iVOD / 16041

Field Value
IVOD_ID 16041
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16041
日期 2024-06-26
會議資料.會議代碼 聯席會議-11-1-26,35-1
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 35
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[1] 外交及國防委員會
會議資料.標題 立法院第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議
影片種類 Full
開始時間 2024-06-26T09:03:06+08:00
結束時間 2024-06-26T13:04:00+08:00
影片長度 04:00:54
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685cf5366a7ae6bcaf75b00801740f9d8c2627684c85f64cd7bbe26c60548ffef9b5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-06-26T09:10:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議(事由:審查勞動部函送「駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄」之中、英及印地文文本影本案。 【6月26日及27日二天一次會】)
委員名稱 完整會議
委員發言時間 09:03:06 - 13:04:00
transcript.pyannote[0].speaker SPEAKER_20
transcript.pyannote[0].start 399.46221875
transcript.pyannote[0].end 402.93846875
transcript.pyannote[1].speaker SPEAKER_20
transcript.pyannote[1].start 403.83284375
transcript.pyannote[1].end 404.77784375
transcript.pyannote[2].speaker SPEAKER_11
transcript.pyannote[2].start 1726.51221875
transcript.pyannote[2].end 1894.77284375
transcript.pyannote[3].speaker SPEAKER_05
transcript.pyannote[3].start 1788.30846875
transcript.pyannote[3].end 1788.62909375
transcript.pyannote[4].speaker SPEAKER_11
transcript.pyannote[4].start 1895.43096875
transcript.pyannote[4].end 1899.17721875
transcript.pyannote[5].speaker SPEAKER_11
transcript.pyannote[5].start 1901.05034375
transcript.pyannote[5].end 1915.74846875
transcript.pyannote[6].speaker SPEAKER_11
transcript.pyannote[6].start 1916.49096875
transcript.pyannote[6].end 1920.86159375
transcript.pyannote[7].speaker SPEAKER_11
transcript.pyannote[7].start 1920.94596875
transcript.pyannote[7].end 1936.92659375
transcript.pyannote[8].speaker SPEAKER_11
transcript.pyannote[8].start 1937.31471875
transcript.pyannote[8].end 1939.12034375
transcript.pyannote[9].speaker SPEAKER_11
transcript.pyannote[9].start 1939.42409375
transcript.pyannote[9].end 1943.28846875
transcript.pyannote[10].speaker SPEAKER_11
transcript.pyannote[10].start 1943.74409375
transcript.pyannote[10].end 1945.97159375
transcript.pyannote[11].speaker SPEAKER_11
transcript.pyannote[11].start 1947.06846875
transcript.pyannote[11].end 1948.85721875
transcript.pyannote[12].speaker SPEAKER_11
transcript.pyannote[12].start 1949.80221875
transcript.pyannote[12].end 1951.27034375
transcript.pyannote[13].speaker SPEAKER_11
transcript.pyannote[13].start 1951.91159375
transcript.pyannote[13].end 1953.44721875
transcript.pyannote[14].speaker SPEAKER_11
transcript.pyannote[14].start 1953.86909375
transcript.pyannote[14].end 1955.47221875
transcript.pyannote[15].speaker SPEAKER_11
transcript.pyannote[15].start 1956.09659375
transcript.pyannote[15].end 1957.83471875
transcript.pyannote[16].speaker SPEAKER_11
transcript.pyannote[16].start 1959.58971875
transcript.pyannote[16].end 1962.82971875
transcript.pyannote[17].speaker SPEAKER_11
transcript.pyannote[17].start 1963.77471875
transcript.pyannote[17].end 1966.45784375
transcript.pyannote[18].speaker SPEAKER_11
transcript.pyannote[18].start 1967.68971875
transcript.pyannote[18].end 1970.20409375
transcript.pyannote[19].speaker SPEAKER_11
transcript.pyannote[19].start 1971.67221875
transcript.pyannote[19].end 1975.46909375
transcript.pyannote[20].speaker SPEAKER_11
transcript.pyannote[20].start 1976.41409375
transcript.pyannote[20].end 1978.99596875
transcript.pyannote[21].speaker SPEAKER_11
transcript.pyannote[21].start 1980.54846875
transcript.pyannote[21].end 1984.27784375
transcript.pyannote[22].speaker SPEAKER_11
transcript.pyannote[22].start 1985.57721875
transcript.pyannote[22].end 1988.24346875
transcript.pyannote[23].speaker SPEAKER_11
transcript.pyannote[23].start 1990.40346875
transcript.pyannote[23].end 1994.03159375
transcript.pyannote[24].speaker SPEAKER_11
transcript.pyannote[24].start 1995.98909375
transcript.pyannote[24].end 1999.38096875
transcript.pyannote[25].speaker SPEAKER_11
transcript.pyannote[25].start 2000.84909375
transcript.pyannote[25].end 2003.05971875
transcript.pyannote[26].speaker SPEAKER_11
transcript.pyannote[26].start 2005.97909375
transcript.pyannote[26].end 2010.18096875
transcript.pyannote[27].speaker SPEAKER_11
transcript.pyannote[27].start 2011.15971875
transcript.pyannote[27].end 2014.24784375
transcript.pyannote[28].speaker SPEAKER_11
transcript.pyannote[28].start 2015.22659375
transcript.pyannote[28].end 2017.63971875
transcript.pyannote[29].speaker SPEAKER_11
transcript.pyannote[29].start 2019.00659375
transcript.pyannote[29].end 2022.68534375
transcript.pyannote[30].speaker SPEAKER_11
transcript.pyannote[30].start 2023.95096875
transcript.pyannote[30].end 2024.37284375
transcript.pyannote[31].speaker SPEAKER_11
transcript.pyannote[31].start 2025.31784375
transcript.pyannote[31].end 2025.75659375
transcript.pyannote[32].speaker SPEAKER_11
transcript.pyannote[32].start 2027.86596875
transcript.pyannote[32].end 2028.47346875
transcript.pyannote[33].speaker SPEAKER_11
transcript.pyannote[33].start 2028.72659375
transcript.pyannote[33].end 2029.35096875
transcript.pyannote[34].speaker SPEAKER_11
transcript.pyannote[34].start 2031.03846875
transcript.pyannote[34].end 2033.68784375
transcript.pyannote[35].speaker SPEAKER_11
transcript.pyannote[35].start 2035.99971875
transcript.pyannote[35].end 2039.71221875
transcript.pyannote[36].speaker SPEAKER_11
transcript.pyannote[36].start 2040.77534375
transcript.pyannote[36].end 2043.42471875
transcript.pyannote[37].speaker SPEAKER_22
transcript.pyannote[37].start 2050.47846875
transcript.pyannote[37].end 2086.60784375
transcript.pyannote[38].speaker SPEAKER_22
transcript.pyannote[38].start 2087.11409375
transcript.pyannote[38].end 2102.52096875
transcript.pyannote[39].speaker SPEAKER_22
transcript.pyannote[39].start 2102.72346875
transcript.pyannote[39].end 2120.61096875
transcript.pyannote[40].speaker SPEAKER_22
transcript.pyannote[40].start 2121.01596875
transcript.pyannote[40].end 2153.29784375
transcript.pyannote[41].speaker SPEAKER_11
transcript.pyannote[41].start 2155.28909375
transcript.pyannote[41].end 2158.73159375
transcript.pyannote[42].speaker SPEAKER_11
transcript.pyannote[42].start 2159.74409375
transcript.pyannote[42].end 2160.55409375
transcript.pyannote[43].speaker SPEAKER_11
transcript.pyannote[43].start 2162.41034375
transcript.pyannote[43].end 2164.89096875
transcript.pyannote[44].speaker SPEAKER_11
transcript.pyannote[44].start 2165.22846875
transcript.pyannote[44].end 2165.73471875
transcript.pyannote[45].speaker SPEAKER_11
transcript.pyannote[45].start 2165.81909375
transcript.pyannote[45].end 2166.91596875
transcript.pyannote[46].speaker SPEAKER_11
transcript.pyannote[46].start 2167.25346875
transcript.pyannote[46].end 2168.72159375
transcript.pyannote[47].speaker SPEAKER_11
transcript.pyannote[47].start 2169.43034375
transcript.pyannote[47].end 2177.78346875
transcript.pyannote[48].speaker SPEAKER_15
transcript.pyannote[48].start 2180.60159375
transcript.pyannote[48].end 2229.16784375
transcript.pyannote[49].speaker SPEAKER_15
transcript.pyannote[49].start 2229.57284375
transcript.pyannote[49].end 2254.44659375
transcript.pyannote[50].speaker SPEAKER_15
transcript.pyannote[50].start 2254.81784375
transcript.pyannote[50].end 2545.59096875
transcript.pyannote[51].speaker SPEAKER_11
transcript.pyannote[51].start 2547.10971875
transcript.pyannote[51].end 2554.95659375
transcript.pyannote[52].speaker SPEAKER_11
transcript.pyannote[52].start 2555.58096875
transcript.pyannote[52].end 2556.28971875
transcript.pyannote[53].speaker SPEAKER_11
transcript.pyannote[53].start 2558.66909375
transcript.pyannote[53].end 2585.60159375
transcript.pyannote[54].speaker SPEAKER_11
transcript.pyannote[54].start 2586.44534375
transcript.pyannote[54].end 2589.60096875
transcript.pyannote[55].speaker SPEAKER_11
transcript.pyannote[55].start 2591.13659375
transcript.pyannote[55].end 2591.45721875
transcript.pyannote[56].speaker SPEAKER_11
transcript.pyannote[56].start 2591.67659375
transcript.pyannote[56].end 2593.43159375
transcript.pyannote[57].speaker SPEAKER_11
transcript.pyannote[57].start 2601.76784375
transcript.pyannote[57].end 2605.10909375
transcript.pyannote[58].speaker SPEAKER_10
transcript.pyannote[58].start 2604.51846875
transcript.pyannote[58].end 2604.78846875
transcript.pyannote[59].speaker SPEAKER_11
transcript.pyannote[59].start 2610.34034375
transcript.pyannote[59].end 2613.14159375
transcript.pyannote[60].speaker SPEAKER_11
transcript.pyannote[60].start 2615.06534375
transcript.pyannote[60].end 2615.50409375
transcript.pyannote[61].speaker SPEAKER_11
transcript.pyannote[61].start 2617.15784375
transcript.pyannote[61].end 2617.63034375
transcript.pyannote[62].speaker SPEAKER_11
transcript.pyannote[62].start 2617.91721875
transcript.pyannote[62].end 2620.38096875
transcript.pyannote[63].speaker SPEAKER_12
transcript.pyannote[63].start 2620.90409375
transcript.pyannote[63].end 2623.62096875
transcript.pyannote[64].speaker SPEAKER_11
transcript.pyannote[64].start 2625.10596875
transcript.pyannote[64].end 2626.30409375
transcript.pyannote[65].speaker SPEAKER_05
transcript.pyannote[65].start 2626.96221875
transcript.pyannote[65].end 2627.02971875
transcript.pyannote[66].speaker SPEAKER_05
transcript.pyannote[66].start 2628.86909375
transcript.pyannote[66].end 2631.02909375
transcript.pyannote[67].speaker SPEAKER_11
transcript.pyannote[67].start 2633.05409375
transcript.pyannote[67].end 2634.84284375
transcript.pyannote[68].speaker SPEAKER_11
transcript.pyannote[68].start 2635.21409375
transcript.pyannote[68].end 2638.60596875
transcript.pyannote[69].speaker SPEAKER_11
transcript.pyannote[69].start 2639.26409375
transcript.pyannote[69].end 2645.40659375
transcript.pyannote[70].speaker SPEAKER_11
transcript.pyannote[70].start 2645.89596875
transcript.pyannote[70].end 2651.16096875
transcript.pyannote[71].speaker SPEAKER_11
transcript.pyannote[71].start 2651.32971875
transcript.pyannote[71].end 2655.21096875
transcript.pyannote[72].speaker SPEAKER_11
transcript.pyannote[72].start 2659.56471875
transcript.pyannote[72].end 2660.61096875
transcript.pyannote[73].speaker SPEAKER_11
transcript.pyannote[73].start 2661.60659375
transcript.pyannote[73].end 2662.70346875
transcript.pyannote[74].speaker SPEAKER_05
transcript.pyannote[74].start 2664.94784375
transcript.pyannote[74].end 2694.59721875
transcript.pyannote[75].speaker SPEAKER_11
transcript.pyannote[75].start 2666.83784375
transcript.pyannote[75].end 2667.46221875
transcript.pyannote[76].speaker SPEAKER_19
transcript.pyannote[76].start 2676.32159375
transcript.pyannote[76].end 2676.35534375
transcript.pyannote[77].speaker SPEAKER_19
transcript.pyannote[77].start 2676.45659375
transcript.pyannote[77].end 2676.50721875
transcript.pyannote[78].speaker SPEAKER_30
transcript.pyannote[78].start 2693.92221875
transcript.pyannote[78].end 2698.19159375
transcript.pyannote[79].speaker SPEAKER_30
transcript.pyannote[79].start 2698.52909375
transcript.pyannote[79].end 2699.94659375
transcript.pyannote[80].speaker SPEAKER_30
transcript.pyannote[80].start 2700.19971875
transcript.pyannote[80].end 2717.49659375
transcript.pyannote[81].speaker SPEAKER_05
transcript.pyannote[81].start 2702.14034375
transcript.pyannote[81].end 2702.51159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 2702.51159375
transcript.pyannote[82].end 2702.54534375
transcript.pyannote[83].speaker SPEAKER_05
transcript.pyannote[83].start 2716.70346875
transcript.pyannote[83].end 2717.41221875
transcript.pyannote[84].speaker SPEAKER_05
transcript.pyannote[84].start 2717.49659375
transcript.pyannote[84].end 2719.72409375
transcript.pyannote[85].speaker SPEAKER_30
transcript.pyannote[85].start 2718.69471875
transcript.pyannote[85].end 2719.25159375
transcript.pyannote[86].speaker SPEAKER_05
transcript.pyannote[86].start 2720.12909375
transcript.pyannote[86].end 2741.50971875
transcript.pyannote[87].speaker SPEAKER_05
transcript.pyannote[87].start 2742.11721875
transcript.pyannote[87].end 2770.82159375
transcript.pyannote[88].speaker SPEAKER_05
transcript.pyannote[88].start 2771.53034375
transcript.pyannote[88].end 2771.56409375
transcript.pyannote[89].speaker SPEAKER_30
transcript.pyannote[89].start 2771.56409375
transcript.pyannote[89].end 2772.76221875
transcript.pyannote[90].speaker SPEAKER_30
transcript.pyannote[90].start 2773.20096875
transcript.pyannote[90].end 2779.09034375
transcript.pyannote[91].speaker SPEAKER_30
transcript.pyannote[91].start 2779.79909375
transcript.pyannote[91].end 2783.52846875
transcript.pyannote[92].speaker SPEAKER_30
transcript.pyannote[92].start 2783.83221875
transcript.pyannote[92].end 2800.42034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 2797.73721875
transcript.pyannote[93].end 2798.20971875
transcript.pyannote[94].speaker SPEAKER_08
transcript.pyannote[94].start 2798.20971875
transcript.pyannote[94].end 2798.54721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 2798.54721875
transcript.pyannote[95].end 2798.83409375
transcript.pyannote[96].speaker SPEAKER_30
transcript.pyannote[96].start 2800.75784375
transcript.pyannote[96].end 2803.54221875
transcript.pyannote[97].speaker SPEAKER_30
transcript.pyannote[97].start 2803.96409375
transcript.pyannote[97].end 2820.19784375
transcript.pyannote[98].speaker SPEAKER_05
transcript.pyannote[98].start 2815.86096875
transcript.pyannote[98].end 2843.70471875
transcript.pyannote[99].speaker SPEAKER_30
transcript.pyannote[99].start 2823.06659375
transcript.pyannote[99].end 2825.17596875
transcript.pyannote[100].speaker SPEAKER_06
transcript.pyannote[100].start 2832.97221875
transcript.pyannote[100].end 2833.54596875
transcript.pyannote[101].speaker SPEAKER_05
transcript.pyannote[101].start 2844.00846875
transcript.pyannote[101].end 2857.37346875
transcript.pyannote[102].speaker SPEAKER_30
transcript.pyannote[102].start 2856.24284375
transcript.pyannote[102].end 2865.37221875
transcript.pyannote[103].speaker SPEAKER_05
transcript.pyannote[103].start 2857.47471875
transcript.pyannote[103].end 2858.68971875
transcript.pyannote[104].speaker SPEAKER_30
transcript.pyannote[104].start 2865.91221875
transcript.pyannote[104].end 2876.34096875
transcript.pyannote[105].speaker SPEAKER_05
transcript.pyannote[105].start 2875.49721875
transcript.pyannote[105].end 2906.32784375
transcript.pyannote[106].speaker SPEAKER_30
transcript.pyannote[106].start 2879.56409375
transcript.pyannote[106].end 2880.39096875
transcript.pyannote[107].speaker SPEAKER_30
transcript.pyannote[107].start 2900.87721875
transcript.pyannote[107].end 2901.46784375
transcript.pyannote[108].speaker SPEAKER_30
transcript.pyannote[108].start 2903.18909375
transcript.pyannote[108].end 2904.47159375
transcript.pyannote[109].speaker SPEAKER_30
transcript.pyannote[109].start 2905.70346875
transcript.pyannote[109].end 2912.82471875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 2910.90096875
transcript.pyannote[110].end 2924.02971875
transcript.pyannote[111].speaker SPEAKER_30
transcript.pyannote[111].start 2915.27159375
transcript.pyannote[111].end 2915.42346875
transcript.pyannote[112].speaker SPEAKER_30
transcript.pyannote[112].start 2915.74409375
transcript.pyannote[112].end 2916.28409375
transcript.pyannote[113].speaker SPEAKER_30
transcript.pyannote[113].start 2923.00034375
transcript.pyannote[113].end 2929.95284375
transcript.pyannote[114].speaker SPEAKER_05
transcript.pyannote[114].start 2928.53534375
transcript.pyannote[114].end 2937.12471875
transcript.pyannote[115].speaker SPEAKER_30
transcript.pyannote[115].start 2932.66971875
transcript.pyannote[115].end 2933.31096875
transcript.pyannote[116].speaker SPEAKER_05
transcript.pyannote[116].start 2937.15846875
transcript.pyannote[116].end 2938.60971875
transcript.pyannote[117].speaker SPEAKER_30
transcript.pyannote[117].start 2938.05284375
transcript.pyannote[117].end 2938.40721875
transcript.pyannote[118].speaker SPEAKER_30
transcript.pyannote[118].start 2938.60971875
transcript.pyannote[118].end 2938.66034375
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 2938.66034375
transcript.pyannote[119].end 2938.96409375
transcript.pyannote[120].speaker SPEAKER_30
transcript.pyannote[120].start 2938.96409375
transcript.pyannote[120].end 2939.01471875
transcript.pyannote[121].speaker SPEAKER_05
transcript.pyannote[121].start 2939.01471875
transcript.pyannote[121].end 2980.42596875
transcript.pyannote[122].speaker SPEAKER_30
transcript.pyannote[122].start 2939.95971875
transcript.pyannote[122].end 2940.09471875
transcript.pyannote[123].speaker SPEAKER_30
transcript.pyannote[123].start 2942.00159375
transcript.pyannote[123].end 2943.50346875
transcript.pyannote[124].speaker SPEAKER_19
transcript.pyannote[124].start 2943.50346875
transcript.pyannote[124].end 2943.57096875
transcript.pyannote[125].speaker SPEAKER_19
transcript.pyannote[125].start 2945.59596875
transcript.pyannote[125].end 2945.98409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 2945.98409375
transcript.pyannote[126].end 2946.00096875
transcript.pyannote[127].speaker SPEAKER_19
transcript.pyannote[127].start 2946.25409375
transcript.pyannote[127].end 2947.09784375
transcript.pyannote[128].speaker SPEAKER_19
transcript.pyannote[128].start 2964.79971875
transcript.pyannote[128].end 2965.05284375
transcript.pyannote[129].speaker SPEAKER_19
transcript.pyannote[129].start 2965.13721875
transcript.pyannote[129].end 2965.23846875
transcript.pyannote[130].speaker SPEAKER_30
transcript.pyannote[130].start 2980.61159375
transcript.pyannote[130].end 3001.73909375
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 2996.37284375
transcript.pyannote[131].end 2999.93346875
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 3000.70971875
transcript.pyannote[132].end 3004.45596875
transcript.pyannote[133].speaker SPEAKER_30
transcript.pyannote[133].start 3002.85284375
transcript.pyannote[133].end 3004.38846875
transcript.pyannote[134].speaker SPEAKER_05
transcript.pyannote[134].start 3004.52346875
transcript.pyannote[134].end 3004.59096875
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 3005.06346875
transcript.pyannote[135].end 3023.40659375
transcript.pyannote[136].speaker SPEAKER_30
transcript.pyannote[136].start 3007.71284375
transcript.pyannote[136].end 3007.96596875
transcript.pyannote[137].speaker SPEAKER_19
transcript.pyannote[137].start 3007.96596875
transcript.pyannote[137].end 3008.11784375
transcript.pyannote[138].speaker SPEAKER_30
transcript.pyannote[138].start 3008.11784375
transcript.pyannote[138].end 3008.13471875
transcript.pyannote[139].speaker SPEAKER_05
transcript.pyannote[139].start 3023.71034375
transcript.pyannote[139].end 3036.02909375
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 3036.31596875
transcript.pyannote[140].end 3040.50096875
transcript.pyannote[141].speaker SPEAKER_05
transcript.pyannote[141].start 3041.04096875
transcript.pyannote[141].end 3081.05159375
transcript.pyannote[142].speaker SPEAKER_11
transcript.pyannote[142].start 3081.94596875
transcript.pyannote[142].end 3088.08846875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 3094.82159375
transcript.pyannote[143].end 3098.48346875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 3100.60971875
transcript.pyannote[144].end 3103.46159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 3104.03534375
transcript.pyannote[145].end 3104.72721875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 3105.23346875
transcript.pyannote[146].end 3105.40221875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 3107.07284375
transcript.pyannote[147].end 3112.06784375
transcript.pyannote[148].speaker SPEAKER_19
transcript.pyannote[148].start 3111.81471875
transcript.pyannote[148].end 3112.38846875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 3112.32096875
transcript.pyannote[149].end 3117.99096875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 3118.53096875
transcript.pyannote[150].end 3125.78721875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 3125.83784375
transcript.pyannote[151].end 3136.85721875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 3137.44784375
transcript.pyannote[152].end 3140.56971875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 3140.94096875
transcript.pyannote[153].end 3165.94971875
transcript.pyannote[154].speaker SPEAKER_30
transcript.pyannote[154].start 3166.40534375
transcript.pyannote[154].end 3179.92221875
transcript.pyannote[155].speaker SPEAKER_19
transcript.pyannote[155].start 3179.92221875
transcript.pyannote[155].end 3180.29346875
transcript.pyannote[156].speaker SPEAKER_30
transcript.pyannote[156].start 3180.14159375
transcript.pyannote[156].end 3180.64784375
transcript.pyannote[157].speaker SPEAKER_30
transcript.pyannote[157].start 3180.96846875
transcript.pyannote[157].end 3189.27096875
transcript.pyannote[158].speaker SPEAKER_30
transcript.pyannote[158].start 3189.70971875
transcript.pyannote[158].end 3196.12221875
transcript.pyannote[159].speaker SPEAKER_30
transcript.pyannote[159].start 3196.24034375
transcript.pyannote[159].end 3196.25721875
transcript.pyannote[160].speaker SPEAKER_30
transcript.pyannote[160].start 3196.27409375
transcript.pyannote[160].end 3203.02409375
transcript.pyannote[161].speaker SPEAKER_30
transcript.pyannote[161].start 3203.47971875
transcript.pyannote[161].end 3214.98846875
transcript.pyannote[162].speaker SPEAKER_30
transcript.pyannote[162].start 3215.15721875
transcript.pyannote[162].end 3229.29846875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 3225.60284375
transcript.pyannote[163].end 3226.26096875
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 3227.23971875
transcript.pyannote[164].end 3239.91284375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 3240.30096875
transcript.pyannote[165].end 3255.16784375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 3255.45471875
transcript.pyannote[166].end 3261.27659375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 3261.66471875
transcript.pyannote[167].end 3264.06096875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 3264.11159375
transcript.pyannote[168].end 3264.14534375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 3264.16221875
transcript.pyannote[169].end 3271.19909375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 3273.30846875
transcript.pyannote[170].end 3277.12221875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 3278.15159375
transcript.pyannote[171].end 3289.20471875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 3289.96409375
transcript.pyannote[172].end 3295.76909375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 3296.37659375
transcript.pyannote[173].end 3298.84034375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 3299.26221875
transcript.pyannote[174].end 3299.27909375
transcript.pyannote[175].speaker SPEAKER_30
transcript.pyannote[175].start 3299.27909375
transcript.pyannote[175].end 3299.31284375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 3299.31284375
transcript.pyannote[176].end 3299.49846875
transcript.pyannote[177].speaker SPEAKER_30
transcript.pyannote[177].start 3299.49846875
transcript.pyannote[177].end 3299.51534375
transcript.pyannote[178].speaker SPEAKER_30
transcript.pyannote[178].start 3300.00471875
transcript.pyannote[178].end 3327.05534375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 3304.20659375
transcript.pyannote[179].end 3307.36221875
transcript.pyannote[180].speaker SPEAKER_11
transcript.pyannote[180].start 3312.91409375
transcript.pyannote[180].end 3313.15034375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 3326.02596875
transcript.pyannote[181].end 3333.51846875
transcript.pyannote[182].speaker SPEAKER_30
transcript.pyannote[182].start 3334.68284375
transcript.pyannote[182].end 3336.43784375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 3336.77534375
transcript.pyannote[183].end 3342.10784375
transcript.pyannote[184].speaker SPEAKER_30
transcript.pyannote[184].start 3342.10784375
transcript.pyannote[184].end 3345.21284375
transcript.pyannote[185].speaker SPEAKER_30
transcript.pyannote[185].start 3345.76971875
transcript.pyannote[185].end 3347.84534375
transcript.pyannote[186].speaker SPEAKER_30
transcript.pyannote[186].start 3348.21659375
transcript.pyannote[186].end 3349.02659375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 3349.02659375
transcript.pyannote[187].end 3349.58346875
transcript.pyannote[188].speaker SPEAKER_30
transcript.pyannote[188].start 3349.58346875
transcript.pyannote[188].end 3349.85346875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 3349.85346875
transcript.pyannote[189].end 3356.89034375
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 3357.86909375
transcript.pyannote[190].end 3358.96596875
transcript.pyannote[191].speaker SPEAKER_30
transcript.pyannote[191].start 3358.96596875
transcript.pyannote[191].end 3361.56471875
transcript.pyannote[192].speaker SPEAKER_30
transcript.pyannote[192].start 3362.00346875
transcript.pyannote[192].end 3365.88471875
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 3364.63596875
transcript.pyannote[193].end 3380.36346875
transcript.pyannote[194].speaker SPEAKER_06
transcript.pyannote[194].start 3365.88471875
transcript.pyannote[194].end 3365.96909375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 3378.72659375
transcript.pyannote[195].end 3378.74346875
transcript.pyannote[196].speaker SPEAKER_06
transcript.pyannote[196].start 3378.74346875
transcript.pyannote[196].end 3379.26659375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 3380.68409375
transcript.pyannote[197].end 3381.32534375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 3382.13534375
transcript.pyannote[198].end 3400.98471875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 3401.11971875
transcript.pyannote[199].end 3420.17159375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 3420.52596875
transcript.pyannote[200].end 3430.12784375
transcript.pyannote[201].speaker SPEAKER_30
transcript.pyannote[201].start 3430.83659375
transcript.pyannote[201].end 3453.41534375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 3451.27221875
transcript.pyannote[202].end 3467.52284375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 3469.78409375
transcript.pyannote[203].end 3471.11721875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 3471.31971875
transcript.pyannote[204].end 3477.79971875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 3471.69096875
transcript.pyannote[205].end 3471.91034375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 3472.70346875
transcript.pyannote[206].end 3472.99034375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 3473.83409375
transcript.pyannote[207].end 3473.96909375
transcript.pyannote[208].speaker SPEAKER_20
transcript.pyannote[208].start 3473.96909375
transcript.pyannote[208].end 3474.03659375
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 3478.18784375
transcript.pyannote[209].end 3479.68971875
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 3480.06096875
transcript.pyannote[210].end 3483.53721875
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 3484.02659375
transcript.pyannote[211].end 3485.17409375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 3485.49471875
transcript.pyannote[212].end 3486.23721875
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 3487.31721875
transcript.pyannote[213].end 3487.87409375
transcript.pyannote[214].speaker SPEAKER_30
transcript.pyannote[214].start 3489.30846875
transcript.pyannote[214].end 3490.55721875
transcript.pyannote[215].speaker SPEAKER_30
transcript.pyannote[215].start 3490.87784375
transcript.pyannote[215].end 3500.76659375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 3492.63284375
transcript.pyannote[216].end 3493.72971875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 3500.76659375
transcript.pyannote[217].end 3500.83409375
transcript.pyannote[218].speaker SPEAKER_30
transcript.pyannote[218].start 3500.83409375
transcript.pyannote[218].end 3501.00284375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 3501.00284375
transcript.pyannote[219].end 3525.58971875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 3526.07909375
transcript.pyannote[220].end 3535.96784375
transcript.pyannote[221].speaker SPEAKER_30
transcript.pyannote[221].start 3535.96784375
transcript.pyannote[221].end 3536.59221875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 3536.89596875
transcript.pyannote[222].end 3537.13221875
transcript.pyannote[223].speaker SPEAKER_30
transcript.pyannote[223].start 3537.13221875
transcript.pyannote[223].end 3544.55721875
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 3544.48971875
transcript.pyannote[224].end 3549.31596875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 3549.78846875
transcript.pyannote[225].end 3551.00346875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 3551.34096875
transcript.pyannote[226].end 3555.20534375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 3555.47534375
transcript.pyannote[227].end 3555.50909375
transcript.pyannote[228].speaker SPEAKER_30
transcript.pyannote[228].start 3555.50909375
transcript.pyannote[228].end 3556.85909375
transcript.pyannote[229].speaker SPEAKER_30
transcript.pyannote[229].start 3556.97721875
transcript.pyannote[229].end 3557.02784375
transcript.pyannote[230].speaker SPEAKER_11
transcript.pyannote[230].start 3557.02784375
transcript.pyannote[230].end 3557.07846875
transcript.pyannote[231].speaker SPEAKER_30
transcript.pyannote[231].start 3557.07846875
transcript.pyannote[231].end 3557.09534375
transcript.pyannote[232].speaker SPEAKER_11
transcript.pyannote[232].start 3557.09534375
transcript.pyannote[232].end 3557.26409375
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 3557.26409375
transcript.pyannote[233].end 3557.97284375
transcript.pyannote[234].speaker SPEAKER_11
transcript.pyannote[234].start 3557.97284375
transcript.pyannote[234].end 3558.10784375
transcript.pyannote[235].speaker SPEAKER_11
transcript.pyannote[235].start 3559.64346875
transcript.pyannote[235].end 3560.33534375
transcript.pyannote[236].speaker SPEAKER_11
transcript.pyannote[236].start 3560.77409375
transcript.pyannote[236].end 3563.67659375
transcript.pyannote[237].speaker SPEAKER_04
transcript.pyannote[237].start 3568.95846875
transcript.pyannote[237].end 3571.97909375
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 3572.70471875
transcript.pyannote[238].end 3573.43034375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 3574.40909375
transcript.pyannote[239].end 3574.89846875
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 3575.79284375
transcript.pyannote[240].end 3576.19784375
transcript.pyannote[241].speaker SPEAKER_04
transcript.pyannote[241].start 3579.28596875
transcript.pyannote[241].end 3579.60659375
transcript.pyannote[242].speaker SPEAKER_04
transcript.pyannote[242].start 3580.19721875
transcript.pyannote[242].end 3581.20971875
transcript.pyannote[243].speaker SPEAKER_04
transcript.pyannote[243].start 3581.58096875
transcript.pyannote[243].end 3585.54659375
transcript.pyannote[244].speaker SPEAKER_04
transcript.pyannote[244].start 3585.93471875
transcript.pyannote[244].end 3601.71284375
transcript.pyannote[245].speaker SPEAKER_04
transcript.pyannote[245].start 3602.11784375
transcript.pyannote[245].end 3602.16846875
transcript.pyannote[246].speaker SPEAKER_30
transcript.pyannote[246].start 3602.16846875
transcript.pyannote[246].end 3607.06221875
transcript.pyannote[247].speaker SPEAKER_04
transcript.pyannote[247].start 3605.83034375
transcript.pyannote[247].end 3605.96534375
transcript.pyannote[248].speaker SPEAKER_20
transcript.pyannote[248].start 3605.96534375
transcript.pyannote[248].end 3606.77534375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 3606.77534375
transcript.pyannote[249].end 3606.80909375
transcript.pyannote[250].speaker SPEAKER_30
transcript.pyannote[250].start 3608.15909375
transcript.pyannote[250].end 3608.37846875
transcript.pyannote[251].speaker SPEAKER_30
transcript.pyannote[251].start 3609.08721875
transcript.pyannote[251].end 3621.03471875
transcript.pyannote[252].speaker SPEAKER_04
transcript.pyannote[252].start 3617.25471875
transcript.pyannote[252].end 3618.50346875
transcript.pyannote[253].speaker SPEAKER_04
transcript.pyannote[253].start 3621.03471875
transcript.pyannote[253].end 3655.15596875
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 3634.09596875
transcript.pyannote[254].end 3634.56846875
transcript.pyannote[255].speaker SPEAKER_04
transcript.pyannote[255].start 3655.62846875
transcript.pyannote[255].end 3655.96596875
transcript.pyannote[256].speaker SPEAKER_30
transcript.pyannote[256].start 3655.96596875
transcript.pyannote[256].end 3660.30284375
transcript.pyannote[257].speaker SPEAKER_04
transcript.pyannote[257].start 3659.08784375
transcript.pyannote[257].end 3659.49284375
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 3659.49284375
transcript.pyannote[258].end 3659.54346875
transcript.pyannote[259].speaker SPEAKER_30
transcript.pyannote[259].start 3660.58971875
transcript.pyannote[259].end 3662.93534375
transcript.pyannote[260].speaker SPEAKER_30
transcript.pyannote[260].start 3663.15471875
transcript.pyannote[260].end 3665.33159375
transcript.pyannote[261].speaker SPEAKER_30
transcript.pyannote[261].start 3666.02346875
transcript.pyannote[261].end 3674.14034375
transcript.pyannote[262].speaker SPEAKER_30
transcript.pyannote[262].start 3674.42721875
transcript.pyannote[262].end 3677.65034375
transcript.pyannote[263].speaker SPEAKER_04
transcript.pyannote[263].start 3674.93346875
transcript.pyannote[263].end 3675.47346875
transcript.pyannote[264].speaker SPEAKER_04
transcript.pyannote[264].start 3676.78971875
transcript.pyannote[264].end 3692.44971875
transcript.pyannote[265].speaker SPEAKER_04
transcript.pyannote[265].start 3693.04034375
transcript.pyannote[265].end 3693.96846875
transcript.pyannote[266].speaker SPEAKER_30
transcript.pyannote[266].start 3693.96846875
transcript.pyannote[266].end 3694.03596875
transcript.pyannote[267].speaker SPEAKER_04
transcript.pyannote[267].start 3694.03596875
transcript.pyannote[267].end 3694.96409375
transcript.pyannote[268].speaker SPEAKER_30
transcript.pyannote[268].start 3694.96409375
transcript.pyannote[268].end 3695.03159375
transcript.pyannote[269].speaker SPEAKER_04
transcript.pyannote[269].start 3695.03159375
transcript.pyannote[269].end 3695.63909375
transcript.pyannote[270].speaker SPEAKER_30
transcript.pyannote[270].start 3695.63909375
transcript.pyannote[270].end 3696.29721875
transcript.pyannote[271].speaker SPEAKER_04
transcript.pyannote[271].start 3696.29721875
transcript.pyannote[271].end 3696.56721875
transcript.pyannote[272].speaker SPEAKER_30
transcript.pyannote[272].start 3696.56721875
transcript.pyannote[272].end 3696.58409375
transcript.pyannote[273].speaker SPEAKER_30
transcript.pyannote[273].start 3697.64721875
transcript.pyannote[273].end 3697.66409375
transcript.pyannote[274].speaker SPEAKER_04
transcript.pyannote[274].start 3697.66409375
transcript.pyannote[274].end 3697.96784375
transcript.pyannote[275].speaker SPEAKER_30
transcript.pyannote[275].start 3697.96784375
transcript.pyannote[275].end 3698.03534375
transcript.pyannote[276].speaker SPEAKER_04
transcript.pyannote[276].start 3698.03534375
transcript.pyannote[276].end 3698.98034375
transcript.pyannote[277].speaker SPEAKER_04
transcript.pyannote[277].start 3699.43596875
transcript.pyannote[277].end 3708.98721875
transcript.pyannote[278].speaker SPEAKER_30
transcript.pyannote[278].start 3700.14471875
transcript.pyannote[278].end 3700.46534375
transcript.pyannote[279].speaker SPEAKER_30
transcript.pyannote[279].start 3707.65409375
transcript.pyannote[279].end 3707.97471875
transcript.pyannote[280].speaker SPEAKER_04
transcript.pyannote[280].start 3709.89846875
transcript.pyannote[280].end 3717.69471875
transcript.pyannote[281].speaker SPEAKER_04
transcript.pyannote[281].start 3717.91409375
transcript.pyannote[281].end 3753.14909375
transcript.pyannote[282].speaker SPEAKER_30
transcript.pyannote[282].start 3753.60471875
transcript.pyannote[282].end 3754.09409375
transcript.pyannote[283].speaker SPEAKER_30
transcript.pyannote[283].start 3754.14471875
transcript.pyannote[283].end 3761.28284375
transcript.pyannote[284].speaker SPEAKER_04
transcript.pyannote[284].start 3760.82721875
transcript.pyannote[284].end 3761.36721875
transcript.pyannote[285].speaker SPEAKER_30
transcript.pyannote[285].start 3761.36721875
transcript.pyannote[285].end 3762.63284375
transcript.pyannote[286].speaker SPEAKER_30
transcript.pyannote[286].start 3763.10534375
transcript.pyannote[286].end 3763.79721875
transcript.pyannote[287].speaker SPEAKER_04
transcript.pyannote[287].start 3763.79721875
transcript.pyannote[287].end 3763.88159375
transcript.pyannote[288].speaker SPEAKER_30
transcript.pyannote[288].start 3763.88159375
transcript.pyannote[288].end 3764.08409375
transcript.pyannote[289].speaker SPEAKER_30
transcript.pyannote[289].start 3764.50596875
transcript.pyannote[289].end 3775.20471875
transcript.pyannote[290].speaker SPEAKER_04
transcript.pyannote[290].start 3767.03721875
transcript.pyannote[290].end 3767.84721875
transcript.pyannote[291].speaker SPEAKER_04
transcript.pyannote[291].start 3771.34034375
transcript.pyannote[291].end 3771.66096875
transcript.pyannote[292].speaker SPEAKER_30
transcript.pyannote[292].start 3775.86284375
transcript.pyannote[292].end 3777.26346875
transcript.pyannote[293].speaker SPEAKER_30
transcript.pyannote[293].start 3778.03971875
transcript.pyannote[293].end 3783.77721875
transcript.pyannote[294].speaker SPEAKER_04
transcript.pyannote[294].start 3782.34284375
transcript.pyannote[294].end 3783.76034375
transcript.pyannote[295].speaker SPEAKER_04
transcript.pyannote[295].start 3783.77721875
transcript.pyannote[295].end 3800.63534375
transcript.pyannote[296].speaker SPEAKER_30
transcript.pyannote[296].start 3784.72221875
transcript.pyannote[296].end 3786.39284375
transcript.pyannote[297].speaker SPEAKER_30
transcript.pyannote[297].start 3788.92409375
transcript.pyannote[297].end 3789.39659375
transcript.pyannote[298].speaker SPEAKER_04
transcript.pyannote[298].start 3800.80409375
transcript.pyannote[298].end 3803.43659375
transcript.pyannote[299].speaker SPEAKER_04
transcript.pyannote[299].start 3804.04409375
transcript.pyannote[299].end 3809.98409375
transcript.pyannote[300].speaker SPEAKER_04
transcript.pyannote[300].start 3810.20346875
transcript.pyannote[300].end 3816.98721875
transcript.pyannote[301].speaker SPEAKER_30
transcript.pyannote[301].start 3816.98721875
transcript.pyannote[301].end 3829.79534375
transcript.pyannote[302].speaker SPEAKER_05
transcript.pyannote[302].start 3826.30221875
transcript.pyannote[302].end 3827.04471875
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 3827.31471875
transcript.pyannote[303].end 3828.02346875
transcript.pyannote[304].speaker SPEAKER_04
transcript.pyannote[304].start 3828.02346875
transcript.pyannote[304].end 3828.54659375
transcript.pyannote[305].speaker SPEAKER_30
transcript.pyannote[305].start 3830.25096875
transcript.pyannote[305].end 3837.03471875
transcript.pyannote[306].speaker SPEAKER_04
transcript.pyannote[306].start 3833.11971875
transcript.pyannote[306].end 3833.32221875
transcript.pyannote[307].speaker SPEAKER_04
transcript.pyannote[307].start 3836.10659375
transcript.pyannote[307].end 3866.51534375
transcript.pyannote[308].speaker SPEAKER_30
transcript.pyannote[308].start 3867.83159375
transcript.pyannote[308].end 3868.27034375
transcript.pyannote[309].speaker SPEAKER_30
transcript.pyannote[309].start 3868.37159375
transcript.pyannote[309].end 3874.44659375
transcript.pyannote[310].speaker SPEAKER_30
transcript.pyannote[310].start 3874.71659375
transcript.pyannote[310].end 3878.37846875
transcript.pyannote[311].speaker SPEAKER_30
transcript.pyannote[311].start 3878.49659375
transcript.pyannote[311].end 3878.96909375
transcript.pyannote[312].speaker SPEAKER_20
transcript.pyannote[312].start 3878.78346875
transcript.pyannote[312].end 3878.80034375
transcript.pyannote[313].speaker SPEAKER_15
transcript.pyannote[313].start 3878.80034375
transcript.pyannote[313].end 3878.83409375
transcript.pyannote[314].speaker SPEAKER_20
transcript.pyannote[314].start 3878.83409375
transcript.pyannote[314].end 3878.90159375
transcript.pyannote[315].speaker SPEAKER_20
transcript.pyannote[315].start 3878.96909375
transcript.pyannote[315].end 3879.79596875
transcript.pyannote[316].speaker SPEAKER_30
transcript.pyannote[316].start 3880.23471875
transcript.pyannote[316].end 3882.83346875
transcript.pyannote[317].speaker SPEAKER_04
transcript.pyannote[317].start 3882.83346875
transcript.pyannote[317].end 3884.50409375
transcript.pyannote[318].speaker SPEAKER_04
transcript.pyannote[318].start 3884.75721875
transcript.pyannote[318].end 3889.06034375
transcript.pyannote[319].speaker SPEAKER_30
transcript.pyannote[319].start 3887.40659375
transcript.pyannote[319].end 3913.02284375
transcript.pyannote[320].speaker SPEAKER_04
transcript.pyannote[320].start 3889.98846875
transcript.pyannote[320].end 3890.54534375
transcript.pyannote[321].speaker SPEAKER_04
transcript.pyannote[321].start 3913.02284375
transcript.pyannote[321].end 3913.37721875
transcript.pyannote[322].speaker SPEAKER_30
transcript.pyannote[322].start 3913.37721875
transcript.pyannote[322].end 3914.55846875
transcript.pyannote[323].speaker SPEAKER_04
transcript.pyannote[323].start 3913.41096875
transcript.pyannote[323].end 3914.03534375
transcript.pyannote[324].speaker SPEAKER_04
transcript.pyannote[324].start 3914.55846875
transcript.pyannote[324].end 3949.25346875
transcript.pyannote[325].speaker SPEAKER_00
transcript.pyannote[325].start 3924.85221875
transcript.pyannote[325].end 3925.20659375
transcript.pyannote[326].speaker SPEAKER_04
transcript.pyannote[326].start 3950.02971875
transcript.pyannote[326].end 3956.96534375
transcript.pyannote[327].speaker SPEAKER_30
transcript.pyannote[327].start 3956.96534375
transcript.pyannote[327].end 3962.63534375
transcript.pyannote[328].speaker SPEAKER_30
transcript.pyannote[328].start 3963.17534375
transcript.pyannote[328].end 3980.64096875
transcript.pyannote[329].speaker SPEAKER_30
transcript.pyannote[329].start 3980.91096875
transcript.pyannote[329].end 3996.16596875
transcript.pyannote[330].speaker SPEAKER_13
transcript.pyannote[330].start 3983.40846875
transcript.pyannote[330].end 3984.97784375
transcript.pyannote[331].speaker SPEAKER_00
transcript.pyannote[331].start 3984.97784375
transcript.pyannote[331].end 3985.29846875
transcript.pyannote[332].speaker SPEAKER_10
transcript.pyannote[332].start 3985.29846875
transcript.pyannote[332].end 3985.63596875
transcript.pyannote[333].speaker SPEAKER_00
transcript.pyannote[333].start 3985.63596875
transcript.pyannote[333].end 3985.78784375
transcript.pyannote[334].speaker SPEAKER_04
transcript.pyannote[334].start 3995.50784375
transcript.pyannote[334].end 4007.97846875
transcript.pyannote[335].speaker SPEAKER_30
transcript.pyannote[335].start 3997.39784375
transcript.pyannote[335].end 3998.30909375
transcript.pyannote[336].speaker SPEAKER_30
transcript.pyannote[336].start 3999.37221875
transcript.pyannote[336].end 4000.68846875
transcript.pyannote[337].speaker SPEAKER_30
transcript.pyannote[337].start 4007.97846875
transcript.pyannote[337].end 4013.29409375
transcript.pyannote[338].speaker SPEAKER_30
transcript.pyannote[338].start 4013.47971875
transcript.pyannote[338].end 4020.38159375
transcript.pyannote[339].speaker SPEAKER_04
transcript.pyannote[339].start 4018.49159375
transcript.pyannote[339].end 4039.97346875
transcript.pyannote[340].speaker SPEAKER_30
transcript.pyannote[340].start 4025.42721875
transcript.pyannote[340].end 4025.81534375
transcript.pyannote[341].speaker SPEAKER_00
transcript.pyannote[341].start 4025.81534375
transcript.pyannote[341].end 4025.89971875
transcript.pyannote[342].speaker SPEAKER_00
transcript.pyannote[342].start 4028.31284375
transcript.pyannote[342].end 4029.35909375
transcript.pyannote[343].speaker SPEAKER_30
transcript.pyannote[343].start 4039.97346875
transcript.pyannote[343].end 4052.47784375
transcript.pyannote[344].speaker SPEAKER_30
transcript.pyannote[344].start 4052.66346875
transcript.pyannote[344].end 4060.35846875
transcript.pyannote[345].speaker SPEAKER_04
transcript.pyannote[345].start 4060.35846875
transcript.pyannote[345].end 4060.45971875
transcript.pyannote[346].speaker SPEAKER_30
transcript.pyannote[346].start 4060.45971875
transcript.pyannote[346].end 4060.51034375
transcript.pyannote[347].speaker SPEAKER_04
transcript.pyannote[347].start 4060.51034375
transcript.pyannote[347].end 4060.54409375
transcript.pyannote[348].speaker SPEAKER_30
transcript.pyannote[348].start 4060.54409375
transcript.pyannote[348].end 4060.67909375
transcript.pyannote[349].speaker SPEAKER_04
transcript.pyannote[349].start 4060.67909375
transcript.pyannote[349].end 4060.99971875
transcript.pyannote[350].speaker SPEAKER_30
transcript.pyannote[350].start 4060.99971875
transcript.pyannote[350].end 4061.03346875
transcript.pyannote[351].speaker SPEAKER_04
transcript.pyannote[351].start 4061.03346875
transcript.pyannote[351].end 4066.48409375
transcript.pyannote[352].speaker SPEAKER_30
transcript.pyannote[352].start 4061.38784375
transcript.pyannote[352].end 4062.16409375
transcript.pyannote[353].speaker SPEAKER_04
transcript.pyannote[353].start 4067.17596875
transcript.pyannote[353].end 4074.49971875
transcript.pyannote[354].speaker SPEAKER_11
transcript.pyannote[354].start 4073.13284375
transcript.pyannote[354].end 4074.80346875
transcript.pyannote[355].speaker SPEAKER_20
transcript.pyannote[355].start 4074.80346875
transcript.pyannote[355].end 4074.82034375
transcript.pyannote[356].speaker SPEAKER_04
transcript.pyannote[356].start 4075.02284375
transcript.pyannote[356].end 4075.54596875
transcript.pyannote[357].speaker SPEAKER_11
transcript.pyannote[357].start 4076.47409375
transcript.pyannote[357].end 4077.26721875
transcript.pyannote[358].speaker SPEAKER_11
transcript.pyannote[358].start 4078.60034375
transcript.pyannote[358].end 4081.23284375
transcript.pyannote[359].speaker SPEAKER_18
transcript.pyannote[359].start 4096.47096875
transcript.pyannote[359].end 4098.00659375
transcript.pyannote[360].speaker SPEAKER_10
transcript.pyannote[360].start 4098.59721875
transcript.pyannote[360].end 4099.30596875
transcript.pyannote[361].speaker SPEAKER_10
transcript.pyannote[361].start 4101.98909375
transcript.pyannote[361].end 4102.02284375
transcript.pyannote[362].speaker SPEAKER_30
transcript.pyannote[362].start 4102.02284375
transcript.pyannote[362].end 4102.42784375
transcript.pyannote[363].speaker SPEAKER_18
transcript.pyannote[363].start 4102.63034375
transcript.pyannote[363].end 4106.42721875
transcript.pyannote[364].speaker SPEAKER_30
transcript.pyannote[364].start 4103.33909375
transcript.pyannote[364].end 4103.49096875
transcript.pyannote[365].speaker SPEAKER_18
transcript.pyannote[365].start 4106.89971875
transcript.pyannote[365].end 4108.45221875
transcript.pyannote[366].speaker SPEAKER_18
transcript.pyannote[366].start 4108.70534375
transcript.pyannote[366].end 4113.16034375
transcript.pyannote[367].speaker SPEAKER_30
transcript.pyannote[367].start 4113.68346875
transcript.pyannote[367].end 4114.74659375
transcript.pyannote[368].speaker SPEAKER_30
transcript.pyannote[368].start 4115.01659375
transcript.pyannote[368].end 4117.78409375
transcript.pyannote[369].speaker SPEAKER_18
transcript.pyannote[369].start 4115.13471875
transcript.pyannote[369].end 4127.80784375
transcript.pyannote[370].speaker SPEAKER_18
transcript.pyannote[370].start 4128.19596875
transcript.pyannote[370].end 4129.83284375
transcript.pyannote[371].speaker SPEAKER_18
transcript.pyannote[371].start 4130.42346875
transcript.pyannote[371].end 4133.89971875
transcript.pyannote[372].speaker SPEAKER_18
transcript.pyannote[372].start 4134.23721875
transcript.pyannote[372].end 4138.92846875
transcript.pyannote[373].speaker SPEAKER_18
transcript.pyannote[373].start 4139.24909375
transcript.pyannote[373].end 4139.87346875
transcript.pyannote[374].speaker SPEAKER_18
transcript.pyannote[374].start 4140.39659375
transcript.pyannote[374].end 4143.11346875
transcript.pyannote[375].speaker SPEAKER_18
transcript.pyannote[375].start 4143.26534375
transcript.pyannote[375].end 4147.65284375
transcript.pyannote[376].speaker SPEAKER_18
transcript.pyannote[376].start 4147.90596875
transcript.pyannote[376].end 4149.44159375
transcript.pyannote[377].speaker SPEAKER_18
transcript.pyannote[377].start 4149.57659375
transcript.pyannote[377].end 4156.86659375
transcript.pyannote[378].speaker SPEAKER_18
transcript.pyannote[378].start 4157.35596875
transcript.pyannote[378].end 4160.79846875
transcript.pyannote[379].speaker SPEAKER_18
transcript.pyannote[379].start 4161.20346875
transcript.pyannote[379].end 4163.53221875
transcript.pyannote[380].speaker SPEAKER_18
transcript.pyannote[380].start 4163.85284375
transcript.pyannote[380].end 4168.74659375
transcript.pyannote[381].speaker SPEAKER_30
transcript.pyannote[381].start 4169.42159375
transcript.pyannote[381].end 4179.29346875
transcript.pyannote[382].speaker SPEAKER_01
transcript.pyannote[382].start 4179.41159375
transcript.pyannote[382].end 4179.78284375
transcript.pyannote[383].speaker SPEAKER_01
transcript.pyannote[383].start 4180.08659375
transcript.pyannote[383].end 4207.15409375
transcript.pyannote[384].speaker SPEAKER_18
transcript.pyannote[384].start 4207.15409375
transcript.pyannote[384].end 4218.32534375
transcript.pyannote[385].speaker SPEAKER_18
transcript.pyannote[385].start 4218.89909375
transcript.pyannote[385].end 4230.47534375
transcript.pyannote[386].speaker SPEAKER_18
transcript.pyannote[386].start 4230.82971875
transcript.pyannote[386].end 4234.03596875
transcript.pyannote[387].speaker SPEAKER_01
transcript.pyannote[387].start 4234.03596875
transcript.pyannote[387].end 4234.54221875
transcript.pyannote[388].speaker SPEAKER_01
transcript.pyannote[388].start 4236.85409375
transcript.pyannote[388].end 4243.77284375
transcript.pyannote[389].speaker SPEAKER_18
transcript.pyannote[389].start 4243.84034375
transcript.pyannote[389].end 4280.47596875
transcript.pyannote[390].speaker SPEAKER_30
transcript.pyannote[390].start 4281.10034375
transcript.pyannote[390].end 4281.58971875
transcript.pyannote[391].speaker SPEAKER_30
transcript.pyannote[391].start 4281.91034375
transcript.pyannote[391].end 4287.14159375
transcript.pyannote[392].speaker SPEAKER_30
transcript.pyannote[392].start 4287.41159375
transcript.pyannote[392].end 4303.29096875
transcript.pyannote[393].speaker SPEAKER_00
transcript.pyannote[393].start 4295.17409375
transcript.pyannote[393].end 4295.47784375
transcript.pyannote[394].speaker SPEAKER_18
transcript.pyannote[394].start 4297.06409375
transcript.pyannote[394].end 4297.78971875
transcript.pyannote[395].speaker SPEAKER_00
transcript.pyannote[395].start 4297.78971875
transcript.pyannote[395].end 4297.82346875
transcript.pyannote[396].speaker SPEAKER_00
transcript.pyannote[396].start 4298.49846875
transcript.pyannote[396].end 4298.53221875
transcript.pyannote[397].speaker SPEAKER_18
transcript.pyannote[397].start 4298.53221875
transcript.pyannote[397].end 4300.28721875
transcript.pyannote[398].speaker SPEAKER_30
transcript.pyannote[398].start 4303.66221875
transcript.pyannote[398].end 4303.99971875
transcript.pyannote[399].speaker SPEAKER_18
transcript.pyannote[399].start 4303.71284375
transcript.pyannote[399].end 4345.44471875
transcript.pyannote[400].speaker SPEAKER_30
transcript.pyannote[400].start 4339.33596875
transcript.pyannote[400].end 4339.85909375
transcript.pyannote[401].speaker SPEAKER_18
transcript.pyannote[401].start 4345.64721875
transcript.pyannote[401].end 4346.67659375
transcript.pyannote[402].speaker SPEAKER_30
transcript.pyannote[402].start 4345.66409375
transcript.pyannote[402].end 4355.83971875
transcript.pyannote[403].speaker SPEAKER_18
transcript.pyannote[403].start 4352.36346875
transcript.pyannote[403].end 4352.61659375
transcript.pyannote[404].speaker SPEAKER_18
transcript.pyannote[404].start 4355.63721875
transcript.pyannote[404].end 4408.54034375
transcript.pyannote[405].speaker SPEAKER_18
transcript.pyannote[405].start 4408.55721875
transcript.pyannote[405].end 4427.67659375
transcript.pyannote[406].speaker SPEAKER_18
transcript.pyannote[406].start 4428.25034375
transcript.pyannote[406].end 4454.74409375
transcript.pyannote[407].speaker SPEAKER_30
transcript.pyannote[407].start 4454.20409375
transcript.pyannote[407].end 4458.59159375
transcript.pyannote[408].speaker SPEAKER_18
transcript.pyannote[408].start 4457.95034375
transcript.pyannote[408].end 4463.21534375
transcript.pyannote[409].speaker SPEAKER_30
transcript.pyannote[409].start 4462.40534375
transcript.pyannote[409].end 4463.14784375
transcript.pyannote[410].speaker SPEAKER_30
transcript.pyannote[410].start 4463.21534375
transcript.pyannote[410].end 4463.23221875
transcript.pyannote[411].speaker SPEAKER_30
transcript.pyannote[411].start 4463.29971875
transcript.pyannote[411].end 4472.98596875
transcript.pyannote[412].speaker SPEAKER_18
transcript.pyannote[412].start 4471.61909375
transcript.pyannote[412].end 4472.19284375
transcript.pyannote[413].speaker SPEAKER_18
transcript.pyannote[413].start 4472.98596875
transcript.pyannote[413].end 4473.67784375
transcript.pyannote[414].speaker SPEAKER_30
transcript.pyannote[414].start 4473.05346875
transcript.pyannote[414].end 4476.00659375
transcript.pyannote[415].speaker SPEAKER_18
transcript.pyannote[415].start 4475.61846875
transcript.pyannote[415].end 4475.98971875
transcript.pyannote[416].speaker SPEAKER_18
transcript.pyannote[416].start 4476.00659375
transcript.pyannote[416].end 4476.02346875
transcript.pyannote[417].speaker SPEAKER_30
transcript.pyannote[417].start 4476.02346875
transcript.pyannote[417].end 4478.28471875
transcript.pyannote[418].speaker SPEAKER_18
transcript.pyannote[418].start 4476.25971875
transcript.pyannote[418].end 4477.10346875
transcript.pyannote[419].speaker SPEAKER_18
transcript.pyannote[419].start 4477.89659375
transcript.pyannote[419].end 4483.65096875
transcript.pyannote[420].speaker SPEAKER_30
transcript.pyannote[420].start 4480.84971875
transcript.pyannote[420].end 4482.82409375
transcript.pyannote[421].speaker SPEAKER_30
transcript.pyannote[421].start 4483.17846875
transcript.pyannote[421].end 4485.69284375
transcript.pyannote[422].speaker SPEAKER_18
transcript.pyannote[422].start 4484.19096875
transcript.pyannote[422].end 4487.00909375
transcript.pyannote[423].speaker SPEAKER_30
transcript.pyannote[423].start 4486.38471875
transcript.pyannote[423].end 4487.46471875
transcript.pyannote[424].speaker SPEAKER_18
transcript.pyannote[424].start 4487.41409375
transcript.pyannote[424].end 4491.44721875
transcript.pyannote[425].speaker SPEAKER_18
transcript.pyannote[425].start 4492.40909375
transcript.pyannote[425].end 4497.79221875
transcript.pyannote[426].speaker SPEAKER_18
transcript.pyannote[426].start 4497.97784375
transcript.pyannote[426].end 4498.61909375
transcript.pyannote[427].speaker SPEAKER_30
transcript.pyannote[427].start 4500.79596875
transcript.pyannote[427].end 4513.53659375
transcript.pyannote[428].speaker SPEAKER_18
transcript.pyannote[428].start 4512.40596875
transcript.pyannote[428].end 4515.20721875
transcript.pyannote[429].speaker SPEAKER_30
transcript.pyannote[429].start 4515.39284375
transcript.pyannote[429].end 4520.89409375
transcript.pyannote[430].speaker SPEAKER_18
transcript.pyannote[430].start 4519.39221875
transcript.pyannote[430].end 4521.75471875
transcript.pyannote[431].speaker SPEAKER_18
transcript.pyannote[431].start 4521.94034375
transcript.pyannote[431].end 4531.06971875
transcript.pyannote[432].speaker SPEAKER_18
transcript.pyannote[432].start 4531.66034375
transcript.pyannote[432].end 4535.23784375
transcript.pyannote[433].speaker SPEAKER_30
transcript.pyannote[433].start 4535.25471875
transcript.pyannote[433].end 4538.93346875
transcript.pyannote[434].speaker SPEAKER_18
transcript.pyannote[434].start 4537.21221875
transcript.pyannote[434].end 4540.55346875
transcript.pyannote[435].speaker SPEAKER_30
transcript.pyannote[435].start 4540.77284375
transcript.pyannote[435].end 4546.93221875
transcript.pyannote[436].speaker SPEAKER_18
transcript.pyannote[436].start 4546.00409375
transcript.pyannote[436].end 4562.00159375
transcript.pyannote[437].speaker SPEAKER_30
transcript.pyannote[437].start 4562.27159375
transcript.pyannote[437].end 4568.83596875
transcript.pyannote[438].speaker SPEAKER_18
transcript.pyannote[438].start 4568.31284375
transcript.pyannote[438].end 4572.26159375
transcript.pyannote[439].speaker SPEAKER_30
transcript.pyannote[439].start 4569.39284375
transcript.pyannote[439].end 4569.76409375
transcript.pyannote[440].speaker SPEAKER_30
transcript.pyannote[440].start 4572.00846875
transcript.pyannote[440].end 4577.50971875
transcript.pyannote[441].speaker SPEAKER_18
transcript.pyannote[441].start 4577.71221875
transcript.pyannote[441].end 4585.15409375
transcript.pyannote[442].speaker SPEAKER_30
transcript.pyannote[442].start 4585.57596875
transcript.pyannote[442].end 4590.28409375
transcript.pyannote[443].speaker SPEAKER_18
transcript.pyannote[443].start 4590.28409375
transcript.pyannote[443].end 4591.83659375
transcript.pyannote[444].speaker SPEAKER_30
transcript.pyannote[444].start 4590.46971875
transcript.pyannote[444].end 4595.98784375
transcript.pyannote[445].speaker SPEAKER_18
transcript.pyannote[445].start 4595.98784375
transcript.pyannote[445].end 4607.88471875
transcript.pyannote[446].speaker SPEAKER_19
transcript.pyannote[446].start 4607.78346875
transcript.pyannote[446].end 4608.25596875
transcript.pyannote[447].speaker SPEAKER_18
transcript.pyannote[447].start 4608.18846875
transcript.pyannote[447].end 4617.73971875
transcript.pyannote[448].speaker SPEAKER_18
transcript.pyannote[448].start 4618.06034375
transcript.pyannote[448].end 4622.81909375
transcript.pyannote[449].speaker SPEAKER_30
transcript.pyannote[449].start 4623.27471875
transcript.pyannote[449].end 4627.39221875
transcript.pyannote[450].speaker SPEAKER_30
transcript.pyannote[450].start 4627.56096875
transcript.pyannote[450].end 4630.12596875
transcript.pyannote[451].speaker SPEAKER_30
transcript.pyannote[451].start 4630.31159375
transcript.pyannote[451].end 4637.95596875
transcript.pyannote[452].speaker SPEAKER_18
transcript.pyannote[452].start 4636.69034375
transcript.pyannote[452].end 4637.09534375
transcript.pyannote[453].speaker SPEAKER_18
transcript.pyannote[453].start 4637.65221875
transcript.pyannote[453].end 4654.54409375
transcript.pyannote[454].speaker SPEAKER_30
transcript.pyannote[454].start 4641.76971875
transcript.pyannote[454].end 4643.20409375
transcript.pyannote[455].speaker SPEAKER_00
transcript.pyannote[455].start 4643.20409375
transcript.pyannote[455].end 4643.22096875
transcript.pyannote[456].speaker SPEAKER_19
transcript.pyannote[456].start 4654.94909375
transcript.pyannote[456].end 4655.28659375
transcript.pyannote[457].speaker SPEAKER_18
transcript.pyannote[457].start 4655.10096875
transcript.pyannote[457].end 4679.82284375
transcript.pyannote[458].speaker SPEAKER_30
transcript.pyannote[458].start 4677.98346875
transcript.pyannote[458].end 4685.29034375
transcript.pyannote[459].speaker SPEAKER_18
transcript.pyannote[459].start 4686.30284375
transcript.pyannote[459].end 4699.51596875
transcript.pyannote[460].speaker SPEAKER_30
transcript.pyannote[460].start 4689.71159375
transcript.pyannote[460].end 4690.15034375
transcript.pyannote[461].speaker SPEAKER_30
transcript.pyannote[461].start 4691.87159375
transcript.pyannote[461].end 4692.69846875
transcript.pyannote[462].speaker SPEAKER_20
transcript.pyannote[462].start 4692.69846875
transcript.pyannote[462].end 4692.73221875
transcript.pyannote[463].speaker SPEAKER_19
transcript.pyannote[463].start 4694.28471875
transcript.pyannote[463].end 4694.30159375
transcript.pyannote[464].speaker SPEAKER_20
transcript.pyannote[464].start 4694.30159375
transcript.pyannote[464].end 4694.80784375
transcript.pyannote[465].speaker SPEAKER_20
transcript.pyannote[465].start 4696.59659375
transcript.pyannote[465].end 4698.35159375
transcript.pyannote[466].speaker SPEAKER_19
transcript.pyannote[466].start 4698.35159375
transcript.pyannote[466].end 4698.41909375
transcript.pyannote[467].speaker SPEAKER_20
transcript.pyannote[467].start 4698.63846875
transcript.pyannote[467].end 4698.70596875
transcript.pyannote[468].speaker SPEAKER_19
transcript.pyannote[468].start 4698.70596875
transcript.pyannote[468].end 4698.72284375
transcript.pyannote[469].speaker SPEAKER_20
transcript.pyannote[469].start 4698.72284375
transcript.pyannote[469].end 4698.73971875
transcript.pyannote[470].speaker SPEAKER_19
transcript.pyannote[470].start 4698.73971875
transcript.pyannote[470].end 4698.80721875
transcript.pyannote[471].speaker SPEAKER_18
transcript.pyannote[471].start 4699.81971875
transcript.pyannote[471].end 4700.30909375
transcript.pyannote[472].speaker SPEAKER_18
transcript.pyannote[472].start 4701.06846875
transcript.pyannote[472].end 4701.84471875
transcript.pyannote[473].speaker SPEAKER_18
transcript.pyannote[473].start 4702.08096875
transcript.pyannote[473].end 4716.32346875
transcript.pyannote[474].speaker SPEAKER_18
transcript.pyannote[474].start 4716.55971875
transcript.pyannote[474].end 4718.60159375
transcript.pyannote[475].speaker SPEAKER_18
transcript.pyannote[475].start 4718.87159375
transcript.pyannote[475].end 4719.76596875
transcript.pyannote[476].speaker SPEAKER_30
transcript.pyannote[476].start 4718.88846875
transcript.pyannote[476].end 4720.81221875
transcript.pyannote[477].speaker SPEAKER_30
transcript.pyannote[477].start 4721.06534375
transcript.pyannote[477].end 4729.72221875
transcript.pyannote[478].speaker SPEAKER_18
transcript.pyannote[478].start 4721.08221875
transcript.pyannote[478].end 4721.36909375
transcript.pyannote[479].speaker SPEAKER_30
transcript.pyannote[479].start 4729.78971875
transcript.pyannote[479].end 4738.14284375
transcript.pyannote[480].speaker SPEAKER_18
transcript.pyannote[480].start 4737.24846875
transcript.pyannote[480].end 4739.86409375
transcript.pyannote[481].speaker SPEAKER_30
transcript.pyannote[481].start 4739.50971875
transcript.pyannote[481].end 4753.02659375
transcript.pyannote[482].speaker SPEAKER_18
transcript.pyannote[482].start 4742.24346875
transcript.pyannote[482].end 4742.76659375
transcript.pyannote[483].speaker SPEAKER_18
transcript.pyannote[483].start 4744.06596875
transcript.pyannote[483].end 4744.48784375
transcript.pyannote[484].speaker SPEAKER_11
transcript.pyannote[484].start 4750.07346875
transcript.pyannote[484].end 4750.86659375
transcript.pyannote[485].speaker SPEAKER_11
transcript.pyannote[485].start 4751.86221875
transcript.pyannote[485].end 4752.16596875
transcript.pyannote[486].speaker SPEAKER_11
transcript.pyannote[486].start 4753.02659375
transcript.pyannote[486].end 4754.83221875
transcript.pyannote[487].speaker SPEAKER_30
transcript.pyannote[487].start 4753.46534375
transcript.pyannote[487].end 4754.19096875
transcript.pyannote[488].speaker SPEAKER_11
transcript.pyannote[488].start 4755.76034375
transcript.pyannote[488].end 4758.78096875
transcript.pyannote[489].speaker SPEAKER_19
transcript.pyannote[489].start 4768.14659375
transcript.pyannote[489].end 4768.18034375
transcript.pyannote[490].speaker SPEAKER_10
transcript.pyannote[490].start 4768.18034375
transcript.pyannote[490].end 4768.26471875
transcript.pyannote[491].speaker SPEAKER_19
transcript.pyannote[491].start 4768.26471875
transcript.pyannote[491].end 4768.33221875
transcript.pyannote[492].speaker SPEAKER_26
transcript.pyannote[492].start 4768.33221875
transcript.pyannote[492].end 4771.30221875
transcript.pyannote[493].speaker SPEAKER_10
transcript.pyannote[493].start 4771.67346875
transcript.pyannote[493].end 4771.69034375
transcript.pyannote[494].speaker SPEAKER_11
transcript.pyannote[494].start 4771.69034375
transcript.pyannote[494].end 4772.46659375
transcript.pyannote[495].speaker SPEAKER_11
transcript.pyannote[495].start 4773.96846875
transcript.pyannote[495].end 4774.35659375
transcript.pyannote[496].speaker SPEAKER_26
transcript.pyannote[496].start 4774.71096875
transcript.pyannote[496].end 4775.94284375
transcript.pyannote[497].speaker SPEAKER_11
transcript.pyannote[497].start 4775.82471875
transcript.pyannote[497].end 4776.19596875
transcript.pyannote[498].speaker SPEAKER_26
transcript.pyannote[498].start 4776.87096875
transcript.pyannote[498].end 4780.66784375
transcript.pyannote[499].speaker SPEAKER_26
transcript.pyannote[499].start 4780.90409375
transcript.pyannote[499].end 4797.10409375
transcript.pyannote[500].speaker SPEAKER_26
transcript.pyannote[500].start 4798.33596875
transcript.pyannote[500].end 4798.97721875
transcript.pyannote[501].speaker SPEAKER_26
transcript.pyannote[501].start 4799.85471875
transcript.pyannote[501].end 4806.62159375
transcript.pyannote[502].speaker SPEAKER_26
transcript.pyannote[502].start 4806.72284375
transcript.pyannote[502].end 4814.99159375
transcript.pyannote[503].speaker SPEAKER_19
transcript.pyannote[503].start 4810.57034375
transcript.pyannote[503].end 4810.84034375
transcript.pyannote[504].speaker SPEAKER_26
transcript.pyannote[504].start 4815.48096875
transcript.pyannote[504].end 4820.88096875
transcript.pyannote[505].speaker SPEAKER_26
transcript.pyannote[505].start 4821.40409375
transcript.pyannote[505].end 4822.38284375
transcript.pyannote[506].speaker SPEAKER_26
transcript.pyannote[506].start 4822.61909375
transcript.pyannote[506].end 4824.18846875
transcript.pyannote[507].speaker SPEAKER_26
transcript.pyannote[507].start 4824.39096875
transcript.pyannote[507].end 4824.40784375
transcript.pyannote[508].speaker SPEAKER_26
transcript.pyannote[508].start 4824.42471875
transcript.pyannote[508].end 4826.48346875
transcript.pyannote[509].speaker SPEAKER_26
transcript.pyannote[509].start 4826.73659375
transcript.pyannote[509].end 4835.74784375
transcript.pyannote[510].speaker SPEAKER_26
transcript.pyannote[510].start 4836.13596875
transcript.pyannote[510].end 4838.21159375
transcript.pyannote[511].speaker SPEAKER_26
transcript.pyannote[511].start 4838.31284375
transcript.pyannote[511].end 4844.03346875
transcript.pyannote[512].speaker SPEAKER_26
transcript.pyannote[512].start 4844.60721875
transcript.pyannote[512].end 4846.07534375
transcript.pyannote[513].speaker SPEAKER_26
transcript.pyannote[513].start 4846.42971875
transcript.pyannote[513].end 4855.89659375
transcript.pyannote[514].speaker SPEAKER_26
transcript.pyannote[514].start 4856.87534375
transcript.pyannote[514].end 4862.71409375
transcript.pyannote[515].speaker SPEAKER_26
transcript.pyannote[515].start 4863.13596875
transcript.pyannote[515].end 4879.04909375
transcript.pyannote[516].speaker SPEAKER_26
transcript.pyannote[516].start 4879.26846875
transcript.pyannote[516].end 4884.51659375
transcript.pyannote[517].speaker SPEAKER_30
transcript.pyannote[517].start 4884.85409375
transcript.pyannote[517].end 4893.12284375
transcript.pyannote[518].speaker SPEAKER_30
transcript.pyannote[518].start 4893.22409375
transcript.pyannote[518].end 4897.83096875
transcript.pyannote[519].speaker SPEAKER_30
transcript.pyannote[519].start 4897.93221875
transcript.pyannote[519].end 4904.69909375
transcript.pyannote[520].speaker SPEAKER_30
transcript.pyannote[520].start 4905.30659375
transcript.pyannote[520].end 4908.64784375
transcript.pyannote[521].speaker SPEAKER_30
transcript.pyannote[521].start 4908.78284375
transcript.pyannote[521].end 4915.61721875
transcript.pyannote[522].speaker SPEAKER_30
transcript.pyannote[522].start 4916.10659375
transcript.pyannote[522].end 4918.24971875
transcript.pyannote[523].speaker SPEAKER_30
transcript.pyannote[523].start 4918.50284375
transcript.pyannote[523].end 4924.64534375
transcript.pyannote[524].speaker SPEAKER_30
transcript.pyannote[524].start 4925.11784375
transcript.pyannote[524].end 4928.07096875
transcript.pyannote[525].speaker SPEAKER_30
transcript.pyannote[525].start 4928.25659375
transcript.pyannote[525].end 4939.36034375
transcript.pyannote[526].speaker SPEAKER_30
transcript.pyannote[526].start 4939.46159375
transcript.pyannote[526].end 4951.05471875
transcript.pyannote[527].speaker SPEAKER_30
transcript.pyannote[527].start 4951.64534375
transcript.pyannote[527].end 4952.84346875
transcript.pyannote[528].speaker SPEAKER_30
transcript.pyannote[528].start 4953.11346875
transcript.pyannote[528].end 4984.02846875
transcript.pyannote[529].speaker SPEAKER_30
transcript.pyannote[529].start 4984.29846875
transcript.pyannote[529].end 4988.73659375
transcript.pyannote[530].speaker SPEAKER_00
transcript.pyannote[530].start 4984.31534375
transcript.pyannote[530].end 4984.36596875
transcript.pyannote[531].speaker SPEAKER_26
transcript.pyannote[531].start 4984.36596875
transcript.pyannote[531].end 4984.78784375
transcript.pyannote[532].speaker SPEAKER_26
transcript.pyannote[532].start 4988.01096875
transcript.pyannote[532].end 5005.00409375
transcript.pyannote[533].speaker SPEAKER_19
transcript.pyannote[533].start 5004.90284375
transcript.pyannote[533].end 5006.47221875
transcript.pyannote[534].speaker SPEAKER_26
transcript.pyannote[534].start 5005.29096875
transcript.pyannote[534].end 5029.59096875
transcript.pyannote[535].speaker SPEAKER_19
transcript.pyannote[535].start 5016.52971875
transcript.pyannote[535].end 5016.56346875
transcript.pyannote[536].speaker SPEAKER_00
transcript.pyannote[536].start 5016.56346875
transcript.pyannote[536].end 5016.78284375
transcript.pyannote[537].speaker SPEAKER_00
transcript.pyannote[537].start 5019.49971875
transcript.pyannote[537].end 5019.98909375
transcript.pyannote[538].speaker SPEAKER_26
transcript.pyannote[538].start 5029.62471875
transcript.pyannote[538].end 5029.69221875
transcript.pyannote[539].speaker SPEAKER_19
transcript.pyannote[539].start 5029.69221875
transcript.pyannote[539].end 5030.14784375
transcript.pyannote[540].speaker SPEAKER_26
transcript.pyannote[540].start 5029.92846875
transcript.pyannote[540].end 5049.72284375
transcript.pyannote[541].speaker SPEAKER_30
transcript.pyannote[541].start 5049.72284375
transcript.pyannote[541].end 5056.18596875
transcript.pyannote[542].speaker SPEAKER_30
transcript.pyannote[542].start 5056.48971875
transcript.pyannote[542].end 5073.60096875
transcript.pyannote[543].speaker SPEAKER_00
transcript.pyannote[543].start 5071.40721875
transcript.pyannote[543].end 5071.42409375
transcript.pyannote[544].speaker SPEAKER_26
transcript.pyannote[544].start 5071.42409375
transcript.pyannote[544].end 5071.45784375
transcript.pyannote[545].speaker SPEAKER_19
transcript.pyannote[545].start 5071.45784375
transcript.pyannote[545].end 5071.66034375
transcript.pyannote[546].speaker SPEAKER_26
transcript.pyannote[546].start 5071.66034375
transcript.pyannote[546].end 5071.71096875
transcript.pyannote[547].speaker SPEAKER_30
transcript.pyannote[547].start 5073.75284375
transcript.pyannote[547].end 5079.16971875
transcript.pyannote[548].speaker SPEAKER_26
transcript.pyannote[548].start 5078.68034375
transcript.pyannote[548].end 5082.27471875
transcript.pyannote[549].speaker SPEAKER_26
transcript.pyannote[549].start 5082.40971875
transcript.pyannote[549].end 5094.47534375
transcript.pyannote[550].speaker SPEAKER_30
transcript.pyannote[550].start 5085.00846875
transcript.pyannote[550].end 5085.59909375
transcript.pyannote[551].speaker SPEAKER_00
transcript.pyannote[551].start 5085.59909375
transcript.pyannote[551].end 5085.61596875
transcript.pyannote[552].speaker SPEAKER_19
transcript.pyannote[552].start 5087.50596875
transcript.pyannote[552].end 5088.01221875
transcript.pyannote[553].speaker SPEAKER_19
transcript.pyannote[553].start 5092.87221875
transcript.pyannote[553].end 5093.34471875
transcript.pyannote[554].speaker SPEAKER_26
transcript.pyannote[554].start 5094.86346875
transcript.pyannote[554].end 5095.62284375
transcript.pyannote[555].speaker SPEAKER_19
transcript.pyannote[555].start 5095.62284375
transcript.pyannote[555].end 5095.92659375
transcript.pyannote[556].speaker SPEAKER_26
transcript.pyannote[556].start 5096.16284375
transcript.pyannote[556].end 5108.39721875
transcript.pyannote[557].speaker SPEAKER_26
transcript.pyannote[557].start 5108.70096875
transcript.pyannote[557].end 5114.55659375
transcript.pyannote[558].speaker SPEAKER_26
transcript.pyannote[558].start 5114.79284375
transcript.pyannote[558].end 5116.27784375
transcript.pyannote[559].speaker SPEAKER_26
transcript.pyannote[559].start 5116.49721875
transcript.pyannote[559].end 5164.84409375
transcript.pyannote[560].speaker SPEAKER_19
transcript.pyannote[560].start 5129.94659375
transcript.pyannote[560].end 5130.50346875
transcript.pyannote[561].speaker SPEAKER_26
transcript.pyannote[561].start 5165.48534375
transcript.pyannote[561].end 5177.80409375
transcript.pyannote[562].speaker SPEAKER_00
transcript.pyannote[562].start 5172.70784375
transcript.pyannote[562].end 5172.96096875
transcript.pyannote[563].speaker SPEAKER_20
transcript.pyannote[563].start 5172.96096875
transcript.pyannote[563].end 5173.31534375
transcript.pyannote[564].speaker SPEAKER_26
transcript.pyannote[564].start 5178.15846875
transcript.pyannote[564].end 5188.97534375
transcript.pyannote[565].speaker SPEAKER_19
transcript.pyannote[565].start 5178.93471875
transcript.pyannote[565].end 5179.18784375
transcript.pyannote[566].speaker SPEAKER_30
transcript.pyannote[566].start 5186.83221875
transcript.pyannote[566].end 5187.74346875
transcript.pyannote[567].speaker SPEAKER_30
transcript.pyannote[567].start 5187.87846875
transcript.pyannote[567].end 5209.12409375
transcript.pyannote[568].speaker SPEAKER_26
transcript.pyannote[568].start 5209.30971875
transcript.pyannote[568].end 5212.41471875
transcript.pyannote[569].speaker SPEAKER_30
transcript.pyannote[569].start 5211.08159375
transcript.pyannote[569].end 5212.02659375
transcript.pyannote[570].speaker SPEAKER_11
transcript.pyannote[570].start 5212.02659375
transcript.pyannote[570].end 5212.36409375
transcript.pyannote[571].speaker SPEAKER_30
transcript.pyannote[571].start 5212.36409375
transcript.pyannote[571].end 5212.39784375
transcript.pyannote[572].speaker SPEAKER_11
transcript.pyannote[572].start 5212.39784375
transcript.pyannote[572].end 5212.43159375
transcript.pyannote[573].speaker SPEAKER_30
transcript.pyannote[573].start 5212.43159375
transcript.pyannote[573].end 5212.44846875
transcript.pyannote[574].speaker SPEAKER_11
transcript.pyannote[574].start 5213.93346875
transcript.pyannote[574].end 5218.57409375
transcript.pyannote[575].speaker SPEAKER_14
transcript.pyannote[575].start 5227.87221875
transcript.pyannote[575].end 5230.33596875
transcript.pyannote[576].speaker SPEAKER_10
transcript.pyannote[576].start 5230.99409375
transcript.pyannote[576].end 5231.93909375
transcript.pyannote[577].speaker SPEAKER_10
transcript.pyannote[577].start 5233.84596875
transcript.pyannote[577].end 5234.06534375
transcript.pyannote[578].speaker SPEAKER_14
transcript.pyannote[578].start 5234.06534375
transcript.pyannote[578].end 5238.06471875
transcript.pyannote[579].speaker SPEAKER_10
transcript.pyannote[579].start 5234.67284375
transcript.pyannote[579].end 5235.33096875
transcript.pyannote[580].speaker SPEAKER_10
transcript.pyannote[580].start 5237.76096875
transcript.pyannote[580].end 5237.81159375
transcript.pyannote[581].speaker SPEAKER_19
transcript.pyannote[581].start 5237.81159375
transcript.pyannote[581].end 5238.38534375
transcript.pyannote[582].speaker SPEAKER_14
transcript.pyannote[582].start 5238.36846875
transcript.pyannote[582].end 5243.34659375
transcript.pyannote[583].speaker SPEAKER_14
transcript.pyannote[583].start 5243.68409375
transcript.pyannote[583].end 5246.21534375
transcript.pyannote[584].speaker SPEAKER_14
transcript.pyannote[584].start 5247.21096875
transcript.pyannote[584].end 5250.07971875
transcript.pyannote[585].speaker SPEAKER_14
transcript.pyannote[585].start 5250.45096875
transcript.pyannote[585].end 5256.99846875
transcript.pyannote[586].speaker SPEAKER_30
transcript.pyannote[586].start 5258.41596875
transcript.pyannote[586].end 5262.63471875
transcript.pyannote[587].speaker SPEAKER_14
transcript.pyannote[587].start 5261.50409375
transcript.pyannote[587].end 5263.42784375
transcript.pyannote[588].speaker SPEAKER_30
transcript.pyannote[588].start 5265.19971875
transcript.pyannote[588].end 5268.92909375
transcript.pyannote[589].speaker SPEAKER_30
transcript.pyannote[589].start 5270.98784375
transcript.pyannote[589].end 5277.09659375
transcript.pyannote[590].speaker SPEAKER_14
transcript.pyannote[590].start 5276.72534375
transcript.pyannote[590].end 5281.73721875
transcript.pyannote[591].speaker SPEAKER_30
transcript.pyannote[591].start 5279.88096875
transcript.pyannote[591].end 5280.40409375
transcript.pyannote[592].speaker SPEAKER_30
transcript.pyannote[592].start 5281.73721875
transcript.pyannote[592].end 5282.00721875
transcript.pyannote[593].speaker SPEAKER_14
transcript.pyannote[593].start 5282.00721875
transcript.pyannote[593].end 5283.08721875
transcript.pyannote[594].speaker SPEAKER_30
transcript.pyannote[594].start 5282.04096875
transcript.pyannote[594].end 5282.05784375
transcript.pyannote[595].speaker SPEAKER_30
transcript.pyannote[595].start 5282.56409375
transcript.pyannote[595].end 5284.87596875
transcript.pyannote[596].speaker SPEAKER_14
transcript.pyannote[596].start 5284.87596875
transcript.pyannote[596].end 5288.04846875
transcript.pyannote[597].speaker SPEAKER_14
transcript.pyannote[597].start 5288.48721875
transcript.pyannote[597].end 5290.52909375
transcript.pyannote[598].speaker SPEAKER_30
transcript.pyannote[598].start 5291.74409375
transcript.pyannote[598].end 5293.73534375
transcript.pyannote[599].speaker SPEAKER_14
transcript.pyannote[599].start 5293.11096875
transcript.pyannote[599].end 5294.08971875
transcript.pyannote[600].speaker SPEAKER_30
transcript.pyannote[600].start 5294.96721875
transcript.pyannote[600].end 5302.40909375
transcript.pyannote[601].speaker SPEAKER_19
transcript.pyannote[601].start 5297.38034375
transcript.pyannote[601].end 5297.80221875
transcript.pyannote[602].speaker SPEAKER_19
transcript.pyannote[602].start 5301.70034375
transcript.pyannote[602].end 5302.74659375
transcript.pyannote[603].speaker SPEAKER_30
transcript.pyannote[603].start 5302.62846875
transcript.pyannote[603].end 5305.41284375
transcript.pyannote[604].speaker SPEAKER_30
transcript.pyannote[604].start 5306.07096875
transcript.pyannote[604].end 5313.47909375
transcript.pyannote[605].speaker SPEAKER_14
transcript.pyannote[605].start 5312.83784375
transcript.pyannote[605].end 5315.80784375
transcript.pyannote[606].speaker SPEAKER_30
transcript.pyannote[606].start 5316.26346875
transcript.pyannote[606].end 5316.31409375
transcript.pyannote[607].speaker SPEAKER_30
transcript.pyannote[607].start 5316.71909375
transcript.pyannote[607].end 5327.13096875
transcript.pyannote[608].speaker SPEAKER_14
transcript.pyannote[608].start 5326.60784375
transcript.pyannote[608].end 5339.28096875
transcript.pyannote[609].speaker SPEAKER_19
transcript.pyannote[609].start 5338.85909375
transcript.pyannote[609].end 5339.26409375
transcript.pyannote[610].speaker SPEAKER_19
transcript.pyannote[610].start 5339.28096875
transcript.pyannote[610].end 5339.33159375
transcript.pyannote[611].speaker SPEAKER_14
transcript.pyannote[611].start 5339.33159375
transcript.pyannote[611].end 5369.63909375
transcript.pyannote[612].speaker SPEAKER_19
transcript.pyannote[612].start 5339.34846875
transcript.pyannote[612].end 5339.36534375
transcript.pyannote[613].speaker SPEAKER_18
transcript.pyannote[613].start 5344.27596875
transcript.pyannote[613].end 5345.00159375
transcript.pyannote[614].speaker SPEAKER_30
transcript.pyannote[614].start 5369.89221875
transcript.pyannote[614].end 5386.04159375
transcript.pyannote[615].speaker SPEAKER_14
transcript.pyannote[615].start 5383.45971875
transcript.pyannote[615].end 5406.27471875
transcript.pyannote[616].speaker SPEAKER_19
transcript.pyannote[616].start 5394.42846875
transcript.pyannote[616].end 5395.96409375
transcript.pyannote[617].speaker SPEAKER_20
transcript.pyannote[617].start 5395.96409375
transcript.pyannote[617].end 5396.09909375
transcript.pyannote[618].speaker SPEAKER_30
transcript.pyannote[618].start 5406.71346875
transcript.pyannote[618].end 5413.75034375
transcript.pyannote[619].speaker SPEAKER_14
transcript.pyannote[619].start 5407.47284375
transcript.pyannote[619].end 5409.83534375
transcript.pyannote[620].speaker SPEAKER_14
transcript.pyannote[620].start 5409.88596875
transcript.pyannote[620].end 5411.52284375
transcript.pyannote[621].speaker SPEAKER_14
transcript.pyannote[621].start 5412.63659375
transcript.pyannote[621].end 5414.61096875
transcript.pyannote[622].speaker SPEAKER_30
transcript.pyannote[622].start 5415.21846875
transcript.pyannote[622].end 5416.48409375
transcript.pyannote[623].speaker SPEAKER_30
transcript.pyannote[623].start 5417.91846875
transcript.pyannote[623].end 5422.25534375
transcript.pyannote[624].speaker SPEAKER_14
transcript.pyannote[624].start 5420.12909375
transcript.pyannote[624].end 5436.07596875
transcript.pyannote[625].speaker SPEAKER_30
transcript.pyannote[625].start 5432.27909375
transcript.pyannote[625].end 5433.03846875
transcript.pyannote[626].speaker SPEAKER_30
transcript.pyannote[626].start 5433.47721875
transcript.pyannote[626].end 5433.81471875
transcript.pyannote[627].speaker SPEAKER_30
transcript.pyannote[627].start 5436.70034375
transcript.pyannote[627].end 5440.95284375
transcript.pyannote[628].speaker SPEAKER_14
transcript.pyannote[628].start 5438.87721875
transcript.pyannote[628].end 5444.14221875
transcript.pyannote[629].speaker SPEAKER_30
transcript.pyannote[629].start 5443.24784375
transcript.pyannote[629].end 5449.20471875
transcript.pyannote[630].speaker SPEAKER_14
transcript.pyannote[630].start 5446.45409375
transcript.pyannote[630].end 5447.60159375
transcript.pyannote[631].speaker SPEAKER_14
transcript.pyannote[631].start 5448.36096875
transcript.pyannote[631].end 5450.99346875
transcript.pyannote[632].speaker SPEAKER_30
transcript.pyannote[632].start 5451.04409375
transcript.pyannote[632].end 5453.81159375
transcript.pyannote[633].speaker SPEAKER_14
transcript.pyannote[633].start 5452.88346875
transcript.pyannote[633].end 5455.04346875
transcript.pyannote[634].speaker SPEAKER_14
transcript.pyannote[634].start 5455.80284375
transcript.pyannote[634].end 5455.83659375
transcript.pyannote[635].speaker SPEAKER_30
transcript.pyannote[635].start 5455.83659375
transcript.pyannote[635].end 5457.45659375
transcript.pyannote[636].speaker SPEAKER_14
transcript.pyannote[636].start 5455.85346875
transcript.pyannote[636].end 5456.25846875
transcript.pyannote[637].speaker SPEAKER_14
transcript.pyannote[637].start 5456.88284375
transcript.pyannote[637].end 5457.32159375
transcript.pyannote[638].speaker SPEAKER_30
transcript.pyannote[638].start 5458.82346875
transcript.pyannote[638].end 5466.80534375
transcript.pyannote[639].speaker SPEAKER_14
transcript.pyannote[639].start 5465.69159375
transcript.pyannote[639].end 5482.04346875
transcript.pyannote[640].speaker SPEAKER_30
transcript.pyannote[640].start 5467.63221875
transcript.pyannote[640].end 5468.07096875
transcript.pyannote[641].speaker SPEAKER_30
transcript.pyannote[641].start 5469.64034375
transcript.pyannote[641].end 5470.02846875
transcript.pyannote[642].speaker SPEAKER_19
transcript.pyannote[642].start 5470.02846875
transcript.pyannote[642].end 5470.04534375
transcript.pyannote[643].speaker SPEAKER_30
transcript.pyannote[643].start 5481.43596875
transcript.pyannote[643].end 5487.47721875
transcript.pyannote[644].speaker SPEAKER_14
transcript.pyannote[644].start 5485.62096875
transcript.pyannote[644].end 5500.75784375
transcript.pyannote[645].speaker SPEAKER_19
transcript.pyannote[645].start 5500.48784375
transcript.pyannote[645].end 5500.92659375
transcript.pyannote[646].speaker SPEAKER_14
transcript.pyannote[646].start 5500.87596875
transcript.pyannote[646].end 5505.49971875
transcript.pyannote[647].speaker SPEAKER_14
transcript.pyannote[647].start 5506.59659375
transcript.pyannote[647].end 5507.72721875
transcript.pyannote[648].speaker SPEAKER_30
transcript.pyannote[648].start 5508.43596875
transcript.pyannote[648].end 5511.40596875
transcript.pyannote[649].speaker SPEAKER_30
transcript.pyannote[649].start 5511.55784375
transcript.pyannote[649].end 5516.70471875
transcript.pyannote[650].speaker SPEAKER_19
transcript.pyannote[650].start 5516.70471875
transcript.pyannote[650].end 5516.90721875
transcript.pyannote[651].speaker SPEAKER_30
transcript.pyannote[651].start 5516.90721875
transcript.pyannote[651].end 5527.74096875
transcript.pyannote[652].speaker SPEAKER_30
transcript.pyannote[652].start 5527.77471875
transcript.pyannote[652].end 5527.79159375
transcript.pyannote[653].speaker SPEAKER_14
transcript.pyannote[653].start 5527.79159375
transcript.pyannote[653].end 5551.83846875
transcript.pyannote[654].speaker SPEAKER_30
transcript.pyannote[654].start 5528.02784375
transcript.pyannote[654].end 5530.47471875
transcript.pyannote[655].speaker SPEAKER_30
transcript.pyannote[655].start 5552.17596875
transcript.pyannote[655].end 5560.61346875
transcript.pyannote[656].speaker SPEAKER_14
transcript.pyannote[656].start 5559.14534375
transcript.pyannote[656].end 5562.57096875
transcript.pyannote[657].speaker SPEAKER_30
transcript.pyannote[657].start 5561.49096875
transcript.pyannote[657].end 5563.02659375
transcript.pyannote[658].speaker SPEAKER_30
transcript.pyannote[658].start 5563.43159375
transcript.pyannote[658].end 5570.29971875
transcript.pyannote[659].speaker SPEAKER_14
transcript.pyannote[659].start 5568.81471875
transcript.pyannote[659].end 5573.86034375
transcript.pyannote[660].speaker SPEAKER_30
transcript.pyannote[660].start 5574.13034375
transcript.pyannote[660].end 5574.29909375
transcript.pyannote[661].speaker SPEAKER_30
transcript.pyannote[661].start 5575.34534375
transcript.pyannote[661].end 5590.38096875
transcript.pyannote[662].speaker SPEAKER_14
transcript.pyannote[662].start 5588.23784375
transcript.pyannote[662].end 5640.12846875
transcript.pyannote[663].speaker SPEAKER_18
transcript.pyannote[663].start 5595.35909375
transcript.pyannote[663].end 5596.50659375
transcript.pyannote[664].speaker SPEAKER_18
transcript.pyannote[664].start 5597.04659375
transcript.pyannote[664].end 5597.26596875
transcript.pyannote[665].speaker SPEAKER_00
transcript.pyannote[665].start 5607.34034375
transcript.pyannote[665].end 5608.09971875
transcript.pyannote[666].speaker SPEAKER_26
transcript.pyannote[666].start 5619.18659375
transcript.pyannote[666].end 5622.40971875
transcript.pyannote[667].speaker SPEAKER_00
transcript.pyannote[667].start 5622.91596875
transcript.pyannote[667].end 5623.03409375
transcript.pyannote[668].speaker SPEAKER_20
transcript.pyannote[668].start 5623.03409375
transcript.pyannote[668].end 5624.48534375
transcript.pyannote[669].speaker SPEAKER_18
transcript.pyannote[669].start 5630.23971875
transcript.pyannote[669].end 5631.23534375
transcript.pyannote[670].speaker SPEAKER_18
transcript.pyannote[670].start 5632.73721875
transcript.pyannote[670].end 5633.19284375
transcript.pyannote[671].speaker SPEAKER_30
transcript.pyannote[671].start 5640.06096875
transcript.pyannote[671].end 5644.92096875
transcript.pyannote[672].speaker SPEAKER_14
transcript.pyannote[672].start 5643.31784375
transcript.pyannote[672].end 5646.72659375
transcript.pyannote[673].speaker SPEAKER_30
transcript.pyannote[673].start 5645.24159375
transcript.pyannote[673].end 5645.91659375
transcript.pyannote[674].speaker SPEAKER_14
transcript.pyannote[674].start 5647.45221875
transcript.pyannote[674].end 5649.89909375
transcript.pyannote[675].speaker SPEAKER_30
transcript.pyannote[675].start 5647.80659375
transcript.pyannote[675].end 5652.10971875
transcript.pyannote[676].speaker SPEAKER_14
transcript.pyannote[676].start 5650.96221875
transcript.pyannote[676].end 5652.46409375
transcript.pyannote[677].speaker SPEAKER_30
transcript.pyannote[677].start 5652.90284375
transcript.pyannote[677].end 5659.16346875
transcript.pyannote[678].speaker SPEAKER_14
transcript.pyannote[678].start 5659.36596875
transcript.pyannote[678].end 5665.79534375
transcript.pyannote[679].speaker SPEAKER_30
transcript.pyannote[679].start 5660.37846875
transcript.pyannote[679].end 5661.27284375
transcript.pyannote[680].speaker SPEAKER_30
transcript.pyannote[680].start 5661.79596875
transcript.pyannote[680].end 5662.36971875
transcript.pyannote[681].speaker SPEAKER_11
transcript.pyannote[681].start 5662.36971875
transcript.pyannote[681].end 5662.38659375
transcript.pyannote[682].speaker SPEAKER_11
transcript.pyannote[682].start 5663.77034375
transcript.pyannote[682].end 5663.82096875
transcript.pyannote[683].speaker SPEAKER_30
transcript.pyannote[683].start 5663.82096875
transcript.pyannote[683].end 5663.87159375
transcript.pyannote[684].speaker SPEAKER_11
transcript.pyannote[684].start 5663.87159375
transcript.pyannote[684].end 5665.87971875
transcript.pyannote[685].speaker SPEAKER_30
transcript.pyannote[685].start 5665.79534375
transcript.pyannote[685].end 5665.81221875
transcript.pyannote[686].speaker SPEAKER_30
transcript.pyannote[686].start 5665.87971875
transcript.pyannote[686].end 5665.89659375
transcript.pyannote[687].speaker SPEAKER_20
transcript.pyannote[687].start 5665.89659375
transcript.pyannote[687].end 5665.91346875
transcript.pyannote[688].speaker SPEAKER_11
transcript.pyannote[688].start 5667.87096875
transcript.pyannote[688].end 5670.97596875
transcript.pyannote[689].speaker SPEAKER_11
transcript.pyannote[689].start 5671.53284375
transcript.pyannote[689].end 5677.65846875
transcript.pyannote[690].speaker SPEAKER_21
transcript.pyannote[690].start 5679.26159375
transcript.pyannote[690].end 5680.05471875
transcript.pyannote[691].speaker SPEAKER_12
transcript.pyannote[691].start 5688.82971875
transcript.pyannote[691].end 5689.90971875
transcript.pyannote[692].speaker SPEAKER_12
transcript.pyannote[692].start 5693.60534375
transcript.pyannote[692].end 5696.25471875
transcript.pyannote[693].speaker SPEAKER_12
transcript.pyannote[693].start 5700.67596875
transcript.pyannote[693].end 5701.53659375
transcript.pyannote[694].speaker SPEAKER_20
transcript.pyannote[694].start 5705.73846875
transcript.pyannote[694].end 5706.09284375
transcript.pyannote[695].speaker SPEAKER_12
transcript.pyannote[695].start 5706.48096875
transcript.pyannote[695].end 5706.93659375
transcript.pyannote[696].speaker SPEAKER_20
transcript.pyannote[696].start 5706.86909375
transcript.pyannote[696].end 5709.78846875
transcript.pyannote[697].speaker SPEAKER_12
transcript.pyannote[697].start 5707.35846875
transcript.pyannote[697].end 5711.61096875
transcript.pyannote[698].speaker SPEAKER_20
transcript.pyannote[698].start 5710.34534375
transcript.pyannote[698].end 5711.10471875
transcript.pyannote[699].speaker SPEAKER_20
transcript.pyannote[699].start 5711.27346875
transcript.pyannote[699].end 5711.66159375
transcript.pyannote[700].speaker SPEAKER_12
transcript.pyannote[700].start 5711.66159375
transcript.pyannote[700].end 5711.69534375
transcript.pyannote[701].speaker SPEAKER_12
transcript.pyannote[701].start 5711.83034375
transcript.pyannote[701].end 5712.65721875
transcript.pyannote[702].speaker SPEAKER_12
transcript.pyannote[702].start 5712.97784375
transcript.pyannote[702].end 5714.74971875
transcript.pyannote[703].speaker SPEAKER_20
transcript.pyannote[703].start 5716.48784375
transcript.pyannote[703].end 5716.50471875
transcript.pyannote[704].speaker SPEAKER_12
transcript.pyannote[704].start 5716.50471875
transcript.pyannote[704].end 5717.41596875
transcript.pyannote[705].speaker SPEAKER_20
transcript.pyannote[705].start 5716.57221875
transcript.pyannote[705].end 5716.97721875
transcript.pyannote[706].speaker SPEAKER_19
transcript.pyannote[706].start 5716.97721875
transcript.pyannote[706].end 5717.02784375
transcript.pyannote[707].speaker SPEAKER_20
transcript.pyannote[707].start 5717.02784375
transcript.pyannote[707].end 5717.97284375
transcript.pyannote[708].speaker SPEAKER_12
transcript.pyannote[708].start 5717.58471875
transcript.pyannote[708].end 5721.39846875
transcript.pyannote[709].speaker SPEAKER_19
transcript.pyannote[709].start 5717.97284375
transcript.pyannote[709].end 5719.10346875
transcript.pyannote[710].speaker SPEAKER_12
transcript.pyannote[710].start 5722.20846875
transcript.pyannote[710].end 5730.66284375
transcript.pyannote[711].speaker SPEAKER_12
transcript.pyannote[711].start 5731.01721875
transcript.pyannote[711].end 5732.97471875
transcript.pyannote[712].speaker SPEAKER_30
transcript.pyannote[712].start 5733.97034375
transcript.pyannote[712].end 5740.88909375
transcript.pyannote[713].speaker SPEAKER_30
transcript.pyannote[713].start 5741.24346875
transcript.pyannote[713].end 5746.67721875
transcript.pyannote[714].speaker SPEAKER_30
transcript.pyannote[714].start 5747.23409375
transcript.pyannote[714].end 5754.42284375
transcript.pyannote[715].speaker SPEAKER_12
transcript.pyannote[715].start 5754.33846875
transcript.pyannote[715].end 5757.27471875
transcript.pyannote[716].speaker SPEAKER_12
transcript.pyannote[716].start 5757.78096875
transcript.pyannote[716].end 5764.93596875
transcript.pyannote[717].speaker SPEAKER_12
transcript.pyannote[717].start 5765.22284375
transcript.pyannote[717].end 5770.57221875
transcript.pyannote[718].speaker SPEAKER_19
transcript.pyannote[718].start 5765.30721875
transcript.pyannote[718].end 5765.32409375
transcript.pyannote[719].speaker SPEAKER_30
transcript.pyannote[719].start 5765.32409375
transcript.pyannote[719].end 5765.59409375
transcript.pyannote[720].speaker SPEAKER_30
transcript.pyannote[720].start 5765.79659375
transcript.pyannote[720].end 5765.86409375
transcript.pyannote[721].speaker SPEAKER_30
transcript.pyannote[721].start 5768.53034375
transcript.pyannote[721].end 5768.95221875
transcript.pyannote[722].speaker SPEAKER_30
transcript.pyannote[722].start 5770.74096875
transcript.pyannote[722].end 5772.17534375
transcript.pyannote[723].speaker SPEAKER_12
transcript.pyannote[723].start 5771.85471875
transcript.pyannote[723].end 5773.50846875
transcript.pyannote[724].speaker SPEAKER_30
transcript.pyannote[724].start 5773.27221875
transcript.pyannote[724].end 5776.17471875
transcript.pyannote[725].speaker SPEAKER_12
transcript.pyannote[725].start 5776.17471875
transcript.pyannote[725].end 5776.95096875
transcript.pyannote[726].speaker SPEAKER_30
transcript.pyannote[726].start 5776.66409375
transcript.pyannote[726].end 5778.55409375
transcript.pyannote[727].speaker SPEAKER_12
transcript.pyannote[727].start 5778.48659375
transcript.pyannote[727].end 5788.27409375
transcript.pyannote[728].speaker SPEAKER_19
transcript.pyannote[728].start 5788.54409375
transcript.pyannote[728].end 5789.28659375
transcript.pyannote[729].speaker SPEAKER_12
transcript.pyannote[729].start 5789.23596875
transcript.pyannote[729].end 5795.51346875
transcript.pyannote[730].speaker SPEAKER_20
transcript.pyannote[730].start 5789.28659375
transcript.pyannote[730].end 5789.30346875
transcript.pyannote[731].speaker SPEAKER_20
transcript.pyannote[731].start 5793.79221875
transcript.pyannote[731].end 5794.39971875
transcript.pyannote[732].speaker SPEAKER_20
transcript.pyannote[732].start 5795.36159375
transcript.pyannote[732].end 5795.74971875
transcript.pyannote[733].speaker SPEAKER_12
transcript.pyannote[733].start 5795.56409375
transcript.pyannote[733].end 5798.28096875
transcript.pyannote[734].speaker SPEAKER_20
transcript.pyannote[734].start 5798.28096875
transcript.pyannote[734].end 5798.66909375
transcript.pyannote[735].speaker SPEAKER_12
transcript.pyannote[735].start 5798.78721875
transcript.pyannote[735].end 5806.19534375
transcript.pyannote[736].speaker SPEAKER_30
transcript.pyannote[736].start 5804.52471875
transcript.pyannote[736].end 5804.79471875
transcript.pyannote[737].speaker SPEAKER_30
transcript.pyannote[737].start 5807.81534375
transcript.pyannote[737].end 5811.44346875
transcript.pyannote[738].speaker SPEAKER_12
transcript.pyannote[738].start 5811.44346875
transcript.pyannote[738].end 5812.86096875
transcript.pyannote[739].speaker SPEAKER_30
transcript.pyannote[739].start 5811.46034375
transcript.pyannote[739].end 5813.02971875
transcript.pyannote[740].speaker SPEAKER_12
transcript.pyannote[740].start 5813.02971875
transcript.pyannote[740].end 5813.92409375
transcript.pyannote[741].speaker SPEAKER_30
transcript.pyannote[741].start 5814.64971875
transcript.pyannote[741].end 5814.66659375
transcript.pyannote[742].speaker SPEAKER_12
transcript.pyannote[742].start 5814.66659375
transcript.pyannote[742].end 5816.37096875
transcript.pyannote[743].speaker SPEAKER_12
transcript.pyannote[743].start 5816.59034375
transcript.pyannote[743].end 5829.70221875
transcript.pyannote[744].speaker SPEAKER_12
transcript.pyannote[744].start 5831.03534375
transcript.pyannote[744].end 5834.61284375
transcript.pyannote[745].speaker SPEAKER_12
transcript.pyannote[745].start 5835.16971875
transcript.pyannote[745].end 5837.85284375
transcript.pyannote[746].speaker SPEAKER_12
transcript.pyannote[746].start 5838.34221875
transcript.pyannote[746].end 5840.19846875
transcript.pyannote[747].speaker SPEAKER_12
transcript.pyannote[747].start 5840.67096875
transcript.pyannote[747].end 5846.05409375
transcript.pyannote[748].speaker SPEAKER_12
transcript.pyannote[748].start 5847.03284375
transcript.pyannote[748].end 5848.02846875
transcript.pyannote[749].speaker SPEAKER_12
transcript.pyannote[749].start 5848.24784375
transcript.pyannote[749].end 5848.88909375
transcript.pyannote[750].speaker SPEAKER_12
transcript.pyannote[750].start 5849.26034375
transcript.pyannote[750].end 5851.09971875
transcript.pyannote[751].speaker SPEAKER_12
transcript.pyannote[751].start 5851.90971875
transcript.pyannote[751].end 5854.55909375
transcript.pyannote[752].speaker SPEAKER_30
transcript.pyannote[752].start 5855.21721875
transcript.pyannote[752].end 5868.46409375
transcript.pyannote[753].speaker SPEAKER_30
transcript.pyannote[753].start 5868.73409375
transcript.pyannote[753].end 5871.33284375
transcript.pyannote[754].speaker SPEAKER_30
transcript.pyannote[754].start 5871.82221875
transcript.pyannote[754].end 5872.27784375
transcript.pyannote[755].speaker SPEAKER_30
transcript.pyannote[755].start 5872.81784375
transcript.pyannote[755].end 5874.35346875
transcript.pyannote[756].speaker SPEAKER_30
transcript.pyannote[756].start 5874.89346875
transcript.pyannote[756].end 5906.46659375
transcript.pyannote[757].speaker SPEAKER_12
transcript.pyannote[757].start 5904.52596875
transcript.pyannote[757].end 5909.38596875
transcript.pyannote[758].speaker SPEAKER_12
transcript.pyannote[758].start 5909.41971875
transcript.pyannote[758].end 5915.49471875
transcript.pyannote[759].speaker SPEAKER_12
transcript.pyannote[759].start 5916.23721875
transcript.pyannote[759].end 5918.32971875
transcript.pyannote[760].speaker SPEAKER_12
transcript.pyannote[760].start 5918.48159375
transcript.pyannote[760].end 5926.63221875
transcript.pyannote[761].speaker SPEAKER_12
transcript.pyannote[761].start 5926.98659375
transcript.pyannote[761].end 5929.33221875
transcript.pyannote[762].speaker SPEAKER_30
transcript.pyannote[762].start 5927.77971875
transcript.pyannote[762].end 5928.16784375
transcript.pyannote[763].speaker SPEAKER_30
transcript.pyannote[763].start 5928.92721875
transcript.pyannote[763].end 5930.42909375
transcript.pyannote[764].speaker SPEAKER_12
transcript.pyannote[764].start 5930.42909375
transcript.pyannote[764].end 5932.58909375
transcript.pyannote[765].speaker SPEAKER_30
transcript.pyannote[765].start 5930.44596875
transcript.pyannote[765].end 5930.66534375
transcript.pyannote[766].speaker SPEAKER_12
transcript.pyannote[766].start 5933.16284375
transcript.pyannote[766].end 5937.53346875
transcript.pyannote[767].speaker SPEAKER_20
transcript.pyannote[767].start 5937.53346875
transcript.pyannote[767].end 5937.55034375
transcript.pyannote[768].speaker SPEAKER_30
transcript.pyannote[768].start 5937.55034375
transcript.pyannote[768].end 5938.05659375
transcript.pyannote[769].speaker SPEAKER_12
transcript.pyannote[769].start 5938.05659375
transcript.pyannote[769].end 5944.28346875
transcript.pyannote[770].speaker SPEAKER_30
transcript.pyannote[770].start 5944.11471875
transcript.pyannote[770].end 5957.39534375
transcript.pyannote[771].speaker SPEAKER_12
transcript.pyannote[771].start 5955.70784375
transcript.pyannote[771].end 5959.80846875
transcript.pyannote[772].speaker SPEAKER_30
transcript.pyannote[772].start 5959.40346875
transcript.pyannote[772].end 5959.70721875
transcript.pyannote[773].speaker SPEAKER_30
transcript.pyannote[773].start 5959.80846875
transcript.pyannote[773].end 5959.97721875
transcript.pyannote[774].speaker SPEAKER_12
transcript.pyannote[774].start 5959.97721875
transcript.pyannote[774].end 5960.07846875
transcript.pyannote[775].speaker SPEAKER_12
transcript.pyannote[775].start 5960.39909375
transcript.pyannote[775].end 5966.77784375
transcript.pyannote[776].speaker SPEAKER_12
transcript.pyannote[776].start 5966.91284375
transcript.pyannote[776].end 5984.85096875
transcript.pyannote[777].speaker SPEAKER_20
transcript.pyannote[777].start 5969.25846875
transcript.pyannote[777].end 5969.62971875
transcript.pyannote[778].speaker SPEAKER_00
transcript.pyannote[778].start 5969.62971875
transcript.pyannote[778].end 5969.71409375
transcript.pyannote[779].speaker SPEAKER_20
transcript.pyannote[779].start 5974.55721875
transcript.pyannote[779].end 5974.57409375
transcript.pyannote[780].speaker SPEAKER_20
transcript.pyannote[780].start 5974.59096875
transcript.pyannote[780].end 5974.60784375
transcript.pyannote[781].speaker SPEAKER_30
transcript.pyannote[781].start 5984.98596875
transcript.pyannote[781].end 5985.50909375
transcript.pyannote[782].speaker SPEAKER_12
transcript.pyannote[782].start 5985.50909375
transcript.pyannote[782].end 5985.86346875
transcript.pyannote[783].speaker SPEAKER_30
transcript.pyannote[783].start 5986.89284375
transcript.pyannote[783].end 5988.19221875
transcript.pyannote[784].speaker SPEAKER_12
transcript.pyannote[784].start 5986.94346875
transcript.pyannote[784].end 5987.80409375
transcript.pyannote[785].speaker SPEAKER_12
transcript.pyannote[785].start 5988.12471875
transcript.pyannote[785].end 5989.28909375
transcript.pyannote[786].speaker SPEAKER_30
transcript.pyannote[786].start 5989.00221875
transcript.pyannote[786].end 5993.11971875
transcript.pyannote[787].speaker SPEAKER_12
transcript.pyannote[787].start 5990.99346875
transcript.pyannote[787].end 5991.34784375
transcript.pyannote[788].speaker SPEAKER_12
transcript.pyannote[788].start 5991.63471875
transcript.pyannote[788].end 6001.18596875
transcript.pyannote[789].speaker SPEAKER_12
transcript.pyannote[789].start 6001.74284375
transcript.pyannote[789].end 6010.97346875
transcript.pyannote[790].speaker SPEAKER_19
transcript.pyannote[790].start 6003.21096875
transcript.pyannote[790].end 6003.80159375
transcript.pyannote[791].speaker SPEAKER_12
transcript.pyannote[791].start 6011.83409375
transcript.pyannote[791].end 6013.84221875
transcript.pyannote[792].speaker SPEAKER_12
transcript.pyannote[792].start 6014.26409375
transcript.pyannote[792].end 6016.93034375
transcript.pyannote[793].speaker SPEAKER_12
transcript.pyannote[793].start 6017.65596875
transcript.pyannote[793].end 6021.14909375
transcript.pyannote[794].speaker SPEAKER_30
transcript.pyannote[794].start 6020.94659375
transcript.pyannote[794].end 6022.46534375
transcript.pyannote[795].speaker SPEAKER_12
transcript.pyannote[795].start 6022.14471875
transcript.pyannote[795].end 6025.60409375
transcript.pyannote[796].speaker SPEAKER_12
transcript.pyannote[796].start 6026.38034375
transcript.pyannote[796].end 6029.94096875
transcript.pyannote[797].speaker SPEAKER_12
transcript.pyannote[797].start 6030.48096875
transcript.pyannote[797].end 6031.84784375
transcript.pyannote[798].speaker SPEAKER_30
transcript.pyannote[798].start 6030.53159375
transcript.pyannote[798].end 6051.96284375
transcript.pyannote[799].speaker SPEAKER_30
transcript.pyannote[799].start 6052.08096875
transcript.pyannote[799].end 6060.28221875
transcript.pyannote[800].speaker SPEAKER_12
transcript.pyannote[800].start 6059.28659375
transcript.pyannote[800].end 6064.72034375
transcript.pyannote[801].speaker SPEAKER_12
transcript.pyannote[801].start 6065.20971875
transcript.pyannote[801].end 6067.82534375
transcript.pyannote[802].speaker SPEAKER_12
transcript.pyannote[802].start 6069.20909375
transcript.pyannote[802].end 6073.07346875
transcript.pyannote[803].speaker SPEAKER_12
transcript.pyannote[803].start 6073.36034375
transcript.pyannote[803].end 6076.51596875
transcript.pyannote[804].speaker SPEAKER_12
transcript.pyannote[804].start 6077.10659375
transcript.pyannote[804].end 6082.06784375
transcript.pyannote[805].speaker SPEAKER_12
transcript.pyannote[805].start 6083.11409375
transcript.pyannote[805].end 6084.97034375
transcript.pyannote[806].speaker SPEAKER_12
transcript.pyannote[806].start 6085.22346875
transcript.pyannote[806].end 6086.18534375
transcript.pyannote[807].speaker SPEAKER_12
transcript.pyannote[807].start 6086.48909375
transcript.pyannote[807].end 6089.52659375
transcript.pyannote[808].speaker SPEAKER_12
transcript.pyannote[808].start 6089.91471875
transcript.pyannote[808].end 6093.77909375
transcript.pyannote[809].speaker SPEAKER_12
transcript.pyannote[809].start 6094.25159375
transcript.pyannote[809].end 6094.77471875
transcript.pyannote[810].speaker SPEAKER_12
transcript.pyannote[810].start 6095.21346875
transcript.pyannote[810].end 6096.17534375
transcript.pyannote[811].speaker SPEAKER_12
transcript.pyannote[811].start 6096.66471875
transcript.pyannote[811].end 6098.48721875
transcript.pyannote[812].speaker SPEAKER_12
transcript.pyannote[812].start 6099.24659375
transcript.pyannote[812].end 6100.10721875
transcript.pyannote[813].speaker SPEAKER_12
transcript.pyannote[813].start 6100.39409375
transcript.pyannote[813].end 6102.52034375
transcript.pyannote[814].speaker SPEAKER_12
transcript.pyannote[814].start 6102.90846875
transcript.pyannote[814].end 6106.36784375
transcript.pyannote[815].speaker SPEAKER_12
transcript.pyannote[815].start 6107.66721875
transcript.pyannote[815].end 6120.40784375
transcript.pyannote[816].speaker SPEAKER_20
transcript.pyannote[816].start 6109.16909375
transcript.pyannote[816].end 6109.70909375
transcript.pyannote[817].speaker SPEAKER_20
transcript.pyannote[817].start 6112.13909375
transcript.pyannote[817].end 6112.79721875
transcript.pyannote[818].speaker SPEAKER_30
transcript.pyannote[818].start 6121.38659375
transcript.pyannote[818].end 6130.90409375
transcript.pyannote[819].speaker SPEAKER_30
transcript.pyannote[819].start 6131.14034375
transcript.pyannote[819].end 6138.88596875
transcript.pyannote[820].speaker SPEAKER_30
transcript.pyannote[820].start 6139.15596875
transcript.pyannote[820].end 6145.43346875
transcript.pyannote[821].speaker SPEAKER_12
transcript.pyannote[821].start 6144.75846875
transcript.pyannote[821].end 6149.02784375
transcript.pyannote[822].speaker SPEAKER_30
transcript.pyannote[822].start 6147.94784375
transcript.pyannote[822].end 6150.25971875
transcript.pyannote[823].speaker SPEAKER_20
transcript.pyannote[823].start 6150.25971875
transcript.pyannote[823].end 6150.47909375
transcript.pyannote[824].speaker SPEAKER_30
transcript.pyannote[824].start 6150.47909375
transcript.pyannote[824].end 6150.59721875
transcript.pyannote[825].speaker SPEAKER_20
transcript.pyannote[825].start 6150.59721875
transcript.pyannote[825].end 6150.61409375
transcript.pyannote[826].speaker SPEAKER_30
transcript.pyannote[826].start 6151.17096875
transcript.pyannote[826].end 6152.92596875
transcript.pyannote[827].speaker SPEAKER_12
transcript.pyannote[827].start 6152.92596875
transcript.pyannote[827].end 6153.73596875
transcript.pyannote[828].speaker SPEAKER_30
transcript.pyannote[828].start 6153.36471875
transcript.pyannote[828].end 6169.42971875
transcript.pyannote[829].speaker SPEAKER_12
transcript.pyannote[829].start 6168.29909375
transcript.pyannote[829].end 6185.46096875
transcript.pyannote[830].speaker SPEAKER_30
transcript.pyannote[830].start 6169.61534375
transcript.pyannote[830].end 6171.04971875
transcript.pyannote[831].speaker SPEAKER_30
transcript.pyannote[831].start 6172.85534375
transcript.pyannote[831].end 6173.76659375
transcript.pyannote[832].speaker SPEAKER_30
transcript.pyannote[832].start 6174.15471875
transcript.pyannote[832].end 6174.84659375
transcript.pyannote[833].speaker SPEAKER_19
transcript.pyannote[833].start 6177.02346875
transcript.pyannote[833].end 6177.07409375
transcript.pyannote[834].speaker SPEAKER_30
transcript.pyannote[834].start 6177.07409375
transcript.pyannote[834].end 6177.47909375
transcript.pyannote[835].speaker SPEAKER_19
transcript.pyannote[835].start 6177.47909375
transcript.pyannote[835].end 6177.49596875
transcript.pyannote[836].speaker SPEAKER_30
transcript.pyannote[836].start 6181.46159375
transcript.pyannote[836].end 6183.79034375
transcript.pyannote[837].speaker SPEAKER_30
transcript.pyannote[837].start 6185.46096875
transcript.pyannote[837].end 6186.08534375
transcript.pyannote[838].speaker SPEAKER_12
transcript.pyannote[838].start 6186.08534375
transcript.pyannote[838].end 6188.48159375
transcript.pyannote[839].speaker SPEAKER_30
transcript.pyannote[839].start 6188.12721875
transcript.pyannote[839].end 6190.38846875
transcript.pyannote[840].speaker SPEAKER_12
transcript.pyannote[840].start 6188.80221875
transcript.pyannote[840].end 6192.59909375
transcript.pyannote[841].speaker SPEAKER_12
transcript.pyannote[841].start 6193.30784375
transcript.pyannote[841].end 6194.86034375
transcript.pyannote[842].speaker SPEAKER_12
transcript.pyannote[842].start 6196.24409375
transcript.pyannote[842].end 6197.42534375
transcript.pyannote[843].speaker SPEAKER_12
transcript.pyannote[843].start 6197.83034375
transcript.pyannote[843].end 6212.14034375
transcript.pyannote[844].speaker SPEAKER_19
transcript.pyannote[844].start 6206.23409375
transcript.pyannote[844].end 6207.60096875
transcript.pyannote[845].speaker SPEAKER_19
transcript.pyannote[845].start 6211.85346875
transcript.pyannote[845].end 6213.20346875
transcript.pyannote[846].speaker SPEAKER_12
transcript.pyannote[846].start 6213.43971875
transcript.pyannote[846].end 6217.84409375
transcript.pyannote[847].speaker SPEAKER_30
transcript.pyannote[847].start 6215.31284375
transcript.pyannote[847].end 6215.48159375
transcript.pyannote[848].speaker SPEAKER_20
transcript.pyannote[848].start 6215.48159375
transcript.pyannote[848].end 6215.83596875
transcript.pyannote[849].speaker SPEAKER_20
transcript.pyannote[849].start 6217.62471875
transcript.pyannote[849].end 6217.64159375
transcript.pyannote[850].speaker SPEAKER_30
transcript.pyannote[850].start 6217.64159375
transcript.pyannote[850].end 6217.75971875
transcript.pyannote[851].speaker SPEAKER_20
transcript.pyannote[851].start 6217.75971875
transcript.pyannote[851].end 6217.77659375
transcript.pyannote[852].speaker SPEAKER_30
transcript.pyannote[852].start 6217.84409375
transcript.pyannote[852].end 6218.53596875
transcript.pyannote[853].speaker SPEAKER_12
transcript.pyannote[853].start 6218.53596875
transcript.pyannote[853].end 6221.16846875
transcript.pyannote[854].speaker SPEAKER_30
transcript.pyannote[854].start 6218.56971875
transcript.pyannote[854].end 6218.87346875
transcript.pyannote[855].speaker SPEAKER_30
transcript.pyannote[855].start 6219.73409375
transcript.pyannote[855].end 6224.39159375
transcript.pyannote[856].speaker SPEAKER_30
transcript.pyannote[856].start 6225.06659375
transcript.pyannote[856].end 6225.18471875
transcript.pyannote[857].speaker SPEAKER_30
transcript.pyannote[857].start 6225.30284375
transcript.pyannote[857].end 6227.19284375
transcript.pyannote[858].speaker SPEAKER_12
transcript.pyannote[858].start 6225.55596875
transcript.pyannote[858].end 6229.43721875
transcript.pyannote[859].speaker SPEAKER_12
transcript.pyannote[859].start 6230.04471875
transcript.pyannote[859].end 6233.31846875
transcript.pyannote[860].speaker SPEAKER_30
transcript.pyannote[860].start 6230.12909375
transcript.pyannote[860].end 6231.12471875
transcript.pyannote[861].speaker SPEAKER_12
transcript.pyannote[861].start 6233.67284375
transcript.pyannote[861].end 6235.25909375
transcript.pyannote[862].speaker SPEAKER_30
transcript.pyannote[862].start 6235.84971875
transcript.pyannote[862].end 6239.35971875
transcript.pyannote[863].speaker SPEAKER_30
transcript.pyannote[863].start 6240.47346875
transcript.pyannote[863].end 6244.59096875
transcript.pyannote[864].speaker SPEAKER_12
transcript.pyannote[864].start 6243.74721875
transcript.pyannote[864].end 6255.67784375
transcript.pyannote[865].speaker SPEAKER_30
transcript.pyannote[865].start 6255.61034375
transcript.pyannote[865].end 6257.90534375
transcript.pyannote[866].speaker SPEAKER_12
transcript.pyannote[866].start 6256.43721875
transcript.pyannote[866].end 6262.91721875
transcript.pyannote[867].speaker SPEAKER_12
transcript.pyannote[867].start 6263.47409375
transcript.pyannote[867].end 6266.54534375
transcript.pyannote[868].speaker SPEAKER_30
transcript.pyannote[868].start 6266.03909375
transcript.pyannote[868].end 6266.42721875
transcript.pyannote[869].speaker SPEAKER_19
transcript.pyannote[869].start 6266.54534375
transcript.pyannote[869].end 6266.62971875
transcript.pyannote[870].speaker SPEAKER_12
transcript.pyannote[870].start 6266.62971875
transcript.pyannote[870].end 6270.74721875
transcript.pyannote[871].speaker SPEAKER_30
transcript.pyannote[871].start 6270.49409375
transcript.pyannote[871].end 6270.52784375
transcript.pyannote[872].speaker SPEAKER_11
transcript.pyannote[872].start 6270.52784375
transcript.pyannote[872].end 6271.32096875
transcript.pyannote[873].speaker SPEAKER_30
transcript.pyannote[873].start 6271.32096875
transcript.pyannote[873].end 6271.33784375
transcript.pyannote[874].speaker SPEAKER_12
transcript.pyannote[874].start 6271.33784375
transcript.pyannote[874].end 6271.86096875
transcript.pyannote[875].speaker SPEAKER_30
transcript.pyannote[875].start 6271.37159375
transcript.pyannote[875].end 6272.14784375
transcript.pyannote[876].speaker SPEAKER_11
transcript.pyannote[876].start 6273.81846875
transcript.pyannote[876].end 6274.61159375
transcript.pyannote[877].speaker SPEAKER_11
transcript.pyannote[877].start 6275.79284375
transcript.pyannote[877].end 6278.30721875
transcript.pyannote[878].speaker SPEAKER_10
transcript.pyannote[878].start 6287.31846875
transcript.pyannote[878].end 6289.36034375
transcript.pyannote[879].speaker SPEAKER_10
transcript.pyannote[879].start 6289.81596875
transcript.pyannote[879].end 6290.67659375
transcript.pyannote[880].speaker SPEAKER_08
transcript.pyannote[880].start 6294.00096875
transcript.pyannote[880].end 6394.81221875
transcript.pyannote[881].speaker SPEAKER_00
transcript.pyannote[881].start 6392.12909375
transcript.pyannote[881].end 6392.61846875
transcript.pyannote[882].speaker SPEAKER_08
transcript.pyannote[882].start 6395.43659375
transcript.pyannote[882].end 6506.47409375
transcript.pyannote[883].speaker SPEAKER_08
transcript.pyannote[883].start 6506.76096875
transcript.pyannote[883].end 6518.42159375
transcript.pyannote[884].speaker SPEAKER_08
transcript.pyannote[884].start 6518.77596875
transcript.pyannote[884].end 6530.53784375
transcript.pyannote[885].speaker SPEAKER_08
transcript.pyannote[885].start 6530.70659375
transcript.pyannote[885].end 6577.63596875
transcript.pyannote[886].speaker SPEAKER_08
transcript.pyannote[886].start 6577.88909375
transcript.pyannote[886].end 6579.17159375
transcript.pyannote[887].speaker SPEAKER_30
transcript.pyannote[887].start 6577.97346875
transcript.pyannote[887].end 6586.68096875
transcript.pyannote[888].speaker SPEAKER_08
transcript.pyannote[888].start 6583.79534375
transcript.pyannote[888].end 6583.82909375
transcript.pyannote[889].speaker SPEAKER_30
transcript.pyannote[889].start 6587.23784375
transcript.pyannote[889].end 6595.65846875
transcript.pyannote[890].speaker SPEAKER_00
transcript.pyannote[890].start 6588.84096875
transcript.pyannote[890].end 6588.87471875
transcript.pyannote[891].speaker SPEAKER_07
transcript.pyannote[891].start 6588.87471875
transcript.pyannote[891].end 6589.21221875
transcript.pyannote[892].speaker SPEAKER_00
transcript.pyannote[892].start 6589.21221875
transcript.pyannote[892].end 6589.22909375
transcript.pyannote[893].speaker SPEAKER_30
transcript.pyannote[893].start 6595.99596875
transcript.pyannote[893].end 6598.47659375
transcript.pyannote[894].speaker SPEAKER_20
transcript.pyannote[894].start 6596.13096875
transcript.pyannote[894].end 6598.54409375
transcript.pyannote[895].speaker SPEAKER_30
transcript.pyannote[895].start 6599.59034375
transcript.pyannote[895].end 6604.41659375
transcript.pyannote[896].speaker SPEAKER_19
transcript.pyannote[896].start 6600.92346875
transcript.pyannote[896].end 6600.94034375
transcript.pyannote[897].speaker SPEAKER_20
transcript.pyannote[897].start 6600.94034375
transcript.pyannote[897].end 6600.95721875
transcript.pyannote[898].speaker SPEAKER_30
transcript.pyannote[898].start 6604.55159375
transcript.pyannote[898].end 6622.79346875
transcript.pyannote[899].speaker SPEAKER_08
transcript.pyannote[899].start 6605.14221875
transcript.pyannote[899].end 6606.96471875
transcript.pyannote[900].speaker SPEAKER_08
transcript.pyannote[900].start 6609.58034375
transcript.pyannote[900].end 6610.20471875
transcript.pyannote[901].speaker SPEAKER_08
transcript.pyannote[901].start 6610.30596875
transcript.pyannote[901].end 6612.07784375
transcript.pyannote[902].speaker SPEAKER_11
transcript.pyannote[902].start 6612.07784375
transcript.pyannote[902].end 6612.16221875
transcript.pyannote[903].speaker SPEAKER_00
transcript.pyannote[903].start 6614.67659375
transcript.pyannote[903].end 6614.72721875
transcript.pyannote[904].speaker SPEAKER_19
transcript.pyannote[904].start 6614.72721875
transcript.pyannote[904].end 6614.81159375
transcript.pyannote[905].speaker SPEAKER_00
transcript.pyannote[905].start 6614.81159375
transcript.pyannote[905].end 6614.86221875
transcript.pyannote[906].speaker SPEAKER_19
transcript.pyannote[906].start 6622.74284375
transcript.pyannote[906].end 6622.77659375
transcript.pyannote[907].speaker SPEAKER_19
transcript.pyannote[907].start 6622.79346875
transcript.pyannote[907].end 6622.97909375
transcript.pyannote[908].speaker SPEAKER_30
transcript.pyannote[908].start 6622.94534375
transcript.pyannote[908].end 6628.41284375
transcript.pyannote[909].speaker SPEAKER_30
transcript.pyannote[909].start 6629.44221875
transcript.pyannote[909].end 6656.96534375
transcript.pyannote[910].speaker SPEAKER_08
transcript.pyannote[910].start 6636.09096875
transcript.pyannote[910].end 6637.96409375
transcript.pyannote[911].speaker SPEAKER_00
transcript.pyannote[911].start 6637.96409375
transcript.pyannote[911].end 6638.40284375
transcript.pyannote[912].speaker SPEAKER_19
transcript.pyannote[912].start 6649.79346875
transcript.pyannote[912].end 6649.89471875
transcript.pyannote[913].speaker SPEAKER_00
transcript.pyannote[913].start 6649.89471875
transcript.pyannote[913].end 6650.18159375
transcript.pyannote[914].speaker SPEAKER_08
transcript.pyannote[914].start 6656.96534375
transcript.pyannote[914].end 6670.95471875
transcript.pyannote[915].speaker SPEAKER_30
transcript.pyannote[915].start 6658.39971875
transcript.pyannote[915].end 6659.90159375
transcript.pyannote[916].speaker SPEAKER_30
transcript.pyannote[916].start 6660.99846875
transcript.pyannote[916].end 6661.47096875
transcript.pyannote[917].speaker SPEAKER_19
transcript.pyannote[917].start 6662.53409375
transcript.pyannote[917].end 6662.56784375
transcript.pyannote[918].speaker SPEAKER_30
transcript.pyannote[918].start 6662.56784375
transcript.pyannote[918].end 6663.17534375
transcript.pyannote[919].speaker SPEAKER_30
transcript.pyannote[919].start 6664.59284375
transcript.pyannote[919].end 6665.62221875
transcript.pyannote[920].speaker SPEAKER_30
transcript.pyannote[920].start 6667.41096875
transcript.pyannote[920].end 6668.64284375
transcript.pyannote[921].speaker SPEAKER_30
transcript.pyannote[921].start 6670.53284375
transcript.pyannote[921].end 6677.23221875
transcript.pyannote[922].speaker SPEAKER_08
transcript.pyannote[922].start 6674.90346875
transcript.pyannote[922].end 6680.26971875
transcript.pyannote[923].speaker SPEAKER_30
transcript.pyannote[923].start 6679.67909375
transcript.pyannote[923].end 6683.62784375
transcript.pyannote[924].speaker SPEAKER_08
transcript.pyannote[924].start 6681.88971875
transcript.pyannote[924].end 6695.67659375
transcript.pyannote[925].speaker SPEAKER_30
transcript.pyannote[925].start 6685.45034375
transcript.pyannote[925].end 6686.59784375
transcript.pyannote[926].speaker SPEAKER_30
transcript.pyannote[926].start 6691.05284375
transcript.pyannote[926].end 6692.08221875
transcript.pyannote[927].speaker SPEAKER_30
transcript.pyannote[927].start 6694.88346875
transcript.pyannote[927].end 6694.93409375
transcript.pyannote[928].speaker SPEAKER_30
transcript.pyannote[928].start 6696.62159375
transcript.pyannote[928].end 6712.70346875
transcript.pyannote[929].speaker SPEAKER_08
transcript.pyannote[929].start 6700.58721875
transcript.pyannote[929].end 6701.02596875
transcript.pyannote[930].speaker SPEAKER_08
transcript.pyannote[930].start 6710.22284375
transcript.pyannote[930].end 6712.78784375
transcript.pyannote[931].speaker SPEAKER_30
transcript.pyannote[931].start 6712.78784375
transcript.pyannote[931].end 6713.24346875
transcript.pyannote[932].speaker SPEAKER_08
transcript.pyannote[932].start 6712.85534375
transcript.pyannote[932].end 6725.76471875
transcript.pyannote[933].speaker SPEAKER_30
transcript.pyannote[933].start 6720.09471875
transcript.pyannote[933].end 6720.61784375
transcript.pyannote[934].speaker SPEAKER_30
transcript.pyannote[934].start 6724.07721875
transcript.pyannote[934].end 6728.85284375
transcript.pyannote[935].speaker SPEAKER_08
transcript.pyannote[935].start 6727.48596875
transcript.pyannote[935].end 6760.88159375
transcript.pyannote[936].speaker SPEAKER_30
transcript.pyannote[936].start 6728.97096875
transcript.pyannote[936].end 6729.64596875
transcript.pyannote[937].speaker SPEAKER_19
transcript.pyannote[937].start 6738.43784375
transcript.pyannote[937].end 6738.65721875
transcript.pyannote[938].speaker SPEAKER_00
transcript.pyannote[938].start 6738.65721875
transcript.pyannote[938].end 6738.77534375
transcript.pyannote[939].speaker SPEAKER_00
transcript.pyannote[939].start 6743.60159375
transcript.pyannote[939].end 6744.10784375
transcript.pyannote[940].speaker SPEAKER_28
transcript.pyannote[940].start 6750.30096875
transcript.pyannote[940].end 6750.95909375
transcript.pyannote[941].speaker SPEAKER_30
transcript.pyannote[941].start 6760.88159375
transcript.pyannote[941].end 6760.91534375
transcript.pyannote[942].speaker SPEAKER_08
transcript.pyannote[942].start 6761.13471875
transcript.pyannote[942].end 6761.21909375
transcript.pyannote[943].speaker SPEAKER_30
transcript.pyannote[943].start 6761.21909375
transcript.pyannote[943].end 6768.12096875
transcript.pyannote[944].speaker SPEAKER_08
transcript.pyannote[944].start 6761.35409375
transcript.pyannote[944].end 6761.84346875
transcript.pyannote[945].speaker SPEAKER_08
transcript.pyannote[945].start 6764.08784375
transcript.pyannote[945].end 6766.46721875
transcript.pyannote[946].speaker SPEAKER_08
transcript.pyannote[946].start 6767.31096875
transcript.pyannote[946].end 6768.79596875
transcript.pyannote[947].speaker SPEAKER_11
transcript.pyannote[947].start 6768.12096875
transcript.pyannote[947].end 6769.84221875
transcript.pyannote[948].speaker SPEAKER_30
transcript.pyannote[948].start 6768.79596875
transcript.pyannote[948].end 6768.82971875
transcript.pyannote[949].speaker SPEAKER_08
transcript.pyannote[949].start 6768.82971875
transcript.pyannote[949].end 6768.86346875
transcript.pyannote[950].speaker SPEAKER_11
transcript.pyannote[950].start 6770.44971875
transcript.pyannote[950].end 6771.34409375
transcript.pyannote[951].speaker SPEAKER_11
transcript.pyannote[951].start 6772.10346875
transcript.pyannote[951].end 6774.80346875
transcript.pyannote[952].speaker SPEAKER_18
transcript.pyannote[952].start 6789.51846875
transcript.pyannote[952].end 6790.21034375
transcript.pyannote[953].speaker SPEAKER_10
transcript.pyannote[953].start 6791.12159375
transcript.pyannote[953].end 6791.81346875
transcript.pyannote[954].speaker SPEAKER_10
transcript.pyannote[954].start 6794.07471875
transcript.pyannote[954].end 6794.51346875
transcript.pyannote[955].speaker SPEAKER_18
transcript.pyannote[955].start 6795.40784375
transcript.pyannote[955].end 6810.71346875
transcript.pyannote[956].speaker SPEAKER_18
transcript.pyannote[956].start 6811.55721875
transcript.pyannote[956].end 6812.18159375
transcript.pyannote[957].speaker SPEAKER_18
transcript.pyannote[957].start 6813.07596875
transcript.pyannote[957].end 6817.32846875
transcript.pyannote[958].speaker SPEAKER_18
transcript.pyannote[958].start 6817.95284375
transcript.pyannote[958].end 6823.40346875
transcript.pyannote[959].speaker SPEAKER_18
transcript.pyannote[959].start 6823.67346875
transcript.pyannote[959].end 6830.33909375
transcript.pyannote[960].speaker SPEAKER_18
transcript.pyannote[960].start 6830.91284375
transcript.pyannote[960].end 6834.82784375
transcript.pyannote[961].speaker SPEAKER_18
transcript.pyannote[961].start 6834.86159375
transcript.pyannote[961].end 6838.35471875
transcript.pyannote[962].speaker SPEAKER_18
transcript.pyannote[962].start 6839.02971875
transcript.pyannote[962].end 6858.18284375
transcript.pyannote[963].speaker SPEAKER_18
transcript.pyannote[963].start 6858.79034375
transcript.pyannote[963].end 6860.86596875
transcript.pyannote[964].speaker SPEAKER_18
transcript.pyannote[964].start 6861.20346875
transcript.pyannote[964].end 6866.16471875
transcript.pyannote[965].speaker SPEAKER_18
transcript.pyannote[965].start 6866.43471875
transcript.pyannote[965].end 6872.34096875
transcript.pyannote[966].speaker SPEAKER_18
transcript.pyannote[966].start 6873.21846875
transcript.pyannote[966].end 6873.79221875
transcript.pyannote[967].speaker SPEAKER_18
transcript.pyannote[967].start 6874.21409375
transcript.pyannote[967].end 6883.07346875
transcript.pyannote[968].speaker SPEAKER_18
transcript.pyannote[968].start 6883.46159375
transcript.pyannote[968].end 6898.10909375
transcript.pyannote[969].speaker SPEAKER_18
transcript.pyannote[969].start 6898.68284375
transcript.pyannote[969].end 6908.28471875
transcript.pyannote[970].speaker SPEAKER_18
transcript.pyannote[970].start 6909.01034375
transcript.pyannote[970].end 6919.03409375
transcript.pyannote[971].speaker SPEAKER_18
transcript.pyannote[971].start 6919.15221875
transcript.pyannote[971].end 6926.07096875
transcript.pyannote[972].speaker SPEAKER_18
transcript.pyannote[972].start 6926.64471875
transcript.pyannote[972].end 6928.63596875
transcript.pyannote[973].speaker SPEAKER_18
transcript.pyannote[973].start 6929.12534375
transcript.pyannote[973].end 6934.99784375
transcript.pyannote[974].speaker SPEAKER_30
transcript.pyannote[974].start 6935.90909375
transcript.pyannote[974].end 6937.22534375
transcript.pyannote[975].speaker SPEAKER_18
transcript.pyannote[975].start 6937.96784375
transcript.pyannote[975].end 6938.20409375
transcript.pyannote[976].speaker SPEAKER_18
transcript.pyannote[976].start 6938.44034375
transcript.pyannote[976].end 6941.10659375
transcript.pyannote[977].speaker SPEAKER_18
transcript.pyannote[977].start 6942.47346875
transcript.pyannote[977].end 6971.76846875
transcript.pyannote[978].speaker SPEAKER_30
transcript.pyannote[978].start 6972.39284375
transcript.pyannote[978].end 6978.82221875
transcript.pyannote[979].speaker SPEAKER_19
transcript.pyannote[979].start 6978.82221875
transcript.pyannote[979].end 6979.46346875
transcript.pyannote[980].speaker SPEAKER_30
transcript.pyannote[980].start 6979.22721875
transcript.pyannote[980].end 6983.36159375
transcript.pyannote[981].speaker SPEAKER_19
transcript.pyannote[981].start 6983.09159375
transcript.pyannote[981].end 6983.46284375
transcript.pyannote[982].speaker SPEAKER_30
transcript.pyannote[982].start 6983.41221875
transcript.pyannote[982].end 6983.42909375
transcript.pyannote[983].speaker SPEAKER_30
transcript.pyannote[983].start 6983.46284375
transcript.pyannote[983].end 6984.22221875
transcript.pyannote[984].speaker SPEAKER_30
transcript.pyannote[984].start 6984.34034375
transcript.pyannote[984].end 7003.49346875
transcript.pyannote[985].speaker SPEAKER_18
transcript.pyannote[985].start 7002.19409375
transcript.pyannote[985].end 7006.64909375
transcript.pyannote[986].speaker SPEAKER_30
transcript.pyannote[986].start 7006.17659375
transcript.pyannote[986].end 7006.75034375
transcript.pyannote[987].speaker SPEAKER_18
transcript.pyannote[987].start 7006.75034375
transcript.pyannote[987].end 7008.52221875
transcript.pyannote[988].speaker SPEAKER_30
transcript.pyannote[988].start 7009.38284375
transcript.pyannote[988].end 7013.75346875
transcript.pyannote[989].speaker SPEAKER_30
transcript.pyannote[989].start 7014.31034375
transcript.pyannote[989].end 7033.34534375
transcript.pyannote[990].speaker SPEAKER_18
transcript.pyannote[990].start 7029.31221875
transcript.pyannote[990].end 7029.58221875
transcript.pyannote[991].speaker SPEAKER_18
transcript.pyannote[991].start 7031.05034375
transcript.pyannote[991].end 7037.66534375
transcript.pyannote[992].speaker SPEAKER_30
transcript.pyannote[992].start 7037.05784375
transcript.pyannote[992].end 7037.58096875
transcript.pyannote[993].speaker SPEAKER_18
transcript.pyannote[993].start 7037.85096875
transcript.pyannote[993].end 7047.79034375
transcript.pyannote[994].speaker SPEAKER_18
transcript.pyannote[994].start 7048.46534375
transcript.pyannote[994].end 7058.38784375
transcript.pyannote[995].speaker SPEAKER_18
transcript.pyannote[995].start 7058.72534375
transcript.pyannote[995].end 7077.06846875
transcript.pyannote[996].speaker SPEAKER_20
transcript.pyannote[996].start 7077.06846875
transcript.pyannote[996].end 7077.11909375
transcript.pyannote[997].speaker SPEAKER_18
transcript.pyannote[997].start 7077.11909375
transcript.pyannote[997].end 7077.20346875
transcript.pyannote[998].speaker SPEAKER_20
transcript.pyannote[998].start 7077.20346875
transcript.pyannote[998].end 7077.23721875
transcript.pyannote[999].speaker SPEAKER_18
transcript.pyannote[999].start 7077.23721875
transcript.pyannote[999].end 7077.38909375
transcript.pyannote[1000].speaker SPEAKER_20
transcript.pyannote[1000].start 7077.38909375
transcript.pyannote[1000].end 7078.03034375
transcript.pyannote[1001].speaker SPEAKER_18
transcript.pyannote[1001].start 7078.03034375
transcript.pyannote[1001].end 7083.24471875
transcript.pyannote[1002].speaker SPEAKER_18
transcript.pyannote[1002].start 7083.93659375
transcript.pyannote[1002].end 7087.15971875
transcript.pyannote[1003].speaker SPEAKER_18
transcript.pyannote[1003].start 7087.21034375
transcript.pyannote[1003].end 7089.57284375
transcript.pyannote[1004].speaker SPEAKER_18
transcript.pyannote[1004].start 7090.14659375
transcript.pyannote[1004].end 7103.25846875
transcript.pyannote[1005].speaker SPEAKER_30
transcript.pyannote[1005].start 7103.69721875
transcript.pyannote[1005].end 7105.55346875
transcript.pyannote[1006].speaker SPEAKER_18
transcript.pyannote[1006].start 7105.75596875
transcript.pyannote[1006].end 7114.53096875
transcript.pyannote[1007].speaker SPEAKER_30
transcript.pyannote[1007].start 7111.49346875
transcript.pyannote[1007].end 7117.72034375
transcript.pyannote[1008].speaker SPEAKER_18
transcript.pyannote[1008].start 7116.10034375
transcript.pyannote[1008].end 7117.53471875
transcript.pyannote[1009].speaker SPEAKER_18
transcript.pyannote[1009].start 7117.72034375
transcript.pyannote[1009].end 7118.34471875
transcript.pyannote[1010].speaker SPEAKER_18
transcript.pyannote[1010].start 7118.66534375
transcript.pyannote[1010].end 7125.66846875
transcript.pyannote[1011].speaker SPEAKER_18
transcript.pyannote[1011].start 7125.83721875
transcript.pyannote[1011].end 7132.63784375
transcript.pyannote[1012].speaker SPEAKER_18
transcript.pyannote[1012].start 7132.77284375
transcript.pyannote[1012].end 7132.78971875
transcript.pyannote[1013].speaker SPEAKER_20
transcript.pyannote[1013].start 7132.80659375
transcript.pyannote[1013].end 7133.34659375
transcript.pyannote[1014].speaker SPEAKER_18
transcript.pyannote[1014].start 7133.34659375
transcript.pyannote[1014].end 7135.32096875
transcript.pyannote[1015].speaker SPEAKER_18
transcript.pyannote[1015].start 7136.56971875
transcript.pyannote[1015].end 7140.02909375
transcript.pyannote[1016].speaker SPEAKER_18
transcript.pyannote[1016].start 7140.40034375
transcript.pyannote[1016].end 7141.09221875
transcript.pyannote[1017].speaker SPEAKER_18
transcript.pyannote[1017].start 7142.00346875
transcript.pyannote[1017].end 7145.20971875
transcript.pyannote[1018].speaker SPEAKER_18
transcript.pyannote[1018].start 7145.24346875
transcript.pyannote[1018].end 7146.55971875
transcript.pyannote[1019].speaker SPEAKER_18
transcript.pyannote[1019].start 7147.36971875
transcript.pyannote[1019].end 7156.97159375
transcript.pyannote[1020].speaker SPEAKER_18
transcript.pyannote[1020].start 7157.51159375
transcript.pyannote[1020].end 7158.30471875
transcript.pyannote[1021].speaker SPEAKER_30
transcript.pyannote[1021].start 7157.91659375
transcript.pyannote[1021].end 7158.81096875
transcript.pyannote[1022].speaker SPEAKER_30
transcript.pyannote[1022].start 7159.41846875
transcript.pyannote[1022].end 7161.35909375
transcript.pyannote[1023].speaker SPEAKER_30
transcript.pyannote[1023].start 7161.69659375
transcript.pyannote[1023].end 7161.71346875
transcript.pyannote[1024].speaker SPEAKER_18
transcript.pyannote[1024].start 7161.71346875
transcript.pyannote[1024].end 7162.03409375
transcript.pyannote[1025].speaker SPEAKER_30
transcript.pyannote[1025].start 7162.03409375
transcript.pyannote[1025].end 7164.29534375
transcript.pyannote[1026].speaker SPEAKER_30
transcript.pyannote[1026].start 7165.27409375
transcript.pyannote[1026].end 7170.50534375
transcript.pyannote[1027].speaker SPEAKER_18
transcript.pyannote[1027].start 7170.50534375
transcript.pyannote[1027].end 7171.95659375
transcript.pyannote[1028].speaker SPEAKER_30
transcript.pyannote[1028].start 7171.95659375
transcript.pyannote[1028].end 7172.47971875
transcript.pyannote[1029].speaker SPEAKER_18
transcript.pyannote[1029].start 7173.01971875
transcript.pyannote[1029].end 7191.17721875
transcript.pyannote[1030].speaker SPEAKER_30
transcript.pyannote[1030].start 7185.67596875
transcript.pyannote[1030].end 7186.11471875
transcript.pyannote[1031].speaker SPEAKER_30
transcript.pyannote[1031].start 7191.04221875
transcript.pyannote[1031].end 7193.42159375
transcript.pyannote[1032].speaker SPEAKER_18
transcript.pyannote[1032].start 7191.73409375
transcript.pyannote[1032].end 7200.12096875
transcript.pyannote[1033].speaker SPEAKER_30
transcript.pyannote[1033].start 7193.47221875
transcript.pyannote[1033].end 7193.79284375
transcript.pyannote[1034].speaker SPEAKER_18
transcript.pyannote[1034].start 7200.37409375
transcript.pyannote[1034].end 7217.90721875
transcript.pyannote[1035].speaker SPEAKER_30
transcript.pyannote[1035].start 7215.83159375
transcript.pyannote[1035].end 7217.18159375
transcript.pyannote[1036].speaker SPEAKER_18
transcript.pyannote[1036].start 7218.16034375
transcript.pyannote[1036].end 7220.32034375
transcript.pyannote[1037].speaker SPEAKER_18
transcript.pyannote[1037].start 7220.99534375
transcript.pyannote[1037].end 7221.87284375
transcript.pyannote[1038].speaker SPEAKER_18
transcript.pyannote[1038].start 7222.31159375
transcript.pyannote[1038].end 7263.90846875
transcript.pyannote[1039].speaker SPEAKER_00
transcript.pyannote[1039].start 7229.82096875
transcript.pyannote[1039].end 7231.33971875
transcript.pyannote[1040].speaker SPEAKER_19
transcript.pyannote[1040].start 7234.34346875
transcript.pyannote[1040].end 7234.64721875
transcript.pyannote[1041].speaker SPEAKER_30
transcript.pyannote[1041].start 7262.27159375
transcript.pyannote[1041].end 7262.84534375
transcript.pyannote[1042].speaker SPEAKER_30
transcript.pyannote[1042].start 7263.87471875
transcript.pyannote[1042].end 7264.22909375
transcript.pyannote[1043].speaker SPEAKER_18
transcript.pyannote[1043].start 7264.22909375
transcript.pyannote[1043].end 7265.44409375
transcript.pyannote[1044].speaker SPEAKER_30
transcript.pyannote[1044].start 7264.24596875
transcript.pyannote[1044].end 7264.31346875
transcript.pyannote[1045].speaker SPEAKER_30
transcript.pyannote[1045].start 7265.44409375
transcript.pyannote[1045].end 7266.22034375
transcript.pyannote[1046].speaker SPEAKER_18
transcript.pyannote[1046].start 7266.28784375
transcript.pyannote[1046].end 7271.60346875
transcript.pyannote[1047].speaker SPEAKER_18
transcript.pyannote[1047].start 7272.85221875
transcript.pyannote[1047].end 7279.53471875
transcript.pyannote[1048].speaker SPEAKER_18
transcript.pyannote[1048].start 7280.14221875
transcript.pyannote[1048].end 7285.01909375
transcript.pyannote[1049].speaker SPEAKER_18
transcript.pyannote[1049].start 7285.54221875
transcript.pyannote[1049].end 7290.52034375
transcript.pyannote[1050].speaker SPEAKER_18
transcript.pyannote[1050].start 7291.48221875
transcript.pyannote[1050].end 7295.19471875
transcript.pyannote[1051].speaker SPEAKER_18
transcript.pyannote[1051].start 7295.85284375
transcript.pyannote[1051].end 7301.77596875
transcript.pyannote[1052].speaker SPEAKER_18
transcript.pyannote[1052].start 7301.97846875
transcript.pyannote[1052].end 7330.66596875
transcript.pyannote[1053].speaker SPEAKER_18
transcript.pyannote[1053].start 7330.85159375
transcript.pyannote[1053].end 7338.79971875
transcript.pyannote[1054].speaker SPEAKER_18
transcript.pyannote[1054].start 7339.25534375
transcript.pyannote[1054].end 7342.86659375
transcript.pyannote[1055].speaker SPEAKER_18
transcript.pyannote[1055].start 7343.15346875
transcript.pyannote[1055].end 7343.81159375
transcript.pyannote[1056].speaker SPEAKER_18
transcript.pyannote[1056].start 7344.16596875
transcript.pyannote[1056].end 7346.12346875
transcript.pyannote[1057].speaker SPEAKER_18
transcript.pyannote[1057].start 7346.71409375
transcript.pyannote[1057].end 7350.34221875
transcript.pyannote[1058].speaker SPEAKER_30
transcript.pyannote[1058].start 7349.78534375
transcript.pyannote[1058].end 7362.96471875
transcript.pyannote[1059].speaker SPEAKER_18
transcript.pyannote[1059].start 7358.30721875
transcript.pyannote[1059].end 7358.64471875
transcript.pyannote[1060].speaker SPEAKER_18
transcript.pyannote[1060].start 7362.96471875
transcript.pyannote[1060].end 7365.49596875
transcript.pyannote[1061].speaker SPEAKER_30
transcript.pyannote[1061].start 7365.49596875
transcript.pyannote[1061].end 7365.51284375
transcript.pyannote[1062].speaker SPEAKER_18
transcript.pyannote[1062].start 7365.51284375
transcript.pyannote[1062].end 7365.61409375
transcript.pyannote[1063].speaker SPEAKER_30
transcript.pyannote[1063].start 7365.52971875
transcript.pyannote[1063].end 7365.56346875
transcript.pyannote[1064].speaker SPEAKER_30
transcript.pyannote[1064].start 7365.61409375
transcript.pyannote[1064].end 7366.00221875
transcript.pyannote[1065].speaker SPEAKER_18
transcript.pyannote[1065].start 7365.66471875
transcript.pyannote[1065].end 7366.20471875
transcript.pyannote[1066].speaker SPEAKER_18
transcript.pyannote[1066].start 7366.59284375
transcript.pyannote[1066].end 7371.45284375
transcript.pyannote[1067].speaker SPEAKER_30
transcript.pyannote[1067].start 7369.17471875
transcript.pyannote[1067].end 7369.44471875
transcript.pyannote[1068].speaker SPEAKER_30
transcript.pyannote[1068].start 7372.51596875
transcript.pyannote[1068].end 7372.81971875
transcript.pyannote[1069].speaker SPEAKER_30
transcript.pyannote[1069].start 7373.74784375
transcript.pyannote[1069].end 7375.04721875
transcript.pyannote[1070].speaker SPEAKER_18
transcript.pyannote[1070].start 7375.06409375
transcript.pyannote[1070].end 7377.15659375
transcript.pyannote[1071].speaker SPEAKER_30
transcript.pyannote[1071].start 7377.64596875
transcript.pyannote[1071].end 7378.03409375
transcript.pyannote[1072].speaker SPEAKER_30
transcript.pyannote[1072].start 7379.73846875
transcript.pyannote[1072].end 7380.17721875
transcript.pyannote[1073].speaker SPEAKER_18
transcript.pyannote[1073].start 7380.17721875
transcript.pyannote[1073].end 7382.47221875
transcript.pyannote[1074].speaker SPEAKER_30
transcript.pyannote[1074].start 7381.25721875
transcript.pyannote[1074].end 7383.99096875
transcript.pyannote[1075].speaker SPEAKER_18
transcript.pyannote[1075].start 7382.62409375
transcript.pyannote[1075].end 7383.80534375
transcript.pyannote[1076].speaker SPEAKER_30
transcript.pyannote[1076].start 7384.12596875
transcript.pyannote[1076].end 7385.23971875
transcript.pyannote[1077].speaker SPEAKER_18
transcript.pyannote[1077].start 7385.45909375
transcript.pyannote[1077].end 7389.25596875
transcript.pyannote[1078].speaker SPEAKER_30
transcript.pyannote[1078].start 7386.35346875
transcript.pyannote[1078].end 7387.80471875
transcript.pyannote[1079].speaker SPEAKER_11
transcript.pyannote[1079].start 7387.80471875
transcript.pyannote[1079].end 7387.83846875
transcript.pyannote[1080].speaker SPEAKER_30
transcript.pyannote[1080].start 7387.83846875
transcript.pyannote[1080].end 7387.92284375
transcript.pyannote[1081].speaker SPEAKER_11
transcript.pyannote[1081].start 7387.92284375
transcript.pyannote[1081].end 7389.54284375
transcript.pyannote[1082].speaker SPEAKER_30
transcript.pyannote[1082].start 7389.25596875
transcript.pyannote[1082].end 7389.27284375
transcript.pyannote[1083].speaker SPEAKER_11
transcript.pyannote[1083].start 7390.50471875
transcript.pyannote[1083].end 7391.19659375
transcript.pyannote[1084].speaker SPEAKER_11
transcript.pyannote[1084].start 7392.31034375
transcript.pyannote[1084].end 7395.04409375
transcript.pyannote[1085].speaker SPEAKER_29
transcript.pyannote[1085].start 7401.99659375
transcript.pyannote[1085].end 7405.25346875
transcript.pyannote[1086].speaker SPEAKER_29
transcript.pyannote[1086].start 7408.62846875
transcript.pyannote[1086].end 7443.32346875
transcript.pyannote[1087].speaker SPEAKER_29
transcript.pyannote[1087].start 7443.72846875
transcript.pyannote[1087].end 7444.99409375
transcript.pyannote[1088].speaker SPEAKER_29
transcript.pyannote[1088].start 7445.26409375
transcript.pyannote[1088].end 7456.65471875
transcript.pyannote[1089].speaker SPEAKER_30
transcript.pyannote[1089].start 7457.39721875
transcript.pyannote[1089].end 7465.91909375
transcript.pyannote[1090].speaker SPEAKER_19
transcript.pyannote[1090].start 7465.75034375
transcript.pyannote[1090].end 7465.88534375
transcript.pyannote[1091].speaker SPEAKER_19
transcript.pyannote[1091].start 7465.91909375
transcript.pyannote[1091].end 7466.03721875
transcript.pyannote[1092].speaker SPEAKER_30
transcript.pyannote[1092].start 7466.03721875
transcript.pyannote[1092].end 7485.17346875
transcript.pyannote[1093].speaker SPEAKER_20
transcript.pyannote[1093].start 7481.27534375
transcript.pyannote[1093].end 7481.61284375
transcript.pyannote[1094].speaker SPEAKER_20
transcript.pyannote[1094].start 7484.44784375
transcript.pyannote[1094].end 7484.73471875
transcript.pyannote[1095].speaker SPEAKER_30
transcript.pyannote[1095].start 7486.03409375
transcript.pyannote[1095].end 7492.32846875
transcript.pyannote[1096].speaker SPEAKER_29
transcript.pyannote[1096].start 7492.32846875
transcript.pyannote[1096].end 7492.34534375
transcript.pyannote[1097].speaker SPEAKER_30
transcript.pyannote[1097].start 7492.34534375
transcript.pyannote[1097].end 7492.37909375
transcript.pyannote[1098].speaker SPEAKER_30
transcript.pyannote[1098].start 7492.75034375
transcript.pyannote[1098].end 7493.08784375
transcript.pyannote[1099].speaker SPEAKER_29
transcript.pyannote[1099].start 7493.08784375
transcript.pyannote[1099].end 7533.40221875
transcript.pyannote[1100].speaker SPEAKER_29
transcript.pyannote[1100].start 7533.75659375
transcript.pyannote[1100].end 7534.70159375
transcript.pyannote[1101].speaker SPEAKER_29
transcript.pyannote[1101].start 7534.97159375
transcript.pyannote[1101].end 7535.86596875
transcript.pyannote[1102].speaker SPEAKER_29
transcript.pyannote[1102].start 7537.65471875
transcript.pyannote[1102].end 7539.94971875
transcript.pyannote[1103].speaker SPEAKER_30
transcript.pyannote[1103].start 7537.84034375
transcript.pyannote[1103].end 7538.63346875
transcript.pyannote[1104].speaker SPEAKER_30
transcript.pyannote[1104].start 7539.94971875
transcript.pyannote[1104].end 7542.88596875
transcript.pyannote[1105].speaker SPEAKER_30
transcript.pyannote[1105].start 7543.67909375
transcript.pyannote[1105].end 7552.87596875
transcript.pyannote[1106].speaker SPEAKER_19
transcript.pyannote[1106].start 7551.72846875
transcript.pyannote[1106].end 7553.11221875
transcript.pyannote[1107].speaker SPEAKER_30
transcript.pyannote[1107].start 7553.11221875
transcript.pyannote[1107].end 7559.20409375
transcript.pyannote[1108].speaker SPEAKER_20
transcript.pyannote[1108].start 7559.45721875
transcript.pyannote[1108].end 7559.86221875
transcript.pyannote[1109].speaker SPEAKER_30
transcript.pyannote[1109].start 7560.01409375
transcript.pyannote[1109].end 7560.43596875
transcript.pyannote[1110].speaker SPEAKER_30
transcript.pyannote[1110].start 7560.67221875
transcript.pyannote[1110].end 7566.57846875
transcript.pyannote[1111].speaker SPEAKER_19
transcript.pyannote[1111].start 7566.52784375
transcript.pyannote[1111].end 7567.00034375
transcript.pyannote[1112].speaker SPEAKER_30
transcript.pyannote[1112].start 7566.93284375
transcript.pyannote[1112].end 7581.66471875
transcript.pyannote[1113].speaker SPEAKER_29
transcript.pyannote[1113].start 7579.69034375
transcript.pyannote[1113].end 7582.89659375
transcript.pyannote[1114].speaker SPEAKER_29
transcript.pyannote[1114].start 7583.41971875
transcript.pyannote[1114].end 7587.62159375
transcript.pyannote[1115].speaker SPEAKER_29
transcript.pyannote[1115].start 7587.92534375
transcript.pyannote[1115].end 7589.03909375
transcript.pyannote[1116].speaker SPEAKER_30
transcript.pyannote[1116].start 7589.03909375
transcript.pyannote[1116].end 7589.78159375
transcript.pyannote[1117].speaker SPEAKER_29
transcript.pyannote[1117].start 7590.28784375
transcript.pyannote[1117].end 7590.30471875
transcript.pyannote[1118].speaker SPEAKER_30
transcript.pyannote[1118].start 7590.30471875
transcript.pyannote[1118].end 7590.96284375
transcript.pyannote[1119].speaker SPEAKER_30
transcript.pyannote[1119].start 7591.84034375
transcript.pyannote[1119].end 7595.38409375
transcript.pyannote[1120].speaker SPEAKER_30
transcript.pyannote[1120].start 7595.60346875
transcript.pyannote[1120].end 7596.53159375
transcript.pyannote[1121].speaker SPEAKER_30
transcript.pyannote[1121].start 7596.86909375
transcript.pyannote[1121].end 7603.95659375
transcript.pyannote[1122].speaker SPEAKER_19
transcript.pyannote[1122].start 7598.08409375
transcript.pyannote[1122].end 7598.55659375
transcript.pyannote[1123].speaker SPEAKER_19
transcript.pyannote[1123].start 7603.85534375
transcript.pyannote[1123].end 7603.87221875
transcript.pyannote[1124].speaker SPEAKER_20
transcript.pyannote[1124].start 7603.87221875
transcript.pyannote[1124].end 7604.05784375
transcript.pyannote[1125].speaker SPEAKER_30
transcript.pyannote[1125].start 7604.05784375
transcript.pyannote[1125].end 7610.41971875
transcript.pyannote[1126].speaker SPEAKER_20
transcript.pyannote[1126].start 7604.09159375
transcript.pyannote[1126].end 7604.10846875
transcript.pyannote[1127].speaker SPEAKER_19
transcript.pyannote[1127].start 7604.10846875
transcript.pyannote[1127].end 7604.15909375
transcript.pyannote[1128].speaker SPEAKER_20
transcript.pyannote[1128].start 7605.50909375
transcript.pyannote[1128].end 7605.93096875
transcript.pyannote[1129].speaker SPEAKER_20
transcript.pyannote[1129].start 7610.41971875
transcript.pyannote[1129].end 7611.12846875
transcript.pyannote[1130].speaker SPEAKER_30
transcript.pyannote[1130].start 7610.72346875
transcript.pyannote[1130].end 7617.18659375
transcript.pyannote[1131].speaker SPEAKER_30
transcript.pyannote[1131].start 7617.45659375
transcript.pyannote[1131].end 7630.50096875
transcript.pyannote[1132].speaker SPEAKER_19
transcript.pyannote[1132].start 7619.54909375
transcript.pyannote[1132].end 7619.65034375
transcript.pyannote[1133].speaker SPEAKER_11
transcript.pyannote[1133].start 7619.65034375
transcript.pyannote[1133].end 7619.70096875
transcript.pyannote[1134].speaker SPEAKER_19
transcript.pyannote[1134].start 7619.70096875
transcript.pyannote[1134].end 7619.85284375
transcript.pyannote[1135].speaker SPEAKER_11
transcript.pyannote[1135].start 7619.85284375
transcript.pyannote[1135].end 7619.86971875
transcript.pyannote[1136].speaker SPEAKER_29
transcript.pyannote[1136].start 7627.41284375
transcript.pyannote[1136].end 7627.48034375
transcript.pyannote[1137].speaker SPEAKER_29
transcript.pyannote[1137].start 7629.31971875
transcript.pyannote[1137].end 7629.45471875
transcript.pyannote[1138].speaker SPEAKER_29
transcript.pyannote[1138].start 7630.50096875
transcript.pyannote[1138].end 7630.51784375
transcript.pyannote[1139].speaker SPEAKER_30
transcript.pyannote[1139].start 7630.51784375
transcript.pyannote[1139].end 7630.53471875
transcript.pyannote[1140].speaker SPEAKER_29
transcript.pyannote[1140].start 7630.53471875
transcript.pyannote[1140].end 7630.55159375
transcript.pyannote[1141].speaker SPEAKER_20
transcript.pyannote[1141].start 7630.55159375
transcript.pyannote[1141].end 7630.92284375
transcript.pyannote[1142].speaker SPEAKER_30
transcript.pyannote[1142].start 7630.73721875
transcript.pyannote[1142].end 7631.00721875
transcript.pyannote[1143].speaker SPEAKER_29
transcript.pyannote[1143].start 7630.92284375
transcript.pyannote[1143].end 7642.98846875
transcript.pyannote[1144].speaker SPEAKER_30
transcript.pyannote[1144].start 7643.47784375
transcript.pyannote[1144].end 7650.27846875
transcript.pyannote[1145].speaker SPEAKER_29
transcript.pyannote[1145].start 7644.62534375
transcript.pyannote[1145].end 7646.32971875
transcript.pyannote[1146].speaker SPEAKER_20
transcript.pyannote[1146].start 7646.32971875
transcript.pyannote[1146].end 7646.38034375
transcript.pyannote[1147].speaker SPEAKER_29
transcript.pyannote[1147].start 7648.87784375
transcript.pyannote[1147].end 7650.07596875
transcript.pyannote[1148].speaker SPEAKER_20
transcript.pyannote[1148].start 7650.97034375
transcript.pyannote[1148].end 7650.98721875
transcript.pyannote[1149].speaker SPEAKER_29
transcript.pyannote[1149].start 7650.98721875
transcript.pyannote[1149].end 7670.02221875
transcript.pyannote[1150].speaker SPEAKER_30
transcript.pyannote[1150].start 7652.06721875
transcript.pyannote[1150].end 7655.61096875
transcript.pyannote[1151].speaker SPEAKER_30
transcript.pyannote[1151].start 7668.40221875
transcript.pyannote[1151].end 7670.07284375
transcript.pyannote[1152].speaker SPEAKER_20
transcript.pyannote[1152].start 7670.02221875
transcript.pyannote[1152].end 7670.41034375
transcript.pyannote[1153].speaker SPEAKER_30
transcript.pyannote[1153].start 7670.69721875
transcript.pyannote[1153].end 7675.28721875
transcript.pyannote[1154].speaker SPEAKER_29
transcript.pyannote[1154].start 7674.29159375
transcript.pyannote[1154].end 7674.35909375
transcript.pyannote[1155].speaker SPEAKER_30
transcript.pyannote[1155].start 7675.70909375
transcript.pyannote[1155].end 7681.80096875
transcript.pyannote[1156].speaker SPEAKER_29
transcript.pyannote[1156].start 7680.63659375
transcript.pyannote[1156].end 7681.53096875
transcript.pyannote[1157].speaker SPEAKER_29
transcript.pyannote[1157].start 7681.68284375
transcript.pyannote[1157].end 7689.51284375
transcript.pyannote[1158].speaker SPEAKER_29
transcript.pyannote[1158].start 7690.05284375
transcript.pyannote[1158].end 7712.02409375
transcript.pyannote[1159].speaker SPEAKER_00
transcript.pyannote[1159].start 7690.66034375
transcript.pyannote[1159].end 7691.20034375
transcript.pyannote[1160].speaker SPEAKER_00
transcript.pyannote[1160].start 7694.47409375
transcript.pyannote[1160].end 7694.65971875
transcript.pyannote[1161].speaker SPEAKER_00
transcript.pyannote[1161].start 7696.93784375
transcript.pyannote[1161].end 7697.35971875
transcript.pyannote[1162].speaker SPEAKER_00
transcript.pyannote[1162].start 7697.98409375
transcript.pyannote[1162].end 7698.64221875
transcript.pyannote[1163].speaker SPEAKER_30
transcript.pyannote[1163].start 7711.41659375
transcript.pyannote[1163].end 7712.20971875
transcript.pyannote[1164].speaker SPEAKER_29
transcript.pyannote[1164].start 7712.05784375
transcript.pyannote[1164].end 7720.36034375
transcript.pyannote[1165].speaker SPEAKER_29
transcript.pyannote[1165].start 7720.61346875
transcript.pyannote[1165].end 7736.10471875
transcript.pyannote[1166].speaker SPEAKER_29
transcript.pyannote[1166].start 7736.17221875
transcript.pyannote[1166].end 7738.19721875
transcript.pyannote[1167].speaker SPEAKER_30
transcript.pyannote[1167].start 7736.47596875
transcript.pyannote[1167].end 7736.49284375
transcript.pyannote[1168].speaker SPEAKER_30
transcript.pyannote[1168].start 7738.19721875
transcript.pyannote[1168].end 7750.34721875
transcript.pyannote[1169].speaker SPEAKER_29
transcript.pyannote[1169].start 7743.02346875
transcript.pyannote[1169].end 7743.07409375
transcript.pyannote[1170].speaker SPEAKER_19
transcript.pyannote[1170].start 7743.07409375
transcript.pyannote[1170].end 7743.61409375
transcript.pyannote[1171].speaker SPEAKER_30
transcript.pyannote[1171].start 7750.46534375
transcript.pyannote[1171].end 7758.64971875
transcript.pyannote[1172].speaker SPEAKER_20
transcript.pyannote[1172].start 7758.64971875
transcript.pyannote[1172].end 7758.91971875
transcript.pyannote[1173].speaker SPEAKER_30
transcript.pyannote[1173].start 7758.86909375
transcript.pyannote[1173].end 7758.88596875
transcript.pyannote[1174].speaker SPEAKER_30
transcript.pyannote[1174].start 7758.90284375
transcript.pyannote[1174].end 7764.77534375
transcript.pyannote[1175].speaker SPEAKER_20
transcript.pyannote[1175].start 7764.97784375
transcript.pyannote[1175].end 7765.01159375
transcript.pyannote[1176].speaker SPEAKER_30
transcript.pyannote[1176].start 7765.01159375
transcript.pyannote[1176].end 7768.11659375
transcript.pyannote[1177].speaker SPEAKER_20
transcript.pyannote[1177].start 7765.07909375
transcript.pyannote[1177].end 7765.45034375
transcript.pyannote[1178].speaker SPEAKER_19
transcript.pyannote[1178].start 7765.45034375
transcript.pyannote[1178].end 7765.46721875
transcript.pyannote[1179].speaker SPEAKER_30
transcript.pyannote[1179].start 7768.52159375
transcript.pyannote[1179].end 7782.35909375
transcript.pyannote[1180].speaker SPEAKER_07
transcript.pyannote[1180].start 7772.90909375
transcript.pyannote[1180].end 7774.02284375
transcript.pyannote[1181].speaker SPEAKER_29
transcript.pyannote[1181].start 7774.02284375
transcript.pyannote[1181].end 7774.29284375
transcript.pyannote[1182].speaker SPEAKER_29
transcript.pyannote[1182].start 7781.63346875
transcript.pyannote[1182].end 7782.49409375
transcript.pyannote[1183].speaker SPEAKER_30
transcript.pyannote[1183].start 7782.49409375
transcript.pyannote[1183].end 7782.96659375
transcript.pyannote[1184].speaker SPEAKER_29
transcript.pyannote[1184].start 7782.96659375
transcript.pyannote[1184].end 7806.76034375
transcript.pyannote[1185].speaker SPEAKER_20
transcript.pyannote[1185].start 7790.00346875
transcript.pyannote[1185].end 7790.59409375
transcript.pyannote[1186].speaker SPEAKER_00
transcript.pyannote[1186].start 7790.59409375
transcript.pyannote[1186].end 7790.61096875
transcript.pyannote[1187].speaker SPEAKER_00
transcript.pyannote[1187].start 7797.66471875
transcript.pyannote[1187].end 7798.33971875
transcript.pyannote[1188].speaker SPEAKER_29
transcript.pyannote[1188].start 7807.04721875
transcript.pyannote[1188].end 7811.73846875
transcript.pyannote[1189].speaker SPEAKER_29
transcript.pyannote[1189].start 7811.95784375
transcript.pyannote[1189].end 7845.37034375
transcript.pyannote[1190].speaker SPEAKER_29
transcript.pyannote[1190].start 7845.94409375
transcript.pyannote[1190].end 7866.04221875
transcript.pyannote[1191].speaker SPEAKER_03
transcript.pyannote[1191].start 7847.91846875
transcript.pyannote[1191].end 7848.82971875
transcript.pyannote[1192].speaker SPEAKER_29
transcript.pyannote[1192].start 7866.10971875
transcript.pyannote[1192].end 7881.95534375
transcript.pyannote[1193].speaker SPEAKER_00
transcript.pyannote[1193].start 7873.26471875
transcript.pyannote[1193].end 7873.70346875
transcript.pyannote[1194].speaker SPEAKER_11
transcript.pyannote[1194].start 7877.41596875
transcript.pyannote[1194].end 7878.22596875
transcript.pyannote[1195].speaker SPEAKER_11
transcript.pyannote[1195].start 7881.07784375
transcript.pyannote[1195].end 7881.46596875
transcript.pyannote[1196].speaker SPEAKER_29
transcript.pyannote[1196].start 7882.19159375
transcript.pyannote[1196].end 7884.31784375
transcript.pyannote[1197].speaker SPEAKER_30
transcript.pyannote[1197].start 7884.31784375
transcript.pyannote[1197].end 7884.33471875
transcript.pyannote[1198].speaker SPEAKER_11
transcript.pyannote[1198].start 7884.94221875
transcript.pyannote[1198].end 7888.46909375
transcript.pyannote[1199].speaker SPEAKER_20
transcript.pyannote[1199].start 7956.71159375
transcript.pyannote[1199].end 7956.72846875
transcript.pyannote[1200].speaker SPEAKER_20
transcript.pyannote[1200].start 7956.89721875
transcript.pyannote[1200].end 7956.94784375
transcript.pyannote[1201].speaker SPEAKER_20
transcript.pyannote[1201].start 7956.98159375
transcript.pyannote[1201].end 7957.03221875
transcript.pyannote[1202].speaker SPEAKER_20
transcript.pyannote[1202].start 7957.87596875
transcript.pyannote[1202].end 7958.02784375
transcript.pyannote[1203].speaker SPEAKER_11
transcript.pyannote[1203].start 8275.90221875
transcript.pyannote[1203].end 8278.95659375
transcript.pyannote[1204].speaker SPEAKER_11
transcript.pyannote[1204].start 8279.58096875
transcript.pyannote[1204].end 8279.71596875
transcript.pyannote[1205].speaker SPEAKER_11
transcript.pyannote[1205].start 8283.14159375
transcript.pyannote[1205].end 8285.79096875
transcript.pyannote[1206].speaker SPEAKER_28
transcript.pyannote[1206].start 8293.35096875
transcript.pyannote[1206].end 8301.85596875
transcript.pyannote[1207].speaker SPEAKER_28
transcript.pyannote[1207].start 8306.61471875
transcript.pyannote[1207].end 8365.47471875
transcript.pyannote[1208].speaker SPEAKER_08
transcript.pyannote[1208].start 8354.62409375
transcript.pyannote[1208].end 8354.65784375
transcript.pyannote[1209].speaker SPEAKER_19
transcript.pyannote[1209].start 8354.65784375
transcript.pyannote[1209].end 8354.69159375
transcript.pyannote[1210].speaker SPEAKER_08
transcript.pyannote[1210].start 8354.69159375
transcript.pyannote[1210].end 8354.82659375
transcript.pyannote[1211].speaker SPEAKER_28
transcript.pyannote[1211].start 8365.71096875
transcript.pyannote[1211].end 8370.75659375
transcript.pyannote[1212].speaker SPEAKER_21
transcript.pyannote[1212].start 8374.33409375
transcript.pyannote[1212].end 8442.50909375
transcript.pyannote[1213].speaker SPEAKER_28
transcript.pyannote[1213].start 8442.50909375
transcript.pyannote[1213].end 8464.07534375
transcript.pyannote[1214].speaker SPEAKER_21
transcript.pyannote[1214].start 8442.76221875
transcript.pyannote[1214].end 8443.16721875
transcript.pyannote[1215].speaker SPEAKER_21
transcript.pyannote[1215].start 8464.07534375
transcript.pyannote[1215].end 8464.73346875
transcript.pyannote[1216].speaker SPEAKER_28
transcript.pyannote[1216].start 8464.93596875
transcript.pyannote[1216].end 8485.57409375
transcript.pyannote[1217].speaker SPEAKER_20
transcript.pyannote[1217].start 8483.11034375
transcript.pyannote[1217].end 8483.66721875
transcript.pyannote[1218].speaker SPEAKER_28
transcript.pyannote[1218].start 8486.24909375
transcript.pyannote[1218].end 8487.58221875
transcript.pyannote[1219].speaker SPEAKER_28
transcript.pyannote[1219].start 8491.31159375
transcript.pyannote[1219].end 8491.51409375
transcript.pyannote[1220].speaker SPEAKER_28
transcript.pyannote[1220].start 8492.12159375
transcript.pyannote[1220].end 8495.71596875
transcript.pyannote[1221].speaker SPEAKER_28
transcript.pyannote[1221].start 8495.91846875
transcript.pyannote[1221].end 8496.54284375
transcript.pyannote[1222].speaker SPEAKER_28
transcript.pyannote[1222].start 8497.23471875
transcript.pyannote[1222].end 8558.86221875
transcript.pyannote[1223].speaker SPEAKER_19
transcript.pyannote[1223].start 8558.92971875
transcript.pyannote[1223].end 8559.31784375
transcript.pyannote[1224].speaker SPEAKER_28
transcript.pyannote[1224].start 8559.31784375
transcript.pyannote[1224].end 8589.59159375
transcript.pyannote[1225].speaker SPEAKER_28
transcript.pyannote[1225].start 8590.65471875
transcript.pyannote[1225].end 8611.30971875
transcript.pyannote[1226].speaker SPEAKER_30
transcript.pyannote[1226].start 8611.44471875
transcript.pyannote[1226].end 8619.29159375
transcript.pyannote[1227].speaker SPEAKER_30
transcript.pyannote[1227].start 8619.61221875
transcript.pyannote[1227].end 8649.75096875
transcript.pyannote[1228].speaker SPEAKER_28
transcript.pyannote[1228].start 8649.75096875
transcript.pyannote[1228].end 8715.27659375
transcript.pyannote[1229].speaker SPEAKER_30
transcript.pyannote[1229].start 8715.76596875
transcript.pyannote[1229].end 8724.50721875
transcript.pyannote[1230].speaker SPEAKER_30
transcript.pyannote[1230].start 8724.55784375
transcript.pyannote[1230].end 8732.37096875
transcript.pyannote[1231].speaker SPEAKER_30
transcript.pyannote[1231].start 8732.55659375
transcript.pyannote[1231].end 8737.92284375
transcript.pyannote[1232].speaker SPEAKER_30
transcript.pyannote[1232].start 8738.36159375
transcript.pyannote[1232].end 8739.69471875
transcript.pyannote[1233].speaker SPEAKER_30
transcript.pyannote[1233].start 8739.81284375
transcript.pyannote[1233].end 8758.08846875
transcript.pyannote[1234].speaker SPEAKER_28
transcript.pyannote[1234].start 8757.51471875
transcript.pyannote[1234].end 8784.46409375
transcript.pyannote[1235].speaker SPEAKER_11
transcript.pyannote[1235].start 8784.12659375
transcript.pyannote[1235].end 8784.44721875
transcript.pyannote[1236].speaker SPEAKER_11
transcript.pyannote[1236].start 8784.46409375
transcript.pyannote[1236].end 8784.76784375
transcript.pyannote[1237].speaker SPEAKER_28
transcript.pyannote[1237].start 8784.76784375
transcript.pyannote[1237].end 8785.25721875
transcript.pyannote[1238].speaker SPEAKER_11
transcript.pyannote[1238].start 8784.78471875
transcript.pyannote[1238].end 8785.18971875
transcript.pyannote[1239].speaker SPEAKER_11
transcript.pyannote[1239].start 8787.46784375
transcript.pyannote[1239].end 8788.31159375
transcript.pyannote[1240].speaker SPEAKER_11
transcript.pyannote[1240].start 8788.96971875
transcript.pyannote[1240].end 8791.82159375
transcript.pyannote[1241].speaker SPEAKER_00
transcript.pyannote[1241].start 8800.68096875
transcript.pyannote[1241].end 8801.59221875
transcript.pyannote[1242].speaker SPEAKER_00
transcript.pyannote[1242].start 8802.55409375
transcript.pyannote[1242].end 8803.33034375
transcript.pyannote[1243].speaker SPEAKER_20
transcript.pyannote[1243].start 8805.16971875
transcript.pyannote[1243].end 8805.37221875
transcript.pyannote[1244].speaker SPEAKER_00
transcript.pyannote[1244].start 8806.03034375
transcript.pyannote[1244].end 8807.81909375
transcript.pyannote[1245].speaker SPEAKER_20
transcript.pyannote[1245].start 8807.76846875
transcript.pyannote[1245].end 8808.12284375
transcript.pyannote[1246].speaker SPEAKER_00
transcript.pyannote[1246].start 8808.12284375
transcript.pyannote[1246].end 8808.52784375
transcript.pyannote[1247].speaker SPEAKER_20
transcript.pyannote[1247].start 8808.13971875
transcript.pyannote[1247].end 8808.17346875
transcript.pyannote[1248].speaker SPEAKER_19
transcript.pyannote[1248].start 8808.17346875
transcript.pyannote[1248].end 8808.19034375
transcript.pyannote[1249].speaker SPEAKER_20
transcript.pyannote[1249].start 8808.19034375
transcript.pyannote[1249].end 8808.22409375
transcript.pyannote[1250].speaker SPEAKER_00
transcript.pyannote[1250].start 8809.32096875
transcript.pyannote[1250].end 8819.76659375
transcript.pyannote[1251].speaker SPEAKER_20
transcript.pyannote[1251].start 8819.34471875
transcript.pyannote[1251].end 8819.85096875
transcript.pyannote[1252].speaker SPEAKER_00
transcript.pyannote[1252].start 8819.85096875
transcript.pyannote[1252].end 8822.71971875
transcript.pyannote[1253].speaker SPEAKER_00
transcript.pyannote[1253].start 8823.42846875
transcript.pyannote[1253].end 8846.42909375
transcript.pyannote[1254].speaker SPEAKER_30
transcript.pyannote[1254].start 8846.90159375
transcript.pyannote[1254].end 8855.86221875
transcript.pyannote[1255].speaker SPEAKER_00
transcript.pyannote[1255].start 8854.46159375
transcript.pyannote[1255].end 8857.09409375
transcript.pyannote[1256].speaker SPEAKER_30
transcript.pyannote[1256].start 8857.73534375
transcript.pyannote[1256].end 8860.35096875
transcript.pyannote[1257].speaker SPEAKER_30
transcript.pyannote[1257].start 8860.97534375
transcript.pyannote[1257].end 8860.99221875
transcript.pyannote[1258].speaker SPEAKER_00
transcript.pyannote[1258].start 8860.99221875
transcript.pyannote[1258].end 8866.99971875
transcript.pyannote[1259].speaker SPEAKER_30
transcript.pyannote[1259].start 8861.04284375
transcript.pyannote[1259].end 8863.35471875
transcript.pyannote[1260].speaker SPEAKER_30
transcript.pyannote[1260].start 8866.86471875
transcript.pyannote[1260].end 8866.96596875
transcript.pyannote[1261].speaker SPEAKER_20
transcript.pyannote[1261].start 8866.96596875
transcript.pyannote[1261].end 8867.64096875
transcript.pyannote[1262].speaker SPEAKER_00
transcript.pyannote[1262].start 8867.48909375
transcript.pyannote[1262].end 8868.92346875
transcript.pyannote[1263].speaker SPEAKER_30
transcript.pyannote[1263].start 8867.64096875
transcript.pyannote[1263].end 8867.69159375
transcript.pyannote[1264].speaker SPEAKER_20
transcript.pyannote[1264].start 8868.78846875
transcript.pyannote[1264].end 8869.22721875
transcript.pyannote[1265].speaker SPEAKER_00
transcript.pyannote[1265].start 8869.22721875
transcript.pyannote[1265].end 8884.09409375
transcript.pyannote[1266].speaker SPEAKER_20
transcript.pyannote[1266].start 8869.26096875
transcript.pyannote[1266].end 8869.34534375
transcript.pyannote[1267].speaker SPEAKER_30
transcript.pyannote[1267].start 8877.02346875
transcript.pyannote[1267].end 8877.46221875
transcript.pyannote[1268].speaker SPEAKER_00
transcript.pyannote[1268].start 8884.33034375
transcript.pyannote[1268].end 8895.95721875
transcript.pyannote[1269].speaker SPEAKER_24
transcript.pyannote[1269].start 8888.44784375
transcript.pyannote[1269].end 8888.46471875
transcript.pyannote[1270].speaker SPEAKER_20
transcript.pyannote[1270].start 8888.46471875
transcript.pyannote[1270].end 8888.83596875
transcript.pyannote[1271].speaker SPEAKER_24
transcript.pyannote[1271].start 8888.83596875
transcript.pyannote[1271].end 8888.85284375
transcript.pyannote[1272].speaker SPEAKER_20
transcript.pyannote[1272].start 8895.83909375
transcript.pyannote[1272].end 8896.22721875
transcript.pyannote[1273].speaker SPEAKER_00
transcript.pyannote[1273].start 8896.14284375
transcript.pyannote[1273].end 8896.83471875
transcript.pyannote[1274].speaker SPEAKER_00
transcript.pyannote[1274].start 8896.86846875
transcript.pyannote[1274].end 8918.18159375
transcript.pyannote[1275].speaker SPEAKER_20
transcript.pyannote[1275].start 8904.58034375
transcript.pyannote[1275].end 8904.98534375
transcript.pyannote[1276].speaker SPEAKER_00
transcript.pyannote[1276].start 8918.72159375
transcript.pyannote[1276].end 8929.16721875
transcript.pyannote[1277].speaker SPEAKER_01
transcript.pyannote[1277].start 8924.17221875
transcript.pyannote[1277].end 8924.32409375
transcript.pyannote[1278].speaker SPEAKER_25
transcript.pyannote[1278].start 8924.32409375
transcript.pyannote[1278].end 8924.34096875
transcript.pyannote[1279].speaker SPEAKER_30
transcript.pyannote[1279].start 8924.34096875
transcript.pyannote[1279].end 8924.77971875
transcript.pyannote[1280].speaker SPEAKER_30
transcript.pyannote[1280].start 8929.72409375
transcript.pyannote[1280].end 8943.62909375
transcript.pyannote[1281].speaker SPEAKER_00
transcript.pyannote[1281].start 8941.48596875
transcript.pyannote[1281].end 8951.35784375
transcript.pyannote[1282].speaker SPEAKER_30
transcript.pyannote[1282].start 8947.78034375
transcript.pyannote[1282].end 8948.48909375
transcript.pyannote[1283].speaker SPEAKER_30
transcript.pyannote[1283].start 8951.50971875
transcript.pyannote[1283].end 8955.12096875
transcript.pyannote[1284].speaker SPEAKER_00
transcript.pyannote[1284].start 8952.64034375
transcript.pyannote[1284].end 8955.27284375
transcript.pyannote[1285].speaker SPEAKER_19
transcript.pyannote[1285].start 8955.27284375
transcript.pyannote[1285].end 8955.28971875
transcript.pyannote[1286].speaker SPEAKER_00
transcript.pyannote[1286].start 8955.28971875
transcript.pyannote[1286].end 8955.32346875
transcript.pyannote[1287].speaker SPEAKER_19
transcript.pyannote[1287].start 8955.32346875
transcript.pyannote[1287].end 8955.34034375
transcript.pyannote[1288].speaker SPEAKER_30
transcript.pyannote[1288].start 8955.79596875
transcript.pyannote[1288].end 8958.14159375
transcript.pyannote[1289].speaker SPEAKER_30
transcript.pyannote[1289].start 8958.31034375
transcript.pyannote[1289].end 8968.04721875
transcript.pyannote[1290].speaker SPEAKER_00
transcript.pyannote[1290].start 8967.49034375
transcript.pyannote[1290].end 8977.49721875
transcript.pyannote[1291].speaker SPEAKER_19
transcript.pyannote[1291].start 8975.62409375
transcript.pyannote[1291].end 8975.65784375
transcript.pyannote[1292].speaker SPEAKER_00
transcript.pyannote[1292].start 8977.85159375
transcript.pyannote[1292].end 8984.17971875
transcript.pyannote[1293].speaker SPEAKER_30
transcript.pyannote[1293].start 8980.93971875
transcript.pyannote[1293].end 8983.35284375
transcript.pyannote[1294].speaker SPEAKER_30
transcript.pyannote[1294].start 8984.16284375
transcript.pyannote[1294].end 8984.53409375
transcript.pyannote[1295].speaker SPEAKER_00
transcript.pyannote[1295].start 8984.19659375
transcript.pyannote[1295].end 8984.24721875
transcript.pyannote[1296].speaker SPEAKER_00
transcript.pyannote[1296].start 8984.53409375
transcript.pyannote[1296].end 8985.81659375
transcript.pyannote[1297].speaker SPEAKER_30
transcript.pyannote[1297].start 8984.71971875
transcript.pyannote[1297].end 8985.22596875
transcript.pyannote[1298].speaker SPEAKER_30
transcript.pyannote[1298].start 8986.23846875
transcript.pyannote[1298].end 8994.40596875
transcript.pyannote[1299].speaker SPEAKER_00
transcript.pyannote[1299].start 8989.79909375
transcript.pyannote[1299].end 8991.45284375
transcript.pyannote[1300].speaker SPEAKER_30
transcript.pyannote[1300].start 8994.77721875
transcript.pyannote[1300].end 9006.35346875
transcript.pyannote[1301].speaker SPEAKER_30
transcript.pyannote[1301].start 9006.67409375
transcript.pyannote[1301].end 9008.44596875
transcript.pyannote[1302].speaker SPEAKER_00
transcript.pyannote[1302].start 9007.34909375
transcript.pyannote[1302].end 9009.18846875
transcript.pyannote[1303].speaker SPEAKER_00
transcript.pyannote[1303].start 9009.47534375
transcript.pyannote[1303].end 9011.17971875
transcript.pyannote[1304].speaker SPEAKER_30
transcript.pyannote[1304].start 9011.55096875
transcript.pyannote[1304].end 9013.79534375
transcript.pyannote[1305].speaker SPEAKER_00
transcript.pyannote[1305].start 9013.79534375
transcript.pyannote[1305].end 9018.01409375
transcript.pyannote[1306].speaker SPEAKER_30
transcript.pyannote[1306].start 9015.31409375
transcript.pyannote[1306].end 9015.75284375
transcript.pyannote[1307].speaker SPEAKER_20
transcript.pyannote[1307].start 9015.75284375
transcript.pyannote[1307].end 9015.92159375
transcript.pyannote[1308].speaker SPEAKER_20
transcript.pyannote[1308].start 9017.99721875
transcript.pyannote[1308].end 9018.67221875
transcript.pyannote[1309].speaker SPEAKER_00
transcript.pyannote[1309].start 9018.57096875
transcript.pyannote[1309].end 9020.62971875
transcript.pyannote[1310].speaker SPEAKER_20
transcript.pyannote[1310].start 9020.83221875
transcript.pyannote[1310].end 9021.35534375
transcript.pyannote[1311].speaker SPEAKER_00
transcript.pyannote[1311].start 9021.10221875
transcript.pyannote[1311].end 9027.27846875
transcript.pyannote[1312].speaker SPEAKER_30
transcript.pyannote[1312].start 9025.21971875
transcript.pyannote[1312].end 9025.69221875
transcript.pyannote[1313].speaker SPEAKER_30
transcript.pyannote[1313].start 9027.56534375
transcript.pyannote[1313].end 9028.17284375
transcript.pyannote[1314].speaker SPEAKER_00
transcript.pyannote[1314].start 9028.17284375
transcript.pyannote[1314].end 9036.71159375
transcript.pyannote[1315].speaker SPEAKER_30
transcript.pyannote[1315].start 9030.01221875
transcript.pyannote[1315].end 9030.46784375
transcript.pyannote[1316].speaker SPEAKER_30
transcript.pyannote[1316].start 9036.71159375
transcript.pyannote[1316].end 9037.38659375
transcript.pyannote[1317].speaker SPEAKER_00
transcript.pyannote[1317].start 9037.65659375
transcript.pyannote[1317].end 9039.71534375
transcript.pyannote[1318].speaker SPEAKER_00
transcript.pyannote[1318].start 9040.22159375
transcript.pyannote[1318].end 9054.54846875
transcript.pyannote[1319].speaker SPEAKER_25
transcript.pyannote[1319].start 9047.05596875
transcript.pyannote[1319].end 9047.64659375
transcript.pyannote[1320].speaker SPEAKER_00
transcript.pyannote[1320].start 9055.07159375
transcript.pyannote[1320].end 9071.45721875
transcript.pyannote[1321].speaker SPEAKER_20
transcript.pyannote[1321].start 9062.22659375
transcript.pyannote[1321].end 9062.47971875
transcript.pyannote[1322].speaker SPEAKER_20
transcript.pyannote[1322].start 9066.86721875
transcript.pyannote[1322].end 9067.08659375
transcript.pyannote[1323].speaker SPEAKER_20
transcript.pyannote[1323].start 9067.13721875
transcript.pyannote[1323].end 9067.33971875
transcript.pyannote[1324].speaker SPEAKER_00
transcript.pyannote[1324].start 9071.81159375
transcript.pyannote[1324].end 9091.30221875
transcript.pyannote[1325].speaker SPEAKER_00
transcript.pyannote[1325].start 9091.62284375
transcript.pyannote[1325].end 9094.57596875
transcript.pyannote[1326].speaker SPEAKER_00
transcript.pyannote[1326].start 9095.13284375
transcript.pyannote[1326].end 9096.44909375
transcript.pyannote[1327].speaker SPEAKER_00
transcript.pyannote[1327].start 9096.78659375
transcript.pyannote[1327].end 9097.74846875
transcript.pyannote[1328].speaker SPEAKER_30
transcript.pyannote[1328].start 9096.90471875
transcript.pyannote[1328].end 9098.91284375
transcript.pyannote[1329].speaker SPEAKER_00
transcript.pyannote[1329].start 9098.69346875
transcript.pyannote[1329].end 9110.92784375
transcript.pyannote[1330].speaker SPEAKER_30
transcript.pyannote[1330].start 9104.98784375
transcript.pyannote[1330].end 9105.49409375
transcript.pyannote[1331].speaker SPEAKER_00
transcript.pyannote[1331].start 9111.13034375
transcript.pyannote[1331].end 9112.95284375
transcript.pyannote[1332].speaker SPEAKER_30
transcript.pyannote[1332].start 9111.14721875
transcript.pyannote[1332].end 9111.68721875
transcript.pyannote[1333].speaker SPEAKER_30
transcript.pyannote[1333].start 9112.44659375
transcript.pyannote[1333].end 9116.02409375
transcript.pyannote[1334].speaker SPEAKER_30
transcript.pyannote[1334].start 9116.76659375
transcript.pyannote[1334].end 9118.63971875
transcript.pyannote[1335].speaker SPEAKER_00
transcript.pyannote[1335].start 9118.63971875
transcript.pyannote[1335].end 9125.82846875
transcript.pyannote[1336].speaker SPEAKER_30
transcript.pyannote[1336].start 9118.65659375
transcript.pyannote[1336].end 9118.69034375
transcript.pyannote[1337].speaker SPEAKER_30
transcript.pyannote[1337].start 9118.82534375
transcript.pyannote[1337].end 9120.91784375
transcript.pyannote[1338].speaker SPEAKER_30
transcript.pyannote[1338].start 9121.30596875
transcript.pyannote[1338].end 9122.08221875
transcript.pyannote[1339].speaker SPEAKER_30
transcript.pyannote[1339].start 9124.41096875
transcript.pyannote[1339].end 9124.71471875
transcript.pyannote[1340].speaker SPEAKER_24
transcript.pyannote[1340].start 9124.71471875
transcript.pyannote[1340].end 9124.73159375
transcript.pyannote[1341].speaker SPEAKER_00
transcript.pyannote[1341].start 9126.36846875
transcript.pyannote[1341].end 9132.02159375
transcript.pyannote[1342].speaker SPEAKER_30
transcript.pyannote[1342].start 9126.52034375
transcript.pyannote[1342].end 9126.55409375
transcript.pyannote[1343].speaker SPEAKER_24
transcript.pyannote[1343].start 9126.55409375
transcript.pyannote[1343].end 9127.02659375
transcript.pyannote[1344].speaker SPEAKER_30
transcript.pyannote[1344].start 9127.34721875
transcript.pyannote[1344].end 9127.36409375
transcript.pyannote[1345].speaker SPEAKER_24
transcript.pyannote[1345].start 9127.36409375
transcript.pyannote[1345].end 9127.71846875
transcript.pyannote[1346].speaker SPEAKER_00
transcript.pyannote[1346].start 9132.61221875
transcript.pyannote[1346].end 9133.37159375
transcript.pyannote[1347].speaker SPEAKER_00
transcript.pyannote[1347].start 9134.01284375
transcript.pyannote[1347].end 9137.10096875
transcript.pyannote[1348].speaker SPEAKER_00
transcript.pyannote[1348].start 9137.84346875
transcript.pyannote[1348].end 9144.00284375
transcript.pyannote[1349].speaker SPEAKER_00
transcript.pyannote[1349].start 9144.23909375
transcript.pyannote[1349].end 9148.76159375
transcript.pyannote[1350].speaker SPEAKER_20
transcript.pyannote[1350].start 9144.25596875
transcript.pyannote[1350].end 9144.84659375
transcript.pyannote[1351].speaker SPEAKER_00
transcript.pyannote[1351].start 9148.98096875
transcript.pyannote[1351].end 9158.86971875
transcript.pyannote[1352].speaker SPEAKER_01
transcript.pyannote[1352].start 9149.92596875
transcript.pyannote[1352].end 9149.99346875
transcript.pyannote[1353].speaker SPEAKER_07
transcript.pyannote[1353].start 9149.99346875
transcript.pyannote[1353].end 9150.97221875
transcript.pyannote[1354].speaker SPEAKER_01
transcript.pyannote[1354].start 9150.97221875
transcript.pyannote[1354].end 9151.02284375
transcript.pyannote[1355].speaker SPEAKER_30
transcript.pyannote[1355].start 9151.02284375
transcript.pyannote[1355].end 9152.76096875
transcript.pyannote[1356].speaker SPEAKER_00
transcript.pyannote[1356].start 9159.17346875
transcript.pyannote[1356].end 9160.62471875
transcript.pyannote[1357].speaker SPEAKER_30
transcript.pyannote[1357].start 9160.62471875
transcript.pyannote[1357].end 9160.96221875
transcript.pyannote[1358].speaker SPEAKER_00
transcript.pyannote[1358].start 9160.96221875
transcript.pyannote[1358].end 9162.16034375
transcript.pyannote[1359].speaker SPEAKER_30
transcript.pyannote[1359].start 9161.67096875
transcript.pyannote[1359].end 9167.81346875
transcript.pyannote[1360].speaker SPEAKER_00
transcript.pyannote[1360].start 9166.83471875
transcript.pyannote[1360].end 9175.59284375
transcript.pyannote[1361].speaker SPEAKER_00
transcript.pyannote[1361].start 9175.91346875
transcript.pyannote[1361].end 9198.22221875
transcript.pyannote[1362].speaker SPEAKER_00
transcript.pyannote[1362].start 9198.52596875
transcript.pyannote[1362].end 9202.22159375
transcript.pyannote[1363].speaker SPEAKER_30
transcript.pyannote[1363].start 9199.69034375
transcript.pyannote[1363].end 9200.11221875
transcript.pyannote[1364].speaker SPEAKER_00
transcript.pyannote[1364].start 9202.74471875
transcript.pyannote[1364].end 9204.24659375
transcript.pyannote[1365].speaker SPEAKER_30
transcript.pyannote[1365].start 9204.24659375
transcript.pyannote[1365].end 9210.91221875
transcript.pyannote[1366].speaker SPEAKER_00
transcript.pyannote[1366].start 9206.05221875
transcript.pyannote[1366].end 9207.18284375
transcript.pyannote[1367].speaker SPEAKER_00
transcript.pyannote[1367].start 9207.52034375
transcript.pyannote[1367].end 9209.08971875
transcript.pyannote[1368].speaker SPEAKER_30
transcript.pyannote[1368].start 9211.51971875
transcript.pyannote[1368].end 9215.09721875
transcript.pyannote[1369].speaker SPEAKER_00
transcript.pyannote[1369].start 9215.08034375
transcript.pyannote[1369].end 9215.68784375
transcript.pyannote[1370].speaker SPEAKER_30
transcript.pyannote[1370].start 9215.31659375
transcript.pyannote[1370].end 9220.02471875
transcript.pyannote[1371].speaker SPEAKER_00
transcript.pyannote[1371].start 9218.57346875
transcript.pyannote[1371].end 9228.56346875
transcript.pyannote[1372].speaker SPEAKER_00
transcript.pyannote[1372].start 9228.79971875
transcript.pyannote[1372].end 9229.87971875
transcript.pyannote[1373].speaker SPEAKER_00
transcript.pyannote[1373].start 9230.09909375
transcript.pyannote[1373].end 9233.74409375
transcript.pyannote[1374].speaker SPEAKER_00
transcript.pyannote[1374].start 9234.03096875
transcript.pyannote[1374].end 9242.45159375
transcript.pyannote[1375].speaker SPEAKER_30
transcript.pyannote[1375].start 9238.31721875
transcript.pyannote[1375].end 9238.90784375
transcript.pyannote[1376].speaker SPEAKER_30
transcript.pyannote[1376].start 9240.91596875
transcript.pyannote[1376].end 9243.27846875
transcript.pyannote[1377].speaker SPEAKER_00
transcript.pyannote[1377].start 9242.75534375
transcript.pyannote[1377].end 9249.89346875
transcript.pyannote[1378].speaker SPEAKER_00
transcript.pyannote[1378].start 9250.90596875
transcript.pyannote[1378].end 9255.98534375
transcript.pyannote[1379].speaker SPEAKER_00
transcript.pyannote[1379].start 9256.28909375
transcript.pyannote[1379].end 9259.84971875
transcript.pyannote[1380].speaker SPEAKER_00
transcript.pyannote[1380].start 9260.11971875
transcript.pyannote[1380].end 9276.58971875
transcript.pyannote[1381].speaker SPEAKER_00
transcript.pyannote[1381].start 9277.14659375
transcript.pyannote[1381].end 9283.39034375
transcript.pyannote[1382].speaker SPEAKER_30
transcript.pyannote[1382].start 9283.39034375
transcript.pyannote[1382].end 9291.35534375
transcript.pyannote[1383].speaker SPEAKER_00
transcript.pyannote[1383].start 9290.12346875
transcript.pyannote[1383].end 9296.82284375
transcript.pyannote[1384].speaker SPEAKER_30
transcript.pyannote[1384].start 9292.99221875
transcript.pyannote[1384].end 9295.35471875
transcript.pyannote[1385].speaker SPEAKER_00
transcript.pyannote[1385].start 9297.76784375
transcript.pyannote[1385].end 9338.26784375
transcript.pyannote[1386].speaker SPEAKER_20
transcript.pyannote[1386].start 9302.02034375
transcript.pyannote[1386].end 9302.56034375
transcript.pyannote[1387].speaker SPEAKER_17
transcript.pyannote[1387].start 9302.56034375
transcript.pyannote[1387].end 9302.66159375
transcript.pyannote[1388].speaker SPEAKER_01
transcript.pyannote[1388].start 9302.66159375
transcript.pyannote[1388].end 9302.69534375
transcript.pyannote[1389].speaker SPEAKER_01
transcript.pyannote[1389].start 9305.24346875
transcript.pyannote[1389].end 9306.00284375
transcript.pyannote[1390].speaker SPEAKER_01
transcript.pyannote[1390].start 9306.98159375
transcript.pyannote[1390].end 9307.03221875
transcript.pyannote[1391].speaker SPEAKER_24
transcript.pyannote[1391].start 9307.03221875
transcript.pyannote[1391].end 9307.40346875
transcript.pyannote[1392].speaker SPEAKER_01
transcript.pyannote[1392].start 9335.93909375
transcript.pyannote[1392].end 9336.02346875
transcript.pyannote[1393].speaker SPEAKER_19
transcript.pyannote[1393].start 9336.02346875
transcript.pyannote[1393].end 9336.29346875
transcript.pyannote[1394].speaker SPEAKER_01
transcript.pyannote[1394].start 9336.29346875
transcript.pyannote[1394].end 9336.81659375
transcript.pyannote[1395].speaker SPEAKER_25
transcript.pyannote[1395].start 9339.93846875
transcript.pyannote[1395].end 9344.34284375
transcript.pyannote[1396].speaker SPEAKER_11
transcript.pyannote[1396].start 9352.34159375
transcript.pyannote[1396].end 9356.59409375
transcript.pyannote[1397].speaker SPEAKER_11
transcript.pyannote[1397].start 9356.93159375
transcript.pyannote[1397].end 9359.39534375
transcript.pyannote[1398].speaker SPEAKER_25
transcript.pyannote[1398].start 9360.00284375
transcript.pyannote[1398].end 9362.21346875
transcript.pyannote[1399].speaker SPEAKER_25
transcript.pyannote[1399].start 9363.68159375
transcript.pyannote[1399].end 9364.32284375
transcript.pyannote[1400].speaker SPEAKER_25
transcript.pyannote[1400].start 9365.36909375
transcript.pyannote[1400].end 9366.66846875
transcript.pyannote[1401].speaker SPEAKER_11
transcript.pyannote[1401].start 9365.43659375
transcript.pyannote[1401].end 9366.97221875
transcript.pyannote[1402].speaker SPEAKER_11
transcript.pyannote[1402].start 9367.24221875
transcript.pyannote[1402].end 9372.92909375
transcript.pyannote[1403].speaker SPEAKER_11
transcript.pyannote[1403].start 9373.40159375
transcript.pyannote[1403].end 9377.58659375
transcript.pyannote[1404].speaker SPEAKER_11
transcript.pyannote[1404].start 9378.22784375
transcript.pyannote[1404].end 9380.53971875
transcript.pyannote[1405].speaker SPEAKER_11
transcript.pyannote[1405].start 9380.70846875
transcript.pyannote[1405].end 9390.98534375
transcript.pyannote[1406].speaker SPEAKER_11
transcript.pyannote[1406].start 9391.03596875
transcript.pyannote[1406].end 9410.20596875
transcript.pyannote[1407].speaker SPEAKER_21
transcript.pyannote[1407].start 9411.08346875
transcript.pyannote[1407].end 9422.49096875
transcript.pyannote[1408].speaker SPEAKER_21
transcript.pyannote[1408].start 9422.99721875
transcript.pyannote[1408].end 9424.38096875
transcript.pyannote[1409].speaker SPEAKER_21
transcript.pyannote[1409].start 9424.61721875
transcript.pyannote[1409].end 9436.22721875
transcript.pyannote[1410].speaker SPEAKER_21
transcript.pyannote[1410].start 9436.76721875
transcript.pyannote[1410].end 9438.82596875
transcript.pyannote[1411].speaker SPEAKER_21
transcript.pyannote[1411].start 9439.28159375
transcript.pyannote[1411].end 9441.55971875
transcript.pyannote[1412].speaker SPEAKER_21
transcript.pyannote[1412].start 9442.11659375
transcript.pyannote[1412].end 9449.57534375
transcript.pyannote[1413].speaker SPEAKER_21
transcript.pyannote[1413].start 9449.74409375
transcript.pyannote[1413].end 9455.86971875
transcript.pyannote[1414].speaker SPEAKER_11
transcript.pyannote[1414].start 9455.86971875
transcript.pyannote[1414].end 9455.92034375
transcript.pyannote[1415].speaker SPEAKER_11
transcript.pyannote[1415].start 9455.97096875
transcript.pyannote[1415].end 9467.63159375
transcript.pyannote[1416].speaker SPEAKER_21
transcript.pyannote[1416].start 9467.85096875
transcript.pyannote[1416].end 9479.76471875
transcript.pyannote[1417].speaker SPEAKER_11
transcript.pyannote[1417].start 9474.19596875
transcript.pyannote[1417].end 9476.27159375
transcript.pyannote[1418].speaker SPEAKER_11
transcript.pyannote[1418].start 9479.30909375
transcript.pyannote[1418].end 9480.87846875
transcript.pyannote[1419].speaker SPEAKER_21
transcript.pyannote[1419].start 9480.77721875
transcript.pyannote[1419].end 9488.30346875
transcript.pyannote[1420].speaker SPEAKER_11
transcript.pyannote[1420].start 9488.06721875
transcript.pyannote[1420].end 9497.34846875
transcript.pyannote[1421].speaker SPEAKER_21
transcript.pyannote[1421].start 9497.34846875
transcript.pyannote[1421].end 9498.04034375
transcript.pyannote[1422].speaker SPEAKER_11
transcript.pyannote[1422].start 9497.38221875
transcript.pyannote[1422].end 9499.32284375
transcript.pyannote[1423].speaker SPEAKER_21
transcript.pyannote[1423].start 9498.56346875
transcript.pyannote[1423].end 9502.81596875
transcript.pyannote[1424].speaker SPEAKER_11
transcript.pyannote[1424].start 9501.82034375
transcript.pyannote[1424].end 9504.03096875
transcript.pyannote[1425].speaker SPEAKER_11
transcript.pyannote[1425].start 9504.53721875
transcript.pyannote[1425].end 9506.05596875
transcript.pyannote[1426].speaker SPEAKER_11
transcript.pyannote[1426].start 9511.60784375
transcript.pyannote[1426].end 9532.63409375
transcript.pyannote[1427].speaker SPEAKER_11
transcript.pyannote[1427].start 9533.19096875
transcript.pyannote[1427].end 9535.82346875
transcript.pyannote[1428].speaker SPEAKER_11
transcript.pyannote[1428].start 9536.39721875
transcript.pyannote[1428].end 9537.08909375
transcript.pyannote[1429].speaker SPEAKER_11
transcript.pyannote[1429].start 9537.52784375
transcript.pyannote[1429].end 9539.02971875
transcript.pyannote[1430].speaker SPEAKER_30
transcript.pyannote[1430].start 9539.02971875
transcript.pyannote[1430].end 9540.37971875
transcript.pyannote[1431].speaker SPEAKER_11
transcript.pyannote[1431].start 9540.83534375
transcript.pyannote[1431].end 9540.85221875
transcript.pyannote[1432].speaker SPEAKER_30
transcript.pyannote[1432].start 9540.85221875
transcript.pyannote[1432].end 9541.30784375
transcript.pyannote[1433].speaker SPEAKER_11
transcript.pyannote[1433].start 9541.30784375
transcript.pyannote[1433].end 9541.96596875
transcript.pyannote[1434].speaker SPEAKER_30
transcript.pyannote[1434].start 9541.39221875
transcript.pyannote[1434].end 9541.93221875
transcript.pyannote[1435].speaker SPEAKER_30
transcript.pyannote[1435].start 9541.96596875
transcript.pyannote[1435].end 9543.24846875
transcript.pyannote[1436].speaker SPEAKER_11
transcript.pyannote[1436].start 9543.24846875
transcript.pyannote[1436].end 9547.28159375
transcript.pyannote[1437].speaker SPEAKER_30
transcript.pyannote[1437].start 9543.26534375
transcript.pyannote[1437].end 9543.60284375
transcript.pyannote[1438].speaker SPEAKER_30
transcript.pyannote[1438].start 9547.01159375
transcript.pyannote[1438].end 9554.08221875
transcript.pyannote[1439].speaker SPEAKER_11
transcript.pyannote[1439].start 9551.09534375
transcript.pyannote[1439].end 9563.68409375
transcript.pyannote[1440].speaker SPEAKER_11
transcript.pyannote[1440].start 9564.12284375
transcript.pyannote[1440].end 9565.00034375
transcript.pyannote[1441].speaker SPEAKER_11
transcript.pyannote[1441].start 9565.21971875
transcript.pyannote[1441].end 9565.75971875
transcript.pyannote[1442].speaker SPEAKER_11
transcript.pyannote[1442].start 9567.36284375
transcript.pyannote[1442].end 9567.59909375
transcript.pyannote[1443].speaker SPEAKER_11
transcript.pyannote[1443].start 9568.12221875
transcript.pyannote[1443].end 9577.04909375
transcript.pyannote[1444].speaker SPEAKER_11
transcript.pyannote[1444].start 9577.33596875
transcript.pyannote[1444].end 9577.36971875
transcript.pyannote[1445].speaker SPEAKER_30
transcript.pyannote[1445].start 9577.36971875
transcript.pyannote[1445].end 9584.25471875
transcript.pyannote[1446].speaker SPEAKER_30
transcript.pyannote[1446].start 9584.52471875
transcript.pyannote[1446].end 9586.02659375
transcript.pyannote[1447].speaker SPEAKER_11
transcript.pyannote[1447].start 9584.55846875
transcript.pyannote[1447].end 9585.75659375
transcript.pyannote[1448].speaker SPEAKER_20
transcript.pyannote[1448].start 9585.75659375
transcript.pyannote[1448].end 9585.84096875
transcript.pyannote[1449].speaker SPEAKER_11
transcript.pyannote[1449].start 9586.06034375
transcript.pyannote[1449].end 9586.07721875
transcript.pyannote[1450].speaker SPEAKER_30
transcript.pyannote[1450].start 9586.07721875
transcript.pyannote[1450].end 9590.61659375
transcript.pyannote[1451].speaker SPEAKER_11
transcript.pyannote[1451].start 9588.03471875
transcript.pyannote[1451].end 9609.61784375
transcript.pyannote[1452].speaker SPEAKER_13
transcript.pyannote[1452].start 9598.68284375
transcript.pyannote[1452].end 9599.47596875
transcript.pyannote[1453].speaker SPEAKER_13
transcript.pyannote[1453].start 9601.93971875
transcript.pyannote[1453].end 9602.96909375
transcript.pyannote[1454].speaker SPEAKER_00
transcript.pyannote[1454].start 9602.96909375
transcript.pyannote[1454].end 9603.50909375
transcript.pyannote[1455].speaker SPEAKER_11
transcript.pyannote[1455].start 9610.78221875
transcript.pyannote[1455].end 9625.24409375
transcript.pyannote[1456].speaker SPEAKER_06
transcript.pyannote[1456].start 9610.81596875
transcript.pyannote[1456].end 9611.20409375
transcript.pyannote[1457].speaker SPEAKER_06
transcript.pyannote[1457].start 9611.98034375
transcript.pyannote[1457].end 9612.84096875
transcript.pyannote[1458].speaker SPEAKER_11
transcript.pyannote[1458].start 9625.59846875
transcript.pyannote[1458].end 9653.83034375
transcript.pyannote[1459].speaker SPEAKER_11
transcript.pyannote[1459].start 9654.35346875
transcript.pyannote[1459].end 9655.95659375
transcript.pyannote[1460].speaker SPEAKER_30
transcript.pyannote[1460].start 9654.38721875
transcript.pyannote[1460].end 9664.74846875
transcript.pyannote[1461].speaker SPEAKER_11
transcript.pyannote[1461].start 9662.95971875
transcript.pyannote[1461].end 9664.19159375
transcript.pyannote[1462].speaker SPEAKER_11
transcript.pyannote[1462].start 9664.52909375
transcript.pyannote[1462].end 9688.96409375
transcript.pyannote[1463].speaker SPEAKER_30
transcript.pyannote[1463].start 9688.37346875
transcript.pyannote[1463].end 9692.35596875
transcript.pyannote[1464].speaker SPEAKER_11
transcript.pyannote[1464].start 9692.44034375
transcript.pyannote[1464].end 9703.96596875
transcript.pyannote[1465].speaker SPEAKER_30
transcript.pyannote[1465].start 9694.38096875
transcript.pyannote[1465].end 9694.60034375
transcript.pyannote[1466].speaker SPEAKER_30
transcript.pyannote[1466].start 9704.80971875
transcript.pyannote[1466].end 9708.08346875
transcript.pyannote[1467].speaker SPEAKER_30
transcript.pyannote[1467].start 9708.48846875
transcript.pyannote[1467].end 9715.59284375
transcript.pyannote[1468].speaker SPEAKER_30
transcript.pyannote[1468].start 9716.52096875
transcript.pyannote[1468].end 9722.96721875
transcript.pyannote[1469].speaker SPEAKER_11
transcript.pyannote[1469].start 9720.57096875
transcript.pyannote[1469].end 9721.34721875
transcript.pyannote[1470].speaker SPEAKER_11
transcript.pyannote[1470].start 9722.96721875
transcript.pyannote[1470].end 9775.46534375
transcript.pyannote[1471].speaker SPEAKER_30
transcript.pyannote[1471].start 9738.82971875
transcript.pyannote[1471].end 9739.45409375
transcript.pyannote[1472].speaker SPEAKER_20
transcript.pyannote[1472].start 9739.45409375
transcript.pyannote[1472].end 9739.47096875
transcript.pyannote[1473].speaker SPEAKER_30
transcript.pyannote[1473].start 9739.47096875
transcript.pyannote[1473].end 9739.48784375
transcript.pyannote[1474].speaker SPEAKER_11
transcript.pyannote[1474].start 9775.92096875
transcript.pyannote[1474].end 9808.62471875
transcript.pyannote[1475].speaker SPEAKER_00
transcript.pyannote[1475].start 9801.35159375
transcript.pyannote[1475].end 9801.87471875
transcript.pyannote[1476].speaker SPEAKER_11
transcript.pyannote[1476].start 9809.33346875
transcript.pyannote[1476].end 9832.38471875
transcript.pyannote[1477].speaker SPEAKER_11
transcript.pyannote[1477].start 9832.58721875
transcript.pyannote[1477].end 9884.07284375
transcript.pyannote[1478].speaker SPEAKER_30
transcript.pyannote[1478].start 9844.06221875
transcript.pyannote[1478].end 9845.36159375
transcript.pyannote[1479].speaker SPEAKER_20
transcript.pyannote[1479].start 9845.36159375
transcript.pyannote[1479].end 9845.83409375
transcript.pyannote[1480].speaker SPEAKER_00
transcript.pyannote[1480].start 9845.83409375
transcript.pyannote[1480].end 9845.93534375
transcript.pyannote[1481].speaker SPEAKER_20
transcript.pyannote[1481].start 9845.93534375
transcript.pyannote[1481].end 9846.91409375
transcript.pyannote[1482].speaker SPEAKER_00
transcript.pyannote[1482].start 9846.91409375
transcript.pyannote[1482].end 9846.94784375
transcript.pyannote[1483].speaker SPEAKER_11
transcript.pyannote[1483].start 9884.46096875
transcript.pyannote[1483].end 9899.63159375
transcript.pyannote[1484].speaker SPEAKER_11
transcript.pyannote[1484].start 9900.05346875
transcript.pyannote[1484].end 9934.02284375
transcript.pyannote[1485].speaker SPEAKER_13
transcript.pyannote[1485].start 9933.12846875
transcript.pyannote[1485].end 9933.21284375
transcript.pyannote[1486].speaker SPEAKER_25
transcript.pyannote[1486].start 9933.21284375
transcript.pyannote[1486].end 9933.39846875
transcript.pyannote[1487].speaker SPEAKER_13
transcript.pyannote[1487].start 9933.39846875
transcript.pyannote[1487].end 9933.55034375
transcript.pyannote[1488].speaker SPEAKER_25
transcript.pyannote[1488].start 9935.28846875
transcript.pyannote[1488].end 9940.03034375
transcript.pyannote[1489].speaker SPEAKER_17
transcript.pyannote[1489].start 9954.98159375
transcript.pyannote[1489].end 9955.84221875
transcript.pyannote[1490].speaker SPEAKER_10
transcript.pyannote[1490].start 9957.10784375
transcript.pyannote[1490].end 9957.93471875
transcript.pyannote[1491].speaker SPEAKER_10
transcript.pyannote[1491].start 9960.65159375
transcript.pyannote[1491].end 9960.97221875
transcript.pyannote[1492].speaker SPEAKER_30
transcript.pyannote[1492].start 9960.97221875
transcript.pyannote[1492].end 9961.02284375
transcript.pyannote[1493].speaker SPEAKER_17
transcript.pyannote[1493].start 9961.68096875
transcript.pyannote[1493].end 9962.18721875
transcript.pyannote[1494].speaker SPEAKER_17
transcript.pyannote[1494].start 9962.22096875
transcript.pyannote[1494].end 9962.23784375
transcript.pyannote[1495].speaker SPEAKER_30
transcript.pyannote[1495].start 9962.23784375
transcript.pyannote[1495].end 9962.59221875
transcript.pyannote[1496].speaker SPEAKER_17
transcript.pyannote[1496].start 9962.59221875
transcript.pyannote[1496].end 9962.62596875
transcript.pyannote[1497].speaker SPEAKER_17
transcript.pyannote[1497].start 9963.16596875
transcript.pyannote[1497].end 10003.14284375
transcript.pyannote[1498].speaker SPEAKER_21
transcript.pyannote[1498].start 9972.22784375
transcript.pyannote[1498].end 9972.63284375
transcript.pyannote[1499].speaker SPEAKER_17
transcript.pyannote[1499].start 10003.46346875
transcript.pyannote[1499].end 10005.03284375
transcript.pyannote[1500].speaker SPEAKER_17
transcript.pyannote[1500].start 10005.16784375
transcript.pyannote[1500].end 10029.88971875
transcript.pyannote[1501].speaker SPEAKER_30
transcript.pyannote[1501].start 10030.12596875
transcript.pyannote[1501].end 10046.83221875
transcript.pyannote[1502].speaker SPEAKER_30
transcript.pyannote[1502].start 10047.10221875
transcript.pyannote[1502].end 10055.38784375
transcript.pyannote[1503].speaker SPEAKER_30
transcript.pyannote[1503].start 10055.62409375
transcript.pyannote[1503].end 10059.01596875
transcript.pyannote[1504].speaker SPEAKER_17
transcript.pyannote[1504].start 10058.69534375
transcript.pyannote[1504].end 10104.74721875
transcript.pyannote[1505].speaker SPEAKER_30
transcript.pyannote[1505].start 10061.74971875
transcript.pyannote[1505].end 10062.13784375
transcript.pyannote[1506].speaker SPEAKER_17
transcript.pyannote[1506].start 10105.16909375
transcript.pyannote[1506].end 10106.58659375
transcript.pyannote[1507].speaker SPEAKER_30
transcript.pyannote[1507].start 10106.72159375
transcript.pyannote[1507].end 10107.16034375
transcript.pyannote[1508].speaker SPEAKER_30
transcript.pyannote[1508].start 10107.44721875
transcript.pyannote[1508].end 10112.96534375
transcript.pyannote[1509].speaker SPEAKER_17
transcript.pyannote[1509].start 10112.25659375
transcript.pyannote[1509].end 10113.06659375
transcript.pyannote[1510].speaker SPEAKER_17
transcript.pyannote[1510].start 10113.11721875
transcript.pyannote[1510].end 10113.13409375
transcript.pyannote[1511].speaker SPEAKER_17
transcript.pyannote[1511].start 10113.30284375
transcript.pyannote[1511].end 10128.65909375
transcript.pyannote[1512].speaker SPEAKER_30
transcript.pyannote[1512].start 10129.41846875
transcript.pyannote[1512].end 10133.02971875
transcript.pyannote[1513].speaker SPEAKER_30
transcript.pyannote[1513].start 10133.35034375
transcript.pyannote[1513].end 10148.67284375
transcript.pyannote[1514].speaker SPEAKER_17
transcript.pyannote[1514].start 10148.47034375
transcript.pyannote[1514].end 10151.38971875
transcript.pyannote[1515].speaker SPEAKER_17
transcript.pyannote[1515].start 10151.76096875
transcript.pyannote[1515].end 10168.51784375
transcript.pyannote[1516].speaker SPEAKER_30
transcript.pyannote[1516].start 10156.60409375
transcript.pyannote[1516].end 10157.00909375
transcript.pyannote[1517].speaker SPEAKER_25
transcript.pyannote[1517].start 10160.43471875
transcript.pyannote[1517].end 10160.67096875
transcript.pyannote[1518].speaker SPEAKER_00
transcript.pyannote[1518].start 10160.67096875
transcript.pyannote[1518].end 10160.70471875
transcript.pyannote[1519].speaker SPEAKER_17
transcript.pyannote[1519].start 10168.85534375
transcript.pyannote[1519].end 10171.77471875
transcript.pyannote[1520].speaker SPEAKER_00
transcript.pyannote[1520].start 10170.62721875
transcript.pyannote[1520].end 10171.20096875
transcript.pyannote[1521].speaker SPEAKER_17
transcript.pyannote[1521].start 10172.16284375
transcript.pyannote[1521].end 10186.15221875
transcript.pyannote[1522].speaker SPEAKER_00
transcript.pyannote[1522].start 10180.02659375
transcript.pyannote[1522].end 10181.17409375
transcript.pyannote[1523].speaker SPEAKER_17
transcript.pyannote[1523].start 10186.55721875
transcript.pyannote[1523].end 10197.66096875
transcript.pyannote[1524].speaker SPEAKER_00
transcript.pyannote[1524].start 10187.78909375
transcript.pyannote[1524].end 10188.02534375
transcript.pyannote[1525].speaker SPEAKER_20
transcript.pyannote[1525].start 10188.02534375
transcript.pyannote[1525].end 10188.36284375
transcript.pyannote[1526].speaker SPEAKER_00
transcript.pyannote[1526].start 10188.36284375
transcript.pyannote[1526].end 10188.54846875
transcript.pyannote[1527].speaker SPEAKER_21
transcript.pyannote[1527].start 10192.02471875
transcript.pyannote[1527].end 10192.37909375
transcript.pyannote[1528].speaker SPEAKER_21
transcript.pyannote[1528].start 10197.30659375
transcript.pyannote[1528].end 10197.86346875
transcript.pyannote[1529].speaker SPEAKER_17
transcript.pyannote[1529].start 10197.86346875
transcript.pyannote[1529].end 10213.62471875
transcript.pyannote[1530].speaker SPEAKER_30
transcript.pyannote[1530].start 10214.55284375
transcript.pyannote[1530].end 10217.32034375
transcript.pyannote[1531].speaker SPEAKER_17
transcript.pyannote[1531].start 10215.07596875
transcript.pyannote[1531].end 10215.10971875
transcript.pyannote[1532].speaker SPEAKER_17
transcript.pyannote[1532].start 10217.33721875
transcript.pyannote[1532].end 10220.84721875
transcript.pyannote[1533].speaker SPEAKER_30
transcript.pyannote[1533].start 10221.53909375
transcript.pyannote[1533].end 10223.96909375
transcript.pyannote[1534].speaker SPEAKER_30
transcript.pyannote[1534].start 10224.66096875
transcript.pyannote[1534].end 10232.22096875
transcript.pyannote[1535].speaker SPEAKER_17
transcript.pyannote[1535].start 10232.15346875
transcript.pyannote[1535].end 10283.16659375
transcript.pyannote[1536].speaker SPEAKER_25
transcript.pyannote[1536].start 10240.10159375
transcript.pyannote[1536].end 10240.20284375
transcript.pyannote[1537].speaker SPEAKER_17
transcript.pyannote[1537].start 10283.52096875
transcript.pyannote[1537].end 10304.14221875
transcript.pyannote[1538].speaker SPEAKER_30
transcript.pyannote[1538].start 10304.46284375
transcript.pyannote[1538].end 10314.80721875
transcript.pyannote[1539].speaker SPEAKER_20
transcript.pyannote[1539].start 10314.80721875
transcript.pyannote[1539].end 10314.99284375
transcript.pyannote[1540].speaker SPEAKER_30
transcript.pyannote[1540].start 10314.99284375
transcript.pyannote[1540].end 10325.05034375
transcript.pyannote[1541].speaker SPEAKER_20
transcript.pyannote[1541].start 10315.00971875
transcript.pyannote[1541].end 10315.06034375
transcript.pyannote[1542].speaker SPEAKER_30
transcript.pyannote[1542].start 10325.45534375
transcript.pyannote[1542].end 10332.69471875
transcript.pyannote[1543].speaker SPEAKER_30
transcript.pyannote[1543].start 10332.98159375
transcript.pyannote[1543].end 10342.95471875
transcript.pyannote[1544].speaker SPEAKER_17
transcript.pyannote[1544].start 10342.61721875
transcript.pyannote[1544].end 10348.43909375
transcript.pyannote[1545].speaker SPEAKER_30
transcript.pyannote[1545].start 10345.57034375
transcript.pyannote[1545].end 10352.40471875
transcript.pyannote[1546].speaker SPEAKER_17
transcript.pyannote[1546].start 10351.35846875
transcript.pyannote[1546].end 10358.47971875
transcript.pyannote[1547].speaker SPEAKER_30
transcript.pyannote[1547].start 10356.65721875
transcript.pyannote[1547].end 10357.80471875
transcript.pyannote[1548].speaker SPEAKER_17
transcript.pyannote[1548].start 10358.85096875
transcript.pyannote[1548].end 10390.00221875
transcript.pyannote[1549].speaker SPEAKER_00
transcript.pyannote[1549].start 10371.23721875
transcript.pyannote[1549].end 10371.87846875
transcript.pyannote[1550].speaker SPEAKER_20
transcript.pyannote[1550].start 10386.79596875
transcript.pyannote[1550].end 10386.82971875
transcript.pyannote[1551].speaker SPEAKER_19
transcript.pyannote[1551].start 10386.82971875
transcript.pyannote[1551].end 10387.18409375
transcript.pyannote[1552].speaker SPEAKER_20
transcript.pyannote[1552].start 10387.18409375
transcript.pyannote[1552].end 10389.46221875
transcript.pyannote[1553].speaker SPEAKER_30
transcript.pyannote[1553].start 10389.46221875
transcript.pyannote[1553].end 10389.66471875
transcript.pyannote[1554].speaker SPEAKER_20
transcript.pyannote[1554].start 10389.66471875
transcript.pyannote[1554].end 10389.96846875
transcript.pyannote[1555].speaker SPEAKER_30
transcript.pyannote[1555].start 10389.96846875
transcript.pyannote[1555].end 10390.03596875
transcript.pyannote[1556].speaker SPEAKER_11
transcript.pyannote[1556].start 10390.00221875
transcript.pyannote[1556].end 10390.13721875
transcript.pyannote[1557].speaker SPEAKER_11
transcript.pyannote[1557].start 10393.36034375
transcript.pyannote[1557].end 10396.58346875
transcript.pyannote[1558].speaker SPEAKER_24
transcript.pyannote[1558].start 10400.34659375
transcript.pyannote[1558].end 10401.32534375
transcript.pyannote[1559].speaker SPEAKER_24
transcript.pyannote[1559].start 10402.18596875
transcript.pyannote[1559].end 10402.50659375
transcript.pyannote[1560].speaker SPEAKER_24
transcript.pyannote[1560].start 10405.00409375
transcript.pyannote[1560].end 10405.40909375
transcript.pyannote[1561].speaker SPEAKER_24
transcript.pyannote[1561].start 10405.91534375
transcript.pyannote[1561].end 10407.51846875
transcript.pyannote[1562].speaker SPEAKER_10
transcript.pyannote[1562].start 10407.83909375
transcript.pyannote[1562].end 10408.71659375
transcript.pyannote[1563].speaker SPEAKER_11
transcript.pyannote[1563].start 10412.68221875
transcript.pyannote[1563].end 10412.69909375
transcript.pyannote[1564].speaker SPEAKER_30
transcript.pyannote[1564].start 10412.69909375
transcript.pyannote[1564].end 10413.45846875
transcript.pyannote[1565].speaker SPEAKER_24
transcript.pyannote[1565].start 10413.59346875
transcript.pyannote[1565].end 10477.21221875
transcript.pyannote[1566].speaker SPEAKER_30
transcript.pyannote[1566].start 10415.90534375
transcript.pyannote[1566].end 10416.83346875
transcript.pyannote[1567].speaker SPEAKER_00
transcript.pyannote[1567].start 10462.00784375
transcript.pyannote[1567].end 10462.02471875
transcript.pyannote[1568].speaker SPEAKER_20
transcript.pyannote[1568].start 10462.02471875
transcript.pyannote[1568].end 10462.49721875
transcript.pyannote[1569].speaker SPEAKER_00
transcript.pyannote[1569].start 10462.49721875
transcript.pyannote[1569].end 10462.54784375
transcript.pyannote[1570].speaker SPEAKER_30
transcript.pyannote[1570].start 10478.61284375
transcript.pyannote[1570].end 10481.63346875
transcript.pyannote[1571].speaker SPEAKER_24
transcript.pyannote[1571].start 10481.51534375
transcript.pyannote[1571].end 10481.83596875
transcript.pyannote[1572].speaker SPEAKER_30
transcript.pyannote[1572].start 10481.78534375
transcript.pyannote[1572].end 10485.59909375
transcript.pyannote[1573].speaker SPEAKER_24
transcript.pyannote[1573].start 10483.00034375
transcript.pyannote[1573].end 10484.72159375
transcript.pyannote[1574].speaker SPEAKER_24
transcript.pyannote[1574].start 10485.71721875
transcript.pyannote[1574].end 10489.07534375
transcript.pyannote[1575].speaker SPEAKER_30
transcript.pyannote[1575].start 10486.91534375
transcript.pyannote[1575].end 10489.76721875
transcript.pyannote[1576].speaker SPEAKER_30
transcript.pyannote[1576].start 10490.20596875
transcript.pyannote[1576].end 10493.61471875
transcript.pyannote[1577].speaker SPEAKER_24
transcript.pyannote[1577].start 10490.34096875
transcript.pyannote[1577].end 10498.59284375
transcript.pyannote[1578].speaker SPEAKER_30
transcript.pyannote[1578].start 10499.33534375
transcript.pyannote[1578].end 10506.10221875
transcript.pyannote[1579].speaker SPEAKER_30
transcript.pyannote[1579].start 10506.16971875
transcript.pyannote[1579].end 10506.18659375
transcript.pyannote[1580].speaker SPEAKER_24
transcript.pyannote[1580].start 10506.18659375
transcript.pyannote[1580].end 10509.83159375
transcript.pyannote[1581].speaker SPEAKER_30
transcript.pyannote[1581].start 10506.77721875
transcript.pyannote[1581].end 10508.68409375
transcript.pyannote[1582].speaker SPEAKER_30
transcript.pyannote[1582].start 10509.93284375
transcript.pyannote[1582].end 10511.92409375
transcript.pyannote[1583].speaker SPEAKER_24
transcript.pyannote[1583].start 10511.60346875
transcript.pyannote[1583].end 10512.83534375
transcript.pyannote[1584].speaker SPEAKER_30
transcript.pyannote[1584].start 10513.30784375
transcript.pyannote[1584].end 10516.36221875
transcript.pyannote[1585].speaker SPEAKER_24
transcript.pyannote[1585].start 10515.04596875
transcript.pyannote[1585].end 10520.00721875
transcript.pyannote[1586].speaker SPEAKER_30
transcript.pyannote[1586].start 10519.97346875
transcript.pyannote[1586].end 10520.39534375
transcript.pyannote[1587].speaker SPEAKER_24
transcript.pyannote[1587].start 10520.39534375
transcript.pyannote[1587].end 10521.79596875
transcript.pyannote[1588].speaker SPEAKER_30
transcript.pyannote[1588].start 10522.23471875
transcript.pyannote[1588].end 10524.93471875
transcript.pyannote[1589].speaker SPEAKER_24
transcript.pyannote[1589].start 10524.04034375
transcript.pyannote[1589].end 10534.14846875
transcript.pyannote[1590].speaker SPEAKER_30
transcript.pyannote[1590].start 10532.05596875
transcript.pyannote[1590].end 10532.54534375
transcript.pyannote[1591].speaker SPEAKER_24
transcript.pyannote[1591].start 10534.60409375
transcript.pyannote[1591].end 10538.65409375
transcript.pyannote[1592].speaker SPEAKER_30
transcript.pyannote[1592].start 10539.04221875
transcript.pyannote[1592].end 10545.64034375
transcript.pyannote[1593].speaker SPEAKER_24
transcript.pyannote[1593].start 10540.66221875
transcript.pyannote[1593].end 10541.11784375
transcript.pyannote[1594].speaker SPEAKER_24
transcript.pyannote[1594].start 10544.83034375
transcript.pyannote[1594].end 10546.77096875
transcript.pyannote[1595].speaker SPEAKER_30
transcript.pyannote[1595].start 10550.07846875
transcript.pyannote[1595].end 10564.96221875
transcript.pyannote[1596].speaker SPEAKER_24
transcript.pyannote[1596].start 10561.90784375
transcript.pyannote[1596].end 10562.24534375
transcript.pyannote[1597].speaker SPEAKER_24
transcript.pyannote[1597].start 10564.23659375
transcript.pyannote[1597].end 10582.74846875
transcript.pyannote[1598].speaker SPEAKER_30
transcript.pyannote[1598].start 10565.53596875
transcript.pyannote[1598].end 10566.71721875
transcript.pyannote[1599].speaker SPEAKER_24
transcript.pyannote[1599].start 10583.32221875
transcript.pyannote[1599].end 10584.41909375
transcript.pyannote[1600].speaker SPEAKER_30
transcript.pyannote[1600].start 10586.52846875
transcript.pyannote[1600].end 10589.51534375
transcript.pyannote[1601].speaker SPEAKER_24
transcript.pyannote[1601].start 10589.61659375
transcript.pyannote[1601].end 10590.44346875
transcript.pyannote[1602].speaker SPEAKER_30
transcript.pyannote[1602].start 10590.44346875
transcript.pyannote[1602].end 10590.89909375
transcript.pyannote[1603].speaker SPEAKER_24
transcript.pyannote[1603].start 10591.10159375
transcript.pyannote[1603].end 10618.05096875
transcript.pyannote[1604].speaker SPEAKER_25
transcript.pyannote[1604].start 10593.90284375
transcript.pyannote[1604].end 10593.91971875
transcript.pyannote[1605].speaker SPEAKER_30
transcript.pyannote[1605].start 10593.91971875
transcript.pyannote[1605].end 10594.40909375
transcript.pyannote[1606].speaker SPEAKER_19
transcript.pyannote[1606].start 10617.89909375
transcript.pyannote[1606].end 10618.35471875
transcript.pyannote[1607].speaker SPEAKER_24
transcript.pyannote[1607].start 10618.10159375
transcript.pyannote[1607].end 10625.98221875
transcript.pyannote[1608].speaker SPEAKER_20
transcript.pyannote[1608].start 10618.35471875
transcript.pyannote[1608].end 10618.37159375
transcript.pyannote[1609].speaker SPEAKER_30
transcript.pyannote[1609].start 10626.47159375
transcript.pyannote[1609].end 10645.50659375
transcript.pyannote[1610].speaker SPEAKER_19
transcript.pyannote[1610].start 10634.14971875
transcript.pyannote[1610].end 10634.47034375
transcript.pyannote[1611].speaker SPEAKER_24
transcript.pyannote[1611].start 10645.01721875
transcript.pyannote[1611].end 10662.31409375
transcript.pyannote[1612].speaker SPEAKER_11
transcript.pyannote[1612].start 10659.47909375
transcript.pyannote[1612].end 10660.03596875
transcript.pyannote[1613].speaker SPEAKER_11
transcript.pyannote[1613].start 10660.94721875
transcript.pyannote[1613].end 10661.14971875
transcript.pyannote[1614].speaker SPEAKER_11
transcript.pyannote[1614].start 10661.47034375
transcript.pyannote[1614].end 10661.74034375
transcript.pyannote[1615].speaker SPEAKER_11
transcript.pyannote[1615].start 10661.90909375
transcript.pyannote[1615].end 10662.21284375
transcript.pyannote[1616].speaker SPEAKER_11
transcript.pyannote[1616].start 10662.31409375
transcript.pyannote[1616].end 10662.33096875
transcript.pyannote[1617].speaker SPEAKER_24
transcript.pyannote[1617].start 10662.33096875
transcript.pyannote[1617].end 10662.39846875
transcript.pyannote[1618].speaker SPEAKER_11
transcript.pyannote[1618].start 10662.39846875
transcript.pyannote[1618].end 10662.43221875
transcript.pyannote[1619].speaker SPEAKER_24
transcript.pyannote[1619].start 10662.43221875
transcript.pyannote[1619].end 10662.44909375
transcript.pyannote[1620].speaker SPEAKER_11
transcript.pyannote[1620].start 10664.44034375
transcript.pyannote[1620].end 10665.18284375
transcript.pyannote[1621].speaker SPEAKER_11
transcript.pyannote[1621].start 10667.05596875
transcript.pyannote[1621].end 10670.32971875
transcript.pyannote[1622].speaker SPEAKER_23
transcript.pyannote[1622].start 10675.51034375
transcript.pyannote[1622].end 10678.36221875
transcript.pyannote[1623].speaker SPEAKER_10
transcript.pyannote[1623].start 10678.63221875
transcript.pyannote[1623].end 10679.44221875
transcript.pyannote[1624].speaker SPEAKER_23
transcript.pyannote[1624].start 10679.44221875
transcript.pyannote[1624].end 10679.45909375
transcript.pyannote[1625].speaker SPEAKER_20
transcript.pyannote[1625].start 10681.56846875
transcript.pyannote[1625].end 10681.72034375
transcript.pyannote[1626].speaker SPEAKER_23
transcript.pyannote[1626].start 10683.67784375
transcript.pyannote[1626].end 10705.63221875
transcript.pyannote[1627].speaker SPEAKER_23
transcript.pyannote[1627].start 10705.86846875
transcript.pyannote[1627].end 10729.15596875
transcript.pyannote[1628].speaker SPEAKER_23
transcript.pyannote[1628].start 10729.64534375
transcript.pyannote[1628].end 10733.15534375
transcript.pyannote[1629].speaker SPEAKER_23
transcript.pyannote[1629].start 10733.59409375
transcript.pyannote[1629].end 10735.34909375
transcript.pyannote[1630].speaker SPEAKER_23
transcript.pyannote[1630].start 10735.80471875
transcript.pyannote[1630].end 10750.13159375
transcript.pyannote[1631].speaker SPEAKER_23
transcript.pyannote[1631].start 10750.41846875
transcript.pyannote[1631].end 10756.44284375
transcript.pyannote[1632].speaker SPEAKER_19
transcript.pyannote[1632].start 10755.88596875
transcript.pyannote[1632].end 10756.40909375
transcript.pyannote[1633].speaker SPEAKER_23
transcript.pyannote[1633].start 10757.18534375
transcript.pyannote[1633].end 10759.24409375
transcript.pyannote[1634].speaker SPEAKER_23
transcript.pyannote[1634].start 10759.44659375
transcript.pyannote[1634].end 10763.07471875
transcript.pyannote[1635].speaker SPEAKER_23
transcript.pyannote[1635].start 10763.54721875
transcript.pyannote[1635].end 10780.06784375
transcript.pyannote[1636].speaker SPEAKER_23
transcript.pyannote[1636].start 10780.62471875
transcript.pyannote[1636].end 10792.11659375
transcript.pyannote[1637].speaker SPEAKER_30
transcript.pyannote[1637].start 10793.11221875
transcript.pyannote[1637].end 10795.62659375
transcript.pyannote[1638].speaker SPEAKER_30
transcript.pyannote[1638].start 10795.86284375
transcript.pyannote[1638].end 10801.54971875
transcript.pyannote[1639].speaker SPEAKER_23
transcript.pyannote[1639].start 10799.79471875
transcript.pyannote[1639].end 10818.05346875
transcript.pyannote[1640].speaker SPEAKER_23
transcript.pyannote[1640].start 10818.23909375
transcript.pyannote[1640].end 10819.96034375
transcript.pyannote[1641].speaker SPEAKER_23
transcript.pyannote[1641].start 10820.16284375
transcript.pyannote[1641].end 10823.03159375
transcript.pyannote[1642].speaker SPEAKER_23
transcript.pyannote[1642].start 10823.13284375
transcript.pyannote[1642].end 10827.25034375
transcript.pyannote[1643].speaker SPEAKER_23
transcript.pyannote[1643].start 10827.52034375
transcript.pyannote[1643].end 10852.83284375
transcript.pyannote[1644].speaker SPEAKER_23
transcript.pyannote[1644].start 10853.17034375
transcript.pyannote[1644].end 10866.11346875
transcript.pyannote[1645].speaker SPEAKER_30
transcript.pyannote[1645].start 10866.65346875
transcript.pyannote[1645].end 10869.47159375
transcript.pyannote[1646].speaker SPEAKER_30
transcript.pyannote[1646].start 10869.89346875
transcript.pyannote[1646].end 10875.36096875
transcript.pyannote[1647].speaker SPEAKER_30
transcript.pyannote[1647].start 10875.90096875
transcript.pyannote[1647].end 10880.55846875
transcript.pyannote[1648].speaker SPEAKER_23
transcript.pyannote[1648].start 10879.61346875
transcript.pyannote[1648].end 10893.97409375
transcript.pyannote[1649].speaker SPEAKER_30
transcript.pyannote[1649].start 10893.97409375
transcript.pyannote[1649].end 10895.39159375
transcript.pyannote[1650].speaker SPEAKER_30
transcript.pyannote[1650].start 10895.57721875
transcript.pyannote[1650].end 10899.89721875
transcript.pyannote[1651].speaker SPEAKER_23
transcript.pyannote[1651].start 10899.89721875
transcript.pyannote[1651].end 10913.88659375
transcript.pyannote[1652].speaker SPEAKER_23
transcript.pyannote[1652].start 10914.37596875
transcript.pyannote[1652].end 10923.30284375
transcript.pyannote[1653].speaker SPEAKER_23
transcript.pyannote[1653].start 10923.55596875
transcript.pyannote[1653].end 10926.23909375
transcript.pyannote[1654].speaker SPEAKER_23
transcript.pyannote[1654].start 10926.55971875
transcript.pyannote[1654].end 10929.14159375
transcript.pyannote[1655].speaker SPEAKER_23
transcript.pyannote[1655].start 10930.33971875
transcript.pyannote[1655].end 10938.67596875
transcript.pyannote[1656].speaker SPEAKER_23
transcript.pyannote[1656].start 10939.01346875
transcript.pyannote[1656].end 10941.52784375
transcript.pyannote[1657].speaker SPEAKER_23
transcript.pyannote[1657].start 10941.76409375
transcript.pyannote[1657].end 10944.58221875
transcript.pyannote[1658].speaker SPEAKER_23
transcript.pyannote[1658].start 10944.93659375
transcript.pyannote[1658].end 10945.67909375
transcript.pyannote[1659].speaker SPEAKER_23
transcript.pyannote[1659].start 10945.99971875
transcript.pyannote[1659].end 10950.97784375
transcript.pyannote[1660].speaker SPEAKER_23
transcript.pyannote[1660].start 10951.12971875
transcript.pyannote[1660].end 10962.52034375
transcript.pyannote[1661].speaker SPEAKER_23
transcript.pyannote[1661].start 10963.04346875
transcript.pyannote[1661].end 10980.01971875
transcript.pyannote[1662].speaker SPEAKER_23
transcript.pyannote[1662].start 10980.25596875
transcript.pyannote[1662].end 10980.88034375
transcript.pyannote[1663].speaker SPEAKER_23
transcript.pyannote[1663].start 10981.33596875
transcript.pyannote[1663].end 10982.04471875
transcript.pyannote[1664].speaker SPEAKER_23
transcript.pyannote[1664].start 10982.65221875
transcript.pyannote[1664].end 10983.79971875
transcript.pyannote[1665].speaker SPEAKER_23
transcript.pyannote[1665].start 10984.03596875
transcript.pyannote[1665].end 10987.69784375
transcript.pyannote[1666].speaker SPEAKER_23
transcript.pyannote[1666].start 10987.98471875
transcript.pyannote[1666].end 10988.52471875
transcript.pyannote[1667].speaker SPEAKER_23
transcript.pyannote[1667].start 10988.67659375
transcript.pyannote[1667].end 11002.76721875
transcript.pyannote[1668].speaker SPEAKER_23
transcript.pyannote[1668].start 11003.07096875
transcript.pyannote[1668].end 11006.07471875
transcript.pyannote[1669].speaker SPEAKER_23
transcript.pyannote[1669].start 11006.59784375
transcript.pyannote[1669].end 11007.40784375
transcript.pyannote[1670].speaker SPEAKER_30
transcript.pyannote[1670].start 11006.66534375
transcript.pyannote[1670].end 11011.33971875
transcript.pyannote[1671].speaker SPEAKER_23
transcript.pyannote[1671].start 11010.47909375
transcript.pyannote[1671].end 11027.64096875
transcript.pyannote[1672].speaker SPEAKER_30
transcript.pyannote[1672].start 11014.30971875
transcript.pyannote[1672].end 11014.88346875
transcript.pyannote[1673].speaker SPEAKER_23
transcript.pyannote[1673].start 11028.09659375
transcript.pyannote[1673].end 11049.74721875
transcript.pyannote[1674].speaker SPEAKER_30
transcript.pyannote[1674].start 11050.42221875
transcript.pyannote[1674].end 11064.02346875
transcript.pyannote[1675].speaker SPEAKER_23
transcript.pyannote[1675].start 11061.03659375
transcript.pyannote[1675].end 11063.39909375
transcript.pyannote[1676].speaker SPEAKER_23
transcript.pyannote[1676].start 11064.02346875
transcript.pyannote[1676].end 11069.18721875
transcript.pyannote[1677].speaker SPEAKER_30
transcript.pyannote[1677].start 11064.46221875
transcript.pyannote[1677].end 11065.79534375
transcript.pyannote[1678].speaker SPEAKER_23
transcript.pyannote[1678].start 11069.91284375
transcript.pyannote[1678].end 11070.97596875
transcript.pyannote[1679].speaker SPEAKER_30
transcript.pyannote[1679].start 11070.75659375
transcript.pyannote[1679].end 11073.96284375
transcript.pyannote[1680].speaker SPEAKER_23
transcript.pyannote[1680].start 11073.96284375
transcript.pyannote[1680].end 11075.86971875
transcript.pyannote[1681].speaker SPEAKER_23
transcript.pyannote[1681].start 11077.72596875
transcript.pyannote[1681].end 11088.44159375
transcript.pyannote[1682].speaker SPEAKER_23
transcript.pyannote[1682].start 11089.25159375
transcript.pyannote[1682].end 11089.94346875
transcript.pyannote[1683].speaker SPEAKER_23
transcript.pyannote[1683].start 11090.39909375
transcript.pyannote[1683].end 11091.73221875
transcript.pyannote[1684].speaker SPEAKER_23
transcript.pyannote[1684].start 11091.90096875
transcript.pyannote[1684].end 11095.71471875
transcript.pyannote[1685].speaker SPEAKER_30
transcript.pyannote[1685].start 11096.03534375
transcript.pyannote[1685].end 11097.16596875
transcript.pyannote[1686].speaker SPEAKER_30
transcript.pyannote[1686].start 11097.65534375
transcript.pyannote[1686].end 11097.90846875
transcript.pyannote[1687].speaker SPEAKER_23
transcript.pyannote[1687].start 11099.08971875
transcript.pyannote[1687].end 11112.13409375
transcript.pyannote[1688].speaker SPEAKER_30
transcript.pyannote[1688].start 11099.64659375
transcript.pyannote[1688].end 11100.03471875
transcript.pyannote[1689].speaker SPEAKER_23
transcript.pyannote[1689].start 11112.47159375
transcript.pyannote[1689].end 11115.00284375
transcript.pyannote[1690].speaker SPEAKER_23
transcript.pyannote[1690].start 11116.15034375
transcript.pyannote[1690].end 11117.26409375
transcript.pyannote[1691].speaker SPEAKER_23
transcript.pyannote[1691].start 11117.66909375
transcript.pyannote[1691].end 11118.96846875
transcript.pyannote[1692].speaker SPEAKER_30
transcript.pyannote[1692].start 11118.96846875
transcript.pyannote[1692].end 11119.30596875
transcript.pyannote[1693].speaker SPEAKER_23
transcript.pyannote[1693].start 11119.30596875
transcript.pyannote[1693].end 11119.39034375
transcript.pyannote[1694].speaker SPEAKER_30
transcript.pyannote[1694].start 11119.39034375
transcript.pyannote[1694].end 11120.63909375
transcript.pyannote[1695].speaker SPEAKER_30
transcript.pyannote[1695].start 11121.22971875
transcript.pyannote[1695].end 11129.98784375
transcript.pyannote[1696].speaker SPEAKER_30
transcript.pyannote[1696].start 11130.34221875
transcript.pyannote[1696].end 11141.37846875
transcript.pyannote[1697].speaker SPEAKER_30
transcript.pyannote[1697].start 11142.00284375
transcript.pyannote[1697].end 11151.28409375
transcript.pyannote[1698].speaker SPEAKER_23
transcript.pyannote[1698].start 11149.46159375
transcript.pyannote[1698].end 11155.85721875
transcript.pyannote[1699].speaker SPEAKER_30
transcript.pyannote[1699].start 11151.52034375
transcript.pyannote[1699].end 11153.22471875
transcript.pyannote[1700].speaker SPEAKER_30
transcript.pyannote[1700].start 11156.46471875
transcript.pyannote[1700].end 11166.10034375
transcript.pyannote[1701].speaker SPEAKER_23
transcript.pyannote[1701].start 11165.08784375
transcript.pyannote[1701].end 11177.59221875
transcript.pyannote[1702].speaker SPEAKER_30
transcript.pyannote[1702].start 11170.38659375
transcript.pyannote[1702].end 11170.75784375
transcript.pyannote[1703].speaker SPEAKER_23
transcript.pyannote[1703].start 11178.01409375
transcript.pyannote[1703].end 11216.97846875
transcript.pyannote[1704].speaker SPEAKER_20
transcript.pyannote[1704].start 11189.60721875
transcript.pyannote[1704].end 11189.62409375
transcript.pyannote[1705].speaker SPEAKER_19
transcript.pyannote[1705].start 11189.62409375
transcript.pyannote[1705].end 11189.64096875
transcript.pyannote[1706].speaker SPEAKER_20
transcript.pyannote[1706].start 11189.64096875
transcript.pyannote[1706].end 11190.21471875
transcript.pyannote[1707].speaker SPEAKER_23
transcript.pyannote[1707].start 11217.26534375
transcript.pyannote[1707].end 11218.61534375
transcript.pyannote[1708].speaker SPEAKER_30
transcript.pyannote[1708].start 11218.96971875
transcript.pyannote[1708].end 11226.20909375
transcript.pyannote[1709].speaker SPEAKER_23
transcript.pyannote[1709].start 11224.21784375
transcript.pyannote[1709].end 11228.40284375
transcript.pyannote[1710].speaker SPEAKER_30
transcript.pyannote[1710].start 11226.47909375
transcript.pyannote[1710].end 11226.61409375
transcript.pyannote[1711].speaker SPEAKER_30
transcript.pyannote[1711].start 11227.74471875
transcript.pyannote[1711].end 11228.38596875
transcript.pyannote[1712].speaker SPEAKER_30
transcript.pyannote[1712].start 11228.40284375
transcript.pyannote[1712].end 11228.67284375
transcript.pyannote[1713].speaker SPEAKER_23
transcript.pyannote[1713].start 11228.67284375
transcript.pyannote[1713].end 11228.75721875
transcript.pyannote[1714].speaker SPEAKER_30
transcript.pyannote[1714].start 11228.75721875
transcript.pyannote[1714].end 11228.85846875
transcript.pyannote[1715].speaker SPEAKER_23
transcript.pyannote[1715].start 11228.85846875
transcript.pyannote[1715].end 11230.07346875
transcript.pyannote[1716].speaker SPEAKER_30
transcript.pyannote[1716].start 11229.41534375
transcript.pyannote[1716].end 11229.43221875
transcript.pyannote[1717].speaker SPEAKER_11
transcript.pyannote[1717].start 11229.43221875
transcript.pyannote[1717].end 11230.30971875
transcript.pyannote[1718].speaker SPEAKER_30
transcript.pyannote[1718].start 11230.07346875
transcript.pyannote[1718].end 11230.09034375
transcript.pyannote[1719].speaker SPEAKER_11
transcript.pyannote[1719].start 11231.64284375
transcript.pyannote[1719].end 11236.48596875
transcript.pyannote[1720].speaker SPEAKER_16
transcript.pyannote[1720].start 11244.48471875
transcript.pyannote[1720].end 11246.49284375
transcript.pyannote[1721].speaker SPEAKER_10
transcript.pyannote[1721].start 11247.04971875
transcript.pyannote[1721].end 11247.89346875
transcript.pyannote[1722].speaker SPEAKER_10
transcript.pyannote[1722].start 11250.23909375
transcript.pyannote[1722].end 11250.62721875
transcript.pyannote[1723].speaker SPEAKER_30
transcript.pyannote[1723].start 11250.62721875
transcript.pyannote[1723].end 11250.64409375
transcript.pyannote[1724].speaker SPEAKER_10
transcript.pyannote[1724].start 11250.64409375
transcript.pyannote[1724].end 11250.66096875
transcript.pyannote[1725].speaker SPEAKER_16
transcript.pyannote[1725].start 11251.13346875
transcript.pyannote[1725].end 11252.82096875
transcript.pyannote[1726].speaker SPEAKER_16
transcript.pyannote[1726].start 11252.90534375
transcript.pyannote[1726].end 11262.57471875
transcript.pyannote[1727].speaker SPEAKER_16
transcript.pyannote[1727].start 11262.91221875
transcript.pyannote[1727].end 11264.00909375
transcript.pyannote[1728].speaker SPEAKER_16
transcript.pyannote[1728].start 11265.52784375
transcript.pyannote[1728].end 11265.66284375
transcript.pyannote[1729].speaker SPEAKER_16
transcript.pyannote[1729].start 11265.81471875
transcript.pyannote[1729].end 11292.03846875
transcript.pyannote[1730].speaker SPEAKER_16
transcript.pyannote[1730].start 11292.59534375
transcript.pyannote[1730].end 11300.50971875
transcript.pyannote[1731].speaker SPEAKER_30
transcript.pyannote[1731].start 11300.37471875
transcript.pyannote[1731].end 11300.69534375
transcript.pyannote[1732].speaker SPEAKER_16
transcript.pyannote[1732].start 11300.69534375
transcript.pyannote[1732].end 11304.18846875
transcript.pyannote[1733].speaker SPEAKER_30
transcript.pyannote[1733].start 11304.50909375
transcript.pyannote[1733].end 11305.45409375
transcript.pyannote[1734].speaker SPEAKER_16
transcript.pyannote[1734].start 11305.62284375
transcript.pyannote[1734].end 11306.70284375
transcript.pyannote[1735].speaker SPEAKER_30
transcript.pyannote[1735].start 11306.51721875
transcript.pyannote[1735].end 11307.47909375
transcript.pyannote[1736].speaker SPEAKER_30
transcript.pyannote[1736].start 11307.73221875
transcript.pyannote[1736].end 11311.02284375
transcript.pyannote[1737].speaker SPEAKER_16
transcript.pyannote[1737].start 11308.13721875
transcript.pyannote[1737].end 11308.50846875
transcript.pyannote[1738].speaker SPEAKER_16
transcript.pyannote[1738].start 11311.02284375
transcript.pyannote[1738].end 11332.08284375
transcript.pyannote[1739].speaker SPEAKER_30
transcript.pyannote[1739].start 11311.66409375
transcript.pyannote[1739].end 11312.54159375
transcript.pyannote[1740].speaker SPEAKER_30
transcript.pyannote[1740].start 11317.33409375
transcript.pyannote[1740].end 11317.70534375
transcript.pyannote[1741].speaker SPEAKER_19
transcript.pyannote[1741].start 11317.70534375
transcript.pyannote[1741].end 11317.75596875
transcript.pyannote[1742].speaker SPEAKER_19
transcript.pyannote[1742].start 11322.64971875
transcript.pyannote[1742].end 11323.24034375
transcript.pyannote[1743].speaker SPEAKER_30
transcript.pyannote[1743].start 11331.08721875
transcript.pyannote[1743].end 11331.72846875
transcript.pyannote[1744].speaker SPEAKER_30
transcript.pyannote[1744].start 11333.41596875
transcript.pyannote[1744].end 11335.52534375
transcript.pyannote[1745].speaker SPEAKER_16
transcript.pyannote[1745].start 11334.31034375
transcript.pyannote[1745].end 11335.00221875
transcript.pyannote[1746].speaker SPEAKER_16
transcript.pyannote[1746].start 11335.35659375
transcript.pyannote[1746].end 11438.02409375
transcript.pyannote[1747].speaker SPEAKER_30
transcript.pyannote[1747].start 11336.06534375
transcript.pyannote[1747].end 11336.60534375
transcript.pyannote[1748].speaker SPEAKER_30
transcript.pyannote[1748].start 11337.28034375
transcript.pyannote[1748].end 11338.90034375
transcript.pyannote[1749].speaker SPEAKER_30
transcript.pyannote[1749].start 11342.19096875
transcript.pyannote[1749].end 11342.69721875
transcript.pyannote[1750].speaker SPEAKER_30
transcript.pyannote[1750].start 11437.60221875
transcript.pyannote[1750].end 11440.77471875
transcript.pyannote[1751].speaker SPEAKER_16
transcript.pyannote[1751].start 11438.59784375
transcript.pyannote[1751].end 11438.66534375
transcript.pyannote[1752].speaker SPEAKER_16
transcript.pyannote[1752].start 11438.69909375
transcript.pyannote[1752].end 11438.71596875
transcript.pyannote[1753].speaker SPEAKER_16
transcript.pyannote[1753].start 11440.03221875
transcript.pyannote[1753].end 11440.20096875
transcript.pyannote[1754].speaker SPEAKER_16
transcript.pyannote[1754].start 11440.58909375
transcript.pyannote[1754].end 11460.33284375
transcript.pyannote[1755].speaker SPEAKER_16
transcript.pyannote[1755].start 11460.73784375
transcript.pyannote[1755].end 11465.14221875
transcript.pyannote[1756].speaker SPEAKER_30
transcript.pyannote[1756].start 11465.64846875
transcript.pyannote[1756].end 11470.00221875
transcript.pyannote[1757].speaker SPEAKER_30
transcript.pyannote[1757].start 11470.37346875
transcript.pyannote[1757].end 11472.63471875
transcript.pyannote[1758].speaker SPEAKER_30
transcript.pyannote[1758].start 11472.92159375
transcript.pyannote[1758].end 11478.33846875
transcript.pyannote[1759].speaker SPEAKER_16
transcript.pyannote[1759].start 11478.69284375
transcript.pyannote[1759].end 11523.51284375
transcript.pyannote[1760].speaker SPEAKER_19
transcript.pyannote[1760].start 11496.04034375
transcript.pyannote[1760].end 11496.05721875
transcript.pyannote[1761].speaker SPEAKER_14
transcript.pyannote[1761].start 11496.05721875
transcript.pyannote[1761].end 11496.49596875
transcript.pyannote[1762].speaker SPEAKER_19
transcript.pyannote[1762].start 11496.49596875
transcript.pyannote[1762].end 11496.56346875
transcript.pyannote[1763].speaker SPEAKER_14
transcript.pyannote[1763].start 11500.27596875
transcript.pyannote[1763].end 11500.42784375
transcript.pyannote[1764].speaker SPEAKER_19
transcript.pyannote[1764].start 11500.42784375
transcript.pyannote[1764].end 11500.44471875
transcript.pyannote[1765].speaker SPEAKER_14
transcript.pyannote[1765].start 11500.44471875
transcript.pyannote[1765].end 11500.52909375
transcript.pyannote[1766].speaker SPEAKER_14
transcript.pyannote[1766].start 11505.70971875
transcript.pyannote[1766].end 11507.44784375
transcript.pyannote[1767].speaker SPEAKER_14
transcript.pyannote[1767].start 11514.33284375
transcript.pyannote[1767].end 11514.77159375
transcript.pyannote[1768].speaker SPEAKER_18
transcript.pyannote[1768].start 11521.62284375
transcript.pyannote[1768].end 11521.67346875
transcript.pyannote[1769].speaker SPEAKER_30
transcript.pyannote[1769].start 11521.67346875
transcript.pyannote[1769].end 11522.09534375
transcript.pyannote[1770].speaker SPEAKER_16
transcript.pyannote[1770].start 11523.98534375
transcript.pyannote[1770].end 11527.12409375
transcript.pyannote[1771].speaker SPEAKER_30
transcript.pyannote[1771].start 11527.32659375
transcript.pyannote[1771].end 11529.75659375
transcript.pyannote[1772].speaker SPEAKER_16
transcript.pyannote[1772].start 11529.68909375
transcript.pyannote[1772].end 11529.73971875
transcript.pyannote[1773].speaker SPEAKER_16
transcript.pyannote[1773].start 11529.75659375
transcript.pyannote[1773].end 11529.99284375
transcript.pyannote[1774].speaker SPEAKER_30
transcript.pyannote[1774].start 11529.99284375
transcript.pyannote[1774].end 11533.58721875
transcript.pyannote[1775].speaker SPEAKER_19
transcript.pyannote[1775].start 11533.55346875
transcript.pyannote[1775].end 11533.84034375
transcript.pyannote[1776].speaker SPEAKER_30
transcript.pyannote[1776].start 11533.63784375
transcript.pyannote[1776].end 11546.14221875
transcript.pyannote[1777].speaker SPEAKER_30
transcript.pyannote[1777].start 11546.36159375
transcript.pyannote[1777].end 11553.06096875
transcript.pyannote[1778].speaker SPEAKER_19
transcript.pyannote[1778].start 11553.06096875
transcript.pyannote[1778].end 11553.58409375
transcript.pyannote[1779].speaker SPEAKER_30
transcript.pyannote[1779].start 11553.21284375
transcript.pyannote[1779].end 11556.75659375
transcript.pyannote[1780].speaker SPEAKER_19
transcript.pyannote[1780].start 11556.73971875
transcript.pyannote[1780].end 11557.43159375
transcript.pyannote[1781].speaker SPEAKER_30
transcript.pyannote[1781].start 11556.95909375
transcript.pyannote[1781].end 11563.52346875
transcript.pyannote[1782].speaker SPEAKER_19
transcript.pyannote[1782].start 11563.52346875
transcript.pyannote[1782].end 11563.81034375
transcript.pyannote[1783].speaker SPEAKER_30
transcript.pyannote[1783].start 11563.79346875
transcript.pyannote[1783].end 11564.63721875
transcript.pyannote[1784].speaker SPEAKER_05
transcript.pyannote[1784].start 11563.81034375
transcript.pyannote[1784].end 11563.82721875
transcript.pyannote[1785].speaker SPEAKER_30
transcript.pyannote[1785].start 11564.99159375
transcript.pyannote[1785].end 11573.24346875
transcript.pyannote[1786].speaker SPEAKER_16
transcript.pyannote[1786].start 11573.24346875
transcript.pyannote[1786].end 11589.84846875
transcript.pyannote[1787].speaker SPEAKER_30
transcript.pyannote[1787].start 11580.55034375
transcript.pyannote[1787].end 11580.60096875
transcript.pyannote[1788].speaker SPEAKER_19
transcript.pyannote[1788].start 11580.60096875
transcript.pyannote[1788].end 11581.52909375
transcript.pyannote[1789].speaker SPEAKER_30
transcript.pyannote[1789].start 11589.30846875
transcript.pyannote[1789].end 11590.54034375
transcript.pyannote[1790].speaker SPEAKER_16
transcript.pyannote[1790].start 11590.25346875
transcript.pyannote[1790].end 11600.58096875
transcript.pyannote[1791].speaker SPEAKER_11
transcript.pyannote[1791].start 11598.99471875
transcript.pyannote[1791].end 11599.78784375
transcript.pyannote[1792].speaker SPEAKER_11
transcript.pyannote[1792].start 11602.45409375
transcript.pyannote[1792].end 11603.21346875
transcript.pyannote[1793].speaker SPEAKER_11
transcript.pyannote[1793].start 11605.13721875
transcript.pyannote[1793].end 11610.33471875
transcript.pyannote[1794].speaker SPEAKER_11
transcript.pyannote[1794].start 11610.84096875
transcript.pyannote[1794].end 11616.25784375
transcript.pyannote[1795].speaker SPEAKER_11
transcript.pyannote[1795].start 11617.48971875
transcript.pyannote[1795].end 11620.22346875
transcript.pyannote[1796].speaker SPEAKER_07
transcript.pyannote[1796].start 11626.68659375
transcript.pyannote[1796].end 11630.01096875
transcript.pyannote[1797].speaker SPEAKER_07
transcript.pyannote[1797].start 11632.27221875
transcript.pyannote[1797].end 11668.95846875
transcript.pyannote[1798].speaker SPEAKER_30
transcript.pyannote[1798].start 11632.55909375
transcript.pyannote[1798].end 11633.40284375
transcript.pyannote[1799].speaker SPEAKER_07
transcript.pyannote[1799].start 11669.11034375
transcript.pyannote[1799].end 11685.29346875
transcript.pyannote[1800].speaker SPEAKER_07
transcript.pyannote[1800].start 11685.56346875
transcript.pyannote[1800].end 11689.15784375
transcript.pyannote[1801].speaker SPEAKER_07
transcript.pyannote[1801].start 11689.68096875
transcript.pyannote[1801].end 11690.35596875
transcript.pyannote[1802].speaker SPEAKER_07
transcript.pyannote[1802].start 11691.65534375
transcript.pyannote[1802].end 11691.82409375
transcript.pyannote[1803].speaker SPEAKER_07
transcript.pyannote[1803].start 11692.17846875
transcript.pyannote[1803].end 11750.44784375
transcript.pyannote[1804].speaker SPEAKER_07
transcript.pyannote[1804].start 11751.02159375
transcript.pyannote[1804].end 11754.93659375
transcript.pyannote[1805].speaker SPEAKER_30
transcript.pyannote[1805].start 11755.74659375
transcript.pyannote[1805].end 11756.65784375
transcript.pyannote[1806].speaker SPEAKER_07
transcript.pyannote[1806].start 11756.65784375
transcript.pyannote[1806].end 11756.70846875
transcript.pyannote[1807].speaker SPEAKER_30
transcript.pyannote[1807].start 11756.92784375
transcript.pyannote[1807].end 11758.02471875
transcript.pyannote[1808].speaker SPEAKER_07
transcript.pyannote[1808].start 11758.02471875
transcript.pyannote[1808].end 11758.34534375
transcript.pyannote[1809].speaker SPEAKER_30
transcript.pyannote[1809].start 11758.34534375
transcript.pyannote[1809].end 11760.03284375
transcript.pyannote[1810].speaker SPEAKER_07
transcript.pyannote[1810].start 11758.37909375
transcript.pyannote[1810].end 11758.96971875
transcript.pyannote[1811].speaker SPEAKER_07
transcript.pyannote[1811].start 11760.03284375
transcript.pyannote[1811].end 11801.03909375
transcript.pyannote[1812].speaker SPEAKER_30
transcript.pyannote[1812].start 11760.21846875
transcript.pyannote[1812].end 11761.55159375
transcript.pyannote[1813].speaker SPEAKER_30
transcript.pyannote[1813].start 11761.60221875
transcript.pyannote[1813].end 11761.95659375
transcript.pyannote[1814].speaker SPEAKER_30
transcript.pyannote[1814].start 11763.35721875
transcript.pyannote[1814].end 11763.69471875
transcript.pyannote[1815].speaker SPEAKER_30
transcript.pyannote[1815].start 11765.77034375
transcript.pyannote[1815].end 11766.46221875
transcript.pyannote[1816].speaker SPEAKER_00
transcript.pyannote[1816].start 11770.51221875
transcript.pyannote[1816].end 11770.56284375
transcript.pyannote[1817].speaker SPEAKER_20
transcript.pyannote[1817].start 11770.56284375
transcript.pyannote[1817].end 11770.95096875
transcript.pyannote[1818].speaker SPEAKER_07
transcript.pyannote[1818].start 11801.62971875
transcript.pyannote[1818].end 11819.41596875
transcript.pyannote[1819].speaker SPEAKER_30
transcript.pyannote[1819].start 11803.50284375
transcript.pyannote[1819].end 11804.97096875
transcript.pyannote[1820].speaker SPEAKER_00
transcript.pyannote[1820].start 11804.97096875
transcript.pyannote[1820].end 11806.03409375
transcript.pyannote[1821].speaker SPEAKER_19
transcript.pyannote[1821].start 11806.03409375
transcript.pyannote[1821].end 11806.43909375
transcript.pyannote[1822].speaker SPEAKER_30
transcript.pyannote[1822].start 11819.41596875
transcript.pyannote[1822].end 11821.40721875
transcript.pyannote[1823].speaker SPEAKER_07
transcript.pyannote[1823].start 11820.85034375
transcript.pyannote[1823].end 11826.85784375
transcript.pyannote[1824].speaker SPEAKER_30
transcript.pyannote[1824].start 11822.79096875
transcript.pyannote[1824].end 11826.67221875
transcript.pyannote[1825].speaker SPEAKER_11
transcript.pyannote[1825].start 11826.67221875
transcript.pyannote[1825].end 11826.72284375
transcript.pyannote[1826].speaker SPEAKER_30
transcript.pyannote[1826].start 11826.72284375
transcript.pyannote[1826].end 11826.73971875
transcript.pyannote[1827].speaker SPEAKER_11
transcript.pyannote[1827].start 11826.73971875
transcript.pyannote[1827].end 11826.77346875
transcript.pyannote[1828].speaker SPEAKER_11
transcript.pyannote[1828].start 11829.25409375
transcript.pyannote[1828].end 11830.11471875
transcript.pyannote[1829].speaker SPEAKER_11
transcript.pyannote[1829].start 11830.63784375
transcript.pyannote[1829].end 11830.73909375
transcript.pyannote[1830].speaker SPEAKER_11
transcript.pyannote[1830].start 11831.68409375
transcript.pyannote[1830].end 11836.30784375
transcript.pyannote[1831].speaker SPEAKER_11
transcript.pyannote[1831].start 11836.59471875
transcript.pyannote[1831].end 11841.11721875
transcript.pyannote[1832].speaker SPEAKER_11
transcript.pyannote[1832].start 11841.45471875
transcript.pyannote[1832].end 11843.26034375
transcript.pyannote[1833].speaker SPEAKER_09
transcript.pyannote[1833].start 11849.60534375
transcript.pyannote[1833].end 11850.88784375
transcript.pyannote[1834].speaker SPEAKER_09
transcript.pyannote[1834].start 11855.07284375
transcript.pyannote[1834].end 11855.61284375
transcript.pyannote[1835].speaker SPEAKER_09
transcript.pyannote[1835].start 11856.15284375
transcript.pyannote[1835].end 11862.70034375
transcript.pyannote[1836].speaker SPEAKER_09
transcript.pyannote[1836].start 11863.20659375
transcript.pyannote[1836].end 11864.42159375
transcript.pyannote[1837].speaker SPEAKER_09
transcript.pyannote[1837].start 11864.89409375
transcript.pyannote[1837].end 11866.59846875
transcript.pyannote[1838].speaker SPEAKER_09
transcript.pyannote[1838].start 11867.10471875
transcript.pyannote[1838].end 11869.87221875
transcript.pyannote[1839].speaker SPEAKER_09
transcript.pyannote[1839].start 11870.07471875
transcript.pyannote[1839].end 11877.36471875
transcript.pyannote[1840].speaker SPEAKER_09
transcript.pyannote[1840].start 11877.98909375
transcript.pyannote[1840].end 11889.02534375
transcript.pyannote[1841].speaker SPEAKER_09
transcript.pyannote[1841].start 11889.41346875
transcript.pyannote[1841].end 11894.72909375
transcript.pyannote[1842].speaker SPEAKER_09
transcript.pyannote[1842].start 11895.70784375
transcript.pyannote[1842].end 11898.39096875
transcript.pyannote[1843].speaker SPEAKER_30
transcript.pyannote[1843].start 11896.09596875
transcript.pyannote[1843].end 11896.23096875
transcript.pyannote[1844].speaker SPEAKER_30
transcript.pyannote[1844].start 11899.18409375
transcript.pyannote[1844].end 11914.28721875
transcript.pyannote[1845].speaker SPEAKER_09
transcript.pyannote[1845].start 11902.98096875
transcript.pyannote[1845].end 11903.18346875
transcript.pyannote[1846].speaker SPEAKER_09
transcript.pyannote[1846].start 11909.14034375
transcript.pyannote[1846].end 11909.35971875
transcript.pyannote[1847].speaker SPEAKER_09
transcript.pyannote[1847].start 11912.93721875
transcript.pyannote[1847].end 11933.00159375
transcript.pyannote[1848].speaker SPEAKER_09
transcript.pyannote[1848].start 11933.62596875
transcript.pyannote[1848].end 11934.46971875
transcript.pyannote[1849].speaker SPEAKER_09
transcript.pyannote[1849].start 11935.29659375
transcript.pyannote[1849].end 11942.55284375
transcript.pyannote[1850].speaker SPEAKER_09
transcript.pyannote[1850].start 11943.14346875
transcript.pyannote[1850].end 11947.61534375
transcript.pyannote[1851].speaker SPEAKER_09
transcript.pyannote[1851].start 11947.73346875
transcript.pyannote[1851].end 11950.24784375
transcript.pyannote[1852].speaker SPEAKER_30
transcript.pyannote[1852].start 11947.81784375
transcript.pyannote[1852].end 11949.89346875
transcript.pyannote[1853].speaker SPEAKER_09
transcript.pyannote[1853].start 11950.65284375
transcript.pyannote[1853].end 11956.91346875
transcript.pyannote[1854].speaker SPEAKER_30
transcript.pyannote[1854].start 11957.20034375
transcript.pyannote[1854].end 11961.40221875
transcript.pyannote[1855].speaker SPEAKER_09
transcript.pyannote[1855].start 11959.98471875
transcript.pyannote[1855].end 11964.76034375
transcript.pyannote[1856].speaker SPEAKER_30
transcript.pyannote[1856].start 11961.65534375
transcript.pyannote[1856].end 11962.02659375
transcript.pyannote[1857].speaker SPEAKER_09
transcript.pyannote[1857].start 11965.13159375
transcript.pyannote[1857].end 11965.73909375
transcript.pyannote[1858].speaker SPEAKER_30
transcript.pyannote[1858].start 11965.73909375
transcript.pyannote[1858].end 11968.45596875
transcript.pyannote[1859].speaker SPEAKER_09
transcript.pyannote[1859].start 11965.78971875
transcript.pyannote[1859].end 11966.48159375
transcript.pyannote[1860].speaker SPEAKER_09
transcript.pyannote[1860].start 11966.98784375
transcript.pyannote[1860].end 11967.24096875
transcript.pyannote[1861].speaker SPEAKER_09
transcript.pyannote[1861].start 11967.78096875
transcript.pyannote[1861].end 11978.26034375
transcript.pyannote[1862].speaker SPEAKER_30
transcript.pyannote[1862].start 11969.67096875
transcript.pyannote[1862].end 11969.89034375
transcript.pyannote[1863].speaker SPEAKER_30
transcript.pyannote[1863].start 11970.29534375
transcript.pyannote[1863].end 11970.76784375
transcript.pyannote[1864].speaker SPEAKER_30
transcript.pyannote[1864].start 11974.15971875
transcript.pyannote[1864].end 11977.65284375
transcript.pyannote[1865].speaker SPEAKER_09
transcript.pyannote[1865].start 11978.56409375
transcript.pyannote[1865].end 11990.88284375
transcript.pyannote[1866].speaker SPEAKER_30
transcript.pyannote[1866].start 11981.12909375
transcript.pyannote[1866].end 11981.93909375
transcript.pyannote[1867].speaker SPEAKER_19
transcript.pyannote[1867].start 11981.93909375
transcript.pyannote[1867].end 11981.97284375
transcript.pyannote[1868].speaker SPEAKER_30
transcript.pyannote[1868].start 11984.47034375
transcript.pyannote[1868].end 11984.48721875
transcript.pyannote[1869].speaker SPEAKER_02
transcript.pyannote[1869].start 11984.48721875
transcript.pyannote[1869].end 11984.90909375
transcript.pyannote[1870].speaker SPEAKER_02
transcript.pyannote[1870].start 11990.88284375
transcript.pyannote[1870].end 11991.00096875
transcript.pyannote[1871].speaker SPEAKER_09
transcript.pyannote[1871].start 11991.00096875
transcript.pyannote[1871].end 12001.05846875
transcript.pyannote[1872].speaker SPEAKER_02
transcript.pyannote[1872].start 11991.03471875
transcript.pyannote[1872].end 11991.05159375
transcript.pyannote[1873].speaker SPEAKER_09
transcript.pyannote[1873].start 12001.78409375
transcript.pyannote[1873].end 12008.78721875
transcript.pyannote[1874].speaker SPEAKER_09
transcript.pyannote[1874].start 12009.14159375
transcript.pyannote[1874].end 12028.75034375
transcript.pyannote[1875].speaker SPEAKER_08
transcript.pyannote[1875].start 12019.46909375
transcript.pyannote[1875].end 12019.48596875
transcript.pyannote[1876].speaker SPEAKER_20
transcript.pyannote[1876].start 12019.48596875
transcript.pyannote[1876].end 12019.97534375
transcript.pyannote[1877].speaker SPEAKER_08
transcript.pyannote[1877].start 12019.97534375
transcript.pyannote[1877].end 12020.71784375
transcript.pyannote[1878].speaker SPEAKER_20
transcript.pyannote[1878].start 12021.93284375
transcript.pyannote[1878].end 12022.20284375
transcript.pyannote[1879].speaker SPEAKER_00
transcript.pyannote[1879].start 12022.20284375
transcript.pyannote[1879].end 12022.25346875
transcript.pyannote[1880].speaker SPEAKER_09
transcript.pyannote[1880].start 12029.42534375
transcript.pyannote[1880].end 12032.39534375
transcript.pyannote[1881].speaker SPEAKER_09
transcript.pyannote[1881].start 12032.64846875
transcript.pyannote[1881].end 12036.00659375
transcript.pyannote[1882].speaker SPEAKER_09
transcript.pyannote[1882].start 12036.52971875
transcript.pyannote[1882].end 12042.30096875
transcript.pyannote[1883].speaker SPEAKER_09
transcript.pyannote[1883].start 12043.78596875
transcript.pyannote[1883].end 12052.03784375
transcript.pyannote[1884].speaker SPEAKER_09
transcript.pyannote[1884].start 12052.49346875
transcript.pyannote[1884].end 12053.06721875
transcript.pyannote[1885].speaker SPEAKER_09
transcript.pyannote[1885].start 12053.40471875
transcript.pyannote[1885].end 12054.85596875
transcript.pyannote[1886].speaker SPEAKER_09
transcript.pyannote[1886].start 12054.99096875
transcript.pyannote[1886].end 12057.64034375
transcript.pyannote[1887].speaker SPEAKER_09
transcript.pyannote[1887].start 12058.23096875
transcript.pyannote[1887].end 12062.63534375
transcript.pyannote[1888].speaker SPEAKER_30
transcript.pyannote[1888].start 12062.83784375
transcript.pyannote[1888].end 12063.15846875
transcript.pyannote[1889].speaker SPEAKER_09
transcript.pyannote[1889].start 12063.20909375
transcript.pyannote[1889].end 12073.51971875
transcript.pyannote[1890].speaker SPEAKER_20
transcript.pyannote[1890].start 12068.37284375
transcript.pyannote[1890].end 12068.54159375
transcript.pyannote[1891].speaker SPEAKER_20
transcript.pyannote[1891].start 12068.57534375
transcript.pyannote[1891].end 12068.96346875
transcript.pyannote[1892].speaker SPEAKER_20
transcript.pyannote[1892].start 12070.75221875
transcript.pyannote[1892].end 12070.98846875
transcript.pyannote[1893].speaker SPEAKER_20
transcript.pyannote[1893].start 12073.11471875
transcript.pyannote[1893].end 12074.88659375
transcript.pyannote[1894].speaker SPEAKER_09
transcript.pyannote[1894].start 12073.65471875
transcript.pyannote[1894].end 12075.03846875
transcript.pyannote[1895].speaker SPEAKER_11
transcript.pyannote[1895].start 12074.88659375
transcript.pyannote[1895].end 12074.98784375
transcript.pyannote[1896].speaker SPEAKER_11
transcript.pyannote[1896].start 12075.03846875
transcript.pyannote[1896].end 12075.12284375
transcript.pyannote[1897].speaker SPEAKER_11
transcript.pyannote[1897].start 12076.08471875
transcript.pyannote[1897].end 12077.68784375
transcript.pyannote[1898].speaker SPEAKER_10
transcript.pyannote[1898].start 12516.43784375
transcript.pyannote[1898].end 12516.45471875
transcript.pyannote[1899].speaker SPEAKER_11
transcript.pyannote[1899].start 12516.45471875
transcript.pyannote[1899].end 12534.73034375
transcript.pyannote[1900].speaker SPEAKER_06
transcript.pyannote[1900].start 12540.19784375
transcript.pyannote[1900].end 12544.07909375
transcript.pyannote[1901].speaker SPEAKER_06
transcript.pyannote[1901].start 12544.11284375
transcript.pyannote[1901].end 12545.22659375
transcript.pyannote[1902].speaker SPEAKER_06
transcript.pyannote[1902].start 12547.77471875
transcript.pyannote[1902].end 12548.02784375
transcript.pyannote[1903].speaker SPEAKER_06
transcript.pyannote[1903].start 12548.71971875
transcript.pyannote[1903].end 12561.44346875
transcript.pyannote[1904].speaker SPEAKER_30
transcript.pyannote[1904].start 12562.06784375
transcript.pyannote[1904].end 12563.02971875
transcript.pyannote[1905].speaker SPEAKER_06
transcript.pyannote[1905].start 12563.02971875
transcript.pyannote[1905].end 12569.39159375
transcript.pyannote[1906].speaker SPEAKER_06
transcript.pyannote[1906].start 12570.25221875
transcript.pyannote[1906].end 12586.13159375
transcript.pyannote[1907].speaker SPEAKER_06
transcript.pyannote[1907].start 12586.99221875
transcript.pyannote[1907].end 12587.00909375
transcript.pyannote[1908].speaker SPEAKER_30
transcript.pyannote[1908].start 12587.00909375
transcript.pyannote[1908].end 12594.11346875
transcript.pyannote[1909].speaker SPEAKER_06
transcript.pyannote[1909].start 12593.03346875
transcript.pyannote[1909].end 12596.84721875
transcript.pyannote[1910].speaker SPEAKER_06
transcript.pyannote[1910].start 12597.48846875
transcript.pyannote[1910].end 12679.72034375
transcript.pyannote[1911].speaker SPEAKER_06
transcript.pyannote[1911].start 12680.34471875
transcript.pyannote[1911].end 12686.31846875
transcript.pyannote[1912].speaker SPEAKER_06
transcript.pyannote[1912].start 12687.70221875
transcript.pyannote[1912].end 12690.40221875
transcript.pyannote[1913].speaker SPEAKER_06
transcript.pyannote[1913].start 12691.65096875
transcript.pyannote[1913].end 12693.28784375
transcript.pyannote[1914].speaker SPEAKER_30
transcript.pyannote[1914].start 12692.98409375
transcript.pyannote[1914].end 12694.18221875
transcript.pyannote[1915].speaker SPEAKER_06
transcript.pyannote[1915].start 12694.18221875
transcript.pyannote[1915].end 12698.01284375
transcript.pyannote[1916].speaker SPEAKER_30
transcript.pyannote[1916].start 12695.26221875
transcript.pyannote[1916].end 12695.66721875
transcript.pyannote[1917].speaker SPEAKER_30
transcript.pyannote[1917].start 12696.78096875
transcript.pyannote[1917].end 12699.46409375
transcript.pyannote[1918].speaker SPEAKER_06
transcript.pyannote[1918].start 12698.51909375
transcript.pyannote[1918].end 12704.45909375
transcript.pyannote[1919].speaker SPEAKER_30
transcript.pyannote[1919].start 12706.24784375
transcript.pyannote[1919].end 12706.29846875
transcript.pyannote[1920].speaker SPEAKER_06
transcript.pyannote[1920].start 12706.29846875
transcript.pyannote[1920].end 12706.39971875
transcript.pyannote[1921].speaker SPEAKER_30
transcript.pyannote[1921].start 12706.39971875
transcript.pyannote[1921].end 12708.47534375
transcript.pyannote[1922].speaker SPEAKER_06
transcript.pyannote[1922].start 12706.75409375
transcript.pyannote[1922].end 12707.53034375
transcript.pyannote[1923].speaker SPEAKER_06
transcript.pyannote[1923].start 12708.64409375
transcript.pyannote[1923].end 12727.22346875
transcript.pyannote[1924].speaker SPEAKER_06
transcript.pyannote[1924].start 12727.32471875
transcript.pyannote[1924].end 12734.58096875
transcript.pyannote[1925].speaker SPEAKER_06
transcript.pyannote[1925].start 12735.17159375
transcript.pyannote[1925].end 12747.77721875
transcript.pyannote[1926].speaker SPEAKER_06
transcript.pyannote[1926].start 12748.77284375
transcript.pyannote[1926].end 12749.92034375
transcript.pyannote[1927].speaker SPEAKER_06
transcript.pyannote[1927].start 12750.34221875
transcript.pyannote[1927].end 12752.04659375
transcript.pyannote[1928].speaker SPEAKER_06
transcript.pyannote[1928].start 12753.05909375
transcript.pyannote[1928].end 12754.40909375
transcript.pyannote[1929].speaker SPEAKER_06
transcript.pyannote[1929].start 12755.50596875
transcript.pyannote[1929].end 12758.37471875
transcript.pyannote[1930].speaker SPEAKER_06
transcript.pyannote[1930].start 12759.37034375
transcript.pyannote[1930].end 12762.25596875
transcript.pyannote[1931].speaker SPEAKER_06
transcript.pyannote[1931].start 12763.70721875
transcript.pyannote[1931].end 12774.67596875
transcript.pyannote[1932].speaker SPEAKER_20
transcript.pyannote[1932].start 12763.84221875
transcript.pyannote[1932].end 12764.01096875
transcript.pyannote[1933].speaker SPEAKER_30
transcript.pyannote[1933].start 12764.01096875
transcript.pyannote[1933].end 12764.53409375
transcript.pyannote[1934].speaker SPEAKER_20
transcript.pyannote[1934].start 12764.53409375
transcript.pyannote[1934].end 12765.02346875
transcript.pyannote[1935].speaker SPEAKER_29
transcript.pyannote[1935].start 12765.02346875
transcript.pyannote[1935].end 12765.83346875
transcript.pyannote[1936].speaker SPEAKER_06
transcript.pyannote[1936].start 12775.13159375
transcript.pyannote[1936].end 12780.02534375
transcript.pyannote[1937].speaker SPEAKER_06
transcript.pyannote[1937].start 12780.19409375
transcript.pyannote[1937].end 12785.81346875
transcript.pyannote[1938].speaker SPEAKER_06
transcript.pyannote[1938].start 12786.04971875
transcript.pyannote[1938].end 12809.10096875
transcript.pyannote[1939].speaker SPEAKER_06
transcript.pyannote[1939].start 12809.45534375
transcript.pyannote[1939].end 12818.21346875
transcript.pyannote[1940].speaker SPEAKER_30
transcript.pyannote[1940].start 12813.96096875
transcript.pyannote[1940].end 12815.54721875
transcript.pyannote[1941].speaker SPEAKER_30
transcript.pyannote[1941].start 12818.21346875
transcript.pyannote[1941].end 12818.24721875
transcript.pyannote[1942].speaker SPEAKER_30
transcript.pyannote[1942].start 12818.65221875
transcript.pyannote[1942].end 12832.54034375
transcript.pyannote[1943].speaker SPEAKER_06
transcript.pyannote[1943].start 12828.59159375
transcript.pyannote[1943].end 12829.67159375
transcript.pyannote[1944].speaker SPEAKER_30
transcript.pyannote[1944].start 12833.31659375
transcript.pyannote[1944].end 12844.80846875
transcript.pyannote[1945].speaker SPEAKER_06
transcript.pyannote[1945].start 12838.66596875
transcript.pyannote[1945].end 12839.99909375
transcript.pyannote[1946].speaker SPEAKER_06
transcript.pyannote[1946].start 12841.45034375
transcript.pyannote[1946].end 12842.39534375
transcript.pyannote[1947].speaker SPEAKER_06
transcript.pyannote[1947].start 12844.80846875
transcript.pyannote[1947].end 12844.92659375
transcript.pyannote[1948].speaker SPEAKER_30
transcript.pyannote[1948].start 12844.92659375
transcript.pyannote[1948].end 12845.02784375
transcript.pyannote[1949].speaker SPEAKER_06
transcript.pyannote[1949].start 12845.02784375
transcript.pyannote[1949].end 12847.57596875
transcript.pyannote[1950].speaker SPEAKER_30
transcript.pyannote[1950].start 12848.01471875
transcript.pyannote[1950].end 12848.70659375
transcript.pyannote[1951].speaker SPEAKER_06
transcript.pyannote[1951].start 12848.70659375
transcript.pyannote[1951].end 12851.57534375
transcript.pyannote[1952].speaker SPEAKER_30
transcript.pyannote[1952].start 12848.89221875
transcript.pyannote[1952].end 12849.97221875
transcript.pyannote[1953].speaker SPEAKER_15
transcript.pyannote[1953].start 12854.05596875
transcript.pyannote[1953].end 12869.31096875
transcript.pyannote[1954].speaker SPEAKER_06
transcript.pyannote[1954].start 12868.38284375
transcript.pyannote[1954].end 12897.86346875
transcript.pyannote[1955].speaker SPEAKER_06
transcript.pyannote[1955].start 12898.90971875
transcript.pyannote[1955].end 12902.79096875
transcript.pyannote[1956].speaker SPEAKER_06
transcript.pyannote[1956].start 12903.26346875
transcript.pyannote[1956].end 12916.07159375
transcript.pyannote[1957].speaker SPEAKER_06
transcript.pyannote[1957].start 12918.63659375
transcript.pyannote[1957].end 12921.45471875
transcript.pyannote[1958].speaker SPEAKER_30
transcript.pyannote[1958].start 12920.44221875
transcript.pyannote[1958].end 12921.99471875
transcript.pyannote[1959].speaker SPEAKER_06
transcript.pyannote[1959].start 12921.99471875
transcript.pyannote[1959].end 12950.07471875
transcript.pyannote[1960].speaker SPEAKER_30
transcript.pyannote[1960].start 12922.01159375
transcript.pyannote[1960].end 12922.99034375
transcript.pyannote[1961].speaker SPEAKER_06
transcript.pyannote[1961].start 12950.58096875
transcript.pyannote[1961].end 12963.49034375
transcript.pyannote[1962].speaker SPEAKER_06
transcript.pyannote[1962].start 12965.00909375
transcript.pyannote[1962].end 12968.51909375
transcript.pyannote[1963].speaker SPEAKER_06
transcript.pyannote[1963].start 12969.78471875
transcript.pyannote[1963].end 12972.55221875
transcript.pyannote[1964].speaker SPEAKER_06
transcript.pyannote[1964].start 12973.17659375
transcript.pyannote[1964].end 12974.83034375
transcript.pyannote[1965].speaker SPEAKER_30
transcript.pyannote[1965].start 12976.01159375
transcript.pyannote[1965].end 12976.12971875
transcript.pyannote[1966].speaker SPEAKER_06
transcript.pyannote[1966].start 12976.12971875
transcript.pyannote[1966].end 12976.18034375
transcript.pyannote[1967].speaker SPEAKER_30
transcript.pyannote[1967].start 12976.18034375
transcript.pyannote[1967].end 12981.78284375
transcript.pyannote[1968].speaker SPEAKER_06
transcript.pyannote[1968].start 12978.93096875
transcript.pyannote[1968].end 12984.33096875
transcript.pyannote[1969].speaker SPEAKER_06
transcript.pyannote[1969].start 12984.65159375
transcript.pyannote[1969].end 12986.87909375
transcript.pyannote[1970].speaker SPEAKER_06
transcript.pyannote[1970].start 12988.17846875
transcript.pyannote[1970].end 12994.75971875
transcript.pyannote[1971].speaker SPEAKER_06
transcript.pyannote[1971].start 12994.92846875
transcript.pyannote[1971].end 12995.97471875
transcript.pyannote[1972].speaker SPEAKER_06
transcript.pyannote[1972].start 12997.30784375
transcript.pyannote[1972].end 12999.26534375
transcript.pyannote[1973].speaker SPEAKER_30
transcript.pyannote[1973].start 12999.26534375
transcript.pyannote[1973].end 12999.41721875
transcript.pyannote[1974].speaker SPEAKER_06
transcript.pyannote[1974].start 12999.41721875
transcript.pyannote[1974].end 13003.65284375
transcript.pyannote[1975].speaker SPEAKER_30
transcript.pyannote[1975].start 13001.37471875
transcript.pyannote[1975].end 13001.50971875
transcript.pyannote[1976].speaker SPEAKER_19
transcript.pyannote[1976].start 13001.50971875
transcript.pyannote[1976].end 13001.56034375
transcript.pyannote[1977].speaker SPEAKER_30
transcript.pyannote[1977].start 13001.56034375
transcript.pyannote[1977].end 13001.96534375
transcript.pyannote[1978].speaker SPEAKER_06
transcript.pyannote[1978].start 13004.20971875
transcript.pyannote[1978].end 13011.70221875
transcript.pyannote[1979].speaker SPEAKER_06
transcript.pyannote[1979].start 13012.27596875
transcript.pyannote[1979].end 13013.50784375
transcript.pyannote[1980].speaker SPEAKER_06
transcript.pyannote[1980].start 13015.53284375
transcript.pyannote[1980].end 13016.35971875
transcript.pyannote[1981].speaker SPEAKER_06
transcript.pyannote[1981].start 13017.06846875
transcript.pyannote[1981].end 13018.90784375
transcript.pyannote[1982].speaker SPEAKER_06
transcript.pyannote[1982].start 13019.39721875
transcript.pyannote[1982].end 13022.43471875
transcript.pyannote[1983].speaker SPEAKER_06
transcript.pyannote[1983].start 13022.68784375
transcript.pyannote[1983].end 13028.44221875
transcript.pyannote[1984].speaker SPEAKER_06
transcript.pyannote[1984].start 13029.69096875
transcript.pyannote[1984].end 13030.97346875
transcript.pyannote[1985].speaker SPEAKER_30
transcript.pyannote[1985].start 13030.97346875
transcript.pyannote[1985].end 13041.03096875
transcript.pyannote[1986].speaker SPEAKER_06
transcript.pyannote[1986].start 13031.90159375
transcript.pyannote[1986].end 13032.71159375
transcript.pyannote[1987].speaker SPEAKER_06
transcript.pyannote[1987].start 13041.03096875
transcript.pyannote[1987].end 13048.94534375
transcript.pyannote[1988].speaker SPEAKER_30
transcript.pyannote[1988].start 13049.50221875
transcript.pyannote[1988].end 13050.02534375
transcript.pyannote[1989].speaker SPEAKER_06
transcript.pyannote[1989].start 13050.02534375
transcript.pyannote[1989].end 13050.12659375
transcript.pyannote[1990].speaker SPEAKER_30
transcript.pyannote[1990].start 13050.12659375
transcript.pyannote[1990].end 13051.30784375
transcript.pyannote[1991].speaker SPEAKER_06
transcript.pyannote[1991].start 13051.30784375
transcript.pyannote[1991].end 13056.40409375
transcript.pyannote[1992].speaker SPEAKER_30
transcript.pyannote[1992].start 13051.37534375
transcript.pyannote[1992].end 13051.64534375
transcript.pyannote[1993].speaker SPEAKER_06
transcript.pyannote[1993].start 13056.74159375
transcript.pyannote[1993].end 13062.19221875
transcript.pyannote[1994].speaker SPEAKER_06
transcript.pyannote[1994].start 13062.63096875
transcript.pyannote[1994].end 13067.52471875
transcript.pyannote[1995].speaker SPEAKER_06
transcript.pyannote[1995].start 13068.33471875
transcript.pyannote[1995].end 13070.39346875
transcript.pyannote[1996].speaker SPEAKER_06
transcript.pyannote[1996].start 13070.73096875
transcript.pyannote[1996].end 13071.82784375
transcript.pyannote[1997].speaker SPEAKER_06
transcript.pyannote[1997].start 13072.21596875
transcript.pyannote[1997].end 13075.62471875
transcript.pyannote[1998].speaker SPEAKER_06
transcript.pyannote[1998].start 13076.29971875
transcript.pyannote[1998].end 13078.34159375
transcript.pyannote[1999].speaker SPEAKER_06
transcript.pyannote[1999].start 13079.18534375
transcript.pyannote[1999].end 13081.24409375
transcript.pyannote[2000].speaker SPEAKER_06
transcript.pyannote[2000].start 13081.81784375
transcript.pyannote[2000].end 13086.17159375
transcript.pyannote[2001].speaker SPEAKER_06
transcript.pyannote[2001].start 13086.62721875
transcript.pyannote[2001].end 13088.82096875
transcript.pyannote[2002].speaker SPEAKER_06
transcript.pyannote[2002].start 13089.31034375
transcript.pyannote[2002].end 13093.05659375
transcript.pyannote[2003].speaker SPEAKER_06
transcript.pyannote[2003].start 13093.51221875
transcript.pyannote[2003].end 13098.69284375
transcript.pyannote[2004].speaker SPEAKER_06
transcript.pyannote[2004].start 13099.65471875
transcript.pyannote[2004].end 13101.17346875
transcript.pyannote[2005].speaker SPEAKER_06
transcript.pyannote[2005].start 13102.57409375
transcript.pyannote[2005].end 13104.39659375
transcript.pyannote[2006].speaker SPEAKER_06
transcript.pyannote[2006].start 13105.32471875
transcript.pyannote[2006].end 13107.01221875
transcript.pyannote[2007].speaker SPEAKER_06
transcript.pyannote[2007].start 13108.71659375
transcript.pyannote[2007].end 13120.12409375
transcript.pyannote[2008].speaker SPEAKER_06
transcript.pyannote[2008].start 13120.47846875
transcript.pyannote[2008].end 13122.23346875
transcript.pyannote[2009].speaker SPEAKER_06
transcript.pyannote[2009].start 13122.63846875
transcript.pyannote[2009].end 13123.33034375
transcript.pyannote[2010].speaker SPEAKER_06
transcript.pyannote[2010].start 13123.63409375
transcript.pyannote[2010].end 13126.03034375
transcript.pyannote[2011].speaker SPEAKER_06
transcript.pyannote[2011].start 13128.24096875
transcript.pyannote[2011].end 13130.18159375
transcript.pyannote[2012].speaker SPEAKER_30
transcript.pyannote[2012].start 13128.40971875
transcript.pyannote[2012].end 13131.02534375
transcript.pyannote[2013].speaker SPEAKER_06
transcript.pyannote[2013].start 13131.02534375
transcript.pyannote[2013].end 13150.43159375
transcript.pyannote[2014].speaker SPEAKER_06
transcript.pyannote[2014].start 13151.07284375
transcript.pyannote[2014].end 13156.55721875
transcript.pyannote[2015].speaker SPEAKER_06
transcript.pyannote[2015].start 13157.14784375
transcript.pyannote[2015].end 13164.82596875
transcript.pyannote[2016].speaker SPEAKER_06
transcript.pyannote[2016].start 13164.92721875
transcript.pyannote[2016].end 13170.51284375
transcript.pyannote[2017].speaker SPEAKER_19
transcript.pyannote[2017].start 13170.64784375
transcript.pyannote[2017].end 13171.23846875
transcript.pyannote[2018].speaker SPEAKER_30
transcript.pyannote[2018].start 13171.23846875
transcript.pyannote[2018].end 13171.25534375
transcript.pyannote[2019].speaker SPEAKER_06
transcript.pyannote[2019].start 13171.64346875
transcript.pyannote[2019].end 13175.86221875
transcript.pyannote[2020].speaker SPEAKER_30
transcript.pyannote[2020].start 13176.19971875
transcript.pyannote[2020].end 13177.48221875
transcript.pyannote[2021].speaker SPEAKER_06
transcript.pyannote[2021].start 13177.22909375
transcript.pyannote[2021].end 13179.70971875
transcript.pyannote[2022].speaker SPEAKER_30
transcript.pyannote[2022].start 13179.70971875
transcript.pyannote[2022].end 13179.99659375
transcript.pyannote[2023].speaker SPEAKER_06
transcript.pyannote[2023].start 13179.99659375
transcript.pyannote[2023].end 13181.65034375
transcript.pyannote[2024].speaker SPEAKER_30
transcript.pyannote[2024].start 13180.01346875
transcript.pyannote[2024].end 13181.68409375
transcript.pyannote[2025].speaker SPEAKER_06
transcript.pyannote[2025].start 13181.68409375
transcript.pyannote[2025].end 13181.71784375
transcript.pyannote[2026].speaker SPEAKER_06
transcript.pyannote[2026].start 13181.88659375
transcript.pyannote[2026].end 13185.24471875
transcript.pyannote[2027].speaker SPEAKER_06
transcript.pyannote[2027].start 13185.34596875
transcript.pyannote[2027].end 13191.16784375
transcript.pyannote[2028].speaker SPEAKER_06
transcript.pyannote[2028].start 13191.72471875
transcript.pyannote[2028].end 13198.91346875
transcript.pyannote[2029].speaker SPEAKER_06
transcript.pyannote[2029].start 13199.30159375
transcript.pyannote[2029].end 13203.41909375
transcript.pyannote[2030].speaker SPEAKER_06
transcript.pyannote[2030].start 13203.80721875
transcript.pyannote[2030].end 13211.04659375
transcript.pyannote[2031].speaker SPEAKER_30
transcript.pyannote[2031].start 13205.96721875
transcript.pyannote[2031].end 13207.94159375
transcript.pyannote[2032].speaker SPEAKER_30
transcript.pyannote[2032].start 13208.22846875
transcript.pyannote[2032].end 13210.70909375
transcript.pyannote[2033].speaker SPEAKER_06
transcript.pyannote[2033].start 13211.06346875
transcript.pyannote[2033].end 13247.66534375
transcript.pyannote[2034].speaker SPEAKER_06
transcript.pyannote[2034].start 13248.76221875
transcript.pyannote[2034].end 13270.51409375
transcript.pyannote[2035].speaker SPEAKER_06
transcript.pyannote[2035].start 13270.76721875
transcript.pyannote[2035].end 13272.74159375
transcript.pyannote[2036].speaker SPEAKER_06
transcript.pyannote[2036].start 13273.43346875
transcript.pyannote[2036].end 13275.15471875
transcript.pyannote[2037].speaker SPEAKER_06
transcript.pyannote[2037].start 13277.68596875
transcript.pyannote[2037].end 13278.05721875
transcript.pyannote[2038].speaker SPEAKER_06
transcript.pyannote[2038].start 13278.54659375
transcript.pyannote[2038].end 13294.71284375
transcript.pyannote[2039].speaker SPEAKER_06
transcript.pyannote[2039].start 13295.32034375
transcript.pyannote[2039].end 13299.04971875
transcript.pyannote[2040].speaker SPEAKER_06
transcript.pyannote[2040].start 13299.48846875
transcript.pyannote[2040].end 13304.17971875
transcript.pyannote[2041].speaker SPEAKER_06
transcript.pyannote[2041].start 13304.36534375
transcript.pyannote[2041].end 13335.11159375
transcript.pyannote[2042].speaker SPEAKER_06
transcript.pyannote[2042].start 13335.56721875
transcript.pyannote[2042].end 13362.09471875
transcript.pyannote[2043].speaker SPEAKER_06
transcript.pyannote[2043].start 13362.33096875
transcript.pyannote[2043].end 13365.09846875
transcript.pyannote[2044].speaker SPEAKER_06
transcript.pyannote[2044].start 13365.65534375
transcript.pyannote[2044].end 13384.50471875
transcript.pyannote[2045].speaker SPEAKER_06
transcript.pyannote[2045].start 13385.26409375
transcript.pyannote[2045].end 13388.82471875
transcript.pyannote[2046].speaker SPEAKER_20
transcript.pyannote[2046].start 13389.16221875
transcript.pyannote[2046].end 13389.39846875
transcript.pyannote[2047].speaker SPEAKER_06
transcript.pyannote[2047].start 13389.53346875
transcript.pyannote[2047].end 13390.37721875
transcript.pyannote[2048].speaker SPEAKER_06
transcript.pyannote[2048].start 13391.10284375
transcript.pyannote[2048].end 13392.52034375
transcript.pyannote[2049].speaker SPEAKER_06
transcript.pyannote[2049].start 13392.75659375
transcript.pyannote[2049].end 13394.29221875
transcript.pyannote[2050].speaker SPEAKER_06
transcript.pyannote[2050].start 13394.69721875
transcript.pyannote[2050].end 13401.49784375
transcript.pyannote[2051].speaker SPEAKER_06
transcript.pyannote[2051].start 13402.64534375
transcript.pyannote[2051].end 13405.69971875
transcript.pyannote[2052].speaker SPEAKER_06
transcript.pyannote[2052].start 13406.40846875
transcript.pyannote[2052].end 13407.92721875
transcript.pyannote[2053].speaker SPEAKER_06
transcript.pyannote[2053].start 13408.23096875
transcript.pyannote[2053].end 13442.04846875
transcript.pyannote[2054].speaker SPEAKER_05
transcript.pyannote[2054].start 13416.19596875
transcript.pyannote[2054].end 13416.34784375
transcript.pyannote[2055].speaker SPEAKER_11
transcript.pyannote[2055].start 13442.87534375
transcript.pyannote[2055].end 13447.44846875
transcript.pyannote[2056].speaker SPEAKER_11
transcript.pyannote[2056].start 13448.12346875
transcript.pyannote[2056].end 13450.24971875
transcript.pyannote[2057].speaker SPEAKER_13
transcript.pyannote[2057].start 13463.14221875
transcript.pyannote[2057].end 13468.27221875
transcript.pyannote[2058].speaker SPEAKER_13
transcript.pyannote[2058].start 13469.13284375
transcript.pyannote[2058].end 13470.41534375
transcript.pyannote[2059].speaker SPEAKER_30
transcript.pyannote[2059].start 13473.52034375
transcript.pyannote[2059].end 13473.53721875
transcript.pyannote[2060].speaker SPEAKER_13
transcript.pyannote[2060].start 13473.53721875
transcript.pyannote[2060].end 13474.19534375
transcript.pyannote[2061].speaker SPEAKER_13
transcript.pyannote[2061].start 13474.61721875
transcript.pyannote[2061].end 13506.30846875
transcript.pyannote[2062].speaker SPEAKER_13
transcript.pyannote[2062].start 13506.86534375
transcript.pyannote[2062].end 13533.44346875
transcript.pyannote[2063].speaker SPEAKER_13
transcript.pyannote[2063].start 13533.73034375
transcript.pyannote[2063].end 13538.64096875
transcript.pyannote[2064].speaker SPEAKER_13
transcript.pyannote[2064].start 13538.97846875
transcript.pyannote[2064].end 13556.86596875
transcript.pyannote[2065].speaker SPEAKER_15
transcript.pyannote[2065].start 13557.13596875
transcript.pyannote[2065].end 13559.98784375
transcript.pyannote[2066].speaker SPEAKER_13
transcript.pyannote[2066].start 13558.72221875
transcript.pyannote[2066].end 13558.75596875
transcript.pyannote[2067].speaker SPEAKER_13
transcript.pyannote[2067].start 13558.78971875
transcript.pyannote[2067].end 13559.17784375
transcript.pyannote[2068].speaker SPEAKER_13
transcript.pyannote[2068].start 13559.65034375
transcript.pyannote[2068].end 13574.31471875
transcript.pyannote[2069].speaker SPEAKER_15
transcript.pyannote[2069].start 13560.59534375
transcript.pyannote[2069].end 13561.05096875
transcript.pyannote[2070].speaker SPEAKER_13
transcript.pyannote[2070].start 13574.88846875
transcript.pyannote[2070].end 13575.69846875
transcript.pyannote[2071].speaker SPEAKER_15
transcript.pyannote[2071].start 13574.92221875
transcript.pyannote[2071].end 13582.17846875
transcript.pyannote[2072].speaker SPEAKER_13
transcript.pyannote[2072].start 13582.17846875
transcript.pyannote[2072].end 13591.84784375
transcript.pyannote[2073].speaker SPEAKER_15
transcript.pyannote[2073].start 13585.94159375
transcript.pyannote[2073].end 13588.20284375
transcript.pyannote[2074].speaker SPEAKER_13
transcript.pyannote[2074].start 13592.11784375
transcript.pyannote[2074].end 13614.08909375
transcript.pyannote[2075].speaker SPEAKER_15
transcript.pyannote[2075].start 13614.46034375
transcript.pyannote[2075].end 13620.83909375
transcript.pyannote[2076].speaker SPEAKER_13
transcript.pyannote[2076].start 13614.96659375
transcript.pyannote[2076].end 13615.33784375
transcript.pyannote[2077].speaker SPEAKER_13
transcript.pyannote[2077].start 13619.91096875
transcript.pyannote[2077].end 13628.12909375
transcript.pyannote[2078].speaker SPEAKER_13
transcript.pyannote[2078].start 13628.34846875
transcript.pyannote[2078].end 13631.03159375
transcript.pyannote[2079].speaker SPEAKER_13
transcript.pyannote[2079].start 13631.43659375
transcript.pyannote[2079].end 13634.44034375
transcript.pyannote[2080].speaker SPEAKER_13
transcript.pyannote[2080].start 13635.84096875
transcript.pyannote[2080].end 13635.85784375
transcript.pyannote[2081].speaker SPEAKER_15
transcript.pyannote[2081].start 13635.85784375
transcript.pyannote[2081].end 13636.31346875
transcript.pyannote[2082].speaker SPEAKER_13
transcript.pyannote[2082].start 13635.90846875
transcript.pyannote[2082].end 13639.01346875
transcript.pyannote[2083].speaker SPEAKER_15
transcript.pyannote[2083].start 13636.88721875
transcript.pyannote[2083].end 13637.34284375
transcript.pyannote[2084].speaker SPEAKER_15
transcript.pyannote[2084].start 13639.08096875
transcript.pyannote[2084].end 13641.52784375
transcript.pyannote[2085].speaker SPEAKER_13
transcript.pyannote[2085].start 13639.58721875
transcript.pyannote[2085].end 13640.09346875
transcript.pyannote[2086].speaker SPEAKER_13
transcript.pyannote[2086].start 13640.81909375
transcript.pyannote[2086].end 13643.56971875
transcript.pyannote[2087].speaker SPEAKER_13
transcript.pyannote[2087].start 13644.07596875
transcript.pyannote[2087].end 13652.64846875
transcript.pyannote[2088].speaker SPEAKER_15
transcript.pyannote[2088].start 13654.04909375
transcript.pyannote[2088].end 13657.35659375
transcript.pyannote[2089].speaker SPEAKER_13
transcript.pyannote[2089].start 13656.66471875
transcript.pyannote[2089].end 13658.47034375
transcript.pyannote[2090].speaker SPEAKER_13
transcript.pyannote[2090].start 13658.70659375
transcript.pyannote[2090].end 13667.09346875
transcript.pyannote[2091].speaker SPEAKER_15
transcript.pyannote[2091].start 13667.09346875
transcript.pyannote[2091].end 13677.33659375
transcript.pyannote[2092].speaker SPEAKER_13
transcript.pyannote[2092].start 13667.43096875
transcript.pyannote[2092].end 13668.62909375
transcript.pyannote[2093].speaker SPEAKER_13
transcript.pyannote[2093].start 13678.29846875
transcript.pyannote[2093].end 13680.05346875
transcript.pyannote[2094].speaker SPEAKER_15
transcript.pyannote[2094].start 13680.07034375
transcript.pyannote[2094].end 13684.59284375
transcript.pyannote[2095].speaker SPEAKER_13
transcript.pyannote[2095].start 13683.51284375
transcript.pyannote[2095].end 13688.55846875
transcript.pyannote[2096].speaker SPEAKER_15
transcript.pyannote[2096].start 13686.61784375
transcript.pyannote[2096].end 13688.64284375
transcript.pyannote[2097].speaker SPEAKER_13
transcript.pyannote[2097].start 13688.86221875
transcript.pyannote[2097].end 13692.77721875
transcript.pyannote[2098].speaker SPEAKER_13
transcript.pyannote[2098].start 13693.11471875
transcript.pyannote[2098].end 13709.75346875
transcript.pyannote[2099].speaker SPEAKER_13
transcript.pyannote[2099].start 13710.24284375
transcript.pyannote[2099].end 13711.35659375
transcript.pyannote[2100].speaker SPEAKER_13
transcript.pyannote[2100].start 13711.59284375
transcript.pyannote[2100].end 13712.01471875
transcript.pyannote[2101].speaker SPEAKER_13
transcript.pyannote[2101].start 13712.48721875
transcript.pyannote[2101].end 13714.88346875
transcript.pyannote[2102].speaker SPEAKER_13
transcript.pyannote[2102].start 13714.96784375
transcript.pyannote[2102].end 13733.58096875
transcript.pyannote[2103].speaker SPEAKER_13
transcript.pyannote[2103].start 13734.03659375
transcript.pyannote[2103].end 13734.84659375
transcript.pyannote[2104].speaker SPEAKER_13
transcript.pyannote[2104].start 13735.30221875
transcript.pyannote[2104].end 13746.15284375
transcript.pyannote[2105].speaker SPEAKER_13
transcript.pyannote[2105].start 13746.45659375
transcript.pyannote[2105].end 13763.07846875
transcript.pyannote[2106].speaker SPEAKER_13
transcript.pyannote[2106].start 13763.70284375
transcript.pyannote[2106].end 13780.96596875
transcript.pyannote[2107].speaker SPEAKER_13
transcript.pyannote[2107].start 13781.65784375
transcript.pyannote[2107].end 13782.38346875
transcript.pyannote[2108].speaker SPEAKER_13
transcript.pyannote[2108].start 13783.17659375
transcript.pyannote[2108].end 13787.14221875
transcript.pyannote[2109].speaker SPEAKER_13
transcript.pyannote[2109].start 13787.59784375
transcript.pyannote[2109].end 13788.89721875
transcript.pyannote[2110].speaker SPEAKER_13
transcript.pyannote[2110].start 13789.40346875
transcript.pyannote[2110].end 13789.84221875
transcript.pyannote[2111].speaker SPEAKER_13
transcript.pyannote[2111].start 13791.20909375
transcript.pyannote[2111].end 13792.01909375
transcript.pyannote[2112].speaker SPEAKER_13
transcript.pyannote[2112].start 13792.66034375
transcript.pyannote[2112].end 13794.44909375
transcript.pyannote[2113].speaker SPEAKER_13
transcript.pyannote[2113].start 13794.78659375
transcript.pyannote[2113].end 13796.37284375
transcript.pyannote[2114].speaker SPEAKER_13
transcript.pyannote[2114].start 13797.09846875
transcript.pyannote[2114].end 13816.94346875
transcript.pyannote[2115].speaker SPEAKER_06
transcript.pyannote[2115].start 13804.82721875
transcript.pyannote[2115].end 13805.26596875
transcript.pyannote[2116].speaker SPEAKER_13
transcript.pyannote[2116].start 13817.16284375
transcript.pyannote[2116].end 13836.94034375
transcript.pyannote[2117].speaker SPEAKER_00
transcript.pyannote[2117].start 13834.03784375
transcript.pyannote[2117].end 13834.51034375
transcript.pyannote[2118].speaker SPEAKER_13
transcript.pyannote[2118].start 13837.68284375
transcript.pyannote[2118].end 13838.98221875
transcript.pyannote[2119].speaker SPEAKER_13
transcript.pyannote[2119].start 13840.33221875
transcript.pyannote[2119].end 13841.00721875
transcript.pyannote[2120].speaker SPEAKER_13
transcript.pyannote[2120].start 13841.66534375
transcript.pyannote[2120].end 13852.02659375
transcript.pyannote[2121].speaker SPEAKER_13
transcript.pyannote[2121].start 13852.06034375
transcript.pyannote[2121].end 13852.61721875
transcript.pyannote[2122].speaker SPEAKER_20
transcript.pyannote[2122].start 13852.61721875
transcript.pyannote[2122].end 13853.68034375
transcript.pyannote[2123].speaker SPEAKER_13
transcript.pyannote[2123].start 13853.96721875
transcript.pyannote[2123].end 13859.16471875
transcript.pyannote[2124].speaker SPEAKER_20
transcript.pyannote[2124].start 13856.11034375
transcript.pyannote[2124].end 13856.43096875
transcript.pyannote[2125].speaker SPEAKER_19
transcript.pyannote[2125].start 13856.43096875
transcript.pyannote[2125].end 13856.44784375
transcript.pyannote[2126].speaker SPEAKER_20
transcript.pyannote[2126].start 13857.61221875
transcript.pyannote[2126].end 13857.79784375
transcript.pyannote[2127].speaker SPEAKER_19
transcript.pyannote[2127].start 13857.79784375
transcript.pyannote[2127].end 13858.28721875
transcript.pyannote[2128].speaker SPEAKER_30
transcript.pyannote[2128].start 13858.28721875
transcript.pyannote[2128].end 13858.38846875
transcript.pyannote[2129].speaker SPEAKER_20
transcript.pyannote[2129].start 13858.38846875
transcript.pyannote[2129].end 13858.96221875
transcript.pyannote[2130].speaker SPEAKER_30
transcript.pyannote[2130].start 13858.96221875
transcript.pyannote[2130].end 13859.77221875
transcript.pyannote[2131].speaker SPEAKER_13
transcript.pyannote[2131].start 13859.77221875
transcript.pyannote[2131].end 13859.87346875
transcript.pyannote[2132].speaker SPEAKER_13
transcript.pyannote[2132].start 13859.94096875
transcript.pyannote[2132].end 13860.02534375
transcript.pyannote[2133].speaker SPEAKER_30
transcript.pyannote[2133].start 13860.02534375
transcript.pyannote[2133].end 13862.10096875
transcript.pyannote[2134].speaker SPEAKER_30
transcript.pyannote[2134].start 13862.23596875
transcript.pyannote[2134].end 13864.63221875
transcript.pyannote[2135].speaker SPEAKER_30
transcript.pyannote[2135].start 13865.57721875
transcript.pyannote[2135].end 13872.07409375
transcript.pyannote[2136].speaker SPEAKER_13
transcript.pyannote[2136].start 13867.85534375
transcript.pyannote[2136].end 13886.14784375
transcript.pyannote[2137].speaker SPEAKER_19
transcript.pyannote[2137].start 13886.65409375
transcript.pyannote[2137].end 13886.67096875
transcript.pyannote[2138].speaker SPEAKER_13
transcript.pyannote[2138].start 13886.67096875
transcript.pyannote[2138].end 13888.84784375
transcript.pyannote[2139].speaker SPEAKER_19
transcript.pyannote[2139].start 13886.68784375
transcript.pyannote[2139].end 13887.86909375
transcript.pyannote[2140].speaker SPEAKER_13
transcript.pyannote[2140].start 13889.10096875
transcript.pyannote[2140].end 13900.47471875
transcript.pyannote[2141].speaker SPEAKER_13
transcript.pyannote[2141].start 13901.84159375
transcript.pyannote[2141].end 13932.14909375
transcript.pyannote[2142].speaker SPEAKER_00
transcript.pyannote[2142].start 13902.06096875
transcript.pyannote[2142].end 13902.09471875
transcript.pyannote[2143].speaker SPEAKER_06
transcript.pyannote[2143].start 13902.09471875
transcript.pyannote[2143].end 13902.36471875
transcript.pyannote[2144].speaker SPEAKER_00
transcript.pyannote[2144].start 13902.36471875
transcript.pyannote[2144].end 13902.56721875
transcript.pyannote[2145].speaker SPEAKER_20
transcript.pyannote[2145].start 13903.29284375
transcript.pyannote[2145].end 13903.42784375
transcript.pyannote[2146].speaker SPEAKER_00
transcript.pyannote[2146].start 13903.42784375
transcript.pyannote[2146].end 13903.64721875
transcript.pyannote[2147].speaker SPEAKER_00
transcript.pyannote[2147].start 13909.33409375
transcript.pyannote[2147].end 13909.35096875
transcript.pyannote[2148].speaker SPEAKER_20
transcript.pyannote[2148].start 13909.35096875
transcript.pyannote[2148].end 13910.61659375
transcript.pyannote[2149].speaker SPEAKER_19
transcript.pyannote[2149].start 13910.61659375
transcript.pyannote[2149].end 13910.68409375
transcript.pyannote[2150].speaker SPEAKER_19
transcript.pyannote[2150].start 13911.42659375
transcript.pyannote[2150].end 13911.44346875
transcript.pyannote[2151].speaker SPEAKER_20
transcript.pyannote[2151].start 13911.44346875
transcript.pyannote[2151].end 13911.46034375
transcript.pyannote[2152].speaker SPEAKER_19
transcript.pyannote[2152].start 13911.46034375
transcript.pyannote[2152].end 13911.56159375
transcript.pyannote[2153].speaker SPEAKER_20
transcript.pyannote[2153].start 13911.56159375
transcript.pyannote[2153].end 13911.61221875
transcript.pyannote[2154].speaker SPEAKER_19
transcript.pyannote[2154].start 13911.61221875
transcript.pyannote[2154].end 13911.62909375
transcript.pyannote[2155].speaker SPEAKER_00
transcript.pyannote[2155].start 13928.48721875
transcript.pyannote[2155].end 13928.87534375
transcript.pyannote[2156].speaker SPEAKER_00
transcript.pyannote[2156].start 13929.70221875
transcript.pyannote[2156].end 13931.23784375
transcript.pyannote[2157].speaker SPEAKER_30
transcript.pyannote[2157].start 13931.23784375
transcript.pyannote[2157].end 13931.38971875
transcript.pyannote[2158].speaker SPEAKER_00
transcript.pyannote[2158].start 13931.38971875
transcript.pyannote[2158].end 13931.87909375
transcript.pyannote[2159].speaker SPEAKER_13
transcript.pyannote[2159].start 13932.75659375
transcript.pyannote[2159].end 13934.68034375
transcript.pyannote[2160].speaker SPEAKER_13
transcript.pyannote[2160].start 13935.22034375
transcript.pyannote[2160].end 13936.84034375
transcript.pyannote[2161].speaker SPEAKER_13
transcript.pyannote[2161].start 13937.56596875
transcript.pyannote[2161].end 14029.68659375
transcript.pyannote[2162].speaker SPEAKER_30
transcript.pyannote[2162].start 13937.70096875
transcript.pyannote[2162].end 13939.65846875
transcript.pyannote[2163].speaker SPEAKER_00
transcript.pyannote[2163].start 13988.12346875
transcript.pyannote[2163].end 13988.25846875
transcript.pyannote[2164].speaker SPEAKER_19
transcript.pyannote[2164].start 13988.25846875
transcript.pyannote[2164].end 13988.32596875
transcript.pyannote[2165].speaker SPEAKER_00
transcript.pyannote[2165].start 13988.32596875
transcript.pyannote[2165].end 13988.44409375
transcript.pyannote[2166].speaker SPEAKER_11
transcript.pyannote[2166].start 14029.06221875
transcript.pyannote[2166].end 14029.63596875
transcript.pyannote[2167].speaker SPEAKER_13
transcript.pyannote[2167].start 14030.04096875
transcript.pyannote[2167].end 14030.69909375
transcript.pyannote[2168].speaker SPEAKER_11
transcript.pyannote[2168].start 14031.74534375
transcript.pyannote[2168].end 14032.47096875
transcript.pyannote[2169].speaker SPEAKER_11
transcript.pyannote[2169].start 14032.62284375
transcript.pyannote[2169].end 14035.28909375
transcript.pyannote[2170].speaker SPEAKER_27
transcript.pyannote[2170].start 14046.19034375
transcript.pyannote[2170].end 14047.52346875
transcript.pyannote[2171].speaker SPEAKER_10
transcript.pyannote[2171].start 14047.97909375
transcript.pyannote[2171].end 14049.07596875
transcript.pyannote[2172].speaker SPEAKER_30
transcript.pyannote[2172].start 14052.36659375
transcript.pyannote[2172].end 14052.97409375
transcript.pyannote[2173].speaker SPEAKER_10
transcript.pyannote[2173].start 14052.97409375
transcript.pyannote[2173].end 14053.04159375
transcript.pyannote[2174].speaker SPEAKER_30
transcript.pyannote[2174].start 14053.04159375
transcript.pyannote[2174].end 14053.07534375
transcript.pyannote[2175].speaker SPEAKER_27
transcript.pyannote[2175].start 14053.17659375
transcript.pyannote[2175].end 14053.63221875
transcript.pyannote[2176].speaker SPEAKER_27
transcript.pyannote[2176].start 14054.18909375
transcript.pyannote[2176].end 14060.66909375
transcript.pyannote[2177].speaker SPEAKER_19
transcript.pyannote[2177].start 14060.43284375
transcript.pyannote[2177].end 14060.88846875
transcript.pyannote[2178].speaker SPEAKER_27
transcript.pyannote[2178].start 14060.88846875
transcript.pyannote[2178].end 14077.39221875
transcript.pyannote[2179].speaker SPEAKER_14
transcript.pyannote[2179].start 14077.00409375
transcript.pyannote[2179].end 14077.72971875
transcript.pyannote[2180].speaker SPEAKER_27
transcript.pyannote[2180].start 14077.71284375
transcript.pyannote[2180].end 14083.63596875
transcript.pyannote[2181].speaker SPEAKER_30
transcript.pyannote[2181].start 14077.72971875
transcript.pyannote[2181].end 14077.76346875
transcript.pyannote[2182].speaker SPEAKER_30
transcript.pyannote[2182].start 14082.16784375
transcript.pyannote[2182].end 14082.92721875
transcript.pyannote[2183].speaker SPEAKER_27
transcript.pyannote[2183].start 14084.17596875
transcript.pyannote[2183].end 14085.03659375
transcript.pyannote[2184].speaker SPEAKER_30
transcript.pyannote[2184].start 14085.03659375
transcript.pyannote[2184].end 14088.07409375
transcript.pyannote[2185].speaker SPEAKER_27
transcript.pyannote[2185].start 14085.05346875
transcript.pyannote[2185].end 14085.07034375
transcript.pyannote[2186].speaker SPEAKER_27
transcript.pyannote[2186].start 14085.67784375
transcript.pyannote[2186].end 14087.11221875
transcript.pyannote[2187].speaker SPEAKER_27
transcript.pyannote[2187].start 14087.68596875
transcript.pyannote[2187].end 14088.02346875
transcript.pyannote[2188].speaker SPEAKER_27
transcript.pyannote[2188].start 14088.07409375
transcript.pyannote[2188].end 14088.14159375
transcript.pyannote[2189].speaker SPEAKER_27
transcript.pyannote[2189].start 14088.15846875
transcript.pyannote[2189].end 14090.94284375
transcript.pyannote[2190].speaker SPEAKER_30
transcript.pyannote[2190].start 14089.15409375
transcript.pyannote[2190].end 14092.61346875
transcript.pyannote[2191].speaker SPEAKER_27
transcript.pyannote[2191].start 14092.05659375
transcript.pyannote[2191].end 14099.70096875
transcript.pyannote[2192].speaker SPEAKER_30
transcript.pyannote[2192].start 14096.83221875
transcript.pyannote[2192].end 14098.21596875
transcript.pyannote[2193].speaker SPEAKER_19
transcript.pyannote[2193].start 14098.21596875
transcript.pyannote[2193].end 14098.23284375
transcript.pyannote[2194].speaker SPEAKER_30
transcript.pyannote[2194].start 14098.23284375
transcript.pyannote[2194].end 14098.26659375
transcript.pyannote[2195].speaker SPEAKER_30
transcript.pyannote[2195].start 14099.29596875
transcript.pyannote[2195].end 14099.76846875
transcript.pyannote[2196].speaker SPEAKER_27
transcript.pyannote[2196].start 14099.71784375
transcript.pyannote[2196].end 14099.73471875
transcript.pyannote[2197].speaker SPEAKER_27
transcript.pyannote[2197].start 14099.76846875
transcript.pyannote[2197].end 14105.65784375
transcript.pyannote[2198].speaker SPEAKER_30
transcript.pyannote[2198].start 14105.96159375
transcript.pyannote[2198].end 14107.76721875
transcript.pyannote[2199].speaker SPEAKER_27
transcript.pyannote[2199].start 14107.04159375
transcript.pyannote[2199].end 14111.58096875
transcript.pyannote[2200].speaker SPEAKER_30
transcript.pyannote[2200].start 14109.96096875
transcript.pyannote[2200].end 14110.75409375
transcript.pyannote[2201].speaker SPEAKER_30
transcript.pyannote[2201].start 14111.12534375
transcript.pyannote[2201].end 14111.61471875
transcript.pyannote[2202].speaker SPEAKER_19
transcript.pyannote[2202].start 14111.61471875
transcript.pyannote[2202].end 14112.32346875
transcript.pyannote[2203].speaker SPEAKER_30
transcript.pyannote[2203].start 14112.32346875
transcript.pyannote[2203].end 14112.37409375
transcript.pyannote[2204].speaker SPEAKER_30
transcript.pyannote[2204].start 14113.47096875
transcript.pyannote[2204].end 14123.34284375
transcript.pyannote[2205].speaker SPEAKER_27
transcript.pyannote[2205].start 14117.48721875
transcript.pyannote[2205].end 14119.10721875
transcript.pyannote[2206].speaker SPEAKER_27
transcript.pyannote[2206].start 14119.88346875
transcript.pyannote[2206].end 14120.77784375
transcript.pyannote[2207].speaker SPEAKER_30
transcript.pyannote[2207].start 14123.86596875
transcript.pyannote[2207].end 14123.88284375
transcript.pyannote[2208].speaker SPEAKER_27
transcript.pyannote[2208].start 14123.88284375
transcript.pyannote[2208].end 14125.85721875
transcript.pyannote[2209].speaker SPEAKER_30
transcript.pyannote[2209].start 14123.89971875
transcript.pyannote[2209].end 14124.92909375
transcript.pyannote[2210].speaker SPEAKER_30
transcript.pyannote[2210].start 14125.63784375
transcript.pyannote[2210].end 14126.27909375
transcript.pyannote[2211].speaker SPEAKER_27
transcript.pyannote[2211].start 14126.86971875
transcript.pyannote[2211].end 14127.71346875
transcript.pyannote[2212].speaker SPEAKER_30
transcript.pyannote[2212].start 14126.90346875
transcript.pyannote[2212].end 14127.88221875
transcript.pyannote[2213].speaker SPEAKER_30
transcript.pyannote[2213].start 14128.54034375
transcript.pyannote[2213].end 14131.64534375
transcript.pyannote[2214].speaker SPEAKER_27
transcript.pyannote[2214].start 14129.97471875
transcript.pyannote[2214].end 14139.12096875
transcript.pyannote[2215].speaker SPEAKER_30
transcript.pyannote[2215].start 14132.55659375
transcript.pyannote[2215].end 14132.97846875
transcript.pyannote[2216].speaker SPEAKER_30
transcript.pyannote[2216].start 14135.62784375
transcript.pyannote[2216].end 14136.25221875
transcript.pyannote[2217].speaker SPEAKER_30
transcript.pyannote[2217].start 14139.22221875
transcript.pyannote[2217].end 14141.02784375
transcript.pyannote[2218].speaker SPEAKER_30
transcript.pyannote[2218].start 14141.33159375
transcript.pyannote[2218].end 14142.44534375
transcript.pyannote[2219].speaker SPEAKER_27
transcript.pyannote[2219].start 14142.49596875
transcript.pyannote[2219].end 14151.72659375
transcript.pyannote[2220].speaker SPEAKER_30
transcript.pyannote[2220].start 14143.00221875
transcript.pyannote[2220].end 14143.49159375
transcript.pyannote[2221].speaker SPEAKER_30
transcript.pyannote[2221].start 14151.72659375
transcript.pyannote[2221].end 14152.31721875
transcript.pyannote[2222].speaker SPEAKER_27
transcript.pyannote[2222].start 14151.76034375
transcript.pyannote[2222].end 14153.21159375
transcript.pyannote[2223].speaker SPEAKER_30
transcript.pyannote[2223].start 14152.77284375
transcript.pyannote[2223].end 14157.24471875
transcript.pyannote[2224].speaker SPEAKER_27
transcript.pyannote[2224].start 14154.44346875
transcript.pyannote[2224].end 14155.86096875
transcript.pyannote[2225].speaker SPEAKER_27
transcript.pyannote[2225].start 14156.77221875
transcript.pyannote[2225].end 14175.73971875
transcript.pyannote[2226].speaker SPEAKER_30
transcript.pyannote[2226].start 14159.69159375
transcript.pyannote[2226].end 14160.26534375
transcript.pyannote[2227].speaker SPEAKER_30
transcript.pyannote[2227].start 14160.36659375
transcript.pyannote[2227].end 14160.94034375
transcript.pyannote[2228].speaker SPEAKER_30
transcript.pyannote[2228].start 14162.45909375
transcript.pyannote[2228].end 14162.79659375
transcript.pyannote[2229].speaker SPEAKER_30
transcript.pyannote[2229].start 14176.07721875
transcript.pyannote[2229].end 14181.89909375
transcript.pyannote[2230].speaker SPEAKER_27
transcript.pyannote[2230].start 14180.97096875
transcript.pyannote[2230].end 14181.47721875
transcript.pyannote[2231].speaker SPEAKER_27
transcript.pyannote[2231].start 14182.65846875
transcript.pyannote[2231].end 14190.45471875
transcript.pyannote[2232].speaker SPEAKER_19
transcript.pyannote[2232].start 14188.64909375
transcript.pyannote[2232].end 14189.05409375
transcript.pyannote[2233].speaker SPEAKER_19
transcript.pyannote[2233].start 14190.33659375
transcript.pyannote[2233].end 14190.70784375
transcript.pyannote[2234].speaker SPEAKER_27
transcript.pyannote[2234].start 14190.77534375
transcript.pyannote[2234].end 14203.87034375
transcript.pyannote[2235].speaker SPEAKER_19
transcript.pyannote[2235].start 14191.53471875
transcript.pyannote[2235].end 14191.73721875
transcript.pyannote[2236].speaker SPEAKER_27
transcript.pyannote[2236].start 14204.54534375
transcript.pyannote[2236].end 14208.88221875
transcript.pyannote[2237].speaker SPEAKER_27
transcript.pyannote[2237].start 14209.23659375
transcript.pyannote[2237].end 14209.65846875
transcript.pyannote[2238].speaker SPEAKER_27
transcript.pyannote[2238].start 14209.86096875
transcript.pyannote[2238].end 14210.36721875
transcript.pyannote[2239].speaker SPEAKER_27
transcript.pyannote[2239].start 14211.36284375
transcript.pyannote[2239].end 14218.60221875
transcript.pyannote[2240].speaker SPEAKER_30
transcript.pyannote[2240].start 14218.99034375
transcript.pyannote[2240].end 14243.88096875
transcript.pyannote[2241].speaker SPEAKER_27
transcript.pyannote[2241].start 14224.15409375
transcript.pyannote[2241].end 14224.96409375
transcript.pyannote[2242].speaker SPEAKER_20
transcript.pyannote[2242].start 14224.96409375
transcript.pyannote[2242].end 14225.40284375
transcript.pyannote[2243].speaker SPEAKER_30
transcript.pyannote[2243].start 14244.33659375
transcript.pyannote[2243].end 14252.50409375
transcript.pyannote[2244].speaker SPEAKER_30
transcript.pyannote[2244].start 14252.75721875
transcript.pyannote[2244].end 14260.90784375
transcript.pyannote[2245].speaker SPEAKER_30
transcript.pyannote[2245].start 14261.39721875
transcript.pyannote[2245].end 14269.64909375
transcript.pyannote[2246].speaker SPEAKER_30
transcript.pyannote[2246].start 14269.88534375
transcript.pyannote[2246].end 14273.63159375
transcript.pyannote[2247].speaker SPEAKER_30
transcript.pyannote[2247].start 14273.76659375
transcript.pyannote[2247].end 14278.57596875
transcript.pyannote[2248].speaker SPEAKER_27
transcript.pyannote[2248].start 14278.40721875
transcript.pyannote[2248].end 14287.84034375
transcript.pyannote[2249].speaker SPEAKER_30
transcript.pyannote[2249].start 14279.90909375
transcript.pyannote[2249].end 14280.46596875
transcript.pyannote[2250].speaker SPEAKER_30
transcript.pyannote[2250].start 14280.90471875
transcript.pyannote[2250].end 14281.61346875
transcript.pyannote[2251].speaker SPEAKER_30
transcript.pyannote[2251].start 14282.20409375
transcript.pyannote[2251].end 14284.22909375
transcript.pyannote[2252].speaker SPEAKER_30
transcript.pyannote[2252].start 14287.95846875
transcript.pyannote[2252].end 14292.51471875
transcript.pyannote[2253].speaker SPEAKER_27
transcript.pyannote[2253].start 14291.56971875
transcript.pyannote[2253].end 14296.10909375
transcript.pyannote[2254].speaker SPEAKER_30
transcript.pyannote[2254].start 14295.07971875
transcript.pyannote[2254].end 14302.04909375
transcript.pyannote[2255].speaker SPEAKER_27
transcript.pyannote[2255].start 14302.53846875
transcript.pyannote[2255].end 14303.97284375
transcript.pyannote[2256].speaker SPEAKER_27
transcript.pyannote[2256].start 14304.41159375
transcript.pyannote[2256].end 14309.87909375
transcript.pyannote[2257].speaker SPEAKER_30
transcript.pyannote[2257].start 14309.82846875
transcript.pyannote[2257].end 14311.66784375
transcript.pyannote[2258].speaker SPEAKER_27
transcript.pyannote[2258].start 14311.49909375
transcript.pyannote[2258].end 14313.60846875
transcript.pyannote[2259].speaker SPEAKER_30
transcript.pyannote[2259].start 14314.14846875
transcript.pyannote[2259].end 14316.44346875
transcript.pyannote[2260].speaker SPEAKER_27
transcript.pyannote[2260].start 14316.44346875
transcript.pyannote[2260].end 14316.79784375
transcript.pyannote[2261].speaker SPEAKER_30
transcript.pyannote[2261].start 14316.91596875
transcript.pyannote[2261].end 14331.78284375
transcript.pyannote[2262].speaker SPEAKER_20
transcript.pyannote[2262].start 14322.06284375
transcript.pyannote[2262].end 14322.48471875
transcript.pyannote[2263].speaker SPEAKER_27
transcript.pyannote[2263].start 14332.52534375
transcript.pyannote[2263].end 14335.42784375
transcript.pyannote[2264].speaker SPEAKER_30
transcript.pyannote[2264].start 14334.95534375
transcript.pyannote[2264].end 14338.19534375
transcript.pyannote[2265].speaker SPEAKER_27
transcript.pyannote[2265].start 14338.19534375
transcript.pyannote[2265].end 14340.27096875
transcript.pyannote[2266].speaker SPEAKER_30
transcript.pyannote[2266].start 14340.27096875
transcript.pyannote[2266].end 14340.30471875
transcript.pyannote[2267].speaker SPEAKER_15
transcript.pyannote[2267].start 14340.30471875
transcript.pyannote[2267].end 14341.11471875
transcript.pyannote[2268].speaker SPEAKER_30
transcript.pyannote[2268].start 14341.11471875
transcript.pyannote[2268].end 14341.58721875
transcript.pyannote[2269].speaker SPEAKER_27
transcript.pyannote[2269].start 14341.58721875
transcript.pyannote[2269].end 14343.56159375
transcript.pyannote[2270].speaker SPEAKER_30
transcript.pyannote[2270].start 14343.08909375
transcript.pyannote[2270].end 14344.82721875
transcript.pyannote[2271].speaker SPEAKER_27
transcript.pyannote[2271].start 14344.59096875
transcript.pyannote[2271].end 14353.72034375
transcript.pyannote[2272].speaker SPEAKER_30
transcript.pyannote[2272].start 14346.26159375
transcript.pyannote[2272].end 14346.97034375
transcript.pyannote[2273].speaker SPEAKER_19
transcript.pyannote[2273].start 14348.89409375
transcript.pyannote[2273].end 14348.92784375
transcript.pyannote[2274].speaker SPEAKER_30
transcript.pyannote[2274].start 14348.92784375
transcript.pyannote[2274].end 14349.02909375
transcript.pyannote[2275].speaker SPEAKER_19
transcript.pyannote[2275].start 14349.02909375
transcript.pyannote[2275].end 14349.06284375
transcript.pyannote[2276].speaker SPEAKER_30
transcript.pyannote[2276].start 14349.06284375
transcript.pyannote[2276].end 14349.18096875
transcript.pyannote[2277].speaker SPEAKER_19
transcript.pyannote[2277].start 14349.18096875
transcript.pyannote[2277].end 14349.55221875
transcript.pyannote[2278].speaker SPEAKER_19
transcript.pyannote[2278].start 14353.73721875
transcript.pyannote[2278].end 14354.51346875
transcript.pyannote[2279].speaker SPEAKER_27
transcript.pyannote[2279].start 14355.52596875
transcript.pyannote[2279].end 14357.11221875
transcript.pyannote[2280].speaker SPEAKER_19
transcript.pyannote[2280].start 14357.43284375
transcript.pyannote[2280].end 14357.97284375
transcript.pyannote[2281].speaker SPEAKER_27
transcript.pyannote[2281].start 14357.51721875
transcript.pyannote[2281].end 14361.61784375
transcript.pyannote[2282].speaker SPEAKER_15
transcript.pyannote[2282].start 14357.97284375
transcript.pyannote[2282].end 14370.56159375
transcript.pyannote[2283].speaker SPEAKER_27
transcript.pyannote[2283].start 14367.40596875
transcript.pyannote[2283].end 14368.06409375
transcript.pyannote[2284].speaker SPEAKER_27
transcript.pyannote[2284].start 14368.50284375
transcript.pyannote[2284].end 14376.97409375
transcript.pyannote[2285].speaker SPEAKER_15
transcript.pyannote[2285].start 14372.58659375
transcript.pyannote[2285].end 14372.87346875
transcript.pyannote[2286].speaker SPEAKER_15
transcript.pyannote[2286].start 14373.61596875
transcript.pyannote[2286].end 14373.97034375
transcript.pyannote[2287].speaker SPEAKER_15
transcript.pyannote[2287].start 14374.98284375
transcript.pyannote[2287].end 14375.59034375
transcript.pyannote[2288].speaker SPEAKER_15
transcript.pyannote[2288].start 14376.97409375
transcript.pyannote[2288].end 14389.22534375
transcript.pyannote[2289].speaker SPEAKER_30
transcript.pyannote[2289].start 14388.90471875
transcript.pyannote[2289].end 14396.29596875
transcript.pyannote[2290].speaker SPEAKER_30
transcript.pyannote[2290].start 14396.63346875
transcript.pyannote[2290].end 14400.27846875
transcript.pyannote[2291].speaker SPEAKER_27
transcript.pyannote[2291].start 14399.41784375
transcript.pyannote[2291].end 14403.29909375
transcript.pyannote[2292].speaker SPEAKER_30
transcript.pyannote[2292].start 14403.61971875
transcript.pyannote[2292].end 14412.04034375
transcript.pyannote[2293].speaker SPEAKER_27
transcript.pyannote[2293].start 14405.17221875
transcript.pyannote[2293].end 14405.67846875
transcript.pyannote[2294].speaker SPEAKER_27
transcript.pyannote[2294].start 14409.39096875
transcript.pyannote[2294].end 14413.89659375
transcript.pyannote[2295].speaker SPEAKER_30
transcript.pyannote[2295].start 14412.69846875
transcript.pyannote[2295].end 14415.78659375
transcript.pyannote[2296].speaker SPEAKER_27
transcript.pyannote[2296].start 14414.43659375
transcript.pyannote[2296].end 14415.14534375
transcript.pyannote[2297].speaker SPEAKER_27
transcript.pyannote[2297].start 14415.31409375
transcript.pyannote[2297].end 14424.66284375
transcript.pyannote[2298].speaker SPEAKER_30
transcript.pyannote[2298].start 14423.93721875
transcript.pyannote[2298].end 14426.90721875
transcript.pyannote[2299].speaker SPEAKER_27
transcript.pyannote[2299].start 14426.90721875
transcript.pyannote[2299].end 14426.94096875
transcript.pyannote[2300].speaker SPEAKER_30
transcript.pyannote[2300].start 14426.94096875
transcript.pyannote[2300].end 14426.97471875
transcript.pyannote[2301].speaker SPEAKER_27
transcript.pyannote[2301].start 14426.97471875
transcript.pyannote[2301].end 14428.20659375
transcript.pyannote[2302].speaker SPEAKER_30
transcript.pyannote[2302].start 14427.44721875
transcript.pyannote[2302].end 14436.07034375
transcript.pyannote[2303].speaker SPEAKER_20
transcript.pyannote[2303].start 14428.20659375
transcript.pyannote[2303].end 14428.24034375
transcript.pyannote[2304].speaker SPEAKER_27
transcript.pyannote[2304].start 14429.40471875
transcript.pyannote[2304].end 14429.70846875
transcript.pyannote[2305].speaker SPEAKER_20
transcript.pyannote[2305].start 14429.70846875
transcript.pyannote[2305].end 14429.77596875
transcript.pyannote[2306].speaker SPEAKER_20
transcript.pyannote[2306].start 14436.03659375
transcript.pyannote[2306].end 14436.40784375
transcript.pyannote[2307].speaker SPEAKER_30
transcript.pyannote[2307].start 14436.25596875
transcript.pyannote[2307].end 14441.94284375
transcript.pyannote[2308].speaker SPEAKER_30
transcript.pyannote[2308].start 14442.06096875
transcript.pyannote[2308].end 14442.73596875
transcript.pyannote[2309].speaker SPEAKER_30
transcript.pyannote[2309].start 14443.00596875
transcript.pyannote[2309].end 14450.53221875
transcript.pyannote[2310].speaker SPEAKER_20
transcript.pyannote[2310].start 14444.69346875
transcript.pyannote[2310].end 14444.72721875
transcript.pyannote[2311].speaker SPEAKER_19
transcript.pyannote[2311].start 14444.72721875
transcript.pyannote[2311].end 14445.06471875
transcript.pyannote[2312].speaker SPEAKER_10
transcript.pyannote[2312].start 14445.06471875
transcript.pyannote[2312].end 14445.11534375
transcript.pyannote[2313].speaker SPEAKER_19
transcript.pyannote[2313].start 14445.11534375
transcript.pyannote[2313].end 14445.13221875
transcript.pyannote[2314].speaker SPEAKER_19
transcript.pyannote[2314].start 14447.15721875
transcript.pyannote[2314].end 14447.34284375
transcript.pyannote[2315].speaker SPEAKER_30
transcript.pyannote[2315].start 14450.80221875
transcript.pyannote[2315].end 14456.67471875
transcript.pyannote[2316].speaker SPEAKER_27
transcript.pyannote[2316].start 14456.64096875
transcript.pyannote[2316].end 14461.29846875
transcript.pyannote[2317].speaker SPEAKER_27
transcript.pyannote[2317].start 14461.80471875
transcript.pyannote[2317].end 14463.69471875
transcript.pyannote[2318].speaker SPEAKER_27
transcript.pyannote[2318].start 14464.58909375
transcript.pyannote[2318].end 14471.94659375
transcript.pyannote[2319].speaker SPEAKER_30
transcript.pyannote[2319].start 14472.11534375
transcript.pyannote[2319].end 14481.44721875
transcript.pyannote[2320].speaker SPEAKER_27
transcript.pyannote[2320].start 14480.24909375
transcript.pyannote[2320].end 14484.29909375
transcript.pyannote[2321].speaker SPEAKER_30
transcript.pyannote[2321].start 14484.29909375
transcript.pyannote[2321].end 14486.12159375
transcript.pyannote[2322].speaker SPEAKER_27
transcript.pyannote[2322].start 14484.50159375
transcript.pyannote[2322].end 14487.03284375
transcript.pyannote[2323].speaker SPEAKER_30
transcript.pyannote[2323].start 14487.01596875
transcript.pyannote[2323].end 14501.84909375
transcript.pyannote[2324].speaker SPEAKER_27
transcript.pyannote[2324].start 14500.33034375
transcript.pyannote[2324].end 14509.29096875
transcript.pyannote[2325].speaker SPEAKER_30
transcript.pyannote[2325].start 14502.37221875
transcript.pyannote[2325].end 14502.81096875
transcript.pyannote[2326].speaker SPEAKER_30
transcript.pyannote[2326].start 14504.17784375
transcript.pyannote[2326].end 14504.66721875
transcript.pyannote[2327].speaker SPEAKER_30
transcript.pyannote[2327].start 14507.70471875
transcript.pyannote[2327].end 14508.02534375
transcript.pyannote[2328].speaker SPEAKER_27
transcript.pyannote[2328].start 14509.91534375
transcript.pyannote[2328].end 14510.75909375
transcript.pyannote[2329].speaker SPEAKER_30
transcript.pyannote[2329].start 14510.89409375
transcript.pyannote[2329].end 14512.56471875
transcript.pyannote[2330].speaker SPEAKER_27
transcript.pyannote[2330].start 14512.90221875
transcript.pyannote[2330].end 14518.21784375
transcript.pyannote[2331].speaker SPEAKER_30
transcript.pyannote[2331].start 14513.54346875
transcript.pyannote[2331].end 14515.36596875
transcript.pyannote[2332].speaker SPEAKER_30
transcript.pyannote[2332].start 14518.20096875
transcript.pyannote[2332].end 14526.57096875
transcript.pyannote[2333].speaker SPEAKER_20
transcript.pyannote[2333].start 14523.09471875
transcript.pyannote[2333].end 14523.43221875
transcript.pyannote[2334].speaker SPEAKER_20
transcript.pyannote[2334].start 14526.55409375
transcript.pyannote[2334].end 14526.97596875
transcript.pyannote[2335].speaker SPEAKER_30
transcript.pyannote[2335].start 14526.89159375
transcript.pyannote[2335].end 14533.03409375
transcript.pyannote[2336].speaker SPEAKER_20
transcript.pyannote[2336].start 14531.53221875
transcript.pyannote[2336].end 14531.80221875
transcript.pyannote[2337].speaker SPEAKER_27
transcript.pyannote[2337].start 14531.80221875
transcript.pyannote[2337].end 14531.88659375
transcript.pyannote[2338].speaker SPEAKER_30
transcript.pyannote[2338].start 14533.37159375
transcript.pyannote[2338].end 14539.42971875
transcript.pyannote[2339].speaker SPEAKER_27
transcript.pyannote[2339].start 14538.58596875
transcript.pyannote[2339].end 14543.04096875
transcript.pyannote[2340].speaker SPEAKER_30
transcript.pyannote[2340].start 14539.73346875
transcript.pyannote[2340].end 14540.29034375
transcript.pyannote[2341].speaker SPEAKER_30
transcript.pyannote[2341].start 14542.06221875
transcript.pyannote[2341].end 14544.10409375
transcript.pyannote[2342].speaker SPEAKER_27
transcript.pyannote[2342].start 14544.23909375
transcript.pyannote[2342].end 14544.69471875
transcript.pyannote[2343].speaker SPEAKER_30
transcript.pyannote[2343].start 14544.69471875
transcript.pyannote[2343].end 14545.06596875
transcript.pyannote[2344].speaker SPEAKER_27
transcript.pyannote[2344].start 14544.71159375
transcript.pyannote[2344].end 14544.76221875
transcript.pyannote[2345].speaker SPEAKER_27
transcript.pyannote[2345].start 14544.81284375
transcript.pyannote[2345].end 14547.12471875
transcript.pyannote[2346].speaker SPEAKER_30
transcript.pyannote[2346].start 14547.95159375
transcript.pyannote[2346].end 14553.21659375
transcript.pyannote[2347].speaker SPEAKER_27
transcript.pyannote[2347].start 14553.65534375
transcript.pyannote[2347].end 14559.79784375
transcript.pyannote[2348].speaker SPEAKER_30
transcript.pyannote[2348].start 14553.75659375
transcript.pyannote[2348].end 14554.14471875
transcript.pyannote[2349].speaker SPEAKER_30
transcript.pyannote[2349].start 14557.06409375
transcript.pyannote[2349].end 14559.10596875
transcript.pyannote[2350].speaker SPEAKER_30
transcript.pyannote[2350].start 14560.50659375
transcript.pyannote[2350].end 14561.06346875
transcript.pyannote[2351].speaker SPEAKER_27
transcript.pyannote[2351].start 14561.06346875
transcript.pyannote[2351].end 14561.80596875
transcript.pyannote[2352].speaker SPEAKER_27
transcript.pyannote[2352].start 14562.24471875
transcript.pyannote[2352].end 14562.90284375
transcript.pyannote[2353].speaker SPEAKER_27
transcript.pyannote[2353].start 14563.71284375
transcript.pyannote[2353].end 14564.72534375
transcript.pyannote[2354].speaker SPEAKER_30
transcript.pyannote[2354].start 14564.21909375
transcript.pyannote[2354].end 14573.28096875
transcript.pyannote[2355].speaker SPEAKER_27
transcript.pyannote[2355].start 14570.66534375
transcript.pyannote[2355].end 14578.93409375
transcript.pyannote[2356].speaker SPEAKER_30
transcript.pyannote[2356].start 14575.45784375
transcript.pyannote[2356].end 14575.79534375
transcript.pyannote[2357].speaker SPEAKER_30
transcript.pyannote[2357].start 14578.15784375
transcript.pyannote[2357].end 14578.17471875
transcript.pyannote[2358].speaker SPEAKER_11
transcript.pyannote[2358].start 14578.17471875
transcript.pyannote[2358].end 14579.23784375
transcript.pyannote[2359].speaker SPEAKER_11
transcript.pyannote[2359].start 14580.23346875
transcript.pyannote[2359].end 14581.14471875
transcript.pyannote[2360].speaker SPEAKER_11
transcript.pyannote[2360].start 14582.49471875
transcript.pyannote[2360].end 14594.02034375
transcript.pyannote[2361].speaker SPEAKER_11
transcript.pyannote[2361].start 14594.49284375
transcript.pyannote[2361].end 14597.64846875
transcript.pyannote[2362].speaker SPEAKER_11
transcript.pyannote[2362].start 14597.71596875
transcript.pyannote[2362].end 14600.92221875
transcript.pyannote[2363].speaker SPEAKER_11
transcript.pyannote[2363].start 14601.20909375
transcript.pyannote[2363].end 14603.92596875
transcript.pyannote[2364].speaker SPEAKER_11
transcript.pyannote[2364].start 14606.94659375
transcript.pyannote[2364].end 14607.94221875
transcript.pyannote[2365].speaker SPEAKER_11
transcript.pyannote[2365].start 14608.14471875
transcript.pyannote[2365].end 14609.03909375
transcript.pyannote[2366].speaker SPEAKER_11
transcript.pyannote[2366].start 14609.56221875
transcript.pyannote[2366].end 14631.55034375
transcript.pyannote[2367].speaker SPEAKER_11
transcript.pyannote[2367].start 14636.68034375
transcript.pyannote[2367].end 14639.61659375
transcript.pyannote[2368].speaker SPEAKER_20
transcript.pyannote[2368].start 15485.27346875
transcript.pyannote[2368].end 15485.81346875
transcript.pyannote[2369].speaker SPEAKER_20
transcript.pyannote[2369].start 15485.96534375
transcript.pyannote[2369].end 15486.03284375
transcript.pyannote[2370].speaker SPEAKER_20
transcript.pyannote[2370].start 15486.92721875
transcript.pyannote[2370].end 15486.94409375
transcript.pyannote[2371].speaker SPEAKER_20
transcript.pyannote[2371].start 15486.96096875
transcript.pyannote[2371].end 15487.02846875
transcript.pyannote[2372].speaker SPEAKER_20
transcript.pyannote[2372].start 15487.29846875
transcript.pyannote[2372].end 15488.96909375
transcript.pyannote[2373].speaker SPEAKER_12
transcript.pyannote[2373].start 15494.08221875
transcript.pyannote[2373].end 15494.99346875
transcript.pyannote[2374].speaker SPEAKER_12
transcript.pyannote[2374].start 15565.63221875
transcript.pyannote[2374].end 15566.13846875
transcript.pyannote[2375].speaker SPEAKER_12
transcript.pyannote[2375].start 15567.31971875
transcript.pyannote[2375].end 15570.32346875
transcript.pyannote[2376].speaker SPEAKER_12
transcript.pyannote[2376].start 15571.89284375
transcript.pyannote[2376].end 15579.21659375
transcript.pyannote[2377].speaker SPEAKER_11
transcript.pyannote[2377].start 15578.60909375
transcript.pyannote[2377].end 15585.93284375
transcript.pyannote[2378].speaker SPEAKER_12
transcript.pyannote[2378].start 15584.71784375
transcript.pyannote[2378].end 15588.54846875
transcript.pyannote[2379].speaker SPEAKER_11
transcript.pyannote[2379].start 15585.94971875
transcript.pyannote[2379].end 15586.06784375
transcript.pyannote[2380].speaker SPEAKER_11
transcript.pyannote[2380].start 15586.40534375
transcript.pyannote[2380].end 15589.30784375
transcript.pyannote[2381].speaker SPEAKER_12
transcript.pyannote[2381].start 15590.06721875
transcript.pyannote[2381].end 15605.52471875
transcript.pyannote[2382].speaker SPEAKER_12
transcript.pyannote[2382].start 15605.99721875
transcript.pyannote[2382].end 15609.43971875
transcript.pyannote[2383].speaker SPEAKER_12
transcript.pyannote[2383].start 15609.84471875
transcript.pyannote[2383].end 15614.87346875
transcript.pyannote[2384].speaker SPEAKER_12
transcript.pyannote[2384].start 15615.04221875
transcript.pyannote[2384].end 15617.20221875
transcript.pyannote[2385].speaker SPEAKER_12
transcript.pyannote[2385].start 15617.52284375
transcript.pyannote[2385].end 15638.14409375
transcript.pyannote[2386].speaker SPEAKER_12
transcript.pyannote[2386].start 15639.44346875
transcript.pyannote[2386].end 15641.60346875
transcript.pyannote[2387].speaker SPEAKER_00
transcript.pyannote[2387].start 15642.22784375
transcript.pyannote[2387].end 15659.15346875
transcript.pyannote[2388].speaker SPEAKER_00
transcript.pyannote[2388].start 15659.59221875
transcript.pyannote[2388].end 15660.80721875
transcript.pyannote[2389].speaker SPEAKER_00
transcript.pyannote[2389].start 15661.36409375
transcript.pyannote[2389].end 15674.62784375
transcript.pyannote[2390].speaker SPEAKER_00
transcript.pyannote[2390].start 15676.23096875
transcript.pyannote[2390].end 15677.24346875
transcript.pyannote[2391].speaker SPEAKER_00
transcript.pyannote[2391].start 15677.90159375
transcript.pyannote[2391].end 15691.31721875
transcript.pyannote[2392].speaker SPEAKER_00
transcript.pyannote[2392].start 15691.63784375
transcript.pyannote[2392].end 15702.48846875
transcript.pyannote[2393].speaker SPEAKER_00
transcript.pyannote[2393].start 15703.58534375
transcript.pyannote[2393].end 15704.61471875
transcript.pyannote[2394].speaker SPEAKER_00
transcript.pyannote[2394].start 15704.76659375
transcript.pyannote[2394].end 15709.03596875
transcript.pyannote[2395].speaker SPEAKER_00
transcript.pyannote[2395].start 15709.23846875
transcript.pyannote[2395].end 15729.60659375
transcript.pyannote[2396].speaker SPEAKER_11
transcript.pyannote[2396].start 15732.03659375
transcript.pyannote[2396].end 15733.57221875
transcript.pyannote[2397].speaker SPEAKER_11
transcript.pyannote[2397].start 15733.62284375
transcript.pyannote[2397].end 15734.61846875
transcript.pyannote[2398].speaker SPEAKER_11
transcript.pyannote[2398].start 15737.52096875
transcript.pyannote[2398].end 15739.00596875
transcript.pyannote[2399].speaker SPEAKER_18
transcript.pyannote[2399].start 15740.57534375
transcript.pyannote[2399].end 15741.33471875
transcript.pyannote[2400].speaker SPEAKER_18
transcript.pyannote[2400].start 15741.95909375
transcript.pyannote[2400].end 15742.63409375
transcript.pyannote[2401].speaker SPEAKER_18
transcript.pyannote[2401].start 15742.78596875
transcript.pyannote[2401].end 15747.47721875
transcript.pyannote[2402].speaker SPEAKER_18
transcript.pyannote[2402].start 15748.00034375
transcript.pyannote[2402].end 15765.38159375
transcript.pyannote[2403].speaker SPEAKER_18
transcript.pyannote[2403].start 15766.46159375
transcript.pyannote[2403].end 15771.33846875
transcript.pyannote[2404].speaker SPEAKER_18
transcript.pyannote[2404].start 15772.55346875
transcript.pyannote[2404].end 15775.59096875
transcript.pyannote[2405].speaker SPEAKER_18
transcript.pyannote[2405].start 15775.86096875
transcript.pyannote[2405].end 15817.27221875
transcript.pyannote[2406].speaker SPEAKER_18
transcript.pyannote[2406].start 15817.54221875
transcript.pyannote[2406].end 15823.90409375
transcript.pyannote[2407].speaker SPEAKER_18
transcript.pyannote[2407].start 15824.61284375
transcript.pyannote[2407].end 15825.16971875
transcript.pyannote[2408].speaker SPEAKER_18
transcript.pyannote[2408].start 15825.23721875
transcript.pyannote[2408].end 15841.30221875
transcript.pyannote[2409].speaker SPEAKER_11
transcript.pyannote[2409].start 15850.63409375
transcript.pyannote[2409].end 15852.10221875
transcript.pyannote[2410].speaker SPEAKER_06
transcript.pyannote[2410].start 15856.77659375
transcript.pyannote[2410].end 15861.73784375
transcript.pyannote[2411].speaker SPEAKER_06
transcript.pyannote[2411].start 15862.61534375
transcript.pyannote[2411].end 15867.12096875
transcript.pyannote[2412].speaker SPEAKER_06
transcript.pyannote[2412].start 15867.37409375
transcript.pyannote[2412].end 15874.41096875
transcript.pyannote[2413].speaker SPEAKER_06
transcript.pyannote[2413].start 15874.86659375
transcript.pyannote[2413].end 15880.72221875
transcript.pyannote[2414].speaker SPEAKER_06
transcript.pyannote[2414].start 15881.63346875
transcript.pyannote[2414].end 15927.44909375
transcript.pyannote[2415].speaker SPEAKER_06
transcript.pyannote[2415].start 15927.66846875
transcript.pyannote[2415].end 15943.91909375
transcript.pyannote[2416].speaker SPEAKER_06
transcript.pyannote[2416].start 15944.54346875
transcript.pyannote[2416].end 15948.98159375
transcript.pyannote[2417].speaker SPEAKER_06
transcript.pyannote[2417].start 15949.40346875
transcript.pyannote[2417].end 16034.89221875
transcript.pyannote[2418].speaker SPEAKER_06
transcript.pyannote[2418].start 16035.78659375
transcript.pyannote[2418].end 16065.26721875
transcript.pyannote[2419].speaker SPEAKER_06
transcript.pyannote[2419].start 16065.53721875
transcript.pyannote[2419].end 16077.85596875
transcript.pyannote[2420].speaker SPEAKER_06
transcript.pyannote[2420].start 16078.39596875
transcript.pyannote[2420].end 16086.74909375
transcript.pyannote[2421].speaker SPEAKER_06
transcript.pyannote[2421].start 16086.96846875
transcript.pyannote[2421].end 16091.03534375
transcript.pyannote[2422].speaker SPEAKER_06
transcript.pyannote[2422].start 16091.47409375
transcript.pyannote[2422].end 16103.33721875
transcript.pyannote[2423].speaker SPEAKER_06
transcript.pyannote[2423].start 16103.86034375
transcript.pyannote[2423].end 16106.89784375
transcript.pyannote[2424].speaker SPEAKER_06
transcript.pyannote[2424].start 16107.53909375
transcript.pyannote[2424].end 16108.31534375
transcript.pyannote[2425].speaker SPEAKER_06
transcript.pyannote[2425].start 16109.51346875
transcript.pyannote[2425].end 16113.86721875
transcript.pyannote[2426].speaker SPEAKER_11
transcript.pyannote[2426].start 16115.16659375
transcript.pyannote[2426].end 16121.03909375
transcript.pyannote[2427].speaker SPEAKER_11
transcript.pyannote[2427].start 16121.79846875
transcript.pyannote[2427].end 16123.35096875
transcript.pyannote[2428].speaker SPEAKER_18
transcript.pyannote[2428].start 16128.63284375
transcript.pyannote[2428].end 16155.02534375
transcript.pyannote[2429].speaker SPEAKER_18
transcript.pyannote[2429].start 16156.34159375
transcript.pyannote[2429].end 16157.75909375
transcript.pyannote[2430].speaker SPEAKER_18
transcript.pyannote[2430].start 16158.46784375
transcript.pyannote[2430].end 16163.64846875
transcript.pyannote[2431].speaker SPEAKER_18
transcript.pyannote[2431].start 16164.64409375
transcript.pyannote[2431].end 16164.96471875
transcript.pyannote[2432].speaker SPEAKER_11
transcript.pyannote[2432].start 16203.91221875
transcript.pyannote[2432].end 16205.02596875
transcript.pyannote[2433].speaker SPEAKER_11
transcript.pyannote[2433].start 16205.27909375
transcript.pyannote[2433].end 16206.88221875
transcript.pyannote[2434].speaker SPEAKER_11
transcript.pyannote[2434].start 16208.56971875
transcript.pyannote[2434].end 16208.92409375
transcript.pyannote[2435].speaker SPEAKER_11
transcript.pyannote[2435].start 16209.73409375
transcript.pyannote[2435].end 16213.22721875
transcript.pyannote[2436].speaker SPEAKER_11
transcript.pyannote[2436].start 16214.30721875
transcript.pyannote[2436].end 16247.02784375
transcript.pyannote[2437].speaker SPEAKER_11
transcript.pyannote[2437].start 16247.12909375
transcript.pyannote[2437].end 16247.88846875
transcript.pyannote[2438].speaker SPEAKER_11
transcript.pyannote[2438].start 16248.09096875
transcript.pyannote[2438].end 16286.12721875
transcript.pyannote[2439].speaker SPEAKER_11
transcript.pyannote[2439].start 16288.21971875
transcript.pyannote[2439].end 16292.21909375
transcript.pyannote[2440].speaker SPEAKER_11
transcript.pyannote[2440].start 16297.90596875
transcript.pyannote[2440].end 16298.27721875
transcript.pyannote[2441].speaker SPEAKER_11
transcript.pyannote[2441].start 16298.88471875
transcript.pyannote[2441].end 16301.21346875
transcript.pyannote[2442].speaker SPEAKER_20
transcript.pyannote[2442].start 16299.79596875
transcript.pyannote[2442].end 16301.51721875
transcript.pyannote[2443].speaker SPEAKER_11
transcript.pyannote[2443].start 16301.51721875
transcript.pyannote[2443].end 16301.58471875
transcript.pyannote[2444].speaker SPEAKER_11
transcript.pyannote[2444].start 16301.70284375
transcript.pyannote[2444].end 16304.06534375
transcript.pyannote[2445].speaker SPEAKER_11
transcript.pyannote[2445].start 16306.15784375
transcript.pyannote[2445].end 16307.00159375
transcript.pyannote[2446].speaker SPEAKER_11
transcript.pyannote[2446].start 16307.49096875
transcript.pyannote[2446].end 16307.91284375
transcript.pyannote[2447].speaker SPEAKER_11
transcript.pyannote[2447].start 16308.28409375
transcript.pyannote[2447].end 16310.79846875
transcript.pyannote[2448].speaker SPEAKER_11
transcript.pyannote[2448].start 16316.21534375
transcript.pyannote[2448].end 16325.76659375
transcript.pyannote[2449].speaker SPEAKER_11
transcript.pyannote[2449].start 16326.28971875
transcript.pyannote[2449].end 16329.79971875
transcript.pyannote[2450].speaker SPEAKER_11
transcript.pyannote[2450].start 16331.21721875
transcript.pyannote[2450].end 16333.93409375
transcript.pyannote[2451].speaker SPEAKER_11
transcript.pyannote[2451].start 16334.25471875
transcript.pyannote[2451].end 16335.41909375
transcript.pyannote[2452].speaker SPEAKER_11
transcript.pyannote[2452].start 16335.68909375
transcript.pyannote[2452].end 16344.26159375
transcript.pyannote[2453].speaker SPEAKER_11
transcript.pyannote[2453].start 16344.90284375
transcript.pyannote[2453].end 16347.16409375
transcript.pyannote[2454].speaker SPEAKER_11
transcript.pyannote[2454].start 16350.91034375
transcript.pyannote[2454].end 16352.66534375
transcript.pyannote[2455].speaker SPEAKER_11
transcript.pyannote[2455].start 16353.44159375
transcript.pyannote[2455].end 16357.49159375
transcript.pyannote[2456].speaker SPEAKER_11
transcript.pyannote[2456].start 16358.21721875
transcript.pyannote[2456].end 16361.15346875
transcript.whisperx[0].start 399.582
transcript.whisperx[0].end 401.67
transcript.whisperx[0].text 委員會委員會
transcript.whisperx[1].start 1726.553
transcript.whisperx[1].end 1739.803
transcript.whisperx[1].text 出席委員已足法定人數。我們現在開會。請議事人員宣讀上次會議議事錄。立法院第11屆第1會期社會福利及衛生環境委員會第21次全體委員會議議事錄。時間113年6月13日星期四9時1分至10時57分。地點群選樓801會議室。出席委員盧先一等15人。列席委員侯孟凱等15人。
transcript.whisperx[2].start 1749.651
transcript.whisperx[2].end 1766.334
transcript.whisperx[2].text 就業服務法列席官員、勞動部部長何佩珊等相關人員、老人福利法列席官員、衛生福利部部長邱太元等相關人員、主席王兆吉委員喻敏報告事項、宣讀上次會議議事錄決定確定、討論事項第一案及第二案
transcript.whisperx[3].start 1767.436
transcript.whisperx[3].end 1789.916
transcript.whisperx[3].text 繼續審查委員林德夫等19人、委員楊瓊英等16人、委員馬文鈞等25人、委員屠春吉等17人、委員黃建斌等20人、委員呂玉玲等16人、委員盧憲義等17人、委員鄭正前等17人、委員王玉敏等17人分別擬據《就業服務法部分條文修正草案》等9案以及審查委員張家俊等30人、
transcript.whisperx[4].start 1790.737
transcript.whisperx[4].end 1805.56
transcript.whisperx[4].text 委員王宏威等22人委員鄭天才等16人分別擬聚就業服務法第46條條文修正草案等3案本次會議經委員張家俊及鄭天才說明提案指去113年5月27日及29日第11屆第一會期本會第18次全體委員會議委員盧先一、蘇清泉、廖偉翔、鄭天才等4人委員林月琴、楊耀、黃秀芳等3人委員黃秀芳、劉建國等5人
transcript.whisperx[5].start 1819.142
transcript.whisperx[5].end 1837.931
transcript.whisperx[5].text 分別提出《就業服務法》第46條條文修正動議委員林月琴等5人提出《就業服務法》第55條條文修正動議共4案。決議除1除委員屠春吉等17人擬拒《就業服務法》部分條文修正草案及委員李玉琳等16人擬拒《就業服務法》第46條及第55條條文修正草案
transcript.whisperx[6].start 1841.232
transcript.whisperx[6].end 1846.336
transcript.whisperx[6].text 令則其繼續審查外,就業服務法第46條條文修正草案等10案,審查完均,條文及附帶決議均保留,並按已據審查報告提報院會討論,院會討論時由王兆吉委員欲明補充說明,須交黨團協商,二,保留之修正動議三案,三,保留之附帶決議三項,討論事項第三案,
transcript.whisperx[7].start 1865.252
transcript.whisperx[7].end 1874.378
transcript.whisperx[7].text 繼續審查委員徐以珍等22人委員馬文君等16人委員張家俊等20人國民黨黨團委員黃建豪等17人委員王玉敏等19人台灣民眾黨黨團分別拟據老人福利法條文修正草案等7案決議老人福利法條文修正草案等7案審查完均條文均保留並按拟據審查報告提報院會討論院會討論時由王兆吉委員玉敏補充說明
transcript.whisperx[8].start 1895.471
transcript.whisperx[8].end 1898.853
transcript.whisperx[8].text 委員會上次議事錄有錯誤或遺漏之處?如果沒有的話議事錄確定那有關於議事錄確認的這場會議現在散會接下來我們繼續召開本會與外交及國防委員會第1次的聯席會議
transcript.whisperx[9].start 1916.696
transcript.whisperx[9].end 1945.408
transcript.whisperx[9].text 現在出席委員已足法定人數現在開會本次會議議程為審查勞動部函送駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄之中、英及印地文文本影本案首先介紹在場委員及列席官員在場有蘇清泉委員
transcript.whisperx[10].start 1947.15
transcript.whisperx[10].end 1975.033
transcript.whisperx[10].text 廖偉祥委員盧憲一委員陳昭芝委員林月琴委員王振旭委員我們介紹在場的官員勞動力發展署蔡孟良署長勞工保險局白立貞局長勞動基金運用局蘇玉清局長
transcript.whisperx[11].start 1976.965
transcript.whisperx[11].end 2002.783
transcript.whisperx[11].text 勞動保險司陳美女施長勞動條件及就業平等司黃維琛施長勞動法務司傅惠芝施長外交部亞太司蘭夏里施長領事事務局簽證組柯孝宗組長法務部汪南君參事
transcript.whisperx[12].start 2006.164
transcript.whisperx[12].end 2022.217
transcript.whisperx[12].text 衛福部社會保險司黃泰平檢任視察莊健康保險署張文溫組長疾病管制署何麗麗組長內政部移民署國際事務組張文秀組長好部長還沒到嗎還在接受媒體採訪嗎還是還沒有到現場
transcript.whisperx[13].start 2036.041
transcript.whisperx[13].end 2036.442
transcript.whisperx[13].text 外交部說明
transcript.whisperx[14].start 2050.98
transcript.whisperx[14].end 2071.358
transcript.whisperx[14].text 主席、各位委員、各位先生女士有關大院審查勞動部函送的駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄外交部已經有提供書面的報告那在這邊簡單的口頭再報告一次
transcript.whisperx[15].start 2072.539
transcript.whisperx[15].end 2084.827
transcript.whisperx[15].text 因為印度近年來的東進政策所以近年來印度跟台灣的關係逐漸的在升溫而且在各個領域的合作都有往上成長的趨勢那麼
transcript.whisperx[16].start 2087.208
transcript.whisperx[16].end 2102.143
transcript.whisperx[16].text 今天在審查的這個備忘錄簽署的是在2月那麼我們也觀察到在2月之後呢印度總理莫迪有在他的這個social media上面加強了跟我們的互動包括了
transcript.whisperx[17].start 2102.884
transcript.whisperx[17].end 2120.212
transcript.whisperx[17].text 今年在出席利基電跟印度方面動土的典禮上有特別的提到台灣方面有領袖參加視訊觀禮另外在4月的時候也在X平台慰問我們的花蓮症災6月的時候也
transcript.whisperx[18].start 2122.293
transcript.whisperx[18].end 2136.565
transcript.whisperx[18].text 複謝賴總統祝賀他勝選的貼文所以我們可以觀察到因為這樣子的趨勢再加上其他各領域的合作印度對於這個合作協定是非常的期待那麼外交部未來也會
transcript.whisperx[19].start 2137.526
transcript.whisperx[19].end 2166.54
transcript.whisperx[19].text 本於職長配合我們主政機關繼續推動台印度雙方的各層級的合作以及推動這個今天要審查的這個備忘錄後續的相關工作以上報告完畢好謝謝外交部的一個報告那那個部長還沒到是不是那署長也要待會報告嗎好不好先請蔡署長
transcript.whisperx[20].start 2167.355
transcript.whisperx[20].end 2177.072
transcript.whisperx[20].text 先代為報告好了因為等一下部長會來嘛 質詢的時候他會再回答我們先請那個勞動力發展署我們蔡孟良署長代為報告
transcript.whisperx[21].start 2180.869
transcript.whisperx[21].end 2203.657
transcript.whisperx[21].text 主席各位委員首先勞動部非常感謝我們今天主席各位委員及各位女士先生針對我們今天委員會所審查駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄中英及印地文文本進行報告那進行委員也給予指教
transcript.whisperx[22].start 2204.657
transcript.whisperx[22].end 2228.618
transcript.whisperx[22].text 其實我們臺灣受到高齡少子化的影響因為基層勞動力的不足我們的移工的主要來源國目前也僅止於像泰國、菲律賓、印尼跟越南的四個國家因為這樣的一個依存度的風險大院及僱主團體過去也長年也希望勞動部能夠積極會同外交部來開發新的移工來源國
transcript.whisperx[23].start 2229.679
transcript.whisperx[23].end 2253.964
transcript.whisperx[23].text 那印度因為不受到一個地緣政治的影響那同時也積極的來促進印度勞工能夠與我方來寫合作來台工作那事實上這樣的一個合作的意向也符合雙方的需求所以我們雙方在今年的2月16日也依照條約地解法的規定完成簽署的合作備忘錄那在4月2日經過行政院同意被查4月3日也送請大院來查照
transcript.whisperx[24].start 2254.924
transcript.whisperx[24].end 2276.294
transcript.whisperx[24].text 那臺印度的MOU總共全文是13條那其實這整個條文內容絕對是基於雙方的平等互惠的原則我們進行勞務合作那主要條文做以下的報告那主要在第二條裡面也就是大家外界所關切的我們在招募印度勞工來臺的職類跟名額完全是依照我方的需求而決定
transcript.whisperx[25].start 2277.054
transcript.whisperx[25].end 2303.725
transcript.whisperx[25].text 那在第8條部分我們就現有的招募制度意外我們也共同來推動直接聘僱計畫那未來透過直接聘僱的一個雙方各自設立專責的窗口以及選工制度的一個建制之下能夠達到這個職聘的一個計畫的推動那同時我們在第10條針對外界關切的就是失聯移工在台的一些收容遣返可能衍生的一些費用的問題
transcript.whisperx[26].start 2304.925
transcript.whisperx[26].end 2318.816
transcript.whisperx[26].text 這一部分在印度方也未來會承擔這樣的一個清償的責任同時我們為了要讓整個臺印度的一個勞務合作促進社會對話能夠凝聚共識我們勞動部在113年3月1號跟5月2號那也經過兩次的專家團體的一個諮詢會議邀請了我們熟悉臺灣與印度的勞工事務的專家學者
transcript.whisperx[27].start 2329.625
transcript.whisperx[27].end 2341.654
transcript.whisperx[27].text 主持團體、移工團體、仲介團體及經濟部等相關部會,共同針對印度移工的素質、語言、宗教文化、治安等議題相關意見,初步也達成相關共識,包括
transcript.whisperx[28].start 2345.737
transcript.whisperx[28].end 2365.091
transcript.whisperx[28].text 因為印度勞工其實輸出到全世界各國整個數值是受到肯定那我們是其實可以參考其他國家的引進模式那提出雇主的需求跟條件那同時印度依照他的各方的一個產業發展跟人力素質也會協助來提供相關的招募跟培訓那至於相關的行業的開放
transcript.whisperx[29].start 2366.132
transcript.whisperx[29].end 2383.806
transcript.whisperx[29].text 其實我們會審慎而且漸進式的一個處理那我們也採取相關的一些部分行業採小規模的示範方式來引進那同時多數的意見其實也認為因為臺灣我們在引進的移工多年所累積的制度之下除了優先推動職聘制度之外
transcript.whisperx[30].start 2384.446
transcript.whisperx[30].end 2408.018
transcript.whisperx[30].text 那未來我們為了要讓仲介引進這個管道也能夠避免外界對於仲介引進所產生的一個負面影響未來我們會有一些創新變革的一個做法能夠來讓社會各界能安心能夠透過評選來示範那移工團體當然他是主張針對職聘這個制度能夠優先來辦理我想這個部分我們未來再跟臺印度的一個雙邊的工作小組會議我們會列為優先的議題來做一個討論
transcript.whisperx[31].start 2410.979
transcript.whisperx[31].end 2434.646
transcript.whisperx[31].text 那未來臺印度的未來的四大重點工作理念這包含未來我們在小規模事辦尤其在選擇性的行業這個部分我想這個部分會以最大的共識來漸進的推動那另外對於移工具有一定的經驗而且有良好的素質甚至他有一些一定的語言能力包含英文的能力這個部分未來我們會優先的來考慮來做一個開放跟引進
transcript.whisperx[32].start 2435.606
transcript.whisperx[32].end 2459.485
transcript.whisperx[32].text 那同時我們也依照我們大院的期待跟民間團體的一個訴求我們在推動職併制度上面其實在我們的合作備忘錄其實已經明定未來雙方會成立單一窗口同時我們會建立更友善的一個選工制度那另外我們在國內的部分我們也會推動相關的職併服務的一個相關的精進做法那同時在這個未來在整個擴大這個優質的一個
transcript.whisperx[33].start 2463.008
transcript.whisperx[33].end 2486.71
transcript.whisperx[33].text 總結的一個選任部分其實我們會邀請相關的團體我們建立好的一個篩選機制我們讓好的總結能夠來承擔這樣的一個接受僱主委託的一個責任那同時我們要確保我們的社會安定其實印度移工來台之前我們的法律絕對會規定必須要有無染的法律證明就一般所謂的良民證那除此以外其實對他的素質就包含提到的
transcript.whisperx[34].start 2487.23
transcript.whisperx[34].end 2516.013
transcript.whisperx[34].text 相關的學經歷甚至他可能有海外或台商的工作經驗我們這個會把它列為優先的考量那同時來台之後我們會加強法令的一個講習跟訓練同時也會輔導雇主一個相關的友善的管理那對於印度移工來台之後為了要達到一個相關的一個適應其實我們現在在國內已經布建了相關的一個服務的系統包含我們對於這個現有的這個英語相關的語言的一個通譯人才庫我們會跟移民署來合作來擴充
transcript.whisperx[35].start 2516.934
transcript.whisperx[35].end 2542.138
transcript.whisperx[35].text 那同時在入國前後相關的權益講習以及來臺之後我們會實地的訪視然後瞭解他的一個適應的情況這我們都會持續來努力那最後我們勞動部也會持續來邀請社會各界相關的關切團體代表我們持續召開我們相關的諮詢會議我們希望說相關議題在國內達到共識之後我們在未來會跟印度透過工作小組會議來持續來討論來推動雙方的勞務合作以上報告
transcript.whisperx[36].start 2547.168
transcript.whisperx[36].end 2554.511
transcript.whisperx[36].text 好謝謝呃署長的報告那我們呃介紹我們勞動部部長和沛山部長也到現場謝謝部長好有關本次會議各項書面資料均列入記錄刊登公報現在開始詢答做以下宣告那因為今天是呃由衛環委員會跟外交國防聯席哦按照之前
transcript.whisperx[37].start 2573.977
transcript.whisperx[37].end 2589.23
transcript.whisperx[37].text 跟司法法制聯席的慣例這一次縮短大家詢答時間本會委員詢答時間5分鐘列席委員4分鐘不曉得委員有沒有意見這個是參照今年聯席的慣例縮短時間來委員可以表示意見沒有問題
transcript.whisperx[38].start 2601.806
transcript.whisperx[38].end 2625.683
transcript.whisperx[38].text 就大家盡量好不好準時結束,我們還是6加26加2,啊外備還值得辦那就原來都一模一樣,跟聯席都是一樣時間長度怎麼樣?規定委員會的三分鐘,三加一啦那本委員會呢?聯席
transcript.whisperx[39].start 2633.08
transcript.whisperx[39].end 2654.413
transcript.whisperx[39].text 好 那尊重委員本委員會5加2 外委員會3分鐘10點半截止發言登記委員如有書面質詢請於三會前提出 預期不受理暫定10點30分休息5分鐘本次會議不處理臨時提案現在我們就請登記第一位委員陳昭芝委員質詢麻煩何部長好 我們請部長
transcript.whisperx[40].start 2666.117
transcript.whisperx[40].end 2692.166
transcript.whisperx[40].text 部長早安加快速度部長我們和印度簽訂了這個MOU第8條我還是很重視這個部分因為在之前也跟您討論過應設職聘還有設立單一窗口及選工制度剛剛署長當然是有一些報告可是我想知道的是目前的進度在哪裡勞動部是否已經成立了單一窗口還有已經建立好這個選工機制了嗎或是還只是在規劃的這個階段
transcript.whisperx[41].start 2695.527
transcript.whisperx[41].end 2718.153
transcript.whisperx[41].text 因為我們強調我們是雙軌進行一方面用植品一方面我們也會用平選優質中介是點雙軌所以植片的部分說真的我們現在還在摸索中那麼我們也還在嘗試看是不是有可能這個推動新的植片的方式這是一個非常好機會那個因為
transcript.whisperx[42].start 2720.454
transcript.whisperx[42].end 2737.669
transcript.whisperx[42].text 我以前就是拿資料給部長看過雙軌的結果是民意是雙軌實質是單軌就1%不到的這個職聘那部長為什麼我會問目前的進度因為上個月勞動部有舉行了一個引進勞工這個印度移工的諮詢會議那當中看到勞動部擬定的這個討論提綱我有點訝異啊老實說因為
transcript.whisperx[43].start 2742.273
transcript.whisperx[43].end 2769.421
transcript.whisperx[43].text 例如勞動部問請部長看這個投影片如果採政府對政府基礎基礎職聘我方雇主人力需求如何提供還有由誰處理那移工來台的這個生活適應及這個日常管理由誰處理雇主有協助的需求誰來處理那聘借期滿或因故需要返國的時候誰來處理就是好像都還在問這個非常原始的問題部長我們來假設如果都是透過這個仲介的話那上面這些問題是誰處理的
transcript.whisperx[44].start 2771.722
transcript.whisperx[44].end 2781.07
transcript.whisperx[44].text 國務委員報告,就是在這一次MOU的特色,裡面一條就是我們的第8條,因為印方他
transcript.whisperx[45].start 2781.892
transcript.whisperx[45].end 2783.173
transcript.whisperx[45].text 委員會主席
transcript.whisperx[46].start 2803.916
transcript.whisperx[46].end 2823.865
transcript.whisperx[46].text
transcript.whisperx[47].start 2824.085
transcript.whisperx[47].end 2848.592
transcript.whisperx[47].text 好我會來努力好嗎?如果那些問題是仲介做那當然那些剛剛我同樣的問題應該如果是政府來做的話那當然就是政府或勞動部要多擔待嘛是是那第二個問題是更有意思啊如果要參照韓國的執聘制度就是在你們這個那個討論提綱那我方助派這個印度相關辦理人力經費用什麼方式經營或或派駐督導那由誰支援等等這個感覺還是非常原始的問題欸
transcript.whisperx[48].start 2849.292
transcript.whisperx[48].end 2849.692
transcript.whisperx[48].text 韓國的公團的模式
transcript.whisperx[49].start 2866.766
transcript.whisperx[49].end 2888.698
transcript.whisperx[49].text 對,產業公團的模式其實他們是韓國的產業界跟韓國政府合作一起推動行政法人的一個這樣的單位其實我還是強調說因為好不容易有新的來源國那你要用一個大家全世界認為是比較理想有競爭力的制度就是此期實業這是一個非常好的時機那個現在部長你看其實勞動部是有能力做這個居然的居然
transcript.whisperx[50].start 2893.26
transcript.whisperx[50].end 2922.521
transcript.whisperx[50].text 在諮詢會議上有移工團體有指出來韓國的執聘制度順利關鍵就是有一個SPAS的這個系統簡單來說就是把各個部門串起來就是串起來那台灣就差這個系統而已我也要邀請未來如果通過以後我想我必須邀請其他的部會一起來做這個事情這個系統就是我自己有了解包括選工、面試跟簽證這三個那台灣一定有能力這樣處理所以勞動部應該就還沒有進行任何動作的意思
transcript.whisperx[51].start 2923.121
transcript.whisperx[51].end 2944.816
transcript.whisperx[51].text 我跟委員報告我必須等MOU經大院通過以後我們才能往下走部長我還在在強調因為這種做法可以大大簡化執聘的這個程序跟門檻那我們才有競爭力嘛是不是因為明年就要進來啦明年這個未必未必但是你至少要在之前準備好嘛當然所以我覺得下半年就是一個很重要的這個時間啦是是是
transcript.whisperx[52].start 2947.338
transcript.whisperx[52].end 2971.246
transcript.whisperx[52].text 那部長這個上個月諮詢會還有一個結論就是說優先開放在製造業那部長因為我們知道你還有其他的問題要處理比如包括取消80歲老人的這個申請看護免80量表這個是當時您說那個開口破口會是53萬左右那恐怕排擠的重症家庭照顧那您認為如果印度移工也能夠補足這個可能的缺口嗎
transcript.whisperx[53].start 2972.527
transcript.whisperx[53].end 2995.963
transcript.whisperx[53].text 你會不會考慮說家庭看護也可能開放、優先開放印度移工?你有思考過嗎?因為巴士量表這個問題已經存在很久了。可是這應該是兩個問題,抱歉。因為印度移工它適不適合當家庭看護工這也是一個問題。這要經過一段長時期的摸索跟這一個一初期印度移工這個部分會以製造業為主啦。
transcript.whisperx[54].start 2996.403
transcript.whisperx[54].end 2998.945
transcript.whisperx[54].text 但是至於是否會是江林康復工的來源我覺得這有待...是是是
transcript.whisperx[55].start 3014.079
transcript.whisperx[55].end 3040.235
transcript.whisperx[55].text 如果你認為這樣會排擠這個效應或是有人力缺口那其實本黨的這個科主席他競選總統的時候他有提過是不是可能放寬家庭幫傭的申請門檻因為有些民眾就是擔心他家裡的老人長者他是他還沒有到需要照顧看顧的程度但是因為年紀大家裡總是有需要人幫忙打理這個就是他需要的不是看護而是一個家庭幫傭但是請我想部長你可能熟悉這些
transcript.whisperx[56].start 3041.015
transcript.whisperx[56].end 3069.497
transcript.whisperx[56].text ﹏﹏
transcript.whisperx[57].start 3069.497
transcript.whisperx[57].end 3069.637
transcript.whisperx[57].text 麻煩何部長請部長
transcript.whisperx[58].start 3100.643
transcript.whisperx[58].end 3117.392
transcript.whisperx[58].text 委員好部長早現在事實上在服務業工作的青年佔了75%在青年畢業後三年內從事服務業的比例還是佔了大概70%整體來看的話佔整個服務業裡面大概是15%
transcript.whisperx[59].start 3124.909
transcript.whisperx[59].end 3147.357
transcript.whisperx[59].text 所以看起來這是青年的很重要的工作機會所以服務業事實上比較不贊成來開放移工否則就跟我們的青年在搶工作可是服務業裡邊事實上還包含旅宿業那現在旅宿業看這新聞就知道就勞動部要去開放可是
transcript.whisperx[60].start 3147.972
transcript.whisperx[60].end 3165.713
transcript.whisperx[60].text 學者們事實上比較持反對的意見。為什麼呢?因為勞動部你現在最近事實上研擬修正留用外國中階技術人員的產業別當中要開放我們的觀光旅宿業的聘僱僑外生。所以我想問的是你這個政策考量的是什麼?
transcript.whisperx[61].start 3166.414
transcript.whisperx[61].end 3184.369
transcript.whisperx[61].text 你跟我原報告齁當然其實確實服務業裡面青年占大多數而且低薪這是一個最嚴重的問題所以我一直強調缺工不能等於低薪那麼所謂開放這一個橋外生當房務員這個標題其實是有點過度的解讀啦因為是這樣子
transcript.whisperx[62].start 3189.773
transcript.whisperx[62].end 3218.375
transcript.whisperx[62].text 我在這個開放僑外生的這個制度裡面其實我們尊重的是配合的打開然後還有包括未來工作許可開放讓他申請工作許可我們是著眼於把勞動力留下來然後呢關於中階技術人員開放做防務員這是觀光署的一個提案那麼報給國防會當然我們也樂觀其成當然如果因為這東西是這樣他是有薪資上限的
transcript.whisperx[63].start 3218.815
transcript.whisperx[63].end 3219.976
transcript.whisperx[63].text 為什麼?如果各種服務業未來是不是會不會先比照這樣的辦理?
transcript.whisperx[64].start 3241.212
transcript.whisperx[64].end 3267.684
transcript.whisperx[64].text 篡寬僑外生,最後還是期待未來開放移工。如果剛剛講低薪的話,你應該是從今年如果都在做這行業應該是去提振薪水而不是用移工來取代他啦。我覺得這要去考慮。疫情過後的確我們看到勞動部的數據就足記的那個人力需求的預估大概整個產業都有需求,特別是
transcript.whisperx[65].start 3268.191
transcript.whisperx[65].end 3294.783
transcript.whisperx[65].text 我們的製造業是最大需求可是想要問的是就是說我們的在MOU裏邊臺印的MOU裏邊第二條的協議也是總額跟名額都由臺方決定那入境人數多寡臺灣有主導權所以問一下勞動部這邊未來會是針對於我們的製造業的底下哪一個行業優先來開放
transcript.whisperx[66].start 3296.471
transcript.whisperx[66].end 3310.68
transcript.whisperx[66].text 是電信呢?還是食品加工?還是...我一看電信或食品加工都不是製造,他們算服務業的,對。只就是製造業應該我們經過諮詢會議,像工種這樣的團體,他們是有表達意願的啦。可是我們必須等MOU通過之後,我們要再去訪問這個產業僱主的意見啦。然後讓他們確定到底是哪一個業別是最需要的。
transcript.whisperx[67].start 3324.628
transcript.whisperx[67].end 3330.898
transcript.whisperx[67].text 才能夠開始進行那再來問是你先進來的大概因為說到小規模事辦請問先進來的規模人數大概多少
transcript.whisperx[68].start 3334.784
transcript.whisperx[68].end 3338.968
transcript.whisperx[68].text 對於僱主的優先資格,你如何評選?而且提出來申請的僱主如何知道自己具有優先性?
transcript.whisperx[69].start 3358.161
transcript.whisperx[69].end 3377.616
transcript.whisperx[69].text 這個就是要看產業的需求還有包括他的管理能力就是我們這個要去確認的所以勞動部是不是可以在事辦開始之前應該事先明確的把事辦行業公佈人數、雇主的資格講清楚所以不要讓油鹽來取代事實否則現在謠言滿天飛那再來整個
transcript.whisperx[70].start 3382.179
transcript.whisperx[70].end 3397.795
transcript.whisperx[70].text 台灣事實上是移工的引進國可是難民會發生行蹤不明、醫療、勞資爭議、安置的這些需求那過去來源國當然會基於他保護他的國民的立場在態度上都會積極協助那過去在越南對於
transcript.whisperx[71].start 3398.676
transcript.whisperx[71].end 3419.976
transcript.whisperx[71].text 台灣近內的移工比較少提供支持相較之下印尼跟菲律賓在台灣都設有移工臨時的安置中心那移工的整個如果來源國放手的話所有風險就會台灣承擔所以在這次MOU的臺英MOU文件裏邊在第7條的社會保險負擔跟第10條的行蹤不明的移工收容的負擔上
transcript.whisperx[72].start 3420.595
transcript.whisperx[72].end 3435.503
transcript.whisperx[72].text 印度方都說他會負責最終的擔保責任所以想問說那有沒有比較具體的整個實際服務做法有沒有具體的規劃是這個部分就是印方對我方相當友善跟積極的表現
transcript.whisperx[73].start 3436.203
transcript.whisperx[73].end 3460.997
transcript.whisperx[73].text 我們這次MOU會簽成跟印方非常積極有關係所以我們也很感謝印方對我們的友好那因為他們也在這裡承諾他們願意來負責萬一要發生所謂的無證無證移工的狀況那針對於未來行方不明的勞動部現在在研擬外國仲介保護機制要求外國仲介負擔遣返收容醫療費用
transcript.whisperx[74].start 3462.097
transcript.whisperx[74].end 3486.046
transcript.whisperx[74].text 那要建立停權的機制,這個政策可不可以三個月內可以正式提出嗎?我們盡量來做。好,在勞動部這邊。那為了降低移工的負債造成刑方不明的問題,那勞動部接著應該要規範外國仲介公司仲介費合理收費,部長同意嗎?收費
transcript.whisperx[75].start 3489.475
transcript.whisperx[75].end 3512.688
transcript.whisperx[75].text 這是來源國的問題可能會比較難去規範對方我們只能建議他在我們兩邊雙邊工作會議的時候建議印方這樣子對最後大概還是要問的就是說整個台印MOU第10條本來就要達成配合推動職聘的這個協議然後現在移工團體也都倡議要學習
transcript.whisperx[76].start 3513.951
transcript.whisperx[76].end 3515.812
transcript.whisperx[76].text 委員我們的MOU現在是雙軌的
transcript.whisperx[77].start 3537.403
transcript.whisperx[77].end 3537.423
transcript.whisperx[77].text 陳經輝委員
transcript.whisperx[78].start 3569.214
transcript.whisperx[78].end 3571.079
transcript.whisperx[78].text 主席 各位官員早 我想請何部長 謝謝好 請部長
transcript.whisperx[79].start 3579.312
transcript.whisperx[79].end 3604.323
transcript.whisperx[79].text 好部長去年非典型工作者破了80萬人那所謂的這個臨時性或人力派遣的工作者佔了快60人所以我們這樣子非典型的勞工不斷的攀升除了固定的法令宣導還有勞檢勞動部有想要增加什麼措施嗎您是指外送員的這樣子的權益嗎對是
transcript.whisperx[80].start 3609.105
transcript.whisperx[80].end 3613.547
transcript.whisperx[80].text 政府機關應用勞務承攬參考原則是,你們發布一個政府機關勞動承攬參考原則就是說我們的中央主管機關如果利用這些非典型人力來做事就要定期來稽查人力的廠商要守法所以呢勞動部發動這個
transcript.whisperx[81].start 3636.916
transcript.whisperx[81].end 3663.363
transcript.whisperx[81].text 發布這件事不久以後其實我們這個委員會多位委員包括我就有提案要求說主管的勞動部還有工程會人事總處等等政府內不分大小的單位都要有效的宣導請問目前做的進度如何了那麼我們規劃7月下旬辦研習營然後有三個部會會共同協助採購機關關於勞務採購
transcript.whisperx[82].start 3666.864
transcript.whisperx[82].end 3691.917
transcript.whisperx[82].text 契約依承懶參考原則明定各項勞動權益還有8月也會針對中央機關辦理這一個法制宣導活動那也是三個部會一起所以我們會從明年度的總預算看得出來政府要帶頭來做改善並且你可以承諾說一半以上的機關在明年就可以做到內部至少一次的不定期集合嗎?
transcript.whisperx[83].start 3693.058
transcript.whisperx[83].end 3693.258
transcript.whisperx[83].text 謝謝委員支持
transcript.whisperx[84].start 3709.946
transcript.whisperx[84].end 3725.421
transcript.whisperx[84].text 再來呢因為您近期內也有說要找經濟部合作會利用審查國內的上市上櫃投資案件要求應先派遣瞭解派遣跟勞務承攬的廠商有沒有手法作為採購的評估
transcript.whisperx[85].start 3727.403
transcript.whisperx[85].end 3752.866
transcript.whisperx[85].text 好還說呢跟經濟部也要來履約期間針對派遣員工的勞動條件合法與否來調查稽查更要在公司的年報還有永續報告書中來揭露因為你有發布這樣子的新聞所以許多的公司也很想知道這個細節因為影響他們上市上櫃的條件所以您會不會去修到經濟部主管的公司法
transcript.whisperx[86].start 3754.167
transcript.whisperx[86].end 3776.703
transcript.whisperx[86].text 不可能欸因為委員抱歉公司法是經濟部主管發動方一定要是經濟部我們只能進所以您還是維持在宣導嗎我只能盡量的呼籲然後希望那個企業能夠善盡社會責任這樣子所以其實不會有白紙黑字的管理依據出來事實上
transcript.whisperx[87].start 3778.104
transcript.whisperx[87].end 3803.124
transcript.whisperx[87].text 因為針對上市櫃企業也非我能夠行政命令去對它做是我們只能盡量來呼籲主導永續發展的主要權責是金管會金管會去年也開始做了上市櫃公司永續發展行動方案所以會去推出一個修正版本的上市櫃公司永續發展行動方案2.0所以你這樣子落實把
transcript.whisperx[88].start 3804.085
transcript.whisperx[88].end 3827.812
transcript.whisperx[88].text 派遣員工、非典型員工的勞動條件合法依據的調查、稽查結果您會希望跟經濟部還有金管會溝通如何的落實在他們的永續報告書中嗎?我們現在正在努力希望ESG納入勞權指標這個我們確實也希望能夠得到金管會跟經濟部的支持所以您規劃的時間點大約是?
transcript.whisperx[89].start 3830.593
transcript.whisperx[89].end 3840.778
transcript.whisperx[89].text 我們有跟他們展開平台會議希望能夠大家趕快來協商這樣子好那我們也會再持續關心這樣子的進度謝謝委員我勞動部5月2號有召開諮詢會說共識印度移工人力優先剛有提到了跟很多委員講是製造業的小規模事辦
transcript.whisperx[90].start 3850.902
transcript.whisperx[90].end 3866.35
transcript.whisperx[90].text 可是我們都知道製造業的工作性質多屬於做多少算多少的承攬性質所以開放製造業的印度移工也想要請教部長有沒有可能再製造更多我國非典型就業的人口呢?
transcript.whisperx[91].start 3868.948
transcript.whisperx[91].end 3888.625
transcript.whisperx[91].text 應該不至於欸,因為這個我們的非典就業人口跟我們年輕勞工目前的對,這個跟這個應該是兩件事情所以您覺得印度移工小規模是不會排擠到本國人的應該不至於,對應該不會的
transcript.whisperx[92].start 3890.026
transcript.whisperx[92].end 3913.404
transcript.whisperx[92].text 只是補充我要跟委員報告我們會希望的推動臺印MOU引進印度移工是希望為臺灣的勞動力增加來源而且我們現在勞動力缺乏嘛那大家都喊缺工嘛那麼主要是少子化的問題我們需要增加新的勞動力而且是優質的新的勞動力這樣子
transcript.whisperx[93].start 3915.165
transcript.whisperx[93].end 3933.02
transcript.whisperx[93].text 這個剛剛很多委員也有關心不過都還沒有很仔細的詢問到您您的備忘錄內容呢第8條明文講到說雙軌制嘛雙邊同意推動直接聘僱計畫而且其實你們是說在雙方的法律允許下擴大直接聘僱計畫還會設立單一窗口的
transcript.whisperx[94].start 3935.723
transcript.whisperx[94].end 3948.964
transcript.whisperx[94].text 選工機制而且第二行還有寫到說優先的適用續聘計畫所以您是要真的擴大職聘還是只是應用在移工三年期滿的續聘上
transcript.whisperx[95].start 3950.066
transcript.whisperx[95].end 3967.501
transcript.whisperx[95].text 你的這個雙軌的執聘是想要第一階段就做還是你要續聘的時候才要做?這個意思是說真的實務上現在只能先從續聘計畫先做了那因為事實上跟委員報告執聘制度是很困難的
transcript.whisperx[96].start 3968.302
transcript.whisperx[96].end 3996.63
transcript.whisperx[96].text ﹏﹏
transcript.whisperx[97].start 3996.63
transcript.whisperx[97].end 4020.316
transcript.whisperx[97].text ⋯⋯
transcript.whisperx[98].start 4020.316
transcript.whisperx[98].end 4050.316
transcript.whisperx[98].text ⋯⋯
transcript.whisperx[99].start 4050.456
transcript.whisperx[99].end 4074.09
transcript.whisperx[99].text 那麼他們的其實好的優質的仲介在我們勞動部都是都有列檔案的這都是有可以透過評選然後來好您的這個諮詢會有提到說印度的私人引薦的社群也很也很有可能有這個亂象所以本席也在這邊提醒您可能未來這個管理會需要是是是謝謝好謝謝
transcript.whisperx[100].start 4078.649
transcript.whisperx[100].end 4081.05
transcript.whisperx[100].text 接下來我們請廖偉祥委員質詢。謝主席,有請我們何部長。請何部長。
transcript.whisperx[101].start 4102.011
transcript.whisperx[101].end 4125.99
transcript.whisperx[101].text 委員好部長好部長早這幾天喔剛過8點就已經標破30度然後呢到9點之後就過35度請問部長今天上班的時候有沒有覺得很熱真的蠻熱的相信委員也是這樣的感覺部長能夠感同身受真的很熱喔事實上去年就已經是有史以來最熱的夏天喔但是今年根據這個歐盟氣候監測服務機構的評估有86%
transcript.whisperx[102].start 4130.473
transcript.whisperx[102].end 4156.669
transcript.whisperx[102].text 的機率會超過去年的紀錄,變成最熱的夏天。那同時在台灣呢,又有這樣子的一個現象,就是都市熱島效應。造成,我們可以看到這個紅色的地方,北北基塔喔,雖然行政區上沒有合併,可是卻變成夏日的高溫帶,變成一片。在這個雙重夾擊之下,無論是長期在戶外工作的員工,或是坐在辦公室上班的這些通勤族喔,都可以感受到炎炎夏日。
transcript.whisperx[103].start 4157.409
transcript.whisperx[103].end 4168.527
transcript.whisperx[103].text 那而且我看未來只會越來越嚴重喔所以我想要請問對於這個高溫所可能對於勞工產生的傷害部長有沒有什麼樣的應對措施
transcript.whisperx[104].start 4170.149
transcript.whisperx[104].end 4190.129
transcript.whisperx[104].text 跟委員報告我們這個治安署在這方面本來已經有法規的修正我請這個副署長來回答一下好不好好跟委員報告在這個部分因為在安全衛生的部分我們在法規現在已經有規定在一個戶外工作者他在僱主
transcript.whisperx[105].start 4190.809
transcript.whisperx[105].end 4218.005
transcript.whisperx[105].text 對於他的這個健康的一個保護措施裡面包括說他要有一個遮蔭或是說要現場要灑水降溫等等一些措施還有一些健康管理的一些措施這目前的治安法的附屬法規已經有明定我知道說得很好制度方面我大概都可以理解勞工從事在這個外從事工作發生中暑還有熱疾病這些職業疾病是不是可以罰款對不對
transcript.whisperx[106].start 4219.085
transcript.whisperx[106].end 4234.16
transcript.whisperx[106].text 對嘛,可以罰款,罰到15萬喔。但是我想要問的就是說這樣的罰款真的對僱主有督導的效果嗎?因為罰款基本上是需要等到職業疾病發生的時候才可以處罰,對不對?而且對於勞工已經產生的傷害有彌補的效果嗎?
transcript.whisperx[107].start 4237.034
transcript.whisperx[107].end 4254.184
transcript.whisperx[107].text 跟委員報告除了說勞檢以外其實在目前的宣導跟輔導面我們也是積極的展開好那部長我要告訴你根據去年有一個消暑商機跟夏天上工的調查指出有93%的勞工贊同政府規劃高溫假的制度
transcript.whisperx[108].start 4254.904
transcript.whisperx[108].end 4280.099
transcript.whisperx[108].text 那資方中也有47%的公司也贊成實施高溫假那此外還有高達96%的戶外工作者支持每月補貼2300塊的這個高溫津貼所以部長其實無論是高溫假或是高溫津貼啦都有這麼高的民意支持我在想勞動部何時可以研議出一個可行的方案可不可以讓本席在一個月或是本院一個月有一個明確的回應
transcript.whisperx[109].start 4282.019
transcript.whisperx[109].end 4302.854
transcript.whisperx[109].text 委員高溫假這個概念因為是針對戶外工作者他也不是針對全面的勞動者所以他可能有他的特定性你容許給我一些時間我們來處理看看我們要來研究看看因為這針對部分的特定的工作者是不是用一個假
transcript.whisperx[110].start 4304.075
transcript.whisperx[110].end 4319.43
transcript.whisperx[110].text 這似乎是值得考慮是,所以我說有沒有可行的方案我想要跟部長說因為你今天還是負責是勞動部不是經濟部和環境部我想現在也不可能說叫你去改變什麼大環境這麼強人所難可是過去其實也曾有這個高溫價的議題勞動部卻是說以再研議的方式帶過
transcript.whisperx[111].start 4323.354
transcript.whisperx[111].end 4344.86
transcript.whisperx[111].text 但我看面對現在極端氣候的來臨今年夏天搞不好會突破40度對於這樣的這樣來講很多勞工都是非常危險最近也看到那個包含去賣家朝聖死了幾千人真的這是非常危險的事情所以要請勞動部長對於勞工能不能多體諒一點對於增加高溫價的可行性或是相關的這個部分可以做出一個
transcript.whisperx[112].start 4345.98
transcript.whisperx[112].end 4367.143
transcript.whisperx[112].text 我想應該是要在職安的相關法規裡面去強化我請職安署來檢討好不好就是要讓僱主能夠意識到這問題的嚴重性我告訴你喔因為我們之前其實也有問過就是之前也有看過勞動部被問過那無外乎你們大概就兩種說法一種就是國際上沒有先例二來就是說美國也沒有高溫價
transcript.whisperx[113].start 4368.104
transcript.whisperx[113].end 4386.205
transcript.whisperx[113].text 可是我要告訴你現在已經不太一樣了因為許多中東國家包含這個伊朗、伊拉克這幾年都有放高溫架的先例那美國呢也發現一個數據就是說這三年來高溫死亡人數是過去15年的三倍而且每年高溫死亡的人數高於什麼颱風、洪水、龍捲風等天災的總和
transcript.whisperx[114].start 4389.481
transcript.whisperx[114].end 4407.134
transcript.whisperx[114].text 以加州為首也開始著手要制定高溫準則跟高溫價的法令制定所以就算美國的情況而言現在他也將勞工的勞動程度分為輕、中、重度三個不同的等級然後做出高溫工作準則根據這個準則
transcript.whisperx[115].start 4408.815
transcript.whisperx[115].end 4426.32
transcript.whisperx[115].text 他們稱中度的工作者體感溫度低於攝氏38度以下環境時,重度的工作者在氣溫攝氏30度左右,每小時工作45分鐘,必須休息15分鐘。而且也不少必須在高溫下戶外工作的企業簽訂合約的時候都附帶高溫的條款。
transcript.whisperx[116].start 4428.311
transcript.whisperx[116].end 4457.912
transcript.whisperx[116].text 所以總結來說他國的經驗其實也都可以借鏡那就算高溫價不能夠一步到位我們也是希望相關的規則是不是有更細緻調整和精進的空間其實以上比較這幾個國內外的高溫價都是希望我們部長可以為我們勞工再多著想一點並且督促僱主能夠共情讓勞工跟僱主之間有個共同的這個溝通的機制跟橋樑這部分是是是我來檢討職安的相關法規好不好
transcript.whisperx[117].start 4458.012
transcript.whisperx[117].end 4486.809
transcript.whisperx[117].text 好那這個稿文架的部分是不是可以給我一個期限大概是什麼樣可以給一個方向我覺得是從職安職業安全衛生職安的職安衛的法規這邊來著手會比較有效啦比較能立竿見影那你如果用架的概念喔所以我剛剛有說勞工也未必同意喔是我剛剛有說我沒有一定限制你要用什麼方式所以你去檢討之後可不可以給本席一個好好我會給您一個報告再一個月左右可以嗎好謝謝
transcript.whisperx[118].start 4487.649
transcript.whisperx[118].end 4514.658
transcript.whisperx[118].text 另外回到今天的主題上次的許部長有說就大家媒體問他說有沒有簽這個MOU就他當下說不會簽結果隔天就簽了為何我想許部長當時我想委員這外交工作MOU其實也是外交工作的一部分都有他的不得不的有時候可能善意的隱瞞所以他隱瞞了是不是是善意的隱瞞
transcript.whisperx[119].start 4515.818
transcript.whisperx[119].end 4530.895
transcript.whisperx[119].text 我們外交工作真的蠻困難的所以你說他是善意的隱瞞就對了因為其實他當初是說可能跟外交部溝通上有落差但是我想要說的是請問新任的我們的何部長是不是可以
transcript.whisperx[120].start 4531.716
transcript.whisperx[120].end 4538.639
transcript.whisperx[120].text 委員我從來沒有善意隱瞞你們的事情所以我說可不可以請我們的何部長當然當然我對委員會都是都會盡我所能那上次也有問過就是說你們說網路上有造謠說引進10萬印度移工是假訊息
transcript.whisperx[121].start 4552.964
transcript.whisperx[121].end 4561.798
transcript.whisperx[121].text 那我想要請問一下這次你們預估這樣子簽訂之後我們大概會有多少的印度移工或是你們預估有什麼想法有多少量
transcript.whisperx[122].start 4562.321
transcript.whisperx[122].end 4584.18
transcript.whisperx[122].text 我覺得我們剛開始真的是會非常非常小規模我剛才有講過先從一千人開始先從一千人開始那預估有沒有時程預估說有沒有時程甚至這個都要大概一年一年多以後才看得到了所以一年多以後會先一千人然後預計的可能兩三年之後如果辦的還OK就擴大一萬人兩萬人這樣嗎
transcript.whisperx[123].start 4585.969
transcript.whisperx[123].end 4607.434
transcript.whisperx[123].text 當然要逐步進行啊因為我們過去也有失敗的案例像以前蒙古對我等一下就要跟你提這個就失敗了因為你要牽涉到對方來這邊能不能適應好很好所以回到今天的主題我也想要說無論是這個勞動部補充或是這個移工引進國的多樣化的前提之下我們當然也是算是樂觀其成謝謝
transcript.whisperx[124].start 4608.254
transcript.whisperx[124].end 4622.441
transcript.whisperx[124].text 但是對於印度對於台灣來說我們彼此的文化差異很大那也有很多的適應的空間所以想要請教部長有沒有相關的溝通機制可以讓主顧之間都可以瞭解彼此生活習慣跟文化和宗教的差異
transcript.whisperx[125].start 4623.888
transcript.whisperx[125].end 4642.495
transcript.whisperx[125].text 當然這是很重要的而且事前可能就要先瞭解我們本來就有諮詢會議把僱主團體跟這個移工團體還有包括我們各方的利益代表都找來本席認為這部分是很重要因為僱主方面應該也要多加的宣傳彼此尊重
transcript.whisperx[126].start 4643.675
transcript.whisperx[126].end 4667.833
transcript.whisperx[126].text 因為當初蒙古移工就是來台灣的困境就是包含那個語言困難嘛對台灣的氣候跟飲食適應不良所以導致開放後的第五年就直接歸零喔所以這個部分你要提醒部長和想要問部長就是說我們在外籍移工引進的這些硬體條件其實無論是時程啦開放程度或是薪資上都很難比得過現在的日韓、香港、新加坡
transcript.whisperx[127].start 4668.499
transcript.whisperx[127].end 4683.116
transcript.whisperx[127].text 但大家都說我們臺灣最美的風景是人嘛所以如果我們能夠更多的人文關懷或是開放的形容是不是才更有機會可以長長久久的跟這個反而是我們的優勢啦因為我們臺灣對移工的溫暖對移工的這樣的
transcript.whisperx[128].start 4686.22
transcript.whisperx[128].end 4686.66
transcript.whisperx[128].text 最後一題 馬上
transcript.whisperx[129].start 4701.107
transcript.whisperx[129].end 4718.221
transcript.whisperx[129].text 目前我們勞動部部長還有我們長照的駐司長看護義工的政策有沒有問題日前副司長有說衛福部已經著手規劃要將外籍看護納為長照的照服員請問司長這新制度明年部長或是司長明年
transcript.whisperx[130].start 4718.982
transcript.whisperx[130].end 4741.454
transcript.whisperx[130].text 那是移工團體的訴求那衛福部應該似乎他只是回答中階就是所謂的中階技術人力就是我最就是你知道中階這個東西嗎對中階的中階的技術人力能夠轉造復原可以來研究這個事情所以可以研究你們還沒有決定會不會做對不對沒有沒有我們雙方雙邊都還沒討論了那是移工團體的訴求啦
transcript.whisperx[131].start 4744.796
transcript.whisperx[131].end 4746.016
transcript.whisperx[131].text 謝謝主席有請何部長好請部長
transcript.whisperx[132].start 4774.105
transcript.whisperx[132].end 4798.686
transcript.whisperx[132].text 大家好部長早大家都對於開放印度移工很期待當然也有一些擔心的部分尤其是民眾剛剛很多委員也針對於未來開放印度移工以後碰到一些問題也都分別請教了部長還有署長等等這邊還是希望
transcript.whisperx[133].start 4800.127
transcript.whisperx[133].end 4820.214
transcript.whisperx[133].text 讓民眾的疑問可以有機會讓剛剛署長已經有回答一部分不過部長可不可以再能夠讓我們知道一些民眾疑問的地方這些疑問未來有沒有可能變成一個懶人包什麼時候這個懶人包可以出來來回答這個民眾的疑問那就包括說
transcript.whisperx[134].start 4822.135
transcript.whisperx[134].end 4840.828
transcript.whisperx[134].text 產業的類別會有哪一些?這個時程會是怎麼樣?在MOU裡面也有提到這個職品這是一個雙軌之下的其中一項或者是這是一個主要的原則還有很重要的就是外交部也有現場也有關聯在這一邊我們外國簽證的審核量能
transcript.whisperx[135].start 4844.651
transcript.whisperx[135].end 4844.811
transcript.whisperx[135].text 主席
transcript.whisperx[136].start 4856.892
transcript.whisperx[136].end 4884.07
transcript.whisperx[136].text 要承接這麼大的量在工作上需不需要還有一些人力上的考量還有協助移工適應的準備工作應該要如何準備能夠讓民眾也知道也能夠很放心的當我們這些印度移工進到臺灣以後對於我們需要的一些缺工的部分可以得到改善那這部分各位部長在利用時間跟大家說明一下也讓民眾的疑問可以得到解惑
transcript.whisperx[137].start 4884.83
transcript.whisperx[137].end 4899.482
transcript.whisperx[137].text 是,謝謝委員當然您提到的這些問題都是未來執行上的每一項很重要的細節那我要跟委員報告是現在其實我們在勞發署就已經有這個專區了有一個專區有一個網站上有這個專區跟懶人包那麼當然您問的這些問題當然一個頁別
transcript.whisperx[138].start 4908.889
transcript.whisperx[138].end 4929.742
transcript.whisperx[138].text 我剛剛講過他初期是會自招業為主而且初期是非常小規模的大概一千人左右而已最快也要一年以後你才會看得到這樣子最快喔這是最快的因為雙邊如果工作會議都順利的話那是不是職聘的原則呢我要說這邊的職聘跟我們現在的傳統的職聘是不一樣的所以這是一個新的嘗試我們也還在摸索中
transcript.whisperx[139].start 4937.807
transcript.whisperx[139].end 4952.734
transcript.whisperx[139].text 這個部分我們會雙軌,一定是職聘跟優質仲介雙軌的。然後我們外管簽證什麼能量,我相信初期如果很小規模應該OK的啦,未來也一定是有控制下的量啦。
transcript.whisperx[140].start 4953.194
transcript.whisperx[140].end 4982.51
transcript.whisperx[140].text 未來就算有大量一定也是有控制下的量可是這個前提是台灣都很歡迎印度的移工所以我們只能從小規模的開始試試看而已那萬一如果國人都不接受那也未必能走得下去喔對那還有協助移工適應的準備工作這當然我們責無旁貸現在我們所有的移工來源國我們都有建置這樣的適應的這樣子的機制來給所有的移工來源國也不是只有針對印度
transcript.whisperx[141].start 4984.531
transcript.whisperx[141].end 5004.26
transcript.whisperx[141].text 我相信如果能夠順利把這個部分處理好的話相對對於國人要引進印度移工也好或者是所有移工也好我們都會很放心請他們在台灣協助來讓我們的勞動力可以更增強
transcript.whisperx[142].start 5005.681
transcript.whisperx[142].end 5029.179
transcript.whisperx[142].text 當然他們對進到台灣以後很多的醫療權益還是得要幫助他們當他們有一些困難或者是需要的時候都可以得到好的幫忙那臺大其實他們也有一個新南向的醫療中心不知道這個部長對這方面有沒有一些訊息或瞭解如何能夠透過勞動部跟相關的醫療院所
transcript.whisperx[143].start 5030.199
transcript.whisperx[143].end 5049.433
transcript.whisperx[143].text 對於這些移工的醫療相關的權益讓他們有知道更多的資源在使用上也可以更方便事實上這個不是只有針對移工而已只要在臺灣新南向的這些民眾有需要的時候都可以善用這樣的資源這樣的平台來協助照顧他們的醫療需求
transcript.whisperx[144].start 5049.913
transcript.whisperx[144].end 5072.987
transcript.whisperx[144].text 是謝謝委員其實您真的是提到一個非常重要的問題我們的移工遍佈全國那麼其實全國也許各醫療院所都曾經收容過都曾經收過移工病患對所以其實未來我們跟衛福部也許我們醫療院所這邊我們也應該建置多餘的這個服務這個是有必要去推廣的對是可能不是只有臺大
transcript.whisperx[145].start 5074.188
transcript.whisperx[145].end 5095.365
transcript.whisperx[145].text 應該是所有的醫院可能我們都有需要對謝謝委員提醒這非常好的建議那就麻煩跟這個勞動部跟我們的衛福部中間會有更好的連結尤其是在醫療相關的部分其實之前也有一個問題曾經請教過阿春部長就是我們的黑戶寶寶的部分
transcript.whisperx[146].start 5097.266
transcript.whisperx[146].end 5113.503
transcript.whisperx[146].text 這個部分我們也知道在111年的時候有無一而少無一而少就是黑戶寶寶他們在台灣在安置上面是有一些補償費用也不算少當然也不算多在111年是
transcript.whisperx[147].start 5114.944
transcript.whisperx[147].end 5129.124
transcript.whisperx[147].text 一千一百多萬那去年是八百多萬那這個財源其實還是一個很大的困擾因為這些無餘寶寶他們需要被安置的時候呢事實上是需要費用財源要怎麼來
transcript.whisperx[148].start 5130.666
transcript.whisperx[148].end 5147.144
transcript.whisperx[148].text 之前也有跟阿村部長討論過這些失聯移工就醫的跟育兒的費用有沒有可能在未來不管是在跟中印之間或是其他的移工來源國有沒有辦法去透過外國的仲介
transcript.whisperx[149].start 5147.705
transcript.whisperx[149].end 5147.785
transcript.whisperx[149].text 委員會主席
transcript.whisperx[150].start 5165.401
transcript.whisperx[150].end 5187.892
transcript.whisperx[150].text ⋯⋯⋯⋯
transcript.whisperx[151].start 5188.012
transcript.whisperx[151].end 5188.032
transcript.whisperx[151].text 好,謝謝
transcript.whisperx[152].start 5215.285
transcript.whisperx[152].end 5218.347
transcript.whisperx[152].text 接下來我們請邱政軍委員質詢好主席好我們請部長好請何部長
transcript.whisperx[153].start 5234.128
transcript.whisperx[153].end 5234.468
transcript.whisperx[153].text 您是指哪個?
transcript.whisperx[154].start 5234.468
transcript.whisperx[154].end 5235.309
transcript.whisperx[154].text 有分行業嗎?還是整體缺工?沒有沒有,整體整體
transcript.whisperx[155].start 5266.385
transcript.whisperx[155].end 5292.634
transcript.whisperx[155].text 這個整體缺工委員這個因為24萬左右啦如果主計總署的估計是這樣的我們是按主計總署這樣來看我覺得那個數字好像不對啦待會我們回去再查因為我剛剛看到是100多萬應該沒有到這樣缺工人數當中有多少可以用移工聘用的來補的這個部分有多少您說以移工來補嗎
transcript.whisperx[156].start 5295.014
transcript.whisperx[156].end 5315.268
transcript.whisperx[156].text 我們現在移工已經有76萬人那您是指未來在缺工裡面有多少要用移工來補?那當然我們現在是盡量看產業的需求還有包括我們家庭看護這邊的需求盡量來滿足有多少是要用印度移工來補?
transcript.whisperx[157].start 5316.931
transcript.whisperx[157].end 5338.607
transcript.whisperx[157].text 委員其實印度移工還不在我們補足這個所謂缺工的這樣的因為印度移工這個是剛開始而已它只是增加一個來源因為我們現在是這樣就是說我們的這個缺工的問題實在是非常嚴重剛剛我也聽到部長在其他委員諮詢的時候有提到就是說我們第一步是從一千人開始
transcript.whisperx[158].start 5339.948
transcript.whisperx[158].end 5366.806
transcript.whisperx[158].text 我們也希望這個部分能夠盡快來彌補我們國內人工不足的部分我剛剛也聽到部長講了很多的問題也有可能說印度勞工適應的問題等等當然這些都是考慮的因素我們也是要求就是說也希望說我們剛剛也提到我們台灣本地的我們自己台灣的勞工看看有沒有什麼可以轉職來補助這個部分
transcript.whisperx[159].start 5370.108
transcript.whisperx[159].end 5395.642
transcript.whisperx[159].text 當然,我很重要的,上完以後最重要的一個就是推動婦女跟中高齡的就業啦。那麼這個部分我們預估有56萬的勞動力可以開發出來。所以其實如果,我們一定是優先處理這邊的。那麼移工還是一個補充。對,因為我們本,其實我們臺灣的勞工也其實有很多,很多家庭是需要工作讓他們來維持生計的部分。是,是,是。
transcript.whisperx[160].start 5396.843
transcript.whisperx[160].end 5405.885
transcript.whisperx[160].text 我聽到就是說你們當初突襲式的簽約我稱為突襲式那您說是有這個叫善意的謊言
transcript.whisperx[161].start 5406.775
transcript.whisperx[161].end 5435.496
transcript.whisperx[161].text 不是謊言啦不是謊言我要更正喔我不是說謊言那是善意的欺騙善意的隱瞞因為外交工作真的很難許部長當時很辛苦我比較不懂因為這個問題是不在我今天的問題裡面我是剛剛在台下聽到的就是說這個為什麼要有善意的欺騙不要講了善意的隱瞞好了善意的隱瞞好了那為什麼要隱瞞
transcript.whisperx[162].start 5436.758
transcript.whisperx[162].end 5456.909
transcript.whisperx[162].text 我就說因為外交工作真的很辛苦我覺得外交跟移工好像沒有很大的影響會喔會喔委員其實我要跟您報告難道又是共產黨搞的有地緣政治的因素啊他會管到我們移工嗎又是習近平的問題
transcript.whisperx[163].start 5458.885
transcript.whisperx[163].end 5460.666
transcript.whisperx[163].text 主要委員跟您報告主要這都是政府對政府的談判我再請問您就是說
transcript.whisperx[164].start 5488.126
transcript.whisperx[164].end 5507.629
transcript.whisperx[164].text 我們現在就是說我們當時我們有聽你們講說跟社會的對話就是3月1號跟5月2號兩次嘛看起來都是跟我們的協會、工會在討論那我們在諮詢專家意見的時候我們跟社會的溝通是什麼?
transcript.whisperx[165].start 5509.574
transcript.whisperx[165].end 5526.835
transcript.whisperx[165].text 這就是我們跟社會溝通的平台。那麼經過這個溝通其實也很有效的瞭解說社會的需求啦那跟委員報告其實所有的雇主團體或者是工協會或者是產業界各方面他們都認為一定要雙軌啦
transcript.whisperx[166].start 5529.997
transcript.whisperx[166].end 5550.229
transcript.whisperx[166].text 我們現在移工的這個是預計要職聘跟仲介那職聘的部分我看到有很大的問題因為這個申請的流程非常繁瑣我看到我們說要建置職聘印度勞工的資訊的系統那這是要另外開發一個系統還是在原來的職聘系統裡面職聘的網頁裡面
transcript.whisperx[167].start 5552.253
transcript.whisperx[167].end 5573.512
transcript.whisperx[167].text 就跟委員報告 這個所謂我們台藝MOU裡面這一個職聘喔 它是一個新的啦 它是一個新的制度所以說要普遍開發嘛 對不對 對 那是從 那都 這個恐怕都還要再估算 因為也得等這個MOU通過以後我們再來嘗試所以你們現在就是只有想法 目前只是想到這樣還沒有開始要準備實施就對了
transcript.whisperx[168].start 5575.613
transcript.whisperx[168].end 5603.38
transcript.whisperx[168].text 對,因為我們這個必須要往下走的時候跟印度有工作層級會議的時候我們還要考慮印方的配合度印方其實對這個MOU非常的支持而且非常積極我知道你們很積極就是我們看到我現在是擔心執聘的這個流程非常繁瑣沒錯我們也看到您在年底之前要辦三場6月29的高雄7月13的台北7月27的苗栗
transcript.whisperx[169].start 5603.88
transcript.whisperx[169].end 5620.366
transcript.whisperx[169].text 是那我看到你們的網頁點閱次數非常的少到昨天為止到臺北高雄場的是634臺北場的是844那苗栗的比較熱鬧一點因為苗栗1313就是我的意思是說現在委員的選區比較關心這個事情很多人還不曉得那我希望說
transcript.whisperx[170].start 5625.268
transcript.whisperx[170].end 5643.848
transcript.whisperx[170].text 這部分我們部裡面能夠對外再擴大宣傳讓大家能多瞭解一下因為職聘是很好又讓大家不要被仲介都另外的剝削掉了委員我們也會挑選優質的仲介來做評選你的客觀條件是什麼
transcript.whisperx[171].start 5647.766
transcript.whisperx[171].end 5647.786
transcript.whisperx[171].text 謝謝委員 謝謝
transcript.whisperx[172].start 5667.884
transcript.whisperx[172].end 5677.387
transcript.whisperx[172].text 好 謝謝邱政軍委員接下來等一下那個黃秀芳委員質詢結束休息5分鐘接下來我們請蘇清泉委員質詢好 謝謝主席這時間沒什麼 講也沒什麼
transcript.whisperx[173].start 5700.68
transcript.whisperx[173].end 5701.361
transcript.whisperx[173].text 政府要引進印度的移工的理由
transcript.whisperx[174].start 5722.324
transcript.whisperx[174].end 5732.805
transcript.whisperx[174].text 是因為他們比較優秀還是我們要做多國的補充人力?這個是什麼原因?我們竊工的漏洞我們竊工現在到底多少人?
transcript.whisperx[175].start 5734.102
transcript.whisperx[175].end 5734.922
transcript.whisperx[175].text 所以近來只要是在職場上
transcript.whisperx[176].start 5757.688
transcript.whisperx[176].end 5758.028
transcript.whisperx[176].text 現在先以製造業為主
transcript.whisperx[177].start 5777.121
transcript.whisperx[177].end 5796.615
transcript.whisperx[177].text 只能先以製造業為主我在中研院有碰過印度的博士後的研究員在中研院我們中研院裡面的研究員還不少喔印度的喔是那薪資也不錯啦我覺得他們也蠻優秀蠻敬業的我的蔣英文講的還不錯
transcript.whisperx[178].start 5798.877
transcript.whisperx[178].end 5806.007
transcript.whisperx[178].text 好,所以主計處的總副總副是欠人,欠二十幾萬人阿市政府可能比這個還要多啦
transcript.whisperx[179].start 5808.035
transcript.whisperx[179].end 5829.5
transcript.whisperx[179].text 我相信委員的瞭解可能還比我 也許比我更深刻的待遇好 這個第一個問題 那第二個問題外媒報導印度 那麼大喔377萬平方公里的印度的面積 裡面有住了15億人口那外媒報導就是印度每15分鐘就有一個性侵
transcript.whisperx[180].start 5831.269
transcript.whisperx[180].end 5854.046
transcript.whisperx[180].text 這個是很可怕的全世界對印度的觀念跟印象就是這樣而且他們是這個是蠻嚴重那你有沒有擔心他們進來如果人數多會不會造成台灣的治安會變差那你如何因應外界的質疑那有沒有辦法解決嗎
transcript.whisperx[181].start 5855.433
transcript.whisperx[181].end 5871.929
transcript.whisperx[181].text 委員第一個印度他們當然本土的治安率也許有他們的狀況這我們就是客觀尊重對方這是他們對方的問題那可是當然來到我們這裡我們第一個一定確保我們
transcript.whisperx[182].start 5873.15
transcript.whisperx[182].end 5892.675
transcript.whisperx[182].text 會以這個先跟我們國情接近的人為移工為主啦比如說他有英語能力好別他一定程度的技術能力等等的那麼這個其實還有包括他有良民證好等等這方面的檢查一定都必備的然後呢進來之後還會有一定程度的規範跟講習
transcript.whisperx[183].start 5894.235
transcript.whisperx[183].end 5914.974
transcript.whisperx[183].text 然後必須要讓他瞭解台灣的法制是什麼樣子然後我們跟移民署之間其實也已經開始展開關於引進印度移工的一些所以會挑比較文明的幾個省他們有省,他們也是算省還是邦你們要派人過去看看
transcript.whisperx[184].start 5916.295
transcript.whisperx[184].end 5929.049
transcript.whisperx[184].text 他們在上課的時候也要甚至不排除我們的人過去跟他們上個課,台灣的治安啊台灣的那個,因為只要印度人在那裡說,他們也不在那裡說什麼。是,對,一定要先這樣。因為這個MOU簽了
transcript.whisperx[185].start 5933.274
transcript.whisperx[185].end 5956.325
transcript.whisperx[185].text 我們黨團這邊有互待修正是互待協議要嘛就是退回要嘛就是修正要嘛就是互待協議可是委員我跟您報告那個一條一地解法第十條如果被修正了我只能被退回耶這個要拜託拜託委員能夠支持我把我們黨團的那個念給你聽
transcript.whisperx[186].start 5960.487
transcript.whisperx[186].end 5969.289
transcript.whisperx[186].text 要求勞動部指定或設立專責機構推動政府與政府直接聘僱並擬定績效指標保障移工勞動條件推動移工直接聘任之成效
transcript.whisperx[187].start 5986.963
transcript.whisperx[187].end 6010.209
transcript.whisperx[187].text 你是指附帶決議嗎?附帶決議這是OK的,謝謝第三個問題缺工是台灣最大的問題少子化是一個原因但是台灣本地勞工的薪資是偏低的所以你要一直往上加你不要讓人家覺得一直引進外國的移工然後我們這邊
transcript.whisperx[188].start 6011.869
transcript.whisperx[188].end 6029.719
transcript.whisperx[188].text 我們的勞工的薪資有沒有明顯的提升這樣百姓跟我們鄉親父老是不會支持的那你對本國勞工的今年度的基本薪資的又要開始打架了
transcript.whisperx[189].start 6030.919
transcript.whisperx[189].end 6051.588
transcript.whisperx[189].text 謝謝委員 下午我才要開第一次諮詢會 我跟委員報告喔 那個諮詢會就是當年您通過的這個最低工資法裡面的一個機制啦 啊它就是以前的工作小組 其實那只是一個溝通會議 它不會去決定條幅 也不會去決定任何事情 所以只是我跟委員的見面會而已 而且我也是新的
transcript.whisperx[190].start 6052.388
transcript.whisperx[190].end 6055.151
transcript.whisperx[190].text 這一次的印度要進來他們的匯款回去我們看一下地下匯兌
transcript.whisperx[191].start 6070.304
transcript.whisperx[191].end 6098.315
transcript.whisperx[191].text 銀行匯兌金額最高7萬塊手續費500塊時間要二到三天地下匯兌沒有上限手續費相對便宜時間不用一天效率好但是非法風險高我看我們屏東那邊很多漁工他們要在上班時間去銀行匯兌有他的困難我們的銀行三天半就結束了
transcript.whisperx[192].start 6099.281
transcript.whisperx[192].end 6120.163
transcript.whisperx[192].text 他們還在上班。每星期我們的銀行都休息。所以他們很多人都用地下揮隊。那地下揮隊的危險性是很高。曾經有越南的漁工被騙了60萬。所以,你們這心心口口的錢,印度來的你們要用什麼系統?你有沒有跟金管會要有什麼想法?
transcript.whisperx[193].start 6121.488
transcript.whisperx[193].end 6150.478
transcript.whisperx[193].text 是各位報告儘管會其實在2021年就有外籍移工小額會對辦法啦阿儘管會現在有許可4家做小額會對啦不過當然這個可能不曉得能不能完全滿足移工是一個問題我們也會再來檢視然後進一步擴大合法推動這種有利方便移工會對的這樣子的機制你去人群辦時間沒辦法迎合對可是現在有手機4家用APP
transcript.whisperx[194].start 6151.398
transcript.whisperx[194].end 6178.334
transcript.whisperx[194].text 對,他用APP就可以轉耶對,那4家都是APP的他算是應該是新創吧?Fintech的新創的沙盒實驗的那種業者有4家只是說可能也許推廣率是不是不夠?你再去了解一下好不好?實際的情況他跟金管會好好的討論討論因為現在碰到的就是這樣然後他們都用地下會隊
transcript.whisperx[195].start 6179.415
transcript.whisperx[195].end 6179.595
transcript.whisperx[195].text 建檢會用誰負擔?
transcript.whisperx[196].start 6196.299
transcript.whisperx[196].end 6220.488
transcript.whisperx[196].text 他們進來的健檢然後印度人他們有沒有受出的疾病我是一個臨床醫師像現在東南亞進來的寄生蟲什麼什麼怕肺炎肺炎還蠻常碰到的那印度這邊有沒有什麼特殊的那他的費用是誰出因為如果是政府跟政府直接評估的話誰要付錢健檢費嗎健檢費是雙方合意也是要雙方談
transcript.whisperx[197].start 6224.93
transcript.whisperx[197].end 6239.136
transcript.whisperx[197].text 你現在是政府要自己搞,怎麼會跟雙方合議?是已經有僱主了,所以僱主這邊的,僱主來付還是你們編預算?沒有,就是要看僱主,如果願意付當然僱主來付吧,最好吧。
transcript.whisperx[198].start 6240.766
transcript.whisperx[198].end 6262.623
transcript.whisperx[198].text 對,不過這個東西就是要經過工作層級會議我覺得啦,藉著這一次跟印度的MOU非常的盛壯也把以前我們跟東南亞、印尼這些國家的那個業績好好地檢視一次好好地檢視一下,因為這樣的話不要太大的差別而且有一些以前的缺失
transcript.whisperx[199].start 6263.944
transcript.whisperx[199].end 6265.845
transcript.whisperx[199].text 謝謝主席有請何部長請何部長
transcript.whisperx[200].start 6294.308
transcript.whisperx[200].end 6321.806
transcript.whisperx[200].text 部長好部長台灣在1992年修法通過救福法然後我們開放外籍勞工之後呢到目前為止我們只有4個移工的這個來源國如果比較起這個像新加坡日本韓國我們真的是少了很多像新加坡的話他有11國日本有15國韓國他有17國所以呢如果說我們碰到某一個這個國家他減少這個原額或者是說停止移工來
transcript.whisperx[201].start 6323.848
transcript.whisperx[201].end 6338.224
transcript.whisperx[201].text 來臺的話對臺灣的產業是造成很大的一個衝擊所以要增加來源國的這數量我在想這是一個勢在必行那再來也要補足現在目前勞動力的這個缺口也可以減少來源國不足的這個問題
transcript.whisperx[202].start 6339.525
transcript.whisperx[202].end 6354.556
transcript.whisperx[202].text 那剛剛我有聽了很多這個委員提了很多問題其實都是大家共同關心的這個議題那比如說提到文化衝突治安跟女性的權益還有臺灣勞工的權益等等那這些都是我們要特別去注意的那
transcript.whisperx[203].start 6355.296
transcript.whisperx[203].end 6384.375
transcript.whisperx[203].text 印度是一個多種族、多宗教、多語言的一個國家那過去我在馬來西亞出生長大馬來西亞有三大族群其中一個呢就是印度我們的印度同胞那我從小也曾經跟他們一起長大所以他們其實在我的印象當中是一個非常聰明然後又友善的一個民族所以如果說一提到印度族群就你要提到治安跟女性權益什麼什麼之類的
transcript.whisperx[204].start 6385.496
transcript.whisperx[204].end 6412.934
transcript.whisperx[204].text 我是覺得說這可能對他們全體來講是不公平我在想我們的行政單位這部分可能要去適宜因為畢竟台灣對印度族群是非常非常的陌生那再來還有一點就是我們真的要對這個族群有更多的瞭解他不是單純就只有回教或是佛教之類的他們的宗教真的真的非常的複雜所以他們進來之後我們真的要做到
transcript.whisperx[205].start 6413.794
transcript.whisperx[205].end 6432.821
transcript.whisperx[205].text 對這個多元族群跟文化的這個尊重我想這個行政單位真是要做一點功課下一點功夫免得大家進來之後呢因為產生一些誤解而產生一些社會的衝突我想這個部分是我們要來做避免的OK那再來還有一點剛剛很多委員都提到同樣的這個問題比如說
transcript.whisperx[206].start 6435.602
transcript.whisperx[206].end 6452.209
transcript.whisperx[206].text 我們有提到說什麼時候要試辦我們要開放哪些這個產業那還有直接聘僱計畫等等我在想剛剛部長都已經有說了一些說明可是我在想好像有些部分真的還沒有準備好我的感覺部長您剛剛的這說法我是覺得說有些東西我們說我們簽的MOU可是很多細節到目前為止我的感覺都還沒有一個雛形出來
transcript.whisperx[207].start 6462.053
transcript.whisperx[207].end 6467.937
transcript.whisperx[207].text 那當然所有委員的這個問題其實也希望說既然我們已經簽了MOU我們已經要讓這些印度移工要進來了我們應該要做更多更多的這個準備我想這是一定要的那當然我本來也準備了相同的這個問題我想因為剛剛很多委員都已經有提問了所以我就把這個問題稍微做一些省略
transcript.whisperx[208].start 6491.698
transcript.whisperx[208].end 6501.853
transcript.whisperx[208].text 昨天我們勞動署有發了一個新聞就是說留住僑外生的人力所以我們要開放從事
transcript.whisperx[209].start 6503.335
transcript.whisperx[209].end 6506.018
transcript.whisperx[209].text 李素燁、鍾潔技術的工作。
transcript.whisperx[210].start 6517.87
transcript.whisperx[210].end 6539.442
transcript.whisperx[210].text 好,那這幾個月其實我一直都有跟喬萬生在做一些對話那當然我們有歸類出了幾大項可能需要我們勞動部跟相關的單位像國防會也好、全國會也好、經濟部也好我們可能要一起來做很像的一些溝通我們居然要把人給留住不是只是口號
transcript.whisperx[211].start 6540.242
transcript.whisperx[211].end 6566.208
transcript.whisperx[211].text 我們要怎麼做?這些問題要怎麼解決?喬惠森的訴求我們要怎麼樣來做回應?那我們大概是歸類為四大類喬惠森他的訴求我們說夠病啦那我們既然想把人留住你就勢必要在制度上面要做一些開放比如說我們現在目前限制從事15類專門技術性的工作喬惠森只能做這15類那目前我們看到的就是昨天昨天我們勞發署說
transcript.whisperx[212].start 6568.649
transcript.whisperx[212].end 6569.55
transcript.whisperx[212].text 其實其他部會也有提出要求
transcript.whisperx[213].start 6596.184
transcript.whisperx[213].end 6598.528
transcript.whisperx[213].text 例如呢?對,比如說有沒有其他的想法?
transcript.whisperx[214].start 6599.602
transcript.whisperx[214].end 6600.082
transcript.whisperx[214].text 國發同意,我們就來配合。其實
transcript.whisperx[215].start 6629.852
transcript.whisperx[215].end 6649.324
transcript.whisperx[215].text 這並不是就是說像喬惠生願不願意從事旅輸業這也要尊重他們那只是提供一個機會多一個機會而已對然後呢這個喬惠生他的薪水一定他有一定薪資程度以上啦所以這也不可能說去拉低國人的薪資這樣子他不是移工啦
transcript.whisperx[216].start 6650.024
transcript.whisperx[216].end 6659.326
transcript.whisperx[216].text 他不是我們那種低層次的移工嘛所以他是人才我們想辦法要把他留下來那到底我們評點是會不會整個被取消?會嗎?我們會拿掉這個評點是嗎?不是取消而是把他的門檻打開民額沒有限制了現在是不是?我們也是還沒開放嗎?還沒還沒這個要再修法你們的時程呢?時程民額打開8月底前修辦法
transcript.whisperx[217].start 6675.129
transcript.whisperx[217].end 6678.492
transcript.whisperx[217].text 然後呢,年底前,對,營業額這個限制我們也會檢討取消嗎?我們也會檢討取消。對,對,這會要推動修法。
transcript.whisperx[218].start 6696.693
transcript.whisperx[218].end 6705.855
transcript.whisperx[218].text 對,因為這才是一個長久的把喬外森這個人才留下來的工作許可的方式工作許可他們在申請的時候有些企業界的老闆他會覺得流程非常的複雜就覺得這麼複雜我就不要用喬外森這個部分呢
transcript.whisperx[219].start 6724.139
transcript.whisperx[219].end 6728.505
transcript.whisperx[219].text 那個我們就是來檢討我們一定來檢討這個是這個問題如果要修法的話就要來檢討這個制度因為時間的關係像第4點求學期間打工受限畢業求職期間沒有辦法打工這個是一直很大的一個訴求所以這部分的話我在想第4點
transcript.whisperx[220].start 6741.201
transcript.whisperx[220].end 6768.938
transcript.whisperx[220].text 第4點是不是我們要來演繹一下就是說他們畢業之後有兩年的秘職時間我們是不是也可以讓他有所謂的打工我想這部分你還蠻重要我們在香港很多國家其實都會這樣比如說講留住人才可是在還沒有找到正職以前我們是不是要來協助他們讓他們可以適度的打工這部分會不開放嗎我來跟國發來商量研究看看因為這部分我知道在這裡是個很大的事情其實這是個跨部會平台要討論的事情OK好以上謝謝謝謝
transcript.whisperx[221].start 6770.438
transcript.whisperx[221].end 6775.323
transcript.whisperx[221].text 好謝謝接下來我們請洪森翰委員支持請何部長請部長委員好
transcript.whisperx[222].start 6796.145
transcript.whisperx[222].end 6816.919
transcript.whisperx[222].text 我們今天在討論台灣跟印度簽的這個關於勞務移工的MOU那當然應該是基於其實台灣跟印度我們兩國其實這幾年越來越我想包括互相對待的友善跟信任的增加所簽署的
transcript.whisperx[223].start 6818.138
transcript.whisperx[223].end 6837.312
transcript.whisperx[223].text 但確實這段時間關於這個MOU引起的社會很多的討論我認為其中一個很大的原因是因為雖然我們兩國的政府有平凡的互動但台灣社會整體來說其實對於印度真的不是非常熟悉所以容易會有很多的投射或者是誤會
transcript.whisperx[224].start 6839.093
transcript.whisperx[224].end 6857.405
transcript.whisperx[224].text 但這次引進印度各界的聲音其實我想確實非常多那但我自己認為這其實恐怕這確實已經不是只是印度移工的問題而是我們其實臺灣社會在引進外籍勞工的這條路上其實跟過去真的已經不一樣了我認為已經到
transcript.whisperx[225].start 6858.866
transcript.whisperx[225].end 6871.813
transcript.whisperx[225].text 另一個階段也就是說社會各界其實都希望政府能夠在這個引進外籍勞工的過程裡面恐怕必須要承擔起更多基礎設施的建立也包括承擔起更多的責任
transcript.whisperx[226].start 6874.598
transcript.whisperx[226].end 6897.834
transcript.whisperx[226].text 這次引發這麼多討論有一個很根本的原因我認為其實就是過去的政府對於移工引進的這個責任的承擔真的太少了所以大部分的壓力都落在僱主身上那僱主尤其是弱勢的僱主如果沒有辦法承擔的話那他就把這個承擔的責任就希望轉移到仲介身上尤其是管理的人到仲介身上
transcript.whisperx[227].start 6898.795
transcript.whisperx[227].end 6906.692
transcript.whisperx[227].text 那如果仲介沒有處理好或者是想要壓低成本各種手段就可能在社會上會造成各種大家不樂見的亂象
transcript.whisperx[228].start 6909.062
transcript.whisperx[228].end 6933.653
transcript.whisperx[228].text 那這也是為什麼後來社會對於整體移工的觀感會有一些包括出現的一些歧視或者是一些這樣既定觀感的我覺得一個原因在這個地方所以它某個部分它在這裡面其實是一個層層轉嫁的結構但源頭我不知道部長同不同意確實是我們在拼顧移工過程尤其引進移工過程裡面政府的把關跟承擔確實是不夠的過去
transcript.whisperx[229].start 6936.033
transcript.whisperx[229].end 6940.713
transcript.whisperx[229].text 有監討的空間啦好,不然我其實知道這一次
transcript.whisperx[230].start 6942.529
transcript.whisperx[230].end 6971.488
transcript.whisperx[230].text 在我們簽訂的MOU的第8條裡面是直接關於這個直接聘僱的部分那條文的內容當然包括說現有招募制度雙方同意推動直接聘僱計劃等等等這是當然第一次把這個職聘的部分寫進這個條文裡但就我所知過去其實臺灣的尤其是老發署曾經也推動過相關的一些職聘的計劃那我想問這一次印度移工的職聘跟過去的職聘不一樣地方在哪裡
transcript.whisperx[231].start 6972.441
transcript.whisperx[231].end 7002.118
transcript.whisperx[231].text 就是委員您也知道現在我們的職聘其實效能並不是很好啦國內目前對但也是大院委員一直關切的問題嘛那麼在國內的職聘的經驗還沒有很精進之前就是說這次台印的MOU裡面這個職聘它是一個必須是一個全新的嘗試啦它的職聘不是我們現在傳統我們看到的國內的這種職聘方式它要有創新的做法
transcript.whisperx[232].start 7002.438
transcript.whisperx[232].end 7008.171
transcript.whisperx[232].text 我會覺得國內現在的職聘不太像真的是一個功能完整的職聘是啊對那我說不同在哪裡
transcript.whisperx[233].start 7009.434
transcript.whisperx[233].end 7036.841
transcript.whisperx[233].text 那個不同在於說我們有沒有能力未來這個要評估的就是比如我們有沒有辦法像韓國這樣到對方來源國去設點直接去選工然後在那裡就直接像韓國那樣跟企業跟政府大家密切合作然後也一起來進行這樣子這是要評估的其實每一個國家之間可能都有情境上的不同
transcript.whisperx[234].start 7038.001
transcript.whisperx[234].end 7058.086
transcript.whisperx[234].text 所以你很難完全把另外一個國家今天完全抄襲可是我覺得參考跟分析是必要的比方說如果就像部長剛才講到的韓國其實我們大概如果對韓國的職聘進入一些分析把他在這個他韓國職聘裡面幾個重要的元素拆解出來的時候我們大概發現幾件事情
transcript.whisperx[235].start 7058.826
transcript.whisperx[235].end 7083.047
transcript.whisperx[235].text 其實台灣跟目前韓國政府目前在規劃上面的我們大概少了兩件事情第一個事情就是我這個表格裡面提到的他有一個所謂的僱用許可之專用資訊系統一般來說叫做SPAS那下面一個就是透過SPAS去選工這其實反而是現在韓國的執聘系統跟台灣過去的規劃裡面比較大差別的地方
transcript.whisperx[236].start 7083.991
transcript.whisperx[236].end 7103.147
transcript.whisperx[236].text 那這當然我們現在先做這樣子的分析可是我們現在看到我們看到勞發署有提到在這次勞動部報告裡面有提到這個直接聘僱印度勞工資訊系統我想先請問這是不是就是韓國他們韓國政府他的這個SPS我想先問這件事情
transcript.whisperx[237].start 7103.749
transcript.whisperx[237].end 7104.289
transcript.whisperx[237].text 我之前也有跟蔡組長討論過這個事情
transcript.whisperx[238].start 7124.185
transcript.whisperx[238].end 7140.923
transcript.whisperx[238].text 在引進泰國移工的時候我們有嘗試想要用過這個SPAS但當時其實並沒有成功當時沒有成功當然原因是因為有很多配套沒有處理好所以我們有很多政府的基本的服務沒有提供所以最後變成
transcript.whisperx[239].start 7142.128
transcript.whisperx[239].end 7143.388
transcript.whisperx[239].text 委員 現在包括臺非或是印尼
transcript.whisperx[240].start 7165.534
transcript.whisperx[240].end 7185.729
transcript.whisperx[240].text 這個也有類似這樣子執聘的MOU的那個要求這樣子不然你這樣講我就擔心了我們這一次確實是希望跟過去四國這過去四國當然有一定的這個發展的軌跡可是這一次的印度的MOU這是一個新的機會尤其是我們一開始要做小規模的示範
transcript.whisperx[241].start 7186.67
transcript.whisperx[241].end 7207.538
transcript.whisperx[241].text 所以在這個小規模示範裡面我們可以比過去更沒有包袱的來去做一些嘗試所以我剛剛說我們其實過去也有嘗試過執聘可是就像它的功能不彰我們也有嘗試過這個SPS的系統可是因為配套不足我認為如果這一次我們包括勞動部的報告裡面MOU第8條裡面就寫說我們要把執聘給做好
transcript.whisperx[242].start 7208.078
transcript.whisperx[242].end 7209.06
transcript.whisperx[242].text 我自己是希望可不可以在
transcript.whisperx[243].start 7221.338
transcript.whisperx[243].end 7240.832
transcript.whisperx[243].text 兩個月內可以把你們接下來如何能夠再汲取過去執聘不太成功的經驗下的改變的做法哪些最重要的改變的原則跟架構能夠提供給我們我覺得這件事情是這個我覺得不應該閉門造局我覺得這件事情是可以來跟社會各界
transcript.whisperx[244].start 7241.372
transcript.whisperx[244].end 7259.519
transcript.whisperx[244].text 包括移工團體包括雇主團體或者是怎樣怎麼樣設計出一個好用而有競爭力的職聘來增加政府在聘雇移工過程裡面能夠承擔的責任或者一般人家講居土局我覺得參考其他國家經驗這是一定必要的但重點是我們要把這個經驗給磨出來
transcript.whisperx[245].start 7261.099
transcript.whisperx[245].end 7271.356
transcript.whisperx[245].text 而不要再重到過去的副社部長這沒有問題吧當然那兩個月內可以嗎可以可以可以好部長我最後我想要提一個事情喔我其實之前在對許部長的質詢裡面我有提到
transcript.whisperx[246].start 7272.901
transcript.whisperx[246].end 7290.37
transcript.whisperx[246].text 不過我們其實遇到一個陳情有一個家庭的僱主他說他家庭的看護工中風了所以這個僱主他一面要照顧他的爸爸又要照顧這位中國的看護工所以他就尋求仲介結果那個仲介就跟他說那你就趕快把這仲介移工送回國就沒你的事了
transcript.whisperx[247].start 7291.511
transcript.whisperx[247].end 7318.378
transcript.whisperx[247].text 但這個僱主他不願意昧著良心這樣做所以他打1995去找勞發署或地方的勞動局但都沒有人能夠協助他最後他跑來這是他的陳情信跑來找我們才在各種的媒介之下來去處理這些事情那這個案例我當時就跟許部長說了這凸顯一件事情是其實我們在台灣的移工並沒有一個清楚的支援中心或一個支援的網絡可以去協助他們做出各種其實他可能必要的後勤的支援
transcript.whisperx[248].start 7318.778
transcript.whisperx[248].end 7341.691
transcript.whisperx[248].text 所以這些事情就變成又要落入到僱主的身上當僱主沒能力承擔的時候就會遇到這種大家不樂見的狀況會發生當時許部長有跟我說那時候我們在3月的時候提說兩個月的時間會把這個資源移工的資源中心跟資源的網絡做相關的規劃可是兩個月到了我目前沒有看到這些相關的規劃部長
transcript.whisperx[249].start 7344.7
transcript.whisperx[249].end 7371.106
transcript.whisperx[249].text 這個當時蔡署長也是也在場齁那這部分部長覺得需要多久的時間我現在正在要求勞法署進行一個勞政友善計畫這個全面檢討所有的這一個相關的服務是那麼這個建制移工就業指南系統是我們現在正在進行的一個更綜合性的資源計畫是終於支援網絡的中心齁那大概多久時間可以給我們相關的規劃稍微
transcript.whisperx[250].start 7373.786
transcript.whisperx[250].end 7374.066
transcript.whisperx[250].text 黃秀芳委員質詢
transcript.whisperx[251].start 7402.393
transcript.whisperx[251].end 7404.562
transcript.whisperx[251].text 謝謝主席 我們請何部長好 請何部長
transcript.whisperx[252].start 7408.867
transcript.whisperx[252].end 7435.339
transcript.whisperx[252].text 委員好部長好部長針對今天我們來看這個台印MOU那我們在3、4月的時候也有在委員會也有特別討論過那我今天想要請教因為我當時在委員會的時候也有請教我們這個許部長就是說未來如果我們朝向就是這個執聘的話那勢必會增加我們所有這個
transcript.whisperx[253].start 7436.759
transcript.whisperx[253].end 7436.779
transcript.whisperx[253].text 我請問
transcript.whisperx[254].start 7457.583
transcript.whisperx[254].end 7481.656
transcript.whisperx[254].text 是,就是委員我剛剛有講到未來這個產業MOU裡面這個紙片它必須是一個新的做法那我們也在嘗試是不是未來有辦法去承擔公部門去承擔這樣的業務量或是掌握跟產業之間的彼此的合作能夠取代仲介事實上我說真的這個必須有待檢視啦對,這您提的問題也確實是問題所以
transcript.whisperx[255].start 7486.092
transcript.whisperx[255].end 7486.712
transcript.whisperx[255].text 我相信部長你應該也知道齁?
transcript.whisperx[256].start 7504.477
transcript.whisperx[256].end 7532.852
transcript.whisperx[256].text 如果是這樣的話因為我們現在很多公部門的業務其實都是委外委外去經營委外去承辦喔像我們勞動部也有很多的這個業務也是委外啊對不對就有一些行政工作也是委外啊那如果是這樣子的話你未來這個職聘的工作是你們自己內部會自己去做還是會委外那如果是委外的話其實就跟現在的這個仲介在經營
transcript.whisperx[257].start 7533.852
transcript.whisperx[257].end 7558.002
transcript.whisperx[257].text 我覺得是會一樣啊你可不可以具體再講一下是當然就是說因為這個職聘的模式我還是要強調我們今天推動台印的MOU是為了解決國內的勞動力不足跟缺工的問題倒不是為了推動職聘而去做台印的MOU啦我要坦白講所以我一直強調是雙軌
transcript.whisperx[258].start 7560.907
transcript.whisperx[258].end 7582.769
transcript.whisperx[258].text 對,事實上你要就印方那邊的現實的情況來看印度它沒有職聘啦我這邊要做職聘的話我這邊事實上我的職聘能力也有也經驗說真的也有限然後我現在必須全新的嘗試所以那也只是小規模的試辦而已啦那你小規模是多小的規模你可不可以
transcript.whisperx[259].start 7583.49
transcript.whisperx[259].end 7598.32
transcript.whisperx[259].text 可以以你們現在的想法,小規模是怎樣的小規模?我想也許你比如說我們剛開始1000人好了,裡面可能百分之幾是用這樣子的那個職聘試試看嘛。
transcript.whisperx[260].start 7604.183
transcript.whisperx[260].end 7620.275
transcript.whisperx[260].text 因為你還要對方配合啊 事實上在這個MOU當時談判的時候 印方是反對放這個條文的 我要坦白講 是我方一直堅持 所以他們才 因為他們也很感謝 就是為了在那個MOU可以推動 他們也願意接受這樣子
transcript.whisperx[261].start 7622.757
transcript.whisperx[261].end 7641.823
transcript.whisperx[261].text 可是我們真的要尊重對方,如果我們要引進對方的移工的話,我還是必須看對方的狀況這樣子。那最快就是說印度移工最快是什麼時候?剛剛部長有特別提到就是說小規模試辦,那最快是什麼時候會試辦?
transcript.whisperx[262].start 7643.804
transcript.whisperx[262].end 7655.271
transcript.whisperx[262].text 您是指這個印度移工的進來嗎?那最快也是一年以後的事情了。一年以後。對。對,其實還蠻長的。好,那在這一年當中,應該你們要把該,如果說未來有職聘的話,可能這一個
transcript.whisperx[263].start 7661.014
transcript.whisperx[263].end 7689.013
transcript.whisperx[263].text 整個程序或者是人力怎麼配置我覺得應該在這一年內你們應該要好好的去規劃是對如果這樣MOU今天如果可以經大院通過那麼我們就趕快來嘗試這個新的做法可以怎麼做然後我們可以跟委員報告對是那另外就是說如果是未來執聘的話我上次在質詢的時候我有特別提到就是說整個程序可能是要更簡便
transcript.whisperx[264].start 7690.654
transcript.whisperx[264].end 7715.364
transcript.whisperx[264].text 應該是要更方便民眾直接在網路上面申請那整個表格可能要更簡便然後更方便所以我也希望說你們這方面可能也要去思考一下要不然其實政府很多的這個要申請書啊什麼可能就是真的很繁瑣很繁雜然後那個程序一關一關我覺得如果是這樣的話如果
transcript.whisperx[265].start 7717.144
transcript.whisperx[265].end 7742.719
transcript.whisperx[265].text 一般的僱主他可能也會覺得說職聘太麻煩可能又會委託別人來辦理那如果是這樣的話我覺得如果說要朝向職聘或者是有仲介這樣雙軌的話我覺得你職聘應該要更方便讓一般的這個僱主來申請這個整個程序要更簡便委員就是說我現在率先著重於改善我們自己國內的職聘的問題
transcript.whisperx[266].start 7744.04
transcript.whisperx[266].end 7758.054
transcript.whisperx[266].text 我現在對推動一個勞政友善化的計畫我要求這邊必須檢討我們整個所有這個移工申請的流程裡面到底有哪些繁瑣的地方能夠盡量能夠讓人民覺得說開始方便起來
transcript.whisperx[267].start 7758.695
transcript.whisperx[267].end 7782.961
transcript.whisperx[267].text ⋯⋯⋯
transcript.whisperx[268].start 7783.061
transcript.whisperx[268].end 7796.747
transcript.whisperx[268].text 所以我希望就是說因為我最近就聽到很多這個我們現在有那個農業就是已經農業移工嘛有很多農場或者是這個養豬場我最近是碰到這個養豬場
transcript.whisperx[269].start 7798.328
transcript.whisperx[269].end 7822.438
transcript.whisperx[269].text 那他們是說他們自己小小的一個養豬場可是他們就有聘一兩個這個外籍移工那他們覺得說這個確實是幫助他們非常的大因為這個缺工的問題造成很多這個3K的這個工作沒人做那如果說有這樣子的移工進來的話確實可以解決一些這個
transcript.whisperx[270].start 7823.558
transcript.whisperx[270].end 7845.896
transcript.whisperx[270].text 議員﹚
transcript.whisperx[271].start 7845.996
transcript.whisperx[271].end 7868.045
transcript.whisperx[271].text 如果說非常的繁瑣他還是會請別人來代辦就像我們現在有很多事情覺得說很麻煩他可能就請一個代書幫他辦那如果說這個我們太繁瑣的話要聘請移工太繁瑣的話他還是會回到仲介那邊所以我在這邊要特地
transcript.whisperx[272].start 7868.565
transcript.whisperx[272].end 7869.987
transcript.whisperx[272].text 謝謝黃秀芳委員的質詢,我們現在休息五分鐘。
transcript.whisperx[273].start 8275.933
transcript.whisperx[273].end 8300.963
transcript.whisperx[273].text 好我們繼續開會請大家就座接下來我們請林楚英委員資訊謝謝主席主席我們有請外交部現在是副司長的對許副司長對許副司長來請
transcript.whisperx[274].start 8306.636
transcript.whisperx[274].end 8327.014
transcript.whisperx[274].text 副市長好,我想其實台印之間的關係升溫在最近的一些大事件當中都已經可以看得出來那麼其實我們從2000年2008年到2016再到現在2024一直以來我們跟印度之間的這個交流可以說是越來越緊密包括連莫迪總理都特別發魂來恭賀我們的賴清德總統那麼台印之間的關係隨著這個MOU的簽訂我想會更加的緊密那麼
transcript.whisperx[275].start 8334.5
transcript.whisperx[275].end 8355.907
transcript.whisperx[275].text 日本席主要還是在國防外交委員會那今天這個只是一個備查的MOU要來做實質的瞭解的時候我覺得也不是壞事因為可以讓國人注意到台印之間那麼本來本席是要問一下藍司長的不過我想許副司長也可以帶我回應就是台印之間現在除了這個有關於移工的問題之外和交流之外
transcript.whisperx[276].start 8356.627
transcript.whisperx[276].end 8370.502
transcript.whisperx[276].text 包括未來可預見的還有哪一些台印之間我們其實看這個問題恐怕不是只是看人力國內的需求我相信還有更多台印的外交之間可以有一些進展的部分可不可以聊一下
transcript.whisperx[277].start 8374.623
transcript.whisperx[277].end 8395.423
transcript.whisperx[277].text 謝謝委員。我想台印度的關係,今年日前升溫。印度末底在2014年提出的東京政策,事實上跟我國的新南向外交政策是不謀而合。所以我想是雙方面具有戰略的互補性。站在我們提倡價值外交的立場,
transcript.whisperx[278].start 8396.184
transcript.whisperx[278].end 8423.634
transcript.whisperx[278].text 那我想我們外交部當然一定會全力來推動加強這個雙邊我們跟台我們跟印度之間的一個雙邊合作關係特別是推動這個兩國雙方這個經貿跟人員的交流特別特別是這幾年我們跟印度也在這個經貿經貿投資半導體傳統醫藥自動訊教育文化等領域這個關係各個領域的關係事實上日益密切所以未來
transcript.whisperx[279].start 8424.474
transcript.whisperx[279].end 8441.205
transcript.whisperx[279].text 當然我們外交部也會持續在這幾個領域再持續加強推動那今天我們討論這個勞務合作案當然這個是對於雙方人員交流也是非常有助益所以我們也會配合這個主政單位勞動部他們的專業規劃
transcript.whisperx[280].start 8442.706
transcript.whisperx[280].end 8442.746
transcript.whisperx[280].text 是,沒錯
transcript.whisperx[281].start 8465.466
transcript.whisperx[281].end 8483.779
transcript.whisperx[281].text 其實我覺得我們也有義務在委員會當中讓大家知道這不只是我們國內生產力人力部分補足的問題其實在外交上面也有它外交必須所展現出來的一些成果或者是面向讓國人知道好謝謝副市長請回我現在有請我們的這個勞動部請何部長何部長
transcript.whisperx[282].start 8492.149
transcript.whisperx[282].end 8511.124
transcript.whisperx[282].text 部長好,我想其實這個人力的短缺的問題,不只是在場大家都知道,全台灣都知道。如果我們從現在人力缺口來看,根據現在勞動部的113年的第二次人力需求調查會發現,我們的人力需求一直都是呈現不夠的狀態。
transcript.whisperx[283].start 8512.185
transcript.whisperx[283].end 8538.635
transcript.whisperx[283].text 那麼也不是說我們現在有人想找工作找不到工作或者是說其實想要找工作的人他其實的需求不太一樣包括我們今年可以看到的是我們的這個所謂失業率的部分也是24年來新低也言下之意這樣的人力的缺口在台灣內部他會出現的是也許台灣民眾講白了他就是不選擇這樣的類別所以我們必須靠移工來補足
transcript.whisperx[284].start 8541.516
transcript.whisperx[284].end 8542.957
transcript.whisperx[284].text 部長,其實你們面對的應該是整個產業面的人力需求,對不對?
transcript.whisperx[285].start 8559.449
transcript.whisperx[285].end 8584.89
transcript.whisperx[285].text 好所以今天我們在這裡討論這樣的一個人力需求的時候他是業界需要的嗎?從印度簽訂這個MOU是業界需要的嗎?我想這個是最重要的那如果是業界產業需要而整個我們的人力上面又出現這樣的一個缺口因為包括今天蠻巧的經濟委員會你可能不知道他所命的題目叫做面對國營事業未來10年人力嚴重斷層之因應作為
transcript.whisperx[286].start 8588.573
transcript.whisperx[286].end 8611.035
transcript.whisperx[286].text 所以你就會發現說全台灣在各個產業都需要人力的補充跟補足那麼在這個部分我們針對去簽訂了這個印度的MOU部長怎麼來看這樣的人力的部分可以有效的補上然後讓這個每年至少4萬的人數的缺工對產業鏈上面可以給予哪些幫助
transcript.whisperx[287].start 8613.197
transcript.whisperx[287].end 8630.232
transcript.whisperx[287].text 我們在諮詢會議裡面就是發現業界其實表示了高度的興趣啦尤其是製造業甚至營造業這樣子的產業啦那事實上印度移工他們在這方面他們也是向全球輸出的現在他們的全球移工輸出高達1800萬人
transcript.whisperx[288].start 8631.813
transcript.whisperx[288].end 8648.189
transcript.whisperx[288].text 所以他們是非常具有國際經驗的移工輸出經驗那在這個我們國內的產業的這樣的互補性上所以我們初期一定是以製造業先為主我們希望能夠很快的媒合然後能夠在這方面能夠讓產業補足人力的缺口
transcript.whisperx[289].start 8650.751
transcript.whisperx[289].end 8670.723
transcript.whisperx[289].text 當然除了第一部會是以製造業為主而且在製造業的話可能在僱主這邊包括剛剛前面的委員都有聊到談到關心到的職聘的這樣一個問題但是接下來當然在國內有關於照顧類的家庭照顧類的這樣的家庭看護的移工其實大家也都在要求
transcript.whisperx[290].start 8671.764
transcript.whisperx[290].end 8688.896
transcript.whisperx[290].text 以這樣子來講的話因為在這一次的MOU簽訂當中的第二條就說了職類跟名額由我方來決定我相信回歸到一般民眾他們比較關心的會是家庭的看護移工的增加跟步驟那麼今天被查
transcript.whisperx[291].start 8689.756
transcript.whisperx[291].end 8713.291
transcript.whisperx[291].text 完備之後我們經過委員會的討論之後我想民眾更關心的恐怕是外國移工尤其是我想在野黨的委員他們也自己提了好幾個版本啦都希望年滿80歲以上然後免醫療機構來做這個評估我想民眾都會把那個期待值往這裡去加過去包括說有沒有可能這個部分可以把這樣的人力補充進來那麼部長怎麼來看
transcript.whisperx[292].start 8715.732
transcript.whisperx[292].end 8722.517
transcript.whisperx[292].text 委員這個部分剛才在委員會裡面討論非常多可是我要再次強調如果這個提案通過的話會產生馬上產生53萬的移工缺口這是一個蠻龐大的數字那所以很多團體也擔心會排起重症失能者的照顧因為現在全球都在搶工不是只有我們在搶移工是全球包括我們的鄰近的日韓他們也都在搶
transcript.whisperx[293].start 8745.732
transcript.whisperx[293].end 8764.199
transcript.whisperx[293].text 所以這個是一個要正式的嚴峻的問題那真的也拜託委員能夠三思啦在這個提案上面能夠做一點比較審酌的考量這樣子好本席把這個提出來就是我們一方面我們在審查然後外界甚至於有一些詆毀的聲音在講說從這個印度來的這個移工怎麼樣怎麼樣這些沒有經過查證的相關的這種質疑
transcript.whisperx[294].start 8770.802
transcript.whisperx[294].end 8771.363
transcript.whisperx[294].text 接下來我們請王定宇委員質詢
transcript.whisperx[295].start 8801.295
transcript.whisperx[295].end 8822.455
transcript.whisperx[295].text 請勞動部長部長第一次在這邊看到你有些問題要請教你我也代表國人要提出一些關心我們希望提供正確的訊息不便回答的或者資訊不完整的我們都可以讓你盡量補充你知道現在全世界都在搶人力資源
transcript.whisperx[296].start 8823.536
transcript.whisperx[296].end 8846.224
transcript.whisperx[296].text 人力資源我們細分其實可以分成白領的勞工技術工藍領的技術工還有一般的我們講過去講3K啦就是這個移工類的等等那這一次我們勞動部去跟印度簽這個MOU的原因是什麼是你們自己想到的還是台灣有產業界在遊說這個事情還是有什麼樣的需求
transcript.whisperx[297].start 8847.956
transcript.whisperx[297].end 8856.714
transcript.whisperx[297].text 這個因為當然就是要增加來源國的考量啦過去我們就是一直依賴那四國那個印度那個印尼的律兵那四國你覺得不能再依賴
transcript.whisperx[298].start 8857.776
transcript.whisperx[298].end 8883.583
transcript.whisperx[298].text 因為他們也在全球也在搶他們也有很多我們看到的是越南本身也有慢慢有缺工的情形泰國也有類似的情形所以原來那四國的經濟有起來有的是他們的移工去海外學的技術掌握了通路回去自己開公司像我們南部在做那個皮球的做那個足球的公司幾乎都被越南的取代掉了原因在這裡
transcript.whisperx[299].start 8884.343
transcript.whisperx[299].end 8905.35
transcript.whisperx[299].text ﹏﹏
transcript.whisperx[300].start 8905.53
transcript.whisperx[300].end 8928.201
transcript.whisperx[300].text 感謝每一位移工為台灣的付出不管他在家裡照顧長輩或者在烈日下做營建工程其實他們都在這片土地上付出心力不能去歧視他但是我們還是要提醒勞動部引進移工通常會面對第一個問題是會不會影響到台灣本土的勞工我們自己的勞工會不會因為印度的MOU受到影響你們有沒有什麼預防的設計
transcript.whisperx[301].start 8929.795
transcript.whisperx[301].end 8950.705
transcript.whisperx[301].text 委員其實台印的這個以移工引進他絕對是不會去影響到國內的就業機會因為其實這都是是國內的產業不足的部分才去補充的我們一定是優先以國內我們以往是說國內的企業徵財徵財徵財三次徵不到財他才能開缺所以方法是跟過去的移工方式一樣
transcript.whisperx[302].start 8951.727
transcript.whisperx[302].end 8953.669
transcript.whisperx[302].text 那現在跟印度簽的MOU是除了經過仲介以外
transcript.whisperx[303].start 8981.25
transcript.whisperx[303].end 9007.644
transcript.whisperx[303].text 對,再增加一個職聘的管道。對。那這個好處在哪裡?這個好處當然就是減少仲介中間的操縱。對,是是。可是這個要討慮對方的問題。因為印度本身沒有什麼職聘的制度。那他也是透過仲介的。所以當我方這邊要用職聘的時候,可能我這邊成本會比較高。對,我要到對方去設點。
transcript.whisperx[304].start 9012.607
transcript.whisperx[304].end 9035.338
transcript.whisperx[304].text 我們要嘗試把它...因為印度社會的文化結構跟我們不太一樣那他們那邊如果都是仲介公司那台灣某個企業他要職聘通常會職聘的人是因為他在印度有分公司他在印度有設企業點他要把那邊的人直接聘過來台灣他用職聘的他就知道要聘誰這種會用到啦
transcript.whisperx[305].start 9037.719
transcript.whisperx[305].end 9053.921
transcript.whisperx[305].text 那這樣子的情形下還是我要提醒勞動部還是要避免去排擠到臺灣本身的需求你懂意思嗎當然因為他在那邊因為在南印度的幾個省還有東印度其實臺灣有很多公司在那邊設廠
transcript.whisperx[306].start 9055.183
transcript.whisperx[306].end 9071.154
transcript.whisperx[306].text 所以執聘這一類是避免剝削所以印度移工他省得被人家剝好幾層皮對台灣的雇主我可以找到我想要的而不是來用美化我又換嘛那最常發現就是因為印度本身沒有什麼中介沒有什麼執聘制度
transcript.whisperx[307].start 9071.934
transcript.whisperx[307].end 9093.23
transcript.whisperx[307].text 所以常會發現是比如說台灣富士康在那邊有設一個工業區他就把那邊的想要聘過來他可以用職聘的或者某某企業在印度有設廠區他要把那邊的好的技術工引進來台灣可能會發生在這裡所以我這邊本期要提醒勞動部就這個樣態一定要避免國內的職缺
transcript.whisperx[308].start 9095.211
transcript.whisperx[308].end 9115.324
transcript.whisperx[308].text 因為這個樣態被排擠。這個有做提醒。對,這也是要小心的。因為他這個職聘是企業內職聘。是,沒錯。他是跨國企業的企業內職聘。而跨國企業內的職聘就很有可能那個職缺的控管會有一些沒槓。當然。勞動部這個要注意。當然。所以委員我要再次跟你強調我們是雙軌。
transcript.whisperx[309].start 9116.826
transcript.whisperx[309].end 9136.944
transcript.whisperx[309].text 就是仲介跟職聘雙軌對啊但是我如果是一個跨國企業我企業內體系我跨國都有點的時候我當然選擇職聘啊因為我當地公司可以recruitrecruit了之後再把它transfer到台灣這就職聘了但我不排斥這個方法因為這個企業可以用到合用的
transcript.whisperx[310].start 9137.901
transcript.whisperx[310].end 9140.322
transcript.whisperx[310].text 我看一下這一次其實這個MOU很多的決定事項是台灣提出決定事項
transcript.whisperx[311].start 9159.272
transcript.whisperx[311].end 9175.132
transcript.whisperx[311].text 那印度方是願意?是這個比較罕見的這個就是非常罕見的而且我們非常感謝印方的積極跟對我們的友好因為印度坦白講以往印度大概是在中印邊界開始丟石頭以後開始丟石頭丟石頭然後丟完石頭呢他們的國安部門
transcript.whisperx[312].start 9176.013
transcript.whisperx[312].end 9201.965
transcript.whisperx[312].text 我們駐印的使館也瞭解說他們的國安部門對於中國那邊的不管零部件的進口或者人的甚至於採購是有疑慮的現在等於擴大到他們的一般經貿部門過去比較親中的也開始設限了那回過頭來變台灣跟他就有一個合作的基礎所以這既是經濟又是外交所以我們這一次我方可以決定
transcript.whisperx[313].start 9202.805
transcript.whisperx[313].end 9203.486
transcript.whisperx[313].text 反彈很大因為這個他們就賺不到錢了
transcript.whisperx[314].start 9231.946
transcript.whisperx[314].end 9249.351
transcript.whisperx[314].text 那其實對台灣的生意人台灣的企業家跟印度勞工其實是有幫助的但我還是要提醒還是要避免排擠嘛那我最後要請教一個問題治安的部分其實我看到國人在擔憂的是治安的部分那我也藉由我們在立法院的委員會提醒國人
transcript.whisperx[315].start 9251.11
transcript.whisperx[315].end 9276.044
transcript.whisperx[315].text 對任何族裔的人我們都應該平等看待,不能有那種僵化的或者固定的一個歧視跟誤解,對國內的族群如此,對國外也是。印度是全球唯二超過10億以上的國家,當然他們有他們的種姓制度,那個是我們他們國家的內政,所以對於
transcript.whisperx[316].start 9277.225
transcript.whisperx[316].end 9296.464
transcript.whisperx[316].text 移工的進入到臺灣有關治安的部分勞動部做什麼努力我問最後的問題就好了是我們現在已經跟移民署有對接在合作因為這個治安的部分我們要跟移民署一起控管這樣子所以我們可以要求移工比如說無犯罪紀錄啊或者相關的保證等等對當然一定就是說
transcript.whisperx[317].start 9297.773
transcript.whisperx[317].end 9327.773
transcript.whisperx[317].text ⋯⋯
transcript.whisperx[318].start 9328.033
transcript.whisperx[318].end 9343.83
transcript.whisperx[318].text 但是對於近來的人的犯罪記錄以及相關的處理可能勞動部在初期要多用心一點好不好以上謝謝勞動部謝謝主席好謝謝王定義委員那下一位請我們王一鳴委員
transcript.whisperx[319].start 9353.029
transcript.whisperx[319].end 9377.398
transcript.whisperx[319].text 謝謝主席那我想要先請外交部我們亞太斯許副市長好請外交部我們的副市長副市長我先請教你好就是我看台印的MOU第13條他其實有特別提到本瞭解備忘錄得修正或修改
transcript.whisperx[320].start 9378.277
transcript.whisperx[320].end 9402.307
transcript.whisperx[320].text 就是第13條其實有這樣子寫那所以我要請教你的就是說我們跟其他國家所締結的MOU他是可以修改的嗎?內容是可以修改的嗎?如果經由我們國內的公民團體的意見跟立法院大家的討論之後覺得有一些內容應該要去做修正請問MOU按照外交的慣例
transcript.whisperx[321].start 9403.147
transcript.whisperx[321].end 9409.972
transcript.whisperx[321].text 他是不是可以提出修改特別是我看在這一份裡面第13條有提到得修正或修改
transcript.whisperx[322].start 9411.104
transcript.whisperx[322].end 9435.094
transcript.whisperx[322].text 關於委員我想這個案子因為是界定為這個協定那主政單位也依照這個條約締結法的第7條跟第12條的規定來進行那至於這個因為依照條約締結法的規定這個協定案我們都是送立法院查照但是因為大院把它改為審議案
transcript.whisperx[323].start 9436.815
transcript.whisperx[323].end 9440.336
transcript.whisperx[323].text 那為什麼要在條約裡面就是去放13條就是得修正或修改?
transcript.whisperx[324].start 9461.894
transcript.whisperx[324].end 9467.104
transcript.whisperx[324].text 如果是這樣的話應該當時這個連放都不要放因為他等於是沒有修正空間
transcript.whisperx[325].start 9467.881
transcript.whisperx[325].end 9495.254
transcript.whisperx[325].text 報告委員這個MOU裡面是有有第13條規定就是提到可以修正的這個這個條文所以原則上他本來就是可以嗎?但是我現在指的就是說這個協定案在我國的依照目前沒有前例沒有這種就是依照我國條約締結法我們沒有送查照審議然後又修正的這種情況了解但是就他本身的內容跟精神是可以提出修正跟修改的所以才會放在第13條對不對我這樣解讀應該沒有錯誤吧
transcript.whisperx[326].start 9497.596
transcript.whisperx[326].end 9497.876
transcript.whisperx[326].text 接下來請部長
transcript.whisperx[327].start 9511.618
transcript.whisperx[327].end 9535.637
transcript.whisperx[327].text 部長,我上午聽了非常多你回答委員的一些意見基本上我會覺得你好像不太想推動執聘方案或者是說你對執聘方案根本就沒有信心也沒有決心因為你一再強調說續聘比較有可能執聘在你的口中所討論出來的是困難重重
transcript.whisperx[328].start 9536.471
transcript.whisperx[328].end 9565.57
transcript.whisperx[328].text 是這樣子嗎?我會盡全力來推動。會盡全力來推動?對,我會盡全力來推動。但是你剛剛的回答讓本席覺得你其實是蠻沒有信心的。不是沒有信心,可是我要承認這問題不容易啦。好,那部長我要提醒你齁,在你們今天送出來的報告裡面,你們的會議結論提到了多數意見認為應優先推動直聘,直接聘僱,是不是?
transcript.whisperx[329].start 9567.432
transcript.whisperx[329].end 9583.604
transcript.whisperx[329].text 這是你們送出來的報告喔是不是你們開了兩次的會議那多數意見認為應優先推動直接評估是不是其實應該委員那個多數意見是推動雙軌啦而不是推動直接不是你們報告不是這樣子寫
transcript.whisperx[330].start 9584.625
transcript.whisperx[330].end 9607.657
transcript.whisperx[330].text 那個報告我沒有看你沒有看我沒有看我對不起你不要送來立法院的報告你沒有看不是不是就是我有解讀錯誤嗎這個是你們送進來的報告啊裡面提的非常清楚他說多數意見認為優先推動直接聘僱然後有移工團體認為一定就只有單軌的G2G我這樣有解讀錯誤嗎
transcript.whisperx[331].start 9610.834
transcript.whisperx[331].end 9620.217
transcript.whisperx[331].text 沒有吧所以我要跟部長確認是說如果你自己都開了會議大家認為應該優先推動直接聘僱那我覺得勞動部就應該要全力以赴這個是符合多數你們開會出來的結論包括今天
transcript.whisperx[332].start 9631.041
transcript.whisperx[332].end 9653.592
transcript.whisperx[332].text 其實不分民進黨或國民黨的委員每一個委員都在強調在這一次我們跟台印的MOU如果可以推動直接聘僱制度這是大家的期待就是連民進黨的委員也期待推動那所以在這個部分我又看到勞動部在這方面的決心或信心不足那要怎麼做呢
transcript.whisperx[333].start 9654.392
transcript.whisperx[333].end 9661.113
transcript.whisperx[333].text 我要跟您報告就是我會盡全力來推動啦這個就是我要去嘗試然後要去對處理對會提出這樣的質疑就是因為你提到了非常多的困難你說我們跟韓國也不一樣然後又提到印度他本身並沒有職聘的制度所以你講了非常多的條件之後那個結論好像要出來了就是你其實並沒有把重點放在職聘
transcript.whisperx[334].start 9683.777
transcript.whisperx[334].end 9703.798
transcript.whisperx[334].text 你覺得未來是續聘比較可行?職聘看起來還遙遙無期不是遙遙無期而是說我們嘗試來開始推動那你剛剛自己一直在提雙軌制雙軌制那你在比例上面呢?你說你預定第一階段一千名的印度勞工你的透過職聘制度進來的要有多少?
transcript.whisperx[335].start 9704.924
transcript.whisperx[335].end 9706.565
transcript.whisperx[335].text 今天已經排了這樣的一個質詢我覺得你們其實應該要有備而來才對
transcript.whisperx[336].start 9732.721
transcript.whisperx[336].end 9751.276
transcript.whisperx[336].text 那所以我要提醒的是說現在大家沒有反對我們再去開發更多的新的來源國但是現在大家關注的是臺灣過去的引進的這些外籍移工制度有很多已經被詬病特別是透過人力仲介被剝削的這個部分所以這個部分
transcript.whisperx[337].start 9752.197
transcript.whisperx[337].end 9774.749
transcript.whisperx[337].text 為什麼這一次台印大家才會把期待放在既然你是重新去談判我們跟我們台印可以重新談判簽證MOU那我們國內的民意應該就是你們最強而有力的後盾你們可以把臺灣我們所開過的會議專家學者跟移工團體跟各界跟立法院審議的這些意見跟聲音帶著去跟印度溝通
transcript.whisperx[338].start 9776.01
transcript.whisperx[338].end 9797.826
transcript.whisperx[338].text 那跟他們溝通說我們對於這一次雙方開啟合作對於職聘制度大家是重中之重而且是最優先所以我們應該要好好來研議在職聘制度上面印度方可能要配合什麼樣的事項我們又應該做出什麼準備雙方你如果說未來還有一年的時間我們應該針對這些事情好好的研議跟討論這樣的事情才會有進展但是這個部分我是覺得
transcript.whisperx[339].start 9806.192
transcript.whisperx[339].end 9831.971
transcript.whisperx[339].text 你現在是部長你的決心跟你引領帶領同仁去走的那個方向其實非常的重要那今天坦白講我還沒看出你的決心那我希望你這件事情你應該要感受到這樣的民意還有立法院的意見你在這件事情你剛剛有一再強調說我們是因為缺工才跟印度不是因為跟印度合作要把這個職聘作為是最優先
transcript.whisperx[340].start 9832.691
transcript.whisperx[340].end 9848.849
transcript.whisperx[340].text 但是坦白講現在的民意跟立法院現在表達出來的意見就是藉由這次台印合作的機會要把職聘制度希望他可以成功從這邊開始所以我希望你是要全力以赴好不好
transcript.whisperx[341].start 9849.289
transcript.whisperx[341].end 9854.014
transcript.whisperx[341].text 拿出這樣的一個決心,這樣你下面的同仁才會往這個方向衝啊以你的回應方向是模擬良可或是你剛剛還有回答委員說是續聘優先我覺得那這樣大家衝的動力就沒有我們希望這樣子立法院實質的討論它是有意義的其實我們是給了你更強大的
transcript.whisperx[342].start 9869.83
transcript.whisperx[342].end 9892.521
transcript.whisperx[342].text 未來要去跟印度溝通的一個談判的籌碼就讓他知道說我們國內對這個執行制度我們是抱著非常大希望而且你可以跟印度講啊過去他沒有如果跟台灣跟中華民國建立起這樣的一個新的模式也可以給其他國家這是一個示範也可以給其他國家看啊印度他也要進步啊他不是都是靠人力中介他們政府也應該開始學會去扛
transcript.whisperx[343].start 9894.762
transcript.whisperx[343].end 9895.122
transcript.whisperx[343].text 這部分部長可不可以承諾
transcript.whisperx[344].start 9922.659
transcript.whisperx[344].end 9933.832
transcript.whisperx[344].text 好,那我們希望台印的這個合作真的讓執聘制度從這一次跟印方的合作我們開始落實部長加油,勞動部加油,謝謝好,謝謝王一鳴委員那下一位請我們陳冠廷委員
transcript.whisperx[345].start 9955.014
transcript.whisperx[345].end 9982.744
transcript.whisperx[345].text 我們請部長好請部長部長好部長我想應該是在幾個月前這個印度移工的風波那到現在偶然偶爾還是會有一些印度辦事處或者是駐台的這個印度的這些外交官員會聊到這件事情那我想這一個歧視的部分
transcript.whisperx[346].start 9983.604
transcript.whisperx[346].end 10004.679
transcript.whisperx[346].text 我們未來一定要先做好預防免得會成為國際事件印度官方的認證那是有22種但是國人長期是對印度的認識不深那甚至包含勞動部那之前的部長那有一些用刻板印象的說法在這個電視媒體上面說到那我們這要全力去避免
transcript.whisperx[347].start 10005.399
transcript.whisperx[347].end 10029.594
transcript.whisperx[347].text 我們希望說印度移工來台灣是一個非常複雜的問題牽扯到的是經濟、勞動、外交、國安其實都有一些關聯在我想請教部長是不是有相關的計畫來去增加台灣對印度或者是彼此之間互相的認識來去消弭印度的朋友或者是台灣的朋友對印度的認知上的落差
transcript.whisperx[348].start 10030.285
transcript.whisperx[348].end 10030.505
transcript.whisperx[348].text 是,謝謝委員
transcript.whisperx[349].start 10047.348
transcript.whisperx[349].end 10061.344
transcript.whisperx[349].text 貴院,我們也有這樣子的很多這個臺印的這個友好協會啊那我們希望能夠未來在外交部在這方面我們能夠合作更多然後來處理這樣子部長我是希望說把數字也拿出來
transcript.whisperx[350].start 10062.185
transcript.whisperx[350].end 10089.546
transcript.whisperx[350].text 因為之前他們的說法勞動部前部長的說法他是其實是直接講到膚色這個是外交的大忌啊外交的大忌這個是直接是種族上面的歧視這不行那除此之外呃針對這一個移工在台灣的一些相關的數據還有印度的實質上面的不管是經濟治安上面的表現那如果可以透過對話的方式交流的方式把它顯現出來
transcript.whisperx[351].start 10090.887
transcript.whisperx[351].end 10106.438
transcript.whisperx[351].text 讓國人對於整體的這個看法能夠改觀我想這也是勞動部必須要做的事情因為其實對於印度的刻板印象這個是很明確的很明顯的那我們必須要消弭這個部分勞動部是不是可以多做一些啊
transcript.whisperx[352].start 10106.738
transcript.whisperx[352].end 10128.188
transcript.whisperx[352].text 好 這我們來就是我們會來加大努力來進行這樣子而且剛才我們提到22個不同的語言還有不同的族裔跟不同的宗教信仰所以印度來台的移工他的這個宗教的多元性多樣性可能必須也要跟僱主上面的溝通這方面有沒有做好準備
transcript.whisperx[353].start 10130.371
transcript.whisperx[353].end 10150.96
transcript.whisperx[353].text 對,我們現在就是在進行一系列的諮詢會議,現在已經開到,即將要開第三場。對,我們就是把所有的這個雇主端、各種團體的相關定義團體都找來。大家,包括甚至通曉印度的學者,來一起建議,對,然後一起來大家來凝聚共識這樣子。對,我是希望說,除了形式上面,
transcript.whisperx[354].start 10152.38
transcript.whisperx[354].end 10171.494
transcript.whisperx[354].text 實質上的跟僱主的這些溝通是真的是非常重要的,包含相關的勞動法規這些都要講清楚,不然到時候他都會隨時任何一個事件都可能會引爆火花,所以我必須要先做好預防,就是說不然
transcript.whisperx[355].start 10172.555
transcript.whisperx[355].end 10197.15
transcript.whisperx[355].text 這跟我們過去的多元性比較起來印度真的是非常多元的這個可能自己要先做好準備不要讓幾個月前發生的事情再次發生的話那對台印關係會造成非常大的影響那幾個月前的影響到現在都還會偶然會被提到齁那這個是還是要先跟部長先講清楚齁這個要做好準備
transcript.whisperx[356].start 10197.97
transcript.whisperx[356].end 10220.672
transcript.whisperx[356].text 然後第二個部分根據MOU的第二條那印度勞工的職類跟名額是由臺灣決定那你們5月的這個諮詢會議是朝小規模的方式引進製造業勞工為優先這個方向有更改嗎還是一樣對目前還是以製造業為優先對農業勞工會不會有可能會成為接下來開放的領域
transcript.whisperx[357].start 10221.744
transcript.whisperx[357].end 10239.073
transcript.whisperx[357].text 這要看情況,要看先我們還要先觀察看看這個印度移工早期來的他能不能適應然後再進一步擴及其他領域這樣子對我們農業的部分因為從這個我們自己的選區嘉義他是台灣重要的糧倉
transcript.whisperx[358].start 10240.313
transcript.whisperx[358].end 10267.639
transcript.whisperx[358].text 農民朋友們長期是跟我們反映這個缺工的問題那我是希望說勞動部應該要積極的跟農業部討論除了這種小型的或者是製造業的小規模製造業的勞工的優先之外那農業上面的可能性是怎麼樣那去年監察院的報告有說這個農業的基礎勞動力是又老又缺工的狀況那從這個圖表我們自己看到我們自己整理那65歲以上的
transcript.whisperx[359].start 10269.899
transcript.whisperx[359].end 10275.682
transcript.whisperx[359].text 在台灣的平均更新規模只有0.72公頃的狀況之下小農經營的形態我們缺工狀況是高達10萬人次所以勞動部除了工業之外
transcript.whisperx[360].start 10290.189
transcript.whisperx[360].end 10295.255
transcript.whisperx[360].text 委員現在就是我們跟農業部有合作農業移工外展移工啦這您應該知道嗎那當然
transcript.whisperx[361].start 10311.493
transcript.whisperx[361].end 10333.012
transcript.whisperx[361].text
transcript.whisperx[362].start 10333.392
transcript.whisperx[362].end 10353.891
transcript.whisperx[362].text 這也是要看再進一步看這個印度這邊的他們來源國有沒有相關適合的人才這個都還要再進一步評估啦對反正就是先讓這個工業先寫然後你們再評估之後看身體的狀況之後當然如果有可能我們都不要放棄嘛對不對對啊我還是在替我們農業缺工的問題
transcript.whisperx[363].start 10354.952
transcript.whisperx[363].end 10382.848
transcript.whisperx[363].text 它已經是一個結構性的問題那我們希望更多的外援能夠進入不然尤其特別是這種高這種直接是高人工性的部分機械無法去取代的部分可能就會遇到很大的挑戰那印度的勞工或許是可以成為一個重要的選項但是還是希望說相關的報告這些小型的製造業先行之後還是希望說有一個
transcript.whisperx[364].start 10383.969
transcript.whisperx[364].end 10394.656
transcript.whisperx[364].text 整體的報告出來我們來看看可不可以再推行到農業上面農業求農的問題是好謝謝好謝謝接下來我們請羅廷維委員資訊部長先喝個水啊等你好有請主席請部長好請部長
transcript.whisperx[365].start 10412.848
transcript.whisperx[365].end 10439.357
transcript.whisperx[365].text 委員好部長好部長第一次跟您做答詢我想跟您先表個態我們非常關心這個外送員的專法那我想這個召委也有提外送員相關的一個法案我們都很關心外送員他們的一些權益也希望這個勞動部能夠有所表態或者是趕快送相關的一些有利於他們的一些法案能夠來內部來跟我們一起審我想未來我們為這個外送員發聲的機會會更多
transcript.whisperx[366].start 10442.618
transcript.whisperx[366].end 10461.355
transcript.whisperx[366].text 今天想跟你探討印度移工的NOU我想記這個越南印尼還有菲律賓馬來西亞泰國蒙古印度準備將成為第7個移工的來源那我想在這個很多媒體已經揭露相關的熱烈的討論我想有一些意見想跟你做一些交換
transcript.whisperx[367].start 10462.497
transcript.whisperx[367].end 10476.254
transcript.whisperx[367].text 勞動部事前有沒有經過許多的評估才做這樣子的一個決定但是台灣與印度的民間交流仍有限如果出現重大的大量的這個印度移工國內外國內的一個社會衝擊有沒有評估
transcript.whisperx[368].start 10478.666
transcript.whisperx[368].end 10480.968
transcript.whisperx[368].text 今天討論印度勞工的備忘錄,請問部長印度移工何時來台?
transcript.whisperx[369].start 10499.783
transcript.whisperx[369].end 10518.847
transcript.whisperx[369].text 就是要經大院通過以後,我們才能往下做工作層級會議,最快一年以後。一年以後,那如果一年以後你會先辦小規模的試辦嗎?對,只是小規模先開始。小規模的人數大概多少?就大概一千人。一千人。那預計開放從事什麼樣的行業呢?製造業。製造業。對。會開放服務業嗎?
transcript.whisperx[370].start 10522.744
transcript.whisperx[370].end 10543.323
transcript.whisperx[370].text 當然目前沒有考慮沒有考慮那我想跟您請問一下就是勞動部報告裡面有一個臺印度勞務合作事務專家的諮詢會議召開兩次有邀請部會裡面有農業部對所以是不是要開放印度移工從事國內的農業那只是諮詢啦那是諮詢對那並不是要去規劃開放農業的意思那農業部去討論諮詢大概哪一個部分
transcript.whisperx[371].start 10550.131
transcript.whisperx[371].end 10564.763
transcript.whisperx[371].text 所有的開放業,所有你看像我們還會邀請衛福部那像其實因為有可能需要移工的領域我們都會邀請可是並不是說我就要開放這個領域了我們探尋一下而已對對對
transcript.whisperx[372].start 10566.684
transcript.whisperx[372].end 10584.178
transcript.whisperx[372].text 好那在報告中第4頁有寫到印度移工入國前除資格條件限制要求減負行為良好無犯罪記錄相關的證明一將要這個需具備一定的學經歷請問部長有關學經歷的部分印度移工具備什麼樣的學歷才能來台大學專科
transcript.whisperx[373].start 10586.91
transcript.whisperx[373].end 10603.942
transcript.whisperx[373].text 可能初期我們會限定他要高中以上高中以上我想許多人誤以為這個印度人都會講英文那事實上全印度會講英語的人大概只有10%勞工階層比例相對更低而且我們都知道他其實有那個方言
transcript.whisperx[374].start 10604.862
transcript.whisperx[374].end 10625.548
transcript.whisperx[374].text 很多人都有這樣,他們自己有大概二十幾種官方語言,東西南北都不太一樣,所以未來在語言的翻譯上將是一個關鍵的成本,但台灣懂這些語言的人也有限,所以這個部分我說如果沒有世界的翻譯人員、官員階層又該如何將第一線的執行相關的能夠來傳達,這個部分我們有所因應嗎?
transcript.whisperx[375].start 10626.616
transcript.whisperx[375].end 10652.587
transcript.whisperx[375].text 是當然這個我們其實那個委員剛開始我們會以通曉英語的為主啦其實印度10%第94億人口10%就幾千萬人了其實也是非常多的我們會先挑以通曉英語的為主好最後擔憂啦就是約有八成的人信奉印度教但是全台公開的印度廟宇大概只有一間
transcript.whisperx[376].start 10653.627
transcript.whisperx[376].end 10655.369
transcript.whisperx[376].text 接下來我們請圖權及委員質詢。好,謝謝素綺。那請我們何佩珊、何部長。好,請部長。
transcript.whisperx[377].start 10683.715
transcript.whisperx[377].end 10702.892
transcript.whisperx[377].text 好部長我們今天也針對我們跟印度簽署印度移工MOU的事情來做討論那這個其實在3月6號我們在未完委員會我們王昭偉的時候就有安排一下進行專題討論那時候本席也有針對這部分提出臨時提案也有請我們勞動部針對我們
transcript.whisperx[378].start 10706.114
transcript.whisperx[378].end 10728.12
transcript.whisperx[378].text 這一部分召開跨部會還要請我們專家學者還有勞資、仲介、移工、地方政府等代表來參與希望提供對於我們社會影響評估、勞動市場影響評估還有政策可行性評估希望你們做一個具體完善的報告再來送交我們社福及衛環委員會
transcript.whisperx[379].start 10729.72
transcript.whisperx[379].end 10756.225
transcript.whisperx[379].text 那這個報告我們在5月31日我們有收到那針對這一部分我想請問一下何部長我們就是因為認為勞動部針對之前專題報告的時候評估做得不夠所以也希望再進一步請專家學者來進行評估那因你在立法院幕僚任職多年應該知道我們目的是這樣嘛對不對要加強做這個評估嘛
transcript.whisperx[380].start 10757.245
transcript.whisperx[380].end 10765.292
transcript.whisperx[380].text 好那我們就針對我們剛剛做講的這三項評估我們來看一下那針對我們勞動市場影響評估後來我針對這幾個看了一下我發現3月6號專題報告所看到的評估跟5月31號我們勞動部所提供這個
transcript.whisperx[381].start 10780.906
transcript.whisperx[381].end 10791.572
transcript.whisperx[381].text 評估報告我覺得這個除了字數有做改變之外他裡面的內容意義看起來幾乎是完全一樣部長針對這部分你有沒有自己有沒有看過
transcript.whisperx[382].start 10793.814
transcript.whisperx[382].end 10819.145
transcript.whisperx[382].text 委員其實因為大概問題意思是類似的啦所以他的描述大概就是指呢所以我的意思是說針對其實我們勞動市場影響評估報告其實嚴格來講3月6日跟5月31日其實做出來其實是完全一樣啦那意思也是完全一樣我就說除了字數改變以外其實看起來的幾乎是沒有什麼改變那再來我們針對
transcript.whisperx[383].start 10820.946
transcript.whisperx[383].end 10835.386
transcript.whisperx[383].text 2.政策可行性評估 針對這一部分我們也瞭解一下他的全文兩個對照之下87%都是相同的跟3月6日專題報告所提出的評估幾乎是相同的
transcript.whisperx[384].start 10835.866
transcript.whisperx[384].end 10852.322
transcript.whisperx[384].text 那重點這裡面移工服務不足最重要的通譯資源我們勞動部的回覆是未來在事情況盤點那我請問一下部長你知道在印度什麼語言他們使用最高嗎?
transcript.whisperx[385].start 10856.546
transcript.whisperx[385].end 10875.181
transcript.whisperx[385].text 對,我們台灣針對印地語,我們到底手忍程度有多少?然後我們台灣這一部分針對印地語有在做檢定嗎?目前坦白講應該是沒有,可是我要跟您說明,我們剛開始一定會先以童小英語的人才為主。
transcript.whisperx[386].start 10875.962
transcript.whisperx[386].end 10894.605
transcript.whisperx[386].text 而且可能要限定本英語才先來這樣子那我們針對這部分因為我也看不到有任何的做法那針對勞動部勞發署針對這些通益資源的盤點我們有針對這部分做超前部署嗎現在有在盤點中
transcript.whisperx[387].start 10896.066
transcript.whisperx[387].end 10913.764
transcript.whisperx[387].text 有跟移民署而且跟移民署一起一起會同在盤點中對啦不過說實在話因為我們看這個評估報告我們看不到有任何的做法只看到就是說針對未來的情況在座盤點表示其實目前沒有任何規劃任何做法嘛
transcript.whisperx[388].start 10914.754
transcript.whisperx[388].end 10925.967
transcript.whisperx[388].text 還有再來就是社會影響評估其實我們看了一下其實真的也是跟前面一樣幾乎這個內容我看幾乎也是複製貼上那針對這部分我們看
transcript.whisperx[389].start 10930.387
transcript.whisperx[389].end 10944.286
transcript.whisperx[389].text 比較不一樣的就是我們有召集了第一次台印度勞務合作事務專家諮詢的會議那針對這部分我們看了一下印度專家有針對這部分提出兩項
transcript.whisperx[390].start 10945.708
transcript.whisperx[390].end 10962.978
transcript.whisperx[390].text
transcript.whisperx[391].start 10963.118
transcript.whisperx[391].end 10980.524
transcript.whisperx[391].text 我們針對這個評估報告所做出來的第一項第二項就是說印度在台灣的人數很少尚未形成大型的族群所以他的交流不平凡也難以串聯逃跑所以我們看得到我們勞動部
transcript.whisperx[392].start 10982.705
transcript.whisperx[392].end 11005.779
transcript.whisperx[392].text 老法署我們花了三個月的時間開了兩次的專案會議那其實前面的評估報告幾乎都是大同小異啦那唯一比較不一樣就是有針對合作事務的專家諮詢會議提出兩個評估的成果那我不知道部長你對這部分覺得這個成果你滿意嗎覺得有沒有需要再
transcript.whisperx[393].start 11007.457
transcript.whisperx[393].end 11026.398
transcript.whisperx[393].text 可以再加強啦可以再檢討加強好嗎對啊我是建議啦其實我們花了三個月的時間當初臨時提案就是希望等一個完善的評估報告其實等了三個月我們看不到有什麼特殊的評估報告所以其實這整個專業評估報告
transcript.whisperx[394].start 11028.56
transcript.whisperx[394].end 11049.565
transcript.whisperx[394].text 說實在話,如果說這個論文拿去判定,我在想可能還是會被判定抄襲,因為這個幾乎是雷同,可以說是一模一樣所以我覺得三個月的時間應該要有一點成果,不然當初3月6日我們臨時提案,結果等了三個月是等這樣的報告,我覺得我們應該很失望
transcript.whisperx[395].start 11050.458
transcript.whisperx[395].end 11065.982
transcript.whisperx[395].text 委員因為這個在我上任前處理的所以這個我想我來要求他們這個未來啦我們在做這種相關的評估報告的話一定要確實啦對我希望針對這個評估報告還是要再加強再來給我們審查我覺得這個報告幾乎都是複製貼上沒有什麼成果我會請他們來檢討改進好嗎好還有針對我們
transcript.whisperx[396].start 11077.756
transcript.whisperx[396].end 11078.216
transcript.whisperx[396].text 我當然贊成啊對
transcript.whisperx[397].start 11099.227
transcript.whisperx[397].end 11114.829
transcript.whisperx[397].text 對啊,所以我們看了一下從之前的許明春部長到部長然後我們民進黨的林淑芬委員還有民眾黨的陳昭芝委員針對這部分職聘的部分大家都贊同那現在到底
transcript.whisperx[398].start 11116.192
transcript.whisperx[398].end 11145.251
transcript.whisperx[398].text 部長你覺得這個職聘的問題是在哪裡?對委員是這樣我態度上我是一定贊成的我也很希望推動可是我要跟您坦白說明這個職聘一定推動有它的困難那麼困難所以我講的是說我們要坦白面對這個職聘的困難然後要去克服我的態度是這樣的我們不要說誇口說我們一定做得到那事實上到時候做不到怎麼辦呢對不對
transcript.whisperx[399].start 11146.312
transcript.whisperx[399].end 11162.959
transcript.whisperx[399].text 因為這畢竟對台灣來講是一個全新的經驗我們印度那邊好像也沒有目前那它印度官方有意願配合嗎?我們只能期待啦可是印度它初期一定也是以中介為主啦
transcript.whisperx[400].start 11164
transcript.whisperx[400].end 11189.238
transcript.whisperx[400].text 這是他們的習慣跟文化那我這邊有建議啦因為我們也知道說現在要做一定有它的一個難度在我這邊有一個建議就是希望可以循序漸進去實施啦針對如果我們G2G這個職聘人數調整的比例如果在1000人的時候我們建議配套來做5%1000到3000人我們建議配套來做10%
transcript.whisperx[401].start 11190.419
transcript.whisperx[401].end 11218.377
transcript.whisperx[401].text 三千到五千人建議做15%然後五千到一萬建議做20%一萬人以上我們建議做25%然後也可以提供僱主職聘的誘因讓這僱主有能夠提供優先的選工的權利那針對這部分我們希望依序漸進來做這樣子我覺得後面實施的可能性就會比較大不過針對部長對這有什麼看法
transcript.whisperx[402].start 11219.222
transcript.whisperx[402].end 11219.882
transcript.whisperx[402].text 謝謝主席 有請部長 謝謝好請部長
transcript.whisperx[403].start 11250.316
transcript.whisperx[403].end 11263.642
transcript.whisperx[403].text 委員好好部長好那這個我等一下這個powerpoint打開不過因為畢竟這個我並不是勞工的專長所以我大概會有幾個事情還是從外交的角度但第一件事情想先請問就是說這可以按
transcript.whisperx[404].start 11266.347
transcript.whisperx[404].end 11291.602
transcript.whisperx[404].text 因為我們是從2月16日開始發生這件事情那4月2日的時候是送這個行政院說要備查那4月19日的時候呢說要改成做審查這大概這個時程那中間這個轉換呢看起來應該是因為有這個移工聯盟的這個記者會說這一個說說是不是這個為什麼要先簽MOU是不是要實質的審查那但是我這幾個有幾個比較小的問題第一個就是
transcript.whisperx[405].start 11293.003
transcript.whisperx[405].end 11308.994
transcript.whisperx[405].text 之前我們在簽MOU的時候,因為這四個是我們台灣目前移工最多的國家,那我們是都有先簽MOU嗎?還是說有些都直接簽協定呢?都是MOU。都有先MOU是不是?對,是。可是都沒有經過審查。
transcript.whisperx[406].start 11311.075
transcript.whisperx[406].end 11313.637
transcript.whisperx[406].text 接下來就是有沒有有一些狀況就是說我們是有簽了但是後來並沒有引入勞工的有這樣的狀況嗎?
transcript.whisperx[407].start 11333.43
transcript.whisperx[407].end 11339.736
transcript.whisperx[407].text 在這個狀況到底要怎麼去做審查我覺得這是一件蠻有疑問的事情但它竟然已經 我覺得立法院已經做成這個決定了所以我們還是要去討論它的實質內容
transcript.whisperx[408].start 11352.609
transcript.whisperx[408].end 11365.419
transcript.whisperx[408].text 因為我在看2024年2月22勞動部有一個澄清稿的時候這邊有提到說就是我紅色的部分說簽了以後依這個條約締結法的規定受立法院的監督那我們就來看一下這個條約締結法因為條約締結法前面的這個第三條第一項這個是條約那第二個就是這個所謂的協定是指條約以外
transcript.whisperx[409].start 11376.308
transcript.whisperx[409].end 11401.483
transcript.whisperx[409].text 約國各方具有拘束力的國際書面的協定所以協定基本上要被查這個是沒有什麼問題但MOU的這一個拘束力到底有多大呢就是說我們剛剛可以看到就是說MOU其實也有簽了但是到最後也沒有辦法進行下去所以這一件事情要把它納進來我還是覺得說勞動部這邊可能也要一個立場因為如果今天我們確定MOU就是要拿來做審查那可能以後MOU都要審查了
transcript.whisperx[410].start 11402.203
transcript.whisperx[410].end 11423.886
transcript.whisperx[410].text 這個可能也會造成我覺得對委員來講也是蠻大的一個負荷我覺得這一點我覺得可能還是要先釐清一下那再來就是這個我就先跳過再來就是我們在立法院這一邊我們能夠做的事情因為MOU到底能不能放在法律裡面放在我們的這個職權裡面做審查這個當然是先打一個問號但即使我們今天能夠審查
transcript.whisperx[411].start 11424.787
transcript.whisperx[411].end 11449.896
transcript.whisperx[411].text 依照條文的規定看起來我們要買就是全部都退回去嘛我們沒辦法再做細部的一個變更不然因為它只是一個意向書而已所以要買就是全部退回去要買就是全部都OK是不是部長是不是這樣的一個狀況所以在這個審查的過程當中因為我們今天國防外交之所以會聯席可能也是因為這個原因因為如果我們最後的結果就是要買就存查要買就直接退回去
transcript.whisperx[412].start 11452.399
transcript.whisperx[412].end 11454.422
transcript.whisperx[412].text 在外交這件事情會不會有所影響?
transcript.whisperx[413].start 11465.714
transcript.whisperx[413].end 11479.872
transcript.whisperx[413].text 我想這一次真的很難得就是印度方非常的積極我現在如果說這個MOU不幸沒有通過而被退回這當然對雙方關係會是個傷害啊所以這就是變成說我們在
transcript.whisperx[414].start 11481.754
transcript.whisperx[414].end 11499.552
transcript.whisperx[414].text 在這一份報告裡面讓其他立法委員在審查的時候因為我相信很多人會關心台灣勞工的權益啦然後呢以及我們對於社會的評估啦我覺得那都是正當的那都是應該值得討論的但是因為不一定每個人都對外交這件事情熟悉所以呢可能也必須也要請部長多多也是跟委員們溝通
transcript.whisperx[415].start 11500.473
transcript.whisperx[415].end 11526.807
transcript.whisperx[415].text 就是說它畢竟還是會有一些外交的衝擊在那我們身為國防外交的委員我們當然不樂見嘛 對不對所以要怎麼打到一個平衡我覺得是重要的但是也是可能必須麻煩這個勞動部要多多跟其他委員來做相關的說明好那再來就是剛剛一直提到的這個直接聘僱的可能性因為剛剛有提到說這絕對是好事啦那但是說有困難可不可以再告訴大家一下那個困難的點目前是在哪裡
transcript.whisperx[416].start 11527.386
transcript.whisperx[416].end 11545.004
transcript.whisperx[416].text 就是說這是一個全新的經驗啦這不是我們現在臺灣自己內部的那種職聘而是如果我們依照外國的經驗來看它一定是政府跟企業要合作的啦這都是企業在海外然後我們政府跟企業搭配然後這個大家去那邊甚至駐點
transcript.whisperx[417].start 11546.505
transcript.whisperx[417].end 11546.525
transcript.whisperx[417].text 謝謝委員長。
transcript.whisperx[418].start 11574.685
transcript.whisperx[418].end 11574.705
transcript.whisperx[418].text 好 謝謝
transcript.whisperx[419].start 11605.188
transcript.whisperx[419].end 11619.977
transcript.whisperx[419].text 接下來我們請黃仁委員黃仁委員黃仁委員不在我們請楊瓊英委員楊瓊英委員楊瓊英委員不在我們請陳培宇委員謝謝主席有請部長謝謝好請部長
transcript.whisperx[420].start 11635.495
transcript.whisperx[420].end 11657.589
transcript.whisperx[420].text 時間有限,我想跟部長討論一下關於工會的事情我相信其實工會的政策一直都是勞動部很重要長期支持的政策我們今天要講的是球員工會的事情事實上在職棒球員工會或是職籃球員工會他們都有簽訂所謂的團體協約或者是目前正在跟協會討論相關的約定那這個是很重要的示範而且也感謝勞動部長期都有支持
transcript.whisperx[421].start 11658.57
transcript.whisperx[421].end 11683.951
transcript.whisperx[421].text 可是呢目前有全國這麼多工會勞動部的支持畢竟有限那我們辦公室自己有提一個運產條例的修法提案等一下我投影片卡住那這個修法提案呢我們其實之前也有去跟經濟部討論過我們想要問勞動部是不是會支持目的事業主管機關針對相關產業工會去提供支持呢我們修訂的版本是在目前這個投影片上你所看到的我們增訂7支2條
transcript.whisperx[422].start 11686.033
transcript.whisperx[422].end 11704.754
transcript.whisperx[422].text 這篇寫法我們來直接看到下一頁好了我只有兩分鐘這邊我們想要看一下我們另外一個問題是之前部長不知道你有沒有注意到體育界其實長期都有不對等的權力關係我相信部長您在立法院或者是行政院工作很久上對下的壓迫問題其實
transcript.whisperx[423].start 11706.255
transcript.whisperx[423].end 11735.018
transcript.whisperx[423].text 除了在我們學校的體育班現場在體育運動產業甚至是相關的行政工作職場一直都有類似的問題我相信部長您身為部長您現在應該更支持相關的勞動權益那我們之前呢要求體育署必須要去檢視相關的勞動工作環境因為我們認為相關的勞動環境的健全非常重要我們之前要求體育署要跟勞動部共同去檢查這個勞動環境結果呢體育署他們做一件事情
transcript.whisperx[424].start 11735.598
transcript.whisperx[424].end 11744.301
transcript.whisperx[424].text 他們先回覆我們辦公室說他們有跟勞動部一起去清查那我們就問他們說你們找了勞動部的誰?勞動部給了什麼建議?勞動部去現場說了什麼?結果他們竟然才說實話說沒有啦委員我們沒有找勞動部
transcript.whisperx[425].start 11751.089
transcript.whisperx[425].end 11754.313
transcript.whisperx[425].text 部長,你覺得這件事情有沒有很誇張?我第一次聽到耶我來瞭解好嗎?是是是那部長謝謝你的善意喔就是你第一次聽到我也看到你很驚訝對不對?是
transcript.whisperx[426].start 11766.069
transcript.whisperx[426].end 11773.291
transcript.whisperx[426].text 部長我跟你說實話我看到這公文我也很驚訝怎麼會發生這樣的事情那想要繼續拜託勞動部健全職場工作環境有兩個比較具體的要求也許部長比較陌生我們辦公室很樂意再跟勞動部積極的討論第一個可不可以拜託勞動部在兩個月內由勞動部針對中華奧會還有國內各項體育單項協會尤其包含特定體育團體
transcript.whisperx[427].start 11789.837
transcript.whisperx[427].end 11794.102
transcript.whisperx[427].text 在體育署的約聘僱對向國訓中心等等單位啟動專案勞檢確認勞動條件狀況跟有沒有執行職務遭受不法侵害的問題有沒有機會來討論
transcript.whisperx[428].start 11801.673
transcript.whisperx[428].end 11822.812
transcript.whisperx[428].text 我會來研究看看再來評估把前述的對象跟職業還有業與運動團隊包含具有薪資給付事實的單位納入年度勞動檢查方針並且在三個月內提出評估報告就好了好我來研究看看好那我們辦公室是不是可以再跟勞動部積極的約開會討論好沒問題謝謝部長謝謝主席謝謝
transcript.whisperx[429].start 11829.441
transcript.whisperx[429].end 11842.713
transcript.whisperx[429].text 好謝謝接下來我們請鄭正前鄭正前鄭正前委員不在我們請黃珊珊委員質詢待會黃珊珊委員質詢結束之後我們休息5分鐘謝謝主席我請部長
transcript.whisperx[430].start 11855.077
transcript.whisperx[430].end 11877.944
transcript.whisperx[430].text 響鐘
transcript.whisperx[431].start 11878.044
transcript.whisperx[431].end 11898.191
transcript.whisperx[431].text 而且衛福部的調查是已婚女性高達22.7會因為生育離職40%不會再回到職場所以其實女性的勞動參與率一直沒有辦法提升部長我們您新任勞動部長您有什麼解方讓女性重回職場的方法
transcript.whisperx[432].start 11899.732
transcript.whisperx[432].end 11927.52
transcript.whisperx[432].text 對 這個就是我上任以後我特別關注這一塊因為尤其是我們我知道這個尤其婦女喔她其實在50歲以後那個勞產率是更最來勢的下降這樣解決她的問題才是真正讓少子化可能可以改善的方法所以第一個問題是我們現在目前相關的規定喔性別平等工作法裡面規定超過100人以上的事業單位要設所謂的
transcript.whisperx[433].start 11928.24
transcript.whisperx[433].end 11929.801
transcript.whisperx[433].text 我們有給企業獎勵但是只有獎勵因為沒有處罰
transcript.whisperx[434].start 11950.695
transcript.whisperx[434].end 11964.486
transcript.whisperx[434].text 那如果我們法律規定在那邊又不處罰,只給獎勵,你認為提升的效率很高嗎?可是,是,我們當然就是應該要更加大宣傳啦對,金管會的主委常常請他們來喝咖啡嘛
transcript.whisperx[435].start 11965.856
transcript.whisperx[435].end 11980.587
transcript.whisperx[435].text 你覺得我有能力請今晚會主委喝咖啡?不是,我說像今晚會主委會找銀行喝咖啡你可以找這些大企業喝咖啡或去拜訪,好嗎?這是第一個可能去拜訪還比較宣傳啦對,拜訪大比例的甚至公告公告誰達到了百分之多少
transcript.whisperx[436].start 11981.648
transcript.whisperx[436].end 12000.286
transcript.whisperx[436].text 誰沒有答到方法很多請部長想辦法第二個部分就是為什麼不好不想因為上班有假不敢請有家庭照顧假有所謂的生理假目前為止勞基法都是性別工作平等法都是以日為單位但是公務員早就用小時來計算
transcript.whisperx[437].start 12001.807
transcript.whisperx[437].end 12028.139
transcript.whisperx[437].text 您說家庭照顧假嗎?是的還有所謂的生理假我不能請幾個小時或者是我小孩去上個家長日是不是可以在勞基法或者性別共和平等法裏面增加以小時為單位這個是我覺得可以給女性很多的幫助周委員報告生理假現在可以以小時為單位喔對生理假放寬我們希望那家庭照顧假目前沒有親職假最重要的是我們這幾天開了記者會就是產假
transcript.whisperx[438].start 12029.5
transcript.whisperx[438].end 12041.708
transcript.whisperx[438].text 我們現在還是停留在20年前的8週世界上的趨勢已經是14週了部長為女性爭取至少開始往前走增加產價比照公務員
transcript.whisperx[439].start 12043.817
transcript.whisperx[439].end 12045.479
transcript.whisperx[439].text 這也是我們希望勞動部新的部長能夠為勞工多說一點話
transcript.whisperx[440].start 12063.678
transcript.whisperx[440].end 12064.719
transcript.whisperx[440].text 我們現在休息5分鐘
transcript.whisperx[441].start 12516.448
transcript.whisperx[441].end 12534.413
transcript.whisperx[441].text 好 我們繼續開會接下來我們請何欣辰 何欣辰 何欣辰委員不在 邱志偉 邱志偉 邱志偉委員不在 林德福 林德福 林德福委員不在徐欣盈 徐欣盈 徐欣盈委員不在 我們請林淑芬委員質詢主席 各位大家午安 是不是要請我們這個部長好 請何部長
transcript.whisperx[442].start 12547.762
transcript.whisperx[442].end 12549.223
transcript.whisperx[442].text 日本和韓國有職聘嗎?
transcript.whisperx[443].start 12570.307
transcript.whisperx[443].end 12585.873
transcript.whisperx[443].text 日本韓國跟印度就是職聘模式你不要不要講說印度沒有G2G的模式有日本跟韓國就是然後你在今天一早委員問的時候你就說職聘要看國家有沒有能力是吧
transcript.whisperx[444].start 12589.296
transcript.whisperx[444].end 12604.768
transcript.whisperx[444].text 要看我們自己,因為我們是全新的經驗不是看國家有沒有能力,是看政府有沒有能力然後你們所值的理由還講說國內的仲介能力很強,你回答立委的質詢你說我們的執聘要在國內執聘先行,去聘這個大家都知道,我們不再談這一塊你說國內的仲介能力很強
transcript.whisperx[445].start 12613.334
transcript.whisperx[445].end 12625.101
transcript.whisperx[445].text 所以這就是我們一直在跟你說的仲介這一塊制度我們過去的四個國家都全部放給仲介然後仲介的這個問題在哪裡大家都知道人口販運裡面的強迫勞動高額的抵債勞務訓練不足國家退位專業不足所以照護的專業不足然後呢買工費仲介費
transcript.whisperx[446].start 12639.21
transcript.whisperx[446].end 12642.473
transcript.whisperx[446].text 這個就是高額的抵債勞務在這裡都涉及到人口販運和強迫勞動在這裡面而我們國家大家社會各個領域都在期待說開放印度的移工能不能有新的模式你們一直告訴我們說這一次要採雙軌制
transcript.whisperx[447].start 12659.13
transcript.whisperx[447].end 12678.374
transcript.whisperx[447].text 可能會有G2G的就是仲介加G2G的模式但我們在這裡發現如果勞動部都不準備而且國家不願意介入而且政府不願意而不是不能喔那在民意上的雙軌實際上運作下來會只剩下單軌那我跟你講說啊人家韓國開放了韓國引進了幾個國家的移工
transcript.whisperx[448].start 12687.745
transcript.whisperx[448].end 12690.326
transcript.whisperx[448].text 我們全部臺灣引進幾個國家?臺灣是幾個國家的移工?我們現在四個國家嘛。四加一嘛。印度嘛,對不對?韓國幾個國家?印度還沒開始呢。OK,我知道。那你知道韓國引進了移工的國家有多少數量嗎?
transcript.whisperx[449].start 12706.374
transcript.whisperx[449].end 12733.65
transcript.whisperx[449].text 十七個而我們現在只談一個印度要求你G to G國對國的模式只要求你一個連一個都不願意好好的做不願意國家不願意扛起這個責任這個不是國家有沒有能力是政府無能啊所以在這裡我們很多的人都跟你陳情說包括都反映說我們只
transcript.whisperx[450].start 12735.251
transcript.whisperx[450].end 12761.74
transcript.whisperx[450].text 接看韓國模式他能夠運作的起來而且都是國對國的引進而且數量這麼多關鍵是他們有個space的系統你知道吧space的系統他們space的系統現在是不是AI時代大數據時代人工智慧管理的時代保證是不是?你連這種系統的做不出來也不管你做
transcript.whisperx[451].start 12763.749
transcript.whisperx[451].end 12766.43
transcript.whisperx[451].text 你要說臺灣是AI大國整個資訊系統的政府整個醫化做得多好你知道嗎這個space系統把所有移工相關的部門串聯起來我們國家我們政府就是從來都不願意串聯起整個系統然後呢把不論是這個引進的這個許可併顧的許可
transcript.whisperx[452].start 12793.716
transcript.whisperx[452].end 12812.226
transcript.whisperx[452].text 還有包括入出國業務的這個許可通通整合在一起而且要公開透明上網僱主可以上去看移工也可以上去看大家都可以使用這個系統包括簽證等等這樣整合在一起很困難嗎?這個系統會困難嗎?寶定你回答看看韓國的space系統對台灣來講困不困難?
transcript.whisperx[453].start 12818.709
transcript.whisperx[453].end 12829.554
transcript.whisperx[453].text 委員我現在就是在請,我現在正在進行一個勞政友善化的計畫,我就是要求勞防署現在開始檢討,把所有的系統都整合在一起,然後減少...你們現在什麼系統對不對,串聯起各部會的系統
transcript.whisperx[454].start 12834.037
transcript.whisperx[454].end 12834.617
transcript.whisperx[454].text 市長,您有沒有辦法?市長,您來講快一點。
transcript.whisperx[455].start 12854.09
transcript.whisperx[455].end 12854.791
transcript.whisperx[455].text 韓國是從沒有經驗開始做的勒
transcript.whisperx[456].start 12871.006
transcript.whisperx[456].end 12897.374
transcript.whisperx[456].text 從一開始開放移工就做這種系統做這種制度做這種管理而我們已經幾十年了我們需要什麼哪裡需要整合怎麼整合整個界面要怎麼管理我們還會不知道嗎是沒有能力而不是喔不是是沒有心不是沒有能力啊政府退位不願意管那你們講部長你剛才講說重建能力很好署長我現在講space系統年底以前做不做得出來
transcript.whisperx[457].start 12898.973
transcript.whisperx[457].end 12910.021
transcript.whisperx[457].text 我們來努力好第二個你說台灣的仲介服務很好能力很強你知道你們的仲介評鑑啊評鑑為合格的優良的仲介比例大概有多高嗎
transcript.whisperx[458].start 12918.683
transcript.whisperx[458].end 12923.891
transcript.whisperx[458].text 你們去年11月發布的新聞稿A級的64.5% B級的30%所以94%的仲介你們都評定是合格的優良的仲介
transcript.whisperx[459].start 12934.207
transcript.whisperx[459].end 12961.882
transcript.whisperx[459].text 那你知道2016年我們修了一個就業服務法三年免促進一天仲介沒辦法在跨國收取不當的仲介費沒辦法再剝削這些移工他們轉而在台灣境內台灣境內直接要付買工費而且大家都知道買工費是一定要付大家都要付除非你那10%的職聘續聘
transcript.whisperx[460].start 12965.046
transcript.whisperx[460].end 12967.787
transcript.whisperx[460].text 委員,你知道賣工費的行情是多少錢嗎?一個議員要繼續在台灣續聘,要付多少賣工費?當然仲介一定有良誘,他一定有不好的決定這不是良誘喔,這每間每個都有起訴的喔!賣工費每個都有的喔!
transcript.whisperx[461].start 12988.24
transcript.whisperx[461].end 13012.866
transcript.whisperx[461].text 每個都有,每家仲介都違法在說買工費在台灣發生,要付多少錢?買工費在我們這邊是非法的本來就違法的啊,您取締一年,你們從以前到現在取締多少件?我問你非法的,現在七十幾萬每個人都續聘的時候都要付呢?你才裁罰幾件?
transcript.whisperx[462].start 13016.078
transcript.whisperx[462].end 13024.223
transcript.whisperx[462].text 發言所以我跟你講說這代表什麼你說能力很好仲介服務很好他們幹這種違法的勾當你們評鑑還是94%都是合格的優良的
transcript.whisperx[463].start 13029.738
transcript.whisperx[463].end 13038.903
transcript.whisperx[463].text 而幹非法的事都還是A級的、B級的委員我可以跟您報告我有1775家仲介連續兩年憑藉A級只有478家好啦這478家有沒有收買工費你敢保證絕對沒有收買工費嗎我告訴你我保證絕對有收買工費
transcript.whisperx[464].start 13049.509
transcript.whisperx[464].end 13055.397
transcript.whisperx[464].text 委員你可以跟我檢舉好嗎你不要講檢舉這種事情你不負責任你們政府不願意管然後退位放任然後你叫立委跟你檢舉現在沒有政府啊你現在是什麼政府這麼好做叫立委來跟你檢舉我要你政府幹嘛
transcript.whisperx[465].start 13068.576
transcript.whisperx[465].end 13092.469
transcript.whisperx[465].text 這樣子當政府這麼簡單啊那我再請教你現在RBA的移工零付費原則雇主自己去負擔買公費很多大企業都這樣子啦否則整個RBA整個國際形象就壞掉了那你這個要先行人家你們開會5月2號開會也有人也有委員在問啊
transcript.whisperx[466].start 13093.61
transcript.whisperx[466].end 13106.429
transcript.whisperx[466].text 你們要不要做這個RBA的移工零付費原則?要不要從這裡開始示範起?幾千個示範零付費原則有沒有可能示範?
transcript.whisperx[467].start 13109.449
transcript.whisperx[467].end 13125.019
transcript.whisperx[467].text 國對國引進也不可能一個國家一個印度事辦一千人的規模你沒有辦法做出來Space系統要跟你們對如果這樣也要說零付費都顧著自己去負擔你也要標示一個人你有沒有辦法啊我們都一直在講說只能盡量努力啦高額的抵債勞務、人口販運、強迫勞動
transcript.whisperx[468].start 13135.819
transcript.whisperx[468].end 13156.078
transcript.whisperx[468].text 所以今天在這裡是政府過去一直都退位不願意管然後就全部交給仲介然後在這裡今天不會要求你這個示範計畫國對國不管你是雙軌還是單軌到最後如果沒有運轉出一個模式來就會變成仲介一軌
transcript.whisperx[469].start 13157.219
transcript.whisperx[469].end 13164.567
transcript.whisperx[469].text 所以你的國對國模式你的space很重要然後你的G to G你要怎麼運作也很重要人家韓國成立了一個韓國產業人力工團你知道的?工團要做什麼?
transcript.whisperx[470].start 13174.217
transcript.whisperx[470].end 13197.196
transcript.whisperx[470].text 這個是行政法人吧?對,他是行政法人。行政法人代表國家公權力呢?是啊。他們扛起什麼責任?韓國的國家扛起了選工、負責選工、負起技能訓練、負起居留服務等。然後國家還幫僱主委託,可以受理僱主委託代向外籍勞工簽訂勞動契約。
transcript.whisperx[471].start 13199.52
transcript.whisperx[471].end 13208.923
transcript.whisperx[471].text 這就是國家,我們的國家做什麼?我們的國家做什麼?委員我也很期待能這樣對,所以你要從這裡開始試驗但我要講說你從印度全立法院包括衛防委員會的委員到現在都沒有苛責你過去
transcript.whisperx[472].start 13216.346
transcript.whisperx[472].end 13223.812
transcript.whisperx[472].text 也沒有要求你過去那四個國家的模式大家對你們的期待只不過是從現在印度模式事辦計劃一千人、一個國家一千人開始我們來讓出這一套運作的模式
transcript.whisperx[473].start 13233.38
transcript.whisperx[473].end 13241.57
transcript.whisperx[473].text 所以現在只是要求你這一千個移工的引進我們來找出一個新的模式我們把過去強迫勞動的高額抵債勞務的通通都給他改善掉國家扛起責任
transcript.whisperx[474].start 13248.82
transcript.whisperx[474].end 13275.09
transcript.whisperx[474].text 不是只有中介有責任中介引進來的很多人沒有專業訓練沒有技能訓練沒有服務訓練很多雇主也不滿意啊這個服務也不專業啊可是人家韓國負責選工、技能訓練、居留服務還可以幫你簽訂勞動契約所以再加上他們space系統我們還講說這才像是一個國家日本日本的模式他用什麼模式日本的國家做了什麼保定
transcript.whisperx[475].start 13278.598
transcript.whisperx[475].end 13296.95
transcript.whisperx[475].text 日本引進印度勞工他們跟NSDC引進這個執行也是採G2G的模式而且大家都知道日本也是一個公法人在處理日本是國家公法人在處理啊他們根本沒有在討論仲介費因為沒有這種事情
transcript.whisperx[476].start 13299.568
transcript.whisperx[476].end 13318.173
transcript.whisperx[476].text 而我現在看到你們的開會會議記錄包括我們的外交部都說外交部就印度代表處說本處尊重國內單位意見倘若初期採取國家政府職聘的方式引進他們願意協助瞭解主責機構的窗口願意承擔起來
transcript.whisperx[477].start 13319.293
transcript.whisperx[477].end 13334.638
transcript.whisperx[477].text 並依照勞動部的需求跟印方洽談為考量台印之間彼此能見度不足國內對印度的刻板印象嚴重所以他建議這是我講的是官方外交部願意扛起這個責任他說
transcript.whisperx[478].start 13335.678
transcript.whisperx[478].end 13364.453
transcript.whisperx[478].text 建議初期可以透過採取職聘方式引進優質印度移工讓台灣社會更加熟悉印度移工外交部說的外交部下一段說未來在市市場需求研議採取多元引進方式以確保雇主跟勞工權益都受到保障外交部直接都建議
transcript.whisperx[479].start 13365.734
transcript.whisperx[479].end 13384.256
transcript.whisperx[479].text 初期國對國引進外交部還有另外一點建議我念給你聽到印度方面執聘的機制除了NSDC以外還有一種是由印度政府指定所以並不是印度沒有國對國的模式都不是
transcript.whisperx[480].start 13385.307
transcript.whisperx[480].end 13398.785
transcript.whisperx[480].text 所以這個問題我們看是只有政府要不要做有沒有要扛起責任就只是這種態度而已而不是不能也不是不能也沒有印度方面拒絕沒有這一種事
transcript.whisperx[481].start 13402.697
transcript.whisperx[481].end 13405.58
transcript.whisperx[481].text 所以在這裡我們真的是部長今天在這裡大家對MOU簽了看起來好像雙軌但是我自己個人很害怕最後變成單軌叫仲介跟以前一樣
transcript.whisperx[482].start 13418.214
transcript.whisperx[482].end 13422.737
transcript.whisperx[482].text 那就落入了有一些在野黨的前立委講的嘴巴講出來的這個是不是有很大的哪一種利益已經在那裡先布局了有人這樣說嘛但我覺得不一定是嘛政府應該要採取破例案行動來證明國家願意扛起這個責任好謝謝林淑芬委員的質詢待會我們可以再討論
transcript.whisperx[483].start 13448.191
transcript.whisperx[483].end 13450.372
transcript.whisperx[483].text 接下來我們請陳英委員質詢好謝謝主席麻煩請勞動部部長以及發展署蔡署長好來部長署長請
transcript.whisperx[484].start 13473.724
transcript.whisperx[484].end 13494.546
transcript.whisperx[484].text 委員好部長好我想就今天這個台印雙方引進勞工的合作備忘錄的部分首先我想要請教就是我們本委員會是採逐條審查那審查的意見有任何一個條文如果沒有通過的話這個MOU就會全部就退回這個勞動部不予查照
transcript.whisperx[485].start 13495.347
transcript.whisperx[485].end 13506.023
transcript.whisperx[485].text 那可是呢事實上MOU是外交部代簽的那實際的內容的擬定呢勞動部你們應該都有全程的主導跟掌控吧應該有吧
transcript.whisperx[486].start 13507.149
transcript.whisperx[486].end 13531.423
transcript.whisperx[486].text 有好那蔡署長我要請教就是說這個MOU的內容有很多的原則是跟現在其他引進這個外勞的國家外籍勞工的國家並不一樣那有些就跟這個就業服務法還有執法以及這個行政命令是有抵觸的我就先來舉個例子給你們看就是在第7條
transcript.whisperx[487].start 13535.125
transcript.whisperx[487].end 13556.433
transcript.whisperx[487].text 在雙方領域內指定醫院對勞工健康檢查令勞工醫療費用應由健康保險及意外保險負擔勞工無力負擔時應由印度方協助解決這裡的醫療費用如果涉及懷孕生產是不是也由印度政府來協助解決
transcript.whisperx[488].start 13557.433
transcript.whisperx[488].end 13573.191
transcript.whisperx[488].text 對,因為目前這個條約我就確認這個部分那現行的這個外籍勞工的這個來源政府來源國的政府例如印尼他們有沒有協助他們的這個外籍勞工來支付醫療費用
transcript.whisperx[489].start 13575.173
transcript.whisperx[489].end 13601.756
transcript.whisperx[489].text 委員報告目前因為我們跟印尼沒有這個條文但是在雙邊會議當中我們都有提出應該由他來負責所以印尼我們沒有簽但是印度有這個條文對印尼的條文沒有特別加注那再來我們看第二個例子在第10條就無證的這些失聯的印度勞工收容及遣送由我方負責無證的勞工應支付收容遣返及
transcript.whisperx[490].start 13602.716
transcript.whisperx[490].end 13630.441
transcript.whisperx[490].text 醫療費用,印度方應協助促進清償。那我要請教目前印尼外籍勞工的這個逃逸的遣送回國費用是由誰負擔?是不是原僱主?目前我們目前那個遣送費用是由非法僱主或非法媒介。好沒關係那如果是的話那為什麼印度的外籍勞工就要由他們的政府來協助解決?
transcript.whisperx[491].start 13631.516
transcript.whisperx[491].end 13634.237
transcript.whisperx[491].text 這些外籍勞工的遣返回國的費用有沒有規範在舊福法的執法或行政命令?
transcript.whisperx[492].start 13654.256
transcript.whisperx[492].end 13676.583
transcript.whisperx[492].text 對,遣返費用目前在救護法有好,那如果有的話將來印度勞工逃逸的遣返為什麼是他們政府就要協助而印尼不用呢?這樣有沒有公平性的問題目前就是如果是屬於非法移工他要付的這個費用那如果他無法清償的話目前我們就希望是有來源國要負擔這樣的一個責任
transcript.whisperx[493].start 13678.322
transcript.whisperx[493].end 13678.742
transcript.whisperx[493].text 第三個例子
transcript.whisperx[494].start 13696.5
transcript.whisperx[494].end 13711.051
transcript.whisperx[494].text 上次4月25日的時候本席已經有質詢過勞動部變相有鼓勵逃逸的外籍勞工在台灣生小孩非法生小孩
transcript.whisperx[495].start 13712.552
transcript.whisperx[495].end 13732.644
transcript.whisperx[495].text 我這樣講是有依據的啦當然你們不會寫得這麼明白但是有些政策就是變相的鼓勵那再來喔印尼政府呢已經其實對台灣的這些相關規定是非常不滿的他們是有聲音出來的因為我們這些規定其實都在製造他們的國內的社會問題
transcript.whisperx[496].start 13734.105
transcript.whisperx[496].end 13761.307
transcript.whisperx[496].text 因為呢我這個我好好解釋一下因為印尼主要的信仰是伊斯蘭教那國情是相當的保守所以他們對於婚前性行為跟婚外情是零容忍所以呢我們再看一下他們目前的這個刑法的規定和婚外情的對象同居最高可求處一年有期徒刑2022年的時候12月6日他們已經有修法通過從2025年
transcript.whisperx[497].start 13764.27
transcript.whisperx[497].end 13788.348
transcript.whisperx[497].text 開始即將生效就是未來發生婚外情將從現行的一年有期徒刑改成最高五年那此法也都適用在任何一位踏進印尼境內的外籍人士所以再來就是說根據這個印度政府簽署的這個MOU
transcript.whisperx[498].start 13792.721
transcript.whisperx[498].end 13798.106
transcript.whisperx[498].text 但是呢,發展署給這些逃逸在台然後非法生小孩的這些
transcript.whisperx[499].start 13817.302
transcript.whisperx[499].end 13837.877
transcript.whisperx[499].text 的這個補助跟安置是不分國籍和全體適用的甚至還有享有這些生育假碼所以因為由於這個跟印方這個簽署的MOU還與我們這個現行的執法還有行政命令是有抵觸所以本席想確認的是你們勞動部
transcript.whisperx[500].start 13840.387
transcript.whisperx[500].end 13842.949
transcript.whisperx[500].text 救福法那個規定是合法移工的啦
transcript.whisperx[501].start 13866.355
transcript.whisperx[501].end 13885.584
transcript.whisperx[501].text 對,是官方合法移工的權利部長你可能有所不知我當然知道你們的補助你們一定會講說補助是合法的勞工但是你們敢不敢跟我保證這當中沒有把非法的洗白然後撤掉他們逃逸的身份你敢說這一件都沒有嗎?
transcript.whisperx[502].start 13886.784
transcript.whisperx[502].end 13900.211
transcript.whisperx[502].text 我今天敢在這裡講 所以我說部長你不知道啊 這個你可以回頭好好的去了解一下實際的狀況是什麼 到底有沒有這種洗白的案例
transcript.whisperx[503].start 13902.014
transcript.whisperx[503].end 13929.375
transcript.whisperx[503].text 我們再來瞭解看看好嗎?對!請你們好好的去瞭解我今天講我們就有所本好不好?好!那也做這樣的提醒啦所以這就是為什麼我要一再的就是說一開始我要提醒就是說國民平等等一下對不起我漏掉了就是說最後一點我要問的是說如果這個MOU退回之後勞動部有沒有需要跟印尼重啟談判MOU的內容
transcript.whisperx[504].start 13929.755
transcript.whisperx[504].end 13959.29
transcript.whisperx[504].text 那如果再重新簽署部長覺得說部長你會不會覺得人家跟我們會再重啟談判嗎應該蠻難的啦很難嘛所以這就是為什麼我一開始我要提醒就是說國民平等待遇原則下不能有不同國家的差別待遇那你們簽署的這個MOU有很多的原則是跟目前跟其他國家是不一樣那這裡面會不會有涉及修法的問題還有這個來源國本法本國法律的規定的問題這個都是要注意的
transcript.whisperx[505].start 13959.71
transcript.whisperx[505].end 13989.193
transcript.whisperx[505].text 因為MOU它是一個基本原則的備忘不是說我們想要重啟談判就可以隨時重啟的事情因為規範的是基本原則的問題所以原則都沒有辦法堅持的話就有我們的這個國格尊嚴的問題這是相當嚴重的問題啦所以希望勞動部可以謹慎處理而且就是說日前我們的許前部長這個失言引發了風波那勞動部跟外交部都有發新聞稿道歉嘛
transcript.whisperx[506].start 13989.993
transcript.whisperx[506].end 14018.845
transcript.whisperx[506].text 目前台印雙方合作其實就是越來越緊密莫迪總理的連任賴總統也親自恭賀也受到總理的公開善意的回應所以最後真的要好好的提醒我真的不希望說一個MOU還有重啟談判的風險所以一定要支持這個版本那我們今天就是要特別提醒不要造成不同國有不同制的問題如果萬一再引發爭議真的是一發不可收拾
transcript.whisperx[507].start 14019.465
transcript.whisperx[507].end 14019.885
transcript.whisperx[507].text 謝謝主席 有請部長好請何部長
transcript.whisperx[508].start 14052.506
transcript.whisperx[508].end 14068.914
transcript.whisperx[508].text 委員好部長好部長本期在5月23日也在這個委員會有執行部長當時有提到就是因應社工人力是那勞動部要快速來公告修正這個外國人從事就業服務法第46條第1項第1款至第6款的
transcript.whisperx[509].start 14069.614
transcript.whisperx[509].end 14075.317
transcript.whisperx[509].text 工作資格及審查標準,讓外國具有社工資格者也能在臺灣的民間團體來擔任社工師。
transcript.whisperx[510].start 14085.123
transcript.whisperx[510].end 14105.256
transcript.whisperx[510].text 已經公告了已經公告了對已經公告了那就謝謝部長謝謝委員的協助幫忙這個公告之後就讓台灣有新的一批生意軍可以到台灣的社務界來做這樣的事情但是部長有要求幕僚去做盤點這樣會增加多少生意軍
transcript.whisperx[511].start 14106.036
transcript.whisperx[511].end 14123.159
transcript.whisperx[511].text 你是指社公司部分嗎?對對對外籍的這個就是說我們已經公告了嘛只有幾十個目前因為他要有考到我們的證照社公司要有證照現在只是允許他可以去考證照應該是這個意思
transcript.whisperx[512].start 14123.94
transcript.whisperx[512].end 14138.86
transcript.whisperx[512].text 二十幾個二十幾個而已對二十幾位二十幾位也不錯啦是啦 是沒有錯啦 杯水抽薪還是還是有朝正向的發展去嘛但是如果只有二十幾位未來會不會再增加
transcript.whisperx[513].start 14139.281
transcript.whisperx[513].end 14162.459
transcript.whisperx[513].text 我們來鼓勵、來擴大宣傳對啊,因為這一兩年如果他的人數是往上在提升的那對台灣的這樣的一個社會公司的缺額的問題會有一定程度的效益可能很多僑外生還不知道有這件事對,我們來擴大宣傳對啊,這可以做你偶後政策相關的一些依據來大力來把這事情做好嘛
transcript.whisperx[514].start 14163.44
transcript.whisperx[514].end 14164.601
transcript.whisperx[514].text 這是觀光署向國防會提案 那麼我們來配合開放這樣子 對
transcript.whisperx[515].start 14182.708
transcript.whisperx[515].end 14203.094
transcript.whisperx[515].text 但是部長有去思考幾個問題嗎?現在當然是這個旅宿業的缺工非常嚴重,沒有錯嘛,所以才會朝這個方向要來做嘛但是我有聽過這個中華民國旅館商業同業工會的這個楊理事長特別表示台灣中小型的旅館職務編制、培訓與升遷體制都不像觀光旅館一樣齊全
transcript.whisperx[516].start 14204.565
transcript.whisperx[516].end 14204.705
transcript.whisperx[516].text 韓國瑜表示
transcript.whisperx[517].start 14221.565
transcript.whisperx[517].end 14240.718
transcript.whisperx[517].text 不可能說一個政策滿足所有的人沒有錯我們只是想說盡量來幫忙那麼因為幫協助企業解決缺工也確實是勞動部的責任那麼我們希望能夠開放這個東西其實是希望能夠增加多元勞動力的供給把人才留下來
transcript.whisperx[518].start 14241.559
transcript.whisperx[518].end 14260.656
transcript.whisperx[518].text 那麼像新籍旅館他會他比較有能力禁用僑外生啦憑良心講因為他薪資條件比較好中小型旅館可能會比較難因為他的薪資條件就是比較低啊所以這個中真的中小型旅館我們會來另外再來想想其他方式可是我們有一塊很重要對於本土
transcript.whisperx[519].start 14261.457
transcript.whisperx[519].end 14287.667
transcript.whisperx[519].text 我們很重要的是要推動本土婦女跟中高齡的就業啦齁在中小型旅館在這一塊其實是空間很大那麼在這部分可能要配合就是包括獎勵啦我們再更推動獎勵然後來協助中小型旅館來做這一塊的禁用部長就講到重點了齁講到獎勵嘛就政策上來鼓勵嘛對不對是是是對可是這應該不是只有勞動部一部有辦法去完成的事情嘛
transcript.whisperx[520].start 14288.378
transcript.whisperx[520].end 14313.254
transcript.whisperx[520].text 現在針對婦女跟中高齡的獎勵是我這邊主要在推啦對,好,那妳是在這個群組嘛,這個族群嘛對不對我覺得可以針對這個族群,尤其是中小型旅館這個族群,我們可以來加大來推動對象就是中高齡,對嗎?服務業就是針對中小型的旅宿業嘛對啊你要把這個套在這個地方嘛對,而且這一塊本來就是所以單憑勞動部一起之力就夠了
transcript.whisperx[521].start 14314.215
transcript.whisperx[521].end 14331.528
transcript.whisperx[521].text 我們也要配合觀光署還有交通部因為我們有異後改善缺工擴大方案就是針對旅宿業而去做的設計的一個獎勵方案這樣子其實現在也已經禁用不少人有上萬人了
transcript.whisperx[522].start 14332.554
transcript.whisperx[522].end 14352.8
transcript.whisperx[522].text 目前有上萬人進到這個旅宿業有進到旅宿業嗎?沒有吧?比例多少?一兩萬人是比例多少?沒關係,你總是有做嘛對不對?就請部長回應我的,一兩萬人比例多少是進到你講的這個旅宿業?
transcript.whisperx[523].start 14355.561
transcript.whisperx[523].end 14373.525
transcript.whisperx[523].text 差不多多少嗎?因為這個...我們要來看你的需求是怎樣?我跟你講,那個我們資料可以給提供委員,大概目前他們的需求大概不到三千人,超過我們的專案。我們的協助大概沒有...你講的他的需求不到三千人?是指旅宿業嗎?中小型的旅宿業嗎?對,就是旅宿業。那你用一兩萬人?
transcript.whisperx[524].start 14378.607
transcript.whisperx[524].end 14389.349
transcript.whisperx[524].text 那現在就是說我們媒合經過它的僱用之後其實目前的就業媒合就業其實比例大概超過50%以上啦這個還在處理這個理事長對外發表這樣的一個言論是什麼時候
transcript.whisperx[525].start 14403.677
transcript.whisperx[525].end 14404.878
transcript.whisperx[525].text 三千是他新提出的需求啦
transcript.whisperx[526].start 14429.899
transcript.whisperx[526].end 14456.061
transcript.whisperx[526].text 是他最近提出的新的需求說有3000的移工需求啦所以因為我們沒有辦法在這個時候開放服務業引進移工所以我們必須想辦法比如補足橋外生這一塊比如橋外生這一塊也許可以有一些補充那麼針對中小型旅館我們另外再來設計針對婦女跟中高齡的開發在這部分的勞動力來禁用這樣子
transcript.whisperx[527].start 14457.022
transcript.whisperx[527].end 14463.312
transcript.whisperx[527].text 我一直覺得部長你跟莊講的是不太一樣的範圍你們這個內容好像怪怪的
transcript.whisperx[528].start 14464.905
transcript.whisperx[528].end 14483.437
transcript.whisperx[528].text 你現在講的說,現在這個理事長他提出來的,你們已經有備案了嗎?簡單講是這樣嗎?對不對?不是說備案,是我本來就在進行這個東西。針對婦女跟中高齡本來就是我優先推動的本土勞動力的開發。是啊,你還沒有就任部長前應該就在推了嗎?應該是這麼說嗎?還是你上任之後開始推嗎?
transcript.whisperx[529].start 14488.12
transcript.whisperx[529].end 14510.602
transcript.whisperx[529].text 對對對對是啊這個本來就是我們要優先推動本土勞動力啦的開發啦這裡有56萬呢但我們因為必須讓缺工不等於低薪所以不能用移工來解決這個不能不能就簡單回答我一句話就好你現在要推的這一個我們本土的中高齡高齡者可以來到這個職場的什麼時候開始可以就是上班的
transcript.whisperx[530].start 14511.182
transcript.whisperx[530].end 14526.68
transcript.whisperx[530].text 現在已經在進行在進行對現在這個就是你現在已經補足多少進去嗎簡單講就好了他們的這個算所謂的3000缺額的提供也是最近的事情啦啊這個都是他們覺得說要引進移工的數字啦是
transcript.whisperx[531].start 14527.18
transcript.whisperx[531].end 14547.035
transcript.whisperx[531].text 對,那這三千人我們現在也可以針對用婦女跟中高齡來補啦。那我們希望能夠就是用獎勵方案嘛。原來就有針對婦女跟中高齡的獎勵方案。是啦是啦,我知道啦。就是你現在已經在做了嘛,對不對?對,希望能夠擴大來做。這個人員到位是什麼時候嘛?
transcript.whisperx[532].start 14548.456
transcript.whisperx[532].end 14562.473
transcript.whisperx[532].text 希望能盡快啊,我們現在先,我們要下去來處理這樣子,對。所以現在就是已經這個政策已經啟動嘛,但是基本上...欸,政策啟動早就啟動了。對,人還沒有到位啊?這樣不是,是那個...
transcript.whisperx[533].start 14564.272
transcript.whisperx[533].end 14591.465
transcript.whisperx[533].text 我相信中小型旅館這邊的缺工當然我們就是來協助我時間到了好不好你這個專案是不是就給我給我詳細的資料我來參考再提出相關的建言好不好好謝謝謝謝好謝謝本日會議詢答全部結束委員林益君、楊耀、盧憲一、楊瓊英所提書面質詢列入紀錄刊登公報做以下決議
transcript.whisperx[534].start 14592.421
transcript.whisperx[534].end 14621.597
transcript.whisperx[534].text 一說明及詢答完畢二委員質詢會及答覆或請補充資料者請相關機關於兩週內以書面答覆委員令要求其限則從其鎖定現在進行審查本案比照行政命令一例不宣讀條文不足條審查一立法院職權行使法第62條規定請就本案有無違反變更或抵觸法律法律者
transcript.whisperx[535].start 14622.17
transcript.whisperx[535].end 14639.35
transcript.whisperx[535].text 或因以法律規定之事項而以命令定之者進行處理。那我們現在先請委員表示意見。好那我們先休息五分鐘協商一下。
transcript.whisperx[536].start 15494.146
transcript.whisperx[536].end 15494.307
transcript.whisperx[536].text 主席
transcript.whisperx[537].start 15567.372
transcript.whisperx[537].end 15588.091
transcript.whisperx[537].text 主席主席要求發言我跟大家報告因為大家也都非常對這件事情這個MOU大家都有很多的因為那個國民黨這邊蘇衛原要發言那我們現在就我們黨團也溝通過所以跟大家報告一下講話一下
transcript.whisperx[538].start 15590.717
transcript.whisperx[538].end 15607.569
transcript.whisperx[538].text 我看差距也不大啦,也沒有什麼衝突性啦對於MOU這些條文原則上我們是沒有很大的意見的要嘛就退回要嘛就修正嘛那有一些修正動議民進黨這邊也提了國民黨也提了所以我剛剛的討論結果建議啦就是出委員會然後我們兩個禮拜
transcript.whisperx[539].start 15615.194
transcript.whisperx[539].end 15619.637
transcript.whisperx[539].text 內,就兩個禮拜後,做一次協商,一次委員者,然後把今天的負擔決議,勞動部你要把這個配套給人家洗洗好洗,你不可以讓我們這裡讓你出委員會都說MV沒意見啊,條文沒意見啊,你現在都不認同,三個了又沒認同,我們沒意思啊,對吧?
transcript.whisperx[540].start 15639.868
transcript.whisperx[540].end 15658.903
transcript.whisperx[540].text 我具體建議是這樣那個基本上那個主席跟所有我們大家意見差異不大我們對文本基本上我還沒有聽到有反對的那現在對附帶決議可能是爭執在這裡那我的建議是這樣子國民黨這個王明明早委所提案的這個附帶決議裡面如果
transcript.whisperx[541].start 15661.405
transcript.whisperx[541].end 15674.303
transcript.whisperx[541].text 如果有局部文字修正我們大家可以通過的話那根本也不用再寫上一次就照你們的附帶決議跟文本今天就可以出文會通過了這樣比較順利啦因為兩個禮拜後議題還是一樣那我看到這個文本裡面
transcript.whisperx[542].start 15676.697
transcript.whisperx[542].end 15702.302
transcript.whisperx[542].text 還有我們的我現在是說我們大家來討論嘛就是說國民黨的負債決議的內容裡面有一個說明文定定因為明文沒有當立委了嘛就因明文定定執聘引進比例那我把這個明文明文定定執聘比例因為我們剛才講這個執聘比例這樣寫明文定定就會有產生一些問題是把明文改成具體原意
transcript.whisperx[543].start 15703.809
transcript.whisperx[543].end 15729.215
transcript.whisperx[543].text 具體研議這樣子後面的文字都不要動然後大家可以來接受國民黨這個這個附帶決議我不知道召委決定怎麼樣就是說因為你明文訂定比例這切到企業介紹各方面那我們如果說請勞動部因具體研議訂定後面的文字都不動了那我們用這個附帶決議加上文本一併通過用最大公式給它通過不要再拖兩星期這個以上建議看召委怎麼才是
transcript.whisperx[544].start 15732.076
transcript.whisperx[544].end 15738.694
transcript.whisperx[544].text 好來我們現在委員表示意見了等一下是林淑芬委員
transcript.whisperx[545].start 15740.615
transcript.whisperx[545].end 15764.566
transcript.whisperx[545].text 那個那個我要說我其實坦白說我自己心裏面也會很希望有一個具體的職聘的比例你問我的話我個人真的希望可是我知道這件事情以現在要來做要明定一個數字的難度坦白說是蠻高的我說原因在幾個地方第一件事情這件事情的關鍵是在我們怎麼把職聘這一軌如何真正做到有競爭力
transcript.whisperx[546].start 15766.756
transcript.whisperx[546].end 15791.954
transcript.whisperx[546].text 當能夠把它做到有競爭力的時候企業就比較願意來採取這個軌道可是如果我們沒有辦法把這一軌做到有競爭力的時候那他會選擇哪一軌就是企業本身的選擇或者是印度移工進來的時候哪一軌的選擇所以我覺得我們應該具體要求的點應該是在於怎麼要求勞動部把執聘這一軌真正做到有競爭力
transcript.whisperx[547].start 15793.101
transcript.whisperx[547].end 15809.23
transcript.whisperx[547].text 實際上做到好用所以今天有一些國家今天一些委員在質詢裡面有提到有一些國家成功的案例或具體的案例我覺得這個事情是要求勞動部把它寫進去來做很明確的參考的我覺得這個才比較有助於我們把執聘這一軌給做好
transcript.whisperx[548].start 15810.271
transcript.whisperx[548].end 15839.567
transcript.whisperx[548].text 甚至未來在執聘這一軌的比例越來越高我覺得關鍵是這一點不然如果我們今天確實訂了某一個比例比如說假設我今天訂50%我訂了50%可是到時候我執聘這一軌真的做得不好的時候到時候其實這個目標本身它的意義就不是那麼大我必須說坦白說可是我自己當然希望這個比例可以越高越好我自己當然是這樣希望可是關鍵是在我們怎麼要求勞動部把執聘這一軌真正的在做法上面做到好
transcript.whisperx[549].start 15839.94
transcript.whisperx[549].end 15841.281
transcript.whisperx[549].text 這是大家要求的重點好了我們請林淑芬委員好各位不過我還是要回應一下洪委員的想法就是說國對國執聘這一軌沒有所謂的競爭力的問題
transcript.whisperx[550].start 15867.455
transcript.whisperx[550].end 15879.231
transcript.whisperx[550].text 因為它不是一個商業競爭而且現在的企業已經走在政府和國家的前面了現在是大財團、大企業來拜託政府說你給我們國對國職聘
transcript.whisperx[551].start 15881.85
transcript.whisperx[551].end 15899.384
transcript.whisperx[551].text 現在企業是這樣子來拜託政府的因為政府沒有國對國執聘那現在國際的壓力國際品牌形象的壓力RBA的原則他們都已經在這樣子看待企業了所以我們看到比如說星光他們還要求說給我們國對國執聘所以RBA的準則放進來的話移工零付費這個東西這個就是一個趨勢
transcript.whisperx[552].start 15908.832
transcript.whisperx[552].end 15915.677
transcript.whisperx[552].text 一個趨勢而且國際的壓力真的很大所以我才說他沒有所謂競爭力的問題是企業需要而我們今天印度的事辦計劃裡面你要求資格引進勞工的廠商僱主的資格是印度要有設廠台灣也有廠這一種資格都是大企業而且這一種資格大企業都想要國對國執聘了
transcript.whisperx[553].start 15937.074
transcript.whisperx[553].end 15955.537
transcript.whisperx[553].text 所以我們才說事辦計畫可以這樣子先來做那具體我在這裡還是建議就是說當然是把國對國職聘的模式運作出來它不是基於競爭力的這個因素而已國對國的職聘模式運作出來
transcript.whisperx[554].start 15956.378
transcript.whisperx[554].end 15976.393
transcript.whisperx[554].text 建立一個好的模式這很重要而今天這好的模式必須有幾個要點第一個最重要是要有韓國的管理系統的跨部會的整合而且公開透明僱主和移工本人都可以上去操作不要被仲介壟斷不要因為資訊不對等文化語言不對等而沒有辦法使用這一個可進性沒有辦法進去
transcript.whisperx[555].start 15983.979
transcript.whisperx[555].end 15997.325
transcript.whisperx[555].text 所以我們要求你的書面報告,勞動部你提出一個試辦計畫的書面報告。書面報告裡面要有三項的東西。第一個,要訂出像韓國SPACE的建制的計畫和期程。
transcript.whisperx[556].start 16000.066
transcript.whisperx[556].end 16012.189
transcript.whisperx[556].text 計劃內容要有你預計完成的期程是什麼第二個我們都知道日本韓國的模式都是公法人行政法人就是國家要有角色絕對不能退位國家絕對不能夠缺席那麼我們在台灣我們國對國職聘我們的專責機構是什麼你的計劃內容要寫出來
transcript.whisperx[557].start 16025.453
transcript.whisperx[557].end 16054.402
transcript.whisperx[557].text 有國家要專責的單位然後有專業的系統然後可進性高然後呢你第三點第三點當然是比較困難不過也是可以可以寫出來就是我們召委今天要求的訂出職聘的國家的期待的比例國家期待但真正的運作會怎麼樣當然是不得而知嘛但國家要有期待
transcript.whisperx[558].start 16057.003
transcript.whisperx[558].end 16077.555
transcript.whisperx[558].text 韓國引進17個國家全部都國對國職聘我們現在要求印度一個國家一個印度一個模式你難道對光是示範計畫一千人你當然可以期待多少比例一千人而已但第二階段到時候再說嘛
transcript.whisperx[559].start 16078.679
transcript.whisperx[559].end 16106.695
transcript.whisperx[559].text 連外交部都說他建議剛開始就要執辦國對國連外交部最保守最不愛做的外交部的人當時會去向你答應說我願意承擔而外交部在5月2日勞動部開會裡面竟然直接建議我們願意他願意協助而且直接建議第一階段就是國對國職聘外交部說第二階段再來談多元開放
transcript.whisperx[560].start 16107.597
transcript.whisperx[560].end 16122.956
transcript.whisperx[560].text 所以我還是據你建議這三點這三點很重要請大家支持好謝謝林淑芬委員那請問還有沒有委員要發言好來洪森漢委員
transcript.whisperx[561].start 16128.649
transcript.whisperx[561].end 16154.445
transcript.whisperx[561].text 我講一下齁,剛剛蜀芬文我剛剛講的競爭力的意思不是競爭力,我講競爭力的意思是他要相比於仲介這一軌要夠好用也就是剛剛說的不管是可敬性或者是操作的難易度甚至能夠讓大家在要做要是用國對國的過程裡面成本能夠降低這是所謂讓他的競爭力提高的意思是相對於
transcript.whisperx[562].start 16156.434
transcript.whisperx[562].end 16163.052
transcript.whisperx[562].text 相對於在在仲介這一軌上面的競爭力要提高我是補充到這邊對
transcript.whisperx[563].start 16203.953
transcript.whisperx[563].end 16209.823
transcript.whisperx[563].text 好那委員都發言完畢現在有兩個附帶決議我們先宣讀
transcript.whisperx[564].start 16214.349
transcript.whisperx[564].end 16231.137
transcript.whisperx[564].text 附帶決議第一案為有效減輕僱主及印度移工經濟負擔、簡化執聘流程及文件勞動部應規劃僱主執聘引進印度移工的執聘服務精進計畫除設置專責單位並建置執聘印度勞工的選工資訊系統請勞動部於三個月內將規劃執聘方式引進印度移工事辦計畫之書面報告
transcript.whisperx[565].start 16239.161
transcript.whisperx[565].end 16260.171
transcript.whisperx[565].text 寒送立法院社會福利及衛生環境委員會提案人委員黃秀芳、林月琴、王振旭、陳盈、劉建國、羅美玲。第二案為因應臺印雙方簽署駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄後將引進印度移工入臺。原要求一
transcript.whisperx[566].start 16261.171
transcript.whisperx[566].end 16285.732
transcript.whisperx[566].text 勞動部應指定或設立專責機構推動政府對政府直接聘僱並擬定績效指標二、勞動部應明文定定職聘引進比例同時提供職聘僱主優因例如減免就業安定費或提供優先選工等提案人委員王育敏、盧憲一、蘇清泉、廖偉祥、屠泉吉、陳金輝、邱振軍、徐曉新、陳永康宣讀完畢
transcript.whisperx[567].start 16288.611
transcript.whisperx[567].end 16299.696
transcript.whisperx[567].text 那針對這兩個附帶決議,勞動部有沒有意見?兩項附帶決議都同意嗎?那請問委員有沒有意見?都沒有意見?那這兩項附帶決議就通過。
transcript.whisperx[568].start 16316.254
transcript.whisperx[568].end 16333.713
transcript.whisperx[568].text 好 做以下決議 駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄之中、英及印地文文本影本案 審查完略
transcript.whisperx[569].start 16334.349
transcript.whisperx[569].end 16360.68
transcript.whisperx[569].text 準予備查,免具審查報告提報院會討論。院會討論本案時由王昭吉委員譽名補充說明。是否交由黨團協商?不用協商?好。本次會議一事入、授權由主席核定後確定。本次會議到此結束,現在散會。