IVOD_ID |
160015 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160015 |
日期 |
2025-04-09 |
會議資料.會議代碼 |
委員會-11-3-26-5 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
5 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-09T13:27:35+08:00 |
結束時間 |
2025-04-09T13:53:42+08:00 |
影片長度 |
00:26:07 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce599dc46da52df047a9dd72f8e909e2235ac7c33fa4103456aa518cd20a1dc6235ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
林淑芬 |
委員發言時間 |
13:27:35 - 13:53:42 |
會議時間 |
2025-04-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長對於「勞動部所屬基金違規使用如何追回及究責」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
0.75659375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
2.49471875 |
transcript.pyannote[1].end |
4.97534375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
14.77971875 |
transcript.pyannote[2].end |
17.29409375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
17.56409375 |
transcript.pyannote[3].end |
19.74096875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
22.00221875 |
transcript.pyannote[4].end |
23.16659375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
24.29721875 |
transcript.pyannote[5].end |
25.78221875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
30.20346875 |
transcript.pyannote[6].end |
30.77721875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
31.23284375 |
transcript.pyannote[7].end |
36.70034375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
37.49346875 |
transcript.pyannote[8].end |
57.01784375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
57.54096875 |
transcript.pyannote[9].end |
59.46471875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
59.92034375 |
transcript.pyannote[10].end |
62.58659375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
63.16034375 |
transcript.pyannote[11].end |
71.80034375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
72.10409375 |
transcript.pyannote[12].end |
81.13221875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
82.27971875 |
transcript.pyannote[13].end |
87.46034375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
88.16909375 |
transcript.pyannote[14].end |
88.65846875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
89.60346875 |
transcript.pyannote[15].end |
92.38784375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
92.57346875 |
transcript.pyannote[16].end |
93.56909375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
94.17659375 |
transcript.pyannote[17].end |
96.75846875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
97.18034375 |
transcript.pyannote[18].end |
98.59784375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
99.22221875 |
transcript.pyannote[19].end |
100.26846875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
100.57221875 |
transcript.pyannote[20].end |
104.65596875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
105.17909375 |
transcript.pyannote[21].end |
110.35971875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
110.81534375 |
transcript.pyannote[22].end |
141.66284375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
142.32096875 |
transcript.pyannote[23].end |
164.61284375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
165.22034375 |
transcript.pyannote[24].end |
172.56096875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
173.62409375 |
transcript.pyannote[25].end |
174.21471875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
174.72096875 |
transcript.pyannote[26].end |
184.23846875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
184.98096875 |
transcript.pyannote[27].end |
207.44159375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
207.93096875 |
transcript.pyannote[28].end |
209.44971875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
210.19221875 |
transcript.pyannote[29].end |
211.05284375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
211.28909375 |
transcript.pyannote[30].end |
213.12846875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
213.24659375 |
transcript.pyannote[31].end |
222.89909375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
223.23659375 |
transcript.pyannote[32].end |
226.22346875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
226.78034375 |
transcript.pyannote[33].end |
235.52159375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
235.79159375 |
transcript.pyannote[34].end |
240.31409375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
240.78659375 |
transcript.pyannote[35].end |
243.95909375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
244.22909375 |
transcript.pyannote[36].end |
277.23659375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
278.38409375 |
transcript.pyannote[37].end |
282.29909375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
282.78846875 |
transcript.pyannote[38].end |
288.94784375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
289.38659375 |
transcript.pyannote[39].end |
307.05471875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
308.16846875 |
transcript.pyannote[40].end |
308.67471875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
308.87721875 |
transcript.pyannote[41].end |
308.97846875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
308.97846875 |
transcript.pyannote[42].end |
312.75846875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
312.79221875 |
transcript.pyannote[43].end |
317.85471875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
313.04534375 |
transcript.pyannote[44].end |
313.33221875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
318.29346875 |
transcript.pyannote[45].end |
329.16096875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
322.52909375 |
transcript.pyannote[46].end |
322.98471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
328.72221875 |
transcript.pyannote[47].end |
333.46409375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
331.32096875 |
transcript.pyannote[48].end |
331.79346875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
332.48534375 |
transcript.pyannote[49].end |
341.46284375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
340.97346875 |
transcript.pyannote[50].end |
342.17159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
342.91409375 |
transcript.pyannote[51].end |
346.12034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
347.11596875 |
transcript.pyannote[52].end |
348.97221875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
349.52909375 |
transcript.pyannote[53].end |
350.64284375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
351.99284375 |
transcript.pyannote[54].end |
352.33034375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
352.88721875 |
transcript.pyannote[55].end |
356.14409375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
356.49846875 |
transcript.pyannote[56].end |
358.96221875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
358.96221875 |
transcript.pyannote[57].end |
360.19409375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
360.68346875 |
transcript.pyannote[58].end |
367.82159375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
365.89784375 |
transcript.pyannote[59].end |
367.61909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
367.88909375 |
transcript.pyannote[60].end |
368.86784375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
370.40346875 |
transcript.pyannote[61].end |
370.48784375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
370.48784375 |
transcript.pyannote[62].end |
371.04471875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
370.50471875 |
transcript.pyannote[63].end |
370.85909375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
371.51721875 |
transcript.pyannote[64].end |
375.51659375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
376.20846875 |
transcript.pyannote[65].end |
378.09846875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
378.50346875 |
transcript.pyannote[66].end |
380.24159375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
381.97971875 |
transcript.pyannote[67].end |
388.15596875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
389.16846875 |
transcript.pyannote[68].end |
389.99534375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
390.38346875 |
transcript.pyannote[69].end |
398.41596875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
398.56784375 |
transcript.pyannote[70].end |
402.85409375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
402.51659375 |
transcript.pyannote[71].end |
403.07346875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
403.07346875 |
transcript.pyannote[72].end |
403.93409375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
404.37284375 |
transcript.pyannote[73].end |
405.77346875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
406.46534375 |
transcript.pyannote[74].end |
406.76909375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
406.80284375 |
transcript.pyannote[75].end |
410.68409375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
410.98784375 |
transcript.pyannote[76].end |
417.50159375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
418.21034375 |
transcript.pyannote[77].end |
423.15471875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
423.37409375 |
transcript.pyannote[78].end |
427.59284375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
428.03159375 |
transcript.pyannote[79].end |
430.12409375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
430.63034375 |
transcript.pyannote[80].end |
435.06846875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
435.55784375 |
transcript.pyannote[81].end |
436.43534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
436.95846875 |
transcript.pyannote[82].end |
445.76721875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
446.81346875 |
transcript.pyannote[83].end |
448.16346875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
448.41659375 |
transcript.pyannote[84].end |
449.34471875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
450.08721875 |
transcript.pyannote[85].end |
450.66096875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
451.03221875 |
transcript.pyannote[86].end |
451.48784375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
452.17971875 |
transcript.pyannote[87].end |
458.28846875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
458.89596875 |
transcript.pyannote[88].end |
462.13596875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
462.62534375 |
transcript.pyannote[89].end |
465.51096875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
465.94971875 |
transcript.pyannote[90].end |
468.32909375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
469.52721875 |
transcript.pyannote[91].end |
473.39159375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
474.04971875 |
transcript.pyannote[92].end |
475.65284375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
476.74971875 |
transcript.pyannote[93].end |
482.84159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
483.39846875 |
transcript.pyannote[94].end |
483.41534375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
483.41534375 |
transcript.pyannote[95].end |
491.11034375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
491.43096875 |
transcript.pyannote[96].end |
492.59534375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
493.03409375 |
transcript.pyannote[97].end |
509.35221875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
506.33159375 |
transcript.pyannote[98].end |
506.56784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
508.00221875 |
transcript.pyannote[99].end |
513.58784375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
513.95909375 |
transcript.pyannote[100].end |
514.97159375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
515.24159375 |
transcript.pyannote[101].end |
521.28284375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
521.77221875 |
transcript.pyannote[102].end |
549.66659375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
550.10534375 |
transcript.pyannote[103].end |
573.34221875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
573.51096875 |
transcript.pyannote[104].end |
577.37534375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
577.67909375 |
transcript.pyannote[105].end |
579.16409375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
580.32846875 |
transcript.pyannote[106].end |
583.31534375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
584.59784375 |
transcript.pyannote[107].end |
590.74034375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
591.49971875 |
transcript.pyannote[108].end |
598.03034375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
598.03034375 |
transcript.pyannote[109].end |
600.12284375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
600.03846875 |
transcript.pyannote[110].end |
603.81846875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
603.81846875 |
transcript.pyannote[111].end |
604.15596875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
604.15596875 |
transcript.pyannote[112].end |
608.96534375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
608.40846875 |
transcript.pyannote[113].end |
609.62346875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
609.52221875 |
transcript.pyannote[114].end |
610.56846875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
610.97346875 |
transcript.pyannote[115].end |
614.95596875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
614.34846875 |
transcript.pyannote[116].end |
617.04846875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
617.18346875 |
transcript.pyannote[117].end |
620.47409375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
620.99721875 |
transcript.pyannote[118].end |
629.02971875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
629.62034375 |
transcript.pyannote[119].end |
630.07596875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
630.44721875 |
transcript.pyannote[120].end |
639.84659375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
640.25159375 |
transcript.pyannote[121].end |
640.58909375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
641.12909375 |
transcript.pyannote[122].end |
642.74909375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
643.74471875 |
transcript.pyannote[123].end |
644.85846875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
647.03534375 |
transcript.pyannote[124].end |
657.09284375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
658.00409375 |
transcript.pyannote[125].end |
663.79221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
664.55159375 |
transcript.pyannote[126].end |
677.05596875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
677.46096875 |
transcript.pyannote[127].end |
682.67534375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
683.45159375 |
transcript.pyannote[128].end |
689.45909375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
689.61096875 |
transcript.pyannote[129].end |
706.21596875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
707.19471875 |
transcript.pyannote[130].end |
708.78096875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
709.27034375 |
transcript.pyannote[131].end |
710.75534375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
711.32909375 |
transcript.pyannote[132].end |
711.54846875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
711.63284375 |
transcript.pyannote[133].end |
712.59471875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
713.32034375 |
transcript.pyannote[134].end |
715.63221875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
716.15534375 |
transcript.pyannote[135].end |
718.61909375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
718.78784375 |
transcript.pyannote[136].end |
721.52159375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
723.83346875 |
transcript.pyannote[137].end |
724.50846875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
724.76159375 |
transcript.pyannote[138].end |
729.40221875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
729.92534375 |
transcript.pyannote[139].end |
731.51159375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
731.59596875 |
transcript.pyannote[140].end |
733.58721875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
733.99221875 |
transcript.pyannote[141].end |
738.14346875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
738.70034375 |
transcript.pyannote[142].end |
742.22721875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
742.39596875 |
transcript.pyannote[143].end |
743.69534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
744.26909375 |
transcript.pyannote[144].end |
746.88471875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
746.12534375 |
transcript.pyannote[145].end |
746.22659375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
747.13784375 |
transcript.pyannote[146].end |
747.88034375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
748.23471875 |
transcript.pyannote[147].end |
754.15784375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
755.11971875 |
transcript.pyannote[148].end |
757.54971875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
757.75221875 |
transcript.pyannote[149].end |
757.76909375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
757.76909375 |
transcript.pyannote[150].end |
761.49846875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
757.87034375 |
transcript.pyannote[151].end |
757.97159375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
761.49846875 |
transcript.pyannote[152].end |
770.91471875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
761.88659375 |
transcript.pyannote[153].end |
764.72159375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
770.94846875 |
transcript.pyannote[154].end |
770.98221875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
771.11721875 |
transcript.pyannote[155].end |
772.88909375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
773.12534375 |
transcript.pyannote[156].end |
777.79971875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
778.94721875 |
transcript.pyannote[157].end |
780.33096875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
780.29721875 |
transcript.pyannote[158].end |
789.61221875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
790.03409375 |
transcript.pyannote[159].end |
793.76346875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
794.21909375 |
transcript.pyannote[160].end |
796.29471875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
796.39596875 |
transcript.pyannote[161].end |
805.06971875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
805.52534375 |
transcript.pyannote[162].end |
818.60346875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
818.99159375 |
transcript.pyannote[163].end |
821.48909375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
821.75909375 |
transcript.pyannote[164].end |
822.14721875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
822.36659375 |
transcript.pyannote[165].end |
823.54784375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
828.34034375 |
transcript.pyannote[166].end |
829.38659375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
829.75784375 |
transcript.pyannote[167].end |
830.46659375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
830.90534375 |
transcript.pyannote[168].end |
831.78284375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
832.62659375 |
transcript.pyannote[169].end |
833.89221875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
834.38159375 |
transcript.pyannote[170].end |
849.56909375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
849.92346875 |
transcript.pyannote[171].end |
855.40784375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
855.55971875 |
transcript.pyannote[172].end |
856.15034375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
856.47096875 |
transcript.pyannote[173].end |
868.92471875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
869.43096875 |
transcript.pyannote[174].end |
880.63596875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
881.20971875 |
transcript.pyannote[175].end |
881.68221875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
882.47534375 |
transcript.pyannote[176].end |
885.61409375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
887.48721875 |
transcript.pyannote[177].end |
893.35971875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
894.06846875 |
transcript.pyannote[178].end |
894.54096875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
895.24971875 |
transcript.pyannote[179].end |
896.49846875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
896.85284375 |
transcript.pyannote[180].end |
897.96659375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
898.32096875 |
transcript.pyannote[181].end |
901.35846875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
902.40471875 |
transcript.pyannote[182].end |
902.99534375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
904.32846875 |
transcript.pyannote[183].end |
906.50534375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
907.51784375 |
transcript.pyannote[184].end |
909.82971875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
910.09971875 |
transcript.pyannote[185].end |
912.66471875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
913.18784375 |
transcript.pyannote[186].end |
930.60284375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
931.14284375 |
transcript.pyannote[187].end |
932.67846875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
933.04971875 |
transcript.pyannote[188].end |
934.18034375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
934.56846875 |
transcript.pyannote[189].end |
935.59784375 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
936.34034375 |
transcript.pyannote[190].end |
941.77409375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
941.92596875 |
transcript.pyannote[191].end |
944.91284375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
945.46971875 |
transcript.pyannote[192].end |
949.43534375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
950.58284375 |
transcript.pyannote[193].end |
952.00034375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
952.50659375 |
transcript.pyannote[194].end |
953.45159375 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
953.82284375 |
transcript.pyannote[195].end |
956.65784375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
956.74221875 |
transcript.pyannote[196].end |
961.06221875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
961.61909375 |
transcript.pyannote[197].end |
966.73221875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
967.37346875 |
transcript.pyannote[198].end |
969.75284375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
970.51221875 |
transcript.pyannote[199].end |
973.49909375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
974.64659375 |
transcript.pyannote[200].end |
976.53659375 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
976.90784375 |
transcript.pyannote[201].end |
980.36721875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
980.89034375 |
transcript.pyannote[202].end |
984.75471875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
985.78409375 |
transcript.pyannote[203].end |
1018.69034375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
1018.84221875 |
transcript.pyannote[204].end |
1026.80721875 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
1027.34721875 |
transcript.pyannote[205].end |
1027.68471875 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
1028.02221875 |
transcript.pyannote[206].end |
1028.96721875 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
1029.55784375 |
transcript.pyannote[207].end |
1032.37596875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
1032.67971875 |
transcript.pyannote[208].end |
1038.23159375 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
1039.04159375 |
transcript.pyannote[209].end |
1039.56471875 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
1041.15096875 |
transcript.pyannote[210].end |
1042.60221875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
1042.99034375 |
transcript.pyannote[211].end |
1046.66909375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
1047.19221875 |
transcript.pyannote[212].end |
1048.82909375 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
1049.26784375 |
transcript.pyannote[213].end |
1051.09034375 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
1051.41096875 |
transcript.pyannote[214].end |
1052.06909375 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
1053.06471875 |
transcript.pyannote[215].end |
1062.63284375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
1062.66659375 |
transcript.pyannote[216].end |
1072.60596875 |
transcript.pyannote[217].speaker |
SPEAKER_00 |
transcript.pyannote[217].start |
1072.85909375 |
transcript.pyannote[217].end |
1075.82909375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
1076.92596875 |
transcript.pyannote[218].end |
1080.67221875 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
1081.31346875 |
transcript.pyannote[219].end |
1090.25721875 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
1090.35846875 |
transcript.pyannote[220].end |
1118.45534375 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
1119.83909375 |
transcript.pyannote[221].end |
1130.94284375 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
1132.03971875 |
transcript.pyannote[222].end |
1132.32659375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
1132.95096875 |
transcript.pyannote[223].end |
1133.96346875 |
transcript.pyannote[224].speaker |
SPEAKER_01 |
transcript.pyannote[224].start |
1133.96346875 |
transcript.pyannote[224].end |
1133.99721875 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
1133.99721875 |
transcript.pyannote[225].end |
1134.33471875 |
transcript.pyannote[226].speaker |
SPEAKER_01 |
transcript.pyannote[226].start |
1134.33471875 |
transcript.pyannote[226].end |
1136.08971875 |
transcript.pyannote[227].speaker |
SPEAKER_01 |
transcript.pyannote[227].start |
1137.01784375 |
transcript.pyannote[227].end |
1137.60846875 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
1137.70971875 |
transcript.pyannote[228].end |
1138.92471875 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
1139.56596875 |
transcript.pyannote[229].end |
1142.19846875 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
1142.62034375 |
transcript.pyannote[230].end |
1146.07971875 |
transcript.pyannote[231].speaker |
SPEAKER_01 |
transcript.pyannote[231].start |
1146.83909375 |
transcript.pyannote[231].end |
1149.70784375 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
1150.26471875 |
transcript.pyannote[232].end |
1157.84159375 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
1157.92596875 |
transcript.pyannote[233].end |
1162.78596875 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
1163.32596875 |
transcript.pyannote[234].end |
1167.51096875 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
1167.51096875 |
transcript.pyannote[235].end |
1168.20284375 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
1168.20284375 |
transcript.pyannote[236].end |
1168.33784375 |
transcript.pyannote[237].speaker |
SPEAKER_01 |
transcript.pyannote[237].start |
1168.33784375 |
transcript.pyannote[237].end |
1170.83534375 |
transcript.pyannote[238].speaker |
SPEAKER_00 |
transcript.pyannote[238].start |
1170.83534375 |
transcript.pyannote[238].end |
1178.32784375 |
transcript.pyannote[239].speaker |
SPEAKER_01 |
transcript.pyannote[239].start |
1175.25659375 |
transcript.pyannote[239].end |
1175.74596875 |
transcript.pyannote[240].speaker |
SPEAKER_01 |
transcript.pyannote[240].start |
1177.07909375 |
transcript.pyannote[240].end |
1180.18409375 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
1179.34034375 |
transcript.pyannote[241].end |
1208.51721875 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
1209.12471875 |
transcript.pyannote[242].end |
1220.22846875 |
transcript.pyannote[243].speaker |
SPEAKER_01 |
transcript.pyannote[243].start |
1220.65034375 |
transcript.pyannote[243].end |
1223.92409375 |
transcript.pyannote[244].speaker |
SPEAKER_01 |
transcript.pyannote[244].start |
1224.75096875 |
transcript.pyannote[244].end |
1240.79909375 |
transcript.pyannote[245].speaker |
SPEAKER_01 |
transcript.pyannote[245].start |
1240.96784375 |
transcript.pyannote[245].end |
1243.02659375 |
transcript.pyannote[246].speaker |
SPEAKER_01 |
transcript.pyannote[246].start |
1243.14471875 |
transcript.pyannote[246].end |
1244.88284375 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
1245.05159375 |
transcript.pyannote[247].end |
1253.50596875 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
1253.80971875 |
transcript.pyannote[248].end |
1262.58471875 |
transcript.pyannote[249].speaker |
SPEAKER_00 |
transcript.pyannote[249].start |
1262.55096875 |
transcript.pyannote[249].end |
1280.25284375 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
1269.62159375 |
transcript.pyannote[250].end |
1270.00971875 |
transcript.pyannote[251].speaker |
SPEAKER_00 |
transcript.pyannote[251].start |
1280.99534375 |
transcript.pyannote[251].end |
1285.14659375 |
transcript.pyannote[252].speaker |
SPEAKER_00 |
transcript.pyannote[252].start |
1285.28159375 |
transcript.pyannote[252].end |
1285.66971875 |
transcript.pyannote[253].speaker |
SPEAKER_00 |
transcript.pyannote[253].start |
1286.05784375 |
transcript.pyannote[253].end |
1292.80784375 |
transcript.pyannote[254].speaker |
SPEAKER_01 |
transcript.pyannote[254].start |
1293.58409375 |
transcript.pyannote[254].end |
1293.60096875 |
transcript.pyannote[255].speaker |
SPEAKER_00 |
transcript.pyannote[255].start |
1293.60096875 |
transcript.pyannote[255].end |
1294.69784375 |
transcript.pyannote[256].speaker |
SPEAKER_01 |
transcript.pyannote[256].start |
1293.61784375 |
transcript.pyannote[256].end |
1293.78659375 |
transcript.pyannote[257].speaker |
SPEAKER_01 |
transcript.pyannote[257].start |
1294.36034375 |
transcript.pyannote[257].end |
1301.16096875 |
transcript.pyannote[258].speaker |
SPEAKER_00 |
transcript.pyannote[258].start |
1301.16096875 |
transcript.pyannote[258].end |
1301.41409375 |
transcript.pyannote[259].speaker |
SPEAKER_01 |
transcript.pyannote[259].start |
1301.41409375 |
transcript.pyannote[259].end |
1304.48534375 |
transcript.pyannote[260].speaker |
SPEAKER_00 |
transcript.pyannote[260].start |
1301.46471875 |
transcript.pyannote[260].end |
1302.34221875 |
transcript.pyannote[261].speaker |
SPEAKER_00 |
transcript.pyannote[261].start |
1304.02971875 |
transcript.pyannote[261].end |
1313.96909375 |
transcript.pyannote[262].speaker |
SPEAKER_01 |
transcript.pyannote[262].start |
1311.64034375 |
transcript.pyannote[262].end |
1311.75846875 |
transcript.pyannote[263].speaker |
SPEAKER_01 |
transcript.pyannote[263].start |
1311.94409375 |
transcript.pyannote[263].end |
1311.97784375 |
transcript.pyannote[264].speaker |
SPEAKER_01 |
transcript.pyannote[264].start |
1313.09159375 |
transcript.pyannote[264].end |
1313.91846875 |
transcript.pyannote[265].speaker |
SPEAKER_00 |
transcript.pyannote[265].start |
1314.32346875 |
transcript.pyannote[265].end |
1315.63971875 |
transcript.pyannote[266].speaker |
SPEAKER_00 |
transcript.pyannote[266].start |
1315.65659375 |
transcript.pyannote[266].end |
1331.99159375 |
transcript.pyannote[267].speaker |
SPEAKER_00 |
transcript.pyannote[267].start |
1332.98721875 |
transcript.pyannote[267].end |
1336.19346875 |
transcript.pyannote[268].speaker |
SPEAKER_01 |
transcript.pyannote[268].start |
1334.25284375 |
transcript.pyannote[268].end |
1334.62409375 |
transcript.pyannote[269].speaker |
SPEAKER_01 |
transcript.pyannote[269].start |
1335.53534375 |
transcript.pyannote[269].end |
1337.08784375 |
transcript.pyannote[270].speaker |
SPEAKER_00 |
transcript.pyannote[270].start |
1336.58159375 |
transcript.pyannote[270].end |
1358.06346875 |
transcript.pyannote[271].speaker |
SPEAKER_01 |
transcript.pyannote[271].start |
1358.06346875 |
transcript.pyannote[271].end |
1358.41784375 |
transcript.pyannote[272].speaker |
SPEAKER_00 |
transcript.pyannote[272].start |
1358.41784375 |
transcript.pyannote[272].end |
1364.22284375 |
transcript.pyannote[273].speaker |
SPEAKER_00 |
transcript.pyannote[273].start |
1364.96534375 |
transcript.pyannote[273].end |
1378.48221875 |
transcript.pyannote[274].speaker |
SPEAKER_00 |
transcript.pyannote[274].start |
1378.75221875 |
transcript.pyannote[274].end |
1389.38346875 |
transcript.pyannote[275].speaker |
SPEAKER_01 |
transcript.pyannote[275].start |
1380.20346875 |
transcript.pyannote[275].end |
1380.52409375 |
transcript.pyannote[276].speaker |
SPEAKER_01 |
transcript.pyannote[276].start |
1385.21534375 |
transcript.pyannote[276].end |
1386.48096875 |
transcript.pyannote[277].speaker |
SPEAKER_00 |
transcript.pyannote[277].start |
1389.99096875 |
transcript.pyannote[277].end |
1400.70659375 |
transcript.pyannote[278].speaker |
SPEAKER_01 |
transcript.pyannote[278].start |
1401.28034375 |
transcript.pyannote[278].end |
1401.88784375 |
transcript.pyannote[279].speaker |
SPEAKER_00 |
transcript.pyannote[279].start |
1401.88784375 |
transcript.pyannote[279].end |
1401.90471875 |
transcript.pyannote[280].speaker |
SPEAKER_01 |
transcript.pyannote[280].start |
1401.90471875 |
transcript.pyannote[280].end |
1401.92159375 |
transcript.pyannote[281].speaker |
SPEAKER_00 |
transcript.pyannote[281].start |
1401.92159375 |
transcript.pyannote[281].end |
1408.75596875 |
transcript.pyannote[282].speaker |
SPEAKER_01 |
transcript.pyannote[282].start |
1408.75596875 |
transcript.pyannote[282].end |
1417.44659375 |
transcript.pyannote[283].speaker |
SPEAKER_00 |
transcript.pyannote[283].start |
1415.57346875 |
transcript.pyannote[283].end |
1420.90596875 |
transcript.pyannote[284].speaker |
SPEAKER_01 |
transcript.pyannote[284].start |
1420.63596875 |
transcript.pyannote[284].end |
1426.40721875 |
transcript.pyannote[285].speaker |
SPEAKER_00 |
transcript.pyannote[285].start |
1422.25596875 |
transcript.pyannote[285].end |
1434.16971875 |
transcript.pyannote[286].speaker |
SPEAKER_01 |
transcript.pyannote[286].start |
1427.06534375 |
transcript.pyannote[286].end |
1427.97659375 |
transcript.pyannote[287].speaker |
SPEAKER_00 |
transcript.pyannote[287].start |
1434.87846875 |
transcript.pyannote[287].end |
1436.90346875 |
transcript.pyannote[288].speaker |
SPEAKER_01 |
transcript.pyannote[288].start |
1437.73034375 |
transcript.pyannote[288].end |
1449.44159375 |
transcript.pyannote[289].speaker |
SPEAKER_00 |
transcript.pyannote[289].start |
1439.09721875 |
transcript.pyannote[289].end |
1439.46846875 |
transcript.pyannote[290].speaker |
SPEAKER_00 |
transcript.pyannote[290].start |
1440.90284375 |
transcript.pyannote[290].end |
1441.52721875 |
transcript.pyannote[291].speaker |
SPEAKER_00 |
transcript.pyannote[291].start |
1442.20221875 |
transcript.pyannote[291].end |
1444.56471875 |
transcript.pyannote[292].speaker |
SPEAKER_00 |
transcript.pyannote[292].start |
1449.15471875 |
transcript.pyannote[292].end |
1462.43534375 |
transcript.pyannote[293].speaker |
SPEAKER_01 |
transcript.pyannote[293].start |
1450.31909375 |
transcript.pyannote[293].end |
1451.07846875 |
transcript.pyannote[294].speaker |
SPEAKER_00 |
transcript.pyannote[294].start |
1462.50284375 |
transcript.pyannote[294].end |
1463.88659375 |
transcript.pyannote[295].speaker |
SPEAKER_01 |
transcript.pyannote[295].start |
1462.97534375 |
transcript.pyannote[295].end |
1471.05846875 |
transcript.pyannote[296].speaker |
SPEAKER_00 |
transcript.pyannote[296].start |
1469.15159375 |
transcript.pyannote[296].end |
1471.86846875 |
transcript.pyannote[297].speaker |
SPEAKER_01 |
transcript.pyannote[297].start |
1471.86846875 |
transcript.pyannote[297].end |
1472.08784375 |
transcript.pyannote[298].speaker |
SPEAKER_00 |
transcript.pyannote[298].start |
1472.39159375 |
transcript.pyannote[298].end |
1516.90784375 |
transcript.pyannote[299].speaker |
SPEAKER_01 |
transcript.pyannote[299].start |
1508.50409375 |
transcript.pyannote[299].end |
1508.75721875 |
transcript.pyannote[300].speaker |
SPEAKER_01 |
transcript.pyannote[300].start |
1517.02596875 |
transcript.pyannote[300].end |
1525.54784375 |
transcript.pyannote[301].speaker |
SPEAKER_01 |
transcript.pyannote[301].start |
1525.90221875 |
transcript.pyannote[301].end |
1532.39909375 |
transcript.pyannote[302].speaker |
SPEAKER_00 |
transcript.pyannote[302].start |
1531.03221875 |
transcript.pyannote[302].end |
1532.11221875 |
transcript.pyannote[303].speaker |
SPEAKER_00 |
transcript.pyannote[303].start |
1532.28096875 |
transcript.pyannote[303].end |
1549.20659375 |
transcript.pyannote[304].speaker |
SPEAKER_00 |
transcript.pyannote[304].start |
1549.64534375 |
transcript.pyannote[304].end |
1553.29034375 |
transcript.pyannote[305].speaker |
SPEAKER_00 |
transcript.pyannote[305].start |
1554.31971875 |
transcript.pyannote[305].end |
1569.43971875 |
transcript.pyannote[306].speaker |
SPEAKER_01 |
transcript.pyannote[306].start |
1569.13596875 |
transcript.pyannote[306].end |
1569.74346875 |
transcript.pyannote[307].speaker |
SPEAKER_00 |
transcript.pyannote[307].start |
1569.74346875 |
transcript.pyannote[307].end |
1590.17909375 |
transcript.pyannote[308].speaker |
SPEAKER_01 |
transcript.pyannote[308].start |
1590.17909375 |
transcript.pyannote[308].end |
1592.98034375 |
transcript.pyannote[309].speaker |
SPEAKER_00 |
transcript.pyannote[309].start |
1592.08596875 |
transcript.pyannote[309].end |
1592.40659375 |
transcript.pyannote[310].speaker |
SPEAKER_00 |
transcript.pyannote[310].start |
1592.98034375 |
transcript.pyannote[310].end |
1594.31346875 |
transcript.pyannote[311].speaker |
SPEAKER_01 |
transcript.pyannote[311].start |
1593.41909375 |
transcript.pyannote[311].end |
1593.82409375 |
transcript.whisperx[0].start |
14.802 |
transcript.whisperx[0].end |
25.471 |
transcript.whisperx[0].text |
好謝謝是不是部長你再喝一口水慢慢來喝好了再上好了OK好 |
transcript.whisperx[1].start |
32.455 |
transcript.whisperx[1].end |
35.078 |
transcript.whisperx[1].text |
今天大家談了很多但是我因為時間的關係 |
transcript.whisperx[2].start |
37.6 |
transcript.whisperx[2].end |
61.796 |
transcript.whisperx[2].text |
所以其實我不太想要再談就是說因為你們所屬基金違規使用的這個問題不過裡面有一個審計單位講了一句話我覺得我還是忍不住就問一下但你也不一定要馬上回答就是說他們採購的禮品分送的對象不明分送的對象不明沒有照冊也不想拿去送給誰 |
transcript.whisperx[3].start |
63.477 |
transcript.whisperx[3].end |
80.758 |
transcript.whisperx[3].text |
這個事情就不是違規使用而已這個問題可大可小好那我就不問你這個了我是要問你有比這個更令我擔心的啦因為這個這個問題是大家違規使用大家都已經講很久那也 |
transcript.whisperx[4].start |
82.318 |
transcript.whisperx[4].end |
97.711 |
transcript.whisperx[4].text |
政治上也報導很多但我要講一個是跟人民比較相關當然就是最關注的就是川普政府他舉著這個保護主義然後的大旗然後一個美國 |
transcript.whisperx[5].start |
99.292 |
transcript.whisperx[5].end |
121.049 |
transcript.whisperx[5].text |
再度偉大的這樣的一個大旗高舉所以國族主義興起那在2000年我們要加入WTO的時候當時對WTO的遊戲規則我們至少我個人啊當時就大家在討論就覺得只有一招可以對付WTO的這個遊戲規則因為WTO的遊戲規則裡面對勞工對農業對環保是最不利的 |
transcript.whisperx[6].start |
129.695 |
transcript.whisperx[6].end |
141.383 |
transcript.whisperx[6].text |
最弱勢的那當時在二三十年前我們就預見了說唯有國族主義可以對抗WTO的這個遊戲規則當然國族主義牽涉的層面很多比如說都開放都進口都零關稅但我們全部都不用不買這是一種方法但沒想到21世紀的2025年國族主義是 |
transcript.whisperx[7].start |
159.034 |
transcript.whisperx[7].end |
172.323 |
transcript.whisperx[7].text |
乾脆把WTO的整個遊戲規則和架構都給它瓦解掉所以今天我們不是看到加關稅32%不只是看到這個憂慮其實我前幾天蠻焦慮的因為這個被瓦解是一個WTO的這個架構那貿易的遊戲規則瞬間大家都可以呼呼的頂來 |
transcript.whisperx[8].start |
185.034 |
transcript.whisperx[8].end |
208.423 |
transcript.whisperx[8].text |
你對我關稅壁壘 我也對你關稅壁壘所有的一切 從多邊主義變成一對一單邊 然後都要重來 重談你對我 美國可以這樣對人家中國也可以這樣對人家市場大的 大國都可以這樣對任何每一個好欺負的那這樣子 這樣子 |
transcript.whisperx[9].start |
210.236 |
transcript.whisperx[9].end |
234.859 |
transcript.whisperx[9].text |
台灣會倒我們是以出口為導向的我們的經貿沒有出口賺不了錢我們會倒我們不但沒有市場我們也沒有資源沒有能源所以在這裡我其實更擔憂的是說不是舊股市而已股市 股災股災的受限就那些人雖然全台灣股民已經一千多萬了 |
transcript.whisperx[10].start |
235.84 |
transcript.whisperx[10].end |
260.325 |
transcript.whisperx[10].text |
一千多萬幾乎家家戶戶都有玩股票了這當然很嚴重可是經濟產業就業這個是更嚴重的那我其實很擔心你們啦很擔心你們的原因是說我們真的很想要知道說你政府到底有沒有掌握到掌握到雖然我們沒有辦法去預判到未來的遊戲世界貿易 |
transcript.whisperx[11].start |
263.467 |
transcript.whisperx[11].end |
274.004 |
transcript.whisperx[11].text |
的遊戲規則會怎麼演變也不敢去也不用這麼急著要去去擔憂 不用杞人憂天但是至少跟美國的經貿這一次的32%的加稅 |
transcript.whisperx[12].start |
278.427 |
transcript.whisperx[12].end |
305.425 |
transcript.whisperx[12].text |
如果沒有轉圜如果從今天就要生效那對我們國內的產業的衝擊會是集中在哪幾個產業別你才能夠告訴我說受衝擊的勞工會有多少而衝擊的對象他們需要什麼樣的政策來銜接來給他們保護起來這個保護網是足夠於網住他們讓他們衝擊不要太大的 |
transcript.whisperx[13].start |
308.207 |
transcript.whisperx[13].end |
332.906 |
transcript.whisperx[13].text |
部長你們有沒有討論過不只討論其實也做了評估那目前確實看起來針對這32%的關稅美方提出來32%但未來在談判過程裡面會不會調整這個還要看談判的狀況可是如果就這32%來看的話大家其實最擔心的事情是關於這些傳產的出口產出口製造業傳產一句話不要這樣一語帶過我需要更精準的了解到包括機械 |
transcript.whisperx[14].start |
334.287 |
transcript.whisperx[14].end |
350.558 |
transcript.whisperx[14].text |
包括汽車零組件包括像是一些金屬製品的水五金包括扣件業 螺絲螺馬你確定嗎我把你的朋友叫盧祁鴻他寫了一篇他的資料給你看來台灣對美國出口七成集中在十項類別看清楚啊 |
transcript.whisperx[15].start |
361.065 |
transcript.whisperx[15].end |
367.946 |
transcript.whisperx[15].text |
對還有包括剛才說包括電線電纜我還沒講包括電線電纜然後這個是產品而已對這個是產品來我講他的資料來台灣的這個出口裡面前十類是這種第一類是自動資料處理機器還有磁光 |
transcript.whisperx[16].start |
389.392 |
transcript.whisperx[16].end |
416.506 |
transcript.whisperx[16].text |
讀取器第二名統計上第二名是特定設備的零件與配件HS8473再來是電子集體電路及零件這個不討論因為這個是ITA對這個還沒有公佈是我不見得我不認為他會是豁免他只能說還沒有公佈再來是電話機加智慧型手機再來是光碟磁帶固定儲存設備 |
transcript.whisperx[17].start |
418.874 |
transcript.whisperx[17].end |
445.427 |
transcript.whisperx[17].text |
然後未分類的產品螺絲、螺栓、螺母、卯丁接下來是拖拉機運輸車輛零件和配件再來是變壓器、轉換器還有電感器零件最後才是運動器材和設備好這個是產品可是這一些HS開頭的編號這些產品對照到產業別是真的如你所說的是 |
transcript.whisperx[18].start |
447.397 |
transcript.whisperx[18].end |
458.922 |
transcript.whisperx[18].text |
機械產業還有什麼是嗎OK來他們對照道產業別應該是電子零組件製造業那這個電腦電子產品及光學製品製造業電力設備及配備製造業機械設備製造等好來那這幾個產業我剛剛講這幾個產業嘛這是你的好朋友 |
transcript.whisperx[19].start |
476.786 |
transcript.whisperx[19].end |
481.81 |
transcript.whisperx[19].text |
他自己去找資料 爬梳出來的我在官方部門 我至少你有看過這樣的統計嗎 |
transcript.whisperx[20].start |
484.307 |
transcript.whisperx[20].end |
508.439 |
transcript.whisperx[20].text |
我有看過 財務部門有相關的統計我們從勞動部的角度我們會特別關心的事情是因為包括我們還會關心說他是不是中小企業的比例特別高因為如果中小企業的比例特別高他遇到衝擊的時候他可能承受衝擊的能力會再比大的企業再來的更差這是我們從勞動部的角度來說我們要特別關心 |
transcript.whisperx[21].start |
508.939 |
transcript.whisperx[21].end |
516.903 |
transcript.whisperx[21].text |
好朋友關注的角度他是從總體來講因為我在官方沒有看到這個統計然後他看到台灣過去2023年全台灣的GDP比2000年因為2000年台灣剛要加入WTO |
transcript.whisperx[22].start |
530.971 |
transcript.whisperx[22].end |
535.694 |
transcript.whisperx[22].text |
我們增加了這個12.91兆元就是這23年來台灣的GDP增加了12.91兆那其中32%是由剛剛對應的這四項產業所貢獻 |
transcript.whisperx[23].start |
550.206 |
transcript.whisperx[23].end |
578.588 |
transcript.whisperx[23].text |
所以過去二十幾年來的貿易自由化的這個極盛的時期台灣經濟成長主要的三成以上都來自這四項產業就是我剛剛念過電子零組件製造電腦電子產品和光學製品電力設備及配備製造業機械設備製造業這很關鍵喔三成以上台灣GDP成長的貢獻來自於這四大產業 |
transcript.whisperx[24].start |
580.39 |
transcript.whisperx[24].end |
590.491 |
transcript.whisperx[24].text |
而且現在就講到重點 受雇人數你們有沒有評估到 你說關注的是中小企業那有沒有評估到衝擊人數會有多少 |
transcript.whisperx[25].start |
591.79 |
transcript.whisperx[25].end |
619.25 |
transcript.whisperx[25].text |
我們其實有把這些相關的產業他的受僱的人數大概做了一些掌握重擊大概有多少但是我沒有辦法說那個產業裡面所有的勞工數字就是一定會受衝因為這裡面也包括你講得太好了因為也包括有一些產業他並不是他所有的訂單都是只有對美國你講得太正確了但是我還是要告訴你你的好朋友說的 |
transcript.whisperx[26].start |
621.398 |
transcript.whisperx[26].end |
637.449 |
transcript.whisperx[26].text |
這個受僱人數啊這一些產業它的產業特色是資本和技術密集度高一般GDP的成長全台灣成長了這麼高但是呢我們的受僱人數整體這20幾年來沒有什麼成長但是呢這個 |
transcript.whisperx[27].start |
647.082 |
transcript.whisperx[27].end |
652.714 |
transcript.whisperx[27].text |
成長的大部分GDP成長然後大部分都是在工業及服務業的人數成長了16%但2000年的話 |
transcript.whisperx[28].start |
658.572 |
transcript.whisperx[28].end |
675.547 |
transcript.whisperx[28].text |
2000年的話這些產業的僱用人數就是四大類整體是服務業在成長這20幾年來可是偏偏這四大項的產業的受僱人數它從84.8萬上升到2023年是124萬人 |
transcript.whisperx[29].start |
683.956 |
transcript.whisperx[29].end |
704.546 |
transcript.whisperx[29].text |
所以說這20幾年來這四項產業多僱用了40萬人在工業人數逐漸的佔比在下降可是這四大產業人數多了40萬的從業人口所以它還逆勢的佔整體工業及服務業受僱人數比重從14% |
transcript.whisperx[30].start |
707.273 |
transcript.whisperx[30].end |
720.828 |
transcript.whisperx[30].text |
上升到15%所以我們現在看得到的就是說這幾項產業出口到美國的前幾大商品它對應的產業別它的受僱人數是大幅成長的 |
transcript.whisperx[31].start |
723.9 |
transcript.whisperx[31].end |
732.544 |
transcript.whisperx[31].text |
如果他受到衝擊 那衝擊很大可是他到底有沒有受到衝擊所以你的好朋友 他講了幾個觀點就是說我們32%的關稅放進去 |
transcript.whisperx[32].start |
738.757 |
transcript.whisperx[32].end |
753.755 |
transcript.whisperx[32].text |
我們會不會受到大的衝擊要考量幾個一個美國自己有我們的商品是不是無可替代啦是第二個消費者的價格彈性低再貴都會買如果是無可替代的話 |
transcript.whisperx[33].start |
755.111 |
transcript.whisperx[33].end |
759.054 |
transcript.whisperx[33].text |
你就要給我買啊 你不給我買就不會贏的啊就是關稅是由誰來承擔啦再來就是說 我們一樣賣東西到美國主要的競爭者他的關稅如果比我們高那也沒關係啊我們的主要競爭者如果是越南越南幾% |
transcript.whisperx[34].start |
778.973 |
transcript.whisperx[34].end |
801.879 |
transcript.whisperx[34].text |
越南之前是46那如果我們主要競爭者是越南他們關稅課的比我們高我們會取代他們嘛搞不好因為這樣子我們還獲利呢所以這要來檢驗了那檢驗的狀況是這樣子台灣的生產成本其實如果美國貿易部門公布的有幾個比32%以上的我們就叫它高關稅國 |
transcript.whisperx[35].start |
805.58 |
transcript.whisperx[35].end |
823.326 |
transcript.whisperx[35].text |
那如果是10%到32%的叫中低關稅股好了那加拿大和墨西哥就不在加徵範圍內就不討論那台灣的產品你看一下我們的主要競爭者這幾類裡面你來看一下前四項前四項前四名 |
transcript.whisperx[36].start |
832.862 |
transcript.whisperx[36].end |
836.986 |
transcript.whisperx[36].text |
錢世明就是HS 8471 8473 8517還有8523抱歉我念錯了 8542和8517 8523沒有他們輸出到美國 在美國的市佔率是46%他的市佔率僅次於高關稅國跟高關稅 |
transcript.whisperx[37].start |
856.845 |
transcript.whisperx[37].end |
885.288 |
transcript.whisperx[37].text |
我們比高官稅的其他國家還要少一點他們加起來但我們跟所有的高官稅國加起來市佔率是73%所以高官稅國加我們加起來在美國的市佔率是73%那如果出口到美國前十大類的商品來看就是這張圖表來看這個高官稅國的市佔率很高 |
transcript.whisperx[38].start |
887.54 |
transcript.whisperx[38].end |
905.726 |
transcript.whisperx[38].text |
那我們是高關稅國裡面32%是最低的有可能我們還要替代掉他們因為我們可能比他們關稅還低那我們就有市場價格的競爭性這樣子然後再來就是說他這裡講到 |
transcript.whisperx[39].start |
907.537 |
transcript.whisperx[39].end |
932.484 |
transcript.whisperx[39].text |
八四七三 八五二三 七三一八 八七零八 八五零四就是特定設備的零件和配件 八五二三的光碟磁帶固態儲存設備螺絲 螺栓 螺紋 錨釘 拖拉機 運輸車輛零件和配件 偏壓器 轉換器和感電的零件等等 |
transcript.whisperx[40].start |
933.749 |
transcript.whisperx[40].end |
946.363 |
transcript.whisperx[40].text |
OK 這個高關稅國的市佔率不高可是我們都知道高關稅國他現在所公佈的那幾個國家包括越南 泰國 中國 印尼他們理論上價格的競爭優勢很高 |
transcript.whisperx[41].start |
950.609 |
transcript.whisperx[41].end |
969.018 |
transcript.whisperx[41].text |
他們的製造成本很低理論上他們的市占率應該在美國很高可是並沒有所以他們 你的好朋友說消費者或許重視品質更勝於價格但是呢 其實這個8523 7318 |
transcript.whisperx[42].start |
974.667 |
transcript.whisperx[42].end |
976.089 |
transcript.whisperx[42].text |
8708 8523 8708 8504他又覺得說這個被替代的可能性也是蠻高的 |
transcript.whisperx[43].start |
985.836 |
transcript.whisperx[43].end |
1008.094 |
transcript.whisperx[43].text |
所以在這種狀況裡就是說美國自己國內有然後要我們雖然不是無可取代但是他們要自己製造這個太難了但是就是說有一種是我們價格比較高但是因為品質比較好所以人家消費者需求的是品質而不是價格而已 |
transcript.whisperx[44].start |
1009.415 |
transcript.whisperx[44].end |
1026.347 |
transcript.whisperx[44].text |
但是呢我們真的是擔心就是說短期裡面我們或許看不到說馬上我們就有來自美國自己本土製造或是其他中低關稅國就把我們的產業產品都替代掉但是呢我們比較擔心的就是說你從這裡來看出口產業在面臨貿易自由化如果WTO架構瓦解的時候 |
transcript.whisperx[45].start |
1041.453 |
transcript.whisperx[45].end |
1048.36 |
transcript.whisperx[45].text |
這個未來都有可能那在這種狀況裡面我們真的是產業的寒冬可能會來臨產業的寒冬會來臨 |
transcript.whisperx[46].start |
1053.12 |
transcript.whisperx[46].end |
1074.969 |
transcript.whisperx[46].text |
光是短暫的評估美國的這個衝擊我們還看不出到底是所有的產業都會受到衝擊或者是只是部分那這個勞工怎麼辦那我們就想到說那你端出來的政策夠不夠你的就業安定安定就業的四大措施夠不夠在這裡面我就想要跟你討論一下 |
transcript.whisperx[47].start |
1077.34 |
transcript.whisperx[47].end |
1103.032 |
transcript.whisperx[47].text |
之前我們一直關心的就是無薪假津貼那因為上一屆我被人家踢出去未還委員會我從2016年就關心無薪假津貼那到持續關心到我被迫我不准參加未還委員會來然後終於看到2023年我們的無薪假津貼你們已經修正了就是就業保險促進就業的實施辦法 |
transcript.whisperx[48].start |
1105.993 |
transcript.whisperx[48].end |
1130.55 |
transcript.whisperx[48].text |
你們說只要勞僱雙方有人開始協商要減少工時就是好聽 我講說你們講的很好聽叫減班休息其實就無形價那經評估有必要時勞動部得召開雇用安定措施的諮詢會議然後去辦理雇用安定措施 |
transcript.whisperx[49].start |
1132.059 |
transcript.whisperx[49].end |
1157.435 |
transcript.whisperx[49].text |
好那我的意思我的問題跟跟跟我的說明其實減班休息雖然外界會認為是無薪假但他並不是真的無薪台灣的減班休息是要付基本工資的我知道很多的國家他的無薪假是不用付不用付基本工但台灣的所以講無薪假有的時候會讓人家真的以為他是真的無薪但並不是真的無薪 |
transcript.whisperx[50].start |
1157.964 |
transcript.whisperx[50].end |
1174.903 |
transcript.whisperx[50].text |
好你們要用減班休息也可以但是也有人真的是說你不希望你不希望無薪的話他可能給的沒有給到全薪喔這個是執行面的問題是他會不給全薪但至少他要給不給全部的基本工資喔也有喔但是大家 |
transcript.whisperx[51].start |
1175.123 |
transcript.whisperx[51].end |
1179.829 |
transcript.whisperx[51].text |
不好說 這個就不要講了 要爭持在這當然你要講說他不符合而且違法可是勞工沒有談判的籌碼有時候他就是要多這個錢好 那我現在不爭持這個名詞我現在要問的是說 |
transcript.whisperx[52].start |
1191.624 |
transcript.whisperx[52].end |
1208.022 |
transcript.whisperx[52].text |
到底你們什麼時候會我們重點是當你們不早一點啟動這個機制然後當衝擊來的因為今天4月9號要開始嘛然後你們的安定措施諮詢會議你認為你什麼時候可能會召開 |
transcript.whisperx[53].start |
1209.158 |
transcript.whisperx[53].end |
1223.715 |
transcript.whisperx[53].text |
跟委員報告我們過去其實會有一些關於安定就業相關的政策的工具我們在把這些政策工具現在也在做一些經驗的彙整可是我們目前是要來去規劃出一個因應目前關稅的版本 |
transcript.whisperx[54].start |
1224.995 |
transcript.whisperx[54].end |
1252.43 |
transcript.whisperx[54].text |
這個因為過去關稅的版本的意思是說比方說我們過去可能把這些相關的工具它是用在疫情的期間可是疫情裡面其實它很多是服務業可是這一次很多是出口的製造業它還是會有情境上面的不同所以我們希望能夠把這些相關的工具它可能啟動的條件或者是適用的範圍包括是支持力度如果需要加碼的話都有一個相對在這一次關稅的量身訂做的做法那這也不是只有針對剛剛 |
transcript.whisperx[55].start |
1253.951 |
transcript.whisperx[55].end |
1279.936 |
transcript.whisperx[55].text |
林委員說的這個雇用安定的措施其實我們相對應的好幾個就業工具現在都在做這些情境跟條件的重新的盤整我再提醒你一下你的就業保險促進就業的實施辦法裡面不是限於服務業喔不是限於服務業喔你剛剛講的好像說在疫情期間才這麼寬鬆不是這個是一體試用而且就是工業服務業通通一體試用製造業都一體試用而且我再提醒你一下 |
transcript.whisperx[56].start |
1281.036 |
transcript.whisperx[56].end |
1292.396 |
transcript.whisperx[56].text |
第一個要件叫受景氣因素影響導致停工或減產那這個美國關稅的這個衝擊夠不夠成這個第一個要件的第一句話 |
transcript.whisperx[57].start |
1294.475 |
transcript.whisperx[57].end |
1302.36 |
transcript.whisperx[57].text |
如果造成衝擊我認為當然是符合的所以這裡也包括我們在跟經濟部針對這個問題在做討論因為相對應的這個產業是經濟部會來跟我們做申請因為我們的就業保險促進就業實施辦法裡面第一句話就是要受景氣因素這樣子你認為是OK 那很好 |
transcript.whisperx[58].start |
1314.386 |
transcript.whisperx[58].end |
1331.605 |
transcript.whisperx[58].text |
再來就是說中小企業的平均壽命中小企業13年那傳產的或中小企業的傳產裡面很多勞工從業人員我們都知道整體的勞工大概有八成都是在中小企業就業 |
transcript.whisperx[59].start |
1333.018 |
transcript.whisperx[59].end |
1357.241 |
transcript.whisperx[59].text |
所有企業提供了八成的勞工的就業機會傳產裡面從業人員也都是資深人員居多當年輕做到資深都是中高齡而這一波如果受衝擊的就是中高齡中高齡的人真的如果放了無薪假然後再重新出發有那麼容易重新就業嗎大家都知道是問號 |
transcript.whisperx[60].start |
1358.522 |
transcript.whisperx[60].end |
1363.862 |
transcript.whisperx[60].text |
沒那麼容易所以你現在的安心就業你們的四大措施裡面 |
transcript.whisperx[61].start |
1365.171 |
transcript.whisperx[61].end |
1377.576 |
transcript.whisperx[61].text |
維持雇用安定薪資差額補貼減班休息可是你諮詢會議都還沒開充電再出發然後叫他們去參訓那他們要參訓什麼產業他們能夠參訓什麼產業鼓勵企業辦訓在職訓練中小企業都沒有在職訓練 |
transcript.whisperx[62].start |
1390.781 |
transcript.whisperx[62].end |
1399.871 |
transcript.whisperx[62].text |
辦訓的能力協助微型創業利息補貼中高齡失業也不太有這個能力自行去創業 |
transcript.whisperx[63].start |
1401.972 |
transcript.whisperx[63].end |
1419.093 |
transcript.whisperx[63].text |
所以你這個對製造業的中高齡勞工而言可能距離很遙遠所以我們其實希望要特別針對現在的情境去做這些你針對現在的情境就是第一個製造業 |
transcript.whisperx[64].start |
1420.034 |
transcript.whisperx[64].end |
1423.257 |
transcript.whisperx[64].text |
不是服務業嘛 優先中階是製造業再來就是中小型的製造業中小型的製造業然後呢中高齡然後你說辦訓中小企業辦訓這個是 |
transcript.whisperx[65].start |
1437.799 |
transcript.whisperx[65].end |
1451.331 |
transcript.whisperx[65].text |
我們也可以辦訓所以我們也在調整我們的辦訓因為也有一些工會來跟我們說他們也希望說如果要有一些把他們轉換到其他的產業的時候他們希望我很樂意聽到你說你們也願意辦訓或是委託其他職業工會來辦訓因為你端出來的時候是講鼓勵企業辦訓我是跟你講這個是 |
transcript.whisperx[66].start |
1463.141 |
transcript.whisperx[66].end |
1471.288 |
transcript.whisperx[66].text |
我們也在這個裡面 包括我們自己在多辦訊 而且辦訊的方向也希望能夠去符合接下來新的產業的需求你講對了 可是新的產業這些中高齡有辦法馬上上手嗎而且中高齡成功轉換 |
transcript.whisperx[67].start |
1478.995 |
transcript.whisperx[67].end |
1506.696 |
transcript.whisperx[67].text |
行業的這個統計你們有看得出來留任率高嗎其實我們看到相對於年輕族群中高齡尋找新工作的過程都是很辛苦和漫長的啦光是要找到願意聘僱自己的僱主都很難的所以最終他們都是面臨到淪為流動性最高低薪低技術的派遣勞工或者是提早退休或者是失業 |
transcript.whisperx[68].start |
1507.797 |
transcript.whisperx[68].end |
1525.275 |
transcript.whisperx[68].text |
經常是這樣子所以你端出來的牛肉要能夠網得住他們銜接得住他們那要很務實啊跟林委員說明我們其實現在當然因為台灣的人口結構包括勞動結構確實一定會往中高齡去所以我們對於中高齡的協助包括 |
transcript.whisperx[69].start |
1526.256 |
transcript.whisperx[69].end |
1548.901 |
transcript.whisperx[69].text |
有一些相對應的措施不管是訓練也好甚至植物在設計也好需要更細緻的來協助他們你在這裡講這幾句話都很容易啊但是你設計出來很具體的很務實的是什麼那就不容易了那光是你第一點你世大安定措施裡面第一點就是所謂的無薪假津貼我們不講無薪假叫簡班休息津貼我就問你的你們的諮詢會議沒有辦理 |
transcript.whisperx[70].start |
1555.064 |
transcript.whisperx[70].end |
1567.177 |
transcript.whisperx[70].text |
你就沒有辦法馬上立即及時第一個第二個第二個其實你不用怕太早辦理因為太早辦理你們的實施辦法裡面還有一條狀況OK的情境景氣變好了隨時可以中斷 |
transcript.whisperx[71].start |
1570.02 |
transcript.whisperx[71].end |
1574.941 |
transcript.whisperx[71].text |
所以不要怕太早啟動你們的諮詢會議所以我再問你一次你覺得可以盡早來啟動這個諮詢會議你們評估這個衝擊有沒有可能什麼時候會開始這個諮詢會議如果你們諮詢會議啟動了我們才有辦法去申請津貼啊我們應該可以在下週就來啟動這個諮詢會議好 謝謝 |