.20784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 56.73096875
transcript.pyannote[19].end 58.97534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 59.38034375
transcript.pyannote[20].end 61.43909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 61.55721875
transcript.pyannote[21].end 63.14346875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 64.42596875
transcript.pyannote[22].end 65.26971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 67.51409375
transcript.pyannote[23].end 72.12096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 69.84284375
transcript.pyannote[24].end 74.90534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 74.95596875
transcript.pyannote[25].end 75.02346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 75.19221875
transcript.pyannote[26].end 81.48659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 81.67221875
transcript.pyannote[27].end 84.18659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 84.40596875
transcript.pyannote[28].end 85.70534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 85.87409375
transcript.pyannote[29].end 87.46034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 87.73034375
transcript.pyannote[30].end 91.12221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 91.40909375
transcript.pyannote[31].end 91.91534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 92.45534375
transcript.pyannote[32].end 94.64909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 95.15534375
transcript.pyannote[33].end 96.15096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 96.60659375
transcript.pyannote[34].end 96.89346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 98.47971875
transcript.pyannote[35].end 99.50909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 99.88034375
transcript.pyannote[36].end 100.48784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 100.79159375
transcript.pyannote[37].end 102.41159375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 102.95159375
transcript.pyannote[38].end 103.79534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 103.96409375
transcript.pyannote[39].end 106.27596875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 108.08159375
transcript.pyannote[40].end 110.14034375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 110.32596875
transcript.pyannote[41].end 112.35096875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 112.99221875
transcript.pyannote[42].end 115.48971875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 115.86096875
transcript.pyannote[43].end 118.30784375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 118.72971875
transcript.pyannote[44].end 122.44221875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 122.81346875
transcript.pyannote[45].end 125.26034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 125.29409375
transcript.pyannote[46].end 129.76596875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 129.96846875
transcript.pyannote[47].end 130.37346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 130.37346875
transcript.pyannote[48].end 131.33534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 131.68971875
transcript.pyannote[49].end 134.79471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 135.03096875
transcript.pyannote[50].end 135.95909375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 136.24596875
transcript.pyannote[51].end 138.43971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 138.72659375
transcript.pyannote[52].end 140.90346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 142.33784375
transcript.pyannote[53].end 142.35471875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 142.35471875
transcript.pyannote[54].end 143.51909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 143.58659375
transcript.pyannote[55].end 144.97034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 146.01659375
transcript.pyannote[56].end 147.48471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 147.78846875
transcript.pyannote[57].end 148.64909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 149.12159375
transcript.pyannote[58].end 151.90596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 152.19284375
transcript.pyannote[59].end 155.51721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 156.12471875
transcript.pyannote[60].end 157.93034375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 159.19596875
transcript.pyannote[61].end 162.99284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 163.66784375
transcript.pyannote[62].end 164.61284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 164.95034375
transcript.pyannote[63].end 168.03846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 168.27471875
transcript.pyannote[64].end 168.61221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 168.98346875
transcript.pyannote[65].end 171.98721875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 172.22346875
transcript.pyannote[66].end 178.50096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 178.72034375
transcript.pyannote[67].end 181.97721875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 182.17971875
transcript.pyannote[68].end 182.70284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 183.19221875
transcript.pyannote[69].end 185.85846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 186.46596875
transcript.pyannote[70].end 187.22534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 187.57971875
transcript.pyannote[71].end 188.89596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 190.65096875
transcript.pyannote[72].end 190.73534375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 190.73534375
transcript.pyannote[73].end 190.93784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 190.93784375
transcript.pyannote[74].end 191.03909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 191.03909375
transcript.pyannote[75].end 199.40909375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 199.27409375
transcript.pyannote[76].end 199.34159375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 199.40909375
transcript.pyannote[77].end 199.44284375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 199.44284375
transcript.pyannote[78].end 199.45971875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 199.45971875
transcript.pyannote[79].end 208.03221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 200.69159375
transcript.pyannote[80].end 201.51846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 208.03221875
transcript.pyannote[81].end 211.54221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 211.87971875
transcript.pyannote[82].end 214.17471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 214.56284375
transcript.pyannote[83].end 216.97596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 217.41471875
transcript.pyannote[84].end 218.47784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 218.61284375
transcript.pyannote[85].end 228.56909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 228.92346875
transcript.pyannote[86].end 236.33159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 236.48346875
transcript.pyannote[87].end 238.00221875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 238.40721875
transcript.pyannote[88].end 239.45346875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 239.82471875
transcript.pyannote[89].end 242.69346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 243.01409375
transcript.pyannote[90].end 246.38909375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 247.67159375
transcript.pyannote[91].end 248.05971875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 248.04284375
transcript.pyannote[92].end 249.40971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 249.69659375
transcript.pyannote[93].end 252.32909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 252.58221875
transcript.pyannote[94].end 253.13909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 253.30784375
transcript.pyannote[95].end 254.89409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 255.72096875
transcript.pyannote[96].end 265.42409375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 266.03159375
transcript.pyannote[97].end 270.25034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 270.70596875
transcript.pyannote[98].end 274.67159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 275.38034375
transcript.pyannote[99].end 276.89909375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 277.21971875
transcript.pyannote[100].end 280.30784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 280.62846875
transcript.pyannote[101].end 282.04596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 282.24846875
transcript.pyannote[102].end 282.95721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 283.58159375
transcript.pyannote[103].end 284.61096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 284.88096875
transcript.pyannote[104].end 285.89346875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 286.45034375
transcript.pyannote[105].end 288.45846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 289.09971875
transcript.pyannote[106].end 290.02784375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 290.34846875
transcript.pyannote[107].end 295.30971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 296.10284375
transcript.pyannote[108].end 298.14471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 298.87034375
transcript.pyannote[109].end 299.74784375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 301.04721875
transcript.pyannote[110].end 303.24096875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 302.93721875
transcript.pyannote[111].end 305.73846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 305.16471875
transcript.pyannote[112].end 309.11346875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 309.31596875
transcript.pyannote[113].end 312.03284375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 310.88534375
transcript.pyannote[114].end 311.62784375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 312.03284375
transcript.pyannote[115].end 312.89346875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 312.89346875
transcript.pyannote[116].end 313.02846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 313.02846875
transcript.pyannote[117].end 313.34909375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 313.34909375
transcript.pyannote[118].end 313.36596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 314.07471875
transcript.pyannote[119].end 316.99409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 314.10846875
transcript.pyannote[120].end 314.69909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 316.99409375
transcript.pyannote[121].end 317.01096875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 317.71971875
transcript.pyannote[122].end 324.41909375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 322.90034375
transcript.pyannote[123].end 327.99659375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 327.99659375
transcript.pyannote[124].end 331.37159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 328.01346875
transcript.pyannote[125].end 328.72221875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 331.60784375
transcript.pyannote[126].end 336.61971875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 336.82221875
transcript.pyannote[127].end 337.66596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 338.05409375
transcript.pyannote[128].end 342.81284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 343.36971875
transcript.pyannote[129].end 346.05284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 346.54221875
transcript.pyannote[130].end 349.36034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 349.59659375
transcript.pyannote[131].end 350.57534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 350.84534375
transcript.pyannote[132].end 352.19534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 353.81534375
transcript.pyannote[133].end 355.55346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 353.91659375
transcript.pyannote[134].end 354.25409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 355.63784375
transcript.pyannote[135].end 361.03784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 361.03784375
transcript.pyannote[136].end 361.24034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 361.24034375
transcript.pyannote[137].end 364.66596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 361.51034375
transcript.pyannote[138].end 362.55659375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 364.66596875
transcript.pyannote[139].end 365.07096875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 365.07096875
transcript.pyannote[140].end 373.12034375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 367.80471875
transcript.pyannote[141].end 367.97346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 369.79596875
transcript.pyannote[142].end 370.36971875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 371.85471875
transcript.pyannote[143].end 372.36096875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 372.90096875
transcript.pyannote[144].end 375.34784375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 373.66034375
transcript.pyannote[145].end 373.77846875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 375.46596875
transcript.pyannote[146].end 377.38971875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 377.57534375
transcript.pyannote[147].end 397.90971875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 381.50721875
transcript.pyannote[148].end 381.67596875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 398.77034375
transcript.pyannote[149].end 400.44096875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 401.13284375
transcript.pyannote[150].end 404.17034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 404.54159375
transcript.pyannote[151].end 407.25846875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 407.96721875
transcript.pyannote[152].end 409.78971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 410.41409375
transcript.pyannote[153].end 411.15659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 411.69659375
transcript.pyannote[154].end 412.15221875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 412.52346875
transcript.pyannote[155].end 413.72159375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 413.92409375
transcript.pyannote[156].end 417.56909375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 417.88971875
transcript.pyannote[157].end 418.95284375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 419.34096875
transcript.pyannote[158].end 420.04971875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 420.30284375
transcript.pyannote[159].end 420.79221875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 421.46721875
transcript.pyannote[160].end 423.23909375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 423.47534375
transcript.pyannote[161].end 425.07846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 425.97284375
transcript.pyannote[162].end 428.47034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 428.95971875
transcript.pyannote[163].end 433.38096875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 434.03909375
transcript.pyannote[164].end 436.84034375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 435.03471875
transcript.pyannote[165].end 435.38909375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 436.63784375
transcript.pyannote[166].end 437.02596875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 437.16096875
transcript.pyannote[167].end 440.90721875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 440.97471875
transcript.pyannote[168].end 441.02534375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 441.04221875
transcript.pyannote[169].end 444.06284375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 444.43409375
transcript.pyannote[170].end 445.24409375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 445.54784375
transcript.pyannote[171].end 447.58971875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 447.92721875
transcript.pyannote[172].end 449.39534375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 449.53034375
transcript.pyannote[173].end 454.72784375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 454.98096875
transcript.pyannote[174].end 461.05596875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 461.08971875
transcript.pyannote[175].end 465.13971875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 465.44346875
transcript.pyannote[176].end 470.20221875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 470.72534375
transcript.pyannote[177].end 479.51721875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 479.60159375
transcript.pyannote[178].end 480.79971875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 481.01909375
transcript.pyannote[179].end 483.68534375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 484.59659375
transcript.pyannote[180].end 485.52471875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 485.84534375
transcript.pyannote[181].end 486.53721875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 486.67221875
transcript.pyannote[182].end 487.02659375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 487.12784375
transcript.pyannote[183].end 488.29221875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 488.61284375
transcript.pyannote[184].end 488.93346875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 489.38909375
transcript.pyannote[185].end 489.77721875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 490.13159375
transcript.pyannote[186].end 492.34221875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 492.67971875
transcript.pyannote[187].end 495.70034375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 495.95346875
transcript.pyannote[188].end 498.72096875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 498.88971875
transcript.pyannote[189].end 499.24409375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 499.63221875
transcript.pyannote[190].end 503.07471875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 503.56409375
transcript.pyannote[191].end 504.99846875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 504.52596875
transcript.pyannote[192].end 512.03534375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 512.03534375
transcript.pyannote[193].end 512.13659375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 512.45721875
transcript.pyannote[194].end 512.47409375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 512.47409375
transcript.pyannote[195].end 513.94221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 514.48221875
transcript.pyannote[196].end 514.49909375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 514.49909375
transcript.pyannote[197].end 516.91221875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 517.08096875
transcript.pyannote[198].end 522.51471875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 522.76784375
transcript.pyannote[199].end 524.21909375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 524.79284375
transcript.pyannote[200].end 526.12596875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 526.39596875
transcript.pyannote[201].end 529.39971875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 529.70346875
transcript.pyannote[202].end 532.65659375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 532.92659375
transcript.pyannote[203].end 539.27159375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 539.59221875
transcript.pyannote[204].end 543.38909375
transcript.whisperx[0].start 9.133
transcript.whisperx[0].end 38.098
transcript.whisperx[0].text 主席 在場的委員先進 列席的總經理事長 官員 會長 工作夥伴媒體記者女士先生有請我們經濟部郭部長和能源署的李署長郭部長 李署長委員好部長好 署長好 你看第一頁部長您是個企業家來自商業界商業上解決自己的問題和解決別人的問題最大的差別在哪裡
transcript.whisperx[1].start 39.215
transcript.whisperx[1].end 63.103
transcript.whisperx[1].text 直覺反應商業上他想來我直接看看您答案對不對您要給我評題一下解決自己的問題要花錢解決別人的問題可以賺錢您同意嗎這個同意那這個誰很會做新加坡跟台灣都很會對不對新加坡跟台灣都不產石油啊結果我們都有很大規模的石化業您覺得誰的規模比較大新加坡跟台灣
transcript.whisperx[2].start 67.577
transcript.whisperx[2].end 93.604
transcript.whisperx[2].text 新加坡這個我不清楚新加坡比較大這很特別嘛那他就供應給誰呢我們來看一下新加坡是世界三大煉油中心之一啊新加坡除了金融業跟觀光業之外他的行業幫他賺最多錢因為他周邊呢有產油的馬來西亞跟印尼他透過填海遭遇涉熱大量的煉油廠最重要是什麼麻六甲海峽呢世界上哇所有的郵輪都要從那邊經過是不是這樣好那往下看那
transcript.whisperx[3].start 98.553
transcript.whisperx[3].end 112.098
transcript.whisperx[3].text 新加坡的燃料它是供應給船舶用它的石化業那你覺得台灣的石化業是做來做什麼的做下游產品嘛對 而且我們不是自己用我們還出口對不對
transcript.whisperx[4].start 113.072
transcript.whisperx[4].end 140.55
transcript.whisperx[4].text 所以我們跟新加坡自己的船隊啊它在全世界只有占1.3% 一點點它煉那麼多的油都是給路過的船舶使用 賺人家的錢台灣的石化業進口那麼多的原油做出來的石化材料也不是自己用而已賣給別人 也賺別人錢 您同意嗎是好 往下看所以新加坡跟台灣都有船 航運船隊那剛剛我說了嘛新加坡的船隊當然在自己那邊加油啊台灣的船隊會在哪裡加油 你覺得
transcript.whisperx[5].start 142.366
transcript.whisperx[5].end 162.84
transcript.whisperx[5].text 看他的航線吧看航線我們往下看台灣的航運能力我們前貨運的十二大航商台灣佔了三名我們的運力快了市佔率在全球快了一成所以這個船隊是不是規模很龐大很龐大嘛但是他在哪裡加油呢我可以賣個關子往下看
transcript.whisperx[6].start 163.895
transcript.whisperx[6].end 188.759
transcript.whisperx[6].text 現在為了降低碳排應用而生的氫能產業你覺得在台灣他除了發電工業製造還有運輸哪一方面需求最迫切我們往下看我再給你看一下台灣要降低碳排所以我們的氫能未來要供應給發電供應給製造供應給運輸運輸又有陸海空你覺得哪一個占比最高哪個需求最迫切
transcript.whisperx[7].start 190.917
transcript.whisperx[7].end 215.82
transcript.whisperx[7].text 這個都在未來吧 現在氫能沒有那麼大氫能沒有那麼大 是我們要降低碳排那你覺得現在世界各國都在研究氫能怎麼樣來降低碳排要看成本了 報告委員我想這件事情喔 替代的能源是這樣就是方法有很多但是就商業的考量來講我們還是要考慮那個成本是 除了看成本之外 成本會用什麼來做碳稅就是一種成本 我們往下看其實呢 在運輸的領域當中
transcript.whisperx[8].start 217.741
transcript.whisperx[8].end 246.198
transcript.whisperx[8].text 陸海空啊現在對氫能需求最陰氣的是航運我們往下看喔IMO是國際海事組織它已經規定了為了降低溫室氣體排放在2028年開始如果你的船舶用有沒有用低碳燃料可以用課100美金到380美金的額外的碳稅所以部長你說對了嘛是不是價格出來了如果你不使用低碳燃料你就會被課碳稅嘛同意嘛齁所以你覺得航運是不是很迫切需要使用低碳燃料
transcript.whisperx[9].start 249.831
transcript.whisperx[9].end 274.317
transcript.whisperx[9].text 所以低碳燃料目前對我們航運的衝擊是什麼長榮他去年買了24艘假存的雙燃料未來他會再訂11艘24000噸的LNG的雙燃料連萬海都要用生質燃油導入那剛剛講了航運就都看很遠一艘船訂下去要用二三十年雖然是未來的事情現在就開始做準備是不是應該要這樣做企業家是不是要這樣做
transcript.whisperx[10].start 275.444
transcript.whisperx[10].end 299.664
transcript.whisperx[10].text 是嗎 好 往下看但是剛剛揭曉了 我們關谷的陽明海運呢它到哪裡去加低碳燃料 到韓國啊 您說的沒有錯輕對台灣來講 它是一個進口的 價格也比較貴所以我們的船隊 自家船隊要用的油 低碳燃料到別的國家去加台灣有沒有加住生質燃油的能力 署長有沒有
transcript.whisperx[11].start 301.107
transcript.whisperx[11].end 316.54
transcript.whisperx[11].text 台灣可以生產生殖奶油有這個生產的能力但是目前我們像現在那個玉米玉米都可以來做生殖奶油但是目前有沒有供應給我們傳播用呢因為市場太小我們台灣這個市場
transcript.whisperx[12].start 319.042
transcript.whisperx[12].end 342.628
transcript.whisperx[12].text 市場能不能講現在全世界的航運公司2028年要面對100到380美金對一個大的製造廠來講我講的不是工業製造我講的是船舶燃料往下看所以未來為了滿足IMO的溫體的排放所以台灣要思考有沒有可能幫這個船隊經過台灣海峽的船隊佔五分之一的世界航運量
transcript.whisperx[13].start 343.43
transcript.whisperx[13].end 351.911
transcript.whisperx[13].text 我們國家的船隊佔十分之一的航運量這些船舶有沒有可能在台灣加注低碳燃料這是不是一個市場部長你認為這是不是一個市場
transcript.whisperx[14].start 354.031
transcript.whisperx[14].end 381.588
transcript.whisperx[14].text 就我商業的看法啦就是通過台灣海峽來台灣加油的這個機率不高因為他要加低碳燃料嘛所以我的意思就是說其實我們高雄港來高雄港然後來轉運高雄港變成一個大型的轉運中心的時候那在這個地方加油這才有機會啦是的 沒有錯所以您說的沒有錯如果是在這邊有吞吐他跟新加坡的馬六甲海峽有吞吐的時候他會同時加注燃料
transcript.whisperx[15].start 382.108
transcript.whisperx[15].end 409.58
transcript.whisperx[15].text 主要說的是說其實在我們思考輕能產業的時候不要只有經濟部思考說用來替代我們的LNG的火力發電的燃料要思考到說舉例講啦有人說不要為了喝一杯牛奶去養一頭牛對不對但是如果你家有個小牧場你可以跟大牧場批很多原乳來加工成鮮乳賣給全社區的人所以台灣有沒有綠能 有嘛
transcript.whisperx[16].start 410.472
transcript.whisperx[16].end 433.024
transcript.whisperx[16].text 有沒有風電 有嘛 有沒有光電 有嘛 但是錢價就不夠啊 這些電呢直接供應電力供應都來不及了有沒有可能去煉傳播燃料 不可能但是我們如果有這個技術 我們可以進國外類似原料的氫原料煉製成傳播要用的低碳多元燃料 你覺得有沒有可能這樣做
transcript.whisperx[17].start 434.233
transcript.whisperx[17].end 460.686
transcript.whisperx[17].text 這都有可能啦商業模式都可以發展是的所以就是因為是未來的模式所以拜託您發展往下看最後結論因為我國的港區跟我國的船隊規模有提供多元低碳燃料家族的業務所以請經濟部研究一下國營事業包括台灣中油有沒有帶動民間產業煉製及供應港區多元低碳燃料的可能性可不可以去請能源署評估一下是我們可以評估那我當然我昨天也問過交通部長了
transcript.whisperx[18].start 461.306
transcript.whisperx[18].end 488.72
transcript.whisperx[18].text 未來如果要對我們的港區的船舶提供多元低碳燃料也要專用的管路跟儲槽這個就是交通部的事情了所以最後我要請經濟部還有能源署跟台電和中油本席將會召開公聽會我會請交通部跟經濟部共同來研究氫能產業除了在台灣除了經濟部取代陸運的汽車用汽油氫能代替汽油用這個
transcript.whisperx[19].start 490.388
transcript.whisperx[19].end 502.894
transcript.whisperx[19].text 輕能代替LNG的發電之外有沒有可能鎖定船舶燃料這個檜面來把台灣打造成一個類似新加坡為我們國際航運的船舶加注多元低碳燃料的可能性
transcript.whisperx[20].start 503.638
transcript.whisperx[20].end 525.858
transcript.whisperx[20].text 署長你要不要補充一下我們來研究啦我要跟委員報告所有的事情其實最後還是成本來做決定是的所以就是碳定價的問題如果說今天我們經濟部有辦法評估2030或2035年我們可以提供一個什麼樣的低碳燃料的定價那交通部就會告訴你
transcript.whisperx[21].start 526.628
transcript.whisperx[21].end 542.811
transcript.whisperx[21].text 這樣的定價的低碳燃料我的船舶需要多少的量你就可以去規劃產生這樣的低碳燃料的一個限制規模交通部也可以去規劃供應這樣的低碳燃料給船舶的一個港部設施這樣的一個建議你會不會去評估我們來評估啦好 謝謝