IVOD_ID |
160502 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160502 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-20-9 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T10:25:22+08:00 |
結束時間 |
2025-04-23T10:36:31+08:00 |
影片長度 |
00:11:09 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0983952ab66a4dee7c0f390e692fb4f2487b5e96e7cd6ee7292aeab3b46f231cd5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
郭國文 |
委員發言時間 |
10:25:22 - 10:36:31 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案:
(一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。
(二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。
(三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。
(四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。
(五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。
(六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。
(七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。
(八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。
二、審查人民請願案有關「貨物稅條例」7案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.33471875 |
transcript.pyannote[0].end |
1.85346875 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
2.05596875 |
transcript.pyannote[1].end |
2.59596875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
2.59596875 |
transcript.pyannote[2].end |
2.78159375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
7.35471875 |
transcript.pyannote[3].end |
7.81034375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
8.29971875 |
transcript.pyannote[4].end |
12.56909375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
13.10909375 |
transcript.pyannote[5].end |
19.35284375 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
19.25159375 |
transcript.pyannote[6].end |
19.90971875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
19.90971875 |
transcript.pyannote[7].end |
21.96846875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
21.96846875 |
transcript.pyannote[8].end |
33.94971875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
34.55721875 |
transcript.pyannote[9].end |
38.99534375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
39.65346875 |
transcript.pyannote[10].end |
41.23971875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
42.06659375 |
transcript.pyannote[11].end |
50.38596875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
50.74034375 |
transcript.pyannote[12].end |
54.63846875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
55.11096875 |
transcript.pyannote[13].end |
68.49284375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
69.23534375 |
transcript.pyannote[14].end |
79.41096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
71.90159375 |
transcript.pyannote[15].end |
72.34034375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
79.88346875 |
transcript.pyannote[16].end |
81.11534375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
81.33471875 |
transcript.pyannote[17].end |
86.66721875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
87.19034375 |
transcript.pyannote[18].end |
92.06721875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
92.21909375 |
transcript.pyannote[19].end |
97.01159375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
97.23096875 |
transcript.pyannote[20].end |
98.69909375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
98.95221875 |
transcript.pyannote[21].end |
103.18784375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
103.71096875 |
transcript.pyannote[22].end |
106.20846875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
107.25471875 |
transcript.pyannote[23].end |
120.26534375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
113.12721875 |
transcript.pyannote[24].end |
113.43096875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
114.24096875 |
transcript.pyannote[25].end |
115.52346875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
119.08409375 |
transcript.pyannote[26].end |
124.55159375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
122.45909375 |
transcript.pyannote[27].end |
122.74596875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
122.74596875 |
transcript.pyannote[28].end |
122.98221875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
122.98221875 |
transcript.pyannote[29].end |
123.31971875 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
123.38721875 |
transcript.pyannote[30].end |
123.53909375 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
123.58971875 |
transcript.pyannote[31].end |
126.13784375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
124.78784375 |
transcript.pyannote[32].end |
126.81284375 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
127.03221875 |
transcript.pyannote[33].end |
129.29346875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
127.31909375 |
transcript.pyannote[34].end |
138.45659375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
138.54096875 |
transcript.pyannote[35].end |
139.90784375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
140.71784375 |
transcript.pyannote[36].end |
141.00471875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
141.00471875 |
transcript.pyannote[37].end |
141.61221875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
142.32096875 |
transcript.pyannote[38].end |
144.32909375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
143.95784375 |
transcript.pyannote[39].end |
148.24409375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
146.97846875 |
transcript.pyannote[40].end |
150.18471875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
149.52659375 |
transcript.pyannote[41].end |
155.90534375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
154.36971875 |
transcript.pyannote[42].end |
174.13034375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
160.78221875 |
transcript.pyannote[43].end |
160.98471875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
174.58596875 |
transcript.pyannote[44].end |
181.82534375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
181.03221875 |
transcript.pyannote[45].end |
205.97346875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
183.71534375 |
transcript.pyannote[46].end |
183.93471875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
206.20971875 |
transcript.pyannote[47].end |
211.74471875 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
212.58846875 |
transcript.pyannote[48].end |
213.60096875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
213.56721875 |
transcript.pyannote[49].end |
219.22034375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
219.38909375 |
transcript.pyannote[50].end |
222.34221875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
223.30409375 |
transcript.pyannote[51].end |
236.33159375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
236.61846875 |
transcript.pyannote[52].end |
237.05721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
238.15409375 |
transcript.pyannote[53].end |
239.43659375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
239.94284375 |
transcript.pyannote[54].end |
244.04346875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
244.43159375 |
transcript.pyannote[55].end |
252.19409375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
252.80159375 |
transcript.pyannote[56].end |
254.91096875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
255.02909375 |
transcript.pyannote[57].end |
255.40034375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
256.02471875 |
transcript.pyannote[58].end |
261.57659375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
261.57659375 |
transcript.pyannote[59].end |
265.62659375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
261.59346875 |
transcript.pyannote[60].end |
261.61034375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
266.18346875 |
transcript.pyannote[61].end |
269.01846875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
269.57534375 |
transcript.pyannote[62].end |
269.98034375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
270.58784375 |
transcript.pyannote[63].end |
271.63409375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
271.83659375 |
transcript.pyannote[64].end |
272.52846875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
273.45659375 |
transcript.pyannote[65].end |
328.13159375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
328.53659375 |
transcript.pyannote[66].end |
332.90721875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
333.93659375 |
transcript.pyannote[67].end |
334.66221875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
335.32034375 |
transcript.pyannote[68].end |
336.16409375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
336.24846875 |
transcript.pyannote[69].end |
337.12596875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
338.10471875 |
transcript.pyannote[70].end |
340.56846875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
340.78784375 |
transcript.pyannote[71].end |
344.93909375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
344.97284375 |
transcript.pyannote[72].end |
345.02346875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
345.22596875 |
transcript.pyannote[73].end |
346.72784375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
347.47034375 |
transcript.pyannote[74].end |
353.47784375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
353.86596875 |
transcript.pyannote[75].end |
354.16971875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
354.79409375 |
transcript.pyannote[76].end |
355.55346875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
356.83596875 |
transcript.pyannote[77].end |
364.59846875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
361.84784375 |
transcript.pyannote[78].end |
363.01221875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
363.48471875 |
transcript.pyannote[79].end |
368.80034375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
366.85971875 |
transcript.pyannote[80].end |
370.65659375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
369.34034375 |
transcript.pyannote[81].end |
380.84909375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
381.01784375 |
transcript.pyannote[82].end |
391.56471875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
392.07096875 |
transcript.pyannote[83].end |
403.24221875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
403.71471875 |
transcript.pyannote[84].end |
405.94221875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
406.31346875 |
transcript.pyannote[85].end |
408.92909375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
409.31721875 |
transcript.pyannote[86].end |
410.11034375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
410.49846875 |
transcript.pyannote[87].end |
411.88221875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
412.57409375 |
transcript.pyannote[88].end |
412.99596875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
413.48534375 |
transcript.pyannote[89].end |
414.66659375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
415.15596875 |
transcript.pyannote[90].end |
416.08409375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
416.53971875 |
transcript.pyannote[91].end |
418.09221875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
418.15971875 |
transcript.pyannote[92].end |
422.58096875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
423.99846875 |
transcript.pyannote[93].end |
425.85471875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
424.09971875 |
transcript.pyannote[94].end |
424.69034375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
426.31034375 |
transcript.pyannote[95].end |
431.72721875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
430.52909375 |
transcript.pyannote[96].end |
437.51534375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
434.71409375 |
transcript.pyannote[97].end |
435.38909375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
438.13971875 |
transcript.pyannote[98].end |
438.15659375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
438.15659375 |
transcript.pyannote[99].end |
439.96221875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
439.70909375 |
transcript.pyannote[100].end |
450.30659375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
445.37909375 |
transcript.pyannote[101].end |
446.84721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
447.94409375 |
transcript.pyannote[102].end |
450.59346875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
450.59346875 |
transcript.pyannote[103].end |
451.80846875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
451.31909375 |
transcript.pyannote[104].end |
451.90971875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
451.90971875 |
transcript.pyannote[105].end |
453.00659375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
452.12909375 |
transcript.pyannote[106].end |
455.55471875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
455.43659375 |
transcript.pyannote[107].end |
456.16221875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
455.74034375 |
transcript.pyannote[108].end |
457.78221875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
458.50784375 |
transcript.pyannote[109].end |
459.01409375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
459.11534375 |
transcript.pyannote[110].end |
462.23721875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
459.79034375 |
transcript.pyannote[111].end |
463.57034375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
463.68846875 |
transcript.pyannote[112].end |
467.01284375 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
463.94159375 |
transcript.pyannote[113].end |
464.83596875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
464.85284375 |
transcript.pyannote[114].end |
464.86971875 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
464.88659375 |
transcript.pyannote[115].end |
472.27784375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
468.32909375 |
transcript.pyannote[116].end |
469.67909375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
471.19784375 |
transcript.pyannote[117].end |
472.04159375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
472.15971875 |
transcript.pyannote[118].end |
482.57159375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
475.43346875 |
transcript.pyannote[119].end |
477.66096875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
483.48284375 |
transcript.pyannote[120].end |
485.38971875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
485.69346875 |
transcript.pyannote[121].end |
500.81346875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
501.11721875 |
transcript.pyannote[122].end |
505.01534375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
505.55534375 |
transcript.pyannote[123].end |
507.49596875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
508.25534375 |
transcript.pyannote[124].end |
508.72784375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
509.03159375 |
transcript.pyannote[125].end |
518.34659375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
518.41409375 |
transcript.pyannote[126].end |
530.86784375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
531.57659375 |
transcript.pyannote[127].end |
532.16721875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
532.80846875 |
transcript.pyannote[128].end |
535.28909375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
535.59284375 |
transcript.pyannote[129].end |
544.18221875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
544.73909375 |
transcript.pyannote[130].end |
549.34596875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
549.75096875 |
transcript.pyannote[131].end |
553.80096875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
554.20596875 |
transcript.pyannote[132].end |
555.79221875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
557.29409375 |
transcript.pyannote[133].end |
559.23471875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
559.30221875 |
transcript.pyannote[134].end |
560.38221875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
560.78721875 |
transcript.pyannote[135].end |
561.09096875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
561.78284375 |
transcript.pyannote[136].end |
563.60534375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
563.97659375 |
transcript.pyannote[137].end |
572.43096875 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
572.90346875 |
transcript.pyannote[138].end |
583.99034375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
579.94034375 |
transcript.pyannote[139].end |
581.40846875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
582.13409375 |
transcript.pyannote[140].end |
591.29721875 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
586.36971875 |
transcript.pyannote[141].end |
593.40659375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
592.07346875 |
transcript.pyannote[142].end |
592.51221875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
593.11971875 |
transcript.pyannote[143].end |
607.29471875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
607.69971875 |
transcript.pyannote[144].end |
613.70721875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
613.94346875 |
transcript.pyannote[145].end |
618.55034375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
618.92159375 |
transcript.pyannote[146].end |
620.57534375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
621.18284375 |
transcript.pyannote[147].end |
621.63846875 |
transcript.pyannote[148].speaker |
SPEAKER_02 |
transcript.pyannote[148].start |
621.26721875 |
transcript.pyannote[148].end |
623.08971875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
623.08971875 |
transcript.pyannote[149].end |
626.93721875 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
623.46096875 |
transcript.pyannote[150].end |
623.78159375 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
626.93721875 |
transcript.pyannote[151].end |
627.59534375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
626.95409375 |
transcript.pyannote[152].end |
634.90221875 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
630.10971875 |
transcript.pyannote[153].end |
630.48096875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
635.02034375 |
transcript.pyannote[154].end |
635.05409375 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
635.05409375 |
transcript.pyannote[155].end |
635.56034375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
635.07096875 |
transcript.pyannote[156].end |
638.27721875 |
transcript.pyannote[157].speaker |
SPEAKER_02 |
transcript.pyannote[157].start |
637.18034375 |
transcript.pyannote[157].end |
639.35721875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
638.71596875 |
transcript.pyannote[158].end |
640.25159375 |
transcript.pyannote[159].speaker |
SPEAKER_02 |
transcript.pyannote[159].start |
640.09971875 |
transcript.pyannote[159].end |
640.43721875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
640.35284375 |
transcript.pyannote[160].end |
649.88721875 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
649.81971875 |
transcript.pyannote[161].end |
654.10596875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
649.93784375 |
transcript.pyannote[162].end |
649.98846875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
654.12284375 |
transcript.pyannote[163].end |
657.86909375 |
transcript.pyannote[164].speaker |
SPEAKER_02 |
transcript.pyannote[164].start |
657.31221875 |
transcript.pyannote[164].end |
665.41221875 |
transcript.pyannote[165].speaker |
SPEAKER_02 |
transcript.pyannote[165].start |
667.75784375 |
transcript.pyannote[165].end |
669.12471875 |
transcript.whisperx[0].start |
0.329 |
transcript.whisperx[0].end |
2.811 |
transcript.whisperx[0].text |
我們的李政次李市長請委員好政次好我拜讀你們今天的書面報告第一點的部分簡單的講就是要等到行政院有病案來審議第二點是要保留談判的籌碼 |
transcript.whisperx[1].start |
24.085 |
transcript.whisperx[1].end |
41.099 |
transcript.whisperx[1].text |
那第三點呢是要跟其他的部會來審慎評估啦所以說你們這三點來看的話就是說最好現在都不要動不要變但是呢我們談到後稅都不要動不要變也不是你現在的態度很久以前就如此啊 |
transcript.whisperx[2].start |
42.093 |
transcript.whisperx[2].end |
67.96 |
transcript.whisperx[2].text |
我看一下貨物稅的性質嚴格來說是農業時期的奢侈稅這你很清楚在性質上是如此有一種壓抑這個消費的一個作用可是長年以來台灣的這個社會的形態老早就已經很大的轉變而這樣的轉變以至於很多要修改貨物稅的聲音甚至要取消你看今天的這一個陳情 |
transcript.whisperx[3].start |
69.301 |
transcript.whisperx[3].end |
78.462 |
transcript.whisperx[3].text |
人民請願案件有七案之多我相信不是今天陳情而已 之前就陳情很多次了也因此呢 行政部門有沒有意識到這個問題 有 |
transcript.whisperx[4].start |
80.086 |
transcript.whisperx[4].end |
106.068 |
transcript.whisperx[4].text |
曾經有意思過 也就是說在2002年的時候 早在23年前行政院的財政改革委員會的結論 我唸給你聽短期措施就是取消橡膠輪胎 平板玻璃 電器 飲料 室內貨物稅短期內 已經過了23年了 取消了沒有 |
transcript.whisperx[5].start |
107.778 |
transcript.whisperx[5].end |
121.225 |
transcript.whisperx[5].text |
雖然我們沒有直接取消但是我們已經配合就是產業政策或者是環保節能這四個都取消了嗎沒有包含像節能電器就是我們今天講的沒有我現在沒有問你節能電器啊你歪樓了市長你很刻意喔你聰明不應該用在這種地方啊 |
transcript.whisperx[6].start |
128.03 |
transcript.whisperx[6].end |
139.166 |
transcript.whisperx[6].text |
取消輪胎 冰板 玻璃 電器 飲料這四個都還在課啊 然後取消經過23年 它是寫短期喔23年還不夠短23年 |
transcript.whisperx[7].start |
142.61 |
transcript.whisperx[7].end |
162.491 |
transcript.whisperx[7].text |
還沒取消你要承認嘛是 項目沒有取消 課稅項目我們確實沒有取消確實就是還在課這四類的貨物稅但是我們也因應就是說配合產業政策的調整我們就另外可是問題是當初寫得很清楚啊短期措施就是要取消這四個沒有取消嘛行政怠惰嘛 |
transcript.whisperx[8].start |
163.772 |
transcript.whisperx[8].end |
173.928 |
transcript.whisperx[8].text |
第二個中長期的部分要把車輛油氣水泥用綠色碎製來取代綠色碎製制定了沒有 |
transcript.whisperx[9].start |
174.899 |
transcript.whisperx[9].end |
200.431 |
transcript.whisperx[9].text |
歷生稅制因為我們現在其實因為我們環境部要課徵碳費所以我們現在現在沒有碳稅只有碳費而且經過23年這個意思是說你這確實有外部成本那也應該課但是不應該用貨物稅來課這就是在23年前行政院財政改革委員會所下的結論經過了23年 |
transcript.whisperx[10].start |
202.972 |
transcript.whisperx[10].end |
222.114 |
transcript.whisperx[10].text |
原封不動連改都沒有改為什麼因為財政部門就是把這個貨物稅把它當成國家的既得利益稅因為你把它當成既得利益稅既然是當成既得利益稅需要改的時候你們連改都沒有改為什麼就是我這個圖表第一個圖表再看一下 |
transcript.whisperx[11].start |
223.342 |
transcript.whisperx[11].end |
228.591 |
transcript.whisperx[11].text |
他的稅金高達最高這幾年的稅金最高高達1831億最低來到1535億也就是說稅收的來源總共有1500到1800之間 |
transcript.whisperx[12].start |
238.308 |
transcript.whisperx[12].end |
251.459 |
transcript.whisperx[12].text |
大塊肥肉很容易徵得的稅源你不願意放棄但是你又行政怠惰你不願意找其他的一個稅源來找到剋稅的正當性財政部二十幾年來就是如此 |
transcript.whisperx[13].start |
256.072 |
transcript.whisperx[13].end |
270.807 |
transcript.whisperx[13].text |
不過委員我們確實是這幾年我們已經配合整個國家產業政策發展的方向我們提供了補償措施好 你有配合沒有配合我再讓你看下一個圖表好了啦心態沒有變作為就沒有變啦你看我統計出來的圖表 |
transcript.whisperx[14].start |
273.573 |
transcript.whisperx[14].end |
279.358 |
transcript.whisperx[14].text |
橡膠輪胎課多少?24億水泥課多少?25億飲料課37億平板玻璃6億油氣59...596億電氣72億車輛853億這是最近的這113年總共課得1613億裡頭的民意從比例上最多的就是車輛跟油氣啦將近九成啦89.889.8 |
transcript.whisperx[15].start |
299.815 |
transcript.whisperx[15].end |
323.805 |
transcript.whisperx[15].text |
因為這以量制計稅這是最方便的而且鎖定在少數的廠商就這個情況來看我們就從2002的這個研究水泥 輪胎 玻璃都是中間跟零件這不是終端產品所以這個不應該輪胎課一次汽車又課一次這當初的稅改的結論2002 |
transcript.whisperx[16].start |
329.448 |
transcript.whisperx[16].end |
355.325 |
transcript.whisperx[16].text |
後來2008的時候 第三次稅改會議的時候又重申一次又講一次但是有沒有改 還是沒有改所以陳情不斷 請願不斷立法院的質詢不斷老實講 我現在也是在重複質詢啊我也是在重複質詢啊但是對象不一樣啊上次部長 這次市長啊但是態度都一樣 堅持不改一毛不拔 |
transcript.whisperx[17].start |
356.932 |
transcript.whisperx[17].end |
371.262 |
transcript.whisperx[17].text |
不會委員 其實我們這幾年都一直在配合產業政策做了相關的調整所以才會有12.1 12.3調整以來 你從看稅收的收入就沒有調整了而且你很誇張了 我再講給你聽你從電器喔 電器類從電視 冰箱 這還是奢侈稅嗎 音響一共9類這早不是奢侈稅了 而且新的3C產品啊 都沒有課到啊 |
transcript.whisperx[18].start |
381.329 |
transcript.whisperx[18].end |
403.037 |
transcript.whisperx[18].text |
還有更誇張了你的飲料類的部分啊嗑的是社產機制的清涼飲料什麼叫清涼飲料不涼了就不用嗑而且呢礦水水不用嗑但是如果水裡頭有添加色素糖香料就要嗑那有添加物不用喔超過這個花生綠豆仙草就不用喔這很奇怪 |
transcript.whisperx[19].start |
403.817 |
transcript.whisperx[19].end |
422.43 |
transcript.whisperx[19].text |
這些瓶瓶一樣是飲料喔手牙也不用課喔機器也就要課喔標準在哪裡不是財政部說了算講來講去啊我說在啦就是錢的問題而已啦你就是不願意放棄這個既得的這個稅收來源啊部長 社長承認吧 |
transcript.whisperx[20].start |
426.96 |
transcript.whisperx[20].end |
448.349 |
transcript.whisperx[20].text |
報緣確實貨物稅是我們國家財政收入的一個很主要的部分那一千六百多億我也承認很重要啦我也沒有叫你不科稅嘛那你來替代稅源欸你的綠色稅制綠色稅制其實我們現在為什麼會有節能家電退稅為什麼會有這個已經經過二十幾年了勒市長我講的這些你都經過嘛是 了解對不對你都很清楚嘛我都經過 |
transcript.whisperx[21].start |
454.532 |
transcript.whisperx[21].end |
481.924 |
transcript.whisperx[21].text |
你都經過嘛結果都沒有做嘛有啦有做有做一點點嘛事實上就是在這邊嘛結果哪有什麼變其實我們這幾年稅收從一千八百多億降下來也是在做這方面的優惠調整好啦你那個皮毛的修改不是真正大刀的闊斧大刀闊斧的轉變貨物稅需要改的你不要等到川普來跟你改啦 |
transcript.whisperx[22].start |
483.57 |
transcript.whisperx[22].end |
507.166 |
transcript.whisperx[22].text |
川普把貨物稅當成非關稅貿易障礙我們內部自己不改還要逼著川普來改或者會逼著在野黨哪一天就像財法法一樣給你突襲一樣在野黨現在多數一定要搞成這樣子嗎或搞到企業界全面的大反彈的時候你才要面對嗎一定要這種被動式的方式嗎 |
transcript.whisperx[23].start |
508.371 |
transcript.whisperx[23].end |
519.517 |
transcript.whisperx[23].text |
對不對而且民間在討論這些問題不是沒有道理我就單純站在一個消費者的角度來看同樣一輛車的錢2000CC以下100萬乘以關稅17.5我們今天討論的是貨物稅我今天就不提關稅貨物稅25%營業稅加5%你看喔 |
transcript.whisperx[24].start |
531.636 |
transcript.whisperx[24].end |
550.868 |
transcript.whisperx[24].text |
你看喔,一輛車就變成154.2萬喔你看,2000cc以上就變164.4喔就多了6成,一個多了14,一個變60喔你如果300萬以上的話,你看又加上一個奢侈稅,夯不啷噹起來就變300萬變529.3萬我算過那個%大概是1.76倍,將近兩倍 |
transcript.whisperx[25].start |
562.046 |
transcript.whisperx[25].end |
572.064 |
transcript.whisperx[25].text |
將近兩倍的這種情況底下你看累積再累積這不是單純的一個關稅的問題而已這對消費者來說是非常的不公平 |
transcript.whisperx[26].start |
573.37 |
transcript.whisperx[26].end |
592.38 |
transcript.whisperx[26].text |
其實這裡針對計算主要是燃油車才適用啦如果是電動車的話貨物稅就是變成零了電車是沒有啦但是我現在跟你argue就是油車嘛這不公平嘛數十年來都沒有轉變嘛調整一下就是大家的消費習慣 |
transcript.whisperx[27].start |
595.882 |
transcript.whisperx[27].end |
620.383 |
transcript.whisperx[27].text |
那個次長最後我就請教你一件事情嘛你就把所有歷年來啊因為我的資料收集也非常有限歷年來幾次的稅改當中你做一個統計你剛剛講說你有改每次的稅改當中所最關於貨物稅的決議的內容當中每一次你把它做一個圖表就這個圖表當中跟現實的轉變有多少我們來做一個檢驗啊請您自己寫啊好不好 |
transcript.whisperx[28].start |
621.364 |
transcript.whisperx[28].end |
648.838 |
transcript.whisperx[28].text |
我會請負稅署來寫好 你請負稅署來寫啊你不要寫 你們不要寫沒關係啊 負稅署寫給我啊是 好 沒問題這長期以來兩個禮拜給我一份嘛可以我們來公布一下到底我們的貨物稅的改革改了什麼改了1% 哪幾個%多少程度兩個禮拜 好不好就歷年來的稅改 針對貨物稅免得如果說你稅改你這個貨物稅真的有改的話今天就不會有七項的人民請願案了啦 |
transcript.whisperx[29].start |
649.898 |
transcript.whisperx[29].end |
664.529 |
transcript.whisperx[29].text |
方委員我們那個兩個禮拜時間可不可以延長為一個月可以嗎你們的那個署長那麼專業三個禮拜啦謝謝啦好 謝謝郭國文委員好 接著我們請你燕秀委員燕秀委員諮詢完畢後我們休息五分鐘謝謝交委 |