iVOD / 160219

Field Value
IVOD_ID 160219
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160219
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-20-8
會議資料.會議代碼:str 第11屆第3會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-16T11:07:03+08:00
結束時間 2025-04-16T11:17:50+08:00
影片長度 00:10:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfba6290c4e8a55367a3fd8a5ba555e825ebda33721556222a55ea099cd124814b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 11:07:03 - 11:17:50
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.27971875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.63409375
transcript.pyannote[1].end 4.28346875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 7.60784375
transcript.pyannote[2].end 9.58221875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 10.05471875
transcript.pyannote[3].end 10.49346875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 10.93221875
transcript.pyannote[4].end 12.02909375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 12.41721875
transcript.pyannote[5].end 14.23971875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 14.61096875
transcript.pyannote[6].end 15.57284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 19.79159375
transcript.pyannote[7].end 20.38221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.48346875
transcript.pyannote[8].end 20.50034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 20.50034375
transcript.pyannote[9].end 21.09096875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 21.09096875
transcript.pyannote[10].end 21.12471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 21.12471875
transcript.pyannote[11].end 21.15846875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 21.51284375
transcript.pyannote[12].end 24.90471875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 25.17471875
transcript.pyannote[13].end 27.06471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 27.48659375
transcript.pyannote[14].end 30.38909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 30.64221875
transcript.pyannote[15].end 32.46471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 32.92034375
transcript.pyannote[16].end 37.49346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 37.84784375
transcript.pyannote[17].end 38.48909375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 38.89409375
transcript.pyannote[18].end 42.26909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 43.53471875
transcript.pyannote[19].end 48.83346875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 49.08659375
transcript.pyannote[20].end 51.02721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 51.12846875
transcript.pyannote[21].end 53.25471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 53.76096875
transcript.pyannote[22].end 55.78596875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 55.85346875
transcript.pyannote[23].end 58.13159375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 58.68846875
transcript.pyannote[24].end 62.90721875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 63.59909375
transcript.pyannote[25].end 70.38284375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 70.97346875
transcript.pyannote[26].end 71.22659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 71.27721875
transcript.pyannote[27].end 87.51096875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 72.27284375
transcript.pyannote[28].end 72.47534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 87.61221875
transcript.pyannote[29].end 98.02409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 98.63159375
transcript.pyannote[30].end 108.95909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 109.36409375
transcript.pyannote[31].end 123.55596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 124.63596875
transcript.pyannote[32].end 163.07721875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 131.11596875
transcript.pyannote[33].end 131.87534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 140.53221875
transcript.pyannote[34].end 141.51096875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 143.35034375
transcript.pyannote[35].end 143.58659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 163.58346875
transcript.pyannote[36].end 163.85346875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 164.30909375
transcript.pyannote[37].end 169.35471875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 169.60784375
transcript.pyannote[38].end 175.69971875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 176.08784375
transcript.pyannote[39].end 180.12096875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 180.59346875
transcript.pyannote[40].end 181.77471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 182.02784375
transcript.pyannote[41].end 182.82096875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 183.25971875
transcript.pyannote[42].end 184.71096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 184.96409375
transcript.pyannote[43].end 186.33096875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 186.82034375
transcript.pyannote[44].end 191.64659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 191.78159375
transcript.pyannote[45].end 192.16971875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 192.84471875
transcript.pyannote[46].end 196.15221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 196.43909375
transcript.pyannote[47].end 198.78471875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 199.24034375
transcript.pyannote[48].end 202.21034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 202.75034375
transcript.pyannote[49].end 207.66096875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 207.89721875
transcript.pyannote[50].end 211.27221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 211.74471875
transcript.pyannote[51].end 215.30534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 215.57534375
transcript.pyannote[52].end 220.30034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 220.90784375
transcript.pyannote[53].end 222.07221875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 222.42659375
transcript.pyannote[54].end 231.06659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 231.84284375
transcript.pyannote[55].end 233.56409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 233.88471875
transcript.pyannote[56].end 235.92659375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 236.36534375
transcript.pyannote[57].end 240.48284375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 240.93846875
transcript.pyannote[58].end 247.48596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 247.55346875
transcript.pyannote[59].end 280.94909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 252.46409375
transcript.pyannote[60].end 252.91971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 272.95034375
transcript.pyannote[61].end 273.42284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 280.94909375
transcript.pyannote[62].end 285.80909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 286.53471875
transcript.pyannote[63].end 289.31909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 289.35284375
transcript.pyannote[64].end 291.91784375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 291.96846875
transcript.pyannote[65].end 299.59596875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 300.11909375
transcript.pyannote[66].end 300.64221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 301.03034375
transcript.pyannote[67].end 304.11846875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 304.42221875
transcript.pyannote[68].end 307.27409375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 307.88159375
transcript.pyannote[69].end 311.49284375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 312.84284375
transcript.pyannote[70].end 314.41221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 314.58096875
transcript.pyannote[71].end 316.96034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 317.14596875
transcript.pyannote[72].end 318.34409375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 318.58034375
transcript.pyannote[73].end 319.42409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 319.96409375
transcript.pyannote[74].end 320.97659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 321.48284375
transcript.pyannote[75].end 325.22909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 325.78596875
transcript.pyannote[76].end 326.14034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 327.23721875
transcript.pyannote[77].end 327.43971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 328.75596875
transcript.pyannote[78].end 329.07659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 329.17784375
transcript.pyannote[79].end 332.26596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 332.43471875
transcript.pyannote[80].end 333.61596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 334.18971875
transcript.pyannote[81].end 334.98284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 335.57346875
transcript.pyannote[82].end 336.46784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 336.87284375
transcript.pyannote[83].end 339.03284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 339.33659375
transcript.pyannote[84].end 341.34471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 341.76659375
transcript.pyannote[85].end 342.08721875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 342.59346875
transcript.pyannote[86].end 345.96846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 346.33971875
transcript.pyannote[87].end 348.21284375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 348.60096875
transcript.pyannote[88].end 349.42784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 349.86659375
transcript.pyannote[89].end 350.69346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 351.21659375
transcript.pyannote[90].end 352.46534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 352.92096875
transcript.pyannote[91].end 353.71409375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 354.06846875
transcript.pyannote[92].end 355.99221875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 356.31284375
transcript.pyannote[93].end 358.23659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 358.64159375
transcript.pyannote[94].end 359.83971875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 360.05909375
transcript.pyannote[95].end 361.59471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 361.96596875
transcript.pyannote[96].end 362.87721875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 362.97846875
transcript.pyannote[97].end 365.45909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 365.62784375
transcript.pyannote[98].end 367.02846875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 367.19721875
transcript.pyannote[99].end 369.32346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 369.40784375
transcript.pyannote[100].end 378.68909375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 378.80721875
transcript.pyannote[101].end 383.32971875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 383.43096875
transcript.pyannote[102].end 386.26596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 386.48534375
transcript.pyannote[103].end 397.87596875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 398.61846875
transcript.pyannote[104].end 403.49534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 403.69784375
transcript.pyannote[105].end 406.14471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 405.60471875
transcript.pyannote[106].end 407.02221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 407.51159375
transcript.pyannote[107].end 409.18221875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 409.43534375
transcript.pyannote[108].end 410.95409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 411.22409375
transcript.pyannote[109].end 412.13534375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 414.46409375
transcript.pyannote[110].end 415.18971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 418.53096875
transcript.pyannote[111].end 419.99909375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 420.50534375
transcript.pyannote[112].end 425.02784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 425.56784375
transcript.pyannote[113].end 428.25096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 428.70659375
transcript.pyannote[114].end 434.68034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 434.84909375
transcript.pyannote[115].end 438.73034375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 438.94971875
transcript.pyannote[116].end 450.27284375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 450.89721875
transcript.pyannote[117].end 451.94346875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 452.33159375
transcript.pyannote[118].end 462.49034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 462.99659375
transcript.pyannote[119].end 470.10096875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 470.53971875
transcript.pyannote[120].end 476.31096875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 476.85096875
transcript.pyannote[121].end 479.85471875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 480.31034375
transcript.pyannote[122].end 482.70659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 482.85846875
transcript.pyannote[123].end 485.30534375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 485.72721875
transcript.pyannote[124].end 491.98784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 492.12284375
transcript.pyannote[125].end 495.93659375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 496.15596875
transcript.pyannote[126].end 497.91096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 498.46784375
transcript.pyannote[127].end 501.84284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 502.12971875
transcript.pyannote[128].end 504.57659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 504.76221875
transcript.pyannote[129].end 515.64659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 515.93346875
transcript.pyannote[130].end 521.45159375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 520.16909375
transcript.pyannote[131].end 521.48534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 521.68784375
transcript.pyannote[132].end 526.02471875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 526.27784375
transcript.pyannote[133].end 527.40846875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 527.72909375
transcript.pyannote[134].end 531.34034375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 531.86346875
transcript.pyannote[135].end 533.17971875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 533.53409375
transcript.pyannote[136].end 541.22909375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 541.44846875
transcript.pyannote[137].end 546.94971875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 547.30409375
transcript.pyannote[138].end 552.95721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 553.41284375
transcript.pyannote[139].end 556.97346875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 557.39534375
transcript.pyannote[140].end 558.10409375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 558.34034375
transcript.pyannote[141].end 561.90096875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 562.13721875
transcript.pyannote[142].end 575.67096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 576.10971875
transcript.pyannote[143].end 589.13721875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 590.04846875
transcript.pyannote[144].end 593.57534375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 593.81159375
transcript.pyannote[145].end 596.76471875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 596.86596875
transcript.pyannote[146].end 604.07159375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 604.24034375
transcript.pyannote[147].end 605.62409375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 605.91096875
transcript.pyannote[148].end 610.53471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 610.60221875
transcript.pyannote[149].end 616.96409375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 617.26784375
transcript.pyannote[150].end 620.45721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 620.62596875
transcript.pyannote[151].end 626.22846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 626.43096875
transcript.pyannote[152].end 629.50221875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 629.67096875
transcript.pyannote[153].end 632.05034375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 632.33721875
transcript.pyannote[154].end 633.33284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 633.77159375
transcript.pyannote[155].end 634.68284375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 634.83471875
transcript.pyannote[156].end 638.74971875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 638.96909375
transcript.pyannote[157].end 641.16284375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 641.29784375
transcript.pyannote[158].end 645.70221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 644.33534375
transcript.pyannote[159].end 646.52909375
transcript.whisperx[0].start 0.149
transcript.whisperx[0].end 0.829
transcript.whisperx[0].text 主席有請財政部莊部長是 莊部長
transcript.whisperx[1].start 19.81
transcript.whisperx[1].end 41.867
transcript.whisperx[1].text 委員好部長早部長川普發布了對等關稅對台灣祭出32%的措施衝擊全球經濟在10日的凌晨又改口將暫緩實施90天期間是實施10%的關稅弄得大家人心惶惶也衝擊了百工百業
transcript.whisperx[2].start 43.598
transcript.whisperx[2].end 62.82
transcript.whisperx[2].text 我們的報稅計要到了那左院長在上星期行政院會上表示會跟你們財政部這邊討論延長5月開始的報稅期那會比照COVID-19疫情期間的模式那請問部長研究的如何這個報稅期限能不能延長到6月底
transcript.whisperx[3].start 63.666
transcript.whisperx[3].end 91.42
transcript.whisperx[3].text 跟委員報告我們所得稅決案申報會延長一個月到6月30那我們近日會辦理公告近日會公告所以我想如果能夠延長報稅的期限在目前這種不確定性的時期會對企業跟民眾有實質的一個幫助減輕他們的負擔希望財政部能夠迅速而且這個具體的一個延長報稅的一個安排
transcript.whisperx[4].start 91.92
transcript.whisperx[4].end 108.636
transcript.whisperx[4].text 那有更多的時間讓民眾有可以有應對可以來應對目前的一個困境那明天行政院會議會討論新來幣880億的支持產業方案特別條例那也會送到立法院來審議法案通過之後
transcript.whisperx[5].start 109.457
transcript.whisperx[5].end 130.732
transcript.whisperx[5].text 特別預算會再送來立法院那請教部長你簡單的跟我們說明財政部知道的部分包含條例的裁員還有金額目前有行政院喊出880億那會不會設上限委員報告我關特別條例的部分行政院目前都在逐條的都在研擬當中那同時在這個時間也去聽取產業的意見那對於有關
transcript.whisperx[6].start 136.109
transcript.whisperx[6].end 162.692
transcript.whisperx[6].text 需要不足的部分看要不要再補強這個部分都還會再進入討論所以沒有上限那至於880億的部分的金額是不是在條例裡面做特別的規定可能會在他們院裡面會再做討論那重點是在於就是說我們對於裁員的部分剛剛委員提到特別條例通過以後要編列特別預算它的裁員第一個會來自於稅計剩餘或者用舉債的方式來做支應
transcript.whisperx[7].start 163.561
transcript.whisperx[7].end 191.25
transcript.whisperx[7].text 好 我認為說不分朝野都希望這一次的這個關稅風波能夠讓國內的業者能夠損失降低 降到最低所以支持產業方案是非常重要的那要請部長多加留意 因為不要過於自信我要再提一次就是在川普還沒宣布關稅32%以前我們就宣布了把我們手中的王牌台積電赴美投資一千億
transcript.whisperx[8].start 192.93
transcript.whisperx[8].end 219.464
transcript.whisperx[8].text 自信的認為說這樣子就可以避免高關稅但是發現了說這個太早亮牌太早亮牌就白白浪費了我們的談判籌碼外交貿易談判像日本韓國都沒有在一開始就宣布加碼投資都等到談判進行中才開始交涉那財政部在未來的這80天接近80天的這個因為大概4月9號宣布了所以在未來這80天要更加謹慎
transcript.whisperx[9].start 220.965
transcript.whisperx[9].end 246.923
transcript.whisperx[9].text 那剛剛提到說不管是32%還是10%最後調升多少這些物價反應都是在我們所有包括你我這些消費者身上那請教部長中研院下修台灣經濟成長預測3.1%目標是難以達成你的看法如何跟中研院一樣嗎我想中研院他們是一個非常專責的機構也是國家一個智庫這個部分我想他們的
transcript.whisperx[10].start 247.931
transcript.whisperx[10].end 255.434
transcript.whisperx[10].text 評估有他們的一個道理那整個局勢事實上都一直在變嘛現在一下32%一下回到10%那未來會是多少我想我們的經貿團隊去談判團隊一定會為國家爭取最大的利益以及維護產業的國際競爭力會以這樣的一個目標來做進行那這個訊息事實上是時常都在變化的
transcript.whisperx[11].start 270.28
transcript.whisperx[11].end 298.519
transcript.whisperx[11].text 那就我們政府機關來說我們就做好準備同時對於委員所提到對於需要輔助的產業我們都應該要有這個支持方案來給予他們的一個支持部長我在這邊要跟部長討論一個方案就是不管結果如何所有的民眾生活一定是受到嚴重的影響那所以說好比在疫場期間的一個紓困貸款一樣我們有看到財政部目前有嚴密嚴肅對於中小企業的這個紓困貸款
transcript.whisperx[12].start 300.18
transcript.whisperx[12].end 325.88
transcript.whisperx[12].text 但是我是希望說財政部能夠督導公股銀行研擬給勞工一般民眾的紓困貸款因為我們未來不管是結果如何都一定是32%也好或者是比現在10%更高對於台灣所有產業的衝擊都非常的大那最簡單的如果說這些產業我們剛剛提到的中小企業的紓困貸款那
transcript.whisperx[13].start 329.563
transcript.whisperx[13].end 349.268
transcript.whisperx[13].text 國內的產業受到衝擊之後 他們最簡單最常見的方式就是裁員 公司瘦身那所以對於這樣子有可能被裁員的這些基層民眾那一被裁員 他可能是一個家庭的重心這個家庭就馬上失去了這樣子的一個經濟來源
transcript.whisperx[14].start 351.249
transcript.whisperx[14].end 367.523
transcript.whisperx[14].text 那還有房貸要繳家人要養所以我是希望說部長能夠跟金管會勞動部一起研議提出針對一般民眾的紓困貸款針對年收入較低的這些族群給他們一個方案部長願不願意這樣做
transcript.whisperx[15].start 370.105
transcript.whisperx[15].end 395.964
transcript.whisperx[15].text 謝謝委員我想在勞動部在這一次的一個碰到這樣的一個關稅的衝擊他也有提出相關的一個支持方案在裡面對於勞工朋友受到衝擊都有相關的一些協助的一些措施那自己在金融的部分就所知金管會會跟銀行工會這邊會來做討論做一些寬緩的設施如果這個措施出來以後我們的公股行股當然應該依照金管會所訂的一個以及銀行工會所訂的規範來做執行是
transcript.whisperx[16].start 399.57
transcript.whisperx[16].end 407.755
transcript.whisperx[16].text 請部長跟勞動部還有金管會互相的來做一個溝通跟聯繫是的 謝謝委員謝謝部長你請回請經濟部姜政次好 次長
transcript.whisperx[17].start 418.567
transcript.whisperx[17].end 438.462
transcript.whisperx[17].text 委員好次長好次長川普在上個禮拜宣布對等關稅暫緩實施90天那但是對中國關稅並沒有暫緩所以中國關稅高達125%那世界各國都很擔心後續引起的這些中國產品的傾銷透過第三地、席產地這些部份我想大家都討論很多
transcript.whisperx[18].start 439.162
transcript.whisperx[18].end 448.519
transcript.whisperx[18].text 那看來財政部跟經濟部我們看了你們的報告所以財政部跟經濟部所採取的應對措施大致都相同就是嚴格審查那如果發現違規就進行懲處
transcript.whisperx[19].start 450.97
transcript.whisperx[19].end 469.665
transcript.whisperx[19].text 那我想其他國家也一樣都很擔心中國產品傾銷的問題不只是台灣啦印尼跟我們一樣都被川普課徵32%的對等關稅那他們因此印尼國內各個產業也都跳出來呼籲說印尼政府要迅速採取行動
transcript.whisperx[20].start 470.606
transcript.whisperx[20].end 485.092
transcript.whisperx[20].text 那我相信不只是印尼包括越南南韓等其他國家都會面臨到中國產品傾銷的威脅我想請教次長說是否考慮跟其他國家合作如何維護公平貿易營造公平貿易的環境這部分
transcript.whisperx[21].start 485.842
transcript.whisperx[21].end 515.417
transcript.whisperx[21].text 是分兩點跟委員說明第一點我們現在的進口監測不是只有針對中國的進口產品而是全世界因為我們害怕的擔心的是說未來會被這個科與高關稅國家的產品也會進入到台灣的市場第二點因為我們跟這些國家通通都有平常就往來有經貿的這個互動所以我們也是有透過我們相關駐外單位的同仁
transcript.whisperx[22].start 516.041
transcript.whisperx[22].end 522.425
transcript.whisperx[22].text 去跟當地的政府去了解他們的相關做法為何作為我們的相關參考我認為說除了鋼鐵半導體之外我們更應該注意我們的紡織業因為就我們看到這880億裡面700億是給
transcript.whisperx[23].start 532.172
transcript.whisperx[23].end 546.765
transcript.whisperx[23].text 這個工業的部分那180億是農業的部分那我沒有看到針對紡織的部分有做任何的一個規劃那中國大陸的這些紡織品衣服 襪子這些東西原本要銷售到美國的
transcript.whisperx[24].start 547.406
transcript.whisperx[24].end 572.755
transcript.whisperx[24].text 那有可能因為這樣子的關係所以就會跑到中國跑到台灣或者跑到東南亞任何一個台灣是可能是台灣日本韓國這個都有可能那所以說原來像同樣一件衣服在淘寶買比在蝦皮或任何的廠商的這個資深網站更加的便宜甚至於半價甚至於半價所以不只是衣服包含生活小物這些東西都有很大的價差
transcript.whisperx[25].start 573.835
transcript.whisperx[25].end 592.911
transcript.whisperx[25].text 那這樣子的話我們台灣自身的這些紡織業要如何生存其實這些問題已經存在非常久了市長也知道說這一次我們這些紡織業者非常的困難那如何能夠提出具體的協助部長可以簡單說明一下市長
transcript.whisperx[26].start 593.968
transcript.whisperx[26].end 616.739
transcript.whisperx[26].text 是分三點來說明第一點呢政府所推出的這個881並沒有排除紡織業所以紡織產業如果有需要的話也可以來申請試用第二點呢我們也主動的去跟我們的紡織業者有做交流我們有部分的業者呢其實他是生產據點是在其他的國家所以他們也會做
transcript.whisperx[27].start 617.559
transcript.whisperx[27].end 645.8
transcript.whisperx[27].text 產能的調度第三點呢也是一樣對於中國會進來的紡織品我們從邊境就會開始做相關的管制也是會做相關進口量以及金額的這個監測如果有異常的話我們會去跟這個會不會輸美來做相關的勾結有異常的廠商名單會交給這個財政部來做這個高風險的這個名單的特別的這個監督以及查核市長請回謝謝