iVOD / 160477

Field Value
IVOD_ID 160477
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160477
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-26-7
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-23T09:55:40+08:00
結束時間 2025-04-23T10:10:48+08:00
影片長度 00:15:08
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0c6d9638fbf8e6f324d63fb5309bb2e6387b5e96e7cd6ee7244e9cc268ce6ac505ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 09:55:40 - 10:10:48
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議(事由:邀請衛生福利部部長、財政部次長就「國家社會福利政策財源檢討及偏鄉兒童發展篩檢執行情形」進行專題報告,並備質詢。 【4月23日及24日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.22909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.28784375
transcript.pyannote[1].end 18.13784375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.93971875
transcript.pyannote[2].end 17.31096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 18.64409375
transcript.pyannote[3].end 20.58471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 21.49596875
transcript.pyannote[4].end 25.59659375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 25.95096875
transcript.pyannote[5].end 29.88284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 30.23721875
transcript.pyannote[6].end 39.16409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 39.46784375
transcript.pyannote[7].end 40.10909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 40.81784375
transcript.pyannote[8].end 41.17221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 41.67846875
transcript.pyannote[9].end 42.79221875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 43.68659375
transcript.pyannote[10].end 45.22221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.34846875
transcript.pyannote[11].end 47.66909375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 47.78721875
transcript.pyannote[12].end 48.91784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 49.66034375
transcript.pyannote[13].end 49.89659375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 49.89659375
transcript.pyannote[14].end 49.96409375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 50.72346875
transcript.pyannote[15].end 53.17034375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 53.87909375
transcript.pyannote[16].end 59.43096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 56.59596875
transcript.pyannote[17].end 57.76034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 59.43096875
transcript.pyannote[18].end 59.44784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 59.93721875
transcript.pyannote[19].end 60.78096875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 60.78096875
transcript.pyannote[20].end 60.79784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 61.86096875
transcript.pyannote[21].end 61.89471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 61.89471875
transcript.pyannote[22].end 64.08846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 63.49784375
transcript.pyannote[23].end 65.72534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 65.92784375
transcript.pyannote[24].end 67.14284375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 66.14721875
transcript.pyannote[25].end 66.60284375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 67.71659375
transcript.pyannote[26].end 68.89784375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 67.81784375
transcript.pyannote[27].end 76.96409375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 74.78721875
transcript.pyannote[28].end 76.72784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 76.96409375
transcript.pyannote[29].end 78.70221875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 78.88784375
transcript.pyannote[30].end 78.92159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 78.92159375
transcript.pyannote[31].end 79.24221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 79.71471875
transcript.pyannote[32].end 82.06034375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 79.88346875
transcript.pyannote[33].end 80.44034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 82.06034375
transcript.pyannote[34].end 85.35096875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 85.92471875
transcript.pyannote[35].end 86.51534375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 86.51534375
transcript.pyannote[36].end 92.18534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 92.32034375
transcript.pyannote[37].end 95.50971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 96.15096875
transcript.pyannote[38].end 96.42096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 97.48409375
transcript.pyannote[39].end 100.18409375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 104.09909375
transcript.pyannote[40].end 104.11596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 104.11596875
transcript.pyannote[41].end 104.40284375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 108.28409375
transcript.pyannote[42].end 110.39346875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 110.59596875
transcript.pyannote[43].end 112.51971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 112.62096875
transcript.pyannote[44].end 118.57784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 119.13471875
transcript.pyannote[45].end 122.47596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 123.48846875
transcript.pyannote[46].end 123.69096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 126.15471875
transcript.pyannote[47].end 126.18846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 126.18846875
transcript.pyannote[48].end 126.44159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 126.44159375
transcript.pyannote[49].end 126.55971875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 126.55971875
transcript.pyannote[50].end 126.74534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 127.82534375
transcript.pyannote[51].end 128.82096875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 129.09096875
transcript.pyannote[52].end 130.47471875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 130.69409375
transcript.pyannote[53].end 132.53346875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 132.90471875
transcript.pyannote[54].end 134.33909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 136.80284375
transcript.pyannote[55].end 137.76471875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 139.77284375
transcript.pyannote[56].end 163.97159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 163.97159375
transcript.pyannote[57].end 186.97221875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 164.03909375
transcript.pyannote[58].end 164.20784375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 171.17721875
transcript.pyannote[59].end 172.07159375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 176.25659375
transcript.pyannote[60].end 176.47596875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 186.97221875
transcript.pyannote[61].end 200.03346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 200.03346875
transcript.pyannote[62].end 206.74971875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 207.34034375
transcript.pyannote[63].end 208.09971875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 208.43721875
transcript.pyannote[64].end 209.19659375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 210.25971875
transcript.pyannote[65].end 210.56346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 210.85034375
transcript.pyannote[66].end 212.11596875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 213.21284375
transcript.pyannote[67].end 214.29284375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 214.76534375
transcript.pyannote[68].end 216.03096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 216.45284375
transcript.pyannote[69].end 217.61721875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 218.32596875
transcript.pyannote[70].end 218.95034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 219.38909375
transcript.pyannote[71].end 220.50284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 221.02596875
transcript.pyannote[72].end 222.17346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 222.71346875
transcript.pyannote[73].end 223.55721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 223.65846875
transcript.pyannote[74].end 225.10971875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 225.71721875
transcript.pyannote[75].end 226.57784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 226.94909375
transcript.pyannote[76].end 230.57721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 230.96534375
transcript.pyannote[77].end 231.74159375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 232.21409375
transcript.pyannote[78].end 234.05346875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 234.55971875
transcript.pyannote[79].end 235.38659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 236.16284375
transcript.pyannote[80].end 237.04034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 237.36096875
transcript.pyannote[81].end 238.13721875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 238.28909375
transcript.pyannote[82].end 239.30159375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 239.43659375
transcript.pyannote[83].end 241.59659375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 241.76534375
transcript.pyannote[84].end 242.74409375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 243.08159375
transcript.pyannote[85].end 244.97159375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 245.88284375
transcript.pyannote[86].end 246.84471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 247.53659375
transcript.pyannote[87].end 249.84846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 250.42221875
transcript.pyannote[88].end 252.54846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 253.83096875
transcript.pyannote[89].end 255.63659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 255.70409375
transcript.pyannote[90].end 256.32846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 258.26909375
transcript.pyannote[91].end 260.10846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 260.10846875
transcript.pyannote[92].end 260.12534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 261.86346875
transcript.pyannote[93].end 261.96471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 261.96471875
transcript.pyannote[94].end 263.80409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 263.97284375
transcript.pyannote[95].end 306.73409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 307.08846875
transcript.pyannote[96].end 308.03346875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 308.03346875
transcript.pyannote[97].end 321.82034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 322.24221875
transcript.pyannote[98].end 324.97596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 324.97596875
transcript.pyannote[99].end 326.76471875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 326.96721875
transcript.pyannote[100].end 328.73909375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 328.97534375
transcript.pyannote[101].end 345.59721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 345.59721875
transcript.pyannote[102].end 345.96846875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 345.96846875
transcript.pyannote[103].end 346.00221875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 346.00221875
transcript.pyannote[104].end 357.07221875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 354.25409375
transcript.pyannote[105].end 365.03721875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 365.64471875
transcript.pyannote[106].end 367.97346875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 367.97346875
transcript.pyannote[107].end 368.00721875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 368.00721875
transcript.pyannote[108].end 368.02409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 368.02409375
transcript.pyannote[109].end 378.35159375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 379.56659375
transcript.pyannote[110].end 388.10534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 388.10534375
transcript.pyannote[111].end 396.74534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 397.20096875
transcript.pyannote[112].end 401.14971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 401.14971875
transcript.pyannote[113].end 413.02971875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 413.02971875
transcript.pyannote[114].end 426.31034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 427.39034375
transcript.pyannote[115].end 437.09346875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 431.27159375
transcript.pyannote[116].end 438.49409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 438.88221875
transcript.pyannote[117].end 441.02534375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 441.02534375
transcript.pyannote[118].end 447.10034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 447.58971875
transcript.pyannote[119].end 457.30971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 458.30534375
transcript.pyannote[120].end 490.65471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 489.52409375
transcript.pyannote[121].end 491.21159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 491.48159375
transcript.pyannote[122].end 491.88659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 492.40971875
transcript.pyannote[123].end 498.23159375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 498.33284375
transcript.pyannote[124].end 499.21034375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 499.21034375
transcript.pyannote[125].end 499.26096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 499.26096875
transcript.pyannote[126].end 499.32846875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 499.32846875
transcript.pyannote[127].end 499.36221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 499.36221875
transcript.pyannote[128].end 503.78346875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 499.42971875
transcript.pyannote[129].end 501.48846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 503.56409375
transcript.pyannote[130].end 503.58096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 503.58096875
transcript.pyannote[131].end 504.35721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 505.28534375
transcript.pyannote[132].end 531.47534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 531.57659375
transcript.pyannote[133].end 533.97284375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 533.97284375
transcript.pyannote[134].end 534.02346875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 534.02346875
transcript.pyannote[135].end 534.96846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 534.96846875
transcript.pyannote[136].end 541.93784375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 540.53721875
transcript.pyannote[137].end 551.97846875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 544.08096875
transcript.pyannote[138].end 547.01721875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 549.21096875
transcript.pyannote[139].end 550.84784375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 551.97846875
transcript.pyannote[140].end 557.78346875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 558.49221875
transcript.pyannote[141].end 561.52971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 560.46659375
transcript.pyannote[142].end 581.30721875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 581.18909375
transcript.pyannote[143].end 581.34096875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 581.34096875
transcript.pyannote[144].end 581.35784375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 581.35784375
transcript.pyannote[145].end 584.85096875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 584.86784375
transcript.pyannote[146].end 587.09534375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 588.04034375
transcript.pyannote[147].end 589.54221875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 588.19221875
transcript.pyannote[148].end 588.27659375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 588.61409375
transcript.pyannote[149].end 589.06971875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 589.54221875
transcript.pyannote[150].end 600.37596875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 597.86159375
transcript.pyannote[151].end 597.92909375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 597.92909375
transcript.pyannote[152].end 599.31284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 599.31284375
transcript.pyannote[153].end 599.32971875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 600.79784375
transcript.pyannote[154].end 606.02909375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 606.02909375
transcript.pyannote[155].end 621.40221875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 622.16159375
transcript.pyannote[156].end 625.55346875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 626.16096875
transcript.pyannote[157].end 626.83596875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 627.00471875
transcript.pyannote[158].end 639.05346875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 640.36971875
transcript.pyannote[159].end 646.76534375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 647.30534375
transcript.pyannote[160].end 649.58346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 651.30471875
transcript.pyannote[161].end 652.03034375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 653.21159375
transcript.pyannote[162].end 654.57846875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 654.89909375
transcript.pyannote[163].end 656.29971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 656.60346875
transcript.pyannote[164].end 657.93659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 658.51034375
transcript.pyannote[165].end 658.74659375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 659.64096875
transcript.pyannote[166].end 660.60284375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 661.05846875
transcript.pyannote[167].end 661.88534375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 662.57721875
transcript.pyannote[168].end 667.38659375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 669.71534375
transcript.pyannote[169].end 669.74909375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 669.74909375
transcript.pyannote[170].end 678.22034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 669.81659375
transcript.pyannote[171].end 672.11159375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 677.91659375
transcript.pyannote[172].end 678.20346875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 678.22034375
transcript.pyannote[173].end 685.05471875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 685.69596875
transcript.pyannote[174].end 687.41721875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 688.10909375
transcript.pyannote[175].end 688.91909375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 689.45909375
transcript.pyannote[176].end 690.79221875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 691.14659375
transcript.pyannote[177].end 692.54721875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 693.96471875
transcript.pyannote[178].end 695.39909375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 695.39909375
transcript.pyannote[179].end 715.53096875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 716.13846875
transcript.pyannote[180].end 721.20096875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 721.57221875
transcript.pyannote[181].end 726.02721875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 726.02721875
transcript.pyannote[182].end 727.64721875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 727.64721875
transcript.pyannote[183].end 727.69784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 727.69784375
transcript.pyannote[184].end 731.56221875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 731.84909375
transcript.pyannote[185].end 734.22846875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 735.15659375
transcript.pyannote[186].end 736.23659375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 737.67096875
transcript.pyannote[187].end 739.32471875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 739.35846875
transcript.pyannote[188].end 741.72096875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 740.13471875
transcript.pyannote[189].end 740.80971875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 741.72096875
transcript.pyannote[190].end 741.77159375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 742.83471875
transcript.pyannote[191].end 751.49159375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 750.46221875
transcript.pyannote[192].end 752.53784375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 751.57596875
transcript.pyannote[193].end 771.37034375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 765.37971875
transcript.pyannote[194].end 768.18096875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 769.29471875
transcript.pyannote[195].end 776.02784375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 776.09534375
transcript.pyannote[196].end 778.23846875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 778.44096875
transcript.pyannote[197].end 779.30159375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 782.44034375
transcript.pyannote[198].end 783.11534375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 783.53721875
transcript.pyannote[199].end 784.44846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 784.44846875
transcript.pyannote[200].end 784.46534375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 786.27096875
transcript.pyannote[201].end 786.30471875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 786.30471875
transcript.pyannote[202].end 786.57471875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 787.89096875
transcript.pyannote[203].end 787.90784375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 787.90784375
transcript.pyannote[204].end 816.96659375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 792.53159375
transcript.pyannote[205].end 792.85221875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 816.96659375
transcript.pyannote[206].end 826.21409375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 826.61909375
transcript.pyannote[207].end 831.27659375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 831.85034375
transcript.pyannote[208].end 834.75284375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 835.36034375
transcript.pyannote[209].end 835.95096875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 836.91284375
transcript.pyannote[210].end 848.03346875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 844.27034375
transcript.pyannote[211].end 844.62471875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 848.03346875
transcript.pyannote[212].end 873.27846875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 873.54846875
transcript.pyannote[213].end 873.97034375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 873.97034375
transcript.pyannote[214].end 883.09971875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 883.18409375
transcript.pyannote[215].end 903.77159375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 902.80971875
transcript.pyannote[216].end 903.99096875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 903.80534375
transcript.pyannote[217].end 905.67846875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 904.68284375
transcript.pyannote[218].end 905.12159375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 905.91471875
transcript.pyannote[219].end 907.83846875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 906.04971875
transcript.pyannote[220].end 906.28596875
transcript.whisperx[0].start 0.069
transcript.whisperx[0].end 20.376
transcript.whisperx[0].text 中國召委質詢好,謝謝召委,有請部長部長剛剛那段話,最後那段話,我覺得很重要會詳細的調查,然後給做深刻的檢討改進,甚至於,請部長,甚至於來做這樣的一個回應那部長早上應該有接到一個訊息吧
transcript.whisperx[1].start 21.664
transcript.whisperx[1].end 44.964
transcript.whisperx[1].text 國光生技是台灣第一家研發生技疫苗的上市公司每年到市上有提供五成以上的公會疫苗給國人接種疫苗給國人接種就說是在體內嘛那之前爆發出流感疫苗變色事件之後今天又被內部的吹哨者來爆料爆料什麼在整個實驗室內有百隻老鼠的亂竄部長什麼時候掌握這事情
transcript.whisperx[2].start 49.667
transcript.whisperx[2].end 52.011
transcript.whisperx[2].text 部長你第一個時間是什麼時候了解?
transcript.whisperx[3].start 61.946
transcript.whisperx[3].end 84.202
transcript.whisperx[3].text 今天一早今天食藥署就會派人去應該是因為食藥署會派人去但是部長接到訊息是今天早上所以是因為部長知道這個訊息之後才指示食藥署原來就要派就要今天去集合實際上去了解實際上的狀況那部長有掌握到食藥署是什麼時候掌握到這個訊息的
transcript.whisperx[4].start 86.591
transcript.whisperx[4].end 99.844
transcript.whisperx[4].text 那等於是說部長你是事後才知道這個訊息但是食藥署是今天早上才派員到國關生技的實驗室去了解實際上的狀況那AODA食藥署是什麼時候掌握到這個訊息
transcript.whisperx[5].start 108.342
transcript.whisperx[5].end 122.032
transcript.whisperx[5].text 部長的訪問是今天早上才接到這個訊息嘛但是部長接到這個訊息之前,使用署是今天早上就要派員到國光生技的實驗室去了解實際上的狀況嘛,應該是這樣嘛,對不對?所以FDA什麼時候跟部長回報這個訊息?一家生產疫苗的上市公司,發生這麼重大的事情我們衛福部什麼時候要掌握到?嗯...
transcript.whisperx[6].start 140.456
transcript.whisperx[6].end 166.349
transcript.whisperx[6].text 等一下問一下食藥署的那個因為食藥署署長去開國安的一個會議啦那他我想以食藥署署長他現在的日式的積極幾乎日以繼日應該是第一時間就掌握到那因為我們早上七點多就開會所以七點多我就知道這個訊息所以我等到食藥署就直接跟我報告今天已經安排派人要去國安所以部長你現在答應我就是今天早上您
transcript.whisperx[7].start 166.949
transcript.whisperx[7].end 185.351
transcript.whisperx[7].text 跟12署才知道這個訊息是這樣嗎因為你是不是今天早上7點多的揮之后之報然後才派人去喔我個人是7點 早上7點多知道好 你個人是7點多知道那12署是幾點的時候確定接受到指令要到國防生技場去調查
transcript.whisperx[8].start 186.252
transcript.whisperx[8].end 211.921
transcript.whisperx[8].text 至少七點多的時候已經直接告訴我石鑰匙的林副署長今天早上我們在開會的時候就告訴我說今天石鑰匙會派人去調查他是他跟我報告這樣子的好 那也請部長掌握到底石鑰匙是什麼時候接收到這個訊息因為這是去年七月份颱風發生之後所發生的事情
transcript.whisperx[9].start 213.294
transcript.whisperx[9].end 214.942
transcript.whisperx[9].text 去年7月根據報導是這麼寫因為颱風
transcript.whisperx[10].start 218.496
transcript.whisperx[10].end 243.572
transcript.whisperx[10].text 發生颱風然後產生這樣的事件然後怎麼會讓一個專門在製造疫苗給國人來施打的這個大廠而且是一個上市的公司發生這種離譜即逝的狀況只因為颱風只因為颱風就可以讓實驗室的保養署亂竄產生相關的排泄物甚至有毛屑來影響到整體的實驗室這對國人的
transcript.whisperx[11].start 248.212
transcript.whisperx[11].end 259.932
transcript.whisperx[11].text 接打疫苗的這樣的一個信心會匱乏我們長期為部隊國光生技補救多少 支持多少
transcript.whisperx[12].start 261.909
transcript.whisperx[12].end 279.518
transcript.whisperx[12].text 怎麼可以發生這種事情我跟劉兆偉報告一下第一個我們當然馬上就去查實際上的情況是怎麼樣那第二個那個第二個就是說我違反EMP的規定的話我們會重罰那可以罰三萬到要是法規定是可以罰三萬到兩百萬
transcript.whisperx[13].start 281.439
transcript.whisperx[13].end 306.317
transcript.whisperx[13].text 這個我想第三個在疫苗的製造過程當中必須要經過11道詳細的一個檢驗才能空間來使用所以疫苗的安全跟品質的確是做到嚴格的管控這個是我們對國人至少應該的一個安全跟品質的一個堅持請國人放心在疫苗方面的一個品質我們是非常嚴格的管制
transcript.whisperx[14].start 307.148
transcript.whisperx[14].end 320.342
transcript.whisperx[14].text 部長要去回應我這樣,我基本上沒有去質疑到後端,我沒有去質疑到整個疫苗出廠之後的這樣的一個安全性問題,但是在前端上在整個實驗室來發生這個事情,
transcript.whisperx[15].start 322.344
transcript.whisperx[15].end 345.14
transcript.whisperx[15].text 你覺得你可以容許嗎我想可能是不是老鼠亂竄或者是說他擺不應該擺的地方這個我們今天一定會去查清楚以免有時候信息如果不夠準確我們也很難去跟他做處罰所以我們今天一定要去確定了解當時的情況是怎麼樣
transcript.whisperx[16].start 345.92
transcript.whisperx[16].end 364.435
transcript.whisperx[16].text 對 我當然是希望部長第一個時間知道 第一個時間就趕快處理然後讓委員會 讓社會大眾知道不要產生施打對施打疫苗的信心會話應該是過去 曾經某一段時間發生然後現在 因為最近被激發嘛所以我們就馬上去查嘛 就這樣子
transcript.whisperx[17].start 365.711
transcript.whisperx[17].end 376.972
transcript.whisperx[17].text 我們馬上要去處理這樣子對啊 所以部長那個答覆我就是說是因為最近有被舉花所以你們瞭解說第一個時間馬上去查那等於還沒有舉花之前我們完全沒有掌握這個狀況嘛應該是這麼說嘛
transcript.whisperx[18].start 379.782
transcript.whisperx[18].end 396.515
transcript.whisperx[18].text 因為有時候實驗室我們當然譬如說我們也定期都有去國光生技在查它整個製造的我要講到繼續一個重點嘛部長因為這是我們有定期查的嘛如果這個事情如果根據這個吹哨者中去年7月因為台灣的事件
transcript.whisperx[19].start 397.296
transcript.whisperx[19].end 426.033
transcript.whisperx[19].text 就發生了怎麼沒有定期查核我們到現在才後知後覺那定期查核應該就是查那個疫苗的製造過程嘛那這個也許是在實驗室齁另外的實驗室的地方這個我們會去查清楚再跟大家報告這樣子事情的始末到底是真是假啦齁我還是希望部長可能要要責成FDA詳細的調查啦然後以讓社會大眾了解到事實的真相為何啦好不好如果真的是有
transcript.whisperx[20].start 427.918
transcript.whisperx[20].end 435.064
transcript.whisperx[20].text 陳獨這個吹哨子所這樣舉發的事情我覺得這是絕對不能堪恕的如果沒有也一定要回我們家一個清白人家去查核也要說明清楚還有第二件事情你看一下資料2月的時候馬歇議員被害1660萬筆的這個批判資料
transcript.whisperx[21].start 447.654
transcript.whisperx[21].end 476.129
transcript.whisperx[21].text 然後3月彰化基督教醫院系統被癱瘓4月中壢長盛醫院超過8萬名的病患資料外洩部長這有掌握嗎有這兩個尤其是在馬介醫院跟張基這連續的時候我們整個衛福部尤其是資訊處其實做了很多的事情包括馬上就是組黨還有跟特別是治安署方面的一個專家大家一起去做同時也召開了全國關鍵
transcript.whisperx[22].start 477.33
transcript.whisperx[22].end 500.607
transcript.whisperx[22].text 比較關鍵性的醫院的一個會議來看看怎麼樣來應驗同時也製造了一個SOP來看看那個醫院怎麼樣來防範所以可以做到防範應該可以做到防範嘛不會二三四有三家醫院五月又變成另外一家醫院可以做到防範嗎容許處長簡單報告一下
transcript.whisperx[23].start 505.522
transcript.whisperx[23].end 531.064
transcript.whisperx[23].text 跟會員報告那我們現在就是針對這個勒索軟體醫院最常見就是勒索軟體有做一個SOP而且也給他們都裝上這個所謂的主動防疫系統但是今天這次發生的這個長盛醫院它不是所謂的關鍵設施基礎醫院那不是這60家醫院在列管的所以目前的指通法裡面它並沒有在裡面需要去列管但我們第一時間還是把SOP怎麼做立刻都教他
transcript.whisperx[24].start 531.724
transcript.whisperx[24].end 557.243
transcript.whisperx[24].text 不是 我真的不敢說講的啦能不能做到防範嘛我想怎樣的這個駭客的攻擊啦防範這個事就好像說兩邊一直在進步駭客一直在更新我們一直在努力所以說沒有辦法講說百分之百一定可以防範但是就是要一直加精進就對了所以你也沒有幫我回答說不會百分之百保證五月就不會有其他一些醫院被駭
transcript.whisperx[25].start 558.544
transcript.whisperx[25].end 586.658
transcript.whisperx[25].text 沒有辦法保證嘛對不對這問題就很嚴重請委員放心李建昌教授是我們臺大醫學院臺灣大學裡面資訊最強的一個醫師所以他能夠到衛福部來為國家做事情他一定會盡力來做到委員所期待的一些在資訊的安全跟發展以後跟安全我可以應部長講的我可以對他放心但是我不放心哪一家醫院被攻擊
transcript.whisperx[26].start 589.707
transcript.whisperx[26].end 607.377
transcript.whisperx[26].text 所以當時60家我當然是希望能夠全部的醫院,因為每一家醫院都有病人的資料我們也在乎即使比較小的醫院,我想未來應該要他們納入整個保護罩裡面
transcript.whisperx[27].start 608.257
transcript.whisperx[27].end 625.227
transcript.whisperx[27].text 刑事警察局現在已經公佈,透過IP所定的這一連串的攻擊來自中國浙江省的一位20歲的羅姓男子雖然現在也啟動了兩岸共打,已經啟動了,但可能又要石沉大海了了解到了源頭在那邊,要怎麼樣
transcript.whisperx[28].start 626.209
transcript.whisperx[28].end 649.525
transcript.whisperx[28].text 可以怎麼樣?2023年在中國有一個學生不斷地發這個炸彈恐怖信嘛大家應該雞油油心嘛然後發給我們國內各大的單位機關然後最後還是透過共打平台不了了之不了了之所以我剛剛才會特別在跟部長跟專家強調說你們的防範到底能不能做到什麼樣程度?
transcript.whisperx[29].start 653.337
transcript.whisperx[29].end 667.045
transcript.whisperx[29].text 還是誠如剛剛所講的我們在進步他也在進步啊但是我們的進步比他比他如果晚一點那我們就五月不想要來家六月不想要來家最後會不會我們整個健保的資料
transcript.whisperx[30].start 669.784
transcript.whisperx[30].end 692.308
transcript.whisperx[30].text 健保的資料又有另外一個系列很嚴格的管制如果健保的這個系統是一個更嚴謹的管制那全國的這些醫院是不是要有整體更新相關的計畫我們才可以做到
transcript.whisperx[31].start 693.988
transcript.whisperx[31].end 714.03
transcript.whisperx[31].text 我們真正的防範中央健保署的資料它是屬於在自通安全是屬於A級的它是A級的機關所以必須要經過嚴格的見證那在醫院裡面因為有將近500家的醫院那他們當然有很多資訊都是需要一直在更新所以就如劉兆偉所提的我們
transcript.whisperx[32].start 716.392
transcript.whisperx[32].end 733.363
transcript.whisperx[32].text 國家真的在這個部分應該要投入更多的資源引進更多的人才來發展、來努力、來超越世界各國這樣子是啦,所以金毛鼠是A級的那像你看二月份是馬街喔馬街應該是醫學中心嘛,對不對連馬街都被害1660萬筆那馬街是B級的
transcript.whisperx[33].start 737.711
transcript.whisperx[33].end 766.56
transcript.whisperx[33].text 那其他醫院是C級的嗎那成所就變成D級了目前在我們的法裡面嘛馬街叫關鍵設施基礎醫院所以它的確是在我們防範之內但是這個包含在你們防範的範圍裡面嘛對不對對 但是廣大的這些其他不是這60家關鍵基礎設施醫院的話在目前法裡面是沒有拉近這些保護網那這個需要很大的資源我們也是請委員來支持就是說它不是衛福部資訊處我就是支持 今天才有這個議題
transcript.whisperx[34].start 767.64
transcript.whisperx[34].end 769.762
transcript.whisperx[34].text 所以部長你跟我講健保署A級的A級的我真的是擔心喔
transcript.whisperx[35].start 787.952
transcript.whisperx[35].end 814.424
transcript.whisperx[35].text 對對不對再補充一點就是說現在我們就是從防守變成叫韌性韌性的意思就是說我們開始在這個所有的這些資料裡面都給他備援加密就算你被害被攻擊以後可以很快速的備份現在我們這些醫院都是這樣去給他做然後呢我們開始要把這些資料加密你被害了以後那資料你沒有解密也是不能用的所以這個是韌性就是說我們第一關除了防守之外第二關的話也在韌性的部分做了相關的準備跟維護
transcript.whisperx[36].start 814.904
transcript.whisperx[36].end 834.479
transcript.whisperx[36].text 對,你講這是兩個防範的手段之二啦,之一跟之二嘛,對不對但是我的期待是說,如果今天誠如部長所講的健保署的資料是A級的就是你不輕易的,你可以來公佈你駭客怎麼駭,都非常的,不是這麼簡單啦但是你剛剛又講馬街
transcript.whisperx[37].start 837.18
transcript.whisperx[37].end 858.317
transcript.whisperx[37].text 應該是屬於這個範疇裡面60家重要的我們的關鍵的一個一個一個一個範圍內的這些重要的醫院的資料可以這麼輕易的被害的1660萬筆呢是 等一下跟委員報告因為畢竟這個醫院跟這個健保署不太一樣健保署是一個封閉的系統現在一個醫院都有五六十家的這個對外的供應商
transcript.whisperx[38].start 858.777
transcript.whisperx[38].end 875.251
transcript.whisperx[38].text 那參政制被害資料是在供應商在外面的所謂的檢驗室的機構所以這種當一個醫院都有幾百家供應商如果連外面都有他的資料的時候這個就是變成很難去防但健保署不是這樣健保署是一個比較封閉的一個系統那請部長就針對剛剛所講的這幾個面向可能要來檢討到底怎樣你還有這麼多的外部供應商會發生這個事情
transcript.whisperx[39].start 883.537
transcript.whisperx[39].end 904.204
transcript.whisperx[39].text 那可能那是不是成更多的就像你們講這六十家是不是要朝向像健保署這種A級的然後蜜室的處理的方式來做整體的提升是不是可以給我們一個一個詳細的一個調查然後未來怎麼做的一個一個計畫提供給委員會做參考好沒問題好謝謝蜜室謝謝好謝謝趙委員好謝謝劉委員謝謝部長
gazette.lineno 378
gazette.blocks[0][0] 劉委員建國:(9時55分)謝謝召委。有請部長。
gazette.blocks[0][1] 部長剛剛那一段話、最後那一段話,我覺得很重要,會詳細的調查,然後深刻的檢討改進,甚至於做這樣的回應。
gazette.blocks[1][0] 邱部長泰源:委員好。
gazette.blocks[2][0] 劉委員建國:部長早上應該有接到一個訊息吧?國光生技是臺灣第一家研發生技疫苗的上市公司,每年提供五成以上的公費疫苗給國人接種,就注射在體內嘛,之前爆發出流感疫苗變色事件之後,今天又被內部吹哨者爆料,爆料什麼?整個實驗室內有百隻老鼠亂竄,部長什麼時候掌握這事情?
gazette.blocks[3][0] 邱部長泰源:報告召委,我們第一個時間了解了以後,馬上……
gazette.blocks[4][0] 劉委員建國:對不起,部長說第一個時間了解是什麼時候?
gazette.blocks[5][0] 邱部長泰源:今天一早。
gazette.blocks[6][0] 劉委員建國:今天一早你才……
gazette.blocks[7][0] 邱部長泰源:今天食藥署就會派人去,應該是……
gazette.blocks[8][0] 劉委員建國:今天食藥署會派人去?但是部長接到訊息是今天早上,所以是因為部長知道這個訊息之後,才指示食藥署……
gazette.blocks[9][0] 邱部長泰源:沒有,食藥署原來今天就要去稽核、去清查,去了解實際上的狀況。
gazette.blocks[10][0] 劉委員建國:那部長有掌握到食藥署是什麼時候掌握到這個訊息的?那等於是部長是事後才知道這訊息,但是食藥署是今天早上才要派員到國光生技的實驗室去了解實際上的狀況,FDA食藥署是什麼時候掌握到這個訊息?部長的答復是今天早上才接到這個訊息嘛?但是部長接到這個訊息之前,食藥署是今天早上就要派員到國光生技的實驗室去了解實際上的狀況嘛?應該是這樣,對不對?所以FDA什麼時候跟部長回報這個訊息?一家生產疫苗的上市公司發生這麼重大的事情,衛福部什麼時候掌握到?
gazette.blocks[11][0] 邱部長泰源:等一下問一下食藥署,因為食藥署署長去開國安會議,我想以食藥署署長任事的積極,幾乎日以繼夜,應該是第一時間就掌握到,因為我們早上七點多就開會,所以七點多我就知道這個訊息,然後食藥署就直接跟我報告今天已經安排派人要去國光……
gazette.blocks[12][0] 劉委員建國:所以部長現在答復我,就是今天早上您跟食藥署才知道這個訊息,是這樣嗎?
gazette.blocks[13][0] 邱部長泰源:我相信食藥署應該更早……
gazette.blocks[14][0] 劉委員建國:因為你是不是今天早上七點多的會議之後知道,然後才派人去喔!
gazette.blocks[15][0] 邱部長泰源:我個人是早上七點多知道。
gazette.blocks[16][0] 劉委員建國:好,你個人是七點多知道,那食藥署是幾點確定接受到指令,要到國光生技廠去調查?
gazette.blocks[17][0] 邱部長泰源:至少七點多的時候,食藥署林副署長已經直接告訴我,今天早上我們在開會的時候,就告訴我,今天食藥署會派人去調查,他是跟我報告這樣子。
gazette.blocks[18][0] 劉委員建國:好,也請部長掌握情況,到底食藥署是什麼時候接受到這訊息。
gazette.blocks[19][0] 邱部長泰源:好。
gazette.blocks[20][0] 劉委員建國:因為這是去年7月份颱風之後所發生的事情,去年7月,根據報導是這麼寫的,因為發生颱風,然後產生這樣的事件,怎麼會讓一個專門在製造疫苗要給國人施打的大廠,而且是一個上市公司,發生這種離譜至極的狀況,只因為颱風,就可以讓實驗室的老鼠亂竄,產生了相關的排泄物,甚至有毛屑影響到整體的實驗室,這會讓要接打疫苗的國人的信心匱乏,長期衛福部對國光生技補助了多少、支持了多少?怎麼可以發生這種事情?
gazette.blocks[21][0] 邱部長泰源:我跟劉召委報告一下,第一個,我們當然馬上就去查實際的情況是怎麼樣;第二個,若違反GMP規定的話,我們會重罰,依藥事法規定是可以罰3萬到200萬;第三個,在疫苗的製造過程當中,必須要經過11道詳細檢驗才能封緘使用,所以疫苗的安全跟品質的確是做到嚴格管控,這是我們對國人至少應該要有的安全跟品質的堅持,請國人放心,疫苗方面的品質我們是非常嚴格的管制。
gazette.blocks[22][0] 劉委員建國:部長回應我這樣,我基本上沒有去質疑到後端,我也沒有去質疑到整個疫苗出廠之後的安全性問題,但是在前端上,整個實驗室發生這個事情,你覺得你可以容許嗎?
gazette.blocks[23][0] 邱部長泰源:報告委員,是不是老鼠亂竄或者是他們擺在不應該擺的地方,這個我們今天一定會去查清楚,以免有時候訊息如果不夠準確,我們也很難去給它做處罰,所以我們今天一定要去確定、了解當時的情況是怎麼樣。
gazette.blocks[24][0] 劉委員建國:對,我當然也是希望部長在第一個時間知道、第一個時間就趕快處理,然後讓委員會、也讓社會大眾知道,不要讓人民對施打疫苗的信心匱乏。
gazette.blocks[25][0] 邱部長泰源:這個應該是過去曾經某一段時間發生,然後因為最近被舉發,所以我們就馬上去查,我們馬上去了解並去處理。
gazette.blocks[26][0] 劉委員建國:所以部長答復我的是,因為最近有被舉發,所以你們了解之後,在第一個時間就馬上去查,等於還沒有舉發之前,你們完全沒有掌握這個狀況,應該是這麼說嘛!
gazette.blocks[27][0] 邱部長泰源:因為有時候實驗室……譬如我們也定期都有去國光生技查它整個製造的過程……
gazette.blocks[28][0] 劉委員建國:這就是一個重點,部長,就是因為你們有定期查核,但這個事情如果根據吹哨者的說法,是從去年7月因為颱風的事件就發生了,若你們有定期查核,怎麼到現在才後知後覺?
gazette.blocks[29][0] 邱部長泰源:定期查核應該就是查疫苗的製造過程,但這個也許是在另外實驗室的地方,這個我們會去查清楚,再跟大家報告。
gazette.blocks[30][0] 劉委員建國:關於事情的始末到底是真是假,我還是希望部長可能要責成FDA做詳細的調查……
gazette.blocks[31][0] 邱部長泰源:一定、一定。
gazette.blocks[32][0] 劉委員建國:讓社會大眾了解到事實的真相為何,好不好?
gazette.blocks[33][0] 邱部長泰源:好。
gazette.blocks[34][0] 劉委員建國:如果真的有誠如吹哨者所舉發的事情,我覺得這是絕對不能寬恕、也不能原諒的,如果沒有,也應該要還它一個清白。
gazette.blocks[35][0] 邱部長泰源:謝謝大家的關心,我們一定嚴加去查核,也要說明清楚。
gazette.blocks[36][0] 劉委員建國:第二件事情,部長,你看一下資料,2月的時候馬偕醫院被駭1,660萬筆的病患資料,3月彰化基督教醫院系統被癱瘓,4月中壢長慎醫院超過8萬名的病患資料被外洩,部長,這些有掌握嗎?
gazette.blocks[37][0] 邱部長泰源:有,尤其是馬偕醫院跟彰基連續發生的時候,整個衛福部尤其是資訊處其實做了很多的事情,包括馬上阻擋,特別是跟資安署在這方面的專家,大家一起去做,同時也召開了全國比較關鍵性的醫院的會議來看怎麼樣因應,同時也製作了一個SOP來看各醫院要怎麼樣防範,這一次的地區醫院……
gazette.blocks[38][0] 劉委員建國:所以可以做到防範?
gazette.blocks[39][0] 邱部長泰源:對。
gazette.blocks[40][0] 劉委員建國:應該可以做到防範嘛?不會2、3、4月有3家醫院,5月又變成另外一家醫院,可以做到防範嗎?
gazette.blocks[41][0] 邱部長泰源:委員,可否容許讓處長跟你簡單報告一下?
gazette.blocks[42][0] 劉委員建國:來,簡單報告。
gazette.blocks[43][0] 李處長建璋:跟委員報告,醫院最常見的就是勒索軟體,我們現在針對勒索軟體有做了一個SOP,而且也給他們都裝上所謂的主動防禦系統,但是這次發生事情的長慎醫院,它不是所謂的關鍵基礎設施醫院,那不是這60家醫院在業管的,所以在目前的資通法裡面,它並沒有在裡面需要去列管,但我們第一時間還是把SOP怎麼做都立刻教它。
gazette.blocks[44][0] 劉委員建國:不是,誠如部長所講的,能不能做到防範嘛?我想怎樣的駭客攻擊,很多種方式……
gazette.blocks[45][0] 李處長建璋:防範就好像兩邊一直在進步,駭客一直在更新,我們也一直在努力……
gazette.blocks[46][0] 劉委員建國:是,對啊!
gazette.blocks[47][0] 李處長建璋:所以沒有辦法講說百分之百一定可以防範,但就是要一直精進。
gazette.blocks[48][0] 劉委員建國:所以你也沒有辦法回答我說百分之百保證5月就不會有其他一些醫院被駭?沒有辦法保證嘛,對不對?
gazette.blocks[49][0] 邱部長泰源:我們努力……
gazette.blocks[50][0] 劉委員建國:這問題就很嚴重。
gazette.blocks[51][0] 邱部長泰源:請委員放心,李建璋教授是臺大醫學院、臺灣大學裡面資訊最強的一個醫師,所以他能夠到衛福部來為國家做事情,他一定會盡力做到全國所期待的資訊安全跟發展以後更安全。
gazette.blocks[52][0] 劉委員建國:我可以應部長講的,我可以對他放心啦!但是我不放心5月又要有哪一家醫院被攻擊,對不對?我應該這麼講嘛!
gazette.blocks[53][0] 邱部長泰源:所以當時是60家,我當然希望能夠全部的醫院,因為每一家醫院都有病人的資料,所以我們也很在乎……
gazette.blocks[54][0] 劉委員建國:部長,你聽一下……
gazette.blocks[55][0] 邱部長泰源:即使比較小的醫院,我想未來也應該把他們納入整個保護罩裡面。
gazette.blocks[56][0] 劉委員建國:刑事警察局現在已經公布,透過IP鎖定這一連串的攻擊是來自中國浙江省一位20歲的羅姓男子,雖然現在也啟動了兩岸共打,已經啟動了,可能又要石沉大海了,了解到源頭在那邊,但要怎麼樣、可以怎麼樣?2023年在中國有一個學生不斷發炸彈恐嚇信,大家應該記憶猶新,發給我們國內各大的單位、機關,最後還是透過共打平臺,但不了了之。所以我剛剛才會特別再跟部長、專家強調,你們的防範到底能不能做到什麼樣的程度?還是誠如剛剛所講的,我們在進步,他們也在進步,但是我們的進步如果比他們晚一點,那我們5月不曉得又有哪一家、6月不曉得又有哪一家,最後會不會我們整個健保的資料就成為他們的囊中之物?
gazette.blocks[57][0] 邱部長泰源:健保的資料又有另外一個系列很嚴格的管制,如果需要,當然健保署也可以報告。
gazette.blocks[58][0] 劉委員建國:如果健保的這個系統是一個更嚴謹的管制,那全國的這些醫院是不是要有整體更新的相關計畫,我們才可以做到真正的防範?
gazette.blocks[59][0] 邱部長泰源:中央健保署的資料在資通安全是屬於A級,它是A級的機關,所以必須要請委員嚴格的見證,在醫院裡面,因為有將近500家的醫院,他們當然有很多資訊都需要一直更新,所以就如劉召委所提的,國家真的在這個部分應該要投入更多的資源、引進更多的人才來發展、來努力、來超越世界各國。
gazette.blocks[60][0] 劉委員建國:是啦!所以健保署是A級的,你看2月份是馬偕喔!馬偕應該是醫學中心嘛,對不對?連馬偕都被駭1,660萬筆,馬偕是B級的,其他醫院是C級的……
gazette.blocks[61][0] 邱部長泰源:馬偕醫院的……
gazette.blocks[62][0] 劉委員建國:診所就變成D級了?
gazette.blocks[63][0] 李處長建璋:對,目前在我們的法裡面,馬偕叫關鍵基礎設施醫院,所以它的確是在我們的防範之內,但是這個包含廣大的……
gazette.blocks[64][0] 劉委員建國:在你們防範的範圍裡面嘛,對不對?
gazette.blocks[65][0] 李處長建璋:對,但是廣大的其他不是這60家關鍵基礎設施醫院的話,在目前法裡面是沒有納進這些保護網的,這個需要很大的資源,我們也是請委員來支持,就是它不是衛福部資訊處現在只有兩個人……
gazette.blocks[66][0] 劉委員建國:我就是支持,今天才會有這個議題提出來討論嘛!
gazette.blocks[67][0] 李處長建璋:對,所以這個要擴大到國家投入更多的資源才有辦法處理。
gazette.blocks[68][0] 劉委員建國:馬偕是納入在基礎防範的範疇裡面,它就被駭了1,660萬筆,所以部長跟我講健保署是A級的,我真的是擔心喔,對不對?
gazette.blocks[69][0] 李處長建璋:再補充一點,現在我們是從防守變成韌性,韌性的意思就是我們開始在所有的這些資料裡面都備援、加密,就算它被駭、被攻擊以後,也可以很快速地備份,現在我們對這些醫院都是這樣去做,然後我們開始要把這些資料加密,它被駭了以後,資料沒有解密也是不能用的,所以這個是韌性,就是我們第一關除了防守之外,第二關也在韌性的部分做了相關的準備,跟委員報告。
gazette.blocks[70][0] 劉委員建國:對,你講的這些是兩個防範手段的之一跟之二嘛,對不對?但是我的期待是,如果今天誠如部長所講的健保署的資料是A級的,就是不輕易可以來攻破,駭客怎麼駭,不是這麼簡單啦,你剛剛又講馬偕應該是屬於這個範疇裡面,60家我們關鍵範圍內重要的醫院,但資料可以這麼輕易被駭,有1,660萬筆耶!
gazette.blocks[71][0] 李處長建璋:跟委員報告,因為畢竟醫院跟健保署不太一樣,健保署是一個封閉系統。像一個醫院都有五、六十家對外的供應商,那他們這個被駭資料是供應商、是在外面的所謂檢驗室的機構,一個醫院都有幾百家供應商,如果連外面都有他的資料的時候,就變成很難去防,但健保署不是這樣,健保署是比較封閉的一個系統。
gazette.blocks[72][0] 劉委員建國:那就請部長針對剛剛所講的這幾個面向可能要檢討,看到底怎麼樣,你還有這麼多的外部供應商會發生這種事情,是不是有更多的,就像你們講的,這60家是不是要朝向健保署這種A級的、封閉式的處理方式來做整體提升?是不是可以給我們詳細的調查,然後未來怎麼做的一個計畫,提供給委員會做參考?可不可以?
gazette.blocks[73][0] 邱部長泰源:沒問題。
gazette.blocks[74][0] 劉委員建國:好,謝謝。謝謝召委。
gazette.blocks[75][0] 主席:謝謝劉委員、謝謝部長。
gazette.blocks[75][1] 接續我們請王育敏委員質詢。
gazette.agenda.page_end 370
gazette.agenda.meet_id 委員會-11-3-26-7
gazette.agenda.speakers[0] 蘇清泉
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 林月琴
gazette.agenda.speakers[3] 葛如鈞
gazette.agenda.speakers[4] 劉建國
gazette.agenda.speakers[5] 王育敏
gazette.agenda.speakers[6] 邱鎮軍
gazette.agenda.speakers[7] 廖偉翔
gazette.agenda.speakers[8] 林淑芬
gazette.agenda.speakers[9] 王正旭
gazette.agenda.speakers[10] 黃秀芳
gazette.agenda.speakers[11] 羅廷瑋
gazette.agenda.speakers[12] 鍾佳濱
gazette.agenda.speakers[13] 陳菁徽
gazette.agenda.speakers[14] 盧縣一
gazette.agenda.speakers[15] 李坤城
gazette.agenda.speakers[16] 陳培瑜
gazette.agenda.speakers[17] 張雅琳
gazette.agenda.speakers[18] 莊瑞雄
gazette.agenda.speakers[19] 楊曜
gazette.agenda.speakers[20] 陳瑩
gazette.agenda.speakers[21] 林楚茵
gazette.agenda.speakers[22] 林德福
gazette.agenda.page_start 287
gazette.agenda.meetingDate[0] 2025-04-23
gazette.agenda.gazette_id 1144101
gazette.agenda.agenda_lcidc_ids[0] 1144101_00005
gazette.agenda.meet_name 立法院第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議紀錄
gazette.agenda.content 邀請衛生福利部部長、財政部次長就「國家社會福利政策財源檢討及偏鄉兒童發展篩檢執行情 形」進行專題報告,並備質詢
gazette.agenda.agenda_id 1144101_00004