iVOD / 160502

Field Value
IVOD_ID 160502
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160502
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-20-9
會議資料.會議代碼:str 第11屆第3會期財政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-23T10:25:22+08:00
結束時間 2025-04-23T10:36:31+08:00
影片長度 00:11:09
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0983952ab66a4dee7c0f390e692fb4f2487b5e96e7cd6ee7292aeab3b46f231cd5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 10:25:22 - 10:36:31
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案: (一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。 (二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。 (三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。 (四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。 (五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。 (六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。 (七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。 (八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。 二、審查人民請願案有關「貨物稅條例」7案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.33471875
transcript.pyannote[0].end 1.85346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 2.05596875
transcript.pyannote[1].end 2.59596875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 2.59596875
transcript.pyannote[2].end 2.78159375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 7.35471875
transcript.pyannote[3].end 7.81034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 8.29971875
transcript.pyannote[4].end 12.56909375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 13.10909375
transcript.pyannote[5].end 19.35284375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 19.25159375
transcript.pyannote[6].end 19.90971875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 19.90971875
transcript.pyannote[7].end 21.96846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 21.96846875
transcript.pyannote[8].end 33.94971875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 34.55721875
transcript.pyannote[9].end 38.99534375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 39.65346875
transcript.pyannote[10].end 41.23971875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 42.06659375
transcript.pyannote[11].end 50.38596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 50.74034375
transcript.pyannote[12].end 54.63846875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 55.11096875
transcript.pyannote[13].end 68.49284375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 69.23534375
transcript.pyannote[14].end 79.41096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 71.90159375
transcript.pyannote[15].end 72.34034375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 79.88346875
transcript.pyannote[16].end 81.11534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 81.33471875
transcript.pyannote[17].end 86.66721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 87.19034375
transcript.pyannote[18].end 92.06721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 92.21909375
transcript.pyannote[19].end 97.01159375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 97.23096875
transcript.pyannote[20].end 98.69909375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 98.95221875
transcript.pyannote[21].end 103.18784375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 103.71096875
transcript.pyannote[22].end 106.20846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 107.25471875
transcript.pyannote[23].end 120.26534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 113.12721875
transcript.pyannote[24].end 113.43096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 114.24096875
transcript.pyannote[25].end 115.52346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 119.08409375
transcript.pyannote[26].end 124.55159375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 122.45909375
transcript.pyannote[27].end 122.74596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 122.74596875
transcript.pyannote[28].end 122.98221875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 122.98221875
transcript.pyannote[29].end 123.31971875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 123.38721875
transcript.pyannote[30].end 123.53909375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 123.58971875
transcript.pyannote[31].end 126.13784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 124.78784375
transcript.pyannote[32].end 126.81284375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 127.03221875
transcript.pyannote[33].end 129.29346875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 127.31909375
transcript.pyannote[34].end 138.45659375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 138.54096875
transcript.pyannote[35].end 139.90784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 140.71784375
transcript.pyannote[36].end 141.00471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 141.00471875
transcript.pyannote[37].end 141.61221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 142.32096875
transcript.pyannote[38].end 144.32909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 143.95784375
transcript.pyannote[39].end 148.24409375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 146.97846875
transcript.pyannote[40].end 150.18471875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 149.52659375
transcript.pyannote[41].end 155.90534375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 154.36971875
transcript.pyannote[42].end 174.13034375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 160.78221875
transcript.pyannote[43].end 160.98471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 174.58596875
transcript.pyannote[44].end 181.82534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 181.03221875
transcript.pyannote[45].end 205.97346875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 183.71534375
transcript.pyannote[46].end 183.93471875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 206.20971875
transcript.pyannote[47].end 211.74471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 212.58846875
transcript.pyannote[48].end 213.60096875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 213.56721875
transcript.pyannote[49].end 219.22034375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 219.38909375
transcript.pyannote[50].end 222.34221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 223.30409375
transcript.pyannote[51].end 236.33159375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 236.61846875
transcript.pyannote[52].end 237.05721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 238.15409375
transcript.pyannote[53].end 239.43659375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 239.94284375
transcript.pyannote[54].end 244.04346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 244.43159375
transcript.pyannote[55].end 252.19409375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 252.80159375
transcript.pyannote[56].end 254.91096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 255.02909375
transcript.pyannote[57].end 255.40034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 256.02471875
transcript.pyannote[58].end 261.57659375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 261.57659375
transcript.pyannote[59].end 265.62659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 261.59346875
transcript.pyannote[60].end 261.61034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 266.18346875
transcript.pyannote[61].end 269.01846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 269.57534375
transcript.pyannote[62].end 269.98034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 270.58784375
transcript.pyannote[63].end 271.63409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 271.83659375
transcript.pyannote[64].end 272.52846875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 273.45659375
transcript.pyannote[65].end 328.13159375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 328.53659375
transcript.pyannote[66].end 332.90721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 333.93659375
transcript.pyannote[67].end 334.66221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 335.32034375
transcript.pyannote[68].end 336.16409375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 336.24846875
transcript.pyannote[69].end 337.12596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 338.10471875
transcript.pyannote[70].end 340.56846875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 340.78784375
transcript.pyannote[71].end 344.93909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 344.97284375
transcript.pyannote[72].end 345.02346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 345.22596875
transcript.pyannote[73].end 346.72784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 347.47034375
transcript.pyannote[74].end 353.47784375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 353.86596875
transcript.pyannote[75].end 354.16971875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 354.79409375
transcript.pyannote[76].end 355.55346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 356.83596875
transcript.pyannote[77].end 364.59846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 361.84784375
transcript.pyannote[78].end 363.01221875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 363.48471875
transcript.pyannote[79].end 368.80034375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 366.85971875
transcript.pyannote[80].end 370.65659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 369.34034375
transcript.pyannote[81].end 380.84909375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 381.01784375
transcript.pyannote[82].end 391.56471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 392.07096875
transcript.pyannote[83].end 403.24221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 403.71471875
transcript.pyannote[84].end 405.94221875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 406.31346875
transcript.pyannote[85].end 408.92909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 409.31721875
transcript.pyannote[86].end 410.11034375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 410.49846875
transcript.pyannote[87].end 411.88221875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 412.57409375
transcript.pyannote[88].end 412.99596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 413.48534375
transcript.pyannote[89].end 414.66659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 415.15596875
transcript.pyannote[90].end 416.08409375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 416.53971875
transcript.pyannote[91].end 418.09221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 418.15971875
transcript.pyannote[92].end 422.58096875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 423.99846875
transcript.pyannote[93].end 425.85471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 424.09971875
transcript.pyannote[94].end 424.69034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 426.31034375
transcript.pyannote[95].end 431.72721875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 430.52909375
transcript.pyannote[96].end 437.51534375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 434.71409375
transcript.pyannote[97].end 435.38909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 438.13971875
transcript.pyannote[98].end 438.15659375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 438.15659375
transcript.pyannote[99].end 439.96221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 439.70909375
transcript.pyannote[100].end 450.30659375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 445.37909375
transcript.pyannote[101].end 446.84721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 447.94409375
transcript.pyannote[102].end 450.59346875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 450.59346875
transcript.pyannote[103].end 451.80846875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 451.31909375
transcript.pyannote[104].end 451.90971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 451.90971875
transcript.pyannote[105].end 453.00659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 452.12909375
transcript.pyannote[106].end 455.55471875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 455.43659375
transcript.pyannote[107].end 456.16221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 455.74034375
transcript.pyannote[108].end 457.78221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 458.50784375
transcript.pyannote[109].end 459.01409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 459.11534375
transcript.pyannote[110].end 462.23721875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 459.79034375
transcript.pyannote[111].end 463.57034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 463.68846875
transcript.pyannote[112].end 467.01284375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 463.94159375
transcript.pyannote[113].end 464.83596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 464.85284375
transcript.pyannote[114].end 464.86971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 464.88659375
transcript.pyannote[115].end 472.27784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 468.32909375
transcript.pyannote[116].end 469.67909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 471.19784375
transcript.pyannote[117].end 472.04159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 472.15971875
transcript.pyannote[118].end 482.57159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 475.43346875
transcript.pyannote[119].end 477.66096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 483.48284375
transcript.pyannote[120].end 485.38971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 485.69346875
transcript.pyannote[121].end 500.81346875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 501.11721875
transcript.pyannote[122].end 505.01534375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 505.55534375
transcript.pyannote[123].end 507.49596875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 508.25534375
transcript.pyannote[124].end 508.72784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 509.03159375
transcript.pyannote[125].end 518.34659375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 518.41409375
transcript.pyannote[126].end 530.86784375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 531.57659375
transcript.pyannote[127].end 532.16721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 532.80846875
transcript.pyannote[128].end 535.28909375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 535.59284375
transcript.pyannote[129].end 544.18221875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 544.73909375
transcript.pyannote[130].end 549.34596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 549.75096875
transcript.pyannote[131].end 553.80096875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 554.20596875
transcript.pyannote[132].end 555.79221875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 557.29409375
transcript.pyannote[133].end 559.23471875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 559.30221875
transcript.pyannote[134].end 560.38221875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 560.78721875
transcript.pyannote[135].end 561.09096875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 561.78284375
transcript.pyannote[136].end 563.60534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 563.97659375
transcript.pyannote[137].end 572.43096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 572.90346875
transcript.pyannote[138].end 583.99034375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 579.94034375
transcript.pyannote[139].end 581.40846875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 582.13409375
transcript.pyannote[140].end 591.29721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 586.36971875
transcript.pyannote[141].end 593.40659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 592.07346875
transcript.pyannote[142].end 592.51221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 593.11971875
transcript.pyannote[143].end 607.29471875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 607.69971875
transcript.pyannote[144].end 613.70721875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 613.94346875
transcript.pyannote[145].end 618.55034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 618.92159375
transcript.pyannote[146].end 620.57534375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 621.18284375
transcript.pyannote[147].end 621.63846875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 621.26721875
transcript.pyannote[148].end 623.08971875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 623.08971875
transcript.pyannote[149].end 626.93721875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 623.46096875
transcript.pyannote[150].end 623.78159375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 626.93721875
transcript.pyannote[151].end 627.59534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 626.95409375
transcript.pyannote[152].end 634.90221875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 630.10971875
transcript.pyannote[153].end 630.48096875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 635.02034375
transcript.pyannote[154].end 635.05409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 635.05409375
transcript.pyannote[155].end 635.56034375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 635.07096875
transcript.pyannote[156].end 638.27721875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 637.18034375
transcript.pyannote[157].end 639.35721875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 638.71596875
transcript.pyannote[158].end 640.25159375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 640.09971875
transcript.pyannote[159].end 640.43721875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 640.35284375
transcript.pyannote[160].end 649.88721875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 649.81971875
transcript.pyannote[161].end 654.10596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 649.93784375
transcript.pyannote[162].end 649.98846875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 654.12284375
transcript.pyannote[163].end 657.86909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 657.31221875
transcript.pyannote[164].end 665.41221875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 667.75784375
transcript.pyannote[165].end 669.12471875
transcript.whisperx[0].start 0.329
transcript.whisperx[0].end 2.811
transcript.whisperx[0].text 我們的李政次李市長請委員好政次好我拜讀你們今天的書面報告第一點的部分簡單的講就是要等到行政院有病案來審議第二點是要保留談判的籌碼
transcript.whisperx[1].start 24.085
transcript.whisperx[1].end 41.099
transcript.whisperx[1].text 那第三點呢是要跟其他的部會來審慎評估啦所以說你們這三點來看的話就是說最好現在都不要動不要變但是呢我們談到後稅都不要動不要變也不是你現在的態度很久以前就如此啊
transcript.whisperx[2].start 42.093
transcript.whisperx[2].end 67.96
transcript.whisperx[2].text 我看一下貨物稅的性質嚴格來說是農業時期的奢侈稅這你很清楚在性質上是如此有一種壓抑這個消費的一個作用可是長年以來台灣的這個社會的形態老早就已經很大的轉變而這樣的轉變以至於很多要修改貨物稅的聲音甚至要取消你看今天的這一個陳情
transcript.whisperx[3].start 69.301
transcript.whisperx[3].end 78.462
transcript.whisperx[3].text 人民請願案件有七案之多我相信不是今天陳情而已 之前就陳情很多次了也因此呢 行政部門有沒有意識到這個問題 有
transcript.whisperx[4].start 80.086
transcript.whisperx[4].end 106.068
transcript.whisperx[4].text 曾經有意思過 也就是說在2002年的時候 早在23年前行政院的財政改革委員會的結論 我唸給你聽短期措施就是取消橡膠輪胎 平板玻璃 電器 飲料 室內貨物稅短期內 已經過了23年了 取消了沒有
transcript.whisperx[5].start 107.778
transcript.whisperx[5].end 121.225
transcript.whisperx[5].text 雖然我們沒有直接取消但是我們已經配合就是產業政策或者是環保節能這四個都取消了嗎沒有包含像節能電器就是我們今天講的沒有我現在沒有問你節能電器啊你歪樓了市長你很刻意喔你聰明不應該用在這種地方啊
transcript.whisperx[6].start 128.03
transcript.whisperx[6].end 139.166
transcript.whisperx[6].text 取消輪胎 冰板 玻璃 電器 飲料這四個都還在課啊 然後取消經過23年 它是寫短期喔23年還不夠短23年
transcript.whisperx[7].start 142.61
transcript.whisperx[7].end 162.491
transcript.whisperx[7].text 還沒取消你要承認嘛是 項目沒有取消 課稅項目我們確實沒有取消確實就是還在課這四類的貨物稅但是我們也因應就是說配合產業政策的調整我們就另外可是問題是當初寫得很清楚啊短期措施就是要取消這四個沒有取消嘛行政怠惰嘛
transcript.whisperx[8].start 163.772
transcript.whisperx[8].end 173.928
transcript.whisperx[8].text 第二個中長期的部分要把車輛油氣水泥用綠色碎製來取代綠色碎製制定了沒有
transcript.whisperx[9].start 174.899
transcript.whisperx[9].end 200.431
transcript.whisperx[9].text 歷生稅制因為我們現在其實因為我們環境部要課徵碳費所以我們現在現在沒有碳稅只有碳費而且經過23年這個意思是說你這確實有外部成本那也應該課但是不應該用貨物稅來課這就是在23年前行政院財政改革委員會所下的結論經過了23年
transcript.whisperx[10].start 202.972
transcript.whisperx[10].end 222.114
transcript.whisperx[10].text 原封不動連改都沒有改為什麼因為財政部門就是把這個貨物稅把它當成國家的既得利益稅因為你把它當成既得利益稅既然是當成既得利益稅需要改的時候你們連改都沒有改為什麼就是我這個圖表第一個圖表再看一下
transcript.whisperx[11].start 223.342
transcript.whisperx[11].end 228.591
transcript.whisperx[11].text 他的稅金高達最高這幾年的稅金最高高達1831億最低來到1535億也就是說稅收的來源總共有1500到1800之間
transcript.whisperx[12].start 238.308
transcript.whisperx[12].end 251.459
transcript.whisperx[12].text 大塊肥肉很容易徵得的稅源你不願意放棄但是你又行政怠惰你不願意找其他的一個稅源來找到剋稅的正當性財政部二十幾年來就是如此
transcript.whisperx[13].start 256.072
transcript.whisperx[13].end 270.807
transcript.whisperx[13].text 不過委員我們確實是這幾年我們已經配合整個國家產業政策發展的方向我們提供了補償措施好 你有配合沒有配合我再讓你看下一個圖表好了啦心態沒有變作為就沒有變啦你看我統計出來的圖表
transcript.whisperx[14].start 273.573
transcript.whisperx[14].end 279.358
transcript.whisperx[14].text 橡膠輪胎課多少?24億水泥課多少?25億飲料課37億平板玻璃6億油氣59...596億電氣72億車輛853億這是最近的這113年總共課得1613億裡頭的民意從比例上最多的就是車輛跟油氣啦將近九成啦89.889.8
transcript.whisperx[15].start 299.815
transcript.whisperx[15].end 323.805
transcript.whisperx[15].text 因為這以量制計稅這是最方便的而且鎖定在少數的廠商就這個情況來看我們就從2002的這個研究水泥 輪胎 玻璃都是中間跟零件這不是終端產品所以這個不應該輪胎課一次汽車又課一次這當初的稅改的結論2002
transcript.whisperx[16].start 329.448
transcript.whisperx[16].end 355.325
transcript.whisperx[16].text 後來2008的時候 第三次稅改會議的時候又重申一次又講一次但是有沒有改 還是沒有改所以陳情不斷 請願不斷立法院的質詢不斷老實講 我現在也是在重複質詢啊我也是在重複質詢啊但是對象不一樣啊上次部長 這次市長啊但是態度都一樣 堅持不改一毛不拔
transcript.whisperx[17].start 356.932
transcript.whisperx[17].end 371.262
transcript.whisperx[17].text 不會委員 其實我們這幾年都一直在配合產業政策做了相關的調整所以才會有12.1 12.3調整以來 你從看稅收的收入就沒有調整了而且你很誇張了 我再講給你聽你從電器喔 電器類從電視 冰箱 這還是奢侈稅嗎 音響一共9類這早不是奢侈稅了 而且新的3C產品啊 都沒有課到啊
transcript.whisperx[18].start 381.329
transcript.whisperx[18].end 403.037
transcript.whisperx[18].text 還有更誇張了你的飲料類的部分啊嗑的是社產機制的清涼飲料什麼叫清涼飲料不涼了就不用嗑而且呢礦水水不用嗑但是如果水裡頭有添加色素糖香料就要嗑那有添加物不用喔超過這個花生綠豆仙草就不用喔這很奇怪
transcript.whisperx[19].start 403.817
transcript.whisperx[19].end 422.43
transcript.whisperx[19].text 這些瓶瓶一樣是飲料喔手牙也不用課喔機器也就要課喔標準在哪裡不是財政部說了算講來講去啊我說在啦就是錢的問題而已啦你就是不願意放棄這個既得的這個稅收來源啊部長 社長承認吧
transcript.whisperx[20].start 426.96
transcript.whisperx[20].end 448.349
transcript.whisperx[20].text 報緣確實貨物稅是我們國家財政收入的一個很主要的部分那一千六百多億我也承認很重要啦我也沒有叫你不科稅嘛那你來替代稅源欸你的綠色稅制綠色稅制其實我們現在為什麼會有節能家電退稅為什麼會有這個已經經過二十幾年了勒市長我講的這些你都經過嘛是 了解對不對你都很清楚嘛我都經過
transcript.whisperx[21].start 454.532
transcript.whisperx[21].end 481.924
transcript.whisperx[21].text 你都經過嘛結果都沒有做嘛有啦有做有做一點點嘛事實上就是在這邊嘛結果哪有什麼變其實我們這幾年稅收從一千八百多億降下來也是在做這方面的優惠調整好啦你那個皮毛的修改不是真正大刀的闊斧大刀闊斧的轉變貨物稅需要改的你不要等到川普來跟你改啦
transcript.whisperx[22].start 483.57
transcript.whisperx[22].end 507.166
transcript.whisperx[22].text 川普把貨物稅當成非關稅貿易障礙我們內部自己不改還要逼著川普來改或者會逼著在野黨哪一天就像財法法一樣給你突襲一樣在野黨現在多數一定要搞成這樣子嗎或搞到企業界全面的大反彈的時候你才要面對嗎一定要這種被動式的方式嗎
transcript.whisperx[23].start 508.371
transcript.whisperx[23].end 519.517
transcript.whisperx[23].text 對不對而且民間在討論這些問題不是沒有道理我就單純站在一個消費者的角度來看同樣一輛車的錢2000CC以下100萬乘以關稅17.5我們今天討論的是貨物稅我今天就不提關稅貨物稅25%營業稅加5%你看喔
transcript.whisperx[24].start 531.636
transcript.whisperx[24].end 550.868
transcript.whisperx[24].text 你看喔,一輛車就變成154.2萬喔你看,2000cc以上就變164.4喔就多了6成,一個多了14,一個變60喔你如果300萬以上的話,你看又加上一個奢侈稅,夯不啷噹起來就變300萬變529.3萬我算過那個%大概是1.76倍,將近兩倍
transcript.whisperx[25].start 562.046
transcript.whisperx[25].end 572.064
transcript.whisperx[25].text 將近兩倍的這種情況底下你看累積再累積這不是單純的一個關稅的問題而已這對消費者來說是非常的不公平
transcript.whisperx[26].start 573.37
transcript.whisperx[26].end 592.38
transcript.whisperx[26].text 其實這裡針對計算主要是燃油車才適用啦如果是電動車的話貨物稅就是變成零了電車是沒有啦但是我現在跟你argue就是油車嘛這不公平嘛數十年來都沒有轉變嘛調整一下就是大家的消費習慣
transcript.whisperx[27].start 595.882
transcript.whisperx[27].end 620.383
transcript.whisperx[27].text 那個次長最後我就請教你一件事情嘛你就把所有歷年來啊因為我的資料收集也非常有限歷年來幾次的稅改當中你做一個統計你剛剛講說你有改每次的稅改當中所最關於貨物稅的決議的內容當中每一次你把它做一個圖表就這個圖表當中跟現實的轉變有多少我們來做一個檢驗啊請您自己寫啊好不好
transcript.whisperx[28].start 621.364
transcript.whisperx[28].end 648.838
transcript.whisperx[28].text 我會請負稅署來寫好 你請負稅署來寫啊你不要寫 你們不要寫沒關係啊 負稅署寫給我啊是 好 沒問題這長期以來兩個禮拜給我一份嘛可以我們來公布一下到底我們的貨物稅的改革改了什麼改了1% 哪幾個%多少程度兩個禮拜 好不好就歷年來的稅改 針對貨物稅免得如果說你稅改你這個貨物稅真的有改的話今天就不會有七項的人民請願案了啦
transcript.whisperx[29].start 649.898
transcript.whisperx[29].end 664.529
transcript.whisperx[29].text 方委員我們那個兩個禮拜時間可不可以延長為一個月可以嗎你們的那個署長那麼專業三個禮拜啦謝謝啦好 謝謝郭國文委員好 接著我們請你燕秀委員燕秀委員諮詢完畢後我們休息五分鐘謝謝交委