iVOD / 160243

Field Value
IVOD_ID 160243
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160243
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-19-9
會議資料.會議代碼:str 第11屆第3會期經濟委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-16T11:44:03+08:00
結束時間 2025-04-16T11:53:01+08:00
影片長度 00:08:58
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df3c047e59f66bbaa3b2710058b23c04f8ebda33721556222a8a87edb53361b94a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:44:03 - 11:53:01
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第9次全體委員會議議程(事由:邀請國家發展委員會主任委員、經濟部部長及財政部首長就「因應國際貿易情勢變化,如何協助國內廠商擴大國際市場」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 10.15596875
transcript.pyannote[0].end 15.15096875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 15.53909375
transcript.pyannote[1].end 17.12534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.54721875
transcript.pyannote[2].end 18.98159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 19.13346875
transcript.pyannote[3].end 20.50034375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 21.00659375
transcript.pyannote[4].end 23.72346875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 21.69846875
transcript.pyannote[5].end 22.96409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 23.58846875
transcript.pyannote[6].end 24.14534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 27.43596875
transcript.pyannote[7].end 27.87471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 28.65096875
transcript.pyannote[8].end 32.80221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 33.00471875
transcript.pyannote[9].end 40.19346875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 40.81784375
transcript.pyannote[10].end 46.13346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 46.70721875
transcript.pyannote[11].end 51.17909375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.31409375
transcript.pyannote[12].end 55.27971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 56.17409375
transcript.pyannote[13].end 57.22034375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 57.28784375
transcript.pyannote[14].end 59.80221875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 60.84846875
transcript.pyannote[15].end 62.40096875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 61.15221875
transcript.pyannote[16].end 61.45596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 62.29971875
transcript.pyannote[17].end 63.26159375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 63.39659375
transcript.pyannote[18].end 74.21346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 75.02346875
transcript.pyannote[19].end 78.70221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 78.92159375
transcript.pyannote[20].end 85.03034375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 85.21596875
transcript.pyannote[21].end 86.07659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 86.19471875
transcript.pyannote[22].end 87.00471875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 87.44346875
transcript.pyannote[23].end 88.37159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 89.41784375
transcript.pyannote[24].end 90.48096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 91.00409375
transcript.pyannote[25].end 91.29096875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 91.54409375
transcript.pyannote[26].end 91.66221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 93.58596875
transcript.pyannote[27].end 94.83471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 95.03721875
transcript.pyannote[28].end 98.17596875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 98.36159375
transcript.pyannote[29].end 102.07409375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 102.79971875
transcript.pyannote[30].end 112.55346875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 109.65096875
transcript.pyannote[31].end 109.66784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 111.33846875
transcript.pyannote[32].end 125.34471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 125.81721875
transcript.pyannote[33].end 129.68159375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 130.15409375
transcript.pyannote[34].end 131.40284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 132.34784375
transcript.pyannote[35].end 133.03971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 133.17471875
transcript.pyannote[36].end 135.14909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 135.50346875
transcript.pyannote[37].end 139.57034375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 139.73909375
transcript.pyannote[38].end 140.51534375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 140.70096875
transcript.pyannote[39].end 141.37596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 141.81471875
transcript.pyannote[40].end 142.70909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 142.87784375
transcript.pyannote[41].end 145.94909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 146.25284375
transcript.pyannote[42].end 148.22721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 148.73346875
transcript.pyannote[43].end 149.72909375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 150.26909375
transcript.pyannote[44].end 151.85534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 152.12534375
transcript.pyannote[45].end 153.44159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 153.69471875
transcript.pyannote[46].end 155.26409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 155.50034375
transcript.pyannote[47].end 156.37784375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 156.73221875
transcript.pyannote[48].end 157.94721875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 158.06534375
transcript.pyannote[49].end 159.48284375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 159.68534375
transcript.pyannote[50].end 161.84534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 161.92971875
transcript.pyannote[51].end 163.63409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 164.05596875
transcript.pyannote[52].end 164.88284375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 166.36784375
transcript.pyannote[53].end 168.96659375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 168.96659375
transcript.pyannote[54].end 169.52346875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 169.74284375
transcript.pyannote[55].end 170.63721875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 170.53596875
transcript.pyannote[56].end 172.24034375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 172.74659375
transcript.pyannote[57].end 175.31159375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 175.59846875
transcript.pyannote[58].end 175.90221875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 176.34096875
transcript.pyannote[59].end 180.42471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 180.88034375
transcript.pyannote[60].end 184.37346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 184.45784375
transcript.pyannote[61].end 185.03159375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 185.26784375
transcript.pyannote[62].end 187.61346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 188.37284375
transcript.pyannote[63].end 189.85784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 189.94221875
transcript.pyannote[64].end 189.95909375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 189.95909375
transcript.pyannote[65].end 190.27971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 190.27971875
transcript.pyannote[66].end 191.47784375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 191.66346875
transcript.pyannote[67].end 192.76034375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 192.79409375
transcript.pyannote[68].end 193.82346875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 194.32971875
transcript.pyannote[69].end 196.75971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 198.31221875
transcript.pyannote[70].end 198.93659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 199.29096875
transcript.pyannote[71].end 201.36659375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 201.51846875
transcript.pyannote[72].end 204.92721875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 205.29846875
transcript.pyannote[73].end 208.03221875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 208.74096875
transcript.pyannote[74].end 209.01096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 209.41596875
transcript.pyannote[75].end 211.98096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 212.45346875
transcript.pyannote[76].end 215.40659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 215.65971875
transcript.pyannote[77].end 215.96346875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 216.72284375
transcript.pyannote[78].end 220.21596875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 220.43534375
transcript.pyannote[79].end 222.19034375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 222.25784375
transcript.pyannote[80].end 240.83721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 231.72471875
transcript.pyannote[81].end 232.04534375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 241.00596875
transcript.pyannote[82].end 243.43596875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 244.07721875
transcript.pyannote[83].end 248.05971875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 248.93721875
transcript.pyannote[84].end 250.13534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 248.95409375
transcript.pyannote[85].end 254.28659375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 252.26159375
transcript.pyannote[86].end 256.34534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 255.85596875
transcript.pyannote[87].end 258.18471875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 258.92721875
transcript.pyannote[88].end 265.69409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 265.79534375
transcript.pyannote[89].end 269.82846875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 270.14909375
transcript.pyannote[90].end 274.89096875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 275.00909375
transcript.pyannote[91].end 275.02596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 275.05971875
transcript.pyannote[92].end 275.83596875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 275.93721875
transcript.pyannote[93].end 276.93284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 277.25346875
transcript.pyannote[94].end 277.87784375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 278.24909375
transcript.pyannote[95].end 279.44721875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 280.96596875
transcript.pyannote[96].end 288.22221875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 288.42471875
transcript.pyannote[97].end 290.97284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 289.75784375
transcript.pyannote[98].end 290.19659375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 290.58471875
transcript.pyannote[99].end 295.25909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 295.79909375
transcript.pyannote[100].end 296.23784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 296.55846875
transcript.pyannote[101].end 299.39346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 299.78159375
transcript.pyannote[102].end 304.97909375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 305.06346875
transcript.pyannote[103].end 311.30721875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 311.50971875
transcript.pyannote[104].end 314.19284375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 315.23909375
transcript.pyannote[105].end 320.20034375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 320.55471875
transcript.pyannote[106].end 324.92534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 325.22909375
transcript.pyannote[107].end 325.68471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 326.32596875
transcript.pyannote[108].end 329.38034375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 329.68409375
transcript.pyannote[109].end 330.02159375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 330.02159375
transcript.pyannote[110].end 339.13409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 339.45471875
transcript.pyannote[111].end 342.35721875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 342.94784375
transcript.pyannote[112].end 344.97284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 345.17534375
transcript.pyannote[113].end 345.73221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 345.98534375
transcript.pyannote[114].end 346.91346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 347.16659375
transcript.pyannote[115].end 348.41534375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 348.60096875
transcript.pyannote[116].end 352.85346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 353.17409375
transcript.pyannote[117].end 359.48534375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 359.63721875
transcript.pyannote[118].end 361.88159375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 362.06721875
transcript.pyannote[119].end 364.05846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 364.27784375
transcript.pyannote[120].end 364.73346875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 364.34534375
transcript.pyannote[121].end 369.40784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 369.40784375
transcript.pyannote[122].end 369.81284375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 369.81284375
transcript.pyannote[123].end 372.98534375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 373.32284375
transcript.pyannote[124].end 378.23346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 378.50346875
transcript.pyannote[125].end 393.03284375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 387.22784375
transcript.pyannote[126].end 387.75096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 393.28596875
transcript.pyannote[127].end 393.99471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 394.36596875
transcript.pyannote[128].end 397.28534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 397.45409375
transcript.pyannote[129].end 401.28471875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 401.65596875
transcript.pyannote[130].end 404.62596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 404.98034375
transcript.pyannote[131].end 406.78596875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 407.10659375
transcript.pyannote[132].end 416.69159375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 416.91096875
transcript.pyannote[133].end 418.02471875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 418.02471875
transcript.pyannote[134].end 418.46346875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 419.03721875
transcript.pyannote[135].end 419.05409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 419.05409375
transcript.pyannote[136].end 419.47596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 419.79659375
transcript.pyannote[137].end 419.81346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 419.81346875
transcript.pyannote[138].end 426.90096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 427.15409375
transcript.pyannote[139].end 427.18784375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 427.18784375
transcript.pyannote[140].end 427.30596875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 427.30596875
transcript.pyannote[141].end 428.08221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 428.08221875
transcript.pyannote[142].end 428.14971875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 428.14971875
transcript.pyannote[143].end 429.88784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 428.21721875
transcript.pyannote[144].end 436.67159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 431.64284375
transcript.pyannote[145].end 431.71034375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 431.81159375
transcript.pyannote[146].end 431.84534375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 437.11034375
transcript.pyannote[147].end 437.98784375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 438.51096875
transcript.pyannote[148].end 439.57409375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 440.23221875
transcript.pyannote[149].end 445.19346875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 445.80096875
transcript.pyannote[150].end 449.04096875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 449.15909375
transcript.pyannote[151].end 454.03596875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 454.03596875
transcript.pyannote[152].end 461.20784375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 455.80784375
transcript.pyannote[153].end 455.94284375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 456.38159375
transcript.pyannote[154].end 457.84971875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 459.87471875
transcript.pyannote[155].end 471.56909375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 471.63659375
transcript.pyannote[156].end 483.28034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 483.36471875
transcript.pyannote[157].end 483.53346875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 483.53346875
transcript.pyannote[158].end 484.22534375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 483.55034375
transcript.pyannote[159].end 483.60096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 484.59659375
transcript.pyannote[160].end 484.98471875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 485.20409375
transcript.pyannote[161].end 492.34221875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 492.78096875
transcript.pyannote[162].end 493.48971875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 493.75971875
transcript.pyannote[163].end 500.40846875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 497.47221875
transcript.pyannote[164].end 498.11346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 500.72909375
transcript.pyannote[165].end 506.02784375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 506.24721875
transcript.pyannote[166].end 507.07409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 507.07409375
transcript.pyannote[167].end 515.20784375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 516.10221875
transcript.pyannote[168].end 517.63784375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 517.38471875
transcript.pyannote[169].end 518.11034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 518.02596875
transcript.pyannote[170].end 537.82034375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 537.82034375
transcript.pyannote[171].end 538.47846875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 538.47846875
transcript.pyannote[172].end 538.54596875
transcript.whisperx[0].start 10.305
transcript.whisperx[0].end 24.057
transcript.whisperx[0].text 主席 在場的委員先進 列席的政府機關組長 官員會長 工作夥伴 媒體記者女士先生有請我們財政部理事長還有經濟部郭部長 以及國防會的劉主委劉主委各位好
transcript.whisperx[1].start 28.883
transcript.whisperx[1].end 55.009
transcript.whisperx[1].text 次長好 部長好 主委好題目是即時應應對關稅展延的資金需求要提早佈局未來產業的有案分工來 首先請教一下次長你看看這個本來要課高關稅展延90天 結果科技業出貨潮本來爆倉 周末倉位是滿的要趕在關稅後來有可能變高前 有貨先過去有沒有看到這樣的現象 次長
transcript.whisperx[2].start 57.348
transcript.whisperx[2].end 73.769
transcript.whisperx[2].text 除了倉位有需求之外有沒有資金的需求應該也是會有資金的需求好我們來看一下美國川普政府的超高關稅嚇倒了全國的出口業全世界出口業本來約訂單暫停結果暫緩90天現在大量訂單湧入除了原料採購才能全該
transcript.whisperx[3].start 75.103
transcript.whisperx[3].end 91.052
transcript.whisperx[3].text 有沒有本來我們的880億是要因應那種貨出不去訂單被取消融資被斷頭那現在轉過來希望說趕快給他一點融通的資金趕快要補辦進貨出料財政部有沒有準備夏業
transcript.whisperx[4].start 93.629
transcript.whisperx[4].end 114.634
transcript.whisperx[4].text 目前財政部有沒有針對我們各產業因為展延90天的現況而這個產業的資金需求能不能即時的到位報告委員其實我們那個所有的公股行庫實際上都有運用一些自由的資金在目前平常就在協助這些產業平常就有 這時候額外需要 我要看郭部長的臉色
transcript.whisperx[5].start 115.274
transcript.whisperx[5].end 130.552
transcript.whisperx[5].text 看看有沒有轉好來 我們往下一頁部長其實呢 洗產地的事情我問過很多次了今天呢 我就不再贅述但是還是要來了解一下到底台灣怎麼迎來其實呢 在2018年川普1.0之前我們台灣在應對
transcript.whisperx[6].start 132.386
transcript.whisperx[6].end 147.114
transcript.whisperx[6].text 美國的時候我們台灣會有關鍵的零組件然後在中國沿海地區有我們的相關的產業鏈供應鏈做零組件內地的便宜的勞動力來去組裝然後銷美國這是2018年前的情況但是川普1.0之後變成什麼
transcript.whisperx[7].start 149.115
transcript.whisperx[7].end 164.808
transcript.whisperx[7].text 變成是啊如果說這些零組件呢直接從中國出去不行結果我們就有一個Plan A我們有個自貿港關鍵零組件在台灣但是不需要太多勞動力的呢零組件到台灣配上去就消美國是不是這樣這就是所謂境內關外部長是不是這樣子
transcript.whisperx[8].start 166.711
transcript.whisperx[8].end 191.267
transcript.whisperx[8].text 是這樣的一個過去啦對對對好那另外一個模式是怎樣越南取而代之越南說我有很多的勞動力把昆山蘇州上海周邊這些電子產業的零組件送到越南來台灣把關鍵資源送過去組裝好後Plan B就到美國是也有這樣的方向過去這幾年越南走這條路嗎是是好我們看一看
transcript.whisperx[9].start 191.772
transcript.whisperx[9].end 214.818
transcript.whisperx[9].text 那現在我們看看 自貿區可以直接進儲 不用核准 是這樣嗎自貿區目前應該是這樣好 所以你看 自貿區在2024年我們的自由港進出口破3兆2024的貨櫃破300萬那過去我們現在川普說你這個不能直接中國銷美國 所以我們在台組裝
transcript.whisperx[10].start 216.912
transcript.whisperx[10].end 238.331
transcript.whisperx[10].text 還有呢 中轉他國直接在台灣過個水就出去那現在怎麼防止中國貨路呢是 報告委員我們大概有四點可以來這個防止第一個就是來監測進口量好 第二點那麼跟蘇美的產品做全面的勾擊對比這是第一點第二點 從嚴處罰最高罰300萬或者取消進出口商的資格
transcript.whisperx[11].start 244.156
transcript.whisperx[11].end 254.393
transcript.whisperx[11].text 第三個我們加強反傾銷的調查我都幫你寫好了部長就這一頁我都寫好了因為你們有講過嘛我們委託方總輔導廠商局長我們來看一下桃園航空城
transcript.whisperx[12].start 258.991
transcript.whisperx[12].end 278.412
transcript.whisperx[12].text 我們2024三兆的產值呢桃園貢獻2.4兆而且2025年還有一個台北港要個智慧車輛園區但是在2018年到2024年經濟部根據自由港的條例到歐盟到英國的美國的自行車電動輔助自行車履制輪胎圈到先核准什麼意思部長認為為什麼這樣子
transcript.whisperx[13].start 281.001
transcript.whisperx[13].end 295.895
transcript.whisperx[13].text 因為自貿區本來不用核定的嘛但這幾個東西這些進口國認為有息產地嘛所以要先核准嘛 是不是這樣是啊 確保台灣有這個產地所以說自貿區要防止息產地在川普2.0之後也行不通了那麼
transcript.whisperx[14].start 296.636
transcript.whisperx[14].end 325.561
transcript.whisperx[14].text 越南的部分呢也被美國盯得很死也行不通了所以好像有一個說法譬如說另外找個像菲律賓這樣的國家他有很多的勞動力把一些原來台灣消美的零組件呢產業鏈移到菲律賓台灣的關鍵零組件到那邊去這個是不是就是你所謂的境外關內的一種模式是的是的很好所以呢我們往下看所以未來境外關內可能是應對所謂的息產地自貿區的模式不可行的時候來接下來我們看劉主委劉主委
transcript.whisperx[15].start 326.38
transcript.whisperx[15].end 342.174
transcript.whisperx[15].text 台灣現在有一個國家火箭發射基地了嘛是不是對現在選定九棚嘛目前在美國SPAC-X有四個發射基地SPAC-X一次可以發射143顆低軌道的通訊衛星那麼未來有沒有可能台灣也可以來協助像
transcript.whisperx[16].start 343.275
transcript.whisperx[16].end 366.683
transcript.whisperx[16].text 團客的大巴士有SPEX但是呢兩三顆的小型的即時的送到我們台灣來發射就是有沒有這個可能呢台灣可不可以提供低軌道通訊衛星的運載服務有沒有可能從產業的發展來講這是有可能的有可能的我們可以跟美國合作團客你處理散客我來接對不對那台灣需要什麼需要運載火箭台灣現在有辦法獨立完成運載火箭的裝備嗎我們預計2027年會自己有對
transcript.whisperx[17].start 369.884
transcript.whisperx[17].end 393.749
transcript.whisperx[17].text 但是我們可不可能跟美國分工以前我們跟美國買波音航空客我來載但是飛機你來賣所以我們跟美國買飛機有沒有可能未來我們跟美國買火箭或買火箭當中的比較高關鍵的像火箭引擎那我們台灣組裝後來發射有沒有可能這是有可能的是的所以我要跟郭部長跟主委說的就是說其實未來我們的產業除了
transcript.whisperx[18].start 394.749
transcript.whisperx[18].end 418.202
transcript.whisperx[18].text 自貿區不可行 防止稀產地要努力 跟美國的銷售之外我們不要老是只是想賣東西給他 想辦法也跟他買東西來 我們看看川普說什麼 大債工業化 請問劉主委川普的債工業化是把鋼鐵拉回來美國 造船又拉回來美國運動鞋 球拍 紡織品 筆電 自行車都美國自己製造嗎汽車都自己製造 是這樣的意思嗎
transcript.whisperx[19].start 419.876
transcript.whisperx[19].end 442.081
transcript.whisperx[19].text 我個人比較看法是說它應該整合對它友好的國家形成一個新的供應鏈機器所以它的再工業化不是重度最快效率最高是再分工化對不對所以中高階的美國留著中低階的排除中國後交給有岸來外包像無人機台灣現在死神這個等級的無人機美國不會交給別國生產
transcript.whisperx[20].start 445.868
transcript.whisperx[20].end 471.338
transcript.whisperx[20].text 但是像中國的大疆那種低中低階的無人機會不會希望台灣結合以色列跟東歐的光電球我們來生產會不會這是有可能的因為我們正在復建這樣的能力是的而且我們已經有代工廠商已經產生了已經產生了嘛所以全球的產業重組的時候呢我們希望我們國發會要瞄準未來的產業需求不是只在現有的產業格局下跟美國去討論說有沒有中國成分
transcript.whisperx[21].start 471.818
transcript.whisperx[21].end 483.945
transcript.whisperx[21].text 而是希望找到他的美國的再分工當中台灣居一個有利的位置跟美國分工合作你同意嗎同意好所以這時候的資金人力土地跟公共建設需要來最後三個問題分別請第一個對不起國發會
transcript.whisperx[22].start 486.949
transcript.whisperx[22].end 514.924
transcript.whisperx[22].text 是不是已經評估未來的產業需求拟據了產業在全球化市佔據所需要的這四缺的這些狀況而且有解決方案國發委員會開始準備了這個有的有的好最後來請財政部財政部次長因應台灣產業受美國對等關稅影響短期資金需求提出一個方案報告可以嗎可以沒問題好請經濟部對於在中國的台商撤出中國後進駐境外關內園區的輔導方案可以提出一個說明嗎報告
transcript.whisperx[23].start 516.378
transcript.whisperx[23].end 537.58
transcript.whisperx[23].text 這個境外觀念是您的嘛可以可以您的倡議嘛往往深得您的倡議的精髓來幫忙講這個事情最後請國發委研議全國去中供應鏈的情況之下如何提高台灣的產業全球市佔率和解決到所需要的資金人才土地跟供應建設的方案提出來一個報告跟說明可以跟本席嗎這可以啊好 謝謝主委 謝謝次長 謝謝部長好 謝謝