iVOD / 160198

Field Value
IVOD_ID 160198
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160198
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-26-6
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-04-16T10:31:02+08:00
結束時間 2025-04-16T10:40:25+08:00
影片長度 00:09:23
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df31185e457dff64add598beef862d51bbd146475ae9ed72cd48bf7fb5696d4c0f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:31:02 - 10:40:25
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議(事由:邀請衛生福利部部長就「面對國際經貿情勢瞬變,我國如何因應並確保藥品、醫療器材等各面向供應正常,保障國人權益。」進行專題報告,並備質詢。 【4月16日及17日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.88284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.87846875
transcript.pyannote[1].end 7.48971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 12.14721875
transcript.pyannote[2].end 13.37909375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.39596875
transcript.pyannote[3].end 17.85096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 14.49284375
transcript.pyannote[4].end 16.09596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.91846875
transcript.pyannote[5].end 25.88346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.95221875
transcript.pyannote[6].end 18.01971875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 18.20534375
transcript.pyannote[7].end 20.19659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 20.77034375
transcript.pyannote[8].end 22.05284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 22.30596875
transcript.pyannote[9].end 22.87971875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 28.02659375
transcript.pyannote[10].end 32.98784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 33.86534375
transcript.pyannote[11].end 34.23659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 34.79346875
transcript.pyannote[12].end 36.44721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 36.71721875
transcript.pyannote[13].end 40.05846875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 40.29471875
transcript.pyannote[14].end 41.32409375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 41.94846875
transcript.pyannote[15].end 43.33221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 44.02409375
transcript.pyannote[16].end 51.53346875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 51.93846875
transcript.pyannote[17].end 52.54596875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 52.96784375
transcript.pyannote[18].end 55.60034375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 55.85346875
transcript.pyannote[19].end 57.33846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 57.50721875
transcript.pyannote[20].end 71.05784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 70.83846875
transcript.pyannote[21].end 71.64846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 72.05346875
transcript.pyannote[22].end 91.07159375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 86.71784375
transcript.pyannote[23].end 87.93284375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 88.84409375
transcript.pyannote[24].end 90.41346875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 91.07159375
transcript.pyannote[25].end 97.77096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 98.64846875
transcript.pyannote[26].end 103.98096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 104.62221875
transcript.pyannote[27].end 110.62971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 111.10221875
transcript.pyannote[28].end 113.44784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 114.00471875
transcript.pyannote[29].end 115.33784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 115.70909375
transcript.pyannote[30].end 118.00409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 118.39221875
transcript.pyannote[31].end 121.34534375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 122.08784375
transcript.pyannote[32].end 123.15096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 124.06221875
transcript.pyannote[33].end 125.53034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 126.47534375
transcript.pyannote[34].end 129.46221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 129.86721875
transcript.pyannote[35].end 131.26784375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 131.85846875
transcript.pyannote[36].end 133.07346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 133.73159375
transcript.pyannote[37].end 135.94221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 136.38096875
transcript.pyannote[38].end 140.85284375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 140.88659375
transcript.pyannote[39].end 140.90346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 140.92034375
transcript.pyannote[40].end 144.07596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 144.75096875
transcript.pyannote[41].end 145.89846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 145.94909375
transcript.pyannote[42].end 149.37471875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 149.64471875
transcript.pyannote[43].end 156.98534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 157.93034375
transcript.pyannote[44].end 164.34284375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 165.32159375
transcript.pyannote[45].end 166.89096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 168.46034375
transcript.pyannote[46].end 170.02971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 170.62034375
transcript.pyannote[47].end 183.79971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 184.28909375
transcript.pyannote[48].end 184.32284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 184.32284375
transcript.pyannote[49].end 211.76159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 208.79159375
transcript.pyannote[50].end 209.83784375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 211.33971875
transcript.pyannote[51].end 211.84596875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 211.84596875
transcript.pyannote[52].end 211.87971875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 211.87971875
transcript.pyannote[53].end 211.91346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 211.91346875
transcript.pyannote[54].end 212.97659375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 212.97659375
transcript.pyannote[55].end 224.36721875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 225.10971875
transcript.pyannote[56].end 228.33284375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 229.31159375
transcript.pyannote[57].end 237.15846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 237.85034375
transcript.pyannote[58].end 238.60971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 239.16659375
transcript.pyannote[59].end 240.83721875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 241.32659375
transcript.pyannote[60].end 250.47284375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 251.11409375
transcript.pyannote[61].end 258.55596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 260.20971875
transcript.pyannote[62].end 264.83346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 264.90096875
transcript.pyannote[63].end 267.28034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 265.40721875
transcript.pyannote[64].end 265.49159375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 268.17471875
transcript.pyannote[65].end 272.10659375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 272.20784375
transcript.pyannote[66].end 279.31221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 279.97034375
transcript.pyannote[67].end 287.95221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 288.08721875
transcript.pyannote[68].end 290.87159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 290.92221875
transcript.pyannote[69].end 298.21221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 298.51596875
transcript.pyannote[70].end 301.03034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 301.55346875
transcript.pyannote[71].end 304.30409375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 304.84409375
transcript.pyannote[72].end 305.73846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 306.51471875
transcript.pyannote[73].end 309.04596875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 309.19784375
transcript.pyannote[74].end 320.65596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 321.11159375
transcript.pyannote[75].end 324.63846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 325.17846875
transcript.pyannote[76].end 330.91596875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 332.82284375
transcript.pyannote[77].end 334.67909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 334.89846875
transcript.pyannote[78].end 335.80971875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 336.11346875
transcript.pyannote[79].end 336.90659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 337.24409375
transcript.pyannote[80].end 338.98221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 340.29846875
transcript.pyannote[81].end 340.50096875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 340.60221875
transcript.pyannote[82].end 342.03659375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 342.77909375
transcript.pyannote[83].end 343.26846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 344.34846875
transcript.pyannote[84].end 345.04034375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 345.69846875
transcript.pyannote[85].end 346.32284375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 347.30159375
transcript.pyannote[86].end 351.48659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 352.12784375
transcript.pyannote[87].end 355.50284375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 356.63346875
transcript.pyannote[88].end 362.92784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 363.61971875
transcript.pyannote[89].end 367.97346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 368.49659375
transcript.pyannote[90].end 368.90159375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 369.10409375
transcript.pyannote[91].end 373.47471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 373.66034375
transcript.pyannote[92].end 376.02284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 376.47846875
transcript.pyannote[93].end 385.13534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 385.55721875
transcript.pyannote[94].end 388.84784375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 389.52284375
transcript.pyannote[95].end 394.16346875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 394.48409375
transcript.pyannote[96].end 395.27721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 395.85096875
transcript.pyannote[97].end 410.43096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 411.20721875
transcript.pyannote[98].end 415.91534375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 416.52284375
transcript.pyannote[99].end 417.88971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 418.19346875
transcript.pyannote[100].end 421.39971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 421.90596875
transcript.pyannote[101].end 425.70284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 426.31034375
transcript.pyannote[102].end 432.82409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 433.48221875
transcript.pyannote[103].end 437.00909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 438.03846875
transcript.pyannote[104].end 442.54409375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 443.30346875
transcript.pyannote[105].end 450.77909375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 449.83409375
transcript.pyannote[106].end 450.66096875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 450.77909375
transcript.pyannote[107].end 450.99846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 450.99846875
transcript.pyannote[108].end 451.03221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 451.03221875
transcript.pyannote[109].end 457.25909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 453.25971875
transcript.pyannote[110].end 454.08659375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 457.46159375
transcript.pyannote[111].end 458.71034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 458.33909375
transcript.pyannote[112].end 462.62534375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 460.83659375
transcript.pyannote[113].end 461.24159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 462.62534375
transcript.pyannote[114].end 462.91221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 462.91221875
transcript.pyannote[115].end 464.39721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 462.96284375
transcript.pyannote[116].end 463.55346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 464.39721875
transcript.pyannote[117].end 464.68409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 464.68409375
transcript.pyannote[118].end 464.78534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 464.78534375
transcript.pyannote[119].end 465.22409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 465.22409375
transcript.pyannote[120].end 465.57846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 465.57846875
transcript.pyannote[121].end 466.00034375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 466.55721875
transcript.pyannote[122].end 467.85659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 469.29096875
transcript.pyannote[123].end 470.28659375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 470.42159375
transcript.pyannote[124].end 471.09659375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 470.64096875
transcript.pyannote[125].end 474.04971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 473.77971875
transcript.pyannote[126].end 474.42096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 474.87659375
transcript.pyannote[127].end 477.27284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 478.18409375
transcript.pyannote[128].end 489.18659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 489.49034375
transcript.pyannote[129].end 489.81096875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 490.16534375
transcript.pyannote[130].end 491.54909375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 491.98784375
transcript.pyannote[131].end 492.96659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 493.37159375
transcript.pyannote[132].end 495.24471875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 495.73409375
transcript.pyannote[133].end 499.85159375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 500.30721875
transcript.pyannote[134].end 502.19721875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 502.34909375
transcript.pyannote[135].end 503.85096875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 504.77909375
transcript.pyannote[136].end 506.80409375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 507.27659375
transcript.pyannote[137].end 510.39846875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 511.19159375
transcript.pyannote[138].end 511.95096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 512.50784375
transcript.pyannote[139].end 513.50346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 513.79034375
transcript.pyannote[140].end 514.19534375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 514.65096875
transcript.pyannote[141].end 519.13971875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 520.03409375
transcript.pyannote[142].end 520.72596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 520.72596875
transcript.pyannote[143].end 520.96221875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 521.28284375
transcript.pyannote[144].end 521.29971875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 521.29971875
transcript.pyannote[145].end 528.30284375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 529.29846875
transcript.pyannote[146].end 530.32784375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 530.32784375
transcript.pyannote[147].end 530.39534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 530.78346875
transcript.pyannote[148].end 530.96909375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 530.96909375
transcript.pyannote[149].end 532.23471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 532.75784375
transcript.pyannote[150].end 534.96846875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 535.45784375
transcript.pyannote[151].end 536.74034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 537.16221875
transcript.pyannote[152].end 538.47846875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 539.30534375
transcript.pyannote[153].end 539.57534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 540.18284375
transcript.pyannote[154].end 540.94221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 540.95909375
transcript.pyannote[155].end 540.97596875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 541.34721875
transcript.pyannote[156].end 543.16971875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 544.26659375
transcript.pyannote[157].end 556.50096875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 557.10846875
transcript.pyannote[158].end 558.77909375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 559.20096875
transcript.pyannote[159].end 561.83346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 563.16659375
transcript.pyannote[160].end 563.23409375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 563.23409375
transcript.pyannote[161].end 563.40284375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 563.40284375
transcript.pyannote[162].end 563.47034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 563.47034375
transcript.pyannote[163].end 564.31409375
transcript.whisperx[0].start 0.669
transcript.whisperx[0].end 14.912
transcript.whisperx[0].text 謝謝,謝謝主席我請部長不然部長就這麼客啦,時從兩開就好啦你先休息,你先休息部長休息一下請時書長他很聰明,不用玩弄阿維也好
transcript.whisperx[1].start 28.412
transcript.whisperx[1].end 39.406
transcript.whisperx[1].text 我們剛才全世界都有一個神經病的川普,沒有到大家都氣笑無來無去,每天都吃飯、進展說一行、吃飯包說一行、睡覺又一行今天還可以說不一樣的
transcript.whisperx[2].start 44.236
transcript.whisperx[2].end 71.411
transcript.whisperx[2].text 大家都對他都要洗臉都沒有意義嘛我講我們講國內的先講國內的 署長你現在要跟醫療院所簽約 特款辦法我做這一段時間觀察齁你跟部長跟署長很認真去弄了很多公務預算進來然後拿了五百億左右嘛齁 今年差不多多了五百億不只不只
transcript.whisperx[3].start 72.571
transcript.whisperx[3].end 93.297
transcript.whisperx[3].text 我們的那個總額的成長比去年增加530億億但是還有原本去年的總額支應的用公務預算變略110億億然後再加上癌藥基金的50億、癌藥加20億又加了180億億 那個都到位嗎?都到位了 都到位了所以一共是730億億我感覺你剛才把這10年來要做的工作都在這間要補完了什麼
transcript.whisperx[4].start 98.759
transcript.whisperx[4].end 120.974
transcript.whisperx[4].text 什麼東西欠就說沒關係,我現在有錢可以開我現在有錢可以開那上禮拜質詢的時候我還救了我們醫事室為什麼陳雲委員在門外部立醫院的放射師約聘人員剛剛來報到起薪才三萬多塊三萬多塊喔那你現在說要兩倍
transcript.whisperx[5].start 126.736
transcript.whisperx[5].end 148.794
transcript.whisperx[5].text 兩倍是多少?現在兩萬九千多了,兩倍要六萬,有六萬嗎?沒有我媽最喜歡茶,我自己買了,我水、茶、取血取血放射師的薪水差不多四萬五、四萬六,基本薪水然後大小業拿了之後才五萬多塊
transcript.whisperx[6].start 149.741
transcript.whisperx[6].end 160.627
transcript.whisperx[6].text 那COVID-19三年每一個月可以拿到一萬塊的津貼因為UGB照片子所以那三年就是說12萬、12萬、12萬、36萬所以現在的放射式也是五、六萬
transcript.whisperx[7].start 165.41
transcript.whisperx[7].end 181.205
transcript.whisperx[7].text 所以你說要讓人脾氣噴在六萬塊有的14個師、醫師相關人員,14個師字背著有困難所以就跳起來了,連王振旭也跳起來了我都不說話,我今天自己問而已你現在的態度是什麼?
transcript.whisperx[8].start 184.629
transcript.whisperx[8].end 212.897
transcript.whisperx[8].text 跟委員報告確實啦就是說我們今年的預算也比較多也很希望來調整現在第一線醫務人員的薪資啦所以我們在這個修法裡面希望把它納入大家一起來替第一線人員加薪啦至於說幅度要多少啊倍數怎麼計算啊有沒有這個醫院成績之間的落差我想後面的細節我們都可以再跟大家溝通討論這個只是在草案階段而已診所都哇哇叫嘛
transcript.whisperx[9].start 213.518
transcript.whisperx[9].end 223.953
transcript.whisperx[9].text 而且我們部長應該感受到基層給他的回饋所以還是要好好的討論討論一下當然我們希望每一個議事人員都領十萬塊我個人覺得從現在開始這兩三年
transcript.whisperx[10].start 230.032
transcript.whisperx[10].end 249.26
transcript.whisperx[10].text 醫療院所如果有決議,應該大幅來挑釁醫護人員,因為醫護相關人力是我們的寶貝啦,不然這個人你也不擔心啦所以我比較感覺,我眼睛看的差不多就是說,要挑釁,讓他們做得到啦,不然就慘了
transcript.whisperx[11].start 251.301
transcript.whisperx[11].end 266.493
transcript.whisperx[11].text 第二要說的那些福利的,真的我這兩天又接到很多就是,像是在我們北京、西日本那邊,雞翁、小雞現在在騙小孩,現在小孩比較大,在看幼稚園、在照顧孩子但是你要叫他回來做補課時間,沒辦法,他絕對沒辦法,要叫他做part-time四點鐘,這樣他沒辦法,他很希望,因為前兩個小孩、三個小孩,對他來說,一個人賺錢是不夠的
transcript.whisperx[12].start 280.054
transcript.whisperx[12].end 300.96
transcript.whisperx[12].text 所以這個在美國很多啊,美國就是有那個醫管公司啊,人力中介公司,它全部都在登錄下面就一兩百個護理師啊,我很多朋友的太太都在那邊,工作嘛這個很好,收入也不錯,所以這個,這個我等一下算一算應該有五六萬人,保證五六萬人,沒錯
transcript.whisperx[13].start 304.961
transcript.whisperx[13].end 330.43
transcript.whisperx[13].text 所以這個醫事相關人力的薪資我是覺得要好好的來研究啦你做補助你跟署長你們兩個有這個位置有這個管理還有這個機會就要好好來調整啦如果出去唱歌 唱歌應該補助你也夠了啦這件比較繁細 不會唱半場八百八十萬我看你都不出去唱啦
transcript.whisperx[14].start 333.411
transcript.whisperx[14].end 354.285
transcript.whisperx[14].text 因為環境部長跟我說,讓我去找部長,很難找到,都沒找到很厲害的,反倒在死第二個,我們的燃料藥燃料藥剛剛林書恩也講了,很多人都講了,我不要再贅述我們的燃料藥本土開發廠、燃料廠
transcript.whisperx[15].start 356.667
transcript.whisperx[15].end 371.213
transcript.whisperx[15].text 它的製造燃料的成本是進口進來的多了40%到50%所以假期我寫的成本你當然要在印度買也要在中國、大陸買所以自己要開發的這你要把它撐起來你要把它給它紋亂把它補充還是說什麼把它補掉不然的話這個隨時會打仗看起來隨時會出問題所以這些燃料要有長你要下去盤點
transcript.whisperx[16].start 385.778
transcript.whisperx[16].end 391.462
transcript.whisperx[16].text 潘典光對這件事在做,我們就要把他勾勒他要做完之後就不簡單了,因為我們市場太小嘛再來我看到白亞啦,Pfizer啦什麼什麼,里來啦,全部都已經跟川普promise說他們要回去美國設廠這個要投資200億,那個要投資300億,我不知道是真的假的啦
transcript.whisperx[17].start 411.26
transcript.whisperx[17].end 431.866
transcript.whisperx[17].text 可能會讓我們給川普去送一下真的會到位嘛我很懷疑那這些譬如說菲瑞他的廠有在澳大利亞有在馬來西亞都有去看過這些進來進來台灣這算美國廠的藥還是算澳大利亞來的藥你們現在在盤點的時候我們盤點的話是以他的進口美國製造
transcript.whisperx[18].start 438.052
transcript.whisperx[18].end 441.264
transcript.whisperx[18].text 那如果澳大利亞 澳洲出走的還是馬來西亞 馬來西亞有藥廠
transcript.whisperx[19].start 443.459
transcript.whisperx[19].end 455.666
transcript.whisperx[19].text 那個我們是看他進來的那個製造地點那個製造廠所以他的工廠在哪裡你就要送所以你剛才在說的這樣有精確嗎像你美國進來的藥就是那個176項那個金額好像會有出入啦差不多200億左右啦所以佔了我們
transcript.whisperx[20].start 470.845
transcript.whisperx[20].end 475.916
transcript.whisperx[20].text 10%有喔我們大概一年藥費大概在2500億左右所以最後一個問題就是洗產地
transcript.whisperx[21].start 478.841
transcript.whisperx[21].end 498.098
transcript.whisperx[21].text 我們昨天一直在講,昨天也在講嘛,好施展地,台南的東西拿來我們家然後這邊轉口賣到美國,MIC變成MIT,會不會這樣我昨天接到一個很大廠的那個醫師商,美國的他說他們不能,他們進到大陸要125%嘛他說他們不能進到台灣來,然後再轉去大陸
transcript.whisperx[22].start 504.824
transcript.whisperx[22].end 527.765
transcript.whisperx[22].text 他從美國進來幾乎是零我們這邊去大陸幾乎是零這變成他們在洗我們會不會 這個也有可能所以這個都要很注意好不好我們也很鼓勵在台灣製造在台灣製造其實對我們的供應韌性也是可以增強
transcript.whisperx[23].start 529.466
transcript.whisperx[23].end 556.039
transcript.whisperx[23].text 十大藥廠世界十大藥廠在20年前都在台灣有設廠現在連一家都沒有全部跑光了為什麼量太少所以跑到東南亞區跑到中國大陸區這是事實所以一家都沒有現在一家都沒有全部都賣給編毒藥廠所以這個是知識體大所以跟部長還有署長你們要
transcript.whisperx[24].start 557.259
transcript.whisperx[24].end 557.28
transcript.whisperx[24].text 謝謝委員