iVOD / 160015

Field Value
IVOD_ID 160015
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160015
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-26-5
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-04-09T13:27:35+08:00
結束時間 2025-04-09T13:53:42+08:00
影片長度 00:26:07
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce599dc46da52df047a9dd72f8e909e2235ac7c33fa4103456aa518cd20a1dc6235ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林淑芬
委員發言時間 13:27:35 - 13:53:42
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長對於「勞動部所屬基金違規使用如何追回及究責」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.75659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 2.49471875
transcript.pyannote[1].end 4.97534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 14.77971875
transcript.pyannote[2].end 17.29409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 17.56409375
transcript.pyannote[3].end 19.74096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 22.00221875
transcript.pyannote[4].end 23.16659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 24.29721875
transcript.pyannote[5].end 25.78221875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 30.20346875
transcript.pyannote[6].end 30.77721875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 31.23284375
transcript.pyannote[7].end 36.70034375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 37.49346875
transcript.pyannote[8].end 57.01784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 57.54096875
transcript.pyannote[9].end 59.46471875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 59.92034375
transcript.pyannote[10].end 62.58659375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 63.16034375
transcript.pyannote[11].end 71.80034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 72.10409375
transcript.pyannote[12].end 81.13221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 82.27971875
transcript.pyannote[13].end 87.46034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 88.16909375
transcript.pyannote[14].end 88.65846875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 89.60346875
transcript.pyannote[15].end 92.38784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 92.57346875
transcript.pyannote[16].end 93.56909375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 94.17659375
transcript.pyannote[17].end 96.75846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 97.18034375
transcript.pyannote[18].end 98.59784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 99.22221875
transcript.pyannote[19].end 100.26846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 100.57221875
transcript.pyannote[20].end 104.65596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 105.17909375
transcript.pyannote[21].end 110.35971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 110.81534375
transcript.pyannote[22].end 141.66284375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 142.32096875
transcript.pyannote[23].end 164.61284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 165.22034375
transcript.pyannote[24].end 172.56096875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 173.62409375
transcript.pyannote[25].end 174.21471875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 174.72096875
transcript.pyannote[26].end 184.23846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 184.98096875
transcript.pyannote[27].end 207.44159375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 207.93096875
transcript.pyannote[28].end 209.44971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 210.19221875
transcript.pyannote[29].end 211.05284375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 211.28909375
transcript.pyannote[30].end 213.12846875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 213.24659375
transcript.pyannote[31].end 222.89909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 223.23659375
transcript.pyannote[32].end 226.22346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 226.78034375
transcript.pyannote[33].end 235.52159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 235.79159375
transcript.pyannote[34].end 240.31409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 240.78659375
transcript.pyannote[35].end 243.95909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 244.22909375
transcript.pyannote[36].end 277.23659375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 278.38409375
transcript.pyannote[37].end 282.29909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 282.78846875
transcript.pyannote[38].end 288.94784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 289.38659375
transcript.pyannote[39].end 307.05471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 308.16846875
transcript.pyannote[40].end 308.67471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 308.87721875
transcript.pyannote[41].end 308.97846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 308.97846875
transcript.pyannote[42].end 312.75846875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 312.79221875
transcript.pyannote[43].end 317.85471875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 313.04534375
transcript.pyannote[44].end 313.33221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 318.29346875
transcript.pyannote[45].end 329.16096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 322.52909375
transcript.pyannote[46].end 322.98471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 328.72221875
transcript.pyannote[47].end 333.46409375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 331.32096875
transcript.pyannote[48].end 331.79346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 332.48534375
transcript.pyannote[49].end 341.46284375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 340.97346875
transcript.pyannote[50].end 342.17159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 342.91409375
transcript.pyannote[51].end 346.12034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 347.11596875
transcript.pyannote[52].end 348.97221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 349.52909375
transcript.pyannote[53].end 350.64284375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 351.99284375
transcript.pyannote[54].end 352.33034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 352.88721875
transcript.pyannote[55].end 356.14409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 356.49846875
transcript.pyannote[56].end 358.96221875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 358.96221875
transcript.pyannote[57].end 360.19409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 360.68346875
transcript.pyannote[58].end 367.82159375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 365.89784375
transcript.pyannote[59].end 367.61909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 367.88909375
transcript.pyannote[60].end 368.86784375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 370.40346875
transcript.pyannote[61].end 370.48784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 370.48784375
transcript.pyannote[62].end 371.04471875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 370.50471875
transcript.pyannote[63].end 370.85909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 371.51721875
transcript.pyannote[64].end 375.51659375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 376.20846875
transcript.pyannote[65].end 378.09846875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 378.50346875
transcript.pyannote[66].end 380.24159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 381.97971875
transcript.pyannote[67].end 388.15596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 389.16846875
transcript.pyannote[68].end 389.99534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 390.38346875
transcript.pyannote[69].end 398.41596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 398.56784375
transcript.pyannote[70].end 402.85409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 402.51659375
transcript.pyannote[71].end 403.07346875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 403.07346875
transcript.pyannote[72].end 403.93409375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 404.37284375
transcript.pyannote[73].end 405.77346875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 406.46534375
transcript.pyannote[74].end 406.76909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 406.80284375
transcript.pyannote[75].end 410.68409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 410.98784375
transcript.pyannote[76].end 417.50159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 418.21034375
transcript.pyannote[77].end 423.15471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 423.37409375
transcript.pyannote[78].end 427.59284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 428.03159375
transcript.pyannote[79].end 430.12409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 430.63034375
transcript.pyannote[80].end 435.06846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 435.55784375
transcript.pyannote[81].end 436.43534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 436.95846875
transcript.pyannote[82].end 445.76721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 446.81346875
transcript.pyannote[83].end 448.16346875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 448.41659375
transcript.pyannote[84].end 449.34471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 450.08721875
transcript.pyannote[85].end 450.66096875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 451.03221875
transcript.pyannote[86].end 451.48784375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 452.17971875
transcript.pyannote[87].end 458.28846875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 458.89596875
transcript.pyannote[88].end 462.13596875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 462.62534375
transcript.pyannote[89].end 465.51096875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 465.94971875
transcript.pyannote[90].end 468.32909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 469.52721875
transcript.pyannote[91].end 473.39159375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 474.04971875
transcript.pyannote[92].end 475.65284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 476.74971875
transcript.pyannote[93].end 482.84159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 483.39846875
transcript.pyannote[94].end 483.41534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 483.41534375
transcript.pyannote[95].end 491.11034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 491.43096875
transcript.pyannote[96].end 492.59534375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 493.03409375
transcript.pyannote[97].end 509.35221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 506.33159375
transcript.pyannote[98].end 506.56784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 508.00221875
transcript.pyannote[99].end 513.58784375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 513.95909375
transcript.pyannote[100].end 514.97159375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 515.24159375
transcript.pyannote[101].end 521.28284375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 521.77221875
transcript.pyannote[102].end 549.66659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 550.10534375
transcript.pyannote[103].end 573.34221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 573.51096875
transcript.pyannote[104].end 577.37534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 577.67909375
transcript.pyannote[105].end 579.16409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 580.32846875
transcript.pyannote[106].end 583.31534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 584.59784375
transcript.pyannote[107].end 590.74034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 591.49971875
transcript.pyannote[108].end 598.03034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 598.03034375
transcript.pyannote[109].end 600.12284375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 600.03846875
transcript.pyannote[110].end 603.81846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 603.81846875
transcript.pyannote[111].end 604.15596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 604.15596875
transcript.pyannote[112].end 608.96534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 608.40846875
transcript.pyannote[113].end 609.62346875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 609.52221875
transcript.pyannote[114].end 610.56846875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 610.97346875
transcript.pyannote[115].end 614.95596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 614.34846875
transcript.pyannote[116].end 617.04846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 617.18346875
transcript.pyannote[117].end 620.47409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 620.99721875
transcript.pyannote[118].end 629.02971875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 629.62034375
transcript.pyannote[119].end 630.07596875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 630.44721875
transcript.pyannote[120].end 639.84659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 640.25159375
transcript.pyannote[121].end 640.58909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 641.12909375
transcript.pyannote[122].end 642.74909375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 643.74471875
transcript.pyannote[123].end 644.85846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 647.03534375
transcript.pyannote[124].end 657.09284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 658.00409375
transcript.pyannote[125].end 663.79221875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 664.55159375
transcript.pyannote[126].end 677.05596875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 677.46096875
transcript.pyannote[127].end 682.67534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 683.45159375
transcript.pyannote[128].end 689.45909375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 689.61096875
transcript.pyannote[129].end 706.21596875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 707.19471875
transcript.pyannote[130].end 708.78096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 709.27034375
transcript.pyannote[131].end 710.75534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 711.32909375
transcript.pyannote[132].end 711.54846875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 711.63284375
transcript.pyannote[133].end 712.59471875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 713.32034375
transcript.pyannote[134].end 715.63221875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 716.15534375
transcript.pyannote[135].end 718.61909375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 718.78784375
transcript.pyannote[136].end 721.52159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 723.83346875
transcript.pyannote[137].end 724.50846875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 724.76159375
transcript.pyannote[138].end 729.40221875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 729.92534375
transcript.pyannote[139].end 731.51159375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 731.59596875
transcript.pyannote[140].end 733.58721875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 733.99221875
transcript.pyannote[141].end 738.14346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 738.70034375
transcript.pyannote[142].end 742.22721875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 742.39596875
transcript.pyannote[143].end 743.69534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 744.26909375
transcript.pyannote[144].end 746.88471875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 746.12534375
transcript.pyannote[145].end 746.22659375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 747.13784375
transcript.pyannote[146].end 747.88034375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 748.23471875
transcript.pyannote[147].end 754.15784375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 755.11971875
transcript.pyannote[148].end 757.54971875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 757.75221875
transcript.pyannote[149].end 757.76909375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 757.76909375
transcript.pyannote[150].end 761.49846875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 757.87034375
transcript.pyannote[151].end 757.97159375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 761.49846875
transcript.pyannote[152].end 770.91471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 761.88659375
transcript.pyannote[153].end 764.72159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 770.94846875
transcript.pyannote[154].end 770.98221875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 771.11721875
transcript.pyannote[155].end 772.88909375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 773.12534375
transcript.pyannote[156].end 777.79971875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 778.94721875
transcript.pyannote[157].end 780.33096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 780.29721875
transcript.pyannote[158].end 789.61221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 790.03409375
transcript.pyannote[159].end 793.76346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 794.21909375
transcript.pyannote[160].end 796.29471875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 796.39596875
transcript.pyannote[161].end 805.06971875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 805.52534375
transcript.pyannote[162].end 818.60346875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 818.99159375
transcript.pyannote[163].end 821.48909375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 821.75909375
transcript.pyannote[164].end 822.14721875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 822.36659375
transcript.pyannote[165].end 823.54784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 828.34034375
transcript.pyannote[166].end 829.38659375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 829.75784375
transcript.pyannote[167].end 830.46659375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 830.90534375
transcript.pyannote[168].end 831.78284375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 832.62659375
transcript.pyannote[169].end 833.89221875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 834.38159375
transcript.pyannote[170].end 849.56909375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 849.92346875
transcript.pyannote[171].end 855.40784375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 855.55971875
transcript.pyannote[172].end 856.15034375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 856.47096875
transcript.pyannote[173].end 868.92471875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 869.43096875
transcript.pyannote[174].end 880.63596875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 881.20971875
transcript.pyannote[175].end 881.68221875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 882.47534375
transcript.pyannote[176].end 885.61409375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 887.48721875
transcript.pyannote[177].end 893.35971875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 894.06846875
transcript.pyannote[178].end 894.54096875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 895.24971875
transcript.pyannote[179].end 896.49846875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 896.85284375
transcript.pyannote[180].end 897.96659375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 898.32096875
transcript.pyannote[181].end 901.35846875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 902.40471875
transcript.pyannote[182].end 902.99534375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 904.32846875
transcript.pyannote[183].end 906.50534375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 907.51784375
transcript.pyannote[184].end 909.82971875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 910.09971875
transcript.pyannote[185].end 912.66471875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 913.18784375
transcript.pyannote[186].end 930.60284375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 931.14284375
transcript.pyannote[187].end 932.67846875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 933.04971875
transcript.pyannote[188].end 934.18034375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 934.56846875
transcript.pyannote[189].end 935.59784375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 936.34034375
transcript.pyannote[190].end 941.77409375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 941.92596875
transcript.pyannote[191].end 944.91284375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 945.46971875
transcript.pyannote[192].end 949.43534375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 950.58284375
transcript.pyannote[193].end 952.00034375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 952.50659375
transcript.pyannote[194].end 953.45159375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 953.82284375
transcript.pyannote[195].end 956.65784375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 956.74221875
transcript.pyannote[196].end 961.06221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 961.61909375
transcript.pyannote[197].end 966.73221875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 967.37346875
transcript.pyannote[198].end 969.75284375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 970.51221875
transcript.pyannote[199].end 973.49909375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 974.64659375
transcript.pyannote[200].end 976.53659375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 976.90784375
transcript.pyannote[201].end 980.36721875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 980.89034375
transcript.pyannote[202].end 984.75471875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 985.78409375
transcript.pyannote[203].end 1018.69034375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 1018.84221875
transcript.pyannote[204].end 1026.80721875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 1027.34721875
transcript.pyannote[205].end 1027.68471875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 1028.02221875
transcript.pyannote[206].end 1028.96721875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 1029.55784375
transcript.pyannote[207].end 1032.37596875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 1032.67971875
transcript.pyannote[208].end 1038.23159375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 1039.04159375
transcript.pyannote[209].end 1039.56471875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 1041.15096875
transcript.pyannote[210].end 1042.60221875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 1042.99034375
transcript.pyannote[211].end 1046.66909375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 1047.19221875
transcript.pyannote[212].end 1048.82909375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 1049.26784375
transcript.pyannote[213].end 1051.09034375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 1051.41096875
transcript.pyannote[214].end 1052.06909375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 1053.06471875
transcript.pyannote[215].end 1062.63284375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 1062.66659375
transcript.pyannote[216].end 1072.60596875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 1072.85909375
transcript.pyannote[217].end 1075.82909375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 1076.92596875
transcript.pyannote[218].end 1080.67221875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 1081.31346875
transcript.pyannote[219].end 1090.25721875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 1090.35846875
transcript.pyannote[220].end 1118.45534375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 1119.83909375
transcript.pyannote[221].end 1130.94284375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 1132.03971875
transcript.pyannote[222].end 1132.32659375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 1132.95096875
transcript.pyannote[223].end 1133.96346875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 1133.96346875
transcript.pyannote[224].end 1133.99721875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 1133.99721875
transcript.pyannote[225].end 1134.33471875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 1134.33471875
transcript.pyannote[226].end 1136.08971875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 1137.01784375
transcript.pyannote[227].end 1137.60846875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 1137.70971875
transcript.pyannote[228].end 1138.92471875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1139.56596875
transcript.pyannote[229].end 1142.19846875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 1142.62034375
transcript.pyannote[230].end 1146.07971875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 1146.83909375
transcript.pyannote[231].end 1149.70784375
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 1150.26471875
transcript.pyannote[232].end 1157.84159375
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 1157.92596875
transcript.pyannote[233].end 1162.78596875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 1163.32596875
transcript.pyannote[234].end 1167.51096875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 1167.51096875
transcript.pyannote[235].end 1168.20284375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 1168.20284375
transcript.pyannote[236].end 1168.33784375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 1168.33784375
transcript.pyannote[237].end 1170.83534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 1170.83534375
transcript.pyannote[238].end 1178.32784375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 1175.25659375
transcript.pyannote[239].end 1175.74596875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 1177.07909375
transcript.pyannote[240].end 1180.18409375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 1179.34034375
transcript.pyannote[241].end 1208.51721875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 1209.12471875
transcript.pyannote[242].end 1220.22846875
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 1220.65034375
transcript.pyannote[243].end 1223.92409375
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 1224.75096875
transcript.pyannote[244].end 1240.79909375
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 1240.96784375
transcript.pyannote[245].end 1243.02659375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 1243.14471875
transcript.pyannote[246].end 1244.88284375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 1245.05159375
transcript.pyannote[247].end 1253.50596875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 1253.80971875
transcript.pyannote[248].end 1262.58471875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 1262.55096875
transcript.pyannote[249].end 1280.25284375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 1269.62159375
transcript.pyannote[250].end 1270.00971875
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 1280.99534375
transcript.pyannote[251].end 1285.14659375
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 1285.28159375
transcript.pyannote[252].end 1285.66971875
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 1286.05784375
transcript.pyannote[253].end 1292.80784375
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 1293.58409375
transcript.pyannote[254].end 1293.60096875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 1293.60096875
transcript.pyannote[255].end 1294.69784375
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 1293.61784375
transcript.pyannote[256].end 1293.78659375
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 1294.36034375
transcript.pyannote[257].end 1301.16096875
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 1301.16096875
transcript.pyannote[258].end 1301.41409375
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 1301.41409375
transcript.pyannote[259].end 1304.48534375
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 1301.46471875
transcript.pyannote[260].end 1302.34221875
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 1304.02971875
transcript.pyannote[261].end 1313.96909375
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 1311.64034375
transcript.pyannote[262].end 1311.75846875
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 1311.94409375
transcript.pyannote[263].end 1311.97784375
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 1313.09159375
transcript.pyannote[264].end 1313.91846875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 1314.32346875
transcript.pyannote[265].end 1315.63971875
transcript.pyannote[266].speaker SPEAKER_00
transcript.pyannote[266].start 1315.65659375
transcript.pyannote[266].end 1331.99159375
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 1332.98721875
transcript.pyannote[267].end 1336.19346875
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 1334.25284375
transcript.pyannote[268].end 1334.62409375
transcript.pyannote[269].speaker SPEAKER_01
transcript.pyannote[269].start 1335.53534375
transcript.pyannote[269].end 1337.08784375
transcript.pyannote[270].speaker SPEAKER_00
transcript.pyannote[270].start 1336.58159375
transcript.pyannote[270].end 1358.06346875
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 1358.06346875
transcript.pyannote[271].end 1358.41784375
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 1358.41784375
transcript.pyannote[272].end 1364.22284375
transcript.pyannote[273].speaker SPEAKER_00
transcript.pyannote[273].start 1364.96534375
transcript.pyannote[273].end 1378.48221875
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 1378.75221875
transcript.pyannote[274].end 1389.38346875
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 1380.20346875
transcript.pyannote[275].end 1380.52409375
transcript.pyannote[276].speaker SPEAKER_01
transcript.pyannote[276].start 1385.21534375
transcript.pyannote[276].end 1386.48096875
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 1389.99096875
transcript.pyannote[277].end 1400.70659375
transcript.pyannote[278].speaker SPEAKER_01
transcript.pyannote[278].start 1401.28034375
transcript.pyannote[278].end 1401.88784375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 1401.88784375
transcript.pyannote[279].end 1401.90471875
transcript.pyannote[280].speaker SPEAKER_01
transcript.pyannote[280].start 1401.90471875
transcript.pyannote[280].end 1401.92159375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 1401.92159375
transcript.pyannote[281].end 1408.75596875
transcript.pyannote[282].speaker SPEAKER_01
transcript.pyannote[282].start 1408.75596875
transcript.pyannote[282].end 1417.44659375
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 1415.57346875
transcript.pyannote[283].end 1420.90596875
transcript.pyannote[284].speaker SPEAKER_01
transcript.pyannote[284].start 1420.63596875
transcript.pyannote[284].end 1426.40721875
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 1422.25596875
transcript.pyannote[285].end 1434.16971875
transcript.pyannote[286].speaker SPEAKER_01
transcript.pyannote[286].start 1427.06534375
transcript.pyannote[286].end 1427.97659375
transcript.pyannote[287].speaker SPEAKER_00
transcript.pyannote[287].start 1434.87846875
transcript.pyannote[287].end 1436.90346875
transcript.pyannote[288].speaker SPEAKER_01
transcript.pyannote[288].start 1437.73034375
transcript.pyannote[288].end 1449.44159375
transcript.pyannote[289].speaker SPEAKER_00
transcript.pyannote[289].start 1439.09721875
transcript.pyannote[289].end 1439.46846875
transcript.pyannote[290].speaker SPEAKER_00
transcript.pyannote[290].start 1440.90284375
transcript.pyannote[290].end 1441.52721875
transcript.pyannote[291].speaker SPEAKER_00
transcript.pyannote[291].start 1442.20221875
transcript.pyannote[291].end 1444.56471875
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 1449.15471875
transcript.pyannote[292].end 1462.43534375
transcript.pyannote[293].speaker SPEAKER_01
transcript.pyannote[293].start 1450.31909375
transcript.pyannote[293].end 1451.07846875
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 1462.50284375
transcript.pyannote[294].end 1463.88659375
transcript.pyannote[295].speaker SPEAKER_01
transcript.pyannote[295].start 1462.97534375
transcript.pyannote[295].end 1471.05846875
transcript.pyannote[296].speaker SPEAKER_00
transcript.pyannote[296].start 1469.15159375
transcript.pyannote[296].end 1471.86846875
transcript.pyannote[297].speaker SPEAKER_01
transcript.pyannote[297].start 1471.86846875
transcript.pyannote[297].end 1472.08784375
transcript.pyannote[298].speaker SPEAKER_00
transcript.pyannote[298].start 1472.39159375
transcript.pyannote[298].end 1516.90784375
transcript.pyannote[299].speaker SPEAKER_01
transcript.pyannote[299].start 1508.50409375
transcript.pyannote[299].end 1508.75721875
transcript.pyannote[300].speaker SPEAKER_01
transcript.pyannote[300].start 1517.02596875
transcript.pyannote[300].end 1525.54784375
transcript.pyannote[301].speaker SPEAKER_01
transcript.pyannote[301].start 1525.90221875
transcript.pyannote[301].end 1532.39909375
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 1531.03221875
transcript.pyannote[302].end 1532.11221875
transcript.pyannote[303].speaker SPEAKER_00
transcript.pyannote[303].start 1532.28096875
transcript.pyannote[303].end 1549.20659375
transcript.pyannote[304].speaker SPEAKER_00
transcript.pyannote[304].start 1549.64534375
transcript.pyannote[304].end 1553.29034375
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 1554.31971875
transcript.pyannote[305].end 1569.43971875
transcript.pyannote[306].speaker SPEAKER_01
transcript.pyannote[306].start 1569.13596875
transcript.pyannote[306].end 1569.74346875
transcript.pyannote[307].speaker SPEAKER_00
transcript.pyannote[307].start 1569.74346875
transcript.pyannote[307].end 1590.17909375
transcript.pyannote[308].speaker SPEAKER_01
transcript.pyannote[308].start 1590.17909375
transcript.pyannote[308].end 1592.98034375
transcript.pyannote[309].speaker SPEAKER_00
transcript.pyannote[309].start 1592.08596875
transcript.pyannote[309].end 1592.40659375
transcript.pyannote[310].speaker SPEAKER_00
transcript.pyannote[310].start 1592.98034375
transcript.pyannote[310].end 1594.31346875
transcript.pyannote[311].speaker SPEAKER_01
transcript.pyannote[311].start 1593.41909375
transcript.pyannote[311].end 1593.82409375
transcript.whisperx[0].start 14.802
transcript.whisperx[0].end 25.471
transcript.whisperx[0].text 好謝謝是不是部長你再喝一口水慢慢來喝好了再上好了OK好
transcript.whisperx[1].start 32.455
transcript.whisperx[1].end 35.078
transcript.whisperx[1].text 今天大家談了很多但是我因為時間的關係
transcript.whisperx[2].start 37.6
transcript.whisperx[2].end 61.796
transcript.whisperx[2].text 所以其實我不太想要再談就是說因為你們所屬基金違規使用的這個問題不過裡面有一個審計單位講了一句話我覺得我還是忍不住就問一下但你也不一定要馬上回答就是說他們採購的禮品分送的對象不明分送的對象不明沒有照冊也不想拿去送給誰
transcript.whisperx[3].start 63.477
transcript.whisperx[3].end 80.758
transcript.whisperx[3].text 這個事情就不是違規使用而已這個問題可大可小好那我就不問你這個了我是要問你有比這個更令我擔心的啦因為這個這個問題是大家違規使用大家都已經講很久那也
transcript.whisperx[4].start 82.318
transcript.whisperx[4].end 97.711
transcript.whisperx[4].text 政治上也報導很多但我要講一個是跟人民比較相關當然就是最關注的就是川普政府他舉著這個保護主義然後的大旗然後一個美國
transcript.whisperx[5].start 99.292
transcript.whisperx[5].end 121.049
transcript.whisperx[5].text 再度偉大的這樣的一個大旗高舉所以國族主義興起那在2000年我們要加入WTO的時候當時對WTO的遊戲規則我們至少我個人啊當時就大家在討論就覺得只有一招可以對付WTO的這個遊戲規則因為WTO的遊戲規則裡面對勞工對農業對環保是最不利的
transcript.whisperx[6].start 129.695
transcript.whisperx[6].end 141.383
transcript.whisperx[6].text 最弱勢的那當時在二三十年前我們就預見了說唯有國族主義可以對抗WTO的這個遊戲規則當然國族主義牽涉的層面很多比如說都開放都進口都零關稅但我們全部都不用不買這是一種方法但沒想到21世紀的2025年國族主義是
transcript.whisperx[7].start 159.034
transcript.whisperx[7].end 172.323
transcript.whisperx[7].text 乾脆把WTO的整個遊戲規則和架構都給它瓦解掉所以今天我們不是看到加關稅32%不只是看到這個憂慮其實我前幾天蠻焦慮的因為這個被瓦解是一個WTO的這個架構那貿易的遊戲規則瞬間大家都可以呼呼的頂來
transcript.whisperx[8].start 185.034
transcript.whisperx[8].end 208.423
transcript.whisperx[8].text 你對我關稅壁壘 我也對你關稅壁壘所有的一切 從多邊主義變成一對一單邊 然後都要重來 重談你對我 美國可以這樣對人家中國也可以這樣對人家市場大的 大國都可以這樣對任何每一個好欺負的那這樣子 這樣子
transcript.whisperx[9].start 210.236
transcript.whisperx[9].end 234.859
transcript.whisperx[9].text 台灣會倒我們是以出口為導向的我們的經貿沒有出口賺不了錢我們會倒我們不但沒有市場我們也沒有資源沒有能源所以在這裡我其實更擔憂的是說不是舊股市而已股市 股災股災的受限就那些人雖然全台灣股民已經一千多萬了
transcript.whisperx[10].start 235.84
transcript.whisperx[10].end 260.325
transcript.whisperx[10].text 一千多萬幾乎家家戶戶都有玩股票了這當然很嚴重可是經濟產業就業這個是更嚴重的那我其實很擔心你們啦很擔心你們的原因是說我們真的很想要知道說你政府到底有沒有掌握到掌握到雖然我們沒有辦法去預判到未來的遊戲世界貿易
transcript.whisperx[11].start 263.467
transcript.whisperx[11].end 274.004
transcript.whisperx[11].text 的遊戲規則會怎麼演變也不敢去也不用這麼急著要去去擔憂 不用杞人憂天但是至少跟美國的經貿這一次的32%的加稅
transcript.whisperx[12].start 278.427
transcript.whisperx[12].end 305.425
transcript.whisperx[12].text 如果沒有轉圜如果從今天就要生效那對我們國內的產業的衝擊會是集中在哪幾個產業別你才能夠告訴我說受衝擊的勞工會有多少而衝擊的對象他們需要什麼樣的政策來銜接來給他們保護起來這個保護網是足夠於網住他們讓他們衝擊不要太大的
transcript.whisperx[13].start 308.207
transcript.whisperx[13].end 332.906
transcript.whisperx[13].text 部長你們有沒有討論過不只討論其實也做了評估那目前確實看起來針對這32%的關稅美方提出來32%但未來在談判過程裡面會不會調整這個還要看談判的狀況可是如果就這32%來看的話大家其實最擔心的事情是關於這些傳產的出口產出口製造業傳產一句話不要這樣一語帶過我需要更精準的了解到包括機械
transcript.whisperx[14].start 334.287
transcript.whisperx[14].end 350.558
transcript.whisperx[14].text 包括汽車零組件包括像是一些金屬製品的水五金包括扣件業 螺絲螺馬你確定嗎我把你的朋友叫盧祁鴻他寫了一篇他的資料給你看來台灣對美國出口七成集中在十項類別看清楚啊
transcript.whisperx[15].start 361.065
transcript.whisperx[15].end 367.946
transcript.whisperx[15].text 對還有包括剛才說包括電線電纜我還沒講包括電線電纜然後這個是產品而已對這個是產品來我講他的資料來台灣的這個出口裡面前十類是這種第一類是自動資料處理機器還有磁光
transcript.whisperx[16].start 389.392
transcript.whisperx[16].end 416.506
transcript.whisperx[16].text 讀取器第二名統計上第二名是特定設備的零件與配件HS8473再來是電子集體電路及零件這個不討論因為這個是ITA對這個還沒有公佈是我不見得我不認為他會是豁免他只能說還沒有公佈再來是電話機加智慧型手機再來是光碟磁帶固定儲存設備
transcript.whisperx[17].start 418.874
transcript.whisperx[17].end 445.427
transcript.whisperx[17].text 然後未分類的產品螺絲、螺栓、螺母、卯丁接下來是拖拉機運輸車輛零件和配件再來是變壓器、轉換器還有電感器零件最後才是運動器材和設備好這個是產品可是這一些HS開頭的編號這些產品對照到產業別是真的如你所說的是
transcript.whisperx[18].start 447.397
transcript.whisperx[18].end 458.922
transcript.whisperx[18].text 機械產業還有什麼是嗎OK來他們對照道產業別應該是電子零組件製造業那這個電腦電子產品及光學製品製造業電力設備及配備製造業機械設備製造等好來那這幾個產業我剛剛講這幾個產業嘛這是你的好朋友
transcript.whisperx[19].start 476.786
transcript.whisperx[19].end 481.81
transcript.whisperx[19].text 他自己去找資料 爬梳出來的我在官方部門 我至少你有看過這樣的統計嗎
transcript.whisperx[20].start 484.307
transcript.whisperx[20].end 508.439
transcript.whisperx[20].text 我有看過 財務部門有相關的統計我們從勞動部的角度我們會特別關心的事情是因為包括我們還會關心說他是不是中小企業的比例特別高因為如果中小企業的比例特別高他遇到衝擊的時候他可能承受衝擊的能力會再比大的企業再來的更差這是我們從勞動部的角度來說我們要特別關心
transcript.whisperx[21].start 508.939
transcript.whisperx[21].end 516.903
transcript.whisperx[21].text 好朋友關注的角度他是從總體來講因為我在官方沒有看到這個統計然後他看到台灣過去2023年全台灣的GDP比2000年因為2000年台灣剛要加入WTO
transcript.whisperx[22].start 530.971
transcript.whisperx[22].end 535.694
transcript.whisperx[22].text 我們增加了這個12.91兆元就是這23年來台灣的GDP增加了12.91兆那其中32%是由剛剛對應的這四項產業所貢獻
transcript.whisperx[23].start 550.206
transcript.whisperx[23].end 578.588
transcript.whisperx[23].text 所以過去二十幾年來的貿易自由化的這個極盛的時期台灣經濟成長主要的三成以上都來自這四項產業就是我剛剛念過電子零組件製造電腦電子產品和光學製品電力設備及配備製造業機械設備製造業這很關鍵喔三成以上台灣GDP成長的貢獻來自於這四大產業
transcript.whisperx[24].start 580.39
transcript.whisperx[24].end 590.491
transcript.whisperx[24].text 而且現在就講到重點 受雇人數你們有沒有評估到 你說關注的是中小企業那有沒有評估到衝擊人數會有多少
transcript.whisperx[25].start 591.79
transcript.whisperx[25].end 619.25
transcript.whisperx[25].text 我們其實有把這些相關的產業他的受僱的人數大概做了一些掌握重擊大概有多少但是我沒有辦法說那個產業裡面所有的勞工數字就是一定會受衝因為這裡面也包括你講得太好了因為也包括有一些產業他並不是他所有的訂單都是只有對美國你講得太正確了但是我還是要告訴你你的好朋友說的
transcript.whisperx[26].start 621.398
transcript.whisperx[26].end 637.449
transcript.whisperx[26].text 這個受僱人數啊這一些產業它的產業特色是資本和技術密集度高一般GDP的成長全台灣成長了這麼高但是呢我們的受僱人數整體這20幾年來沒有什麼成長但是呢這個
transcript.whisperx[27].start 647.082
transcript.whisperx[27].end 652.714
transcript.whisperx[27].text 成長的大部分GDP成長然後大部分都是在工業及服務業的人數成長了16%但2000年的話
transcript.whisperx[28].start 658.572
transcript.whisperx[28].end 675.547
transcript.whisperx[28].text 2000年的話這些產業的僱用人數就是四大類整體是服務業在成長這20幾年來可是偏偏這四大項的產業的受僱人數它從84.8萬上升到2023年是124萬人
transcript.whisperx[29].start 683.956
transcript.whisperx[29].end 704.546
transcript.whisperx[29].text 所以說這20幾年來這四項產業多僱用了40萬人在工業人數逐漸的佔比在下降可是這四大產業人數多了40萬的從業人口所以它還逆勢的佔整體工業及服務業受僱人數比重從14%
transcript.whisperx[30].start 707.273
transcript.whisperx[30].end 720.828
transcript.whisperx[30].text 上升到15%所以我們現在看得到的就是說這幾項產業出口到美國的前幾大商品它對應的產業別它的受僱人數是大幅成長的
transcript.whisperx[31].start 723.9
transcript.whisperx[31].end 732.544
transcript.whisperx[31].text 如果他受到衝擊 那衝擊很大可是他到底有沒有受到衝擊所以你的好朋友 他講了幾個觀點就是說我們32%的關稅放進去
transcript.whisperx[32].start 738.757
transcript.whisperx[32].end 753.755
transcript.whisperx[32].text 我們會不會受到大的衝擊要考量幾個一個美國自己有我們的商品是不是無可替代啦是第二個消費者的價格彈性低再貴都會買如果是無可替代的話
transcript.whisperx[33].start 755.111
transcript.whisperx[33].end 759.054
transcript.whisperx[33].text 你就要給我買啊 你不給我買就不會贏的啊就是關稅是由誰來承擔啦再來就是說 我們一樣賣東西到美國主要的競爭者他的關稅如果比我們高那也沒關係啊我們的主要競爭者如果是越南越南幾%
transcript.whisperx[34].start 778.973
transcript.whisperx[34].end 801.879
transcript.whisperx[34].text 越南之前是46那如果我們主要競爭者是越南他們關稅課的比我們高我們會取代他們嘛搞不好因為這樣子我們還獲利呢所以這要來檢驗了那檢驗的狀況是這樣子台灣的生產成本其實如果美國貿易部門公布的有幾個比32%以上的我們就叫它高關稅國
transcript.whisperx[35].start 805.58
transcript.whisperx[35].end 823.326
transcript.whisperx[35].text 那如果是10%到32%的叫中低關稅股好了那加拿大和墨西哥就不在加徵範圍內就不討論那台灣的產品你看一下我們的主要競爭者這幾類裡面你來看一下前四項前四項前四名
transcript.whisperx[36].start 832.862
transcript.whisperx[36].end 836.986
transcript.whisperx[36].text 錢世明就是HS 8471 8473 8517還有8523抱歉我念錯了 8542和8517 8523沒有他們輸出到美國 在美國的市佔率是46%他的市佔率僅次於高關稅國跟高關稅
transcript.whisperx[37].start 856.845
transcript.whisperx[37].end 885.288
transcript.whisperx[37].text 我們比高官稅的其他國家還要少一點他們加起來但我們跟所有的高官稅國加起來市佔率是73%所以高官稅國加我們加起來在美國的市佔率是73%那如果出口到美國前十大類的商品來看就是這張圖表來看這個高官稅國的市佔率很高
transcript.whisperx[38].start 887.54
transcript.whisperx[38].end 905.726
transcript.whisperx[38].text 那我們是高關稅國裡面32%是最低的有可能我們還要替代掉他們因為我們可能比他們關稅還低那我們就有市場價格的競爭性這樣子然後再來就是說他這裡講到
transcript.whisperx[39].start 907.537
transcript.whisperx[39].end 932.484
transcript.whisperx[39].text 八四七三 八五二三 七三一八 八七零八 八五零四就是特定設備的零件和配件 八五二三的光碟磁帶固態儲存設備螺絲 螺栓 螺紋 錨釘 拖拉機 運輸車輛零件和配件 偏壓器 轉換器和感電的零件等等
transcript.whisperx[40].start 933.749
transcript.whisperx[40].end 946.363
transcript.whisperx[40].text OK 這個高關稅國的市佔率不高可是我們都知道高關稅國他現在所公佈的那幾個國家包括越南 泰國 中國 印尼他們理論上價格的競爭優勢很高
transcript.whisperx[41].start 950.609
transcript.whisperx[41].end 969.018
transcript.whisperx[41].text 他們的製造成本很低理論上他們的市占率應該在美國很高可是並沒有所以他們 你的好朋友說消費者或許重視品質更勝於價格但是呢 其實這個8523 7318
transcript.whisperx[42].start 974.667
transcript.whisperx[42].end 976.089
transcript.whisperx[42].text 8708 8523 8708 8504他又覺得說這個被替代的可能性也是蠻高的
transcript.whisperx[43].start 985.836
transcript.whisperx[43].end 1008.094
transcript.whisperx[43].text 所以在這種狀況裡就是說美國自己國內有然後要我們雖然不是無可取代但是他們要自己製造這個太難了但是就是說有一種是我們價格比較高但是因為品質比較好所以人家消費者需求的是品質而不是價格而已
transcript.whisperx[44].start 1009.415
transcript.whisperx[44].end 1026.347
transcript.whisperx[44].text 但是呢我們真的是擔心就是說短期裡面我們或許看不到說馬上我們就有來自美國自己本土製造或是其他中低關稅國就把我們的產業產品都替代掉但是呢我們比較擔心的就是說你從這裡來看出口產業在面臨貿易自由化如果WTO架構瓦解的時候
transcript.whisperx[45].start 1041.453
transcript.whisperx[45].end 1048.36
transcript.whisperx[45].text 這個未來都有可能那在這種狀況裡面我們真的是產業的寒冬可能會來臨產業的寒冬會來臨
transcript.whisperx[46].start 1053.12
transcript.whisperx[46].end 1074.969
transcript.whisperx[46].text 光是短暫的評估美國的這個衝擊我們還看不出到底是所有的產業都會受到衝擊或者是只是部分那這個勞工怎麼辦那我們就想到說那你端出來的政策夠不夠你的就業安定安定就業的四大措施夠不夠在這裡面我就想要跟你討論一下
transcript.whisperx[47].start 1077.34
transcript.whisperx[47].end 1103.032
transcript.whisperx[47].text 之前我們一直關心的就是無薪假津貼那因為上一屆我被人家踢出去未還委員會我從2016年就關心無薪假津貼那到持續關心到我被迫我不准參加未還委員會來然後終於看到2023年我們的無薪假津貼你們已經修正了就是就業保險促進就業的實施辦法
transcript.whisperx[48].start 1105.993
transcript.whisperx[48].end 1130.55
transcript.whisperx[48].text 你們說只要勞僱雙方有人開始協商要減少工時就是好聽 我講說你們講的很好聽叫減班休息其實就無形價那經評估有必要時勞動部得召開雇用安定措施的諮詢會議然後去辦理雇用安定措施
transcript.whisperx[49].start 1132.059
transcript.whisperx[49].end 1157.435
transcript.whisperx[49].text 好那我的意思我的問題跟跟跟我的說明其實減班休息雖然外界會認為是無薪假但他並不是真的無薪台灣的減班休息是要付基本工資的我知道很多的國家他的無薪假是不用付不用付基本工但台灣的所以講無薪假有的時候會讓人家真的以為他是真的無薪但並不是真的無薪
transcript.whisperx[50].start 1157.964
transcript.whisperx[50].end 1174.903
transcript.whisperx[50].text 好你們要用減班休息也可以但是也有人真的是說你不希望你不希望無薪的話他可能給的沒有給到全薪喔這個是執行面的問題是他會不給全薪但至少他要給不給全部的基本工資喔也有喔但是大家
transcript.whisperx[51].start 1175.123
transcript.whisperx[51].end 1179.829
transcript.whisperx[51].text 不好說 這個就不要講了 要爭持在這當然你要講說他不符合而且違法可是勞工沒有談判的籌碼有時候他就是要多這個錢好 那我現在不爭持這個名詞我現在要問的是說
transcript.whisperx[52].start 1191.624
transcript.whisperx[52].end 1208.022
transcript.whisperx[52].text 到底你們什麼時候會我們重點是當你們不早一點啟動這個機制然後當衝擊來的因為今天4月9號要開始嘛然後你們的安定措施諮詢會議你認為你什麼時候可能會召開
transcript.whisperx[53].start 1209.158
transcript.whisperx[53].end 1223.715
transcript.whisperx[53].text 跟委員報告我們過去其實會有一些關於安定就業相關的政策的工具我們在把這些政策工具現在也在做一些經驗的彙整可是我們目前是要來去規劃出一個因應目前關稅的版本
transcript.whisperx[54].start 1224.995
transcript.whisperx[54].end 1252.43
transcript.whisperx[54].text 這個因為過去關稅的版本的意思是說比方說我們過去可能把這些相關的工具它是用在疫情的期間可是疫情裡面其實它很多是服務業可是這一次很多是出口的製造業它還是會有情境上面的不同所以我們希望能夠把這些相關的工具它可能啟動的條件或者是適用的範圍包括是支持力度如果需要加碼的話都有一個相對在這一次關稅的量身訂做的做法那這也不是只有針對剛剛
transcript.whisperx[55].start 1253.951
transcript.whisperx[55].end 1279.936
transcript.whisperx[55].text 林委員說的這個雇用安定的措施其實我們相對應的好幾個就業工具現在都在做這些情境跟條件的重新的盤整我再提醒你一下你的就業保險促進就業的實施辦法裡面不是限於服務業喔不是限於服務業喔你剛剛講的好像說在疫情期間才這麼寬鬆不是這個是一體試用而且就是工業服務業通通一體試用製造業都一體試用而且我再提醒你一下
transcript.whisperx[56].start 1281.036
transcript.whisperx[56].end 1292.396
transcript.whisperx[56].text 第一個要件叫受景氣因素影響導致停工或減產那這個美國關稅的這個衝擊夠不夠成這個第一個要件的第一句話
transcript.whisperx[57].start 1294.475
transcript.whisperx[57].end 1302.36
transcript.whisperx[57].text 如果造成衝擊我認為當然是符合的所以這裡也包括我們在跟經濟部針對這個問題在做討論因為相對應的這個產業是經濟部會來跟我們做申請因為我們的就業保險促進就業實施辦法裡面第一句話就是要受景氣因素這樣子你認為是OK 那很好
transcript.whisperx[58].start 1314.386
transcript.whisperx[58].end 1331.605
transcript.whisperx[58].text 再來就是說中小企業的平均壽命中小企業13年那傳產的或中小企業的傳產裡面很多勞工從業人員我們都知道整體的勞工大概有八成都是在中小企業就業
transcript.whisperx[59].start 1333.018
transcript.whisperx[59].end 1357.241
transcript.whisperx[59].text 所有企業提供了八成的勞工的就業機會傳產裡面從業人員也都是資深人員居多當年輕做到資深都是中高齡而這一波如果受衝擊的就是中高齡中高齡的人真的如果放了無薪假然後再重新出發有那麼容易重新就業嗎大家都知道是問號
transcript.whisperx[60].start 1358.522
transcript.whisperx[60].end 1363.862
transcript.whisperx[60].text 沒那麼容易所以你現在的安心就業你們的四大措施裡面
transcript.whisperx[61].start 1365.171
transcript.whisperx[61].end 1377.576
transcript.whisperx[61].text 維持雇用安定薪資差額補貼減班休息可是你諮詢會議都還沒開充電再出發然後叫他們去參訓那他們要參訓什麼產業他們能夠參訓什麼產業鼓勵企業辦訓在職訓練中小企業都沒有在職訓練
transcript.whisperx[62].start 1390.781
transcript.whisperx[62].end 1399.871
transcript.whisperx[62].text 辦訓的能力協助微型創業利息補貼中高齡失業也不太有這個能力自行去創業
transcript.whisperx[63].start 1401.972
transcript.whisperx[63].end 1419.093
transcript.whisperx[63].text 所以你這個對製造業的中高齡勞工而言可能距離很遙遠所以我們其實希望要特別針對現在的情境去做這些你針對現在的情境就是第一個製造業
transcript.whisperx[64].start 1420.034
transcript.whisperx[64].end 1423.257
transcript.whisperx[64].text 不是服務業嘛 優先中階是製造業再來就是中小型的製造業中小型的製造業然後呢中高齡然後你說辦訓中小企業辦訓這個是
transcript.whisperx[65].start 1437.799
transcript.whisperx[65].end 1451.331
transcript.whisperx[65].text 我們也可以辦訓所以我們也在調整我們的辦訓因為也有一些工會來跟我們說他們也希望說如果要有一些把他們轉換到其他的產業的時候他們希望我很樂意聽到你說你們也願意辦訓或是委託其他職業工會來辦訓因為你端出來的時候是講鼓勵企業辦訓我是跟你講這個是
transcript.whisperx[66].start 1463.141
transcript.whisperx[66].end 1471.288
transcript.whisperx[66].text 我們也在這個裡面 包括我們自己在多辦訊 而且辦訊的方向也希望能夠去符合接下來新的產業的需求你講對了 可是新的產業這些中高齡有辦法馬上上手嗎而且中高齡成功轉換
transcript.whisperx[67].start 1478.995
transcript.whisperx[67].end 1506.696
transcript.whisperx[67].text 行業的這個統計你們有看得出來留任率高嗎其實我們看到相對於年輕族群中高齡尋找新工作的過程都是很辛苦和漫長的啦光是要找到願意聘僱自己的僱主都很難的所以最終他們都是面臨到淪為流動性最高低薪低技術的派遣勞工或者是提早退休或者是失業
transcript.whisperx[68].start 1507.797
transcript.whisperx[68].end 1525.275
transcript.whisperx[68].text 經常是這樣子所以你端出來的牛肉要能夠網得住他們銜接得住他們那要很務實啊跟林委員說明我們其實現在當然因為台灣的人口結構包括勞動結構確實一定會往中高齡去所以我們對於中高齡的協助包括
transcript.whisperx[69].start 1526.256
transcript.whisperx[69].end 1548.901
transcript.whisperx[69].text 有一些相對應的措施不管是訓練也好甚至植物在設計也好需要更細緻的來協助他們你在這裡講這幾句話都很容易啊但是你設計出來很具體的很務實的是什麼那就不容易了那光是你第一點你世大安定措施裡面第一點就是所謂的無薪假津貼我們不講無薪假叫簡班休息津貼我就問你的你們的諮詢會議沒有辦理
transcript.whisperx[70].start 1555.064
transcript.whisperx[70].end 1567.177
transcript.whisperx[70].text 你就沒有辦法馬上立即及時第一個第二個第二個其實你不用怕太早辦理因為太早辦理你們的實施辦法裡面還有一條狀況OK的情境景氣變好了隨時可以中斷
transcript.whisperx[71].start 1570.02
transcript.whisperx[71].end 1574.941
transcript.whisperx[71].text 所以不要怕太早啟動你們的諮詢會議所以我再問你一次你覺得可以盡早來啟動這個諮詢會議你們評估這個衝擊有沒有可能什麼時候會開始這個諮詢會議如果你們諮詢會議啟動了我們才有辦法去申請津貼啊我們應該可以在下週就來啟動這個諮詢會議好 謝謝