iVOD / 160536

Field Value
IVOD_ID 160536
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160536
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-19-10
會議資料.會議代碼:str 第11屆第3會期經濟委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-04-23T11:45:43+08:00
結束時間 2025-04-23T11:54:32+08:00
影片長度 00:08:49
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0fbcfae9b60a41f7a7fe8c6252e35fc4a9a3354dc8dbd3a626e815814e389f4405ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:45:43 - 11:54:32
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第10次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對我國產業之影響及因應之道」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 11.99534375
transcript.pyannote[0].end 17.69909375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 17.98596875
transcript.pyannote[1].end 22.72784375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 22.79534375
transcript.pyannote[2].end 23.99346875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 31.46909375
transcript.pyannote[3].end 31.92471875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 32.32971875
transcript.pyannote[4].end 38.28659375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 39.23159375
transcript.pyannote[5].end 39.58596875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 39.97409375
transcript.pyannote[6].end 43.04534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 43.39971875
transcript.pyannote[7].end 49.27221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 49.47471875
transcript.pyannote[8].end 55.58346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 55.70159375
transcript.pyannote[9].end 57.72659375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 57.87846875
transcript.pyannote[10].end 61.59096875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 63.39659375
transcript.pyannote[11].end 65.03346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 65.10096875
transcript.pyannote[12].end 74.11221875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 75.20909375
transcript.pyannote[13].end 75.64784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 75.68159375
transcript.pyannote[14].end 76.76159375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 76.93034375
transcript.pyannote[15].end 77.53784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 78.21284375
transcript.pyannote[16].end 79.30971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 79.63034375
transcript.pyannote[17].end 81.52034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 81.63846875
transcript.pyannote[18].end 82.75221875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 85.21596875
transcript.pyannote[19].end 85.70534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 85.36784375
transcript.pyannote[20].end 85.97534375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 85.97534375
transcript.pyannote[21].end 86.59971875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 87.05534375
transcript.pyannote[22].end 88.37159375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 88.74284375
transcript.pyannote[23].end 92.97846875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 92.97846875
transcript.pyannote[24].end 99.05346875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 99.40784375
transcript.pyannote[25].end 103.45784375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 103.93034375
transcript.pyannote[26].end 105.92159375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 105.95534375
transcript.pyannote[27].end 107.10284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 107.33909375
transcript.pyannote[28].end 108.87471875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 109.06034375
transcript.pyannote[29].end 111.05159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 111.62534375
transcript.pyannote[30].end 112.06409375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 112.26659375
transcript.pyannote[31].end 116.33346875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 117.32909375
transcript.pyannote[32].end 117.98721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 117.98721875
transcript.pyannote[33].end 118.03784375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 118.03784375
transcript.pyannote[34].end 123.97784375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 123.97784375
transcript.pyannote[35].end 133.86659375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 126.82971875
transcript.pyannote[36].end 126.89721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 134.28846875
transcript.pyannote[37].end 137.27534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 137.59596875
transcript.pyannote[38].end 138.50721875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 139.24971875
transcript.pyannote[39].end 142.13534375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 145.08846875
transcript.pyannote[40].end 146.43846875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 146.43846875
transcript.pyannote[41].end 147.28221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 147.28221875
transcript.pyannote[42].end 153.79596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 154.13346875
transcript.pyannote[43].end 155.60159375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 155.24721875
transcript.pyannote[44].end 156.27659375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 156.27659375
transcript.pyannote[45].end 157.25534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 157.77846875
transcript.pyannote[46].end 158.63909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 158.97659375
transcript.pyannote[47].end 159.44909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 161.23784375
transcript.pyannote[48].end 166.65471875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 166.97534375
transcript.pyannote[49].end 168.07221875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 168.24096875
transcript.pyannote[50].end 172.13909375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 172.44284375
transcript.pyannote[51].end 176.17221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 176.32409375
transcript.pyannote[52].end 176.71221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 176.88096875
transcript.pyannote[53].end 179.00721875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 179.19284375
transcript.pyannote[54].end 182.17971875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 182.61846875
transcript.pyannote[55].end 185.89221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 188.96346875
transcript.pyannote[56].end 192.22034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 192.33846875
transcript.pyannote[57].end 195.03846875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 196.57409375
transcript.pyannote[58].end 200.97846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 200.97846875
transcript.pyannote[59].end 204.64034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 204.72471875
transcript.pyannote[60].end 205.80471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 206.12534375
transcript.pyannote[61].end 209.11221875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 209.43284375
transcript.pyannote[62].end 212.72346875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 212.99346875
transcript.pyannote[63].end 215.10284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 215.25471875
transcript.pyannote[64].end 218.14034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 218.73096875
transcript.pyannote[65].end 219.33846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 220.16534375
transcript.pyannote[66].end 220.77284375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 221.27909375
transcript.pyannote[67].end 221.98784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 222.37596875
transcript.pyannote[68].end 222.94971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 223.42221875
transcript.pyannote[69].end 224.95784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 225.39659375
transcript.pyannote[70].end 227.16846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 228.23159375
transcript.pyannote[71].end 229.66596875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 231.03284375
transcript.pyannote[72].end 231.94409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 232.28159375
transcript.pyannote[73].end 234.07034375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 234.17159375
transcript.pyannote[74].end 234.69471875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 234.88034375
transcript.pyannote[75].end 237.27659375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 238.28909375
transcript.pyannote[76].end 238.71096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 238.71096875
transcript.pyannote[77].end 239.48721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 239.67284375
transcript.pyannote[78].end 240.75284375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 241.12409375
transcript.pyannote[79].end 241.84971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 242.42346875
transcript.pyannote[80].end 245.32596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 245.54534375
transcript.pyannote[81].end 247.90784375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 248.56596875
transcript.pyannote[82].end 250.47284375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 250.32096875
transcript.pyannote[83].end 250.40534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 250.47284375
transcript.pyannote[84].end 250.69221875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 250.48971875
transcript.pyannote[85].end 253.84784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 253.84784375
transcript.pyannote[86].end 260.12534375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 255.09659375
transcript.pyannote[87].end 255.40034375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 261.27284375
transcript.pyannote[88].end 261.28971875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 261.28971875
transcript.pyannote[89].end 262.03221875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 262.03221875
transcript.pyannote[90].end 263.97284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 263.97284375
transcript.pyannote[91].end 264.47909375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 264.47909375
transcript.pyannote[92].end 264.66471875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 264.66471875
transcript.pyannote[93].end 270.14909375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 264.98534375
transcript.pyannote[94].end 265.59284375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 270.43596875
transcript.pyannote[95].end 272.42721875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 272.64659375
transcript.pyannote[96].end 273.18659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 273.76034375
transcript.pyannote[97].end 274.63784375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 274.38471875
transcript.pyannote[98].end 274.45221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 274.45221875
transcript.pyannote[99].end 274.57034375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 274.63784375
transcript.pyannote[100].end 275.95409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 275.65034375
transcript.pyannote[101].end 277.64159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 275.95409375
transcript.pyannote[102].end 276.08909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 276.49409375
transcript.pyannote[103].end 276.56159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 277.64159375
transcript.pyannote[104].end 277.74284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 279.53159375
transcript.pyannote[105].end 280.00409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 280.59471875
transcript.pyannote[106].end 287.27721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 283.48034375
transcript.pyannote[107].end 285.40409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 286.16346875
transcript.pyannote[108].end 289.77471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 289.92659375
transcript.pyannote[109].end 296.42346875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 292.44096875
transcript.pyannote[110].end 293.04846875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 295.24221875
transcript.pyannote[111].end 296.98034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 297.41909375
transcript.pyannote[112].end 302.29596875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 301.04721875
transcript.pyannote[113].end 304.50659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 302.51534375
transcript.pyannote[114].end 303.25784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 304.94534375
transcript.pyannote[115].end 312.52221875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 312.64034375
transcript.pyannote[116].end 313.43346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 313.73721875
transcript.pyannote[117].end 315.27284375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 315.59346875
transcript.pyannote[118].end 316.97721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 317.83784375
transcript.pyannote[119].end 319.94721875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 320.38596875
transcript.pyannote[120].end 321.28034375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 321.51659375
transcript.pyannote[121].end 321.83721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 322.02284375
transcript.pyannote[122].end 322.59659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 323.32221875
transcript.pyannote[123].end 324.65534375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 325.17846875
transcript.pyannote[124].end 326.51159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 326.76471875
transcript.pyannote[125].end 327.50721875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 329.04284375
transcript.pyannote[126].end 329.29596875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 329.92034375
transcript.pyannote[127].end 331.27034375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 331.27034375
transcript.pyannote[128].end 332.08034375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 332.13096875
transcript.pyannote[129].end 332.16471875
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 332.16471875
transcript.pyannote[130].end 332.29971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 332.29971875
transcript.pyannote[131].end 335.08409375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 332.35034375
transcript.pyannote[132].end 332.43471875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 336.14721875
transcript.pyannote[133].end 345.93471875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 341.90159375
transcript.pyannote[134].end 342.23909375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 346.00221875
transcript.pyannote[135].end 347.60534375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 347.94284375
transcript.pyannote[136].end 350.22096875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 350.22096875
transcript.pyannote[137].end 353.17409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 350.23784375
transcript.pyannote[138].end 350.99721875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 353.86596875
transcript.pyannote[139].end 357.93284375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 358.52346875
transcript.pyannote[140].end 360.05909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 360.21096875
transcript.pyannote[141].end 361.37534375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 361.61159375
transcript.pyannote[142].end 363.70409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 364.15971875
transcript.pyannote[143].end 365.13846875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 365.86409375
transcript.pyannote[144].end 368.07471875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 368.37846875
transcript.pyannote[145].end 372.73221875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 373.20471875
transcript.pyannote[146].end 374.06534375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 374.58846875
transcript.pyannote[147].end 375.29721875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 375.71909375
transcript.pyannote[148].end 378.70596875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 379.44846875
transcript.pyannote[149].end 381.38909375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 382.03034375
transcript.pyannote[150].end 384.34221875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 385.70909375
transcript.pyannote[151].end 386.09721875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 386.51909375
transcript.pyannote[152].end 388.15596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 388.51034375
transcript.pyannote[153].end 389.67471875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 390.68721875
transcript.pyannote[154].end 393.58971875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 394.77096875
transcript.pyannote[155].end 397.80846875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 398.98971875
transcript.pyannote[156].end 399.42846875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 399.42846875
transcript.pyannote[157].end 399.44534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 399.85034375
transcript.pyannote[158].end 400.03596875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 400.03596875
transcript.pyannote[159].end 400.23846875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 400.23846875
transcript.pyannote[160].end 400.69409375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 400.69409375
transcript.pyannote[161].end 408.96284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 408.96284375
transcript.pyannote[162].end 415.52721875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 415.57784375
transcript.pyannote[163].end 416.72534375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 416.99534375
transcript.pyannote[164].end 420.33659375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 420.57284375
transcript.pyannote[165].end 424.99409375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 425.46659375
transcript.pyannote[166].end 428.01471875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 431.96346875
transcript.pyannote[167].end 433.81971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 434.34284375
transcript.pyannote[168].end 435.00096875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 435.50721875
transcript.pyannote[169].end 437.05971875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 437.31284375
transcript.pyannote[170].end 439.16909375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 439.60784375
transcript.pyannote[171].end 441.70034375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 442.32471875
transcript.pyannote[172].end 443.35409375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 444.04596875
transcript.pyannote[173].end 445.86846875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 445.91909375
transcript.pyannote[174].end 446.56034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 446.93159375
transcript.pyannote[175].end 449.61471875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 450.59346875
transcript.pyannote[176].end 476.53034375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 453.64784375
transcript.pyannote[177].end 454.13721875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 455.68971875
transcript.pyannote[178].end 456.06096875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 462.55784375
transcript.pyannote[179].end 462.69284375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 462.84471875
transcript.pyannote[180].end 463.24971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 464.11034375
transcript.pyannote[181].end 465.46034375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 467.06346875
transcript.pyannote[182].end 467.62034375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 470.92784375
transcript.pyannote[183].end 471.43409375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 476.26034375
transcript.pyannote[184].end 482.77409375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 481.98096875
transcript.pyannote[185].end 483.11159375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 483.11159375
transcript.pyannote[186].end 486.85784375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 487.22909375
transcript.pyannote[187].end 489.05159375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 489.32159375
transcript.pyannote[188].end 493.08471875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 493.47284375
transcript.pyannote[189].end 494.73846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 495.53159375
transcript.pyannote[190].end 496.61159375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 497.23596875
transcript.pyannote[191].end 498.88971875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 500.84721875
transcript.pyannote[192].end 502.29846875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 503.64846875
transcript.pyannote[193].end 507.78284375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 509.84159375
transcript.pyannote[194].end 511.29284375
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 512.96346875
transcript.pyannote[195].end 512.98034375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 512.98034375
transcript.pyannote[196].end 513.03096875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 513.03096875
transcript.pyannote[197].end 515.49471875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 515.49471875
transcript.pyannote[198].end 515.51159375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 515.71409375
transcript.pyannote[199].end 515.88284375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 515.88284375
transcript.pyannote[200].end 515.96721875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 515.96721875
transcript.pyannote[201].end 521.48534375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 522.83534375
transcript.pyannote[202].end 523.99971875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 523.99971875
transcript.pyannote[203].end 524.59034375
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 524.59034375
transcript.pyannote[204].end 526.44659375
transcript.whisperx[0].start 12.428
transcript.whisperx[0].end 38.03
transcript.whisperx[0].text 好 謝謝主席 主席詹老遠 先進列席的政務機關長 官員會長 工作夥伴 媒體記者 女士先生有請我們經濟部郭部長 還有產發署邱署長 以及國貿署的劉署長好 請上訴官員各位好部長好 兩位署長好 今天是要因應著美國的國安調查 但是我想請教一下 請看下一頁
transcript.whisperx[1].start 39.298
transcript.whisperx[1].end 61.343
transcript.whisperx[1].text 副長川普2.0關稅有兩種一個是IEEPA這是國際緊急經濟權利法是總統行使的給台灣跟各國暫緩了90天但是現在我們遇到的是什麼是232條款是屬於美國貿易擴張法第232條款這當中已經開針的已經是汽車跟鋼鐵現在真的調查中的是半導體跟藥品是不是這樣
transcript.whisperx[2].start 63.702
transcript.whisperx[2].end 82.43
transcript.whisperx[2].text 那讀到這邊所示這個232呢就是第四項受調查產品未符合國家安全標準所需要的成長條件主要是這一項嗎是不是部長是的好那我們來看一下那目前台灣已經對蘇美的半導體進行國安調查對台灣有什麼影響
transcript.whisperx[3].start 85.276
transcript.whisperx[3].end 110.495
transcript.whisperx[3].text 我看你們的報告啊對我們的當然這個是將來他關稅的一個依據不是啊 可是我看不出我們的半導體 你看喔台灣對美國出口半導體相關金額是八六八百億啊占全部對美國出口一億四億的將近八成所以半導體 藥品這幾個 汽車 這個都是但是我看我們的結果有受國安調查影響嗎
transcript.whisperx[4].start 111.637
transcript.whisperx[4].end 112.842
transcript.whisperx[4].text 我們有美國會關心我們的半島體蘇美有影響到國安嗎
transcript.whisperx[5].start 117.352
transcript.whisperx[5].end 140.871
transcript.whisperx[5].text 他會調查我們半導體哪些部分跟他國安有影響的對國安有影響的部分應該都是在先進製程先進製程好那我們先進製程應該不會有問題所以我是說你們後來講的有沒有講到先進製程所以我看結果的結論往下看真正要川普關心的會影響到我們的有沒有貨幣操縱台灣是不是被列入貨幣操縱的觀察名單是嗎
transcript.whisperx[6].start 145.16
transcript.whisperx[6].end 159.091
transcript.whisperx[6].text 是嗎是嗎但是我覺得經濟部門管的呢應該是有沒有可能轉運逃避關稅是不是這樣子這點還是習慘天是美國會最關切的是嗎好那我們現在看所以你來看喔在
transcript.whisperx[7].start 161.274
transcript.whisperx[7].end 185.764
transcript.whisperx[7].text 美國明天就要跟韓國協商了 結果韓國搶在新奇就公布了稀產地調查 先置清嘛的確韓國在2024年有將近8億是透過韓國稀產地賣到美國去單單今年的第一劑就已經接近了去年 前三個月接近去年的85%所以韓國是很認真的 包括什麼監視器啦這個韓國很認真的在置清嘛 那台灣呢 台灣有沒有
transcript.whisperx[8].start 188.988
transcript.whisperx[8].end 217.551
transcript.whisperx[8].text 台灣有沒有類似像韓國這樣 對自己做一個整體的調查有沒有去查違規金額啦 貨物流向的地點啦 有沒有去查我們在2月份就已經把這個監測系統建置完成所以有在那查了 跟韓國一樣 要自清對不對好 那我們來看一下但是呢 你看喔 美國在昨天就出手了喔他說對東南亞祭出高關稅防太陽能洗產地現在對美國洗產地 中國透過其他東亞國家洗產地到美國的是哪幾個國家
transcript.whisperx[9].start 218.809
transcript.whisperx[9].end 247.857
transcript.whisperx[9].text 是不是越南?泰國?馬來西亞?柬埔寨?柬埔寨高達克魯多少?3521%欸部長有沒有看過這麼高的所以表示什麼?美國很在意你們東南亞國家幫中國洗產地太陽能板到美國是不是這樣?是沒錯嘛好那我們往下看那請問台灣有沒有類似的情況?有沒有中國的太陽能板透過台灣洗產地到美國去有沒有?
transcript.whisperx[10].start 249.059
transcript.whisperx[10].end 259.689
transcript.whisperx[10].text 應該是沒有因為我們中國的太陽能產品是不能進口的那很好了那有沒有中國的太陽能製品透過越南這些國家的產地到台灣來
transcript.whisperx[11].start 261.468
transcript.whisperx[11].end 275.857
transcript.whisperx[11].text 我們會對這一個部分嚴格的做輸入的規定我們問一下因為實務上可能兩位署長這是應該國貿署還是產貿署管的產貿署還是能源署因為能源署沒有來誰知道來請說能源署有來有來能源署請說有沒有
transcript.whisperx[12].start 280.706
transcript.whisperx[12].end 287.194
transcript.whisperx[12].text 是 這個沒有 我們以前已經處理過了以前有處理過就是中國的光電板透過越南西產地送來台灣我們當時是懷疑 所以我們有建立機制台灣一定要 沒有 現在沒有了你不敢說以前沒有
transcript.whisperx[13].start 297.512
transcript.whisperx[13].end 322.427
transcript.whisperx[13].text 以前我們有防堵措施 然後實施之後我們可以確認我為了這個給你們開過會啦來 部長請回 我們部長來所以其實台灣真的要防止的不是中國或透過台灣的稀產地賣到美國去是台灣成為稀產地的受害者有沒有兩個 一個是供電板 一個呢有沒有中國的汽車零準件透過第三地稀產地來到台灣 賣到台灣來 有沒有有啊有 哪一個
transcript.whisperx[14].start 323.548
transcript.whisperx[14].end 334.933
transcript.whisperx[14].text 這邊有寫嘛中華嘛是不是這些汽車公司那有沒有防堵我們現在已經防堵了已經防堵了 對你們用什麼方式防堵呢哪位署長講一下怎麼防堵
transcript.whisperx[15].start 336.172
transcript.whisperx[15].end 352.314
transcript.whisperx[15].text 報告委員現在的話我們就要求他一定要一定比例的這個國產的這個比例一定比例多少第1年15%那最終要多少到35%的樣子部長我跟你說明一下因為我們在財政會過來了
transcript.whisperx[16].start 353.902
transcript.whisperx[16].end 374.779
transcript.whisperx[16].text 在上週吳秉立委員問了財政部一個問題就是產地的問題對我們國家來講只要這個物品在台灣的價值部分超過35%就算是台灣產的但是美國在對進口來的貨物只要你含有35%的中國零件他就認為是中國的那請問一輛車它的零組件從中國進來的超過35%一半
transcript.whisperx[17].start 379.503
transcript.whisperx[17].end 396.853
transcript.whisperx[17].text 在台灣組裝呢 台灣也加了一半那請問這輛車在台灣是不是認定是台灣產的是嘛 因為35%嘛 它一半嘛可是賣到美國去啟動另外一半是中國產製的 那美國認為它是誰產的這是考古題啊 上個星期無體內委員考過財政委員會了
transcript.whisperx[18].start 399.039
transcript.whisperx[18].end 427.886
transcript.whisperx[18].text 怎麼辦我們會建議這個業者出國前跟美國的客戶溝通那向美國的海關申請原產地的預算但是我不認為台灣有能力從中國進口一半的零組件在台灣加工一半之後再賣到美國去我擔心的是台灣的汽車廠進口超過一半的零組件在台灣從中國進口一半的零組件到台灣加工35%之後就對我們的消費者宣稱這是台灣的車有沒有可能
transcript.whisperx[19].start 431.997
transcript.whisperx[19].end 449.363
transcript.whisperx[19].text 有沒有可能 有嘛 署長都點頭了嘛所以剛剛那個35%我不滿意我希望台灣比照美國如果來到台灣要宣稱台灣出產的車子不只是35%必須台灣加值的也不能有超過35%是中國的 可以嗎
transcript.whisperx[20].start 450.646
transcript.whisperx[20].end 470.52
transcript.whisperx[20].text 我們飛鴻供應鏈是我們現在積極在我們沒有供應給美國我們自己用的車我的意思就是說我們現在在發展的供應鏈我們希望排除中國的供應鏈所以也不能夠至少不能發作專屬方法所以汽車也會比較跟這個電子自動性商品一樣但是這個需要有一點時間
transcript.whisperx[21].start 472.121
transcript.whisperx[21].end 495.756
transcript.whisperx[21].text 所以我們現在35%以後搞不好我們會再進一步往前剛剛邱署長說的是本國價值35%我是說含中國的成分不能多於35%所以你們有一個方法怎麼檢舉稀產地現在貿易法第17條之一有民眾可以檢舉喔檢舉出進口人的產地標示不實會予以獎勵你們的獎勵是什麼你知道嗎獎勵辦法第6條頒給獎勵狀跟獎座
transcript.whisperx[22].start 501.262
transcript.whisperx[22].end 522.535
transcript.whisperx[22].text 這個誰管的貿易法誰管的署長你覺得有人會領獎狀去檢舉人家從中國進口西產地嗎不會那部長你覺得該怎麼做我們大概就是從罰款裡面再撥撥個一半給他太好了完全命中希望你們願意把這個提列罰款作為檢舉人獎金你答應了謝謝我們考慮這樣來做嘛才有誘因嘛
gazette.lineno 825
gazette.blocks[0][0] 鍾委員佳濱:(11時45分)謝謝主席。主席、在場委員先進、列席政府機關首長官員、會場工作夥伴、媒體記者女士先生。有請經濟部郭部長、產發署邱署長以及國貿署劉署長。
gazette.blocks[1][0] 主席:好,請上述官員。
gazette.blocks[2][0] 郭部長智輝:委員好。
gazette.blocks[3][0] 鍾委員佳濱:部長好、兩位署長好。今天是要因應著美國的國安調查,但是我想請教一下,部長,川普2.0關稅有兩種,一個是IEEPA,這是國際緊急經濟權力法,是總統行使的,給臺灣跟各國暫緩90天,但是現在我們遇到的是什麼?是232條款,是屬於美國貿易擴張法第232條款,這當中已經開徵的是汽車跟鋼鐵,正在調查中的是半導體跟藥品,是不是這樣?
gazette.blocks[4][0] 郭部長智輝:對。
gazette.blocks[5][0] 鍾委員佳濱:如這邊所示,這個232條款就是第四項「受調查產品為符合國家安全標準所需要之成長條件」,主要是這一項嗎?是不是?部長。
gazette.blocks[6][0] 郭部長智輝:是的。
gazette.blocks[7][0] 鍾委員佳濱:好,那我們來看一下,目前已經對臺灣輸美的半導體進行國安調查,對臺灣有什麼影響?我是看你們的報告啊!
gazette.blocks[8][0] 郭部長智輝:這個……
gazette.blocks[9][0] 鍾委員佳濱:你說。
gazette.blocks[10][0] 郭部長智輝:對我們來說,這個當然是將來關稅的一個依據。
gazette.blocks[11][0] 鍾委員佳濱:不是啊,可是我看不出我們的半導體,你看喔,臺灣對美國出口半導體相關金額是868億,占全部對美國出口1,114億的將近八成,所以半導體、藥品、汽車這幾個都是,但是我看我們的結果,有受國安調查影響嗎?美國會關心我們的半導體輸美有影響到他的國安嗎?
gazette.blocks[12][0] 郭部長智輝:他會調查我們半導體,這個……
gazette.blocks[13][0] 鍾委員佳濱:哪些部分是跟他國安有影響的?
gazette.blocks[14][0] 郭部長智輝:對國安有影響的部分應該都是在先進製程。
gazette.blocks[15][0] 鍾委員佳濱:先進製程喔。
gazette.blocks[16][0] 郭部長智輝:對。
gazette.blocks[17][0] 鍾委員佳濱:我們先進製程應該不會有問題,所以我是說你們後來講的也沒講到先進製程啊,所以往下看我的結論,川普關心的會影響到我們的有沒有貨幣操縱?臺灣是不是被列入貨幣操縱的觀察名單?是嘛?
gazette.blocks[18][0] 郭部長智輝:我們是觀察名單。
gazette.blocks[19][0] 鍾委員佳濱:但是我覺得經濟部管的應該是有沒有可能轉運逃避關稅,是不是這樣子?洗產地這一點還是美國會最關切的,是嗎?
gazette.blocks[20][0] 郭部長智輝:是。
gazette.blocks[21][0] 鍾委員佳濱:好,那我們往下看。你看,美國明天就要跟韓國協商了,結果韓國搶在星期一就公布了洗產地調查,先自清嘛,的確韓國在2024年有將近8億是透過韓國洗產地賣到美國去,單單今年的第一季前3個月就已經接近去年的85%,所以韓國是很認真的,包括監視器什麼的,韓國很認真的在自清,那臺灣呢?臺灣有沒有?臺灣有沒有類似像韓國這樣對自己做一個整體的調查,有沒有去查違規金額、貨物流向地點,有沒有去查?
gazette.blocks[22][0] 郭部長智輝:我們在2月份就已經把這個監測系統建置完成。
gazette.blocks[23][0] 鍾委員佳濱:所以有在查了,跟韓國一樣要自清,對不對?好,那我們來看一下,但是你看喔,美國在昨天就出手了,他說要對東南亞祭出高關稅防太陽能洗產地,現在中國透過其他東亞國家洗產地到美國都是哪幾個國家?是不是越南、泰國、馬來西亞、柬埔寨?柬埔寨被課了高達多少?3521%!部長有沒有看過這麼高的?所以表示什麼?美國很在意東南亞國家幫中國洗產地把太陽能板輸到美國?是不是這樣?
gazette.blocks[24][0] 郭部長智輝:是的。
gazette.blocks[25][0] 鍾委員佳濱:沒錯嘛?好,那我們往下看,請問臺灣有沒有類似的情況?有沒有中國的太陽能板透過臺灣洗產地輸到美國去?有沒有?
gazette.blocks[26][0] 郭部長智輝:應該是沒有。
gazette.blocks[27][0] 鍾委員佳濱:應該是沒有,但是……
gazette.blocks[28][0] 郭部長智輝:因為中國的太陽能產品是不能進口的。
gazette.blocks[29][0] 鍾委員佳濱:不能進口?很好,那有沒有中國的太陽能製品透過越南這些國家洗了產地到臺灣來?
gazette.blocks[30][0] 郭部長智輝:我們會對這部分嚴格做輸入的規定。
gazette.blocks[31][0] 鍾委員佳濱:好,我們問一下,因為實務上可能……兩位署長,這是應該國貿署還是產發署管的?是產發署還是能源署?因為能源署沒有來,誰知道?來,請說。
gazette.blocks[32][0] 郭部長智輝:能源署有來。
gazette.blocks[33][0] 鍾委員佳濱:有來啊?能源署請說,有沒有?
gazette.blocks[34][0] 李代理署長君禮:是,這個沒有,我們以前已經處理過了。
gazette.blocks[35][0] 鍾委員佳濱:以前有過?
gazette.blocks[36][0] 李代理署長君禮:以前有處理過,大概有1%。
gazette.blocks[37][0] 鍾委員佳濱:就是中國的光電板透過越南洗產地送來臺灣?
gazette.blocks[38][0] 李代理署長君禮:我們當然是懷疑,所以我們有建立機制,他要來臺灣一定要……
gazette.blocks[39][0] 鍾委員佳濱:有沒有嘛?
gazette.blocks[40][0] 李代理署長君禮:沒有,現在沒有了。
gazette.blocks[41][0] 鍾委員佳濱:現在沒有了?你不敢說以前沒有?
gazette.blocks[42][0] 李代理署長君禮:以前我們有防堵措施,然後實施之後我們可以確認,現在就沒有了。
gazette.blocks[43][0] 鍾委員佳濱:我為了這個跟你們開過會。
gazette.blocks[44][0] 李代理署長君禮:是。
gazette.blocks[45][0] 鍾委員佳濱:署長請回。部長來,所以其實臺灣真的要防止的不是中國貨透過臺灣洗產地賣到美國去,而是臺灣成為洗產地的受害者,有沒有兩個?一個是光電板、一個呢……有沒有中國的汽車零組件透過第三地洗產地賣到臺灣來?有沒有?
gazette.blocks[46][0] 郭部長智輝:有啊!
gazette.blocks[47][0] 鍾委員佳濱:有?哪一個?這邊有寫,中華嘛,是不是這些汽車公司?那有沒有防堵?
gazette.blocks[48][0] 郭部長智輝:我們現在已經防堵了。
gazette.blocks[49][0] 鍾委員佳濱:已經防堵了?
gazette.blocks[50][0] 郭部長智輝:對。
gazette.blocks[51][0] 鍾委員佳濱:你們用什麼方式防堵呢?哪一位署長講一下怎麼防堵。
gazette.blocks[52][0] 邱署長求慧:報告委員,現在我們就要求他一定要有一定比例的國產比例。
gazette.blocks[53][0] 鍾委員佳濱:一定比例是多少?
gazette.blocks[54][0] 邱署長求慧:第一年15%。
gazette.blocks[55][0] 鍾委員佳濱:最終要多少?
gazette.blocks[56][0] 邱署長求慧:到35%的樣子。
gazette.blocks[57][0] 鍾委員佳濱:好,來,部長我跟你說明一下,因為我們在財政委員會過來,上週吳秉叡委員問了財政部一個問題,就是產地的問題,對我們國家來講,只要這個物品在臺灣的加值部分超過35%就算是臺灣產的;但是美國對進口的貨物只要含有35%的中國零件就認為是中國的。請問一輛車的零組件從中國進來的超過35%、差不多一半,在臺灣組裝了,臺灣也加了一半,請問這輛車在臺灣是不是認定是臺灣產的?是嘛,因為35%、一半嘛;可是賣到美國去,其中另外一半是中國產製的,那美國認為它是誰產的?這是考古題啊,上個星期吳秉叡委員考過財政委員會了,怎麼辦?
gazette.blocks[58][0] 郭部長智輝:我們會建議業者出口前跟美國的客戶溝通,向美國海關申請原產地的預審。
gazette.blocks[59][0] 鍾委員佳濱:好,但是我不認為臺灣有能力從中國進口一半的零組件在臺灣加工一半之後再賣到美國去,我擔心的是臺灣的汽車廠從中國進口超過一半的零組件到臺灣,加工35%之後就對我們的消費者宣稱這是臺灣的車,有沒有可能?有沒有可能?有嘛!署長都點頭了嘛!所以剛剛那個35%我不滿意,我希望臺灣比照美國,如果來到臺灣要宣稱是臺灣出產的車子,那麼不只是35%必須是臺灣加值的,也不能有超過35%是中國的,可以嗎?
gazette.blocks[60][0] 郭部長智輝:非紅供應鏈是我們現在積極在……
gazette.blocks[61][0] 鍾委員佳濱:我們沒有供應給美國,我們自己用的車。
gazette.blocks[62][0] 郭部長智輝:對,我的意思就是我們現在在發展的供應鏈希望排除中國的供應鏈……
gazette.blocks[63][0] 鍾委員佳濱:對,所以至少不能超過35%。
gazette.blocks[64][0] 郭部長智輝:所以汽車也會比照跟電子資通訊商品一樣。
gazette.blocks[65][0] 鍾委員佳濱:很好。
gazette.blocks[66][0] 郭部長智輝:但是這個需要有一點時間。
gazette.blocks[67][0] 鍾委員佳濱:是的。
gazette.blocks[68][0] 郭部長智輝:所以我們現在35%,以後搞不好我們會再繼續往前走。
gazette.blocks[69][0] 鍾委員佳濱:剛剛邱署長說的是本國加值35%,我是說含中國的成分不能多於35%,可以嘛?
gazette.blocks[70][0] 郭部長智輝:是,這個是一定的。
gazette.blocks[71][0] 鍾委員佳濱:好,所以你們有一個方法怎麼檢舉洗產地,依現在貿易法第十七條之一,民眾可以檢舉出進口人的產地標示不實,會予以獎勵,你們的獎勵是什麼你知道嗎?獎勵辦法第六條是頒給獎勵狀跟獎座,這個誰管的?貿易法是誰管的?
gazette.blocks[72][0] 劉署長威廉:貿易署。
gazette.blocks[73][0] 鍾委員佳濱:署長,你覺得有人會為了領獎狀去檢舉人家從中國進口洗產地嗎?
gazette.blocks[74][0] 劉署長威廉:不會。
gazette.blocks[75][0] 鍾委員佳濱:不會?那部長覺得該怎麼做?
gazette.blocks[76][0] 郭部長智輝:我們大概就是從罰款裡面再撥個一半給他。
gazette.blocks[77][0] 鍾委員佳濱:太好了,完全命中!希望你們研議提列部分罰鍰做為檢舉、獎金,你答應了,謝謝。
gazette.blocks[78][0] 郭部長智輝:我們考慮這樣來做,才有誘因嘛!
gazette.blocks[79][0] 主席:謝謝佳濱委員。
gazette.blocks[79][1] 下一位請劉書彬委員質詢。
gazette.agenda.page_end 332
gazette.agenda.meet_id 委員會-11-3-19-10
gazette.agenda.speakers[0] 蔡易餘
gazette.agenda.speakers[1] 賴瑞隆
gazette.agenda.speakers[2] 邱議瑩
gazette.agenda.speakers[3] 鄭正鈐
gazette.agenda.speakers[4] 張啓楷
gazette.agenda.speakers[5] 張嘉郡
gazette.agenda.speakers[6] 林岱樺
gazette.agenda.speakers[7] 楊瓊瓔
gazette.agenda.speakers[8] 謝衣鳯
gazette.agenda.speakers[9] 陳亭妃
gazette.agenda.speakers[10] 呂玉玲
gazette.agenda.speakers[11] 邱志偉
gazette.agenda.speakers[12] 鍾佳濱
gazette.agenda.speakers[13] 劉書彬
gazette.agenda.speakers[14] 何欣純
gazette.agenda.speakers[15] 徐欣瑩
gazette.agenda.speakers[16] 陳培瑜
gazette.agenda.speakers[17] 陳冠廷
gazette.agenda.speakers[18] 黃捷
gazette.agenda.page_start 275
gazette.agenda.meetingDate[0] 2025-04-23
gazette.agenda.gazette_id 1144001
gazette.agenda.agenda_lcidc_ids[0] 1144001_00007
gazette.agenda.meet_name 立法院第11屆第3會期經濟委員會第10次全體委員會議紀錄
gazette.agenda.content 邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對 我國產業之影響及因應之道」進行報告,並備質詢
gazette.agenda.agenda_id 1144001_00006