IVOD_ID |
160219 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160219 |
日期 |
2025-04-16 |
會議資料.會議代碼 |
委員會-11-3-20-8 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第8次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
8 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第8次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-16T11:07:03+08:00 |
結束時間 |
2025-04-16T11:17:50+08:00 |
影片長度 |
00:10:47 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfba6290c4e8a55367a3fd8a5ba555e825ebda33721556222a55ea099cd124814b5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
顏寬恒 |
委員發言時間 |
11:07:03 - 11:17:50 |
會議時間 |
2025-04-16T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.27971875 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
1.63409375 |
transcript.pyannote[1].end |
4.28346875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
7.60784375 |
transcript.pyannote[2].end |
9.58221875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
10.05471875 |
transcript.pyannote[3].end |
10.49346875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
10.93221875 |
transcript.pyannote[4].end |
12.02909375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
12.41721875 |
transcript.pyannote[5].end |
14.23971875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
14.61096875 |
transcript.pyannote[6].end |
15.57284375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
19.79159375 |
transcript.pyannote[7].end |
20.38221875 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
20.48346875 |
transcript.pyannote[8].end |
20.50034375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
20.50034375 |
transcript.pyannote[9].end |
21.09096875 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
21.09096875 |
transcript.pyannote[10].end |
21.12471875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
21.12471875 |
transcript.pyannote[11].end |
21.15846875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
21.51284375 |
transcript.pyannote[12].end |
24.90471875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
25.17471875 |
transcript.pyannote[13].end |
27.06471875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
27.48659375 |
transcript.pyannote[14].end |
30.38909375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
30.64221875 |
transcript.pyannote[15].end |
32.46471875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
32.92034375 |
transcript.pyannote[16].end |
37.49346875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
37.84784375 |
transcript.pyannote[17].end |
38.48909375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
38.89409375 |
transcript.pyannote[18].end |
42.26909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
43.53471875 |
transcript.pyannote[19].end |
48.83346875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
49.08659375 |
transcript.pyannote[20].end |
51.02721875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
51.12846875 |
transcript.pyannote[21].end |
53.25471875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
53.76096875 |
transcript.pyannote[22].end |
55.78596875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
55.85346875 |
transcript.pyannote[23].end |
58.13159375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
58.68846875 |
transcript.pyannote[24].end |
62.90721875 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
63.59909375 |
transcript.pyannote[25].end |
70.38284375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
70.97346875 |
transcript.pyannote[26].end |
71.22659375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
71.27721875 |
transcript.pyannote[27].end |
87.51096875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
72.27284375 |
transcript.pyannote[28].end |
72.47534375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
87.61221875 |
transcript.pyannote[29].end |
98.02409375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
98.63159375 |
transcript.pyannote[30].end |
108.95909375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
109.36409375 |
transcript.pyannote[31].end |
123.55596875 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
124.63596875 |
transcript.pyannote[32].end |
163.07721875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
131.11596875 |
transcript.pyannote[33].end |
131.87534375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
140.53221875 |
transcript.pyannote[34].end |
141.51096875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
143.35034375 |
transcript.pyannote[35].end |
143.58659375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
163.58346875 |
transcript.pyannote[36].end |
163.85346875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
164.30909375 |
transcript.pyannote[37].end |
169.35471875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
169.60784375 |
transcript.pyannote[38].end |
175.69971875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
176.08784375 |
transcript.pyannote[39].end |
180.12096875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
180.59346875 |
transcript.pyannote[40].end |
181.77471875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
182.02784375 |
transcript.pyannote[41].end |
182.82096875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
183.25971875 |
transcript.pyannote[42].end |
184.71096875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
184.96409375 |
transcript.pyannote[43].end |
186.33096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
186.82034375 |
transcript.pyannote[44].end |
191.64659375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
191.78159375 |
transcript.pyannote[45].end |
192.16971875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
192.84471875 |
transcript.pyannote[46].end |
196.15221875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
196.43909375 |
transcript.pyannote[47].end |
198.78471875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
199.24034375 |
transcript.pyannote[48].end |
202.21034375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
202.75034375 |
transcript.pyannote[49].end |
207.66096875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
207.89721875 |
transcript.pyannote[50].end |
211.27221875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
211.74471875 |
transcript.pyannote[51].end |
215.30534375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
215.57534375 |
transcript.pyannote[52].end |
220.30034375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
220.90784375 |
transcript.pyannote[53].end |
222.07221875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
222.42659375 |
transcript.pyannote[54].end |
231.06659375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
231.84284375 |
transcript.pyannote[55].end |
233.56409375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
233.88471875 |
transcript.pyannote[56].end |
235.92659375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
236.36534375 |
transcript.pyannote[57].end |
240.48284375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
240.93846875 |
transcript.pyannote[58].end |
247.48596875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
247.55346875 |
transcript.pyannote[59].end |
280.94909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
252.46409375 |
transcript.pyannote[60].end |
252.91971875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
272.95034375 |
transcript.pyannote[61].end |
273.42284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
280.94909375 |
transcript.pyannote[62].end |
285.80909375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
286.53471875 |
transcript.pyannote[63].end |
289.31909375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
289.35284375 |
transcript.pyannote[64].end |
291.91784375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
291.96846875 |
transcript.pyannote[65].end |
299.59596875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
300.11909375 |
transcript.pyannote[66].end |
300.64221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
301.03034375 |
transcript.pyannote[67].end |
304.11846875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
304.42221875 |
transcript.pyannote[68].end |
307.27409375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
307.88159375 |
transcript.pyannote[69].end |
311.49284375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
312.84284375 |
transcript.pyannote[70].end |
314.41221875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
314.58096875 |
transcript.pyannote[71].end |
316.96034375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
317.14596875 |
transcript.pyannote[72].end |
318.34409375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
318.58034375 |
transcript.pyannote[73].end |
319.42409375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
319.96409375 |
transcript.pyannote[74].end |
320.97659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
321.48284375 |
transcript.pyannote[75].end |
325.22909375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
325.78596875 |
transcript.pyannote[76].end |
326.14034375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
327.23721875 |
transcript.pyannote[77].end |
327.43971875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
328.75596875 |
transcript.pyannote[78].end |
329.07659375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
329.17784375 |
transcript.pyannote[79].end |
332.26596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
332.43471875 |
transcript.pyannote[80].end |
333.61596875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
334.18971875 |
transcript.pyannote[81].end |
334.98284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
335.57346875 |
transcript.pyannote[82].end |
336.46784375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
336.87284375 |
transcript.pyannote[83].end |
339.03284375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
339.33659375 |
transcript.pyannote[84].end |
341.34471875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
341.76659375 |
transcript.pyannote[85].end |
342.08721875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
342.59346875 |
transcript.pyannote[86].end |
345.96846875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
346.33971875 |
transcript.pyannote[87].end |
348.21284375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
348.60096875 |
transcript.pyannote[88].end |
349.42784375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
349.86659375 |
transcript.pyannote[89].end |
350.69346875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
351.21659375 |
transcript.pyannote[90].end |
352.46534375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
352.92096875 |
transcript.pyannote[91].end |
353.71409375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
354.06846875 |
transcript.pyannote[92].end |
355.99221875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
356.31284375 |
transcript.pyannote[93].end |
358.23659375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
358.64159375 |
transcript.pyannote[94].end |
359.83971875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
360.05909375 |
transcript.pyannote[95].end |
361.59471875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
361.96596875 |
transcript.pyannote[96].end |
362.87721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
362.97846875 |
transcript.pyannote[97].end |
365.45909375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
365.62784375 |
transcript.pyannote[98].end |
367.02846875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
367.19721875 |
transcript.pyannote[99].end |
369.32346875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
369.40784375 |
transcript.pyannote[100].end |
378.68909375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
378.80721875 |
transcript.pyannote[101].end |
383.32971875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
383.43096875 |
transcript.pyannote[102].end |
386.26596875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
386.48534375 |
transcript.pyannote[103].end |
397.87596875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
398.61846875 |
transcript.pyannote[104].end |
403.49534375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
403.69784375 |
transcript.pyannote[105].end |
406.14471875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
405.60471875 |
transcript.pyannote[106].end |
407.02221875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
407.51159375 |
transcript.pyannote[107].end |
409.18221875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
409.43534375 |
transcript.pyannote[108].end |
410.95409375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
411.22409375 |
transcript.pyannote[109].end |
412.13534375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
414.46409375 |
transcript.pyannote[110].end |
415.18971875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
418.53096875 |
transcript.pyannote[111].end |
419.99909375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
420.50534375 |
transcript.pyannote[112].end |
425.02784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
425.56784375 |
transcript.pyannote[113].end |
428.25096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
428.70659375 |
transcript.pyannote[114].end |
434.68034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
434.84909375 |
transcript.pyannote[115].end |
438.73034375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
438.94971875 |
transcript.pyannote[116].end |
450.27284375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
450.89721875 |
transcript.pyannote[117].end |
451.94346875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
452.33159375 |
transcript.pyannote[118].end |
462.49034375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
462.99659375 |
transcript.pyannote[119].end |
470.10096875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
470.53971875 |
transcript.pyannote[120].end |
476.31096875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
476.85096875 |
transcript.pyannote[121].end |
479.85471875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
480.31034375 |
transcript.pyannote[122].end |
482.70659375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
482.85846875 |
transcript.pyannote[123].end |
485.30534375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
485.72721875 |
transcript.pyannote[124].end |
491.98784375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
492.12284375 |
transcript.pyannote[125].end |
495.93659375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
496.15596875 |
transcript.pyannote[126].end |
497.91096875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
498.46784375 |
transcript.pyannote[127].end |
501.84284375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
502.12971875 |
transcript.pyannote[128].end |
504.57659375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
504.76221875 |
transcript.pyannote[129].end |
515.64659375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
515.93346875 |
transcript.pyannote[130].end |
521.45159375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
520.16909375 |
transcript.pyannote[131].end |
521.48534375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
521.68784375 |
transcript.pyannote[132].end |
526.02471875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
526.27784375 |
transcript.pyannote[133].end |
527.40846875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
527.72909375 |
transcript.pyannote[134].end |
531.34034375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
531.86346875 |
transcript.pyannote[135].end |
533.17971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
533.53409375 |
transcript.pyannote[136].end |
541.22909375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
541.44846875 |
transcript.pyannote[137].end |
546.94971875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
547.30409375 |
transcript.pyannote[138].end |
552.95721875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
553.41284375 |
transcript.pyannote[139].end |
556.97346875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
557.39534375 |
transcript.pyannote[140].end |
558.10409375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
558.34034375 |
transcript.pyannote[141].end |
561.90096875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
562.13721875 |
transcript.pyannote[142].end |
575.67096875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
576.10971875 |
transcript.pyannote[143].end |
589.13721875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
590.04846875 |
transcript.pyannote[144].end |
593.57534375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
593.81159375 |
transcript.pyannote[145].end |
596.76471875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
596.86596875 |
transcript.pyannote[146].end |
604.07159375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
604.24034375 |
transcript.pyannote[147].end |
605.62409375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
605.91096875 |
transcript.pyannote[148].end |
610.53471875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
610.60221875 |
transcript.pyannote[149].end |
616.96409375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
617.26784375 |
transcript.pyannote[150].end |
620.45721875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
620.62596875 |
transcript.pyannote[151].end |
626.22846875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
626.43096875 |
transcript.pyannote[152].end |
629.50221875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
629.67096875 |
transcript.pyannote[153].end |
632.05034375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
632.33721875 |
transcript.pyannote[154].end |
633.33284375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
633.77159375 |
transcript.pyannote[155].end |
634.68284375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
634.83471875 |
transcript.pyannote[156].end |
638.74971875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
638.96909375 |
transcript.pyannote[157].end |
641.16284375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
641.29784375 |
transcript.pyannote[158].end |
645.70221875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
644.33534375 |
transcript.pyannote[159].end |
646.52909375 |
transcript.whisperx[0].start |
0.149 |
transcript.whisperx[0].end |
0.829 |
transcript.whisperx[0].text |
主席有請財政部莊部長是 莊部長 |
transcript.whisperx[1].start |
19.81 |
transcript.whisperx[1].end |
41.867 |
transcript.whisperx[1].text |
委員好部長早部長川普發布了對等關稅對台灣祭出32%的措施衝擊全球經濟在10日的凌晨又改口將暫緩實施90天期間是實施10%的關稅弄得大家人心惶惶也衝擊了百工百業 |
transcript.whisperx[2].start |
43.598 |
transcript.whisperx[2].end |
62.82 |
transcript.whisperx[2].text |
我們的報稅計要到了那左院長在上星期行政院會上表示會跟你們財政部這邊討論延長5月開始的報稅期那會比照COVID-19疫情期間的模式那請問部長研究的如何這個報稅期限能不能延長到6月底 |
transcript.whisperx[3].start |
63.666 |
transcript.whisperx[3].end |
91.42 |
transcript.whisperx[3].text |
跟委員報告我們所得稅決案申報會延長一個月到6月30那我們近日會辦理公告近日會公告所以我想如果能夠延長報稅的期限在目前這種不確定性的時期會對企業跟民眾有實質的一個幫助減輕他們的負擔希望財政部能夠迅速而且這個具體的一個延長報稅的一個安排 |
transcript.whisperx[4].start |
91.92 |
transcript.whisperx[4].end |
108.636 |
transcript.whisperx[4].text |
那有更多的時間讓民眾有可以有應對可以來應對目前的一個困境那明天行政院會議會討論新來幣880億的支持產業方案特別條例那也會送到立法院來審議法案通過之後 |
transcript.whisperx[5].start |
109.457 |
transcript.whisperx[5].end |
130.732 |
transcript.whisperx[5].text |
特別預算會再送來立法院那請教部長你簡單的跟我們說明財政部知道的部分包含條例的裁員還有金額目前有行政院喊出880億那會不會設上限委員報告我關特別條例的部分行政院目前都在逐條的都在研擬當中那同時在這個時間也去聽取產業的意見那對於有關 |
transcript.whisperx[6].start |
136.109 |
transcript.whisperx[6].end |
162.692 |
transcript.whisperx[6].text |
需要不足的部分看要不要再補強這個部分都還會再進入討論所以沒有上限那至於880億的部分的金額是不是在條例裡面做特別的規定可能會在他們院裡面會再做討論那重點是在於就是說我們對於裁員的部分剛剛委員提到特別條例通過以後要編列特別預算它的裁員第一個會來自於稅計剩餘或者用舉債的方式來做支應 |
transcript.whisperx[7].start |
163.561 |
transcript.whisperx[7].end |
191.25 |
transcript.whisperx[7].text |
好 我認為說不分朝野都希望這一次的這個關稅風波能夠讓國內的業者能夠損失降低 降到最低所以支持產業方案是非常重要的那要請部長多加留意 因為不要過於自信我要再提一次就是在川普還沒宣布關稅32%以前我們就宣布了把我們手中的王牌台積電赴美投資一千億 |
transcript.whisperx[8].start |
192.93 |
transcript.whisperx[8].end |
219.464 |
transcript.whisperx[8].text |
自信的認為說這樣子就可以避免高關稅但是發現了說這個太早亮牌太早亮牌就白白浪費了我們的談判籌碼外交貿易談判像日本韓國都沒有在一開始就宣布加碼投資都等到談判進行中才開始交涉那財政部在未來的這80天接近80天的這個因為大概4月9號宣布了所以在未來這80天要更加謹慎 |
transcript.whisperx[9].start |
220.965 |
transcript.whisperx[9].end |
246.923 |
transcript.whisperx[9].text |
那剛剛提到說不管是32%還是10%最後調升多少這些物價反應都是在我們所有包括你我這些消費者身上那請教部長中研院下修台灣經濟成長預測3.1%目標是難以達成你的看法如何跟中研院一樣嗎我想中研院他們是一個非常專責的機構也是國家一個智庫這個部分我想他們的 |
transcript.whisperx[10].start |
247.931 |
transcript.whisperx[10].end |
255.434 |
transcript.whisperx[10].text |
評估有他們的一個道理那整個局勢事實上都一直在變嘛現在一下32%一下回到10%那未來會是多少我想我們的經貿團隊去談判團隊一定會為國家爭取最大的利益以及維護產業的國際競爭力會以這樣的一個目標來做進行那這個訊息事實上是時常都在變化的 |
transcript.whisperx[11].start |
270.28 |
transcript.whisperx[11].end |
298.519 |
transcript.whisperx[11].text |
那就我們政府機關來說我們就做好準備同時對於委員所提到對於需要輔助的產業我們都應該要有這個支持方案來給予他們的一個支持部長我在這邊要跟部長討論一個方案就是不管結果如何所有的民眾生活一定是受到嚴重的影響那所以說好比在疫場期間的一個紓困貸款一樣我們有看到財政部目前有嚴密嚴肅對於中小企業的這個紓困貸款 |
transcript.whisperx[12].start |
300.18 |
transcript.whisperx[12].end |
325.88 |
transcript.whisperx[12].text |
但是我是希望說財政部能夠督導公股銀行研擬給勞工一般民眾的紓困貸款因為我們未來不管是結果如何都一定是32%也好或者是比現在10%更高對於台灣所有產業的衝擊都非常的大那最簡單的如果說這些產業我們剛剛提到的中小企業的紓困貸款那 |
transcript.whisperx[13].start |
329.563 |
transcript.whisperx[13].end |
349.268 |
transcript.whisperx[13].text |
國內的產業受到衝擊之後 他們最簡單最常見的方式就是裁員 公司瘦身那所以對於這樣子有可能被裁員的這些基層民眾那一被裁員 他可能是一個家庭的重心這個家庭就馬上失去了這樣子的一個經濟來源 |
transcript.whisperx[14].start |
351.249 |
transcript.whisperx[14].end |
367.523 |
transcript.whisperx[14].text |
那還有房貸要繳家人要養所以我是希望說部長能夠跟金管會勞動部一起研議提出針對一般民眾的紓困貸款針對年收入較低的這些族群給他們一個方案部長願不願意這樣做 |
transcript.whisperx[15].start |
370.105 |
transcript.whisperx[15].end |
395.964 |
transcript.whisperx[15].text |
謝謝委員我想在勞動部在這一次的一個碰到這樣的一個關稅的衝擊他也有提出相關的一個支持方案在裡面對於勞工朋友受到衝擊都有相關的一些協助的一些措施那自己在金融的部分就所知金管會會跟銀行工會這邊會來做討論做一些寬緩的設施如果這個措施出來以後我們的公股行股當然應該依照金管會所訂的一個以及銀行工會所訂的規範來做執行是 |
transcript.whisperx[16].start |
399.57 |
transcript.whisperx[16].end |
407.755 |
transcript.whisperx[16].text |
請部長跟勞動部還有金管會互相的來做一個溝通跟聯繫是的 謝謝委員謝謝部長你請回請經濟部姜政次好 次長 |
transcript.whisperx[17].start |
418.567 |
transcript.whisperx[17].end |
438.462 |
transcript.whisperx[17].text |
委員好次長好次長川普在上個禮拜宣布對等關稅暫緩實施90天那但是對中國關稅並沒有暫緩所以中國關稅高達125%那世界各國都很擔心後續引起的這些中國產品的傾銷透過第三地、席產地這些部份我想大家都討論很多 |
transcript.whisperx[18].start |
439.162 |
transcript.whisperx[18].end |
448.519 |
transcript.whisperx[18].text |
那看來財政部跟經濟部我們看了你們的報告所以財政部跟經濟部所採取的應對措施大致都相同就是嚴格審查那如果發現違規就進行懲處 |
transcript.whisperx[19].start |
450.97 |
transcript.whisperx[19].end |
469.665 |
transcript.whisperx[19].text |
那我想其他國家也一樣都很擔心中國產品傾銷的問題不只是台灣啦印尼跟我們一樣都被川普課徵32%的對等關稅那他們因此印尼國內各個產業也都跳出來呼籲說印尼政府要迅速採取行動 |
transcript.whisperx[20].start |
470.606 |
transcript.whisperx[20].end |
485.092 |
transcript.whisperx[20].text |
那我相信不只是印尼包括越南南韓等其他國家都會面臨到中國產品傾銷的威脅我想請教次長說是否考慮跟其他國家合作如何維護公平貿易營造公平貿易的環境這部分 |
transcript.whisperx[21].start |
485.842 |
transcript.whisperx[21].end |
515.417 |
transcript.whisperx[21].text |
是分兩點跟委員說明第一點我們現在的進口監測不是只有針對中國的進口產品而是全世界因為我們害怕的擔心的是說未來會被這個科與高關稅國家的產品也會進入到台灣的市場第二點因為我們跟這些國家通通都有平常就往來有經貿的這個互動所以我們也是有透過我們相關駐外單位的同仁 |
transcript.whisperx[22].start |
516.041 |
transcript.whisperx[22].end |
522.425 |
transcript.whisperx[22].text |
去跟當地的政府去了解他們的相關做法為何作為我們的相關參考我認為說除了鋼鐵半導體之外我們更應該注意我們的紡織業因為就我們看到這880億裡面700億是給 |
transcript.whisperx[23].start |
532.172 |
transcript.whisperx[23].end |
546.765 |
transcript.whisperx[23].text |
這個工業的部分那180億是農業的部分那我沒有看到針對紡織的部分有做任何的一個規劃那中國大陸的這些紡織品衣服 襪子這些東西原本要銷售到美國的 |
transcript.whisperx[24].start |
547.406 |
transcript.whisperx[24].end |
572.755 |
transcript.whisperx[24].text |
那有可能因為這樣子的關係所以就會跑到中國跑到台灣或者跑到東南亞任何一個台灣是可能是台灣日本韓國這個都有可能那所以說原來像同樣一件衣服在淘寶買比在蝦皮或任何的廠商的這個資深網站更加的便宜甚至於半價甚至於半價所以不只是衣服包含生活小物這些東西都有很大的價差 |
transcript.whisperx[25].start |
573.835 |
transcript.whisperx[25].end |
592.911 |
transcript.whisperx[25].text |
那這樣子的話我們台灣自身的這些紡織業要如何生存其實這些問題已經存在非常久了市長也知道說這一次我們這些紡織業者非常的困難那如何能夠提出具體的協助部長可以簡單說明一下市長 |
transcript.whisperx[26].start |
593.968 |
transcript.whisperx[26].end |
616.739 |
transcript.whisperx[26].text |
是分三點來說明第一點呢政府所推出的這個881並沒有排除紡織業所以紡織產業如果有需要的話也可以來申請試用第二點呢我們也主動的去跟我們的紡織業者有做交流我們有部分的業者呢其實他是生產據點是在其他的國家所以他們也會做 |
transcript.whisperx[27].start |
617.559 |
transcript.whisperx[27].end |
645.8 |
transcript.whisperx[27].text |
產能的調度第三點呢也是一樣對於中國會進來的紡織品我們從邊境就會開始做相關的管制也是會做相關進口量以及金額的這個監測如果有異常的話我們會去跟這個會不會輸美來做相關的勾結有異常的廠商名單會交給這個財政部來做這個高風險的這個名單的特別的這個監督以及查核市長請回謝謝 |