iVOD / 15999

Field Value
IVOD_ID 15999
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/15999
日期 2024-06-12
會議資料.會議代碼 委員會-11-1-19-16
會議資料.會議代碼:str 第11屆第1會期經濟委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第16次全體委員會議
影片種類 Full
開始時間 2024-06-12T08:31:03+08:00
結束時間 2024-06-12T12:54:00+08:00
影片長度 04:22:57
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/16eb79f0bb3b77db38aadac80e2e3f80d6a76734f739918219186e52af124432f7bb005c3c07a2cf5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-06-12T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第16次全體委員會議(事由:邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教育部首長就「為掌握生成式AI等關鍵技術帶來的產業革命機會,台灣要如何深化AI生態系及充實AI人才與產業AI化,促動台灣產業數位轉型與運用AI賦能升級,擴展產業發展,打造智慧未來」進行報告,並備質詢。【6月12日及6月13日兩天一次會】)
委員名稱 完整會議
委員發言時間 08:31:03 - 12:54:00
transcript.pyannote[0].speaker SPEAKER_25
transcript.pyannote[0].start 662.52659375
transcript.pyannote[0].end 662.81346875
transcript.pyannote[1].speaker SPEAKER_28
transcript.pyannote[1].start 697.17096875
transcript.pyannote[1].end 697.86284375
transcript.pyannote[2].speaker SPEAKER_28
transcript.pyannote[2].start 697.91346875
transcript.pyannote[2].end 697.94721875
transcript.pyannote[3].speaker SPEAKER_28
transcript.pyannote[3].start 697.96409375
transcript.pyannote[3].end 699.58409375
transcript.pyannote[4].speaker SPEAKER_28
transcript.pyannote[4].start 955.20659375
transcript.pyannote[4].end 955.81409375
transcript.pyannote[5].speaker SPEAKER_15
transcript.pyannote[5].start 1754.84534375
transcript.pyannote[5].end 1755.65534375
transcript.pyannote[6].speaker SPEAKER_15
transcript.pyannote[6].start 1756.58346875
transcript.pyannote[6].end 1759.21596875
transcript.pyannote[7].speaker SPEAKER_33
transcript.pyannote[7].start 1760.58284375
transcript.pyannote[7].end 1761.47721875
transcript.pyannote[8].speaker SPEAKER_33
transcript.pyannote[8].start 1761.84846875
transcript.pyannote[8].end 1764.02534375
transcript.pyannote[9].speaker SPEAKER_15
transcript.pyannote[9].start 1764.81846875
transcript.pyannote[9].end 1768.34534375
transcript.pyannote[10].speaker SPEAKER_15
transcript.pyannote[10].start 1768.39596875
transcript.pyannote[10].end 1771.82159375
transcript.pyannote[11].speaker SPEAKER_12
transcript.pyannote[11].start 1773.20534375
transcript.pyannote[11].end 1787.16096875
transcript.pyannote[12].speaker SPEAKER_12
transcript.pyannote[12].start 1787.29596875
transcript.pyannote[12].end 1789.72596875
transcript.pyannote[13].speaker SPEAKER_12
transcript.pyannote[13].start 1789.96221875
transcript.pyannote[13].end 1795.80096875
transcript.pyannote[14].speaker SPEAKER_12
transcript.pyannote[14].start 1796.81346875
transcript.pyannote[14].end 1806.41534375
transcript.pyannote[15].speaker SPEAKER_12
transcript.pyannote[15].start 1806.73596875
transcript.pyannote[15].end 1814.19471875
transcript.pyannote[16].speaker SPEAKER_12
transcript.pyannote[16].start 1814.43096875
transcript.pyannote[16].end 1818.61596875
transcript.pyannote[17].speaker SPEAKER_12
transcript.pyannote[17].start 1818.81846875
transcript.pyannote[17].end 1822.53096875
transcript.pyannote[18].speaker SPEAKER_12
transcript.pyannote[18].start 1822.78409375
transcript.pyannote[18].end 1829.53409375
transcript.pyannote[19].speaker SPEAKER_04
transcript.pyannote[19].start 1829.95596875
transcript.pyannote[19].end 1830.39471875
transcript.pyannote[20].speaker SPEAKER_15
transcript.pyannote[20].start 1832.18346875
transcript.pyannote[20].end 1839.84471875
transcript.pyannote[21].speaker SPEAKER_15
transcript.pyannote[21].start 1840.01346875
transcript.pyannote[21].end 1840.03034375
transcript.pyannote[22].speaker SPEAKER_15
transcript.pyannote[22].start 1840.06409375
transcript.pyannote[22].end 1842.83159375
transcript.pyannote[23].speaker SPEAKER_12
transcript.pyannote[23].start 1843.45596875
transcript.pyannote[23].end 1870.23659375
transcript.pyannote[24].speaker SPEAKER_12
transcript.pyannote[24].start 1870.75971875
transcript.pyannote[24].end 1876.07534375
transcript.pyannote[25].speaker SPEAKER_15
transcript.pyannote[25].start 1875.58596875
transcript.pyannote[25].end 1877.96534375
transcript.pyannote[26].speaker SPEAKER_15
transcript.pyannote[26].start 1878.75846875
transcript.pyannote[26].end 1879.31534375
transcript.pyannote[27].speaker SPEAKER_15
transcript.pyannote[27].start 1879.48409375
transcript.pyannote[27].end 1919.19096875
transcript.pyannote[28].speaker SPEAKER_15
transcript.pyannote[28].start 1919.39346875
transcript.pyannote[28].end 1921.55346875
transcript.pyannote[29].speaker SPEAKER_15
transcript.pyannote[29].start 1923.34221875
transcript.pyannote[29].end 1923.64596875
transcript.pyannote[30].speaker SPEAKER_15
transcript.pyannote[30].start 1924.59096875
transcript.pyannote[30].end 1931.52659375
transcript.pyannote[31].speaker SPEAKER_15
transcript.pyannote[31].start 1933.06221875
transcript.pyannote[31].end 1933.60221875
transcript.pyannote[32].speaker SPEAKER_15
transcript.pyannote[32].start 1933.88909375
transcript.pyannote[32].end 1935.99846875
transcript.pyannote[33].speaker SPEAKER_15
transcript.pyannote[33].start 1936.15034375
transcript.pyannote[33].end 1937.02784375
transcript.pyannote[34].speaker SPEAKER_15
transcript.pyannote[34].start 1939.98096875
transcript.pyannote[34].end 1941.83721875
transcript.pyannote[35].speaker SPEAKER_15
transcript.pyannote[35].start 1942.34346875
transcript.pyannote[35].end 1943.49096875
transcript.pyannote[36].speaker SPEAKER_15
transcript.pyannote[36].start 1943.92971875
transcript.pyannote[36].end 1945.21221875
transcript.pyannote[37].speaker SPEAKER_15
transcript.pyannote[37].start 1947.37221875
transcript.pyannote[37].end 1951.06784375
transcript.pyannote[38].speaker SPEAKER_15
transcript.pyannote[38].start 1953.71721875
transcript.pyannote[38].end 1957.73346875
transcript.pyannote[39].speaker SPEAKER_15
transcript.pyannote[39].start 1959.52221875
transcript.pyannote[39].end 1960.29846875
transcript.pyannote[40].speaker SPEAKER_15
transcript.pyannote[40].start 1962.08721875
transcript.pyannote[40].end 1967.18346875
transcript.pyannote[41].speaker SPEAKER_15
transcript.pyannote[41].start 1967.53784375
transcript.pyannote[41].end 1967.80784375
transcript.pyannote[42].speaker SPEAKER_16
transcript.pyannote[42].start 1981.74659375
transcript.pyannote[42].end 1983.38346875
transcript.pyannote[43].speaker SPEAKER_16
transcript.pyannote[43].start 1983.78846875
transcript.pyannote[43].end 1984.05846875
transcript.pyannote[44].speaker SPEAKER_16
transcript.pyannote[44].start 1984.36221875
transcript.pyannote[44].end 1991.12909375
transcript.pyannote[45].speaker SPEAKER_16
transcript.pyannote[45].start 1991.55096875
transcript.pyannote[45].end 2016.05346875
transcript.pyannote[46].speaker SPEAKER_16
transcript.pyannote[46].start 2016.35721875
transcript.pyannote[46].end 2023.22534375
transcript.pyannote[47].speaker SPEAKER_16
transcript.pyannote[47].start 2023.37721875
transcript.pyannote[47].end 2027.42721875
transcript.pyannote[48].speaker SPEAKER_16
transcript.pyannote[48].start 2027.96721875
transcript.pyannote[48].end 2119.19346875
transcript.pyannote[49].speaker SPEAKER_16
transcript.pyannote[49].start 2119.54784375
transcript.pyannote[49].end 2183.18346875
transcript.pyannote[50].speaker SPEAKER_16
transcript.pyannote[50].start 2183.89221875
transcript.pyannote[50].end 2188.09409375
transcript.pyannote[51].speaker SPEAKER_16
transcript.pyannote[51].start 2188.60034375
transcript.pyannote[51].end 2197.12221875
transcript.pyannote[52].speaker SPEAKER_16
transcript.pyannote[52].start 2197.49346875
transcript.pyannote[52].end 2210.65596875
transcript.pyannote[53].speaker SPEAKER_16
transcript.pyannote[53].start 2210.92596875
transcript.pyannote[53].end 2211.78659375
transcript.pyannote[54].speaker SPEAKER_16
transcript.pyannote[54].start 2212.27596875
transcript.pyannote[54].end 2224.79721875
transcript.pyannote[55].speaker SPEAKER_16
transcript.pyannote[55].start 2225.03346875
transcript.pyannote[55].end 2229.30284375
transcript.pyannote[56].speaker SPEAKER_16
transcript.pyannote[56].start 2229.94409375
transcript.pyannote[56].end 2260.47096875
transcript.pyannote[57].speaker SPEAKER_16
transcript.pyannote[57].start 2260.89284375
transcript.pyannote[57].end 2269.44846875
transcript.pyannote[58].speaker SPEAKER_16
transcript.pyannote[58].start 2269.97159375
transcript.pyannote[58].end 2303.82284375
transcript.pyannote[59].speaker SPEAKER_16
transcript.pyannote[59].start 2304.16034375
transcript.pyannote[59].end 2312.74971875
transcript.pyannote[60].speaker SPEAKER_16
transcript.pyannote[60].start 2313.30659375
transcript.pyannote[60].end 2313.76221875
transcript.pyannote[61].speaker SPEAKER_16
transcript.pyannote[61].start 2313.98159375
transcript.pyannote[61].end 2316.24284375
transcript.pyannote[62].speaker SPEAKER_16
transcript.pyannote[62].start 2316.58034375
transcript.pyannote[62].end 2326.89096875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 2324.71409375
transcript.pyannote[63].end 2324.73096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 2324.74784375
transcript.pyannote[64].end 2324.76471875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 2324.78159375
transcript.pyannote[65].end 2324.79846875
transcript.pyannote[66].speaker SPEAKER_16
transcript.pyannote[66].start 2327.65034375
transcript.pyannote[66].end 2330.36721875
transcript.pyannote[67].speaker SPEAKER_16
transcript.pyannote[67].start 2330.80596875
transcript.pyannote[67].end 2340.17159375
transcript.pyannote[68].speaker SPEAKER_16
transcript.pyannote[68].start 2340.84659375
transcript.pyannote[68].end 2344.30596875
transcript.pyannote[69].speaker SPEAKER_16
transcript.pyannote[69].start 2344.66034375
transcript.pyannote[69].end 2359.88159375
transcript.pyannote[70].speaker SPEAKER_16
transcript.pyannote[70].start 2360.50596875
transcript.pyannote[70].end 2360.55659375
transcript.pyannote[71].speaker SPEAKER_16
transcript.pyannote[71].start 2360.65784375
transcript.pyannote[71].end 2362.39596875
transcript.pyannote[72].speaker SPEAKER_16
transcript.pyannote[72].start 2362.73346875
transcript.pyannote[72].end 2390.61096875
transcript.pyannote[73].speaker SPEAKER_16
transcript.pyannote[73].start 2391.16784375
transcript.pyannote[73].end 2421.91409375
transcript.pyannote[74].speaker SPEAKER_16
transcript.pyannote[74].start 2422.26846875
transcript.pyannote[74].end 2424.69846875
transcript.pyannote[75].speaker SPEAKER_16
transcript.pyannote[75].start 2424.93471875
transcript.pyannote[75].end 2455.09034375
transcript.pyannote[76].speaker SPEAKER_16
transcript.pyannote[76].start 2455.41096875
transcript.pyannote[76].end 2459.25846875
transcript.pyannote[77].speaker SPEAKER_16
transcript.pyannote[77].start 2459.96721875
transcript.pyannote[77].end 2467.66221875
transcript.pyannote[78].speaker SPEAKER_16
transcript.pyannote[78].start 2468.18534375
transcript.pyannote[78].end 2481.76971875
transcript.pyannote[79].speaker SPEAKER_16
transcript.pyannote[79].start 2482.00596875
transcript.pyannote[79].end 2487.38909375
transcript.pyannote[80].speaker SPEAKER_16
transcript.pyannote[80].start 2487.91221875
transcript.pyannote[80].end 2489.81909375
transcript.pyannote[81].speaker SPEAKER_16
transcript.pyannote[81].start 2491.18596875
transcript.pyannote[81].end 2494.10534375
transcript.pyannote[82].speaker SPEAKER_16
transcript.pyannote[82].start 2494.29096875
transcript.pyannote[82].end 2497.44659375
transcript.pyannote[83].speaker SPEAKER_16
transcript.pyannote[83].start 2498.20596875
transcript.pyannote[83].end 2508.68534375
transcript.pyannote[84].speaker SPEAKER_16
transcript.pyannote[84].start 2509.25909375
transcript.pyannote[84].end 2523.85596875
transcript.pyannote[85].speaker SPEAKER_16
transcript.pyannote[85].start 2524.12596875
transcript.pyannote[85].end 2528.59784375
transcript.pyannote[86].speaker SPEAKER_16
transcript.pyannote[86].start 2528.68221875
transcript.pyannote[86].end 2531.19659375
transcript.pyannote[87].speaker SPEAKER_16
transcript.pyannote[87].start 2531.50034375
transcript.pyannote[87].end 2598.22409375
transcript.pyannote[88].speaker SPEAKER_16
transcript.pyannote[88].start 2599.03409375
transcript.pyannote[88].end 2642.92596875
transcript.pyannote[89].speaker SPEAKER_16
transcript.pyannote[89].start 2643.41534375
transcript.pyannote[89].end 2647.56659375
transcript.pyannote[90].speaker SPEAKER_16
transcript.pyannote[90].start 2647.98846875
transcript.pyannote[90].end 2652.51096875
transcript.pyannote[91].speaker SPEAKER_16
transcript.pyannote[91].start 2652.81471875
transcript.pyannote[91].end 2687.62784375
transcript.pyannote[92].speaker SPEAKER_16
transcript.pyannote[92].start 2688.06659375
transcript.pyannote[92].end 2694.85034375
transcript.pyannote[93].speaker SPEAKER_16
transcript.pyannote[93].start 2695.08659375
transcript.pyannote[93].end 2697.60096875
transcript.pyannote[94].speaker SPEAKER_16
transcript.pyannote[94].start 2697.97221875
transcript.pyannote[94].end 2775.20909375
transcript.pyannote[95].speaker SPEAKER_16
transcript.pyannote[95].start 2775.69846875
transcript.pyannote[95].end 2777.23409375
transcript.pyannote[96].speaker SPEAKER_16
transcript.pyannote[96].start 2777.74034375
transcript.pyannote[96].end 2781.50346875
transcript.pyannote[97].speaker SPEAKER_16
transcript.pyannote[97].start 2781.82409375
transcript.pyannote[97].end 2799.88034375
transcript.pyannote[98].speaker SPEAKER_15
transcript.pyannote[98].start 2802.69846875
transcript.pyannote[98].end 2808.08159375
transcript.pyannote[99].speaker SPEAKER_15
transcript.pyannote[99].start 2808.45284375
transcript.pyannote[99].end 2809.14471875
transcript.pyannote[100].speaker SPEAKER_05
transcript.pyannote[100].start 2814.40971875
transcript.pyannote[100].end 2814.76409375
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 2836.93784375
transcript.pyannote[101].end 2837.08971875
transcript.pyannote[102].speaker SPEAKER_27
transcript.pyannote[102].start 2837.08971875
transcript.pyannote[102].end 2837.12346875
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 2837.12346875
transcript.pyannote[103].end 2837.19096875
transcript.pyannote[104].speaker SPEAKER_27
transcript.pyannote[104].start 2837.19096875
transcript.pyannote[104].end 2837.37659375
transcript.pyannote[105].speaker SPEAKER_04
transcript.pyannote[105].start 2837.37659375
transcript.pyannote[105].end 2837.51159375
transcript.pyannote[106].speaker SPEAKER_27
transcript.pyannote[106].start 2838.06846875
transcript.pyannote[106].end 2838.77721875
transcript.pyannote[107].speaker SPEAKER_27
transcript.pyannote[107].start 2839.18221875
transcript.pyannote[107].end 2839.72221875
transcript.pyannote[108].speaker SPEAKER_27
transcript.pyannote[108].start 2840.80221875
transcript.pyannote[108].end 2842.79346875
transcript.pyannote[109].speaker SPEAKER_27
transcript.pyannote[109].start 2843.63721875
transcript.pyannote[109].end 2846.01659375
transcript.pyannote[110].speaker SPEAKER_27
transcript.pyannote[110].start 2846.79284375
transcript.pyannote[110].end 2847.26534375
transcript.pyannote[111].speaker SPEAKER_27
transcript.pyannote[111].start 2847.53534375
transcript.pyannote[111].end 2850.64034375
transcript.pyannote[112].speaker SPEAKER_27
transcript.pyannote[112].start 2851.83846875
transcript.pyannote[112].end 2859.06096875
transcript.pyannote[113].speaker SPEAKER_27
transcript.pyannote[113].start 2859.49971875
transcript.pyannote[113].end 2862.60471875
transcript.pyannote[114].speaker SPEAKER_27
transcript.pyannote[114].start 2862.68909375
transcript.pyannote[114].end 2864.51159375
transcript.pyannote[115].speaker SPEAKER_27
transcript.pyannote[115].start 2864.91659375
transcript.pyannote[115].end 2867.11034375
transcript.pyannote[116].speaker SPEAKER_27
transcript.pyannote[116].start 2868.19034375
transcript.pyannote[116].end 2871.98721875
transcript.pyannote[117].speaker SPEAKER_27
transcript.pyannote[117].start 2872.91534375
transcript.pyannote[117].end 2876.07096875
transcript.pyannote[118].speaker SPEAKER_27
transcript.pyannote[118].start 2876.40846875
transcript.pyannote[118].end 2877.43784375
transcript.pyannote[119].speaker SPEAKER_27
transcript.pyannote[119].start 2877.77534375
transcript.pyannote[119].end 2879.58096875
transcript.pyannote[120].speaker SPEAKER_27
transcript.pyannote[120].start 2880.35721875
transcript.pyannote[120].end 2882.43284375
transcript.pyannote[121].speaker SPEAKER_27
transcript.pyannote[121].start 2882.50034375
transcript.pyannote[121].end 2884.00221875
transcript.pyannote[122].speaker SPEAKER_27
transcript.pyannote[122].start 2884.57596875
transcript.pyannote[122].end 2887.15784375
transcript.pyannote[123].speaker SPEAKER_27
transcript.pyannote[123].start 2887.46159375
transcript.pyannote[123].end 2890.46534375
transcript.pyannote[124].speaker SPEAKER_27
transcript.pyannote[124].start 2890.54971875
transcript.pyannote[124].end 2896.08471875
transcript.pyannote[125].speaker SPEAKER_27
transcript.pyannote[125].start 2897.63721875
transcript.pyannote[125].end 2901.55221875
transcript.pyannote[126].speaker SPEAKER_27
transcript.pyannote[126].start 2902.05846875
transcript.pyannote[126].end 2902.91909375
transcript.pyannote[127].speaker SPEAKER_27
transcript.pyannote[127].start 2904.62346875
transcript.pyannote[127].end 2908.03221875
transcript.pyannote[128].speaker SPEAKER_27
transcript.pyannote[128].start 2908.50471875
transcript.pyannote[128].end 2912.65596875
transcript.pyannote[129].speaker SPEAKER_27
transcript.pyannote[129].start 2913.26346875
transcript.pyannote[129].end 2916.25034375
transcript.pyannote[130].speaker SPEAKER_27
transcript.pyannote[130].start 2917.22909375
transcript.pyannote[130].end 2921.92034375
transcript.pyannote[131].speaker SPEAKER_27
transcript.pyannote[131].start 2922.67971875
transcript.pyannote[131].end 2923.16909375
transcript.pyannote[132].speaker SPEAKER_27
transcript.pyannote[132].start 2923.65846875
transcript.pyannote[132].end 2926.15596875
transcript.pyannote[133].speaker SPEAKER_27
transcript.pyannote[133].start 2926.94909375
transcript.pyannote[133].end 2928.67034375
transcript.pyannote[134].speaker SPEAKER_27
transcript.pyannote[134].start 2929.95284375
transcript.pyannote[134].end 2932.16346875
transcript.pyannote[135].speaker SPEAKER_27
transcript.pyannote[135].start 2933.51346875
transcript.pyannote[135].end 2934.61034375
transcript.pyannote[136].speaker SPEAKER_27
transcript.pyannote[136].start 2935.25159375
transcript.pyannote[136].end 2937.32721875
transcript.pyannote[137].speaker SPEAKER_27
transcript.pyannote[137].start 2937.83346875
transcript.pyannote[137].end 2940.02721875
transcript.pyannote[138].speaker SPEAKER_27
transcript.pyannote[138].start 2940.31409375
transcript.pyannote[138].end 2945.66346875
transcript.pyannote[139].speaker SPEAKER_27
transcript.pyannote[139].start 2945.69721875
transcript.pyannote[139].end 2947.92471875
transcript.pyannote[140].speaker SPEAKER_27
transcript.pyannote[140].start 2948.46471875
transcript.pyannote[140].end 2950.60784375
transcript.pyannote[141].speaker SPEAKER_27
transcript.pyannote[141].start 2951.45159375
transcript.pyannote[141].end 2953.35846875
transcript.pyannote[142].speaker SPEAKER_27
transcript.pyannote[142].start 2953.86471875
transcript.pyannote[142].end 2958.60659375
transcript.pyannote[143].speaker SPEAKER_27
transcript.pyannote[143].start 2960.88471875
transcript.pyannote[143].end 2961.55971875
transcript.pyannote[144].speaker SPEAKER_27
transcript.pyannote[144].start 2961.88034375
transcript.pyannote[144].end 2965.00221875
transcript.pyannote[145].speaker SPEAKER_27
transcript.pyannote[145].start 2967.65159375
transcript.pyannote[145].end 2972.66346875
transcript.pyannote[146].speaker SPEAKER_27
transcript.pyannote[146].start 2973.32159375
transcript.pyannote[146].end 2975.73471875
transcript.pyannote[147].speaker SPEAKER_27
transcript.pyannote[147].start 2976.17346875
transcript.pyannote[147].end 2977.38846875
transcript.pyannote[148].speaker SPEAKER_27
transcript.pyannote[148].start 2977.99596875
transcript.pyannote[148].end 2980.05471875
transcript.pyannote[149].speaker SPEAKER_27
transcript.pyannote[149].start 2980.29096875
transcript.pyannote[149].end 2985.96096875
transcript.pyannote[150].speaker SPEAKER_27
transcript.pyannote[150].start 2987.53034375
transcript.pyannote[150].end 2990.48346875
transcript.pyannote[151].speaker SPEAKER_27
transcript.pyannote[151].start 2991.19221875
transcript.pyannote[151].end 2997.45284375
transcript.pyannote[152].speaker SPEAKER_27
transcript.pyannote[152].start 2998.09409375
transcript.pyannote[152].end 3000.52409375
transcript.pyannote[153].speaker SPEAKER_27
transcript.pyannote[153].start 3000.84471875
transcript.pyannote[153].end 3002.00909375
transcript.pyannote[154].speaker SPEAKER_27
transcript.pyannote[154].start 3003.08909375
transcript.pyannote[154].end 3004.18596875
transcript.pyannote[155].speaker SPEAKER_27
transcript.pyannote[155].start 3004.35471875
transcript.pyannote[155].end 3005.38409375
transcript.pyannote[156].speaker SPEAKER_27
transcript.pyannote[156].start 3005.43471875
transcript.pyannote[156].end 3007.78034375
transcript.pyannote[157].speaker SPEAKER_27
transcript.pyannote[157].start 3008.74221875
transcript.pyannote[157].end 3013.65284375
transcript.pyannote[158].speaker SPEAKER_27
transcript.pyannote[158].start 3014.59784375
transcript.pyannote[158].end 3017.53409375
transcript.pyannote[159].speaker SPEAKER_27
transcript.pyannote[159].start 3017.93909375
transcript.pyannote[159].end 3021.01034375
transcript.pyannote[160].speaker SPEAKER_27
transcript.pyannote[160].start 3021.83721875
transcript.pyannote[160].end 3023.44034375
transcript.pyannote[161].speaker SPEAKER_27
transcript.pyannote[161].start 3024.19971875
transcript.pyannote[161].end 3024.80721875
transcript.pyannote[162].speaker SPEAKER_27
transcript.pyannote[162].start 3026.14034375
transcript.pyannote[162].end 3029.65034375
transcript.pyannote[163].speaker SPEAKER_27
transcript.pyannote[163].start 3030.19034375
transcript.pyannote[163].end 3033.26159375
transcript.pyannote[164].speaker SPEAKER_27
transcript.pyannote[164].start 3034.78034375
transcript.pyannote[164].end 3036.13034375
transcript.pyannote[165].speaker SPEAKER_27
transcript.pyannote[165].start 3037.19346875
transcript.pyannote[165].end 3037.71659375
transcript.pyannote[166].speaker SPEAKER_27
transcript.pyannote[166].start 3037.91909375
transcript.pyannote[166].end 3041.41221875
transcript.pyannote[167].speaker SPEAKER_27
transcript.pyannote[167].start 3042.28971875
transcript.pyannote[167].end 3046.79534375
transcript.pyannote[168].speaker SPEAKER_27
transcript.pyannote[168].start 3047.16659375
transcript.pyannote[168].end 3049.76534375
transcript.pyannote[169].speaker SPEAKER_27
transcript.pyannote[169].start 3050.69346875
transcript.pyannote[169].end 3054.50721875
transcript.pyannote[170].speaker SPEAKER_27
transcript.pyannote[170].start 3055.38471875
transcript.pyannote[170].end 3058.00034375
transcript.pyannote[171].speaker SPEAKER_27
transcript.pyannote[171].start 3058.50659375
transcript.pyannote[171].end 3060.81846875
transcript.pyannote[172].speaker SPEAKER_27
transcript.pyannote[172].start 3061.27409375
transcript.pyannote[172].end 3062.01659375
transcript.pyannote[173].speaker SPEAKER_27
transcript.pyannote[173].start 3062.62409375
transcript.pyannote[173].end 3063.99096875
transcript.pyannote[174].speaker SPEAKER_27
transcript.pyannote[174].start 3064.53096875
transcript.pyannote[174].end 3067.41659375
transcript.pyannote[175].speaker SPEAKER_27
transcript.pyannote[175].start 3068.02409375
transcript.pyannote[175].end 3073.15409375
transcript.pyannote[176].speaker SPEAKER_27
transcript.pyannote[176].start 3074.03159375
transcript.pyannote[176].end 3075.56721875
transcript.pyannote[177].speaker SPEAKER_27
transcript.pyannote[177].start 3076.17471875
transcript.pyannote[177].end 3084.88221875
transcript.pyannote[178].speaker SPEAKER_27
transcript.pyannote[178].start 3085.91159375
transcript.pyannote[178].end 3086.55284375
transcript.pyannote[179].speaker SPEAKER_27
transcript.pyannote[179].start 3086.83971875
transcript.pyannote[179].end 3091.88534375
transcript.pyannote[180].speaker SPEAKER_27
transcript.pyannote[180].start 3092.57721875
transcript.pyannote[180].end 3097.18409375
transcript.pyannote[181].speaker SPEAKER_27
transcript.pyannote[181].start 3098.61846875
transcript.pyannote[181].end 3101.67284375
transcript.pyannote[182].speaker SPEAKER_27
transcript.pyannote[182].start 3102.34784375
transcript.pyannote[182].end 3105.99284375
transcript.pyannote[183].speaker SPEAKER_27
transcript.pyannote[183].start 3106.76909375
transcript.pyannote[183].end 3108.82784375
transcript.pyannote[184].speaker SPEAKER_27
transcript.pyannote[184].start 3109.94159375
transcript.pyannote[184].end 3111.19034375
transcript.pyannote[185].speaker SPEAKER_27
transcript.pyannote[185].start 3111.51096875
transcript.pyannote[185].end 3112.28721875
transcript.pyannote[186].speaker SPEAKER_27
transcript.pyannote[186].start 3113.89034375
transcript.pyannote[186].end 3116.69159375
transcript.pyannote[187].speaker SPEAKER_27
transcript.pyannote[187].start 3117.09659375
transcript.pyannote[187].end 3118.95284375
transcript.pyannote[188].speaker SPEAKER_27
transcript.pyannote[188].start 3119.42534375
transcript.pyannote[188].end 3120.92721875
transcript.pyannote[189].speaker SPEAKER_27
transcript.pyannote[189].start 3121.63596875
transcript.pyannote[189].end 3122.19284375
transcript.pyannote[190].speaker SPEAKER_27
transcript.pyannote[190].start 3122.59784375
transcript.pyannote[190].end 3124.63971875
transcript.pyannote[191].speaker SPEAKER_27
transcript.pyannote[191].start 3125.36534375
transcript.pyannote[191].end 3128.30159375
transcript.pyannote[192].speaker SPEAKER_27
transcript.pyannote[192].start 3128.75721875
transcript.pyannote[192].end 3130.59659375
transcript.pyannote[193].speaker SPEAKER_27
transcript.pyannote[193].start 3131.11971875
transcript.pyannote[193].end 3139.84409375
transcript.pyannote[194].speaker SPEAKER_27
transcript.pyannote[194].start 3140.82284375
transcript.pyannote[194].end 3145.81784375
transcript.pyannote[195].speaker SPEAKER_27
transcript.pyannote[195].start 3146.20596875
transcript.pyannote[195].end 3150.67784375
transcript.pyannote[196].speaker SPEAKER_27
transcript.pyannote[196].start 3150.93096875
transcript.pyannote[196].end 3159.75659375
transcript.pyannote[197].speaker SPEAKER_27
transcript.pyannote[197].start 3160.43159375
transcript.pyannote[197].end 3172.64909375
transcript.pyannote[198].speaker SPEAKER_27
transcript.pyannote[198].start 3172.88534375
transcript.pyannote[198].end 3173.61096875
transcript.pyannote[199].speaker SPEAKER_27
transcript.pyannote[199].start 3174.04971875
transcript.pyannote[199].end 3181.55909375
transcript.pyannote[200].speaker SPEAKER_27
transcript.pyannote[200].start 3182.85846875
transcript.pyannote[200].end 3184.19159375
transcript.pyannote[201].speaker SPEAKER_27
transcript.pyannote[201].start 3184.81596875
transcript.pyannote[201].end 3185.89596875
transcript.pyannote[202].speaker SPEAKER_27
transcript.pyannote[202].start 3186.23346875
transcript.pyannote[202].end 3189.32159375
transcript.pyannote[203].speaker SPEAKER_27
transcript.pyannote[203].start 3190.23284375
transcript.pyannote[203].end 3195.93659375
transcript.pyannote[204].speaker SPEAKER_27
transcript.pyannote[204].start 3196.51034375
transcript.pyannote[204].end 3199.63221875
transcript.pyannote[205].speaker SPEAKER_27
transcript.pyannote[205].start 3200.25659375
transcript.pyannote[205].end 3202.93971875
transcript.pyannote[206].speaker SPEAKER_27
transcript.pyannote[206].start 3203.34471875
transcript.pyannote[206].end 3206.90534375
transcript.pyannote[207].speaker SPEAKER_27
transcript.pyannote[207].start 3208.30596875
transcript.pyannote[207].end 3211.84971875
transcript.pyannote[208].speaker SPEAKER_27
transcript.pyannote[208].start 3212.54159375
transcript.pyannote[208].end 3213.77346875
transcript.pyannote[209].speaker SPEAKER_27
transcript.pyannote[209].start 3214.85346875
transcript.pyannote[209].end 3216.89534375
transcript.pyannote[210].speaker SPEAKER_27
transcript.pyannote[210].start 3217.60409375
transcript.pyannote[210].end 3219.91596875
transcript.pyannote[211].speaker SPEAKER_27
transcript.pyannote[211].start 3220.81034375
transcript.pyannote[211].end 3222.12659375
transcript.pyannote[212].speaker SPEAKER_27
transcript.pyannote[212].start 3222.56534375
transcript.pyannote[212].end 3224.28659375
transcript.pyannote[213].speaker SPEAKER_27
transcript.pyannote[213].start 3224.97846875
transcript.pyannote[213].end 3226.12596875
transcript.pyannote[214].speaker SPEAKER_27
transcript.pyannote[214].start 3226.73346875
transcript.pyannote[214].end 3227.30721875
transcript.pyannote[215].speaker SPEAKER_27
transcript.pyannote[215].start 3228.31971875
transcript.pyannote[215].end 3229.39971875
transcript.pyannote[216].speaker SPEAKER_27
transcript.pyannote[216].start 3229.68659375
transcript.pyannote[216].end 3232.42034375
transcript.pyannote[217].speaker SPEAKER_27
transcript.pyannote[217].start 3232.77471875
transcript.pyannote[217].end 3234.76596875
transcript.pyannote[218].speaker SPEAKER_27
transcript.pyannote[218].start 3235.30596875
transcript.pyannote[218].end 3239.40659375
transcript.pyannote[219].speaker SPEAKER_27
transcript.pyannote[219].start 3239.82846875
transcript.pyannote[219].end 3241.88721875
transcript.pyannote[220].speaker SPEAKER_15
transcript.pyannote[220].start 3246.05534375
transcript.pyannote[220].end 3256.56846875
transcript.pyannote[221].speaker SPEAKER_15
transcript.pyannote[221].start 3257.59784375
transcript.pyannote[221].end 3261.10784375
transcript.pyannote[222].speaker SPEAKER_15
transcript.pyannote[222].start 3262.23846875
transcript.pyannote[222].end 3265.37721875
transcript.pyannote[223].speaker SPEAKER_15
transcript.pyannote[223].start 3265.95096875
transcript.pyannote[223].end 3302.16471875
transcript.pyannote[224].speaker SPEAKER_06
transcript.pyannote[224].start 3304.94909375
transcript.pyannote[224].end 3305.99534375
transcript.pyannote[225].speaker SPEAKER_06
transcript.pyannote[225].start 3306.75471875
transcript.pyannote[225].end 3308.20596875
transcript.pyannote[226].speaker SPEAKER_11
transcript.pyannote[226].start 3314.01096875
transcript.pyannote[226].end 3330.88596875
transcript.pyannote[227].speaker SPEAKER_11
transcript.pyannote[227].start 3331.05471875
transcript.pyannote[227].end 3356.65409375
transcript.pyannote[228].speaker SPEAKER_11
transcript.pyannote[228].start 3357.27846875
transcript.pyannote[228].end 3390.85971875
transcript.pyannote[229].speaker SPEAKER_11
transcript.pyannote[229].start 3391.26471875
transcript.pyannote[229].end 3392.95221875
transcript.pyannote[230].speaker SPEAKER_11
transcript.pyannote[230].start 3393.64409375
transcript.pyannote[230].end 3410.97471875
transcript.pyannote[231].speaker SPEAKER_11
transcript.pyannote[231].start 3411.32909375
transcript.pyannote[231].end 3428.92971875
transcript.pyannote[232].speaker SPEAKER_11
transcript.pyannote[232].start 3429.04784375
transcript.pyannote[232].end 3468.82221875
transcript.pyannote[233].speaker SPEAKER_11
transcript.pyannote[233].start 3468.83909375
transcript.pyannote[233].end 3475.60596875
transcript.pyannote[234].speaker SPEAKER_11
transcript.pyannote[234].start 3475.92659375
transcript.pyannote[234].end 3477.51284375
transcript.pyannote[235].speaker SPEAKER_11
transcript.pyannote[235].start 3477.78284375
transcript.pyannote[235].end 3478.91346875
transcript.pyannote[236].speaker SPEAKER_11
transcript.pyannote[236].start 3479.48721875
transcript.pyannote[236].end 3482.52471875
transcript.pyannote[237].speaker SPEAKER_11
transcript.pyannote[237].start 3483.16596875
transcript.pyannote[237].end 3506.08221875
transcript.pyannote[238].speaker SPEAKER_11
transcript.pyannote[238].start 3506.23409375
transcript.pyannote[238].end 3527.47971875
transcript.pyannote[239].speaker SPEAKER_11
transcript.pyannote[239].start 3527.96909375
transcript.pyannote[239].end 3528.44159375
transcript.pyannote[240].speaker SPEAKER_11
transcript.pyannote[240].start 3528.74534375
transcript.pyannote[240].end 3542.53221875
transcript.pyannote[241].speaker SPEAKER_11
transcript.pyannote[241].start 3543.79784375
transcript.pyannote[241].end 3564.21659375
transcript.pyannote[242].speaker SPEAKER_11
transcript.pyannote[242].start 3564.95909375
transcript.pyannote[242].end 3581.29409375
transcript.pyannote[243].speaker SPEAKER_11
transcript.pyannote[243].start 3581.66534375
transcript.pyannote[243].end 3593.39346875
transcript.pyannote[244].speaker SPEAKER_11
transcript.pyannote[244].start 3593.81534375
transcript.pyannote[244].end 3597.86534375
transcript.pyannote[245].speaker SPEAKER_11
transcript.pyannote[245].start 3598.42221875
transcript.pyannote[245].end 3604.02471875
transcript.pyannote[246].speaker SPEAKER_11
transcript.pyannote[246].start 3604.61534375
transcript.pyannote[246].end 3651.42659375
transcript.pyannote[247].speaker SPEAKER_11
transcript.pyannote[247].start 3651.74721875
transcript.pyannote[247].end 3754.87034375
transcript.pyannote[248].speaker SPEAKER_11
transcript.pyannote[248].start 3755.25846875
transcript.pyannote[248].end 3823.75409375
transcript.pyannote[249].speaker SPEAKER_11
transcript.pyannote[249].start 3824.09159375
transcript.pyannote[249].end 3831.90471875
transcript.pyannote[250].speaker SPEAKER_11
transcript.pyannote[250].start 3832.47846875
transcript.pyannote[250].end 3846.94034375
transcript.pyannote[251].speaker SPEAKER_11
transcript.pyannote[251].start 3847.32846875
transcript.pyannote[251].end 3849.04971875
transcript.pyannote[252].speaker SPEAKER_11
transcript.pyannote[252].start 3849.08346875
transcript.pyannote[252].end 3871.35846875
transcript.pyannote[253].speaker SPEAKER_11
transcript.pyannote[253].start 3871.84784375
transcript.pyannote[253].end 3906.61034375
transcript.pyannote[254].speaker SPEAKER_11
transcript.pyannote[254].start 3907.03221875
transcript.pyannote[254].end 3911.55471875
transcript.pyannote[255].speaker SPEAKER_11
transcript.pyannote[255].start 3911.77409375
transcript.pyannote[255].end 3935.85471875
transcript.pyannote[256].speaker SPEAKER_11
transcript.pyannote[256].start 3936.14159375
transcript.pyannote[256].end 3944.25846875
transcript.pyannote[257].speaker SPEAKER_11
transcript.pyannote[257].start 3944.66346875
transcript.pyannote[257].end 3954.60284375
transcript.pyannote[258].speaker SPEAKER_11
transcript.pyannote[258].start 3955.19346875
transcript.pyannote[258].end 3970.31346875
transcript.pyannote[259].speaker SPEAKER_11
transcript.pyannote[259].start 3970.49909375
transcript.pyannote[259].end 4029.64596875
transcript.pyannote[260].speaker SPEAKER_11
transcript.pyannote[260].start 4030.15221875
transcript.pyannote[260].end 4034.38784375
transcript.pyannote[261].speaker SPEAKER_11
transcript.pyannote[261].start 4034.86034375
transcript.pyannote[261].end 4063.96971875
transcript.pyannote[262].speaker SPEAKER_11
transcript.pyannote[262].start 4064.44221875
transcript.pyannote[262].end 4099.20471875
transcript.pyannote[263].speaker SPEAKER_16
transcript.pyannote[263].start 4100.04846875
transcript.pyannote[263].end 4101.14534375
transcript.pyannote[264].speaker SPEAKER_11
transcript.pyannote[264].start 4101.14534375
transcript.pyannote[264].end 4102.02284375
transcript.pyannote[265].speaker SPEAKER_15
transcript.pyannote[265].start 4102.02284375
transcript.pyannote[265].end 4111.82721875
transcript.pyannote[266].speaker SPEAKER_11
transcript.pyannote[266].start 4104.04784375
transcript.pyannote[266].end 4107.03471875
transcript.pyannote[267].speaker SPEAKER_16
transcript.pyannote[267].start 4107.03471875
transcript.pyannote[267].end 4107.30471875
transcript.pyannote[268].speaker SPEAKER_11
transcript.pyannote[268].start 4107.30471875
transcript.pyannote[268].end 4107.67596875
transcript.pyannote[269].speaker SPEAKER_11
transcript.pyannote[269].start 4108.94159375
transcript.pyannote[269].end 4111.27034375
transcript.pyannote[270].speaker SPEAKER_16
transcript.pyannote[270].start 4111.27034375
transcript.pyannote[270].end 4115.86034375
transcript.pyannote[271].speaker SPEAKER_15
transcript.pyannote[271].start 4112.68784375
transcript.pyannote[271].end 4112.70471875
transcript.pyannote[272].speaker SPEAKER_11
transcript.pyannote[272].start 4112.70471875
transcript.pyannote[272].end 4112.72159375
transcript.pyannote[273].speaker SPEAKER_15
transcript.pyannote[273].start 4112.72159375
transcript.pyannote[273].end 4112.77221875
transcript.pyannote[274].speaker SPEAKER_11
transcript.pyannote[274].start 4112.77221875
transcript.pyannote[274].end 4112.83971875
transcript.pyannote[275].speaker SPEAKER_15
transcript.pyannote[275].start 4112.83971875
transcript.pyannote[275].end 4112.85659375
transcript.pyannote[276].speaker SPEAKER_15
transcript.pyannote[276].start 4112.95784375
transcript.pyannote[276].end 4113.75096875
transcript.pyannote[277].speaker SPEAKER_15
transcript.pyannote[277].start 4114.44284375
transcript.pyannote[277].end 4115.75909375
transcript.pyannote[278].speaker SPEAKER_15
transcript.pyannote[278].start 4118.81346875
transcript.pyannote[278].end 4119.58971875
transcript.pyannote[279].speaker SPEAKER_15
transcript.pyannote[279].start 4119.65721875
transcript.pyannote[279].end 4121.00721875
transcript.pyannote[280].speaker SPEAKER_06
transcript.pyannote[280].start 4121.14221875
transcript.pyannote[280].end 4121.66534375
transcript.pyannote[281].speaker SPEAKER_15
transcript.pyannote[281].start 4121.66534375
transcript.pyannote[281].end 4124.07846875
transcript.pyannote[282].speaker SPEAKER_06
transcript.pyannote[282].start 4121.68221875
transcript.pyannote[282].end 4121.96909375
transcript.pyannote[283].speaker SPEAKER_15
transcript.pyannote[283].start 4125.07409375
transcript.pyannote[283].end 4125.42846875
transcript.pyannote[284].speaker SPEAKER_15
transcript.pyannote[284].start 4125.98534375
transcript.pyannote[284].end 4128.49971875
transcript.pyannote[285].speaker SPEAKER_05
transcript.pyannote[285].start 4133.08971875
transcript.pyannote[285].end 4136.73471875
transcript.pyannote[286].speaker SPEAKER_05
transcript.pyannote[286].start 4137.64596875
transcript.pyannote[286].end 4138.97909375
transcript.pyannote[287].speaker SPEAKER_16
transcript.pyannote[287].start 4145.23971875
transcript.pyannote[287].end 4145.67846875
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 4145.67846875
transcript.pyannote[288].end 4148.31096875
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 4148.59784375
transcript.pyannote[289].end 4150.26846875
transcript.pyannote[290].speaker SPEAKER_05
transcript.pyannote[290].start 4150.33596875
transcript.pyannote[290].end 4152.00659375
transcript.pyannote[291].speaker SPEAKER_05
transcript.pyannote[291].start 4152.10784375
transcript.pyannote[291].end 4184.03534375
transcript.pyannote[292].speaker SPEAKER_05
transcript.pyannote[292].start 4184.27159375
transcript.pyannote[292].end 4191.25784375
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 4191.61221875
transcript.pyannote[293].end 4202.76659375
transcript.pyannote[294].speaker SPEAKER_05
transcript.pyannote[294].start 4203.49221875
transcript.pyannote[294].end 4210.34346875
transcript.pyannote[295].speaker SPEAKER_05
transcript.pyannote[295].start 4210.64721875
transcript.pyannote[295].end 4211.06909375
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 4211.67659375
transcript.pyannote[296].end 4217.00909375
transcript.pyannote[297].speaker SPEAKER_05
transcript.pyannote[297].start 4217.53221875
transcript.pyannote[297].end 4230.12096875
transcript.pyannote[298].speaker SPEAKER_05
transcript.pyannote[298].start 4230.84659375
transcript.pyannote[298].end 4242.50721875
transcript.pyannote[299].speaker SPEAKER_05
transcript.pyannote[299].start 4243.13159375
transcript.pyannote[299].end 4246.08471875
transcript.pyannote[300].speaker SPEAKER_05
transcript.pyannote[300].start 4247.67096875
transcript.pyannote[300].end 4248.85221875
transcript.pyannote[301].speaker SPEAKER_16
transcript.pyannote[301].start 4249.29096875
transcript.pyannote[301].end 4251.63659375
transcript.pyannote[302].speaker SPEAKER_16
transcript.pyannote[302].start 4252.07534375
transcript.pyannote[302].end 4278.21471875
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 4278.46784375
transcript.pyannote[303].end 4282.31534375
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 4282.55159375
transcript.pyannote[304].end 4283.05784375
transcript.pyannote[305].speaker SPEAKER_05
transcript.pyannote[305].start 4283.42909375
transcript.pyannote[305].end 4289.79096875
transcript.pyannote[306].speaker SPEAKER_05
transcript.pyannote[306].start 4290.06096875
transcript.pyannote[306].end 4292.40659375
transcript.pyannote[307].speaker SPEAKER_05
transcript.pyannote[307].start 4293.13221875
transcript.pyannote[307].end 4295.29221875
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 4295.66346875
transcript.pyannote[308].end 4303.05471875
transcript.pyannote[309].speaker SPEAKER_05
transcript.pyannote[309].start 4304.33721875
transcript.pyannote[309].end 4305.95721875
transcript.pyannote[310].speaker SPEAKER_16
transcript.pyannote[310].start 4306.24409375
transcript.pyannote[310].end 4306.46346875
transcript.pyannote[311].speaker SPEAKER_16
transcript.pyannote[311].start 4306.61534375
transcript.pyannote[311].end 4332.38346875
transcript.pyannote[312].speaker SPEAKER_05
transcript.pyannote[312].start 4332.38346875
transcript.pyannote[312].end 4333.61534375
transcript.pyannote[313].speaker SPEAKER_16
transcript.pyannote[313].start 4333.71659375
transcript.pyannote[313].end 4342.13721875
transcript.pyannote[314].speaker SPEAKER_05
transcript.pyannote[314].start 4338.61034375
transcript.pyannote[314].end 4339.18409375
transcript.pyannote[315].speaker SPEAKER_05
transcript.pyannote[315].start 4341.49596875
transcript.pyannote[315].end 4344.36471875
transcript.pyannote[316].speaker SPEAKER_16
transcript.pyannote[316].start 4344.73596875
transcript.pyannote[316].end 4346.00159375
transcript.pyannote[317].speaker SPEAKER_05
transcript.pyannote[317].start 4345.07346875
transcript.pyannote[317].end 4345.96784375
transcript.pyannote[318].speaker SPEAKER_16
transcript.pyannote[318].start 4346.47409375
transcript.pyannote[318].end 4358.84346875
transcript.pyannote[319].speaker SPEAKER_05
transcript.pyannote[319].start 4357.24034375
transcript.pyannote[319].end 4366.58909375
transcript.pyannote[320].speaker SPEAKER_16
transcript.pyannote[320].start 4366.58909375
transcript.pyannote[320].end 4386.02909375
transcript.pyannote[321].speaker SPEAKER_05
transcript.pyannote[321].start 4386.24846875
transcript.pyannote[321].end 4388.12159375
transcript.pyannote[322].speaker SPEAKER_05
transcript.pyannote[322].start 4388.52659375
transcript.pyannote[322].end 4403.22471875
transcript.pyannote[323].speaker SPEAKER_28
transcript.pyannote[323].start 4396.71096875
transcript.pyannote[323].end 4396.99784375
transcript.pyannote[324].speaker SPEAKER_16
transcript.pyannote[324].start 4396.99784375
transcript.pyannote[324].end 4397.06534375
transcript.pyannote[325].speaker SPEAKER_16
transcript.pyannote[325].start 4403.34284375
transcript.pyannote[325].end 4403.69721875
transcript.pyannote[326].speaker SPEAKER_05
transcript.pyannote[326].start 4403.81534375
transcript.pyannote[326].end 4406.86971875
transcript.pyannote[327].speaker SPEAKER_16
transcript.pyannote[327].start 4407.13971875
transcript.pyannote[327].end 4407.40971875
transcript.pyannote[328].speaker SPEAKER_16
transcript.pyannote[328].start 4407.61221875
transcript.pyannote[328].end 4408.77659375
transcript.pyannote[329].speaker SPEAKER_05
transcript.pyannote[329].start 4407.67971875
transcript.pyannote[329].end 4409.62034375
transcript.pyannote[330].speaker SPEAKER_16
transcript.pyannote[330].start 4409.82284375
transcript.pyannote[330].end 4427.45721875
transcript.pyannote[331].speaker SPEAKER_05
transcript.pyannote[331].start 4427.03534375
transcript.pyannote[331].end 4433.17784375
transcript.pyannote[332].speaker SPEAKER_16
transcript.pyannote[332].start 4432.80659375
transcript.pyannote[332].end 4436.35034375
transcript.pyannote[333].speaker SPEAKER_05
transcript.pyannote[333].start 4436.45159375
transcript.pyannote[333].end 4437.88596875
transcript.pyannote[334].speaker SPEAKER_16
transcript.pyannote[334].start 4437.29534375
transcript.pyannote[334].end 4438.12221875
transcript.pyannote[335].speaker SPEAKER_05
transcript.pyannote[335].start 4438.12221875
transcript.pyannote[335].end 4439.97846875
transcript.pyannote[336].speaker SPEAKER_05
transcript.pyannote[336].start 4440.29909375
transcript.pyannote[336].end 4443.40409375
transcript.pyannote[337].speaker SPEAKER_05
transcript.pyannote[337].start 4444.61909375
transcript.pyannote[337].end 4445.69909375
transcript.pyannote[338].speaker SPEAKER_05
transcript.pyannote[338].start 4446.23909375
transcript.pyannote[338].end 4448.14596875
transcript.pyannote[339].speaker SPEAKER_16
transcript.pyannote[339].start 4449.59721875
transcript.pyannote[339].end 4450.15409375
transcript.pyannote[340].speaker SPEAKER_16
transcript.pyannote[340].start 4450.49159375
transcript.pyannote[340].end 4452.83721875
transcript.pyannote[341].speaker SPEAKER_05
transcript.pyannote[341].start 4452.58409375
transcript.pyannote[341].end 4452.65159375
transcript.pyannote[342].speaker SPEAKER_16
transcript.pyannote[342].start 4453.00596875
transcript.pyannote[342].end 4453.02284375
transcript.pyannote[343].speaker SPEAKER_05
transcript.pyannote[343].start 4453.02284375
transcript.pyannote[343].end 4453.90034375
transcript.pyannote[344].speaker SPEAKER_16
transcript.pyannote[344].start 4453.03971875
transcript.pyannote[344].end 4453.52909375
transcript.pyannote[345].speaker SPEAKER_05
transcript.pyannote[345].start 4454.94659375
transcript.pyannote[345].end 4456.70159375
transcript.pyannote[346].speaker SPEAKER_05
transcript.pyannote[346].start 4457.05596875
transcript.pyannote[346].end 4458.77721875
transcript.pyannote[347].speaker SPEAKER_05
transcript.pyannote[347].start 4459.36784375
transcript.pyannote[347].end 4472.00721875
transcript.pyannote[348].speaker SPEAKER_24
transcript.pyannote[348].start 4472.29409375
transcript.pyannote[348].end 4484.79846875
transcript.pyannote[349].speaker SPEAKER_05
transcript.pyannote[349].start 4484.32596875
transcript.pyannote[349].end 4488.81471875
transcript.pyannote[350].speaker SPEAKER_24
transcript.pyannote[350].start 4488.81471875
transcript.pyannote[350].end 4489.20284375
transcript.pyannote[351].speaker SPEAKER_05
transcript.pyannote[351].start 4489.11846875
transcript.pyannote[351].end 4490.02971875
transcript.pyannote[352].speaker SPEAKER_24
transcript.pyannote[352].start 4490.46846875
transcript.pyannote[352].end 4511.66346875
transcript.pyannote[353].speaker SPEAKER_05
transcript.pyannote[353].start 4511.69721875
transcript.pyannote[353].end 4548.09659375
transcript.pyannote[354].speaker SPEAKER_24
transcript.pyannote[354].start 4514.02596875
transcript.pyannote[354].end 4514.31284375
transcript.pyannote[355].speaker SPEAKER_24
transcript.pyannote[355].start 4519.96596875
transcript.pyannote[355].end 4521.46784375
transcript.pyannote[356].speaker SPEAKER_24
transcript.pyannote[356].start 4521.80534375
transcript.pyannote[356].end 4521.87284375
transcript.pyannote[357].speaker SPEAKER_05
transcript.pyannote[357].start 4548.94034375
transcript.pyannote[357].end 4553.27721875
transcript.pyannote[358].speaker SPEAKER_05
transcript.pyannote[358].start 4553.90159375
transcript.pyannote[358].end 4558.47471875
transcript.pyannote[359].speaker SPEAKER_05
transcript.pyannote[359].start 4559.14971875
transcript.pyannote[359].end 4560.26346875
transcript.pyannote[360].speaker SPEAKER_05
transcript.pyannote[360].start 4560.78659375
transcript.pyannote[360].end 4564.29659375
transcript.pyannote[361].speaker SPEAKER_25
transcript.pyannote[361].start 4568.26221875
transcript.pyannote[361].end 4568.36346875
transcript.pyannote[362].speaker SPEAKER_05
transcript.pyannote[362].start 4568.36346875
transcript.pyannote[362].end 4570.33784375
transcript.pyannote[363].speaker SPEAKER_25
transcript.pyannote[363].start 4568.38034375
transcript.pyannote[363].end 4569.19034375
transcript.pyannote[364].speaker SPEAKER_25
transcript.pyannote[364].start 4569.64596875
transcript.pyannote[364].end 4575.38346875
transcript.pyannote[365].speaker SPEAKER_25
transcript.pyannote[365].start 4576.02471875
transcript.pyannote[365].end 4604.12159375
transcript.pyannote[366].speaker SPEAKER_05
transcript.pyannote[366].start 4577.29034375
transcript.pyannote[366].end 4577.99909375
transcript.pyannote[367].speaker SPEAKER_00
transcript.pyannote[367].start 4577.99909375
transcript.pyannote[367].end 4578.03284375
transcript.pyannote[368].speaker SPEAKER_00
transcript.pyannote[368].start 4590.38534375
transcript.pyannote[368].end 4590.89159375
transcript.pyannote[369].speaker SPEAKER_05
transcript.pyannote[369].start 4603.44659375
transcript.pyannote[369].end 4655.87721875
transcript.pyannote[370].speaker SPEAKER_05
transcript.pyannote[370].start 4656.11346875
transcript.pyannote[370].end 4659.25221875
transcript.pyannote[371].speaker SPEAKER_05
transcript.pyannote[371].start 4659.80909375
transcript.pyannote[371].end 4661.02409375
transcript.pyannote[372].speaker SPEAKER_05
transcript.pyannote[372].start 4661.68221875
transcript.pyannote[372].end 4666.00221875
transcript.pyannote[373].speaker SPEAKER_05
transcript.pyannote[373].start 4666.60971875
transcript.pyannote[373].end 4673.91659375
transcript.pyannote[374].speaker SPEAKER_05
transcript.pyannote[374].start 4674.23721875
transcript.pyannote[374].end 4677.83159375
transcript.pyannote[375].speaker SPEAKER_05
transcript.pyannote[375].start 4678.47284375
transcript.pyannote[375].end 4688.54721875
transcript.pyannote[376].speaker SPEAKER_05
transcript.pyannote[376].start 4688.96909375
transcript.pyannote[376].end 4697.01846875
transcript.pyannote[377].speaker SPEAKER_05
transcript.pyannote[377].start 4697.59221875
transcript.pyannote[377].end 4699.76909375
transcript.pyannote[378].speaker SPEAKER_16
transcript.pyannote[378].start 4699.95471875
transcript.pyannote[378].end 4706.16471875
transcript.pyannote[379].speaker SPEAKER_05
transcript.pyannote[379].start 4705.37159375
transcript.pyannote[379].end 4708.27409375
transcript.pyannote[380].speaker SPEAKER_16
transcript.pyannote[380].start 4706.45159375
transcript.pyannote[380].end 4706.89034375
transcript.pyannote[381].speaker SPEAKER_16
transcript.pyannote[381].start 4707.76784375
transcript.pyannote[381].end 4710.43409375
transcript.pyannote[382].speaker SPEAKER_05
transcript.pyannote[382].start 4710.41721875
transcript.pyannote[382].end 4715.31096875
transcript.pyannote[383].speaker SPEAKER_05
transcript.pyannote[383].start 4716.05346875
transcript.pyannote[383].end 4719.49596875
transcript.pyannote[384].speaker SPEAKER_05
transcript.pyannote[384].start 4719.76596875
transcript.pyannote[384].end 4739.18909375
transcript.pyannote[385].speaker SPEAKER_05
transcript.pyannote[385].start 4739.76284375
transcript.pyannote[385].end 4743.72846875
transcript.pyannote[386].speaker SPEAKER_05
transcript.pyannote[386].start 4744.30221875
transcript.pyannote[386].end 4752.08159375
transcript.pyannote[387].speaker SPEAKER_05
transcript.pyannote[387].start 4752.45284375
transcript.pyannote[387].end 4758.59534375
transcript.pyannote[388].speaker SPEAKER_05
transcript.pyannote[388].start 4758.79784375
transcript.pyannote[388].end 4760.87346875
transcript.pyannote[389].speaker SPEAKER_27
transcript.pyannote[389].start 4761.09284375
transcript.pyannote[389].end 4762.20659375
transcript.pyannote[390].speaker SPEAKER_05
transcript.pyannote[390].start 4762.44284375
transcript.pyannote[390].end 4783.18221875
transcript.pyannote[391].speaker SPEAKER_05
transcript.pyannote[391].start 4783.57034375
transcript.pyannote[391].end 4790.99534375
transcript.pyannote[392].speaker SPEAKER_27
transcript.pyannote[392].start 4790.43846875
transcript.pyannote[392].end 4794.96096875
transcript.pyannote[393].speaker SPEAKER_05
transcript.pyannote[393].start 4794.97784375
transcript.pyannote[393].end 4797.52596875
transcript.pyannote[394].speaker SPEAKER_05
transcript.pyannote[394].start 4797.91409375
transcript.pyannote[394].end 4798.31909375
transcript.pyannote[395].speaker SPEAKER_27
transcript.pyannote[395].start 4798.31909375
transcript.pyannote[395].end 4800.44534375
transcript.pyannote[396].speaker SPEAKER_05
transcript.pyannote[396].start 4800.44534375
transcript.pyannote[396].end 4801.49159375
transcript.pyannote[397].speaker SPEAKER_05
transcript.pyannote[397].start 4801.86284375
transcript.pyannote[397].end 4807.02659375
transcript.pyannote[398].speaker SPEAKER_05
transcript.pyannote[398].start 4807.14471875
transcript.pyannote[398].end 4807.65096875
transcript.pyannote[399].speaker SPEAKER_05
transcript.pyannote[399].start 4807.81971875
transcript.pyannote[399].end 4812.66284375
transcript.pyannote[400].speaker SPEAKER_15
transcript.pyannote[400].start 4816.57784375
transcript.pyannote[400].end 4819.63221875
transcript.pyannote[401].speaker SPEAKER_07
transcript.pyannote[401].start 4833.46971875
transcript.pyannote[401].end 4836.69284375
transcript.pyannote[402].speaker SPEAKER_07
transcript.pyannote[402].start 4837.33409375
transcript.pyannote[402].end 4839.29159375
transcript.pyannote[403].speaker SPEAKER_07
transcript.pyannote[403].start 4839.98346875
transcript.pyannote[403].end 4840.84409375
transcript.pyannote[404].speaker SPEAKER_07
transcript.pyannote[404].start 4841.13096875
transcript.pyannote[404].end 4841.18159375
transcript.pyannote[405].speaker SPEAKER_15
transcript.pyannote[405].start 4841.18159375
transcript.pyannote[405].end 4843.79721875
transcript.pyannote[406].speaker SPEAKER_07
transcript.pyannote[406].start 4841.38409375
transcript.pyannote[406].end 4841.40096875
transcript.pyannote[407].speaker SPEAKER_07
transcript.pyannote[407].start 4841.45159375
transcript.pyannote[407].end 4841.46846875
transcript.pyannote[408].speaker SPEAKER_07
transcript.pyannote[408].start 4841.50221875
transcript.pyannote[408].end 4841.60346875
transcript.pyannote[409].speaker SPEAKER_07
transcript.pyannote[409].start 4847.54346875
transcript.pyannote[409].end 4847.86409375
transcript.pyannote[410].speaker SPEAKER_07
transcript.pyannote[410].start 4848.43784375
transcript.pyannote[410].end 4849.16346875
transcript.pyannote[411].speaker SPEAKER_07
transcript.pyannote[411].start 4850.68221875
transcript.pyannote[411].end 4851.57659375
transcript.pyannote[412].speaker SPEAKER_08
transcript.pyannote[412].start 4851.57659375
transcript.pyannote[412].end 4851.59346875
transcript.pyannote[413].speaker SPEAKER_07
transcript.pyannote[413].start 4852.40346875
transcript.pyannote[413].end 4852.82534375
transcript.pyannote[414].speaker SPEAKER_08
transcript.pyannote[414].start 4852.82534375
transcript.pyannote[414].end 4852.85909375
transcript.pyannote[415].speaker SPEAKER_08
transcript.pyannote[415].start 4853.29784375
transcript.pyannote[415].end 4859.89596875
transcript.pyannote[416].speaker SPEAKER_08
transcript.pyannote[416].start 4860.68909375
transcript.pyannote[416].end 4872.51846875
transcript.pyannote[417].speaker SPEAKER_08
transcript.pyannote[417].start 4872.78846875
transcript.pyannote[417].end 4874.98221875
transcript.pyannote[418].speaker SPEAKER_08
transcript.pyannote[418].start 4875.70784375
transcript.pyannote[418].end 4877.59784375
transcript.pyannote[419].speaker SPEAKER_08
transcript.pyannote[419].start 4878.01971875
transcript.pyannote[419].end 4885.71471875
transcript.pyannote[420].speaker SPEAKER_08
transcript.pyannote[420].start 4886.33909375
transcript.pyannote[420].end 4892.07659375
transcript.pyannote[421].speaker SPEAKER_08
transcript.pyannote[421].start 4892.32971875
transcript.pyannote[421].end 4894.23659375
transcript.pyannote[422].speaker SPEAKER_08
transcript.pyannote[422].start 4894.81034375
transcript.pyannote[422].end 4898.05034375
transcript.pyannote[423].speaker SPEAKER_08
transcript.pyannote[423].start 4898.28659375
transcript.pyannote[423].end 4898.30346875
transcript.pyannote[424].speaker SPEAKER_27
transcript.pyannote[424].start 4898.30346875
transcript.pyannote[424].end 4898.53971875
transcript.pyannote[425].speaker SPEAKER_08
transcript.pyannote[425].start 4898.53971875
transcript.pyannote[425].end 4898.62409375
transcript.pyannote[426].speaker SPEAKER_08
transcript.pyannote[426].start 4899.16409375
transcript.pyannote[426].end 4899.38346875
transcript.pyannote[427].speaker SPEAKER_08
transcript.pyannote[427].start 4899.73784375
transcript.pyannote[427].end 4900.98659375
transcript.pyannote[428].speaker SPEAKER_08
transcript.pyannote[428].start 4901.79659375
transcript.pyannote[428].end 4903.48409375
transcript.pyannote[429].speaker SPEAKER_08
transcript.pyannote[429].start 4904.10846875
transcript.pyannote[429].end 4908.91784375
transcript.pyannote[430].speaker SPEAKER_08
transcript.pyannote[430].start 4909.50846875
transcript.pyannote[430].end 4911.41534375
transcript.pyannote[431].speaker SPEAKER_08
transcript.pyannote[431].start 4911.48284375
transcript.pyannote[431].end 4920.08909375
transcript.pyannote[432].speaker SPEAKER_08
transcript.pyannote[432].start 4920.34221875
transcript.pyannote[432].end 4921.86096875
transcript.pyannote[433].speaker SPEAKER_27
transcript.pyannote[433].start 4922.33346875
transcript.pyannote[433].end 4927.58159375
transcript.pyannote[434].speaker SPEAKER_27
transcript.pyannote[434].start 4927.71659375
transcript.pyannote[434].end 4936.72784375
transcript.pyannote[435].speaker SPEAKER_27
transcript.pyannote[435].start 4936.96409375
transcript.pyannote[435].end 4945.82346875
transcript.pyannote[436].speaker SPEAKER_08
transcript.pyannote[436].start 4945.57034375
transcript.pyannote[436].end 4948.47284375
transcript.pyannote[437].speaker SPEAKER_27
transcript.pyannote[437].start 4948.45596875
transcript.pyannote[437].end 4952.80971875
transcript.pyannote[438].speaker SPEAKER_08
transcript.pyannote[438].start 4952.87721875
transcript.pyannote[438].end 4959.22221875
transcript.pyannote[439].speaker SPEAKER_08
transcript.pyannote[439].start 4959.89721875
transcript.pyannote[439].end 4971.52409375
transcript.pyannote[440].speaker SPEAKER_02
transcript.pyannote[440].start 4960.09971875
transcript.pyannote[440].end 4960.60596875
transcript.pyannote[441].speaker SPEAKER_27
transcript.pyannote[441].start 4960.60596875
transcript.pyannote[441].end 4960.62284375
transcript.pyannote[442].speaker SPEAKER_07
transcript.pyannote[442].start 4960.62284375
transcript.pyannote[442].end 4960.63971875
transcript.pyannote[443].speaker SPEAKER_08
transcript.pyannote[443].start 4971.60846875
transcript.pyannote[443].end 4974.25784375
transcript.pyannote[444].speaker SPEAKER_08
transcript.pyannote[444].start 4974.74721875
transcript.pyannote[444].end 4978.72971875
transcript.pyannote[445].speaker SPEAKER_08
transcript.pyannote[445].start 4978.91534375
transcript.pyannote[445].end 4983.11721875
transcript.pyannote[446].speaker SPEAKER_08
transcript.pyannote[446].start 4983.82596875
transcript.pyannote[446].end 4989.54659375
transcript.pyannote[447].speaker SPEAKER_08
transcript.pyannote[447].start 4989.96846875
transcript.pyannote[447].end 4994.03534375
transcript.pyannote[448].speaker SPEAKER_08
transcript.pyannote[448].start 4994.69346875
transcript.pyannote[448].end 4998.62534375
transcript.pyannote[449].speaker SPEAKER_08
transcript.pyannote[449].start 4999.35096875
transcript.pyannote[449].end 5000.59971875
transcript.pyannote[450].speaker SPEAKER_08
transcript.pyannote[450].start 5001.84846875
transcript.pyannote[450].end 5004.48096875
transcript.pyannote[451].speaker SPEAKER_08
transcript.pyannote[451].start 5005.52721875
transcript.pyannote[451].end 5006.33721875
transcript.pyannote[452].speaker SPEAKER_08
transcript.pyannote[452].start 5007.02909375
transcript.pyannote[452].end 5007.92346875
transcript.pyannote[453].speaker SPEAKER_08
transcript.pyannote[453].start 5008.54784375
transcript.pyannote[453].end 5014.60596875
transcript.pyannote[454].speaker SPEAKER_08
transcript.pyannote[454].start 5014.82534375
transcript.pyannote[454].end 5019.85409375
transcript.pyannote[455].speaker SPEAKER_08
transcript.pyannote[455].start 5020.05659375
transcript.pyannote[455].end 5021.57534375
transcript.pyannote[456].speaker SPEAKER_08
transcript.pyannote[456].start 5022.18284375
transcript.pyannote[456].end 5022.94221875
transcript.pyannote[457].speaker SPEAKER_26
transcript.pyannote[457].start 5022.87471875
transcript.pyannote[457].end 5028.91596875
transcript.pyannote[458].speaker SPEAKER_26
transcript.pyannote[458].start 5029.01721875
transcript.pyannote[458].end 5029.05096875
transcript.pyannote[459].speaker SPEAKER_26
transcript.pyannote[459].start 5029.10159375
transcript.pyannote[459].end 5033.35409375
transcript.pyannote[460].speaker SPEAKER_26
transcript.pyannote[460].start 5033.64096875
transcript.pyannote[460].end 5037.45471875
transcript.pyannote[461].speaker SPEAKER_28
transcript.pyannote[461].start 5037.31971875
transcript.pyannote[461].end 5037.77534375
transcript.pyannote[462].speaker SPEAKER_26
transcript.pyannote[462].start 5037.57284375
transcript.pyannote[462].end 5051.10659375
transcript.pyannote[463].speaker SPEAKER_08
transcript.pyannote[463].start 5049.99284375
transcript.pyannote[463].end 5053.26659375
transcript.pyannote[464].speaker SPEAKER_26
transcript.pyannote[464].start 5052.22034375
transcript.pyannote[464].end 5052.55784375
transcript.pyannote[465].speaker SPEAKER_08
transcript.pyannote[465].start 5053.60409375
transcript.pyannote[465].end 5055.00471875
transcript.pyannote[466].speaker SPEAKER_08
transcript.pyannote[466].start 5055.64596875
transcript.pyannote[466].end 5057.83971875
transcript.pyannote[467].speaker SPEAKER_26
transcript.pyannote[467].start 5057.55284375
transcript.pyannote[467].end 5071.06971875
transcript.pyannote[468].speaker SPEAKER_08
transcript.pyannote[468].start 5060.06721875
transcript.pyannote[468].end 5060.80971875
transcript.pyannote[469].speaker SPEAKER_08
transcript.pyannote[469].start 5069.66909375
transcript.pyannote[469].end 5097.17534375
transcript.pyannote[470].speaker SPEAKER_26
transcript.pyannote[470].start 5072.74034375
transcript.pyannote[470].end 5074.10721875
transcript.pyannote[471].speaker SPEAKER_00
transcript.pyannote[471].start 5081.51534375
transcript.pyannote[471].end 5082.29159375
transcript.pyannote[472].speaker SPEAKER_09
transcript.pyannote[472].start 5089.71659375
transcript.pyannote[472].end 5089.96971875
transcript.pyannote[473].speaker SPEAKER_26
transcript.pyannote[473].start 5097.59721875
transcript.pyannote[473].end 5097.66471875
transcript.pyannote[474].speaker SPEAKER_26
transcript.pyannote[474].start 5097.85034375
transcript.pyannote[474].end 5114.20221875
transcript.pyannote[475].speaker SPEAKER_08
transcript.pyannote[475].start 5113.37534375
transcript.pyannote[475].end 5117.39159375
transcript.pyannote[476].speaker SPEAKER_26
transcript.pyannote[476].start 5114.92784375
transcript.pyannote[476].end 5116.29471875
transcript.pyannote[477].speaker SPEAKER_26
transcript.pyannote[477].start 5117.49284375
transcript.pyannote[477].end 5119.18034375
transcript.pyannote[478].speaker SPEAKER_08
transcript.pyannote[478].start 5118.37034375
transcript.pyannote[478].end 5120.07471875
transcript.pyannote[479].speaker SPEAKER_26
transcript.pyannote[479].start 5121.03659375
transcript.pyannote[479].end 5125.22159375
transcript.pyannote[480].speaker SPEAKER_08
transcript.pyannote[480].start 5122.09971875
transcript.pyannote[480].end 5126.23409375
transcript.pyannote[481].speaker SPEAKER_26
transcript.pyannote[481].start 5126.06534375
transcript.pyannote[481].end 5126.35221875
transcript.pyannote[482].speaker SPEAKER_08
transcript.pyannote[482].start 5126.26784375
transcript.pyannote[482].end 5132.47784375
transcript.pyannote[483].speaker SPEAKER_28
transcript.pyannote[483].start 5132.44409375
transcript.pyannote[483].end 5132.73096875
transcript.pyannote[484].speaker SPEAKER_08
transcript.pyannote[484].start 5132.49471875
transcript.pyannote[484].end 5132.56221875
transcript.pyannote[485].speaker SPEAKER_08
transcript.pyannote[485].start 5132.62971875
transcript.pyannote[485].end 5138.70471875
transcript.pyannote[486].speaker SPEAKER_08
transcript.pyannote[486].start 5138.85659375
transcript.pyannote[486].end 5143.34534375
transcript.pyannote[487].speaker SPEAKER_28
transcript.pyannote[487].start 5143.27784375
transcript.pyannote[487].end 5143.61534375
transcript.pyannote[488].speaker SPEAKER_08
transcript.pyannote[488].start 5143.61534375
transcript.pyannote[488].end 5150.09534375
transcript.pyannote[489].speaker SPEAKER_26
transcript.pyannote[489].start 5148.86346875
transcript.pyannote[489].end 5175.10409375
transcript.pyannote[490].speaker SPEAKER_08
transcript.pyannote[490].start 5150.56784375
transcript.pyannote[490].end 5150.80409375
transcript.pyannote[491].speaker SPEAKER_08
transcript.pyannote[491].start 5169.67034375
transcript.pyannote[491].end 5170.07534375
transcript.pyannote[492].speaker SPEAKER_08
transcript.pyannote[492].start 5174.74971875
transcript.pyannote[492].end 5181.78659375
transcript.pyannote[493].speaker SPEAKER_08
transcript.pyannote[493].start 5182.00596875
transcript.pyannote[493].end 5191.10159375
transcript.pyannote[494].speaker SPEAKER_08
transcript.pyannote[494].start 5191.15221875
transcript.pyannote[494].end 5192.31659375
transcript.pyannote[495].speaker SPEAKER_08
transcript.pyannote[495].start 5192.36721875
transcript.pyannote[495].end 5196.67034375
transcript.pyannote[496].speaker SPEAKER_08
transcript.pyannote[496].start 5202.84659375
transcript.pyannote[496].end 5205.27659375
transcript.pyannote[497].speaker SPEAKER_08
transcript.pyannote[497].start 5205.47909375
transcript.pyannote[497].end 5209.68096875
transcript.pyannote[498].speaker SPEAKER_08
transcript.pyannote[498].start 5210.17034375
transcript.pyannote[498].end 5216.24534375
transcript.pyannote[499].speaker SPEAKER_08
transcript.pyannote[499].start 5216.56596875
transcript.pyannote[499].end 5225.56034375
transcript.pyannote[500].speaker SPEAKER_08
transcript.pyannote[500].start 5225.93159375
transcript.pyannote[500].end 5231.24721875
transcript.pyannote[501].speaker SPEAKER_08
transcript.pyannote[501].start 5231.44971875
transcript.pyannote[501].end 5239.73534375
transcript.pyannote[502].speaker SPEAKER_08
transcript.pyannote[502].start 5240.02221875
transcript.pyannote[502].end 5268.59159375
transcript.pyannote[503].speaker SPEAKER_08
transcript.pyannote[503].start 5269.06409375
transcript.pyannote[503].end 5269.68846875
transcript.pyannote[504].speaker SPEAKER_08
transcript.pyannote[504].start 5270.17784375
transcript.pyannote[504].end 5278.10909375
transcript.pyannote[505].speaker SPEAKER_08
transcript.pyannote[505].start 5278.36221875
transcript.pyannote[505].end 5279.79659375
transcript.pyannote[506].speaker SPEAKER_08
transcript.pyannote[506].start 5280.60659375
transcript.pyannote[506].end 5282.02409375
transcript.pyannote[507].speaker SPEAKER_08
transcript.pyannote[507].start 5282.44596875
transcript.pyannote[507].end 5289.78659375
transcript.pyannote[508].speaker SPEAKER_08
transcript.pyannote[508].start 5290.73159375
transcript.pyannote[508].end 5296.70534375
transcript.pyannote[509].speaker SPEAKER_08
transcript.pyannote[509].start 5296.90784375
transcript.pyannote[509].end 5297.46471875
transcript.pyannote[510].speaker SPEAKER_16
transcript.pyannote[510].start 5298.24096875
transcript.pyannote[510].end 5306.12159375
transcript.pyannote[511].speaker SPEAKER_08
transcript.pyannote[511].start 5306.13846875
transcript.pyannote[511].end 5321.59596875
transcript.pyannote[512].speaker SPEAKER_08
transcript.pyannote[512].start 5322.03471875
transcript.pyannote[512].end 5333.08784375
transcript.pyannote[513].speaker SPEAKER_08
transcript.pyannote[513].start 5334.26909375
transcript.pyannote[513].end 5340.86721875
transcript.pyannote[514].speaker SPEAKER_16
transcript.pyannote[514].start 5341.35659375
transcript.pyannote[514].end 5341.62659375
transcript.pyannote[515].speaker SPEAKER_08
transcript.pyannote[515].start 5341.59284375
transcript.pyannote[515].end 5344.59659375
transcript.pyannote[516].speaker SPEAKER_08
transcript.pyannote[516].start 5344.84971875
transcript.pyannote[516].end 5361.35346875
transcript.pyannote[517].speaker SPEAKER_08
transcript.pyannote[517].start 5361.99471875
transcript.pyannote[517].end 5374.33034375
transcript.pyannote[518].speaker SPEAKER_08
transcript.pyannote[518].start 5374.41471875
transcript.pyannote[518].end 5381.90721875
transcript.pyannote[519].speaker SPEAKER_08
transcript.pyannote[519].start 5382.59909375
transcript.pyannote[519].end 5383.91534375
transcript.pyannote[520].speaker SPEAKER_08
transcript.pyannote[520].start 5384.37096875
transcript.pyannote[520].end 5386.49721875
transcript.pyannote[521].speaker SPEAKER_08
transcript.pyannote[521].start 5386.90221875
transcript.pyannote[521].end 5388.18471875
transcript.pyannote[522].speaker SPEAKER_08
transcript.pyannote[522].start 5388.77534375
transcript.pyannote[522].end 5394.74909375
transcript.pyannote[523].speaker SPEAKER_08
transcript.pyannote[523].start 5395.62659375
transcript.pyannote[523].end 5398.22534375
transcript.pyannote[524].speaker SPEAKER_08
transcript.pyannote[524].start 5398.61346875
transcript.pyannote[524].end 5407.33784375
transcript.pyannote[525].speaker SPEAKER_08
transcript.pyannote[525].start 5407.84409375
transcript.pyannote[525].end 5408.78909375
transcript.pyannote[526].speaker SPEAKER_08
transcript.pyannote[526].start 5409.70034375
transcript.pyannote[526].end 5410.40909375
transcript.pyannote[527].speaker SPEAKER_08
transcript.pyannote[527].start 5410.59471875
transcript.pyannote[527].end 5413.71659375
transcript.pyannote[528].speaker SPEAKER_16
transcript.pyannote[528].start 5414.86409375
transcript.pyannote[528].end 5419.50471875
transcript.pyannote[529].speaker SPEAKER_08
transcript.pyannote[529].start 5418.88034375
transcript.pyannote[529].end 5420.04471875
transcript.pyannote[530].speaker SPEAKER_16
transcript.pyannote[530].start 5419.99409375
transcript.pyannote[530].end 5424.49971875
transcript.pyannote[531].speaker SPEAKER_16
transcript.pyannote[531].start 5424.78659375
transcript.pyannote[531].end 5435.51909375
transcript.pyannote[532].speaker SPEAKER_08
transcript.pyannote[532].start 5426.10284375
transcript.pyannote[532].end 5426.69346875
transcript.pyannote[533].speaker SPEAKER_08
transcript.pyannote[533].start 5431.31721875
transcript.pyannote[533].end 5431.73909375
transcript.pyannote[534].speaker SPEAKER_08
transcript.pyannote[534].start 5435.94096875
transcript.pyannote[534].end 5447.73659375
transcript.pyannote[535].speaker SPEAKER_16
transcript.pyannote[535].start 5439.63659375
transcript.pyannote[535].end 5439.97409375
transcript.pyannote[536].speaker SPEAKER_08
transcript.pyannote[536].start 5448.02346875
transcript.pyannote[536].end 5449.18784375
transcript.pyannote[537].speaker SPEAKER_08
transcript.pyannote[537].start 5449.52534375
transcript.pyannote[537].end 5454.46971875
transcript.pyannote[538].speaker SPEAKER_08
transcript.pyannote[538].start 5454.60471875
transcript.pyannote[538].end 5458.31721875
transcript.pyannote[539].speaker SPEAKER_08
transcript.pyannote[539].start 5458.97534375
transcript.pyannote[539].end 5494.10909375
transcript.pyannote[540].speaker SPEAKER_28
transcript.pyannote[540].start 5494.19346875
transcript.pyannote[540].end 5495.15534375
transcript.pyannote[541].speaker SPEAKER_08
transcript.pyannote[541].start 5494.51409375
transcript.pyannote[541].end 5495.07096875
transcript.pyannote[542].speaker SPEAKER_08
transcript.pyannote[542].start 5496.16784375
transcript.pyannote[542].end 5497.04534375
transcript.pyannote[543].speaker SPEAKER_15
transcript.pyannote[543].start 5497.04534375
transcript.pyannote[543].end 5497.06221875
transcript.pyannote[544].speaker SPEAKER_15
transcript.pyannote[544].start 5501.02784375
transcript.pyannote[544].end 5503.96409375
transcript.pyannote[545].speaker SPEAKER_06
transcript.pyannote[545].start 5511.81096875
transcript.pyannote[545].end 5513.49846875
transcript.pyannote[546].speaker SPEAKER_06
transcript.pyannote[546].start 5514.27471875
transcript.pyannote[546].end 5515.57409375
transcript.pyannote[547].speaker SPEAKER_14
transcript.pyannote[547].start 5520.92346875
transcript.pyannote[547].end 5522.20596875
transcript.pyannote[548].speaker SPEAKER_14
transcript.pyannote[548].start 5522.29034375
transcript.pyannote[548].end 5522.79659375
transcript.pyannote[549].speaker SPEAKER_14
transcript.pyannote[549].start 5523.38721875
transcript.pyannote[549].end 5564.37659375
transcript.pyannote[550].speaker SPEAKER_14
transcript.pyannote[550].start 5564.83221875
transcript.pyannote[550].end 5574.51846875
transcript.pyannote[551].speaker SPEAKER_14
transcript.pyannote[551].start 5574.56909375
transcript.pyannote[551].end 5578.93971875
transcript.pyannote[552].speaker SPEAKER_14
transcript.pyannote[552].start 5579.37846875
transcript.pyannote[552].end 5579.39534375
transcript.pyannote[553].speaker SPEAKER_27
transcript.pyannote[553].start 5579.39534375
transcript.pyannote[553].end 5595.03846875
transcript.pyannote[554].speaker SPEAKER_14
transcript.pyannote[554].start 5595.03846875
transcript.pyannote[554].end 5603.50971875
transcript.pyannote[555].speaker SPEAKER_27
transcript.pyannote[555].start 5595.73034375
transcript.pyannote[555].end 5595.88221875
transcript.pyannote[556].speaker SPEAKER_14
transcript.pyannote[556].start 5604.52221875
transcript.pyannote[556].end 5605.97346875
transcript.pyannote[557].speaker SPEAKER_27
transcript.pyannote[557].start 5605.97346875
transcript.pyannote[557].end 5606.24346875
transcript.pyannote[558].speaker SPEAKER_14
transcript.pyannote[558].start 5606.24346875
transcript.pyannote[558].end 5606.56409375
transcript.pyannote[559].speaker SPEAKER_27
transcript.pyannote[559].start 5606.56409375
transcript.pyannote[559].end 5606.71596875
transcript.pyannote[560].speaker SPEAKER_14
transcript.pyannote[560].start 5606.71596875
transcript.pyannote[560].end 5606.96909375
transcript.pyannote[561].speaker SPEAKER_27
transcript.pyannote[561].start 5606.96909375
transcript.pyannote[561].end 5608.92659375
transcript.pyannote[562].speaker SPEAKER_14
transcript.pyannote[562].start 5609.29784375
transcript.pyannote[562].end 5628.50159375
transcript.pyannote[563].speaker SPEAKER_14
transcript.pyannote[563].start 5628.83909375
transcript.pyannote[563].end 5629.96971875
transcript.pyannote[564].speaker SPEAKER_27
transcript.pyannote[564].start 5629.96971875
transcript.pyannote[564].end 5641.02284375
transcript.pyannote[565].speaker SPEAKER_14
transcript.pyannote[565].start 5641.02284375
transcript.pyannote[565].end 5650.48971875
transcript.pyannote[566].speaker SPEAKER_14
transcript.pyannote[566].start 5651.01284375
transcript.pyannote[566].end 5653.89846875
transcript.pyannote[567].speaker SPEAKER_14
transcript.pyannote[567].start 5654.08409375
transcript.pyannote[567].end 5690.82096875
transcript.pyannote[568].speaker SPEAKER_27
transcript.pyannote[568].start 5691.39471875
transcript.pyannote[568].end 5709.02909375
transcript.pyannote[569].speaker SPEAKER_14
transcript.pyannote[569].start 5709.02909375
transcript.pyannote[569].end 5727.96284375
transcript.pyannote[570].speaker SPEAKER_28
transcript.pyannote[570].start 5723.30534375
transcript.pyannote[570].end 5723.65971875
transcript.pyannote[571].speaker SPEAKER_27
transcript.pyannote[571].start 5727.60846875
transcript.pyannote[571].end 5727.67596875
transcript.pyannote[572].speaker SPEAKER_28
transcript.pyannote[572].start 5727.67596875
transcript.pyannote[572].end 5727.84471875
transcript.pyannote[573].speaker SPEAKER_27
transcript.pyannote[573].start 5727.84471875
transcript.pyannote[573].end 5727.87846875
transcript.pyannote[574].speaker SPEAKER_27
transcript.pyannote[574].start 5727.96284375
transcript.pyannote[574].end 5734.35846875
transcript.pyannote[575].speaker SPEAKER_27
transcript.pyannote[575].start 5734.42596875
transcript.pyannote[575].end 5734.61159375
transcript.pyannote[576].speaker SPEAKER_14
transcript.pyannote[576].start 5735.26971875
transcript.pyannote[576].end 5744.26409375
transcript.pyannote[577].speaker SPEAKER_21
transcript.pyannote[577].start 5744.31471875
transcript.pyannote[577].end 5744.73659375
transcript.pyannote[578].speaker SPEAKER_14
transcript.pyannote[578].start 5744.73659375
transcript.pyannote[578].end 5748.46596875
transcript.pyannote[579].speaker SPEAKER_27
transcript.pyannote[579].start 5749.07346875
transcript.pyannote[579].end 5771.02784375
transcript.pyannote[580].speaker SPEAKER_14
transcript.pyannote[580].start 5771.02784375
transcript.pyannote[580].end 5778.45284375
transcript.pyannote[581].speaker SPEAKER_14
transcript.pyannote[581].start 5778.73971875
transcript.pyannote[581].end 5793.77534375
transcript.pyannote[582].speaker SPEAKER_27
transcript.pyannote[582].start 5794.02846875
transcript.pyannote[582].end 5802.26346875
transcript.pyannote[583].speaker SPEAKER_14
transcript.pyannote[583].start 5795.36159375
transcript.pyannote[583].end 5796.22221875
transcript.pyannote[584].speaker SPEAKER_14
transcript.pyannote[584].start 5797.28534375
transcript.pyannote[584].end 5798.23034375
transcript.pyannote[585].speaker SPEAKER_14
transcript.pyannote[585].start 5803.20846875
transcript.pyannote[585].end 5803.57971875
transcript.pyannote[586].speaker SPEAKER_14
transcript.pyannote[586].start 5804.00159375
transcript.pyannote[586].end 5804.74409375
transcript.pyannote[587].speaker SPEAKER_14
transcript.pyannote[587].start 5805.06471875
transcript.pyannote[587].end 5810.29596875
transcript.pyannote[588].speaker SPEAKER_21
transcript.pyannote[588].start 5807.41034375
transcript.pyannote[588].end 5807.79846875
transcript.pyannote[589].speaker SPEAKER_21
transcript.pyannote[589].start 5810.29596875
transcript.pyannote[589].end 5810.46471875
transcript.pyannote[590].speaker SPEAKER_14
transcript.pyannote[590].start 5810.46471875
transcript.pyannote[590].end 5821.23096875
transcript.pyannote[591].speaker SPEAKER_21
transcript.pyannote[591].start 5811.24096875
transcript.pyannote[591].end 5811.51096875
transcript.pyannote[592].speaker SPEAKER_14
transcript.pyannote[592].start 5821.99034375
transcript.pyannote[592].end 5822.42909375
transcript.pyannote[593].speaker SPEAKER_14
transcript.pyannote[593].start 5822.83409375
transcript.pyannote[593].end 5823.72846875
transcript.pyannote[594].speaker SPEAKER_14
transcript.pyannote[594].start 5824.69034375
transcript.pyannote[594].end 5830.88346875
transcript.pyannote[595].speaker SPEAKER_14
transcript.pyannote[595].start 5832.06471875
transcript.pyannote[595].end 5832.08159375
transcript.pyannote[596].speaker SPEAKER_27
transcript.pyannote[596].start 5832.08159375
transcript.pyannote[596].end 5834.29221875
transcript.pyannote[597].speaker SPEAKER_27
transcript.pyannote[597].start 5834.66346875
transcript.pyannote[597].end 5839.10159375
transcript.pyannote[598].speaker SPEAKER_14
transcript.pyannote[598].start 5838.88221875
transcript.pyannote[598].end 5842.67909375
transcript.pyannote[599].speaker SPEAKER_14
transcript.pyannote[599].start 5842.96596875
transcript.pyannote[599].end 5845.44659375
transcript.pyannote[600].speaker SPEAKER_14
transcript.pyannote[600].start 5845.58159375
transcript.pyannote[600].end 5849.96909375
transcript.pyannote[601].speaker SPEAKER_14
transcript.pyannote[601].start 5850.25596875
transcript.pyannote[601].end 5851.63971875
transcript.pyannote[602].speaker SPEAKER_14
transcript.pyannote[602].start 5852.43284375
transcript.pyannote[602].end 5854.96409375
transcript.pyannote[603].speaker SPEAKER_27
transcript.pyannote[603].start 5854.96409375
transcript.pyannote[603].end 5859.80721875
transcript.pyannote[604].speaker SPEAKER_14
transcript.pyannote[604].start 5859.80721875
transcript.pyannote[604].end 5861.78159375
transcript.pyannote[605].speaker SPEAKER_27
transcript.pyannote[605].start 5860.09409375
transcript.pyannote[605].end 5861.59596875
transcript.pyannote[606].speaker SPEAKER_14
transcript.pyannote[606].start 5862.43971875
transcript.pyannote[606].end 5871.43409375
transcript.pyannote[607].speaker SPEAKER_14
transcript.pyannote[607].start 5871.48471875
transcript.pyannote[607].end 5889.25409375
transcript.pyannote[608].speaker SPEAKER_14
transcript.pyannote[608].start 5889.60846875
transcript.pyannote[608].end 5894.43471875
transcript.pyannote[609].speaker SPEAKER_14
transcript.pyannote[609].start 5895.14346875
transcript.pyannote[609].end 5896.79721875
transcript.pyannote[610].speaker SPEAKER_27
transcript.pyannote[610].start 5897.18534375
transcript.pyannote[610].end 5911.95096875
transcript.pyannote[611].speaker SPEAKER_14
transcript.pyannote[611].start 5898.83909375
transcript.pyannote[611].end 5900.77971875
transcript.pyannote[612].speaker SPEAKER_27
transcript.pyannote[612].start 5912.13659375
transcript.pyannote[612].end 5919.03846875
transcript.pyannote[613].speaker SPEAKER_14
transcript.pyannote[613].start 5919.03846875
transcript.pyannote[613].end 5922.12659375
transcript.pyannote[614].speaker SPEAKER_14
transcript.pyannote[614].start 5922.83534375
transcript.pyannote[614].end 5927.00346875
transcript.pyannote[615].speaker SPEAKER_27
transcript.pyannote[615].start 5926.27784375
transcript.pyannote[615].end 5931.82971875
transcript.pyannote[616].speaker SPEAKER_27
transcript.pyannote[616].start 5932.90971875
transcript.pyannote[616].end 5932.92659375
transcript.pyannote[617].speaker SPEAKER_14
transcript.pyannote[617].start 5932.92659375
transcript.pyannote[617].end 5933.29784375
transcript.pyannote[618].speaker SPEAKER_27
transcript.pyannote[618].start 5933.29784375
transcript.pyannote[618].end 5933.31471875
transcript.pyannote[619].speaker SPEAKER_14
transcript.pyannote[619].start 5933.75346875
transcript.pyannote[619].end 5937.95534375
transcript.pyannote[620].speaker SPEAKER_14
transcript.pyannote[620].start 5938.66409375
transcript.pyannote[620].end 5941.21221875
transcript.pyannote[621].speaker SPEAKER_14
transcript.pyannote[621].start 5941.46534375
transcript.pyannote[621].end 5941.87034375
transcript.pyannote[622].speaker SPEAKER_14
transcript.pyannote[622].start 5942.32596875
transcript.pyannote[622].end 5943.25409375
transcript.pyannote[623].speaker SPEAKER_14
transcript.pyannote[623].start 5943.55784375
transcript.pyannote[623].end 5949.85221875
transcript.pyannote[624].speaker SPEAKER_14
transcript.pyannote[624].start 5950.64534375
transcript.pyannote[624].end 5953.80096875
transcript.pyannote[625].speaker SPEAKER_14
transcript.pyannote[625].start 5954.27346875
transcript.pyannote[625].end 5956.63596875
transcript.pyannote[626].speaker SPEAKER_14
transcript.pyannote[626].start 5957.10846875
transcript.pyannote[626].end 5959.31909375
transcript.pyannote[627].speaker SPEAKER_14
transcript.pyannote[627].start 5960.12909375
transcript.pyannote[627].end 5961.34409375
transcript.pyannote[628].speaker SPEAKER_14
transcript.pyannote[628].start 5961.39471875
transcript.pyannote[628].end 5974.45596875
transcript.pyannote[629].speaker SPEAKER_14
transcript.pyannote[629].start 5975.29971875
transcript.pyannote[629].end 5983.36596875
transcript.pyannote[630].speaker SPEAKER_14
transcript.pyannote[630].start 5984.07471875
transcript.pyannote[630].end 5994.30096875
transcript.pyannote[631].speaker SPEAKER_14
transcript.pyannote[631].start 5994.84096875
transcript.pyannote[631].end 5998.01346875
transcript.pyannote[632].speaker SPEAKER_14
transcript.pyannote[632].start 5999.02596875
transcript.pyannote[632].end 6001.10159375
transcript.pyannote[633].speaker SPEAKER_27
transcript.pyannote[633].start 6001.10159375
transcript.pyannote[633].end 6001.13534375
transcript.pyannote[634].speaker SPEAKER_27
transcript.pyannote[634].start 6001.81034375
transcript.pyannote[634].end 6001.82721875
transcript.pyannote[635].speaker SPEAKER_14
transcript.pyannote[635].start 6001.82721875
transcript.pyannote[635].end 6001.91159375
transcript.pyannote[636].speaker SPEAKER_27
transcript.pyannote[636].start 6001.91159375
transcript.pyannote[636].end 6005.82659375
transcript.pyannote[637].speaker SPEAKER_27
transcript.pyannote[637].start 6007.42971875
transcript.pyannote[637].end 6008.03721875
transcript.pyannote[638].speaker SPEAKER_14
transcript.pyannote[638].start 6008.03721875
transcript.pyannote[638].end 6010.82159375
transcript.pyannote[639].speaker SPEAKER_14
transcript.pyannote[639].start 6011.26034375
transcript.pyannote[639].end 6018.66846875
transcript.pyannote[640].speaker SPEAKER_14
transcript.pyannote[640].start 6019.30971875
transcript.pyannote[640].end 6021.30096875
transcript.pyannote[641].speaker SPEAKER_14
transcript.pyannote[641].start 6021.67221875
transcript.pyannote[641].end 6023.46096875
transcript.pyannote[642].speaker SPEAKER_27
transcript.pyannote[642].start 6023.71409375
transcript.pyannote[642].end 6028.25346875
transcript.pyannote[643].speaker SPEAKER_27
transcript.pyannote[643].start 6028.52346875
transcript.pyannote[643].end 6033.38346875
transcript.pyannote[644].speaker SPEAKER_27
transcript.pyannote[644].start 6033.82221875
transcript.pyannote[644].end 6039.25596875
transcript.pyannote[645].speaker SPEAKER_27
transcript.pyannote[645].start 6039.82971875
transcript.pyannote[645].end 6041.68596875
transcript.pyannote[646].speaker SPEAKER_27
transcript.pyannote[646].start 6042.34409375
transcript.pyannote[646].end 6043.91346875
transcript.pyannote[647].speaker SPEAKER_27
transcript.pyannote[647].start 6044.26784375
transcript.pyannote[647].end 6048.41909375
transcript.pyannote[648].speaker SPEAKER_14
transcript.pyannote[648].start 6045.17909375
transcript.pyannote[648].end 6046.34346875
transcript.pyannote[649].speaker SPEAKER_14
transcript.pyannote[649].start 6047.30534375
transcript.pyannote[649].end 6054.78096875
transcript.pyannote[650].speaker SPEAKER_27
transcript.pyannote[650].start 6051.43971875
transcript.pyannote[650].end 6052.30034375
transcript.pyannote[651].speaker SPEAKER_27
transcript.pyannote[651].start 6054.78096875
transcript.pyannote[651].end 6055.06784375
transcript.pyannote[652].speaker SPEAKER_14
transcript.pyannote[652].start 6055.06784375
transcript.pyannote[652].end 6059.55659375
transcript.pyannote[653].speaker SPEAKER_14
transcript.pyannote[653].start 6060.68721875
transcript.pyannote[653].end 6066.30659375
transcript.pyannote[654].speaker SPEAKER_27
transcript.pyannote[654].start 6062.44221875
transcript.pyannote[654].end 6063.15096875
transcript.pyannote[655].speaker SPEAKER_27
transcript.pyannote[655].start 6065.66534375
transcript.pyannote[655].end 6066.07034375
transcript.pyannote[656].speaker SPEAKER_27
transcript.pyannote[656].start 6066.30659375
transcript.pyannote[656].end 6066.62721875
transcript.pyannote[657].speaker SPEAKER_27
transcript.pyannote[657].start 6067.31909375
transcript.pyannote[657].end 6077.34284375
transcript.pyannote[658].speaker SPEAKER_14
transcript.pyannote[658].start 6067.42034375
transcript.pyannote[658].end 6068.01096875
transcript.pyannote[659].speaker SPEAKER_14
transcript.pyannote[659].start 6076.33034375
transcript.pyannote[659].end 6094.80846875
transcript.pyannote[660].speaker SPEAKER_27
transcript.pyannote[660].start 6093.66096875
transcript.pyannote[660].end 6097.25534375
transcript.pyannote[661].speaker SPEAKER_14
transcript.pyannote[661].start 6097.44096875
transcript.pyannote[661].end 6118.82159375
transcript.pyannote[662].speaker SPEAKER_27
transcript.pyannote[662].start 6098.82471875
transcript.pyannote[662].end 6099.98909375
transcript.pyannote[663].speaker SPEAKER_14
transcript.pyannote[663].start 6119.80034375
transcript.pyannote[663].end 6120.98159375
transcript.pyannote[664].speaker SPEAKER_14
transcript.pyannote[664].start 6121.53846875
transcript.pyannote[664].end 6128.22096875
transcript.pyannote[665].speaker SPEAKER_14
transcript.pyannote[665].start 6128.99721875
transcript.pyannote[665].end 6136.96221875
transcript.pyannote[666].speaker SPEAKER_14
transcript.pyannote[666].start 6137.09721875
transcript.pyannote[666].end 6139.78034375
transcript.pyannote[667].speaker SPEAKER_14
transcript.pyannote[667].start 6141.18096875
transcript.pyannote[667].end 6142.07534375
transcript.pyannote[668].speaker SPEAKER_14
transcript.pyannote[668].start 6142.41284375
transcript.pyannote[668].end 6143.07096875
transcript.pyannote[669].speaker SPEAKER_27
transcript.pyannote[669].start 6143.07096875
transcript.pyannote[669].end 6143.18909375
transcript.pyannote[670].speaker SPEAKER_14
transcript.pyannote[670].start 6143.18909375
transcript.pyannote[670].end 6143.23971875
transcript.pyannote[671].speaker SPEAKER_27
transcript.pyannote[671].start 6143.23971875
transcript.pyannote[671].end 6143.29034375
transcript.pyannote[672].speaker SPEAKER_14
transcript.pyannote[672].start 6143.29034375
transcript.pyannote[672].end 6146.05784375
transcript.pyannote[673].speaker SPEAKER_14
transcript.pyannote[673].start 6146.76659375
transcript.pyannote[673].end 6148.06596875
transcript.pyannote[674].speaker SPEAKER_14
transcript.pyannote[674].start 6148.38659375
transcript.pyannote[674].end 6151.08659375
transcript.pyannote[675].speaker SPEAKER_27
transcript.pyannote[675].start 6148.42034375
transcript.pyannote[675].end 6152.72346875
transcript.pyannote[676].speaker SPEAKER_14
transcript.pyannote[676].start 6152.36909375
transcript.pyannote[676].end 6153.97221875
transcript.pyannote[677].speaker SPEAKER_27
transcript.pyannote[677].start 6153.97221875
transcript.pyannote[677].end 6154.02284375
transcript.pyannote[678].speaker SPEAKER_14
transcript.pyannote[678].start 6154.02284375
transcript.pyannote[678].end 6160.75596875
transcript.pyannote[679].speaker SPEAKER_14
transcript.pyannote[679].start 6161.44784375
transcript.pyannote[679].end 6162.57846875
transcript.pyannote[680].speaker SPEAKER_14
transcript.pyannote[680].start 6163.52346875
transcript.pyannote[680].end 6164.19846875
transcript.pyannote[681].speaker SPEAKER_14
transcript.pyannote[681].start 6164.72159375
transcript.pyannote[681].end 6165.51471875
transcript.pyannote[682].speaker SPEAKER_14
transcript.pyannote[682].start 6165.78471875
transcript.pyannote[682].end 6166.69596875
transcript.pyannote[683].speaker SPEAKER_14
transcript.pyannote[683].start 6167.42159375
transcript.pyannote[683].end 6167.74221875
transcript.pyannote[684].speaker SPEAKER_14
transcript.pyannote[684].start 6167.94471875
transcript.pyannote[684].end 6169.44659375
transcript.pyannote[685].speaker SPEAKER_14
transcript.pyannote[685].start 6169.59846875
transcript.pyannote[685].end 6170.96534375
transcript.pyannote[686].speaker SPEAKER_14
transcript.pyannote[686].start 6171.04971875
transcript.pyannote[686].end 6171.06659375
transcript.pyannote[687].speaker SPEAKER_27
transcript.pyannote[687].start 6171.06659375
transcript.pyannote[687].end 6171.97784375
transcript.pyannote[688].speaker SPEAKER_14
transcript.pyannote[688].start 6172.01159375
transcript.pyannote[688].end 6172.28159375
transcript.pyannote[689].speaker SPEAKER_14
transcript.pyannote[689].start 6173.12534375
transcript.pyannote[689].end 6173.81721875
transcript.pyannote[690].speaker SPEAKER_15
transcript.pyannote[690].start 6178.66034375
transcript.pyannote[690].end 6181.76534375
transcript.pyannote[691].speaker SPEAKER_21
transcript.pyannote[691].start 6196.88534375
transcript.pyannote[691].end 6197.77971875
transcript.pyannote[692].speaker SPEAKER_21
transcript.pyannote[692].start 6198.25221875
transcript.pyannote[692].end 6199.97346875
transcript.pyannote[693].speaker SPEAKER_21
transcript.pyannote[693].start 6200.19284375
transcript.pyannote[693].end 6200.78346875
transcript.pyannote[694].speaker SPEAKER_06
transcript.pyannote[694].start 6201.74534375
transcript.pyannote[694].end 6203.36534375
transcript.pyannote[695].speaker SPEAKER_21
transcript.pyannote[695].start 6209.42346875
transcript.pyannote[695].end 6210.11534375
transcript.pyannote[696].speaker SPEAKER_22
transcript.pyannote[696].start 6214.89096875
transcript.pyannote[696].end 6217.72596875
transcript.pyannote[697].speaker SPEAKER_22
transcript.pyannote[697].start 6217.96221875
transcript.pyannote[697].end 6219.66659375
transcript.pyannote[698].speaker SPEAKER_22
transcript.pyannote[698].start 6220.05471875
transcript.pyannote[698].end 6222.31596875
transcript.pyannote[699].speaker SPEAKER_22
transcript.pyannote[699].start 6222.75471875
transcript.pyannote[699].end 6224.89784375
transcript.pyannote[700].speaker SPEAKER_22
transcript.pyannote[700].start 6224.96534375
transcript.pyannote[700].end 6225.87659375
transcript.pyannote[701].speaker SPEAKER_22
transcript.pyannote[701].start 6226.51784375
transcript.pyannote[701].end 6229.58909375
transcript.pyannote[702].speaker SPEAKER_22
transcript.pyannote[702].start 6230.09534375
transcript.pyannote[702].end 6232.18784375
transcript.pyannote[703].speaker SPEAKER_22
transcript.pyannote[703].start 6233.13284375
transcript.pyannote[703].end 6234.55034375
transcript.pyannote[704].speaker SPEAKER_22
transcript.pyannote[704].start 6234.68534375
transcript.pyannote[704].end 6236.96346875
transcript.pyannote[705].speaker SPEAKER_22
transcript.pyannote[705].start 6237.84096875
transcript.pyannote[705].end 6241.43534375
transcript.pyannote[706].speaker SPEAKER_22
transcript.pyannote[706].start 6242.11034375
transcript.pyannote[706].end 6244.70909375
transcript.pyannote[707].speaker SPEAKER_22
transcript.pyannote[707].start 6245.89034375
transcript.pyannote[707].end 6250.53096875
transcript.pyannote[708].speaker SPEAKER_22
transcript.pyannote[708].start 6251.08784375
transcript.pyannote[708].end 6252.50534375
transcript.pyannote[709].speaker SPEAKER_22
transcript.pyannote[709].start 6252.72471875
transcript.pyannote[709].end 6254.41221875
transcript.pyannote[710].speaker SPEAKER_22
transcript.pyannote[710].start 6255.40784375
transcript.pyannote[710].end 6256.84221875
transcript.pyannote[711].speaker SPEAKER_22
transcript.pyannote[711].start 6258.41159375
transcript.pyannote[711].end 6260.55471875
transcript.pyannote[712].speaker SPEAKER_22
transcript.pyannote[712].start 6260.94284375
transcript.pyannote[712].end 6261.55034375
transcript.pyannote[713].speaker SPEAKER_22
transcript.pyannote[713].start 6262.88346875
transcript.pyannote[713].end 6266.69721875
transcript.pyannote[714].speaker SPEAKER_22
transcript.pyannote[714].start 6267.10221875
transcript.pyannote[714].end 6268.45221875
transcript.pyannote[715].speaker SPEAKER_22
transcript.pyannote[715].start 6269.00909375
transcript.pyannote[715].end 6270.19034375
transcript.pyannote[716].speaker SPEAKER_22
transcript.pyannote[716].start 6270.44346875
transcript.pyannote[716].end 6273.90284375
transcript.pyannote[717].speaker SPEAKER_22
transcript.pyannote[717].start 6274.18971875
transcript.pyannote[717].end 6277.04159375
transcript.pyannote[718].speaker SPEAKER_22
transcript.pyannote[718].start 6277.58159375
transcript.pyannote[718].end 6278.35784375
transcript.pyannote[719].speaker SPEAKER_22
transcript.pyannote[719].start 6279.16784375
transcript.pyannote[719].end 6283.38659375
transcript.pyannote[720].speaker SPEAKER_22
transcript.pyannote[720].start 6283.90971875
transcript.pyannote[720].end 6284.75346875
transcript.pyannote[721].speaker SPEAKER_22
transcript.pyannote[721].start 6285.24284375
transcript.pyannote[721].end 6286.52534375
transcript.pyannote[722].speaker SPEAKER_22
transcript.pyannote[722].start 6287.26784375
transcript.pyannote[722].end 6291.35159375
transcript.pyannote[723].speaker SPEAKER_22
transcript.pyannote[723].start 6291.79034375
transcript.pyannote[723].end 6293.41034375
transcript.pyannote[724].speaker SPEAKER_22
transcript.pyannote[724].start 6293.86596875
transcript.pyannote[724].end 6294.94596875
transcript.pyannote[725].speaker SPEAKER_22
transcript.pyannote[725].start 6295.45221875
transcript.pyannote[725].end 6299.29971875
transcript.pyannote[726].speaker SPEAKER_22
transcript.pyannote[726].start 6299.75534375
transcript.pyannote[726].end 6301.76346875
transcript.pyannote[727].speaker SPEAKER_22
transcript.pyannote[727].start 6302.47221875
transcript.pyannote[727].end 6303.97409375
transcript.pyannote[728].speaker SPEAKER_22
transcript.pyannote[728].start 6304.86846875
transcript.pyannote[728].end 6305.25659375
transcript.pyannote[729].speaker SPEAKER_22
transcript.pyannote[729].start 6305.69534375
transcript.pyannote[729].end 6306.48846875
transcript.pyannote[730].speaker SPEAKER_22
transcript.pyannote[730].start 6306.75846875
transcript.pyannote[730].end 6311.58471875
transcript.pyannote[731].speaker SPEAKER_22
transcript.pyannote[731].start 6311.73659375
transcript.pyannote[731].end 6313.03596875
transcript.pyannote[732].speaker SPEAKER_22
transcript.pyannote[732].start 6313.20471875
transcript.pyannote[732].end 6315.39846875
transcript.pyannote[733].speaker SPEAKER_22
transcript.pyannote[733].start 6315.44909375
transcript.pyannote[733].end 6316.79909375
transcript.pyannote[734].speaker SPEAKER_22
transcript.pyannote[734].start 6317.55846875
transcript.pyannote[734].end 6319.61721875
transcript.pyannote[735].speaker SPEAKER_22
transcript.pyannote[735].start 6321.00096875
transcript.pyannote[735].end 6323.39721875
transcript.pyannote[736].speaker SPEAKER_22
transcript.pyannote[736].start 6323.86971875
transcript.pyannote[736].end 6327.53159375
transcript.pyannote[737].speaker SPEAKER_22
transcript.pyannote[737].start 6328.32471875
transcript.pyannote[737].end 6330.75471875
transcript.pyannote[738].speaker SPEAKER_22
transcript.pyannote[738].start 6331.51409375
transcript.pyannote[738].end 6332.37471875
transcript.pyannote[739].speaker SPEAKER_22
transcript.pyannote[739].start 6333.11721875
transcript.pyannote[739].end 6334.01159375
transcript.pyannote[740].speaker SPEAKER_22
transcript.pyannote[740].start 6334.33221875
transcript.pyannote[740].end 6336.39096875
transcript.pyannote[741].speaker SPEAKER_22
transcript.pyannote[741].start 6336.94784375
transcript.pyannote[741].end 6338.48346875
transcript.pyannote[742].speaker SPEAKER_22
transcript.pyannote[742].start 6339.37784375
transcript.pyannote[742].end 6339.96846875
transcript.pyannote[743].speaker SPEAKER_22
transcript.pyannote[743].start 6341.01471875
transcript.pyannote[743].end 6344.10284375
transcript.pyannote[744].speaker SPEAKER_22
transcript.pyannote[744].start 6344.72721875
transcript.pyannote[744].end 6345.50346875
transcript.pyannote[745].speaker SPEAKER_22
transcript.pyannote[745].start 6346.09409375
transcript.pyannote[745].end 6347.91659375
transcript.pyannote[746].speaker SPEAKER_22
transcript.pyannote[746].start 6348.22034375
transcript.pyannote[746].end 6349.14846875
transcript.pyannote[747].speaker SPEAKER_22
transcript.pyannote[747].start 6349.63784375
transcript.pyannote[747].end 6351.24096875
transcript.pyannote[748].speaker SPEAKER_22
transcript.pyannote[748].start 6352.06784375
transcript.pyannote[748].end 6353.14784375
transcript.pyannote[749].speaker SPEAKER_22
transcript.pyannote[749].start 6353.92409375
transcript.pyannote[749].end 6356.38784375
transcript.pyannote[750].speaker SPEAKER_22
transcript.pyannote[750].start 6356.55659375
transcript.pyannote[750].end 6356.96159375
transcript.pyannote[751].speaker SPEAKER_22
transcript.pyannote[751].start 6357.80534375
transcript.pyannote[751].end 6357.97409375
transcript.pyannote[752].speaker SPEAKER_27
transcript.pyannote[752].start 6357.97409375
transcript.pyannote[752].end 6378.83159375
transcript.pyannote[753].speaker SPEAKER_27
transcript.pyannote[753].start 6379.13534375
transcript.pyannote[753].end 6380.72159375
transcript.pyannote[754].speaker SPEAKER_27
transcript.pyannote[754].start 6381.04221875
transcript.pyannote[754].end 6396.80346875
transcript.pyannote[755].speaker SPEAKER_27
transcript.pyannote[755].start 6396.85409375
transcript.pyannote[755].end 6401.61284375
transcript.pyannote[756].speaker SPEAKER_27
transcript.pyannote[756].start 6401.83221875
transcript.pyannote[756].end 6405.03846875
transcript.pyannote[757].speaker SPEAKER_22
transcript.pyannote[757].start 6405.03846875
transcript.pyannote[757].end 6406.77659375
transcript.pyannote[758].speaker SPEAKER_22
transcript.pyannote[758].start 6406.82721875
transcript.pyannote[758].end 6410.06721875
transcript.pyannote[759].speaker SPEAKER_22
transcript.pyannote[759].start 6410.37096875
transcript.pyannote[759].end 6412.75034375
transcript.pyannote[760].speaker SPEAKER_22
transcript.pyannote[760].start 6413.13846875
transcript.pyannote[760].end 6415.19721875
transcript.pyannote[761].speaker SPEAKER_22
transcript.pyannote[761].start 6416.12534375
transcript.pyannote[761].end 6417.44159375
transcript.pyannote[762].speaker SPEAKER_22
transcript.pyannote[762].start 6417.77909375
transcript.pyannote[762].end 6418.28534375
transcript.pyannote[763].speaker SPEAKER_22
transcript.pyannote[763].start 6419.46659375
transcript.pyannote[763].end 6420.85034375
transcript.pyannote[764].speaker SPEAKER_22
transcript.pyannote[764].start 6421.12034375
transcript.pyannote[764].end 6426.03096875
transcript.pyannote[765].speaker SPEAKER_22
transcript.pyannote[765].start 6426.77346875
transcript.pyannote[765].end 6428.29221875
transcript.pyannote[766].speaker SPEAKER_22
transcript.pyannote[766].start 6429.28784375
transcript.pyannote[766].end 6430.11471875
transcript.pyannote[767].speaker SPEAKER_22
transcript.pyannote[767].start 6430.84034375
transcript.pyannote[767].end 6432.00471875
transcript.pyannote[768].speaker SPEAKER_22
transcript.pyannote[768].start 6432.89909375
transcript.pyannote[768].end 6434.01284375
transcript.pyannote[769].speaker SPEAKER_22
transcript.pyannote[769].start 6436.15596875
transcript.pyannote[769].end 6436.62846875
transcript.pyannote[770].speaker SPEAKER_22
transcript.pyannote[770].start 6437.67471875
transcript.pyannote[770].end 6437.94471875
transcript.pyannote[771].speaker SPEAKER_22
transcript.pyannote[771].start 6438.41721875
transcript.pyannote[771].end 6439.15971875
transcript.pyannote[772].speaker SPEAKER_22
transcript.pyannote[772].start 6440.35784375
transcript.pyannote[772].end 6442.65284375
transcript.pyannote[773].speaker SPEAKER_22
transcript.pyannote[773].start 6443.96909375
transcript.pyannote[773].end 6444.82971875
transcript.pyannote[774].speaker SPEAKER_22
transcript.pyannote[774].start 6445.21784375
transcript.pyannote[774].end 6446.38221875
transcript.pyannote[775].speaker SPEAKER_22
transcript.pyannote[775].start 6446.65221875
transcript.pyannote[775].end 6449.82471875
transcript.pyannote[776].speaker SPEAKER_22
transcript.pyannote[776].start 6450.80346875
transcript.pyannote[776].end 6452.71034375
transcript.pyannote[777].speaker SPEAKER_22
transcript.pyannote[777].start 6453.18284375
transcript.pyannote[777].end 6455.39346875
transcript.pyannote[778].speaker SPEAKER_22
transcript.pyannote[778].start 6455.84909375
transcript.pyannote[778].end 6457.18221875
transcript.pyannote[779].speaker SPEAKER_22
transcript.pyannote[779].start 6458.05971875
transcript.pyannote[779].end 6462.80159375
transcript.pyannote[780].speaker SPEAKER_22
transcript.pyannote[780].start 6463.18971875
transcript.pyannote[780].end 6463.79721875
transcript.pyannote[781].speaker SPEAKER_22
transcript.pyannote[781].start 6464.35409375
transcript.pyannote[781].end 6467.03721875
transcript.pyannote[782].speaker SPEAKER_22
transcript.pyannote[782].start 6467.18909375
transcript.pyannote[782].end 6469.38284375
transcript.pyannote[783].speaker SPEAKER_22
transcript.pyannote[783].start 6469.60221875
transcript.pyannote[783].end 6472.03221875
transcript.pyannote[784].speaker SPEAKER_28
transcript.pyannote[784].start 6472.35284375
transcript.pyannote[784].end 6472.53846875
transcript.pyannote[785].speaker SPEAKER_22
transcript.pyannote[785].start 6472.94346875
transcript.pyannote[785].end 6473.29784375
transcript.pyannote[786].speaker SPEAKER_22
transcript.pyannote[786].start 6473.73659375
transcript.pyannote[786].end 6475.96409375
transcript.pyannote[787].speaker SPEAKER_22
transcript.pyannote[787].start 6476.50409375
transcript.pyannote[787].end 6488.04659375
transcript.pyannote[788].speaker SPEAKER_22
transcript.pyannote[788].start 6488.48534375
transcript.pyannote[788].end 6489.36284375
transcript.pyannote[789].speaker SPEAKER_22
transcript.pyannote[789].start 6490.05471875
transcript.pyannote[789].end 6490.44284375
transcript.pyannote[790].speaker SPEAKER_22
transcript.pyannote[790].start 6490.89846875
transcript.pyannote[790].end 6492.80534375
transcript.pyannote[791].speaker SPEAKER_00
transcript.pyannote[791].start 6490.96596875
transcript.pyannote[791].end 6490.99971875
transcript.pyannote[792].speaker SPEAKER_21
transcript.pyannote[792].start 6490.99971875
transcript.pyannote[792].end 6491.08409375
transcript.pyannote[793].speaker SPEAKER_20
transcript.pyannote[793].start 6491.08409375
transcript.pyannote[793].end 6491.11784375
transcript.pyannote[794].speaker SPEAKER_28
transcript.pyannote[794].start 6491.11784375
transcript.pyannote[794].end 6491.72534375
transcript.pyannote[795].speaker SPEAKER_21
transcript.pyannote[795].start 6491.72534375
transcript.pyannote[795].end 6491.74221875
transcript.pyannote[796].speaker SPEAKER_28
transcript.pyannote[796].start 6491.74221875
transcript.pyannote[796].end 6491.75909375
transcript.pyannote[797].speaker SPEAKER_22
transcript.pyannote[797].start 6492.94034375
transcript.pyannote[797].end 6494.17221875
transcript.pyannote[798].speaker SPEAKER_22
transcript.pyannote[798].start 6494.83034375
transcript.pyannote[798].end 6495.20159375
transcript.pyannote[799].speaker SPEAKER_28
transcript.pyannote[799].start 6496.61909375
transcript.pyannote[799].end 6496.85534375
transcript.pyannote[800].speaker SPEAKER_22
transcript.pyannote[800].start 6496.85534375
transcript.pyannote[800].end 6499.33596875
transcript.pyannote[801].speaker SPEAKER_22
transcript.pyannote[801].start 6499.84221875
transcript.pyannote[801].end 6501.27659375
transcript.pyannote[802].speaker SPEAKER_28
transcript.pyannote[802].start 6501.34409375
transcript.pyannote[802].end 6501.69846875
transcript.pyannote[803].speaker SPEAKER_22
transcript.pyannote[803].start 6501.58034375
transcript.pyannote[803].end 6503.18346875
transcript.pyannote[804].speaker SPEAKER_22
transcript.pyannote[804].start 6503.31846875
transcript.pyannote[804].end 6505.52909375
transcript.pyannote[805].speaker SPEAKER_22
transcript.pyannote[805].start 6505.91721875
transcript.pyannote[805].end 6506.40659375
transcript.pyannote[806].speaker SPEAKER_22
transcript.pyannote[806].start 6507.26721875
transcript.pyannote[806].end 6507.99284375
transcript.pyannote[807].speaker SPEAKER_22
transcript.pyannote[807].start 6508.34721875
transcript.pyannote[807].end 6509.71409375
transcript.pyannote[808].speaker SPEAKER_22
transcript.pyannote[808].start 6510.22034375
transcript.pyannote[808].end 6513.79784375
transcript.pyannote[809].speaker SPEAKER_22
transcript.pyannote[809].start 6514.30409375
transcript.pyannote[809].end 6515.18159375
transcript.pyannote[810].speaker SPEAKER_22
transcript.pyannote[810].start 6515.46846875
transcript.pyannote[810].end 6518.18534375
transcript.pyannote[811].speaker SPEAKER_22
transcript.pyannote[811].start 6518.59034375
transcript.pyannote[811].end 6520.17659375
transcript.pyannote[812].speaker SPEAKER_22
transcript.pyannote[812].start 6520.66596875
transcript.pyannote[812].end 6521.61096875
transcript.pyannote[813].speaker SPEAKER_22
transcript.pyannote[813].start 6522.48846875
transcript.pyannote[813].end 6523.33221875
transcript.pyannote[814].speaker SPEAKER_22
transcript.pyannote[814].start 6523.92284375
transcript.pyannote[814].end 6525.86346875
transcript.pyannote[815].speaker SPEAKER_22
transcript.pyannote[815].start 6526.31909375
transcript.pyannote[815].end 6528.86721875
transcript.pyannote[816].speaker SPEAKER_22
transcript.pyannote[816].start 6529.79534375
transcript.pyannote[816].end 6530.41971875
transcript.pyannote[817].speaker SPEAKER_22
transcript.pyannote[817].start 6530.82471875
transcript.pyannote[817].end 6533.60909375
transcript.pyannote[818].speaker SPEAKER_22
transcript.pyannote[818].start 6534.04784375
transcript.pyannote[818].end 6534.63846875
transcript.pyannote[819].speaker SPEAKER_22
transcript.pyannote[819].start 6535.58346875
transcript.pyannote[819].end 6536.02221875
transcript.pyannote[820].speaker SPEAKER_22
transcript.pyannote[820].start 6536.84909375
transcript.pyannote[820].end 6537.60846875
transcript.pyannote[821].speaker SPEAKER_22
transcript.pyannote[821].start 6537.91221875
transcript.pyannote[821].end 6539.19471875
transcript.pyannote[822].speaker SPEAKER_22
transcript.pyannote[822].start 6540.71346875
transcript.pyannote[822].end 6541.82721875
transcript.pyannote[823].speaker SPEAKER_22
transcript.pyannote[823].start 6542.92409375
transcript.pyannote[823].end 6543.44721875
transcript.pyannote[824].speaker SPEAKER_22
transcript.pyannote[824].start 6543.88596875
transcript.pyannote[824].end 6544.54409375
transcript.pyannote[825].speaker SPEAKER_22
transcript.pyannote[825].start 6544.83096875
transcript.pyannote[825].end 6548.22284375
transcript.pyannote[826].speaker SPEAKER_22
transcript.pyannote[826].start 6548.57721875
transcript.pyannote[826].end 6549.55596875
transcript.pyannote[827].speaker SPEAKER_22
transcript.pyannote[827].start 6549.72471875
transcript.pyannote[827].end 6555.73221875
transcript.pyannote[828].speaker SPEAKER_22
transcript.pyannote[828].start 6556.57596875
transcript.pyannote[828].end 6559.59659375
transcript.pyannote[829].speaker SPEAKER_22
transcript.pyannote[829].start 6559.79909375
transcript.pyannote[829].end 6561.60471875
transcript.pyannote[830].speaker SPEAKER_22
transcript.pyannote[830].start 6563.14034375
transcript.pyannote[830].end 6564.08534375
transcript.pyannote[831].speaker SPEAKER_22
transcript.pyannote[831].start 6564.52409375
transcript.pyannote[831].end 6566.81909375
transcript.pyannote[832].speaker SPEAKER_22
transcript.pyannote[832].start 6567.71346875
transcript.pyannote[832].end 6569.82284375
transcript.pyannote[833].speaker SPEAKER_22
transcript.pyannote[833].start 6570.61596875
transcript.pyannote[833].end 6571.84784375
transcript.pyannote[834].speaker SPEAKER_22
transcript.pyannote[834].start 6572.28659375
transcript.pyannote[834].end 6573.36659375
transcript.pyannote[835].speaker SPEAKER_22
transcript.pyannote[835].start 6574.07534375
transcript.pyannote[835].end 6577.50096875
transcript.pyannote[836].speaker SPEAKER_22
transcript.pyannote[836].start 6577.75409375
transcript.pyannote[836].end 6580.21784375
transcript.pyannote[837].speaker SPEAKER_22
transcript.pyannote[837].start 6580.80846875
transcript.pyannote[837].end 6583.35659375
transcript.pyannote[838].speaker SPEAKER_22
transcript.pyannote[838].start 6583.76159375
transcript.pyannote[838].end 6585.97221875
transcript.pyannote[839].speaker SPEAKER_27
transcript.pyannote[839].start 6585.97221875
transcript.pyannote[839].end 6588.68909375
transcript.pyannote[840].speaker SPEAKER_22
transcript.pyannote[840].start 6589.73534375
transcript.pyannote[840].end 6590.08971875
transcript.pyannote[841].speaker SPEAKER_27
transcript.pyannote[841].start 6590.64659375
transcript.pyannote[841].end 6591.76034375
transcript.pyannote[842].speaker SPEAKER_22
transcript.pyannote[842].start 6591.76034375
transcript.pyannote[842].end 6591.84471875
transcript.pyannote[843].speaker SPEAKER_27
transcript.pyannote[843].start 6591.84471875
transcript.pyannote[843].end 6592.03034375
transcript.pyannote[844].speaker SPEAKER_22
transcript.pyannote[844].start 6592.03034375
transcript.pyannote[844].end 6595.40534375
transcript.pyannote[845].speaker SPEAKER_22
transcript.pyannote[845].start 6595.75971875
transcript.pyannote[845].end 6617.30909375
transcript.pyannote[846].speaker SPEAKER_27
transcript.pyannote[846].start 6595.82721875
transcript.pyannote[846].end 6596.33346875
transcript.pyannote[847].speaker SPEAKER_00
transcript.pyannote[847].start 6597.63284375
transcript.pyannote[847].end 6597.97034375
transcript.pyannote[848].speaker SPEAKER_00
transcript.pyannote[848].start 6600.53534375
transcript.pyannote[848].end 6600.56909375
transcript.pyannote[849].speaker SPEAKER_27
transcript.pyannote[849].start 6600.56909375
transcript.pyannote[849].end 6601.12596875
transcript.pyannote[850].speaker SPEAKER_27
transcript.pyannote[850].start 6603.52221875
transcript.pyannote[850].end 6604.85534375
transcript.pyannote[851].speaker SPEAKER_27
transcript.pyannote[851].start 6610.45784375
transcript.pyannote[851].end 6612.36471875
transcript.pyannote[852].speaker SPEAKER_22
transcript.pyannote[852].start 6618.45659375
transcript.pyannote[852].end 6618.97971875
transcript.pyannote[853].speaker SPEAKER_22
transcript.pyannote[853].start 6619.41846875
transcript.pyannote[853].end 6622.35471875
transcript.pyannote[854].speaker SPEAKER_22
transcript.pyannote[854].start 6622.92846875
transcript.pyannote[854].end 6624.98721875
transcript.pyannote[855].speaker SPEAKER_22
transcript.pyannote[855].start 6625.42596875
transcript.pyannote[855].end 6626.32034375
transcript.pyannote[856].speaker SPEAKER_22
transcript.pyannote[856].start 6627.21471875
transcript.pyannote[856].end 6627.75471875
transcript.pyannote[857].speaker SPEAKER_22
transcript.pyannote[857].start 6628.12596875
transcript.pyannote[857].end 6631.23096875
transcript.pyannote[858].speaker SPEAKER_22
transcript.pyannote[858].start 6631.68659375
transcript.pyannote[858].end 6633.99846875
transcript.pyannote[859].speaker SPEAKER_22
transcript.pyannote[859].start 6634.20096875
transcript.pyannote[859].end 6635.26409375
transcript.pyannote[860].speaker SPEAKER_22
transcript.pyannote[860].start 6635.87159375
transcript.pyannote[860].end 6636.52971875
transcript.pyannote[861].speaker SPEAKER_22
transcript.pyannote[861].start 6637.17096875
transcript.pyannote[861].end 6638.35221875
transcript.pyannote[862].speaker SPEAKER_22
transcript.pyannote[862].start 6638.74034375
transcript.pyannote[862].end 6639.85409375
transcript.pyannote[863].speaker SPEAKER_22
transcript.pyannote[863].start 6640.34346875
transcript.pyannote[863].end 6642.52034375
transcript.pyannote[864].speaker SPEAKER_22
transcript.pyannote[864].start 6643.26284375
transcript.pyannote[864].end 6645.27096875
transcript.pyannote[865].speaker SPEAKER_22
transcript.pyannote[865].start 6646.85721875
transcript.pyannote[865].end 6647.81909375
transcript.pyannote[866].speaker SPEAKER_22
transcript.pyannote[866].start 6648.00471875
transcript.pyannote[866].end 6649.37159375
transcript.pyannote[867].speaker SPEAKER_22
transcript.pyannote[867].start 6649.86096875
transcript.pyannote[867].end 6650.78909375
transcript.pyannote[868].speaker SPEAKER_22
transcript.pyannote[868].start 6651.39659375
transcript.pyannote[868].end 6653.53971875
transcript.pyannote[869].speaker SPEAKER_22
transcript.pyannote[869].start 6654.11346875
transcript.pyannote[869].end 6656.22284375
transcript.pyannote[870].speaker SPEAKER_22
transcript.pyannote[870].start 6657.70784375
transcript.pyannote[870].end 6658.28159375
transcript.pyannote[871].speaker SPEAKER_22
transcript.pyannote[871].start 6658.80471875
transcript.pyannote[871].end 6661.67346875
transcript.pyannote[872].speaker SPEAKER_22
transcript.pyannote[872].start 6662.39909375
transcript.pyannote[872].end 6662.93909375
transcript.pyannote[873].speaker SPEAKER_22
transcript.pyannote[873].start 6664.67721875
transcript.pyannote[873].end 6665.92596875
transcript.pyannote[874].speaker SPEAKER_22
transcript.pyannote[874].start 6666.48284375
transcript.pyannote[874].end 6668.76096875
transcript.pyannote[875].speaker SPEAKER_22
transcript.pyannote[875].start 6669.58784375
transcript.pyannote[875].end 6672.40596875
transcript.pyannote[876].speaker SPEAKER_22
transcript.pyannote[876].start 6673.14846875
transcript.pyannote[876].end 6676.03409375
transcript.pyannote[877].speaker SPEAKER_22
transcript.pyannote[877].start 6676.59096875
transcript.pyannote[877].end 6679.08846875
transcript.pyannote[878].speaker SPEAKER_22
transcript.pyannote[878].start 6679.45971875
transcript.pyannote[878].end 6681.83909375
transcript.pyannote[879].speaker SPEAKER_22
transcript.pyannote[879].start 6682.71659375
transcript.pyannote[879].end 6688.11659375
transcript.pyannote[880].speaker SPEAKER_22
transcript.pyannote[880].start 6689.23034375
transcript.pyannote[880].end 6690.56346875
transcript.pyannote[881].speaker SPEAKER_22
transcript.pyannote[881].start 6690.79971875
transcript.pyannote[881].end 6693.21284375
transcript.pyannote[882].speaker SPEAKER_22
transcript.pyannote[882].start 6693.63471875
transcript.pyannote[882].end 6698.24159375
transcript.pyannote[883].speaker SPEAKER_22
transcript.pyannote[883].start 6698.34284375
transcript.pyannote[883].end 6699.79409375
transcript.pyannote[884].speaker SPEAKER_22
transcript.pyannote[884].start 6702.15659375
transcript.pyannote[884].end 6707.11784375
transcript.pyannote[885].speaker SPEAKER_27
transcript.pyannote[885].start 6703.10159375
transcript.pyannote[885].end 6703.11846875
transcript.pyannote[886].speaker SPEAKER_28
transcript.pyannote[886].start 6703.11846875
transcript.pyannote[886].end 6704.43471875
transcript.pyannote[887].speaker SPEAKER_27
transcript.pyannote[887].start 6704.43471875
transcript.pyannote[887].end 6704.53596875
transcript.pyannote[888].speaker SPEAKER_22
transcript.pyannote[888].start 6707.35409375
transcript.pyannote[888].end 6709.26096875
transcript.pyannote[889].speaker SPEAKER_27
transcript.pyannote[889].start 6709.26096875
transcript.pyannote[889].end 6709.69971875
transcript.pyannote[890].speaker SPEAKER_22
transcript.pyannote[890].start 6709.69971875
transcript.pyannote[890].end 6709.78409375
transcript.pyannote[891].speaker SPEAKER_22
transcript.pyannote[891].start 6709.85159375
transcript.pyannote[891].end 6710.96534375
transcript.pyannote[892].speaker SPEAKER_27
transcript.pyannote[892].start 6710.96534375
transcript.pyannote[892].end 6714.23909375
transcript.pyannote[893].speaker SPEAKER_27
transcript.pyannote[893].start 6714.47534375
transcript.pyannote[893].end 6715.82534375
transcript.pyannote[894].speaker SPEAKER_27
transcript.pyannote[894].start 6716.12909375
transcript.pyannote[894].end 6717.63096875
transcript.pyannote[895].speaker SPEAKER_27
transcript.pyannote[895].start 6718.40721875
transcript.pyannote[895].end 6721.25909375
transcript.pyannote[896].speaker SPEAKER_22
transcript.pyannote[896].start 6719.01471875
transcript.pyannote[896].end 6726.64221875
transcript.pyannote[897].speaker SPEAKER_22
transcript.pyannote[897].start 6727.14846875
transcript.pyannote[897].end 6731.18159375
transcript.pyannote[898].speaker SPEAKER_22
transcript.pyannote[898].start 6732.27846875
transcript.pyannote[898].end 6733.59471875
transcript.pyannote[899].speaker SPEAKER_22
transcript.pyannote[899].start 6733.88159375
transcript.pyannote[899].end 6734.26971875
transcript.pyannote[900].speaker SPEAKER_22
transcript.pyannote[900].start 6734.79284375
transcript.pyannote[900].end 6736.66596875
transcript.pyannote[901].speaker SPEAKER_22
transcript.pyannote[901].start 6737.10471875
transcript.pyannote[901].end 6738.11721875
transcript.pyannote[902].speaker SPEAKER_22
transcript.pyannote[902].start 6738.50534375
transcript.pyannote[902].end 6742.74096875
transcript.pyannote[903].speaker SPEAKER_27
transcript.pyannote[903].start 6738.64034375
transcript.pyannote[903].end 6739.16346875
transcript.pyannote[904].speaker SPEAKER_27
transcript.pyannote[904].start 6740.61471875
transcript.pyannote[904].end 6742.25159375
transcript.pyannote[905].speaker SPEAKER_22
transcript.pyannote[905].start 6743.60159375
transcript.pyannote[905].end 6743.61846875
transcript.pyannote[906].speaker SPEAKER_27
transcript.pyannote[906].start 6743.61846875
transcript.pyannote[906].end 6743.95596875
transcript.pyannote[907].speaker SPEAKER_22
transcript.pyannote[907].start 6743.95596875
transcript.pyannote[907].end 6744.44534375
transcript.pyannote[908].speaker SPEAKER_27
transcript.pyannote[908].start 6744.02346875
transcript.pyannote[908].end 6749.76096875
transcript.pyannote[909].speaker SPEAKER_22
transcript.pyannote[909].start 6748.78221875
transcript.pyannote[909].end 6751.14471875
transcript.pyannote[910].speaker SPEAKER_27
transcript.pyannote[910].start 6750.53721875
transcript.pyannote[910].end 6750.72284375
transcript.pyannote[911].speaker SPEAKER_27
transcript.pyannote[911].start 6751.14471875
transcript.pyannote[911].end 6751.16159375
transcript.pyannote[912].speaker SPEAKER_22
transcript.pyannote[912].start 6751.16159375
transcript.pyannote[912].end 6751.33034375
transcript.pyannote[913].speaker SPEAKER_27
transcript.pyannote[913].start 6751.33034375
transcript.pyannote[913].end 6754.80659375
transcript.pyannote[914].speaker SPEAKER_22
transcript.pyannote[914].start 6751.34721875
transcript.pyannote[914].end 6754.41846875
transcript.pyannote[915].speaker SPEAKER_22
transcript.pyannote[915].start 6755.24534375
transcript.pyannote[915].end 6764.83034375
transcript.pyannote[916].speaker SPEAKER_27
transcript.pyannote[916].start 6760.45971875
transcript.pyannote[916].end 6760.78034375
transcript.pyannote[917].speaker SPEAKER_22
transcript.pyannote[917].start 6765.42096875
transcript.pyannote[917].end 6768.52596875
transcript.pyannote[918].speaker SPEAKER_27
transcript.pyannote[918].start 6766.66971875
transcript.pyannote[918].end 6767.44596875
transcript.pyannote[919].speaker SPEAKER_22
transcript.pyannote[919].start 6769.58909375
transcript.pyannote[919].end 6770.44971875
transcript.pyannote[920].speaker SPEAKER_22
transcript.pyannote[920].start 6771.12471875
transcript.pyannote[920].end 6774.58409375
transcript.pyannote[921].speaker SPEAKER_22
transcript.pyannote[921].start 6775.51221875
transcript.pyannote[921].end 6775.88346875
transcript.pyannote[922].speaker SPEAKER_22
transcript.pyannote[922].start 6776.15346875
transcript.pyannote[922].end 6779.27534375
transcript.pyannote[923].speaker SPEAKER_22
transcript.pyannote[923].start 6779.46096875
transcript.pyannote[923].end 6780.59159375
transcript.pyannote[924].speaker SPEAKER_22
transcript.pyannote[924].start 6780.97971875
transcript.pyannote[924].end 6781.78971875
transcript.pyannote[925].speaker SPEAKER_22
transcript.pyannote[925].start 6782.27909375
transcript.pyannote[925].end 6784.21971875
transcript.pyannote[926].speaker SPEAKER_22
transcript.pyannote[926].start 6784.33784375
transcript.pyannote[926].end 6786.64971875
transcript.pyannote[927].speaker SPEAKER_22
transcript.pyannote[927].start 6787.07159375
transcript.pyannote[927].end 6788.38784375
transcript.pyannote[928].speaker SPEAKER_22
transcript.pyannote[928].start 6788.92784375
transcript.pyannote[928].end 6791.57721875
transcript.pyannote[929].speaker SPEAKER_22
transcript.pyannote[929].start 6792.53909375
transcript.pyannote[929].end 6794.54721875
transcript.pyannote[930].speaker SPEAKER_22
transcript.pyannote[930].start 6794.69909375
transcript.pyannote[930].end 6795.61034375
transcript.pyannote[931].speaker SPEAKER_22
transcript.pyannote[931].start 6796.45409375
transcript.pyannote[931].end 6807.25409375
transcript.pyannote[932].speaker SPEAKER_04
transcript.pyannote[932].start 6803.50784375
transcript.pyannote[932].end 6803.79471875
transcript.pyannote[933].speaker SPEAKER_04
transcript.pyannote[933].start 6806.49471875
transcript.pyannote[933].end 6807.67596875
transcript.pyannote[934].speaker SPEAKER_22
transcript.pyannote[934].start 6807.67596875
transcript.pyannote[934].end 6810.03846875
transcript.pyannote[935].speaker SPEAKER_04
transcript.pyannote[935].start 6807.69284375
transcript.pyannote[935].end 6807.70971875
transcript.pyannote[936].speaker SPEAKER_22
transcript.pyannote[936].start 6810.64596875
transcript.pyannote[936].end 6818.76284375
transcript.pyannote[937].speaker SPEAKER_27
transcript.pyannote[937].start 6818.76284375
transcript.pyannote[937].end 6818.93159375
transcript.pyannote[938].speaker SPEAKER_22
transcript.pyannote[938].start 6818.93159375
transcript.pyannote[938].end 6820.61909375
transcript.pyannote[939].speaker SPEAKER_15
transcript.pyannote[939].start 6820.53471875
transcript.pyannote[939].end 6821.20971875
transcript.pyannote[940].speaker SPEAKER_15
transcript.pyannote[940].start 6829.03971875
transcript.pyannote[940].end 6829.63034375
transcript.pyannote[941].speaker SPEAKER_15
transcript.pyannote[941].start 6829.90034375
transcript.pyannote[941].end 6835.13159375
transcript.pyannote[942].speaker SPEAKER_15
transcript.pyannote[942].start 6835.35096875
transcript.pyannote[942].end 6839.51909375
transcript.pyannote[943].speaker SPEAKER_22
transcript.pyannote[943].start 6853.15409375
transcript.pyannote[943].end 6854.36909375
transcript.pyannote[944].speaker SPEAKER_15
transcript.pyannote[944].start 6860.91659375
transcript.pyannote[944].end 6864.62909375
transcript.pyannote[945].speaker SPEAKER_15
transcript.pyannote[945].start 6872.54346875
transcript.pyannote[945].end 6873.23534375
transcript.pyannote[946].speaker SPEAKER_28
transcript.pyannote[946].start 6873.52221875
transcript.pyannote[946].end 6874.04534375
transcript.pyannote[947].speaker SPEAKER_15
transcript.pyannote[947].start 6873.74159375
transcript.pyannote[947].end 6878.61846875
transcript.pyannote[948].speaker SPEAKER_15
transcript.pyannote[948].start 6879.05721875
transcript.pyannote[948].end 6881.87534375
transcript.pyannote[949].speaker SPEAKER_15
transcript.pyannote[949].start 6882.49971875
transcript.pyannote[949].end 6885.70596875
transcript.pyannote[950].speaker SPEAKER_15
transcript.pyannote[950].start 6886.24596875
transcript.pyannote[950].end 6894.76784375
transcript.pyannote[951].speaker SPEAKER_15
transcript.pyannote[951].start 6894.78471875
transcript.pyannote[951].end 6894.81846875
transcript.pyannote[952].speaker SPEAKER_12
transcript.pyannote[952].start 6894.81846875
transcript.pyannote[952].end 6895.18971875
transcript.pyannote[953].speaker SPEAKER_15
transcript.pyannote[953].start 6895.18971875
transcript.pyannote[953].end 6906.95159375
transcript.pyannote[954].speaker SPEAKER_15
transcript.pyannote[954].start 6907.44096875
transcript.pyannote[954].end 6911.72721875
transcript.pyannote[955].speaker SPEAKER_15
transcript.pyannote[955].start 6912.03096875
transcript.pyannote[955].end 6919.91159375
transcript.pyannote[956].speaker SPEAKER_15
transcript.pyannote[956].start 6920.19846875
transcript.pyannote[956].end 6935.68971875
transcript.pyannote[957].speaker SPEAKER_15
transcript.pyannote[957].start 6935.84159375
transcript.pyannote[957].end 6936.75284375
transcript.pyannote[958].speaker SPEAKER_15
transcript.pyannote[958].start 6937.22534375
transcript.pyannote[958].end 6938.77784375
transcript.pyannote[959].speaker SPEAKER_15
transcript.pyannote[959].start 6938.94659375
transcript.pyannote[959].end 6949.89846875
transcript.pyannote[960].speaker SPEAKER_15
transcript.pyannote[960].start 6950.67471875
transcript.pyannote[960].end 6951.99096875
transcript.pyannote[961].speaker SPEAKER_10
transcript.pyannote[961].start 6950.74221875
transcript.pyannote[961].end 6950.82659375
transcript.pyannote[962].speaker SPEAKER_27
transcript.pyannote[962].start 6950.82659375
transcript.pyannote[962].end 6950.97846875
transcript.pyannote[963].speaker SPEAKER_10
transcript.pyannote[963].start 6950.97846875
transcript.pyannote[963].end 6951.28221875
transcript.pyannote[964].speaker SPEAKER_15
transcript.pyannote[964].start 6952.15971875
transcript.pyannote[964].end 6953.96534375
transcript.pyannote[965].speaker SPEAKER_15
transcript.pyannote[965].start 6954.53909375
transcript.pyannote[965].end 6955.16346875
transcript.pyannote[966].speaker SPEAKER_27
transcript.pyannote[966].start 6955.83846875
transcript.pyannote[966].end 6959.12909375
transcript.pyannote[967].speaker SPEAKER_27
transcript.pyannote[967].start 6959.95596875
transcript.pyannote[967].end 6961.35659375
transcript.pyannote[968].speaker SPEAKER_27
transcript.pyannote[968].start 6961.82909375
transcript.pyannote[968].end 6961.93034375
transcript.pyannote[969].speaker SPEAKER_15
transcript.pyannote[969].start 6962.60534375
transcript.pyannote[969].end 6967.73534375
transcript.pyannote[970].speaker SPEAKER_27
transcript.pyannote[970].start 6968.30909375
transcript.pyannote[970].end 6971.44784375
transcript.pyannote[971].speaker SPEAKER_15
transcript.pyannote[971].start 6971.05971875
transcript.pyannote[971].end 6972.25784375
transcript.pyannote[972].speaker SPEAKER_27
transcript.pyannote[972].start 6973.06784375
transcript.pyannote[972].end 6973.82721875
transcript.pyannote[973].speaker SPEAKER_15
transcript.pyannote[973].start 6974.99159375
transcript.pyannote[973].end 6976.74659375
transcript.pyannote[974].speaker SPEAKER_27
transcript.pyannote[974].start 6976.84784375
transcript.pyannote[974].end 6977.30346875
transcript.pyannote[975].speaker SPEAKER_15
transcript.pyannote[975].start 6977.53971875
transcript.pyannote[975].end 6978.04596875
transcript.pyannote[976].speaker SPEAKER_15
transcript.pyannote[976].start 6978.50159375
transcript.pyannote[976].end 6978.92346875
transcript.pyannote[977].speaker SPEAKER_15
transcript.pyannote[977].start 6979.22721875
transcript.pyannote[977].end 6979.83471875
transcript.pyannote[978].speaker SPEAKER_15
transcript.pyannote[978].start 6980.77971875
transcript.pyannote[978].end 6982.33221875
transcript.pyannote[979].speaker SPEAKER_15
transcript.pyannote[979].start 6983.59784375
transcript.pyannote[979].end 6985.67346875
transcript.pyannote[980].speaker SPEAKER_15
transcript.pyannote[980].start 6986.97284375
transcript.pyannote[980].end 6988.30596875
transcript.pyannote[981].speaker SPEAKER_27
transcript.pyannote[981].start 6989.33534375
transcript.pyannote[981].end 6997.99221875
transcript.pyannote[982].speaker SPEAKER_15
transcript.pyannote[982].start 6989.36909375
transcript.pyannote[982].end 6989.82471875
transcript.pyannote[983].speaker SPEAKER_15
transcript.pyannote[983].start 6995.54534375
transcript.pyannote[983].end 6995.59596875
transcript.pyannote[984].speaker SPEAKER_15
transcript.pyannote[984].start 6995.61284375
transcript.pyannote[984].end 6995.62971875
transcript.pyannote[985].speaker SPEAKER_15
transcript.pyannote[985].start 6997.77284375
transcript.pyannote[985].end 7010.78346875
transcript.pyannote[986].speaker SPEAKER_15
transcript.pyannote[986].start 7011.54284375
transcript.pyannote[986].end 7027.92846875
transcript.pyannote[987].speaker SPEAKER_15
transcript.pyannote[987].start 7028.43471875
transcript.pyannote[987].end 7029.51471875
transcript.pyannote[988].speaker SPEAKER_15
transcript.pyannote[988].start 7029.73409375
transcript.pyannote[988].end 7030.35846875
transcript.pyannote[989].speaker SPEAKER_15
transcript.pyannote[989].start 7030.72971875
transcript.pyannote[989].end 7067.83784375
transcript.pyannote[990].speaker SPEAKER_15
transcript.pyannote[990].start 7068.95159375
transcript.pyannote[990].end 7069.76159375
transcript.pyannote[991].speaker SPEAKER_27
transcript.pyannote[991].start 7069.76159375
transcript.pyannote[991].end 7101.53721875
transcript.pyannote[992].speaker SPEAKER_15
transcript.pyannote[992].start 7101.84096875
transcript.pyannote[992].end 7102.07721875
transcript.pyannote[993].speaker SPEAKER_15
transcript.pyannote[993].start 7102.39784375
transcript.pyannote[993].end 7105.77284375
transcript.pyannote[994].speaker SPEAKER_15
transcript.pyannote[994].start 7106.11034375
transcript.pyannote[994].end 7114.31159375
transcript.pyannote[995].speaker SPEAKER_15
transcript.pyannote[995].start 7114.59846875
transcript.pyannote[995].end 7117.63596875
transcript.pyannote[996].speaker SPEAKER_15
transcript.pyannote[996].start 7117.88909375
transcript.pyannote[996].end 7133.00909375
transcript.pyannote[997].speaker SPEAKER_15
transcript.pyannote[997].start 7133.59971875
transcript.pyannote[997].end 7136.90721875
transcript.pyannote[998].speaker SPEAKER_15
transcript.pyannote[998].start 7137.12659375
transcript.pyannote[998].end 7137.58221875
transcript.pyannote[999].speaker SPEAKER_15
transcript.pyannote[999].start 7137.61596875
transcript.pyannote[999].end 7137.63284375
transcript.pyannote[1000].speaker SPEAKER_15
transcript.pyannote[1000].start 7137.66659375
transcript.pyannote[1000].end 7141.64909375
transcript.pyannote[1001].speaker SPEAKER_15
transcript.pyannote[1001].start 7142.25659375
transcript.pyannote[1001].end 7145.49659375
transcript.pyannote[1002].speaker SPEAKER_15
transcript.pyannote[1002].start 7145.91846875
transcript.pyannote[1002].end 7146.91409375
transcript.pyannote[1003].speaker SPEAKER_15
transcript.pyannote[1003].start 7147.47096875
transcript.pyannote[1003].end 7148.01096875
transcript.pyannote[1004].speaker SPEAKER_15
transcript.pyannote[1004].start 7148.82096875
transcript.pyannote[1004].end 7149.31034375
transcript.pyannote[1005].speaker SPEAKER_15
transcript.pyannote[1005].start 7149.68159375
transcript.pyannote[1005].end 7163.51909375
transcript.pyannote[1006].speaker SPEAKER_15
transcript.pyannote[1006].start 7164.02534375
transcript.pyannote[1006].end 7164.83534375
transcript.pyannote[1007].speaker SPEAKER_15
transcript.pyannote[1007].start 7165.71284375
transcript.pyannote[1007].end 7168.29471875
transcript.pyannote[1008].speaker SPEAKER_27
transcript.pyannote[1008].start 7169.20596875
transcript.pyannote[1008].end 7189.40534375
transcript.pyannote[1009].speaker SPEAKER_15
transcript.pyannote[1009].start 7185.82784375
transcript.pyannote[1009].end 7188.52784375
transcript.pyannote[1010].speaker SPEAKER_27
transcript.pyannote[1010].start 7189.89471875
transcript.pyannote[1010].end 7193.79284375
transcript.pyannote[1011].speaker SPEAKER_15
transcript.pyannote[1011].start 7193.42159375
transcript.pyannote[1011].end 7194.06284375
transcript.pyannote[1012].speaker SPEAKER_27
transcript.pyannote[1012].start 7194.06284375
transcript.pyannote[1012].end 7194.23159375
transcript.pyannote[1013].speaker SPEAKER_27
transcript.pyannote[1013].start 7194.24846875
transcript.pyannote[1013].end 7195.21034375
transcript.pyannote[1014].speaker SPEAKER_15
transcript.pyannote[1014].start 7194.77159375
transcript.pyannote[1014].end 7195.19346875
transcript.pyannote[1015].speaker SPEAKER_15
transcript.pyannote[1015].start 7195.21034375
transcript.pyannote[1015].end 7195.27784375
transcript.pyannote[1016].speaker SPEAKER_15
transcript.pyannote[1016].start 7196.50971875
transcript.pyannote[1016].end 7196.99909375
transcript.pyannote[1017].speaker SPEAKER_15
transcript.pyannote[1017].start 7197.57284375
transcript.pyannote[1017].end 7198.70346875
transcript.pyannote[1018].speaker SPEAKER_27
transcript.pyannote[1018].start 7198.36596875
transcript.pyannote[1018].end 7199.37846875
transcript.pyannote[1019].speaker SPEAKER_15
transcript.pyannote[1019].start 7199.34471875
transcript.pyannote[1019].end 7200.39096875
transcript.pyannote[1020].speaker SPEAKER_27
transcript.pyannote[1020].start 7200.12096875
transcript.pyannote[1020].end 7200.79596875
transcript.pyannote[1021].speaker SPEAKER_15
transcript.pyannote[1021].start 7200.42471875
transcript.pyannote[1021].end 7209.87471875
transcript.pyannote[1022].speaker SPEAKER_27
transcript.pyannote[1022].start 7202.65221875
transcript.pyannote[1022].end 7203.10784375
transcript.pyannote[1023].speaker SPEAKER_15
transcript.pyannote[1023].start 7210.90409375
transcript.pyannote[1023].end 7214.14409375
transcript.pyannote[1024].speaker SPEAKER_15
transcript.pyannote[1024].start 7214.58284375
transcript.pyannote[1024].end 7220.10096875
transcript.pyannote[1025].speaker SPEAKER_15
transcript.pyannote[1025].start 7220.30346875
transcript.pyannote[1025].end 7225.60221875
transcript.pyannote[1026].speaker SPEAKER_16
transcript.pyannote[1026].start 7226.47971875
transcript.pyannote[1026].end 7248.16409375
transcript.pyannote[1027].speaker SPEAKER_15
transcript.pyannote[1027].start 7247.97846875
transcript.pyannote[1027].end 7265.74784375
transcript.pyannote[1028].speaker SPEAKER_15
transcript.pyannote[1028].start 7266.50721875
transcript.pyannote[1028].end 7276.12596875
transcript.pyannote[1029].speaker SPEAKER_28
transcript.pyannote[1029].start 7270.15221875
transcript.pyannote[1029].end 7270.40534375
transcript.pyannote[1030].speaker SPEAKER_15
transcript.pyannote[1030].start 7276.61534375
transcript.pyannote[1030].end 7277.76284375
transcript.pyannote[1031].speaker SPEAKER_15
transcript.pyannote[1031].start 7278.31971875
transcript.pyannote[1031].end 7281.22221875
transcript.pyannote[1032].speaker SPEAKER_15
transcript.pyannote[1032].start 7281.71159375
transcript.pyannote[1032].end 7288.14096875
transcript.pyannote[1033].speaker SPEAKER_15
transcript.pyannote[1033].start 7288.61346875
transcript.pyannote[1033].end 7295.34659375
transcript.pyannote[1034].speaker SPEAKER_15
transcript.pyannote[1034].start 7295.51534375
transcript.pyannote[1034].end 7305.89346875
transcript.pyannote[1035].speaker SPEAKER_15
transcript.pyannote[1035].start 7306.78784375
transcript.pyannote[1035].end 7307.66534375
transcript.pyannote[1036].speaker SPEAKER_15
transcript.pyannote[1036].start 7308.71159375
transcript.pyannote[1036].end 7311.15846875
transcript.pyannote[1037].speaker SPEAKER_15
transcript.pyannote[1037].start 7311.66471875
transcript.pyannote[1037].end 7313.16659375
transcript.pyannote[1038].speaker SPEAKER_15
transcript.pyannote[1038].start 7316.50784375
transcript.pyannote[1038].end 7318.16159375
transcript.pyannote[1039].speaker SPEAKER_15
transcript.pyannote[1039].start 7319.30909375
transcript.pyannote[1039].end 7320.13596875
transcript.pyannote[1040].speaker SPEAKER_27
transcript.pyannote[1040].start 7320.84471875
transcript.pyannote[1040].end 7321.85721875
transcript.pyannote[1041].speaker SPEAKER_27
transcript.pyannote[1041].start 7323.27471875
transcript.pyannote[1041].end 7323.52784375
transcript.pyannote[1042].speaker SPEAKER_15
transcript.pyannote[1042].start 7324.48971875
transcript.pyannote[1042].end 7326.07596875
transcript.pyannote[1043].speaker SPEAKER_27
transcript.pyannote[1043].start 7324.59096875
transcript.pyannote[1043].end 7325.11409375
transcript.pyannote[1044].speaker SPEAKER_15
transcript.pyannote[1044].start 7326.61596875
transcript.pyannote[1044].end 7332.77534375
transcript.pyannote[1045].speaker SPEAKER_15
transcript.pyannote[1045].start 7333.46721875
transcript.pyannote[1045].end 7336.25159375
transcript.pyannote[1046].speaker SPEAKER_15
transcript.pyannote[1046].start 7336.43721875
transcript.pyannote[1046].end 7345.06034375
transcript.pyannote[1047].speaker SPEAKER_15
transcript.pyannote[1047].start 7345.38096875
transcript.pyannote[1047].end 7353.14346875
transcript.pyannote[1048].speaker SPEAKER_15
transcript.pyannote[1048].start 7353.61596875
transcript.pyannote[1048].end 7354.07159375
transcript.pyannote[1049].speaker SPEAKER_15
transcript.pyannote[1049].start 7354.40909375
transcript.pyannote[1049].end 7358.03721875
transcript.pyannote[1050].speaker SPEAKER_15
transcript.pyannote[1050].start 7358.08784375
transcript.pyannote[1050].end 7359.80909375
transcript.pyannote[1051].speaker SPEAKER_15
transcript.pyannote[1051].start 7362.74534375
transcript.pyannote[1051].end 7363.47096875
transcript.pyannote[1052].speaker SPEAKER_15
transcript.pyannote[1052].start 7363.60596875
transcript.pyannote[1052].end 7363.97721875
transcript.pyannote[1053].speaker SPEAKER_06
transcript.pyannote[1053].start 7368.93846875
transcript.pyannote[1053].end 7368.95534375
transcript.pyannote[1054].speaker SPEAKER_15
transcript.pyannote[1054].start 7368.95534375
transcript.pyannote[1054].end 7369.61346875
transcript.pyannote[1055].speaker SPEAKER_06
transcript.pyannote[1055].start 7369.61346875
transcript.pyannote[1055].end 7369.63034375
transcript.pyannote[1056].speaker SPEAKER_15
transcript.pyannote[1056].start 7370.27159375
transcript.pyannote[1056].end 7370.81159375
transcript.pyannote[1057].speaker SPEAKER_15
transcript.pyannote[1057].start 7373.14034375
transcript.pyannote[1057].end 7375.67159375
transcript.pyannote[1058].speaker SPEAKER_15
transcript.pyannote[1058].start 7376.04284375
transcript.pyannote[1058].end 7378.35471875
transcript.pyannote[1059].speaker SPEAKER_15
transcript.pyannote[1059].start 7378.69221875
transcript.pyannote[1059].end 7380.70034375
transcript.pyannote[1060].speaker SPEAKER_15
transcript.pyannote[1060].start 7381.08846875
transcript.pyannote[1060].end 7382.06721875
transcript.pyannote[1061].speaker SPEAKER_15
transcript.pyannote[1061].start 7382.53971875
transcript.pyannote[1061].end 7383.50159375
transcript.pyannote[1062].speaker SPEAKER_15
transcript.pyannote[1062].start 7384.48034375
transcript.pyannote[1062].end 7385.03721875
transcript.pyannote[1063].speaker SPEAKER_15
transcript.pyannote[1063].start 7385.50971875
transcript.pyannote[1063].end 7386.50534375
transcript.pyannote[1064].speaker SPEAKER_15
transcript.pyannote[1064].start 7387.43346875
transcript.pyannote[1064].end 7389.82971875
transcript.pyannote[1065].speaker SPEAKER_15
transcript.pyannote[1065].start 7390.57221875
transcript.pyannote[1065].end 7391.83784375
transcript.pyannote[1066].speaker SPEAKER_15
transcript.pyannote[1066].start 7392.52971875
transcript.pyannote[1066].end 7394.65596875
transcript.pyannote[1067].speaker SPEAKER_15
transcript.pyannote[1067].start 7395.01034375
transcript.pyannote[1067].end 7396.81596875
transcript.pyannote[1068].speaker SPEAKER_15
transcript.pyannote[1068].start 7396.95096875
transcript.pyannote[1068].end 7397.91284375
transcript.pyannote[1069].speaker SPEAKER_15
transcript.pyannote[1069].start 7398.55409375
transcript.pyannote[1069].end 7399.80284375
transcript.pyannote[1070].speaker SPEAKER_15
transcript.pyannote[1070].start 7400.22471875
transcript.pyannote[1070].end 7401.03471875
transcript.pyannote[1071].speaker SPEAKER_15
transcript.pyannote[1071].start 7401.82784375
transcript.pyannote[1071].end 7405.08471875
transcript.pyannote[1072].speaker SPEAKER_15
transcript.pyannote[1072].start 7405.84409375
transcript.pyannote[1072].end 7408.13909375
transcript.pyannote[1073].speaker SPEAKER_15
transcript.pyannote[1073].start 7408.69596875
transcript.pyannote[1073].end 7409.16846875
transcript.pyannote[1074].speaker SPEAKER_15
transcript.pyannote[1074].start 7409.57346875
transcript.pyannote[1074].end 7410.53534375
transcript.pyannote[1075].speaker SPEAKER_15
transcript.pyannote[1075].start 7410.99096875
transcript.pyannote[1075].end 7411.42971875
transcript.pyannote[1076].speaker SPEAKER_16
transcript.pyannote[1076].start 7412.57721875
transcript.pyannote[1076].end 7412.93159375
transcript.pyannote[1077].speaker SPEAKER_16
transcript.pyannote[1077].start 7413.55596875
transcript.pyannote[1077].end 7423.37721875
transcript.pyannote[1078].speaker SPEAKER_16
transcript.pyannote[1078].start 7423.71471875
transcript.pyannote[1078].end 7430.53221875
transcript.pyannote[1079].speaker SPEAKER_15
transcript.pyannote[1079].start 7430.34659375
transcript.pyannote[1079].end 7431.62909375
transcript.pyannote[1080].speaker SPEAKER_15
transcript.pyannote[1080].start 7432.42221875
transcript.pyannote[1080].end 7437.55221875
transcript.pyannote[1081].speaker SPEAKER_16
transcript.pyannote[1081].start 7438.83471875
transcript.pyannote[1081].end 7443.66096875
transcript.pyannote[1082].speaker SPEAKER_15
transcript.pyannote[1082].start 7443.55971875
transcript.pyannote[1082].end 7444.36971875
transcript.pyannote[1083].speaker SPEAKER_16
transcript.pyannote[1083].start 7444.36971875
transcript.pyannote[1083].end 7444.92659375
transcript.pyannote[1084].speaker SPEAKER_15
transcript.pyannote[1084].start 7444.62284375
transcript.pyannote[1084].end 7445.02784375
transcript.pyannote[1085].speaker SPEAKER_16
transcript.pyannote[1085].start 7445.02784375
transcript.pyannote[1085].end 7447.20471875
transcript.pyannote[1086].speaker SPEAKER_16
transcript.pyannote[1086].start 7447.40721875
transcript.pyannote[1086].end 7449.98909375
transcript.pyannote[1087].speaker SPEAKER_15
transcript.pyannote[1087].start 7449.41534375
transcript.pyannote[1087].end 7450.81596875
transcript.pyannote[1088].speaker SPEAKER_15
transcript.pyannote[1088].start 7451.54159375
transcript.pyannote[1088].end 7459.60784375
transcript.pyannote[1089].speaker SPEAKER_15
transcript.pyannote[1089].start 7460.06346875
transcript.pyannote[1089].end 7465.96971875
transcript.pyannote[1090].speaker SPEAKER_15
transcript.pyannote[1090].start 7466.13846875
transcript.pyannote[1090].end 7469.98596875
transcript.pyannote[1091].speaker SPEAKER_15
transcript.pyannote[1091].start 7470.23909375
transcript.pyannote[1091].end 7471.35284375
transcript.pyannote[1092].speaker SPEAKER_15
transcript.pyannote[1092].start 7471.60596875
transcript.pyannote[1092].end 7472.98971875
transcript.pyannote[1093].speaker SPEAKER_15
transcript.pyannote[1093].start 7473.93471875
transcript.pyannote[1093].end 7478.30534375
transcript.pyannote[1094].speaker SPEAKER_15
transcript.pyannote[1094].start 7478.86221875
transcript.pyannote[1094].end 7484.31284375
transcript.pyannote[1095].speaker SPEAKER_15
transcript.pyannote[1095].start 7484.80221875
transcript.pyannote[1095].end 7489.29096875
transcript.pyannote[1096].speaker SPEAKER_15
transcript.pyannote[1096].start 7489.74659375
transcript.pyannote[1096].end 7491.63659375
transcript.pyannote[1097].speaker SPEAKER_15
transcript.pyannote[1097].start 7492.36221875
transcript.pyannote[1097].end 7494.65721875
transcript.pyannote[1098].speaker SPEAKER_15
transcript.pyannote[1098].start 7494.87659375
transcript.pyannote[1098].end 7497.17159375
transcript.pyannote[1099].speaker SPEAKER_15
transcript.pyannote[1099].start 7497.34034375
transcript.pyannote[1099].end 7509.27096875
transcript.pyannote[1100].speaker SPEAKER_15
transcript.pyannote[1100].start 7510.33409375
transcript.pyannote[1100].end 7510.75596875
transcript.pyannote[1101].speaker SPEAKER_15
transcript.pyannote[1101].start 7510.99221875
transcript.pyannote[1101].end 7512.59534375
transcript.pyannote[1102].speaker SPEAKER_15
transcript.pyannote[1102].start 7513.27034375
transcript.pyannote[1102].end 7515.61596875
transcript.pyannote[1103].speaker SPEAKER_15
transcript.pyannote[1103].start 7515.91971875
transcript.pyannote[1103].end 7517.06721875
transcript.pyannote[1104].speaker SPEAKER_15
transcript.pyannote[1104].start 7517.74221875
transcript.pyannote[1104].end 7519.91909375
transcript.pyannote[1105].speaker SPEAKER_15
transcript.pyannote[1105].start 7520.10471875
transcript.pyannote[1105].end 7521.45471875
transcript.pyannote[1106].speaker SPEAKER_15
transcript.pyannote[1106].start 7521.82596875
transcript.pyannote[1106].end 7538.49846875
transcript.pyannote[1107].speaker SPEAKER_15
transcript.pyannote[1107].start 7538.90346875
transcript.pyannote[1107].end 7539.83159375
transcript.pyannote[1108].speaker SPEAKER_15
transcript.pyannote[1108].start 7540.06784375
transcript.pyannote[1108].end 7549.75409375
transcript.pyannote[1109].speaker SPEAKER_15
transcript.pyannote[1109].start 7550.07471875
transcript.pyannote[1109].end 7561.29659375
transcript.pyannote[1110].speaker SPEAKER_15
transcript.pyannote[1110].start 7561.60034375
transcript.pyannote[1110].end 7565.51534375
transcript.pyannote[1111].speaker SPEAKER_15
transcript.pyannote[1111].start 7566.56159375
transcript.pyannote[1111].end 7571.65784375
transcript.pyannote[1112].speaker SPEAKER_15
transcript.pyannote[1112].start 7572.02909375
transcript.pyannote[1112].end 7574.30721875
transcript.pyannote[1113].speaker SPEAKER_16
transcript.pyannote[1113].start 7574.39159375
transcript.pyannote[1113].end 7575.92721875
transcript.pyannote[1114].speaker SPEAKER_15
transcript.pyannote[1114].start 7576.06221875
transcript.pyannote[1114].end 7576.51784375
transcript.pyannote[1115].speaker SPEAKER_16
transcript.pyannote[1115].start 7577.66534375
transcript.pyannote[1115].end 7578.82971875
transcript.pyannote[1116].speaker SPEAKER_21
transcript.pyannote[1116].start 7578.82971875
transcript.pyannote[1116].end 7578.84659375
transcript.pyannote[1117].speaker SPEAKER_21
transcript.pyannote[1117].start 7579.23471875
transcript.pyannote[1117].end 7579.25159375
transcript.pyannote[1118].speaker SPEAKER_16
transcript.pyannote[1118].start 7579.25159375
transcript.pyannote[1118].end 7579.40346875
transcript.pyannote[1119].speaker SPEAKER_21
transcript.pyannote[1119].start 7579.40346875
transcript.pyannote[1119].end 7579.85909375
transcript.pyannote[1120].speaker SPEAKER_15
transcript.pyannote[1120].start 7587.43596875
transcript.pyannote[1120].end 7590.50721875
transcript.pyannote[1121].speaker SPEAKER_09
transcript.pyannote[1121].start 7600.15971875
transcript.pyannote[1121].end 7606.03221875
transcript.pyannote[1122].speaker SPEAKER_09
transcript.pyannote[1122].start 7606.06596875
transcript.pyannote[1122].end 7607.87159375
transcript.pyannote[1123].speaker SPEAKER_15
transcript.pyannote[1123].start 7607.87159375
transcript.pyannote[1123].end 7607.88846875
transcript.pyannote[1124].speaker SPEAKER_09
transcript.pyannote[1124].start 7615.06034375
transcript.pyannote[1124].end 7615.95471875
transcript.pyannote[1125].speaker SPEAKER_09
transcript.pyannote[1125].start 7615.97159375
transcript.pyannote[1125].end 7615.98846875
transcript.pyannote[1126].speaker SPEAKER_18
transcript.pyannote[1126].start 7617.00096875
transcript.pyannote[1126].end 7617.47346875
transcript.pyannote[1127].speaker SPEAKER_09
transcript.pyannote[1127].start 7617.18659375
transcript.pyannote[1127].end 7622.68784375
transcript.pyannote[1128].speaker SPEAKER_09
transcript.pyannote[1128].start 7622.94096875
transcript.pyannote[1128].end 7623.93659375
transcript.pyannote[1129].speaker SPEAKER_09
transcript.pyannote[1129].start 7623.95346875
transcript.pyannote[1129].end 7645.72221875
transcript.pyannote[1130].speaker SPEAKER_09
transcript.pyannote[1130].start 7645.78971875
transcript.pyannote[1130].end 7648.69221875
transcript.pyannote[1131].speaker SPEAKER_09
transcript.pyannote[1131].start 7648.87784375
transcript.pyannote[1131].end 7649.51909375
transcript.pyannote[1132].speaker SPEAKER_09
transcript.pyannote[1132].start 7649.90721875
transcript.pyannote[1132].end 7653.82221875
transcript.pyannote[1133].speaker SPEAKER_09
transcript.pyannote[1133].start 7654.26096875
transcript.pyannote[1133].end 7672.19909375
transcript.pyannote[1134].speaker SPEAKER_16
transcript.pyannote[1134].start 7672.78971875
transcript.pyannote[1134].end 7679.43846875
transcript.pyannote[1135].speaker SPEAKER_16
transcript.pyannote[1135].start 7679.50596875
transcript.pyannote[1135].end 7680.50159375
transcript.pyannote[1136].speaker SPEAKER_09
transcript.pyannote[1136].start 7679.79284375
transcript.pyannote[1136].end 7681.66596875
transcript.pyannote[1137].speaker SPEAKER_16
transcript.pyannote[1137].start 7681.66596875
transcript.pyannote[1137].end 7681.86846875
transcript.pyannote[1138].speaker SPEAKER_09
transcript.pyannote[1138].start 7681.69971875
transcript.pyannote[1138].end 7693.95096875
transcript.pyannote[1139].speaker SPEAKER_16
transcript.pyannote[1139].start 7685.41221875
transcript.pyannote[1139].end 7685.54721875
transcript.pyannote[1140].speaker SPEAKER_16
transcript.pyannote[1140].start 7694.44034375
transcript.pyannote[1140].end 7695.89159375
transcript.pyannote[1141].speaker SPEAKER_09
transcript.pyannote[1141].start 7696.06034375
transcript.pyannote[1141].end 7697.19096875
transcript.pyannote[1142].speaker SPEAKER_09
transcript.pyannote[1142].start 7697.59596875
transcript.pyannote[1142].end 7710.96096875
transcript.pyannote[1143].speaker SPEAKER_16
transcript.pyannote[1143].start 7712.85096875
transcript.pyannote[1143].end 7717.22159375
transcript.pyannote[1144].speaker SPEAKER_16
transcript.pyannote[1144].start 7717.62659375
transcript.pyannote[1144].end 7718.21721875
transcript.pyannote[1145].speaker SPEAKER_09
transcript.pyannote[1145].start 7717.69409375
transcript.pyannote[1145].end 7718.77409375
transcript.pyannote[1146].speaker SPEAKER_16
transcript.pyannote[1146].start 7718.65596875
transcript.pyannote[1146].end 7727.39721875
transcript.pyannote[1147].speaker SPEAKER_28
transcript.pyannote[1147].start 7727.48159375
transcript.pyannote[1147].end 7727.97096875
transcript.pyannote[1148].speaker SPEAKER_16
transcript.pyannote[1148].start 7727.54909375
transcript.pyannote[1148].end 7734.43409375
transcript.pyannote[1149].speaker SPEAKER_09
transcript.pyannote[1149].start 7734.13034375
transcript.pyannote[1149].end 7748.33909375
transcript.pyannote[1150].speaker SPEAKER_09
transcript.pyannote[1150].start 7749.46971875
transcript.pyannote[1150].end 7750.73534375
transcript.pyannote[1151].speaker SPEAKER_27
transcript.pyannote[1151].start 7753.11471875
transcript.pyannote[1151].end 7754.86971875
transcript.pyannote[1152].speaker SPEAKER_27
transcript.pyannote[1152].start 7755.35909375
transcript.pyannote[1152].end 7760.72534375
transcript.pyannote[1153].speaker SPEAKER_09
transcript.pyannote[1153].start 7761.28221875
transcript.pyannote[1153].end 7761.99096875
transcript.pyannote[1154].speaker SPEAKER_27
transcript.pyannote[1154].start 7761.45096875
transcript.pyannote[1154].end 7761.51846875
transcript.pyannote[1155].speaker SPEAKER_27
transcript.pyannote[1155].start 7761.88971875
transcript.pyannote[1155].end 7763.37471875
transcript.pyannote[1156].speaker SPEAKER_27
transcript.pyannote[1156].start 7763.79659375
transcript.pyannote[1156].end 7766.47971875
transcript.pyannote[1157].speaker SPEAKER_09
transcript.pyannote[1157].start 7766.56409375
transcript.pyannote[1157].end 7766.95221875
transcript.pyannote[1158].speaker SPEAKER_09
transcript.pyannote[1158].start 7767.23909375
transcript.pyannote[1158].end 7771.18784375
transcript.pyannote[1159].speaker SPEAKER_09
transcript.pyannote[1159].start 7771.81221875
transcript.pyannote[1159].end 7775.87909375
transcript.pyannote[1160].speaker SPEAKER_27
transcript.pyannote[1160].start 7771.87971875
transcript.pyannote[1160].end 7777.31346875
transcript.pyannote[1161].speaker SPEAKER_09
transcript.pyannote[1161].start 7777.31346875
transcript.pyannote[1161].end 7779.08534375
transcript.pyannote[1162].speaker SPEAKER_27
transcript.pyannote[1162].start 7778.10659375
transcript.pyannote[1162].end 7788.50159375
transcript.pyannote[1163].speaker SPEAKER_28
transcript.pyannote[1163].start 7788.50159375
transcript.pyannote[1163].end 7788.82221875
transcript.pyannote[1164].speaker SPEAKER_27
transcript.pyannote[1164].start 7788.70409375
transcript.pyannote[1164].end 7811.40096875
transcript.pyannote[1165].speaker SPEAKER_28
transcript.pyannote[1165].start 7795.42034375
transcript.pyannote[1165].end 7795.43721875
transcript.pyannote[1166].speaker SPEAKER_28
transcript.pyannote[1166].start 7795.70721875
transcript.pyannote[1166].end 7795.90971875
transcript.pyannote[1167].speaker SPEAKER_00
transcript.pyannote[1167].start 7795.90971875
transcript.pyannote[1167].end 7795.92659375
transcript.pyannote[1168].speaker SPEAKER_27
transcript.pyannote[1168].start 7812.04221875
transcript.pyannote[1168].end 7821.71159375
transcript.pyannote[1169].speaker SPEAKER_09
transcript.pyannote[1169].start 7821.12096875
transcript.pyannote[1169].end 7822.35284375
transcript.pyannote[1170].speaker SPEAKER_27
transcript.pyannote[1170].start 7822.35284375
transcript.pyannote[1170].end 7826.18346875
transcript.pyannote[1171].speaker SPEAKER_27
transcript.pyannote[1171].start 7826.68971875
transcript.pyannote[1171].end 7834.16534375
transcript.pyannote[1172].speaker SPEAKER_27
transcript.pyannote[1172].start 7834.80659375
transcript.pyannote[1172].end 7838.67096875
transcript.pyannote[1173].speaker SPEAKER_27
transcript.pyannote[1173].start 7839.21096875
transcript.pyannote[1173].end 7839.63284375
transcript.pyannote[1174].speaker SPEAKER_27
transcript.pyannote[1174].start 7840.05471875
transcript.pyannote[1174].end 7867.64534375
transcript.pyannote[1175].speaker SPEAKER_27
transcript.pyannote[1175].start 7868.26971875
transcript.pyannote[1175].end 7870.59846875
transcript.pyannote[1176].speaker SPEAKER_09
transcript.pyannote[1176].start 7871.45909375
transcript.pyannote[1176].end 7880.62221875
transcript.pyannote[1177].speaker SPEAKER_09
transcript.pyannote[1177].start 7880.68971875
transcript.pyannote[1177].end 7881.41534375
transcript.pyannote[1178].speaker SPEAKER_09
transcript.pyannote[1178].start 7881.88784375
transcript.pyannote[1178].end 7882.71471875
transcript.pyannote[1179].speaker SPEAKER_09
transcript.pyannote[1179].start 7883.10284375
transcript.pyannote[1179].end 7886.24159375
transcript.pyannote[1180].speaker SPEAKER_09
transcript.pyannote[1180].start 7886.91659375
transcript.pyannote[1180].end 7891.08471875
transcript.pyannote[1181].speaker SPEAKER_09
transcript.pyannote[1181].start 7891.67534375
transcript.pyannote[1181].end 7893.12659375
transcript.pyannote[1182].speaker SPEAKER_09
transcript.pyannote[1182].start 7893.64971875
transcript.pyannote[1182].end 7893.86909375
transcript.pyannote[1183].speaker SPEAKER_09
transcript.pyannote[1183].start 7894.24034375
transcript.pyannote[1183].end 7895.75909375
transcript.pyannote[1184].speaker SPEAKER_09
transcript.pyannote[1184].start 7896.56909375
transcript.pyannote[1184].end 7900.73721875
transcript.pyannote[1185].speaker SPEAKER_09
transcript.pyannote[1185].start 7900.92284375
transcript.pyannote[1185].end 7906.32284375
transcript.pyannote[1186].speaker SPEAKER_09
transcript.pyannote[1186].start 7906.87971875
transcript.pyannote[1186].end 7933.00221875
transcript.pyannote[1187].speaker SPEAKER_27
transcript.pyannote[1187].start 7934.36909375
transcript.pyannote[1187].end 7935.02721875
transcript.pyannote[1188].speaker SPEAKER_27
transcript.pyannote[1188].start 7935.51659375
transcript.pyannote[1188].end 7946.09721875
transcript.pyannote[1189].speaker SPEAKER_27
transcript.pyannote[1189].start 7946.36721875
transcript.pyannote[1189].end 7951.63221875
transcript.pyannote[1190].speaker SPEAKER_27
transcript.pyannote[1190].start 7951.86846875
transcript.pyannote[1190].end 7962.24659375
transcript.pyannote[1191].speaker SPEAKER_27
transcript.pyannote[1191].start 7962.68534375
transcript.pyannote[1191].end 7983.57659375
transcript.pyannote[1192].speaker SPEAKER_09
transcript.pyannote[1192].start 7972.25346875
transcript.pyannote[1192].end 7974.43034375
transcript.pyannote[1193].speaker SPEAKER_09
transcript.pyannote[1193].start 7974.46409375
transcript.pyannote[1193].end 7974.48096875
transcript.pyannote[1194].speaker SPEAKER_28
transcript.pyannote[1194].start 7980.65721875
transcript.pyannote[1194].end 7981.07909375
transcript.pyannote[1195].speaker SPEAKER_28
transcript.pyannote[1195].start 7983.77909375
transcript.pyannote[1195].end 7984.20096875
transcript.pyannote[1196].speaker SPEAKER_27
transcript.pyannote[1196].start 7984.69034375
transcript.pyannote[1196].end 7991.86221875
transcript.pyannote[1197].speaker SPEAKER_28
transcript.pyannote[1197].start 7989.68534375
transcript.pyannote[1197].end 7989.75284375
transcript.pyannote[1198].speaker SPEAKER_27
transcript.pyannote[1198].start 7992.13221875
transcript.pyannote[1198].end 7993.70159375
transcript.pyannote[1199].speaker SPEAKER_27
transcript.pyannote[1199].start 7994.27534375
transcript.pyannote[1199].end 7994.71409375
transcript.pyannote[1200].speaker SPEAKER_27
transcript.pyannote[1200].start 7995.32159375
transcript.pyannote[1200].end 8019.31784375
transcript.pyannote[1201].speaker SPEAKER_28
transcript.pyannote[1201].start 8019.73971875
transcript.pyannote[1201].end 8019.90846875
transcript.pyannote[1202].speaker SPEAKER_27
transcript.pyannote[1202].start 8019.90846875
transcript.pyannote[1202].end 8024.85284375
transcript.pyannote[1203].speaker SPEAKER_27
transcript.pyannote[1203].start 8025.47721875
transcript.pyannote[1203].end 8026.06784375
transcript.pyannote[1204].speaker SPEAKER_27
transcript.pyannote[1204].start 8026.94534375
transcript.pyannote[1204].end 8030.48909375
transcript.pyannote[1205].speaker SPEAKER_27
transcript.pyannote[1205].start 8030.77596875
transcript.pyannote[1205].end 8036.76659375
transcript.pyannote[1206].speaker SPEAKER_09
transcript.pyannote[1206].start 8032.56471875
transcript.pyannote[1206].end 8033.15534375
transcript.pyannote[1207].speaker SPEAKER_09
transcript.pyannote[1207].start 8036.02409375
transcript.pyannote[1207].end 8059.21034375
transcript.pyannote[1208].speaker SPEAKER_27
transcript.pyannote[1208].start 8037.72846875
transcript.pyannote[1208].end 8038.03221875
transcript.pyannote[1209].speaker SPEAKER_27
transcript.pyannote[1209].start 8041.84596875
transcript.pyannote[1209].end 8043.01034375
transcript.pyannote[1210].speaker SPEAKER_27
transcript.pyannote[1210].start 8055.83534375
transcript.pyannote[1210].end 8056.99971875
transcript.pyannote[1211].speaker SPEAKER_27
transcript.pyannote[1211].start 8058.67034375
transcript.pyannote[1211].end 8064.17159375
transcript.pyannote[1212].speaker SPEAKER_27
transcript.pyannote[1212].start 8064.30659375
transcript.pyannote[1212].end 8067.96846875
transcript.pyannote[1213].speaker SPEAKER_27
transcript.pyannote[1213].start 8068.33971875
transcript.pyannote[1213].end 8081.63721875
transcript.pyannote[1214].speaker SPEAKER_09
transcript.pyannote[1214].start 8081.97471875
transcript.pyannote[1214].end 8082.31221875
transcript.pyannote[1215].speaker SPEAKER_09
transcript.pyannote[1215].start 8082.41346875
transcript.pyannote[1215].end 8088.55596875
transcript.pyannote[1216].speaker SPEAKER_27
transcript.pyannote[1216].start 8088.62346875
transcript.pyannote[1216].end 8093.73659375
transcript.pyannote[1217].speaker SPEAKER_09
transcript.pyannote[1217].start 8089.38284375
transcript.pyannote[1217].end 8090.96909375
transcript.pyannote[1218].speaker SPEAKER_09
transcript.pyannote[1218].start 8093.06159375
transcript.pyannote[1218].end 8094.29346875
transcript.pyannote[1219].speaker SPEAKER_09
transcript.pyannote[1219].start 8094.52971875
transcript.pyannote[1219].end 8095.77846875
transcript.pyannote[1220].speaker SPEAKER_27
transcript.pyannote[1220].start 8096.31846875
transcript.pyannote[1220].end 8097.04409375
transcript.pyannote[1221].speaker SPEAKER_27
transcript.pyannote[1221].start 8097.63471875
transcript.pyannote[1221].end 8100.09846875
transcript.pyannote[1222].speaker SPEAKER_09
transcript.pyannote[1222].start 8098.44471875
transcript.pyannote[1222].end 8098.81596875
transcript.pyannote[1223].speaker SPEAKER_09
transcript.pyannote[1223].start 8099.74409375
transcript.pyannote[1223].end 8100.43596875
transcript.pyannote[1224].speaker SPEAKER_27
transcript.pyannote[1224].start 8100.67221875
transcript.pyannote[1224].end 8103.59159375
transcript.pyannote[1225].speaker SPEAKER_09
transcript.pyannote[1225].start 8102.93346875
transcript.pyannote[1225].end 8104.77284375
transcript.pyannote[1226].speaker SPEAKER_27
transcript.pyannote[1226].start 8105.19471875
transcript.pyannote[1226].end 8105.54909375
transcript.pyannote[1227].speaker SPEAKER_09
transcript.pyannote[1227].start 8105.97096875
transcript.pyannote[1227].end 8106.62909375
transcript.pyannote[1228].speaker SPEAKER_27
transcript.pyannote[1228].start 8106.96659375
transcript.pyannote[1228].end 8107.37159375
transcript.pyannote[1229].speaker SPEAKER_09
transcript.pyannote[1229].start 8107.55721875
transcript.pyannote[1229].end 8108.18159375
transcript.pyannote[1230].speaker SPEAKER_27
transcript.pyannote[1230].start 8108.23221875
transcript.pyannote[1230].end 8108.67096875
transcript.pyannote[1231].speaker SPEAKER_09
transcript.pyannote[1231].start 8108.67096875
transcript.pyannote[1231].end 8109.24471875
transcript.pyannote[1232].speaker SPEAKER_27
transcript.pyannote[1232].start 8109.24471875
transcript.pyannote[1232].end 8109.91971875
transcript.pyannote[1233].speaker SPEAKER_09
transcript.pyannote[1233].start 8109.36284375
transcript.pyannote[1233].end 8109.49784375
transcript.pyannote[1234].speaker SPEAKER_09
transcript.pyannote[1234].start 8110.17284375
transcript.pyannote[1234].end 8110.45971875
transcript.pyannote[1235].speaker SPEAKER_27
transcript.pyannote[1235].start 8111.79284375
transcript.pyannote[1235].end 8123.65596875
transcript.pyannote[1236].speaker SPEAKER_09
transcript.pyannote[1236].start 8124.66846875
transcript.pyannote[1236].end 8130.82784375
transcript.pyannote[1237].speaker SPEAKER_09
transcript.pyannote[1237].start 8132.73471875
transcript.pyannote[1237].end 8134.20284375
transcript.pyannote[1238].speaker SPEAKER_27
transcript.pyannote[1238].start 8135.45159375
transcript.pyannote[1238].end 8136.04221875
transcript.pyannote[1239].speaker SPEAKER_09
transcript.pyannote[1239].start 8136.34596875
transcript.pyannote[1239].end 8137.10534375
transcript.pyannote[1240].speaker SPEAKER_27
transcript.pyannote[1240].start 8137.29096875
transcript.pyannote[1240].end 8137.62846875
transcript.pyannote[1241].speaker SPEAKER_09
transcript.pyannote[1241].start 8138.79284375
transcript.pyannote[1241].end 8139.80534375
transcript.pyannote[1242].speaker SPEAKER_27
transcript.pyannote[1242].start 8141.23971875
transcript.pyannote[1242].end 8142.03284375
transcript.pyannote[1243].speaker SPEAKER_27
transcript.pyannote[1243].start 8142.26909375
transcript.pyannote[1243].end 8143.14659375
transcript.pyannote[1244].speaker SPEAKER_27
transcript.pyannote[1244].start 8144.09159375
transcript.pyannote[1244].end 8147.24721875
transcript.pyannote[1245].speaker SPEAKER_09
transcript.pyannote[1245].start 8146.99409375
transcript.pyannote[1245].end 8148.25971875
transcript.pyannote[1246].speaker SPEAKER_27
transcript.pyannote[1246].start 8148.25971875
transcript.pyannote[1246].end 8149.91346875
transcript.pyannote[1247].speaker SPEAKER_09
transcript.pyannote[1247].start 8150.72346875
transcript.pyannote[1247].end 8151.02721875
transcript.pyannote[1248].speaker SPEAKER_09
transcript.pyannote[1248].start 8152.57971875
transcript.pyannote[1248].end 8154.57096875
transcript.pyannote[1249].speaker SPEAKER_17
transcript.pyannote[1249].start 8156.62971875
transcript.pyannote[1249].end 8166.73784375
transcript.pyannote[1250].speaker SPEAKER_00
transcript.pyannote[1250].start 8165.99534375
transcript.pyannote[1250].end 8166.01221875
transcript.pyannote[1251].speaker SPEAKER_09
transcript.pyannote[1251].start 8166.01221875
transcript.pyannote[1251].end 8166.28221875
transcript.pyannote[1252].speaker SPEAKER_17
transcript.pyannote[1252].start 8166.88971875
transcript.pyannote[1252].end 8168.42534375
transcript.pyannote[1253].speaker SPEAKER_17
transcript.pyannote[1253].start 8168.69534375
transcript.pyannote[1253].end 8170.82159375
transcript.pyannote[1254].speaker SPEAKER_09
transcript.pyannote[1254].start 8170.82159375
transcript.pyannote[1254].end 8171.98596875
transcript.pyannote[1255].speaker SPEAKER_15
transcript.pyannote[1255].start 8176.50846875
transcript.pyannote[1255].end 8177.41971875
transcript.pyannote[1256].speaker SPEAKER_15
transcript.pyannote[1256].start 8183.79846875
transcript.pyannote[1256].end 8185.57034375
transcript.pyannote[1257].speaker SPEAKER_15
transcript.pyannote[1257].start 8186.00909375
transcript.pyannote[1257].end 8189.77221875
transcript.pyannote[1258].speaker SPEAKER_15
transcript.pyannote[1258].start 8190.68346875
transcript.pyannote[1258].end 8193.01221875
transcript.pyannote[1259].speaker SPEAKER_15
transcript.pyannote[1259].start 8193.19784375
transcript.pyannote[1259].end 8196.57284375
transcript.pyannote[1260].speaker SPEAKER_15
transcript.pyannote[1260].start 8197.04534375
transcript.pyannote[1260].end 8197.93971875
transcript.pyannote[1261].speaker SPEAKER_15
transcript.pyannote[1261].start 8198.42909375
transcript.pyannote[1261].end 8200.18409375
transcript.pyannote[1262].speaker SPEAKER_15
transcript.pyannote[1262].start 8200.63971875
transcript.pyannote[1262].end 8203.62659375
transcript.pyannote[1263].speaker SPEAKER_15
transcript.pyannote[1263].start 8204.04846875
transcript.pyannote[1263].end 8212.57034375
transcript.pyannote[1264].speaker SPEAKER_15
transcript.pyannote[1264].start 8212.99221875
transcript.pyannote[1264].end 8214.59534375
transcript.pyannote[1265].speaker SPEAKER_02
transcript.pyannote[1265].start 8222.40846875
transcript.pyannote[1265].end 8224.21409375
transcript.pyannote[1266].speaker SPEAKER_02
transcript.pyannote[1266].start 8224.34909375
transcript.pyannote[1266].end 8228.46659375
transcript.pyannote[1267].speaker SPEAKER_02
transcript.pyannote[1267].start 8228.73659375
transcript.pyannote[1267].end 8229.66471875
transcript.pyannote[1268].speaker SPEAKER_15
transcript.pyannote[1268].start 8230.32284375
transcript.pyannote[1268].end 8231.50409375
transcript.pyannote[1269].speaker SPEAKER_02
transcript.pyannote[1269].start 8240.19471875
transcript.pyannote[1269].end 8280.13784375
transcript.pyannote[1270].speaker SPEAKER_02
transcript.pyannote[1270].start 8280.49221875
transcript.pyannote[1270].end 8326.25721875
transcript.pyannote[1271].speaker SPEAKER_16
transcript.pyannote[1271].start 8327.60721875
transcript.pyannote[1271].end 8327.77596875
transcript.pyannote[1272].speaker SPEAKER_16
transcript.pyannote[1272].start 8328.24846875
transcript.pyannote[1272].end 8331.48846875
transcript.pyannote[1273].speaker SPEAKER_16
transcript.pyannote[1273].start 8332.01159375
transcript.pyannote[1273].end 8335.09971875
transcript.pyannote[1274].speaker SPEAKER_02
transcript.pyannote[1274].start 8335.65659375
transcript.pyannote[1274].end 8353.37534375
transcript.pyannote[1275].speaker SPEAKER_25
transcript.pyannote[1275].start 8354.79284375
transcript.pyannote[1275].end 8354.84346875
transcript.pyannote[1276].speaker SPEAKER_25
transcript.pyannote[1276].start 8354.91096875
transcript.pyannote[1276].end 8356.44659375
transcript.pyannote[1277].speaker SPEAKER_25
transcript.pyannote[1277].start 8356.85159375
transcript.pyannote[1277].end 8382.34971875
transcript.pyannote[1278].speaker SPEAKER_02
transcript.pyannote[1278].start 8382.34971875
transcript.pyannote[1278].end 8382.40034375
transcript.pyannote[1279].speaker SPEAKER_25
transcript.pyannote[1279].start 8382.40034375
transcript.pyannote[1279].end 8382.78846875
transcript.pyannote[1280].speaker SPEAKER_02
transcript.pyannote[1280].start 8382.78846875
transcript.pyannote[1280].end 8403.29159375
transcript.pyannote[1281].speaker SPEAKER_02
transcript.pyannote[1281].start 8403.49409375
transcript.pyannote[1281].end 8444.56784375
transcript.pyannote[1282].speaker SPEAKER_02
transcript.pyannote[1282].start 8444.85471875
transcript.pyannote[1282].end 8469.81284375
transcript.pyannote[1283].speaker SPEAKER_25
transcript.pyannote[1283].start 8469.35721875
transcript.pyannote[1283].end 8470.21784375
transcript.pyannote[1284].speaker SPEAKER_02
transcript.pyannote[1284].start 8470.21784375
transcript.pyannote[1284].end 8504.47409375
transcript.pyannote[1285].speaker SPEAKER_02
transcript.pyannote[1285].start 8505.38534375
transcript.pyannote[1285].end 8511.89909375
transcript.pyannote[1286].speaker SPEAKER_27
transcript.pyannote[1286].start 8511.89909375
transcript.pyannote[1286].end 8511.94971875
transcript.pyannote[1287].speaker SPEAKER_27
transcript.pyannote[1287].start 8513.72159375
transcript.pyannote[1287].end 8516.67471875
transcript.pyannote[1288].speaker SPEAKER_27
transcript.pyannote[1288].start 8517.53534375
transcript.pyannote[1288].end 8524.50471875
transcript.pyannote[1289].speaker SPEAKER_02
transcript.pyannote[1289].start 8517.58596875
transcript.pyannote[1289].end 8518.90221875
transcript.pyannote[1290].speaker SPEAKER_02
transcript.pyannote[1290].start 8519.50971875
transcript.pyannote[1290].end 8519.67846875
transcript.pyannote[1291].speaker SPEAKER_02
transcript.pyannote[1291].start 8519.81346875
transcript.pyannote[1291].end 8520.92721875
transcript.pyannote[1292].speaker SPEAKER_02
transcript.pyannote[1292].start 8523.62721875
transcript.pyannote[1292].end 8523.99846875
transcript.pyannote[1293].speaker SPEAKER_27
transcript.pyannote[1293].start 8524.80846875
transcript.pyannote[1293].end 8529.31409375
transcript.pyannote[1294].speaker SPEAKER_02
transcript.pyannote[1294].start 8528.90909375
transcript.pyannote[1294].end 8547.23534375
transcript.pyannote[1295].speaker SPEAKER_02
transcript.pyannote[1295].start 8548.01159375
transcript.pyannote[1295].end 8548.55159375
transcript.pyannote[1296].speaker SPEAKER_02
transcript.pyannote[1296].start 8548.78784375
transcript.pyannote[1296].end 8550.50909375
transcript.pyannote[1297].speaker SPEAKER_02
transcript.pyannote[1297].start 8550.62721875
transcript.pyannote[1297].end 8558.08596875
transcript.pyannote[1298].speaker SPEAKER_02
transcript.pyannote[1298].start 8558.45721875
transcript.pyannote[1298].end 8579.31471875
transcript.pyannote[1299].speaker SPEAKER_02
transcript.pyannote[1299].start 8579.46659375
transcript.pyannote[1299].end 8603.17596875
transcript.pyannote[1300].speaker SPEAKER_02
transcript.pyannote[1300].start 8603.85096875
transcript.pyannote[1300].end 8604.64409375
transcript.pyannote[1301].speaker SPEAKER_02
transcript.pyannote[1301].start 8605.16721875
transcript.pyannote[1301].end 8606.09534375
transcript.pyannote[1302].speaker SPEAKER_02
transcript.pyannote[1302].start 8606.28096875
transcript.pyannote[1302].end 8616.45659375
transcript.pyannote[1303].speaker SPEAKER_02
transcript.pyannote[1303].start 8616.89534375
transcript.pyannote[1303].end 8631.69471875
transcript.pyannote[1304].speaker SPEAKER_02
transcript.pyannote[1304].start 8632.75784375
transcript.pyannote[1304].end 8634.04034375
transcript.pyannote[1305].speaker SPEAKER_02
transcript.pyannote[1305].start 8634.41159375
transcript.pyannote[1305].end 8635.87971875
transcript.pyannote[1306].speaker SPEAKER_02
transcript.pyannote[1306].start 8636.35221875
transcript.pyannote[1306].end 8685.66096875
transcript.pyannote[1307].speaker SPEAKER_02
transcript.pyannote[1307].start 8686.36971875
transcript.pyannote[1307].end 8687.95596875
transcript.pyannote[1308].speaker SPEAKER_16
transcript.pyannote[1308].start 8686.82534375
transcript.pyannote[1308].end 8702.02971875
transcript.pyannote[1309].speaker SPEAKER_02
transcript.pyannote[1309].start 8698.84034375
transcript.pyannote[1309].end 8699.32971875
transcript.pyannote[1310].speaker SPEAKER_02
transcript.pyannote[1310].start 8702.14784375
transcript.pyannote[1310].end 8711.19284375
transcript.pyannote[1311].speaker SPEAKER_02
transcript.pyannote[1311].start 8711.63159375
transcript.pyannote[1311].end 8712.15471875
transcript.pyannote[1312].speaker SPEAKER_02
transcript.pyannote[1312].start 8712.35721875
transcript.pyannote[1312].end 8714.61846875
transcript.pyannote[1313].speaker SPEAKER_02
transcript.pyannote[1313].start 8714.82096875
transcript.pyannote[1313].end 8715.51284375
transcript.pyannote[1314].speaker SPEAKER_25
transcript.pyannote[1314].start 8715.51284375
transcript.pyannote[1314].end 8715.54659375
transcript.pyannote[1315].speaker SPEAKER_25
transcript.pyannote[1315].start 8717.14971875
transcript.pyannote[1315].end 8729.02971875
transcript.pyannote[1316].speaker SPEAKER_20
transcript.pyannote[1316].start 8725.94159375
transcript.pyannote[1316].end 8726.19471875
transcript.pyannote[1317].speaker SPEAKER_02
transcript.pyannote[1317].start 8729.02971875
transcript.pyannote[1317].end 8739.55971875
transcript.pyannote[1318].speaker SPEAKER_02
transcript.pyannote[1318].start 8739.71159375
transcript.pyannote[1318].end 8804.91659375
transcript.pyannote[1319].speaker SPEAKER_02
transcript.pyannote[1319].start 8805.35534375
transcript.pyannote[1319].end 8828.18721875
transcript.pyannote[1320].speaker SPEAKER_02
transcript.pyannote[1320].start 8828.96346875
transcript.pyannote[1320].end 8840.26971875
transcript.pyannote[1321].speaker SPEAKER_27
transcript.pyannote[1321].start 8840.26971875
transcript.pyannote[1321].end 8840.28659375
transcript.pyannote[1322].speaker SPEAKER_02
transcript.pyannote[1322].start 8840.28659375
transcript.pyannote[1322].end 8840.32034375
transcript.pyannote[1323].speaker SPEAKER_02
transcript.pyannote[1323].start 8840.65784375
transcript.pyannote[1323].end 8840.97846875
transcript.pyannote[1324].speaker SPEAKER_27
transcript.pyannote[1324].start 8840.97846875
transcript.pyannote[1324].end 8855.74409375
transcript.pyannote[1325].speaker SPEAKER_28
transcript.pyannote[1325].start 8847.05346875
transcript.pyannote[1325].end 8847.25596875
transcript.pyannote[1326].speaker SPEAKER_27
transcript.pyannote[1326].start 8856.14909375
transcript.pyannote[1326].end 8857.71846875
transcript.pyannote[1327].speaker SPEAKER_27
transcript.pyannote[1327].start 8858.00534375
transcript.pyannote[1327].end 8861.85284375
transcript.pyannote[1328].speaker SPEAKER_27
transcript.pyannote[1328].start 8862.12284375
transcript.pyannote[1328].end 8875.03221875
transcript.pyannote[1329].speaker SPEAKER_02
transcript.pyannote[1329].start 8875.03221875
transcript.pyannote[1329].end 8875.31909375
transcript.pyannote[1330].speaker SPEAKER_27
transcript.pyannote[1330].start 8875.31909375
transcript.pyannote[1330].end 8875.52159375
transcript.pyannote[1331].speaker SPEAKER_02
transcript.pyannote[1331].start 8875.75784375
transcript.pyannote[1331].end 8876.31471875
transcript.pyannote[1332].speaker SPEAKER_02
transcript.pyannote[1332].start 8876.46659375
transcript.pyannote[1332].end 8886.05159375
transcript.pyannote[1333].speaker SPEAKER_02
transcript.pyannote[1333].start 8886.37221875
transcript.pyannote[1333].end 8891.14784375
transcript.pyannote[1334].speaker SPEAKER_02
transcript.pyannote[1334].start 8891.75534375
transcript.pyannote[1334].end 8900.95221875
transcript.pyannote[1335].speaker SPEAKER_02
transcript.pyannote[1335].start 8901.81284375
transcript.pyannote[1335].end 8913.89534375
transcript.pyannote[1336].speaker SPEAKER_02
transcript.pyannote[1336].start 8914.16534375
transcript.pyannote[1336].end 8915.22846875
transcript.pyannote[1337].speaker SPEAKER_02
transcript.pyannote[1337].start 8915.32971875
transcript.pyannote[1337].end 8916.05534375
transcript.pyannote[1338].speaker SPEAKER_15
transcript.pyannote[1338].start 8916.96659375
transcript.pyannote[1338].end 8917.75971875
transcript.pyannote[1339].speaker SPEAKER_15
transcript.pyannote[1339].start 8920.64534375
transcript.pyannote[1339].end 8922.60284375
transcript.pyannote[1340].speaker SPEAKER_24
transcript.pyannote[1340].start 8942.32971875
transcript.pyannote[1340].end 8943.15659375
transcript.pyannote[1341].speaker SPEAKER_24
transcript.pyannote[1341].start 8943.46034375
transcript.pyannote[1341].end 8946.90284375
transcript.pyannote[1342].speaker SPEAKER_24
transcript.pyannote[1342].start 8952.91034375
transcript.pyannote[1342].end 8953.70346875
transcript.pyannote[1343].speaker SPEAKER_24
transcript.pyannote[1343].start 8953.77096875
transcript.pyannote[1343].end 8953.85534375
transcript.pyannote[1344].speaker SPEAKER_24
transcript.pyannote[1344].start 8953.97346875
transcript.pyannote[1344].end 8954.00721875
transcript.pyannote[1345].speaker SPEAKER_24
transcript.pyannote[1345].start 8955.61034375
transcript.pyannote[1345].end 8956.82534375
transcript.pyannote[1346].speaker SPEAKER_24
transcript.pyannote[1346].start 8956.97721875
transcript.pyannote[1346].end 8957.02784375
transcript.pyannote[1347].speaker SPEAKER_04
transcript.pyannote[1347].start 8977.15971875
transcript.pyannote[1347].end 8979.84284375
transcript.pyannote[1348].speaker SPEAKER_30
transcript.pyannote[1348].start 8979.84284375
transcript.pyannote[1348].end 8982.77909375
transcript.pyannote[1349].speaker SPEAKER_04
transcript.pyannote[1349].start 8980.50096875
transcript.pyannote[1349].end 8981.41221875
transcript.pyannote[1350].speaker SPEAKER_04
transcript.pyannote[1350].start 8982.77909375
transcript.pyannote[1350].end 8983.13346875
transcript.pyannote[1351].speaker SPEAKER_04
transcript.pyannote[1351].start 8983.25159375
transcript.pyannote[1351].end 8985.61409375
transcript.pyannote[1352].speaker SPEAKER_04
transcript.pyannote[1352].start 8986.39034375
transcript.pyannote[1352].end 8986.98096875
transcript.pyannote[1353].speaker SPEAKER_21
transcript.pyannote[1353].start 8989.51221875
transcript.pyannote[1353].end 8989.56284375
transcript.pyannote[1354].speaker SPEAKER_04
transcript.pyannote[1354].start 8989.56284375
transcript.pyannote[1354].end 8989.57971875
transcript.pyannote[1355].speaker SPEAKER_21
transcript.pyannote[1355].start 8989.57971875
transcript.pyannote[1355].end 8989.96784375
transcript.pyannote[1356].speaker SPEAKER_04
transcript.pyannote[1356].start 8989.96784375
transcript.pyannote[1356].end 8989.98471875
transcript.pyannote[1357].speaker SPEAKER_21
transcript.pyannote[1357].start 8989.98471875
transcript.pyannote[1357].end 8990.82846875
transcript.pyannote[1358].speaker SPEAKER_04
transcript.pyannote[1358].start 8990.03534375
transcript.pyannote[1358].end 8991.19971875
transcript.pyannote[1359].speaker SPEAKER_04
transcript.pyannote[1359].start 8992.11096875
transcript.pyannote[1359].end 8993.08971875
transcript.pyannote[1360].speaker SPEAKER_04
transcript.pyannote[1360].start 8993.54534375
transcript.pyannote[1360].end 8994.06846875
transcript.pyannote[1361].speaker SPEAKER_04
transcript.pyannote[1361].start 8994.22034375
transcript.pyannote[1361].end 9007.45034375
transcript.pyannote[1362].speaker SPEAKER_03
transcript.pyannote[1362].start 8995.90784375
transcript.pyannote[1362].end 8996.80221875
transcript.pyannote[1363].speaker SPEAKER_30
transcript.pyannote[1363].start 9006.48846875
transcript.pyannote[1363].end 9007.04534375
transcript.pyannote[1364].speaker SPEAKER_04
transcript.pyannote[1364].start 9007.60221875
transcript.pyannote[1364].end 9009.17159375
transcript.pyannote[1365].speaker SPEAKER_04
transcript.pyannote[1365].start 9009.72846875
transcript.pyannote[1365].end 9018.36846875
transcript.pyannote[1366].speaker SPEAKER_32
transcript.pyannote[1366].start 9013.01909375
transcript.pyannote[1366].end 9013.03596875
transcript.pyannote[1367].speaker SPEAKER_30
transcript.pyannote[1367].start 9013.03596875
transcript.pyannote[1367].end 9014.03159375
transcript.pyannote[1368].speaker SPEAKER_30
transcript.pyannote[1368].start 9014.92596875
transcript.pyannote[1368].end 9015.31409375
transcript.pyannote[1369].speaker SPEAKER_04
transcript.pyannote[1369].start 9019.48221875
transcript.pyannote[1369].end 9019.75221875
transcript.pyannote[1370].speaker SPEAKER_31
transcript.pyannote[1370].start 9019.75221875
transcript.pyannote[1370].end 9023.81909375
transcript.pyannote[1371].speaker SPEAKER_04
transcript.pyannote[1371].start 9019.85346875
transcript.pyannote[1371].end 9019.92096875
transcript.pyannote[1372].speaker SPEAKER_04
transcript.pyannote[1372].start 9019.95471875
transcript.pyannote[1372].end 9021.01784375
transcript.pyannote[1373].speaker SPEAKER_04
transcript.pyannote[1373].start 9023.44784375
transcript.pyannote[1373].end 9025.08471875
transcript.pyannote[1374].speaker SPEAKER_04
transcript.pyannote[1374].start 9025.96221875
transcript.pyannote[1374].end 9026.73846875
transcript.pyannote[1375].speaker SPEAKER_04
transcript.pyannote[1375].start 9027.46409375
transcript.pyannote[1375].end 9027.54846875
transcript.pyannote[1376].speaker SPEAKER_12
transcript.pyannote[1376].start 9027.54846875
transcript.pyannote[1376].end 9028.03784375
transcript.pyannote[1377].speaker SPEAKER_04
transcript.pyannote[1377].start 9028.51034375
transcript.pyannote[1377].end 9030.23159375
transcript.pyannote[1378].speaker SPEAKER_31
transcript.pyannote[1378].start 9028.72971875
transcript.pyannote[1378].end 9028.91534375
transcript.pyannote[1379].speaker SPEAKER_31
transcript.pyannote[1379].start 9029.30346875
transcript.pyannote[1379].end 9029.38784375
transcript.pyannote[1380].speaker SPEAKER_19
transcript.pyannote[1380].start 9029.38784375
transcript.pyannote[1380].end 9029.42159375
transcript.pyannote[1381].speaker SPEAKER_28
transcript.pyannote[1381].start 9029.42159375
transcript.pyannote[1381].end 9029.43846875
transcript.pyannote[1382].speaker SPEAKER_04
transcript.pyannote[1382].start 9030.82221875
transcript.pyannote[1382].end 9031.75034375
transcript.pyannote[1383].speaker SPEAKER_12
transcript.pyannote[1383].start 9032.27346875
transcript.pyannote[1383].end 9033.18471875
transcript.pyannote[1384].speaker SPEAKER_04
transcript.pyannote[1384].start 9033.70784375
transcript.pyannote[1384].end 9034.48409375
transcript.pyannote[1385].speaker SPEAKER_12
transcript.pyannote[1385].start 9035.24346875
transcript.pyannote[1385].end 9036.05346875
transcript.pyannote[1386].speaker SPEAKER_30
transcript.pyannote[1386].start 9036.05346875
transcript.pyannote[1386].end 9047.46096875
transcript.pyannote[1387].speaker SPEAKER_04
transcript.pyannote[1387].start 9036.22221875
transcript.pyannote[1387].end 9036.57659375
transcript.pyannote[1388].speaker SPEAKER_12
transcript.pyannote[1388].start 9036.96471875
transcript.pyannote[1388].end 9037.42034375
transcript.pyannote[1389].speaker SPEAKER_04
transcript.pyannote[1389].start 9037.42034375
transcript.pyannote[1389].end 9037.48784375
transcript.pyannote[1390].speaker SPEAKER_12
transcript.pyannote[1390].start 9037.48784375
transcript.pyannote[1390].end 9037.52159375
transcript.pyannote[1391].speaker SPEAKER_04
transcript.pyannote[1391].start 9037.52159375
transcript.pyannote[1391].end 9037.53846875
transcript.pyannote[1392].speaker SPEAKER_12
transcript.pyannote[1392].start 9037.53846875
transcript.pyannote[1392].end 9037.57221875
transcript.pyannote[1393].speaker SPEAKER_04
transcript.pyannote[1393].start 9037.57221875
transcript.pyannote[1393].end 9037.97721875
transcript.pyannote[1394].speaker SPEAKER_17
transcript.pyannote[1394].start 9037.97721875
transcript.pyannote[1394].end 9038.29784375
transcript.pyannote[1395].speaker SPEAKER_04
transcript.pyannote[1395].start 9038.29784375
transcript.pyannote[1395].end 9038.31471875
transcript.pyannote[1396].speaker SPEAKER_17
transcript.pyannote[1396].start 9038.31471875
transcript.pyannote[1396].end 9038.50034375
transcript.pyannote[1397].speaker SPEAKER_04
transcript.pyannote[1397].start 9038.50034375
transcript.pyannote[1397].end 9038.55096875
transcript.pyannote[1398].speaker SPEAKER_12
transcript.pyannote[1398].start 9038.55096875
transcript.pyannote[1398].end 9038.70284375
transcript.pyannote[1399].speaker SPEAKER_04
transcript.pyannote[1399].start 9038.70284375
transcript.pyannote[1399].end 9038.97284375
transcript.pyannote[1400].speaker SPEAKER_17
transcript.pyannote[1400].start 9038.97284375
transcript.pyannote[1400].end 9039.66471875
transcript.pyannote[1401].speaker SPEAKER_17
transcript.pyannote[1401].start 9039.71534375
transcript.pyannote[1401].end 9039.73221875
transcript.pyannote[1402].speaker SPEAKER_04
transcript.pyannote[1402].start 9039.73221875
transcript.pyannote[1402].end 9039.79971875
transcript.pyannote[1403].speaker SPEAKER_17
transcript.pyannote[1403].start 9040.10346875
transcript.pyannote[1403].end 9040.37346875
transcript.pyannote[1404].speaker SPEAKER_24
transcript.pyannote[1404].start 9040.37346875
transcript.pyannote[1404].end 9040.52534375
transcript.pyannote[1405].speaker SPEAKER_17
transcript.pyannote[1405].start 9040.52534375
transcript.pyannote[1405].end 9040.54221875
transcript.pyannote[1406].speaker SPEAKER_24
transcript.pyannote[1406].start 9040.54221875
transcript.pyannote[1406].end 9040.55909375
transcript.pyannote[1407].speaker SPEAKER_17
transcript.pyannote[1407].start 9040.55909375
transcript.pyannote[1407].end 9040.59284375
transcript.pyannote[1408].speaker SPEAKER_24
transcript.pyannote[1408].start 9042.66846875
transcript.pyannote[1408].end 9042.70221875
transcript.pyannote[1409].speaker SPEAKER_24
transcript.pyannote[1409].start 9045.92534375
transcript.pyannote[1409].end 9045.97596875
transcript.pyannote[1410].speaker SPEAKER_24
transcript.pyannote[1410].start 9046.02659375
transcript.pyannote[1410].end 9046.11096875
transcript.pyannote[1411].speaker SPEAKER_31
transcript.pyannote[1411].start 9046.11096875
transcript.pyannote[1411].end 9046.68471875
transcript.pyannote[1412].speaker SPEAKER_24
transcript.pyannote[1412].start 9046.68471875
transcript.pyannote[1412].end 9046.97159375
transcript.pyannote[1413].speaker SPEAKER_31
transcript.pyannote[1413].start 9046.97159375
transcript.pyannote[1413].end 9047.03909375
transcript.pyannote[1414].speaker SPEAKER_24
transcript.pyannote[1414].start 9047.03909375
transcript.pyannote[1414].end 9052.03409375
transcript.pyannote[1415].speaker SPEAKER_31
transcript.pyannote[1415].start 9047.46096875
transcript.pyannote[1415].end 9047.47784375
transcript.pyannote[1416].speaker SPEAKER_30
transcript.pyannote[1416].start 9050.78534375
transcript.pyannote[1416].end 9051.03846875
transcript.pyannote[1417].speaker SPEAKER_28
transcript.pyannote[1417].start 9051.03846875
transcript.pyannote[1417].end 9051.32534375
transcript.pyannote[1418].speaker SPEAKER_28
transcript.pyannote[1418].start 9052.03409375
transcript.pyannote[1418].end 9052.75971875
transcript.pyannote[1419].speaker SPEAKER_24
transcript.pyannote[1419].start 9052.75971875
transcript.pyannote[1419].end 9052.82721875
transcript.pyannote[1420].speaker SPEAKER_28
transcript.pyannote[1420].start 9052.82721875
transcript.pyannote[1420].end 9052.86096875
transcript.pyannote[1421].speaker SPEAKER_24
transcript.pyannote[1421].start 9052.86096875
transcript.pyannote[1421].end 9052.96221875
transcript.pyannote[1422].speaker SPEAKER_28
transcript.pyannote[1422].start 9052.96221875
transcript.pyannote[1422].end 9054.78471875
transcript.pyannote[1423].speaker SPEAKER_24
transcript.pyannote[1423].start 9053.23221875
transcript.pyannote[1423].end 9053.97471875
transcript.pyannote[1424].speaker SPEAKER_20
transcript.pyannote[1424].start 9053.97471875
transcript.pyannote[1424].end 9054.24471875
transcript.pyannote[1425].speaker SPEAKER_20
transcript.pyannote[1425].start 9054.26159375
transcript.pyannote[1425].end 9054.27846875
transcript.pyannote[1426].speaker SPEAKER_24
transcript.pyannote[1426].start 9054.78471875
transcript.pyannote[1426].end 9054.91971875
transcript.pyannote[1427].speaker SPEAKER_15
transcript.pyannote[1427].start 9320.70096875
transcript.pyannote[1427].end 9324.76784375
transcript.pyannote[1428].speaker SPEAKER_15
transcript.pyannote[1428].start 9324.88596875
transcript.pyannote[1428].end 9327.77159375
transcript.pyannote[1429].speaker SPEAKER_01
transcript.pyannote[1429].start 9340.14096875
transcript.pyannote[1429].end 9341.57534375
transcript.pyannote[1430].speaker SPEAKER_01
transcript.pyannote[1430].start 9341.60909375
transcript.pyannote[1430].end 9342.87471875
transcript.pyannote[1431].speaker SPEAKER_01
transcript.pyannote[1431].start 9342.97596875
transcript.pyannote[1431].end 9344.41034375
transcript.pyannote[1432].speaker SPEAKER_01
transcript.pyannote[1432].start 9345.45659375
transcript.pyannote[1432].end 9346.51971875
transcript.pyannote[1433].speaker SPEAKER_01
transcript.pyannote[1433].start 9347.75159375
transcript.pyannote[1433].end 9348.10596875
transcript.pyannote[1434].speaker SPEAKER_15
transcript.pyannote[1434].start 9348.61221875
transcript.pyannote[1434].end 9349.89471875
transcript.pyannote[1435].speaker SPEAKER_01
transcript.pyannote[1435].start 9350.40096875
transcript.pyannote[1435].end 9351.48096875
transcript.pyannote[1436].speaker SPEAKER_01
transcript.pyannote[1436].start 9351.53159375
transcript.pyannote[1436].end 9352.66221875
transcript.pyannote[1437].speaker SPEAKER_01
transcript.pyannote[1437].start 9353.08409375
transcript.pyannote[1437].end 9353.94471875
transcript.pyannote[1438].speaker SPEAKER_15
transcript.pyannote[1438].start 9354.38346875
transcript.pyannote[1438].end 9355.21034375
transcript.pyannote[1439].speaker SPEAKER_01
transcript.pyannote[1439].start 9360.00284375
transcript.pyannote[1439].end 9361.13346875
transcript.pyannote[1440].speaker SPEAKER_01
transcript.pyannote[1440].start 9363.10784375
transcript.pyannote[1440].end 9363.25971875
transcript.pyannote[1441].speaker SPEAKER_01
transcript.pyannote[1441].start 9364.30596875
transcript.pyannote[1441].end 9365.82471875
transcript.pyannote[1442].speaker SPEAKER_01
transcript.pyannote[1442].start 9365.92596875
transcript.pyannote[1442].end 9366.78659375
transcript.pyannote[1443].speaker SPEAKER_01
transcript.pyannote[1443].start 9367.15784375
transcript.pyannote[1443].end 9369.31784375
transcript.pyannote[1444].speaker SPEAKER_01
transcript.pyannote[1444].start 9370.07721875
transcript.pyannote[1444].end 9370.93784375
transcript.pyannote[1445].speaker SPEAKER_01
transcript.pyannote[1445].start 9372.15284375
transcript.pyannote[1445].end 9373.85721875
transcript.pyannote[1446].speaker SPEAKER_01
transcript.pyannote[1446].start 9374.11034375
transcript.pyannote[1446].end 9375.78096875
transcript.pyannote[1447].speaker SPEAKER_01
transcript.pyannote[1447].start 9376.47284375
transcript.pyannote[1447].end 9379.49346875
transcript.pyannote[1448].speaker SPEAKER_01
transcript.pyannote[1448].start 9380.89409375
transcript.pyannote[1448].end 9381.60284375
transcript.pyannote[1449].speaker SPEAKER_01
transcript.pyannote[1449].start 9381.73784375
transcript.pyannote[1449].end 9382.90221875
transcript.pyannote[1450].speaker SPEAKER_01
transcript.pyannote[1450].start 9383.54346875
transcript.pyannote[1450].end 9384.53909375
transcript.pyannote[1451].speaker SPEAKER_01
transcript.pyannote[1451].start 9384.92721875
transcript.pyannote[1451].end 9386.91846875
transcript.pyannote[1452].speaker SPEAKER_01
transcript.pyannote[1452].start 9387.74534375
transcript.pyannote[1452].end 9388.25159375
transcript.pyannote[1453].speaker SPEAKER_01
transcript.pyannote[1453].start 9388.90971875
transcript.pyannote[1453].end 9392.68971875
transcript.pyannote[1454].speaker SPEAKER_01
transcript.pyannote[1454].start 9393.61784375
transcript.pyannote[1454].end 9394.44471875
transcript.pyannote[1455].speaker SPEAKER_01
transcript.pyannote[1455].start 9394.84971875
transcript.pyannote[1455].end 9396.62159375
transcript.pyannote[1456].speaker SPEAKER_01
transcript.pyannote[1456].start 9397.11096875
transcript.pyannote[1456].end 9399.47346875
transcript.pyannote[1457].speaker SPEAKER_01
transcript.pyannote[1457].start 9400.03034375
transcript.pyannote[1457].end 9401.11034375
transcript.pyannote[1458].speaker SPEAKER_01
transcript.pyannote[1458].start 9402.20721875
transcript.pyannote[1458].end 9402.46034375
transcript.pyannote[1459].speaker SPEAKER_01
transcript.pyannote[1459].start 9402.79784375
transcript.pyannote[1459].end 9404.77221875
transcript.pyannote[1460].speaker SPEAKER_01
transcript.pyannote[1460].start 9406.47659375
transcript.pyannote[1460].end 9408.58596875
transcript.pyannote[1461].speaker SPEAKER_01
transcript.pyannote[1461].start 9409.27784375
transcript.pyannote[1461].end 9411.20159375
transcript.pyannote[1462].speaker SPEAKER_01
transcript.pyannote[1462].start 9412.29846875
transcript.pyannote[1462].end 9413.31096875
transcript.pyannote[1463].speaker SPEAKER_01
transcript.pyannote[1463].start 9413.96909375
transcript.pyannote[1463].end 9414.61034375
transcript.pyannote[1464].speaker SPEAKER_01
transcript.pyannote[1464].start 9415.96034375
transcript.pyannote[1464].end 9418.08659375
transcript.pyannote[1465].speaker SPEAKER_01
transcript.pyannote[1465].start 9419.21721875
transcript.pyannote[1465].end 9419.82471875
transcript.pyannote[1466].speaker SPEAKER_01
transcript.pyannote[1466].start 9420.87096875
transcript.pyannote[1466].end 9421.91721875
transcript.pyannote[1467].speaker SPEAKER_01
transcript.pyannote[1467].start 9423.30096875
transcript.pyannote[1467].end 9424.83659375
transcript.pyannote[1468].speaker SPEAKER_01
transcript.pyannote[1468].start 9425.51159375
transcript.pyannote[1468].end 9426.69284375
transcript.pyannote[1469].speaker SPEAKER_01
transcript.pyannote[1469].start 9427.50284375
transcript.pyannote[1469].end 9428.16096875
transcript.pyannote[1470].speaker SPEAKER_01
transcript.pyannote[1470].start 9429.54471875
transcript.pyannote[1470].end 9431.26596875
transcript.pyannote[1471].speaker SPEAKER_01
transcript.pyannote[1471].start 9432.17721875
transcript.pyannote[1471].end 9432.68346875
transcript.pyannote[1472].speaker SPEAKER_01
transcript.pyannote[1472].start 9433.15596875
transcript.pyannote[1472].end 9433.42596875
transcript.pyannote[1473].speaker SPEAKER_01
transcript.pyannote[1473].start 9434.79284375
transcript.pyannote[1473].end 9437.10471875
transcript.pyannote[1474].speaker SPEAKER_01
transcript.pyannote[1474].start 9437.40846875
transcript.pyannote[1474].end 9437.91471875
transcript.pyannote[1475].speaker SPEAKER_01
transcript.pyannote[1475].start 9438.38721875
transcript.pyannote[1475].end 9438.94409375
transcript.pyannote[1476].speaker SPEAKER_27
transcript.pyannote[1476].start 9440.15909375
transcript.pyannote[1476].end 9444.58034375
transcript.pyannote[1477].speaker SPEAKER_27
transcript.pyannote[1477].start 9444.86721875
transcript.pyannote[1477].end 9446.70659375
transcript.pyannote[1478].speaker SPEAKER_27
transcript.pyannote[1478].start 9447.55034375
transcript.pyannote[1478].end 9447.58409375
transcript.pyannote[1479].speaker SPEAKER_01
transcript.pyannote[1479].start 9447.58409375
transcript.pyannote[1479].end 9448.93409375
transcript.pyannote[1480].speaker SPEAKER_01
transcript.pyannote[1480].start 9450.40221875
transcript.pyannote[1480].end 9451.61721875
transcript.pyannote[1481].speaker SPEAKER_01
transcript.pyannote[1481].start 9452.20784375
transcript.pyannote[1481].end 9453.70971875
transcript.pyannote[1482].speaker SPEAKER_01
transcript.pyannote[1482].start 9454.94159375
transcript.pyannote[1482].end 9455.46471875
transcript.pyannote[1483].speaker SPEAKER_01
transcript.pyannote[1483].start 9456.40971875
transcript.pyannote[1483].end 9457.38846875
transcript.pyannote[1484].speaker SPEAKER_01
transcript.pyannote[1484].start 9459.21096875
transcript.pyannote[1484].end 9460.08846875
transcript.pyannote[1485].speaker SPEAKER_01
transcript.pyannote[1485].start 9460.42596875
transcript.pyannote[1485].end 9463.61534375
transcript.pyannote[1486].speaker SPEAKER_01
transcript.pyannote[1486].start 9464.39159375
transcript.pyannote[1486].end 9465.37034375
transcript.pyannote[1487].speaker SPEAKER_01
transcript.pyannote[1487].start 9466.85534375
transcript.pyannote[1487].end 9467.42909375
transcript.pyannote[1488].speaker SPEAKER_01
transcript.pyannote[1488].start 9467.96909375
transcript.pyannote[1488].end 9468.52596875
transcript.pyannote[1489].speaker SPEAKER_01
transcript.pyannote[1489].start 9469.06596875
transcript.pyannote[1489].end 9471.24284375
transcript.pyannote[1490].speaker SPEAKER_01
transcript.pyannote[1490].start 9472.18784375
transcript.pyannote[1490].end 9473.18346875
transcript.pyannote[1491].speaker SPEAKER_01
transcript.pyannote[1491].start 9473.40284375
transcript.pyannote[1491].end 9473.53784375
transcript.pyannote[1492].speaker SPEAKER_01
transcript.pyannote[1492].start 9475.29284375
transcript.pyannote[1492].end 9477.03096875
transcript.pyannote[1493].speaker SPEAKER_01
transcript.pyannote[1493].start 9477.45284375
transcript.pyannote[1493].end 9478.06034375
transcript.pyannote[1494].speaker SPEAKER_01
transcript.pyannote[1494].start 9478.48221875
transcript.pyannote[1494].end 9481.84034375
transcript.pyannote[1495].speaker SPEAKER_01
transcript.pyannote[1495].start 9482.39721875
transcript.pyannote[1495].end 9483.91596875
transcript.pyannote[1496].speaker SPEAKER_01
transcript.pyannote[1496].start 9484.59096875
transcript.pyannote[1496].end 9485.33346875
transcript.pyannote[1497].speaker SPEAKER_01
transcript.pyannote[1497].start 9486.22784375
transcript.pyannote[1497].end 9486.88596875
transcript.pyannote[1498].speaker SPEAKER_01
transcript.pyannote[1498].start 9487.57784375
transcript.pyannote[1498].end 9488.18534375
transcript.pyannote[1499].speaker SPEAKER_01
transcript.pyannote[1499].start 9489.34971875
transcript.pyannote[1499].end 9489.83909375
transcript.pyannote[1500].speaker SPEAKER_01
transcript.pyannote[1500].start 9490.31159375
transcript.pyannote[1500].end 9491.76284375
transcript.pyannote[1501].speaker SPEAKER_01
transcript.pyannote[1501].start 9492.79221875
transcript.pyannote[1501].end 9497.46659375
transcript.pyannote[1502].speaker SPEAKER_01
transcript.pyannote[1502].start 9499.33971875
transcript.pyannote[1502].end 9500.65596875
transcript.pyannote[1503].speaker SPEAKER_01
transcript.pyannote[1503].start 9500.70659375
transcript.pyannote[1503].end 9502.14096875
transcript.pyannote[1504].speaker SPEAKER_01
transcript.pyannote[1504].start 9503.06909375
transcript.pyannote[1504].end 9503.45721875
transcript.pyannote[1505].speaker SPEAKER_01
transcript.pyannote[1505].start 9503.92971875
transcript.pyannote[1505].end 9505.17846875
transcript.pyannote[1506].speaker SPEAKER_01
transcript.pyannote[1506].start 9506.27534375
transcript.pyannote[1506].end 9507.40596875
transcript.pyannote[1507].speaker SPEAKER_01
transcript.pyannote[1507].start 9508.06409375
transcript.pyannote[1507].end 9510.24096875
transcript.pyannote[1508].speaker SPEAKER_01
transcript.pyannote[1508].start 9510.56159375
transcript.pyannote[1508].end 9510.81471875
transcript.pyannote[1509].speaker SPEAKER_01
transcript.pyannote[1509].start 9511.40534375
transcript.pyannote[1509].end 9512.73846875
transcript.pyannote[1510].speaker SPEAKER_01
transcript.pyannote[1510].start 9513.54846875
transcript.pyannote[1510].end 9515.74221875
transcript.pyannote[1511].speaker SPEAKER_01
transcript.pyannote[1511].start 9516.46784375
transcript.pyannote[1511].end 9521.39534375
transcript.pyannote[1512].speaker SPEAKER_01
transcript.pyannote[1512].start 9521.76659375
transcript.pyannote[1512].end 9524.11221875
transcript.pyannote[1513].speaker SPEAKER_01
transcript.pyannote[1513].start 9524.70284375
transcript.pyannote[1513].end 9527.53784375
transcript.pyannote[1514].speaker SPEAKER_01
transcript.pyannote[1514].start 9528.36471875
transcript.pyannote[1514].end 9530.03534375
transcript.pyannote[1515].speaker SPEAKER_01
transcript.pyannote[1515].start 9530.64284375
transcript.pyannote[1515].end 9536.21159375
transcript.pyannote[1516].speaker SPEAKER_01
transcript.pyannote[1516].start 9536.59971875
transcript.pyannote[1516].end 9538.91159375
transcript.pyannote[1517].speaker SPEAKER_01
transcript.pyannote[1517].start 9539.38409375
transcript.pyannote[1517].end 9541.37534375
transcript.pyannote[1518].speaker SPEAKER_01
transcript.pyannote[1518].start 9542.11784375
transcript.pyannote[1518].end 9544.83471875
transcript.pyannote[1519].speaker SPEAKER_01
transcript.pyannote[1519].start 9545.67846875
transcript.pyannote[1519].end 9547.50096875
transcript.pyannote[1520].speaker SPEAKER_01
transcript.pyannote[1520].start 9549.08721875
transcript.pyannote[1520].end 9550.85909375
transcript.pyannote[1521].speaker SPEAKER_01
transcript.pyannote[1521].start 9551.21346875
transcript.pyannote[1521].end 9551.83784375
transcript.pyannote[1522].speaker SPEAKER_01
transcript.pyannote[1522].start 9552.59721875
transcript.pyannote[1522].end 9556.93409375
transcript.pyannote[1523].speaker SPEAKER_01
transcript.pyannote[1523].start 9557.44034375
transcript.pyannote[1523].end 9560.57909375
transcript.pyannote[1524].speaker SPEAKER_01
transcript.pyannote[1524].start 9561.03471875
transcript.pyannote[1524].end 9565.54034375
transcript.pyannote[1525].speaker SPEAKER_01
transcript.pyannote[1525].start 9565.87784375
transcript.pyannote[1525].end 9572.98221875
transcript.pyannote[1526].speaker SPEAKER_01
transcript.pyannote[1526].start 9573.48846875
transcript.pyannote[1526].end 9575.64846875
transcript.pyannote[1527].speaker SPEAKER_01
transcript.pyannote[1527].start 9576.50909375
transcript.pyannote[1527].end 9577.31909375
transcript.pyannote[1528].speaker SPEAKER_01
transcript.pyannote[1528].start 9578.16284375
transcript.pyannote[1528].end 9579.88409375
transcript.pyannote[1529].speaker SPEAKER_01
transcript.pyannote[1529].start 9580.20471875
transcript.pyannote[1529].end 9581.41971875
transcript.pyannote[1530].speaker SPEAKER_01
transcript.pyannote[1530].start 9582.12846875
transcript.pyannote[1530].end 9584.05221875
transcript.pyannote[1531].speaker SPEAKER_01
transcript.pyannote[1531].start 9585.14909375
transcript.pyannote[1531].end 9585.80721875
transcript.pyannote[1532].speaker SPEAKER_01
transcript.pyannote[1532].start 9586.19534375
transcript.pyannote[1532].end 9586.61721875
transcript.pyannote[1533].speaker SPEAKER_01
transcript.pyannote[1533].start 9588.64221875
transcript.pyannote[1533].end 9589.57034375
transcript.pyannote[1534].speaker SPEAKER_01
transcript.pyannote[1534].start 9590.00909375
transcript.pyannote[1534].end 9590.26221875
transcript.pyannote[1535].speaker SPEAKER_01
transcript.pyannote[1535].start 9590.78534375
transcript.pyannote[1535].end 9592.08471875
transcript.pyannote[1536].speaker SPEAKER_01
transcript.pyannote[1536].start 9593.21534375
transcript.pyannote[1536].end 9594.19409375
transcript.pyannote[1537].speaker SPEAKER_01
transcript.pyannote[1537].start 9594.73409375
transcript.pyannote[1537].end 9595.91534375
transcript.pyannote[1538].speaker SPEAKER_01
transcript.pyannote[1538].start 9596.47221875
transcript.pyannote[1538].end 9596.94471875
transcript.pyannote[1539].speaker SPEAKER_01
transcript.pyannote[1539].start 9597.92346875
transcript.pyannote[1539].end 9599.74596875
transcript.pyannote[1540].speaker SPEAKER_01
transcript.pyannote[1540].start 9600.21846875
transcript.pyannote[1540].end 9601.01159375
transcript.pyannote[1541].speaker SPEAKER_01
transcript.pyannote[1541].start 9601.26471875
transcript.pyannote[1541].end 9601.78784375
transcript.pyannote[1542].speaker SPEAKER_01
transcript.pyannote[1542].start 9602.12534375
transcript.pyannote[1542].end 9603.45846875
transcript.pyannote[1543].speaker SPEAKER_01
transcript.pyannote[1543].start 9603.96471875
transcript.pyannote[1543].end 9605.19659375
transcript.pyannote[1544].speaker SPEAKER_01
transcript.pyannote[1544].start 9606.27659375
transcript.pyannote[1544].end 9608.92596875
transcript.pyannote[1545].speaker SPEAKER_01
transcript.pyannote[1545].start 9610.20846875
transcript.pyannote[1545].end 9612.11534375
transcript.pyannote[1546].speaker SPEAKER_01
transcript.pyannote[1546].start 9612.48659375
transcript.pyannote[1546].end 9613.11096875
transcript.pyannote[1547].speaker SPEAKER_01
transcript.pyannote[1547].start 9613.54971875
transcript.pyannote[1547].end 9615.64221875
transcript.pyannote[1548].speaker SPEAKER_01
transcript.pyannote[1548].start 9617.19471875
transcript.pyannote[1548].end 9619.33784375
transcript.pyannote[1549].speaker SPEAKER_01
transcript.pyannote[1549].start 9619.50659375
transcript.pyannote[1549].end 9624.55221875
transcript.pyannote[1550].speaker SPEAKER_01
transcript.pyannote[1550].start 9624.87284375
transcript.pyannote[1550].end 9625.64909375
transcript.pyannote[1551].speaker SPEAKER_01
transcript.pyannote[1551].start 9626.57721875
transcript.pyannote[1551].end 9627.52221875
transcript.pyannote[1552].speaker SPEAKER_01
transcript.pyannote[1552].start 9627.77534375
transcript.pyannote[1552].end 9629.51346875
transcript.pyannote[1553].speaker SPEAKER_01
transcript.pyannote[1553].start 9630.03659375
transcript.pyannote[1553].end 9631.55534375
transcript.pyannote[1554].speaker SPEAKER_01
transcript.pyannote[1554].start 9632.21346875
transcript.pyannote[1554].end 9633.41159375
transcript.pyannote[1555].speaker SPEAKER_01
transcript.pyannote[1555].start 9633.73221875
transcript.pyannote[1555].end 9636.61784375
transcript.pyannote[1556].speaker SPEAKER_01
transcript.pyannote[1556].start 9637.30971875
transcript.pyannote[1556].end 9638.44034375
transcript.pyannote[1557].speaker SPEAKER_01
transcript.pyannote[1557].start 9638.92971875
transcript.pyannote[1557].end 9642.42284375
transcript.pyannote[1558].speaker SPEAKER_01
transcript.pyannote[1558].start 9643.24971875
transcript.pyannote[1558].end 9644.26221875
transcript.pyannote[1559].speaker SPEAKER_01
transcript.pyannote[1559].start 9644.59971875
transcript.pyannote[1559].end 9645.39284375
transcript.pyannote[1560].speaker SPEAKER_01
transcript.pyannote[1560].start 9646.13534375
transcript.pyannote[1560].end 9647.94096875
transcript.pyannote[1561].speaker SPEAKER_01
transcript.pyannote[1561].start 9648.21096875
transcript.pyannote[1561].end 9649.12221875
transcript.pyannote[1562].speaker SPEAKER_01
transcript.pyannote[1562].start 9649.54409375
transcript.pyannote[1562].end 9650.94471875
transcript.pyannote[1563].speaker SPEAKER_01
transcript.pyannote[1563].start 9651.56909375
transcript.pyannote[1563].end 9659.68596875
transcript.pyannote[1564].speaker SPEAKER_01
transcript.pyannote[1564].start 9659.83784375
transcript.pyannote[1564].end 9661.30596875
transcript.pyannote[1565].speaker SPEAKER_01
transcript.pyannote[1565].start 9661.42409375
transcript.pyannote[1565].end 9662.99346875
transcript.pyannote[1566].speaker SPEAKER_01
transcript.pyannote[1566].start 9663.92159375
transcript.pyannote[1566].end 9664.73159375
transcript.pyannote[1567].speaker SPEAKER_01
transcript.pyannote[1567].start 9664.78221875
transcript.pyannote[1567].end 9664.95096875
transcript.pyannote[1568].speaker SPEAKER_01
transcript.pyannote[1568].start 9666.85784375
transcript.pyannote[1568].end 9667.51596875
transcript.pyannote[1569].speaker SPEAKER_01
transcript.pyannote[1569].start 9667.76909375
transcript.pyannote[1569].end 9669.40596875
transcript.pyannote[1570].speaker SPEAKER_01
transcript.pyannote[1570].start 9670.43534375
transcript.pyannote[1570].end 9672.40971875
transcript.pyannote[1571].speaker SPEAKER_01
transcript.pyannote[1571].start 9674.04659375
transcript.pyannote[1571].end 9675.37971875
transcript.pyannote[1572].speaker SPEAKER_01
transcript.pyannote[1572].start 9676.59471875
transcript.pyannote[1572].end 9678.04596875
transcript.pyannote[1573].speaker SPEAKER_01
transcript.pyannote[1573].start 9678.78846875
transcript.pyannote[1573].end 9680.13846875
transcript.pyannote[1574].speaker SPEAKER_01
transcript.pyannote[1574].start 9680.39159375
transcript.pyannote[1574].end 9682.24784375
transcript.pyannote[1575].speaker SPEAKER_01
transcript.pyannote[1575].start 9683.17596875
transcript.pyannote[1575].end 9686.23034375
transcript.pyannote[1576].speaker SPEAKER_01
transcript.pyannote[1576].start 9687.96846875
transcript.pyannote[1576].end 9689.85846875
transcript.pyannote[1577].speaker SPEAKER_01
transcript.pyannote[1577].start 9690.85409375
transcript.pyannote[1577].end 9691.44471875
transcript.pyannote[1578].speaker SPEAKER_01
transcript.pyannote[1578].start 9692.30534375
transcript.pyannote[1578].end 9694.61721875
transcript.pyannote[1579].speaker SPEAKER_01
transcript.pyannote[1579].start 9695.22471875
transcript.pyannote[1579].end 9698.07659375
transcript.pyannote[1580].speaker SPEAKER_01
transcript.pyannote[1580].start 9699.69659375
transcript.pyannote[1580].end 9702.88596875
transcript.pyannote[1581].speaker SPEAKER_01
transcript.pyannote[1581].start 9703.91534375
transcript.pyannote[1581].end 9705.95721875
transcript.pyannote[1582].speaker SPEAKER_01
transcript.pyannote[1582].start 9708.03284375
transcript.pyannote[1582].end 9709.45034375
transcript.pyannote[1583].speaker SPEAKER_01
transcript.pyannote[1583].start 9709.82159375
transcript.pyannote[1583].end 9711.07034375
transcript.pyannote[1584].speaker SPEAKER_01
transcript.pyannote[1584].start 9711.81284375
transcript.pyannote[1584].end 9713.63534375
transcript.pyannote[1585].speaker SPEAKER_01
transcript.pyannote[1585].start 9715.82909375
transcript.pyannote[1585].end 9717.12846875
transcript.pyannote[1586].speaker SPEAKER_01
transcript.pyannote[1586].start 9717.68534375
transcript.pyannote[1586].end 9718.79909375
transcript.pyannote[1587].speaker SPEAKER_01
transcript.pyannote[1587].start 9719.60909375
transcript.pyannote[1587].end 9720.84096875
transcript.pyannote[1588].speaker SPEAKER_01
transcript.pyannote[1588].start 9721.51596875
transcript.pyannote[1588].end 9723.49034375
transcript.pyannote[1589].speaker SPEAKER_01
transcript.pyannote[1589].start 9724.18221875
transcript.pyannote[1589].end 9724.82346875
transcript.pyannote[1590].speaker SPEAKER_01
transcript.pyannote[1590].start 9725.17784375
transcript.pyannote[1590].end 9725.75159375
transcript.pyannote[1591].speaker SPEAKER_01
transcript.pyannote[1591].start 9726.79784375
transcript.pyannote[1591].end 9728.87346875
transcript.pyannote[1592].speaker SPEAKER_01
transcript.pyannote[1592].start 9729.49784375
transcript.pyannote[1592].end 9730.18971875
transcript.pyannote[1593].speaker SPEAKER_01
transcript.pyannote[1593].start 9730.96596875
transcript.pyannote[1593].end 9732.06284375
transcript.pyannote[1594].speaker SPEAKER_01
transcript.pyannote[1594].start 9732.85596875
transcript.pyannote[1594].end 9734.93159375
transcript.pyannote[1595].speaker SPEAKER_01
transcript.pyannote[1595].start 9734.96534375
transcript.pyannote[1595].end 9736.70346875
transcript.pyannote[1596].speaker SPEAKER_01
transcript.pyannote[1596].start 9737.14221875
transcript.pyannote[1596].end 9738.59346875
transcript.pyannote[1597].speaker SPEAKER_01
transcript.pyannote[1597].start 9739.48784375
transcript.pyannote[1597].end 9740.78721875
transcript.pyannote[1598].speaker SPEAKER_01
transcript.pyannote[1598].start 9740.93909375
transcript.pyannote[1598].end 9741.12471875
transcript.pyannote[1599].speaker SPEAKER_01
transcript.pyannote[1599].start 9742.17096875
transcript.pyannote[1599].end 9743.33534375
transcript.pyannote[1600].speaker SPEAKER_01
transcript.pyannote[1600].start 9743.62221875
transcript.pyannote[1600].end 9744.16221875
transcript.pyannote[1601].speaker SPEAKER_01
transcript.pyannote[1601].start 9744.87096875
transcript.pyannote[1601].end 9745.76534375
transcript.pyannote[1602].speaker SPEAKER_01
transcript.pyannote[1602].start 9747.13221875
transcript.pyannote[1602].end 9749.07284375
transcript.pyannote[1603].speaker SPEAKER_01
transcript.pyannote[1603].start 9749.42721875
transcript.pyannote[1603].end 9752.88659375
transcript.pyannote[1604].speaker SPEAKER_01
transcript.pyannote[1604].start 9753.24096875
transcript.pyannote[1604].end 9755.55284375
transcript.pyannote[1605].speaker SPEAKER_01
transcript.pyannote[1605].start 9756.16034375
transcript.pyannote[1605].end 9758.10096875
transcript.pyannote[1606].speaker SPEAKER_01
transcript.pyannote[1606].start 9758.67471875
transcript.pyannote[1606].end 9759.78846875
transcript.pyannote[1607].speaker SPEAKER_01
transcript.pyannote[1607].start 9760.41284375
transcript.pyannote[1607].end 9762.18471875
transcript.pyannote[1608].speaker SPEAKER_01
transcript.pyannote[1608].start 9762.70784375
transcript.pyannote[1608].end 9764.56409375
transcript.pyannote[1609].speaker SPEAKER_01
transcript.pyannote[1609].start 9765.05346875
transcript.pyannote[1609].end 9766.09971875
transcript.pyannote[1610].speaker SPEAKER_01
transcript.pyannote[1610].start 9767.06159375
transcript.pyannote[1610].end 9767.82096875
transcript.pyannote[1611].speaker SPEAKER_01
transcript.pyannote[1611].start 9768.78284375
transcript.pyannote[1611].end 9770.33534375
transcript.pyannote[1612].speaker SPEAKER_01
transcript.pyannote[1612].start 9770.68971875
transcript.pyannote[1612].end 9771.46596875
transcript.pyannote[1613].speaker SPEAKER_01
transcript.pyannote[1613].start 9772.68096875
transcript.pyannote[1613].end 9773.74409375
transcript.pyannote[1614].speaker SPEAKER_01
transcript.pyannote[1614].start 9774.43596875
transcript.pyannote[1614].end 9776.71409375
transcript.pyannote[1615].speaker SPEAKER_01
transcript.pyannote[1615].start 9777.50721875
transcript.pyannote[1615].end 9779.22846875
transcript.pyannote[1616].speaker SPEAKER_01
transcript.pyannote[1616].start 9779.73471875
transcript.pyannote[1616].end 9780.71346875
transcript.pyannote[1617].speaker SPEAKER_01
transcript.pyannote[1617].start 9781.92846875
transcript.pyannote[1617].end 9782.23221875
transcript.pyannote[1618].speaker SPEAKER_01
transcript.pyannote[1618].start 9782.60346875
transcript.pyannote[1618].end 9783.41346875
transcript.pyannote[1619].speaker SPEAKER_01
transcript.pyannote[1619].start 9783.73409375
transcript.pyannote[1619].end 9784.86471875
transcript.pyannote[1620].speaker SPEAKER_01
transcript.pyannote[1620].start 9785.40471875
transcript.pyannote[1620].end 9786.13034375
transcript.pyannote[1621].speaker SPEAKER_01
transcript.pyannote[1621].start 9786.31596875
transcript.pyannote[1621].end 9786.99096875
transcript.pyannote[1622].speaker SPEAKER_01
transcript.pyannote[1622].start 9787.83471875
transcript.pyannote[1622].end 9788.74596875
transcript.pyannote[1623].speaker SPEAKER_01
transcript.pyannote[1623].start 9789.53909375
transcript.pyannote[1623].end 9790.38284375
transcript.pyannote[1624].speaker SPEAKER_01
transcript.pyannote[1624].start 9791.20971875
transcript.pyannote[1624].end 9791.71596875
transcript.pyannote[1625].speaker SPEAKER_01
transcript.pyannote[1625].start 9791.93534375
transcript.pyannote[1625].end 9793.36971875
transcript.pyannote[1626].speaker SPEAKER_01
transcript.pyannote[1626].start 9793.99409375
transcript.pyannote[1626].end 9795.66471875
transcript.pyannote[1627].speaker SPEAKER_01
transcript.pyannote[1627].start 9796.67721875
transcript.pyannote[1627].end 9797.57159375
transcript.pyannote[1628].speaker SPEAKER_01
transcript.pyannote[1628].start 9797.82471875
transcript.pyannote[1628].end 9799.54596875
transcript.pyannote[1629].speaker SPEAKER_01
transcript.pyannote[1629].start 9799.64721875
transcript.pyannote[1629].end 9800.79471875
transcript.pyannote[1630].speaker SPEAKER_01
transcript.pyannote[1630].start 9801.35159375
transcript.pyannote[1630].end 9802.61721875
transcript.pyannote[1631].speaker SPEAKER_01
transcript.pyannote[1631].start 9803.41034375
transcript.pyannote[1631].end 9804.35534375
transcript.pyannote[1632].speaker SPEAKER_01
transcript.pyannote[1632].start 9804.91221875
transcript.pyannote[1632].end 9806.68409375
transcript.pyannote[1633].speaker SPEAKER_01
transcript.pyannote[1633].start 9807.29159375
transcript.pyannote[1633].end 9809.89034375
transcript.pyannote[1634].speaker SPEAKER_01
transcript.pyannote[1634].start 9810.75096875
transcript.pyannote[1634].end 9812.59034375
transcript.pyannote[1635].speaker SPEAKER_01
transcript.pyannote[1635].start 9813.51846875
transcript.pyannote[1635].end 9814.19346875
transcript.pyannote[1636].speaker SPEAKER_27
transcript.pyannote[1636].start 9814.96971875
transcript.pyannote[1636].end 9828.94221875
transcript.pyannote[1637].speaker SPEAKER_27
transcript.pyannote[1637].start 9829.56659375
transcript.pyannote[1637].end 9837.83534375
transcript.pyannote[1638].speaker SPEAKER_27
transcript.pyannote[1638].start 9838.35846875
transcript.pyannote[1638].end 9858.57471875
transcript.pyannote[1639].speaker SPEAKER_01
transcript.pyannote[1639].start 9858.57471875
transcript.pyannote[1639].end 9858.60846875
transcript.pyannote[1640].speaker SPEAKER_27
transcript.pyannote[1640].start 9859.09784375
transcript.pyannote[1640].end 9859.13159375
transcript.pyannote[1641].speaker SPEAKER_01
transcript.pyannote[1641].start 9859.13159375
transcript.pyannote[1641].end 9861.81471875
transcript.pyannote[1642].speaker SPEAKER_01
transcript.pyannote[1642].start 9862.30409375
transcript.pyannote[1642].end 9867.01221875
transcript.pyannote[1643].speaker SPEAKER_01
transcript.pyannote[1643].start 9868.14284375
transcript.pyannote[1643].end 9868.83471875
transcript.pyannote[1644].speaker SPEAKER_01
transcript.pyannote[1644].start 9870.06659375
transcript.pyannote[1644].end 9873.52596875
transcript.pyannote[1645].speaker SPEAKER_01
transcript.pyannote[1645].start 9873.91409375
transcript.pyannote[1645].end 9876.69846875
transcript.pyannote[1646].speaker SPEAKER_01
transcript.pyannote[1646].start 9876.98534375
transcript.pyannote[1646].end 9877.67721875
transcript.pyannote[1647].speaker SPEAKER_01
transcript.pyannote[1647].start 9877.91346875
transcript.pyannote[1647].end 9879.31409375
transcript.pyannote[1648].speaker SPEAKER_01
transcript.pyannote[1648].start 9880.07346875
transcript.pyannote[1648].end 9883.75221875
transcript.pyannote[1649].speaker SPEAKER_01
transcript.pyannote[1649].start 9884.35971875
transcript.pyannote[1649].end 9886.26659375
transcript.pyannote[1650].speaker SPEAKER_01
transcript.pyannote[1650].start 9886.90784375
transcript.pyannote[1650].end 9888.19034375
transcript.pyannote[1651].speaker SPEAKER_01
transcript.pyannote[1651].start 9888.66284375
transcript.pyannote[1651].end 9889.82721875
transcript.pyannote[1652].speaker SPEAKER_01
transcript.pyannote[1652].start 9890.53596875
transcript.pyannote[1652].end 9891.83534375
transcript.pyannote[1653].speaker SPEAKER_01
transcript.pyannote[1653].start 9892.76346875
transcript.pyannote[1653].end 9894.48471875
transcript.pyannote[1654].speaker SPEAKER_01
transcript.pyannote[1654].start 9894.97409375
transcript.pyannote[1654].end 9896.88096875
transcript.pyannote[1655].speaker SPEAKER_01
transcript.pyannote[1655].start 9897.21846875
transcript.pyannote[1655].end 9900.94784375
transcript.pyannote[1656].speaker SPEAKER_01
transcript.pyannote[1656].start 9901.42034375
transcript.pyannote[1656].end 9907.73159375
transcript.pyannote[1657].speaker SPEAKER_28
transcript.pyannote[1657].start 9908.00159375
transcript.pyannote[1657].end 9908.47409375
transcript.pyannote[1658].speaker SPEAKER_01
transcript.pyannote[1658].start 9908.20409375
transcript.pyannote[1658].end 9909.45284375
transcript.pyannote[1659].speaker SPEAKER_26
transcript.pyannote[1659].start 9908.47409375
transcript.pyannote[1659].end 9908.49096875
transcript.pyannote[1660].speaker SPEAKER_26
transcript.pyannote[1660].start 9909.45284375
transcript.pyannote[1660].end 9909.46971875
transcript.pyannote[1661].speaker SPEAKER_01
transcript.pyannote[1661].start 9910.04346875
transcript.pyannote[1661].end 9910.97159375
transcript.pyannote[1662].speaker SPEAKER_26
transcript.pyannote[1662].start 9910.97159375
transcript.pyannote[1662].end 9916.79346875
transcript.pyannote[1663].speaker SPEAKER_26
transcript.pyannote[1663].start 9916.99596875
transcript.pyannote[1663].end 9933.31409375
transcript.pyannote[1664].speaker SPEAKER_26
transcript.pyannote[1664].start 9933.88784375
transcript.pyannote[1664].end 9960.80346875
transcript.pyannote[1665].speaker SPEAKER_26
transcript.pyannote[1665].start 9961.00596875
transcript.pyannote[1665].end 9972.26159375
transcript.pyannote[1666].speaker SPEAKER_01
transcript.pyannote[1666].start 9972.26159375
transcript.pyannote[1666].end 9972.29534375
transcript.pyannote[1667].speaker SPEAKER_26
transcript.pyannote[1667].start 9972.29534375
transcript.pyannote[1667].end 9972.31221875
transcript.pyannote[1668].speaker SPEAKER_01
transcript.pyannote[1668].start 9972.31221875
transcript.pyannote[1668].end 9972.36284375
transcript.pyannote[1669].speaker SPEAKER_26
transcript.pyannote[1669].start 9972.36284375
transcript.pyannote[1669].end 9972.46409375
transcript.pyannote[1670].speaker SPEAKER_01
transcript.pyannote[1670].start 9972.46409375
transcript.pyannote[1670].end 9972.48096875
transcript.pyannote[1671].speaker SPEAKER_26
transcript.pyannote[1671].start 9972.48096875
transcript.pyannote[1671].end 9972.97034375
transcript.pyannote[1672].speaker SPEAKER_01
transcript.pyannote[1672].start 9972.97034375
transcript.pyannote[1672].end 9985.32284375
transcript.pyannote[1673].speaker SPEAKER_15
transcript.pyannote[1673].start 9986.23409375
transcript.pyannote[1673].end 9987.02721875
transcript.pyannote[1674].speaker SPEAKER_15
transcript.pyannote[1674].start 9990.04784375
transcript.pyannote[1674].end 9998.73846875
transcript.pyannote[1675].speaker SPEAKER_15
transcript.pyannote[1675].start 9998.94096875
transcript.pyannote[1675].end 10014.04409375
transcript.pyannote[1676].speaker SPEAKER_13
transcript.pyannote[1676].start 10019.81534375
transcript.pyannote[1676].end 10024.45596875
transcript.pyannote[1677].speaker SPEAKER_13
transcript.pyannote[1677].start 10026.95346875
transcript.pyannote[1677].end 10037.83784375
transcript.pyannote[1678].speaker SPEAKER_16
transcript.pyannote[1678].start 10038.81659375
transcript.pyannote[1678].end 10040.01471875
transcript.pyannote[1679].speaker SPEAKER_16
transcript.pyannote[1679].start 10040.35221875
transcript.pyannote[1679].end 10043.10284375
transcript.pyannote[1680].speaker SPEAKER_13
transcript.pyannote[1680].start 10042.91721875
transcript.pyannote[1680].end 10088.02409375
transcript.pyannote[1681].speaker SPEAKER_16
transcript.pyannote[1681].start 10043.59221875
transcript.pyannote[1681].end 10043.62596875
transcript.pyannote[1682].speaker SPEAKER_16
transcript.pyannote[1682].start 10043.64284375
transcript.pyannote[1682].end 10044.06471875
transcript.pyannote[1683].speaker SPEAKER_00
transcript.pyannote[1683].start 10053.64971875
transcript.pyannote[1683].end 10054.17284375
transcript.pyannote[1684].speaker SPEAKER_16
transcript.pyannote[1684].start 10088.81721875
transcript.pyannote[1684].end 10089.20534375
transcript.pyannote[1685].speaker SPEAKER_16
transcript.pyannote[1685].start 10089.32346875
transcript.pyannote[1685].end 10089.42471875
transcript.pyannote[1686].speaker SPEAKER_16
transcript.pyannote[1686].start 10089.57659375
transcript.pyannote[1686].end 10090.75784375
transcript.pyannote[1687].speaker SPEAKER_13
transcript.pyannote[1687].start 10090.82534375
transcript.pyannote[1687].end 10091.82096875
transcript.pyannote[1688].speaker SPEAKER_13
transcript.pyannote[1688].start 10091.97284375
transcript.pyannote[1688].end 10116.82971875
transcript.pyannote[1689].speaker SPEAKER_16
transcript.pyannote[1689].start 10118.24721875
transcript.pyannote[1689].end 10118.73659375
transcript.pyannote[1690].speaker SPEAKER_16
transcript.pyannote[1690].start 10119.07409375
transcript.pyannote[1690].end 10120.89659375
transcript.pyannote[1691].speaker SPEAKER_16
transcript.pyannote[1691].start 10121.26784375
transcript.pyannote[1691].end 10124.28846875
transcript.pyannote[1692].speaker SPEAKER_13
transcript.pyannote[1692].start 10124.28846875
transcript.pyannote[1692].end 10134.05909375
transcript.pyannote[1693].speaker SPEAKER_16
transcript.pyannote[1693].start 10134.64971875
transcript.pyannote[1693].end 10144.69034375
transcript.pyannote[1694].speaker SPEAKER_13
transcript.pyannote[1694].start 10140.65721875
transcript.pyannote[1694].end 10140.74159375
transcript.pyannote[1695].speaker SPEAKER_13
transcript.pyannote[1695].start 10144.69034375
transcript.pyannote[1695].end 10186.25346875
transcript.pyannote[1696].speaker SPEAKER_16
transcript.pyannote[1696].start 10144.96034375
transcript.pyannote[1696].end 10144.99409375
transcript.pyannote[1697].speaker SPEAKER_16
transcript.pyannote[1697].start 10186.30409375
transcript.pyannote[1697].end 10194.67409375
transcript.pyannote[1698].speaker SPEAKER_23
transcript.pyannote[1698].start 10193.45909375
transcript.pyannote[1698].end 10193.93159375
transcript.pyannote[1699].speaker SPEAKER_16
transcript.pyannote[1699].start 10194.89346875
transcript.pyannote[1699].end 10204.78221875
transcript.pyannote[1700].speaker SPEAKER_13
transcript.pyannote[1700].start 10201.86284375
transcript.pyannote[1700].end 10203.36471875
transcript.pyannote[1701].speaker SPEAKER_13
transcript.pyannote[1701].start 10204.17471875
transcript.pyannote[1701].end 10214.04659375
transcript.pyannote[1702].speaker SPEAKER_13
transcript.pyannote[1702].start 10214.85659375
transcript.pyannote[1702].end 10217.59034375
transcript.pyannote[1703].speaker SPEAKER_13
transcript.pyannote[1703].start 10219.21034375
transcript.pyannote[1703].end 10219.91909375
transcript.pyannote[1704].speaker SPEAKER_13
transcript.pyannote[1704].start 10222.75409375
transcript.pyannote[1704].end 10270.72971875
transcript.pyannote[1705].speaker SPEAKER_13
transcript.pyannote[1705].start 10270.84784375
transcript.pyannote[1705].end 10319.24534375
transcript.pyannote[1706].speaker SPEAKER_27
transcript.pyannote[1706].start 10320.67971875
transcript.pyannote[1706].end 10322.16471875
transcript.pyannote[1707].speaker SPEAKER_27
transcript.pyannote[1707].start 10323.07596875
transcript.pyannote[1707].end 10327.96971875
transcript.pyannote[1708].speaker SPEAKER_27
transcript.pyannote[1708].start 10328.29034375
transcript.pyannote[1708].end 10330.28159375
transcript.pyannote[1709].speaker SPEAKER_13
transcript.pyannote[1709].start 10331.93534375
transcript.pyannote[1709].end 10353.88971875
transcript.pyannote[1710].speaker SPEAKER_13
transcript.pyannote[1710].start 10353.95721875
transcript.pyannote[1710].end 10353.97409375
transcript.pyannote[1711].speaker SPEAKER_27
transcript.pyannote[1711].start 10353.97409375
transcript.pyannote[1711].end 10354.00784375
transcript.pyannote[1712].speaker SPEAKER_13
transcript.pyannote[1712].start 10354.00784375
transcript.pyannote[1712].end 10354.02471875
transcript.pyannote[1713].speaker SPEAKER_27
transcript.pyannote[1713].start 10354.02471875
transcript.pyannote[1713].end 10356.67409375
transcript.pyannote[1714].speaker SPEAKER_13
transcript.pyannote[1714].start 10357.83846875
transcript.pyannote[1714].end 10370.15721875
transcript.pyannote[1715].speaker SPEAKER_27
transcript.pyannote[1715].start 10370.15721875
transcript.pyannote[1715].end 10374.03846875
transcript.pyannote[1716].speaker SPEAKER_13
transcript.pyannote[1716].start 10374.94971875
transcript.pyannote[1716].end 10389.59721875
transcript.pyannote[1717].speaker SPEAKER_27
transcript.pyannote[1717].start 10375.82721875
transcript.pyannote[1717].end 10377.93659375
transcript.pyannote[1718].speaker SPEAKER_27
transcript.pyannote[1718].start 10389.59721875
transcript.pyannote[1718].end 10392.68534375
transcript.pyannote[1719].speaker SPEAKER_13
transcript.pyannote[1719].start 10392.31409375
transcript.pyannote[1719].end 10410.45471875
transcript.pyannote[1720].speaker SPEAKER_27
transcript.pyannote[1720].start 10412.05784375
transcript.pyannote[1720].end 10413.82971875
transcript.pyannote[1721].speaker SPEAKER_13
transcript.pyannote[1721].start 10412.12534375
transcript.pyannote[1721].end 10412.53034375
transcript.pyannote[1722].speaker SPEAKER_27
transcript.pyannote[1722].start 10414.31909375
transcript.pyannote[1722].end 10416.66471875
transcript.pyannote[1723].speaker SPEAKER_27
transcript.pyannote[1723].start 10418.03159375
transcript.pyannote[1723].end 10421.74409375
transcript.pyannote[1724].speaker SPEAKER_27
transcript.pyannote[1724].start 10421.96346875
transcript.pyannote[1724].end 10423.24596875
transcript.pyannote[1725].speaker SPEAKER_13
transcript.pyannote[1725].start 10423.24596875
transcript.pyannote[1725].end 10424.37659375
transcript.pyannote[1726].speaker SPEAKER_13
transcript.pyannote[1726].start 10424.95034375
transcript.pyannote[1726].end 10464.16784375
transcript.pyannote[1727].speaker SPEAKER_13
transcript.pyannote[1727].start 10464.70784375
transcript.pyannote[1727].end 10472.14971875
transcript.pyannote[1728].speaker SPEAKER_13
transcript.pyannote[1728].start 10473.16221875
transcript.pyannote[1728].end 10474.61346875
transcript.pyannote[1729].speaker SPEAKER_27
transcript.pyannote[1729].start 10475.45721875
transcript.pyannote[1729].end 10483.05096875
transcript.pyannote[1730].speaker SPEAKER_27
transcript.pyannote[1730].start 10483.57409375
transcript.pyannote[1730].end 10493.98596875
transcript.pyannote[1731].speaker SPEAKER_13
transcript.pyannote[1731].start 10494.20534375
transcript.pyannote[1731].end 10500.66846875
transcript.pyannote[1732].speaker SPEAKER_27
transcript.pyannote[1732].start 10494.23909375
transcript.pyannote[1732].end 10495.79159375
transcript.pyannote[1733].speaker SPEAKER_27
transcript.pyannote[1733].start 10501.03971875
transcript.pyannote[1733].end 10501.07346875
transcript.pyannote[1734].speaker SPEAKER_13
transcript.pyannote[1734].start 10501.07346875
transcript.pyannote[1734].end 10561.90784375
transcript.pyannote[1735].speaker SPEAKER_27
transcript.pyannote[1735].start 10501.74846875
transcript.pyannote[1735].end 10503.30096875
transcript.pyannote[1736].speaker SPEAKER_27
transcript.pyannote[1736].start 10503.35159375
transcript.pyannote[1736].end 10503.94221875
transcript.pyannote[1737].speaker SPEAKER_27
transcript.pyannote[1737].start 10506.15284375
transcript.pyannote[1737].end 10506.22034375
transcript.pyannote[1738].speaker SPEAKER_28
transcript.pyannote[1738].start 10506.22034375
transcript.pyannote[1738].end 10507.14846875
transcript.pyannote[1739].speaker SPEAKER_00
transcript.pyannote[1739].start 10507.14846875
transcript.pyannote[1739].end 10507.36784375
transcript.pyannote[1740].speaker SPEAKER_00
transcript.pyannote[1740].start 10507.73909375
transcript.pyannote[1740].end 10508.07659375
transcript.pyannote[1741].speaker SPEAKER_27
transcript.pyannote[1741].start 10562.43096875
transcript.pyannote[1741].end 10569.60284375
transcript.pyannote[1742].speaker SPEAKER_13
transcript.pyannote[1742].start 10566.81846875
transcript.pyannote[1742].end 10570.86846875
transcript.pyannote[1743].speaker SPEAKER_13
transcript.pyannote[1743].start 10571.12159375
transcript.pyannote[1743].end 10580.45346875
transcript.pyannote[1744].speaker SPEAKER_27
transcript.pyannote[1744].start 10579.49159375
transcript.pyannote[1744].end 10582.86659375
transcript.pyannote[1745].speaker SPEAKER_15
transcript.pyannote[1745].start 10584.23346875
transcript.pyannote[1745].end 10585.02659375
transcript.pyannote[1746].speaker SPEAKER_15
transcript.pyannote[1746].start 10588.06409375
transcript.pyannote[1746].end 10588.51971875
transcript.pyannote[1747].speaker SPEAKER_15
transcript.pyannote[1747].start 10589.04284375
transcript.pyannote[1747].end 10598.07096875
transcript.pyannote[1748].speaker SPEAKER_32
transcript.pyannote[1748].start 10606.18784375
transcript.pyannote[1748].end 10609.00596875
transcript.pyannote[1749].speaker SPEAKER_15
transcript.pyannote[1749].start 10609.98471875
transcript.pyannote[1749].end 10611.82409375
transcript.pyannote[1750].speaker SPEAKER_34
transcript.pyannote[1750].start 10620.31221875
transcript.pyannote[1750].end 10625.88096875
transcript.pyannote[1751].speaker SPEAKER_34
transcript.pyannote[1751].start 10626.23534375
transcript.pyannote[1751].end 10636.15784375
transcript.pyannote[1752].speaker SPEAKER_34
transcript.pyannote[1752].start 10636.22534375
transcript.pyannote[1752].end 10638.26721875
transcript.pyannote[1753].speaker SPEAKER_34
transcript.pyannote[1753].start 10639.75221875
transcript.pyannote[1753].end 10642.33409375
transcript.pyannote[1754].speaker SPEAKER_34
transcript.pyannote[1754].start 10643.02596875
transcript.pyannote[1754].end 10643.68409375
transcript.pyannote[1755].speaker SPEAKER_34
transcript.pyannote[1755].start 10644.51096875
transcript.pyannote[1755].end 10644.79784375
transcript.pyannote[1756].speaker SPEAKER_34
transcript.pyannote[1756].start 10645.38846875
transcript.pyannote[1756].end 10648.61159375
transcript.pyannote[1757].speaker SPEAKER_34
transcript.pyannote[1757].start 10648.93221875
transcript.pyannote[1757].end 10649.74221875
transcript.pyannote[1758].speaker SPEAKER_15
transcript.pyannote[1758].start 10649.59034375
transcript.pyannote[1758].end 10650.78846875
transcript.pyannote[1759].speaker SPEAKER_34
transcript.pyannote[1759].start 10650.97409375
transcript.pyannote[1759].end 10651.21034375
transcript.pyannote[1760].speaker SPEAKER_34
transcript.pyannote[1760].start 10651.46346875
transcript.pyannote[1760].end 10654.58534375
transcript.pyannote[1761].speaker SPEAKER_34
transcript.pyannote[1761].start 10655.59784375
transcript.pyannote[1761].end 10655.61471875
transcript.pyannote[1762].speaker SPEAKER_17
transcript.pyannote[1762].start 10655.61471875
transcript.pyannote[1762].end 10656.69471875
transcript.pyannote[1763].speaker SPEAKER_17
transcript.pyannote[1763].start 10657.23471875
transcript.pyannote[1763].end 10657.99409375
transcript.pyannote[1764].speaker SPEAKER_17
transcript.pyannote[1764].start 10658.19659375
transcript.pyannote[1764].end 10658.36534375
transcript.pyannote[1765].speaker SPEAKER_17
transcript.pyannote[1765].start 10659.00659375
transcript.pyannote[1765].end 10660.74471875
transcript.pyannote[1766].speaker SPEAKER_17
transcript.pyannote[1766].start 10660.96409375
transcript.pyannote[1766].end 10665.97596875
transcript.pyannote[1767].speaker SPEAKER_34
transcript.pyannote[1767].start 10664.54159375
transcript.pyannote[1767].end 10674.44721875
transcript.pyannote[1768].speaker SPEAKER_34
transcript.pyannote[1768].start 10674.83534375
transcript.pyannote[1768].end 10678.22721875
transcript.pyannote[1769].speaker SPEAKER_34
transcript.pyannote[1769].start 10678.31159375
transcript.pyannote[1769].end 10678.81784375
transcript.pyannote[1770].speaker SPEAKER_17
transcript.pyannote[1770].start 10678.81784375
transcript.pyannote[1770].end 10679.02034375
transcript.pyannote[1771].speaker SPEAKER_34
transcript.pyannote[1771].start 10679.02034375
transcript.pyannote[1771].end 10679.03721875
transcript.pyannote[1772].speaker SPEAKER_17
transcript.pyannote[1772].start 10679.03721875
transcript.pyannote[1772].end 10702.30784375
transcript.pyannote[1773].speaker SPEAKER_34
transcript.pyannote[1773].start 10679.08784375
transcript.pyannote[1773].end 10679.49284375
transcript.pyannote[1774].speaker SPEAKER_34
transcript.pyannote[1774].start 10679.94846875
transcript.pyannote[1774].end 10680.40409375
transcript.pyannote[1775].speaker SPEAKER_34
transcript.pyannote[1775].start 10692.23346875
transcript.pyannote[1775].end 10692.75659375
transcript.pyannote[1776].speaker SPEAKER_34
transcript.pyannote[1776].start 10694.42721875
transcript.pyannote[1776].end 10695.84471875
transcript.pyannote[1777].speaker SPEAKER_17
transcript.pyannote[1777].start 10702.37534375
transcript.pyannote[1777].end 10703.03346875
transcript.pyannote[1778].speaker SPEAKER_34
transcript.pyannote[1778].start 10703.03346875
transcript.pyannote[1778].end 10706.34096875
transcript.pyannote[1779].speaker SPEAKER_34
transcript.pyannote[1779].start 10706.64471875
transcript.pyannote[1779].end 10706.88096875
transcript.pyannote[1780].speaker SPEAKER_34
transcript.pyannote[1780].start 10707.55596875
transcript.pyannote[1780].end 10710.77909375
transcript.pyannote[1781].speaker SPEAKER_34
transcript.pyannote[1781].start 10711.62284375
transcript.pyannote[1781].end 10714.18784375
transcript.pyannote[1782].speaker SPEAKER_34
transcript.pyannote[1782].start 10714.52534375
transcript.pyannote[1782].end 10714.82909375
transcript.pyannote[1783].speaker SPEAKER_34
transcript.pyannote[1783].start 10715.23409375
transcript.pyannote[1783].end 10717.47846875
transcript.pyannote[1784].speaker SPEAKER_34
transcript.pyannote[1784].start 10719.73971875
transcript.pyannote[1784].end 10732.53096875
transcript.pyannote[1785].speaker SPEAKER_34
transcript.pyannote[1785].start 10732.76721875
transcript.pyannote[1785].end 10736.02409375
transcript.pyannote[1786].speaker SPEAKER_30
transcript.pyannote[1786].start 10734.62346875
transcript.pyannote[1786].end 10734.92721875
transcript.pyannote[1787].speaker SPEAKER_30
transcript.pyannote[1787].start 10736.17596875
transcript.pyannote[1787].end 10736.26034375
transcript.pyannote[1788].speaker SPEAKER_26
transcript.pyannote[1788].start 10736.26034375
transcript.pyannote[1788].end 10736.49659375
transcript.pyannote[1789].speaker SPEAKER_30
transcript.pyannote[1789].start 10736.49659375
transcript.pyannote[1789].end 10736.54721875
transcript.pyannote[1790].speaker SPEAKER_34
transcript.pyannote[1790].start 10736.66534375
transcript.pyannote[1790].end 10738.90971875
transcript.pyannote[1791].speaker SPEAKER_34
transcript.pyannote[1791].start 10739.93909375
transcript.pyannote[1791].end 10741.05284375
transcript.pyannote[1792].speaker SPEAKER_33
transcript.pyannote[1792].start 10741.05284375
transcript.pyannote[1792].end 10741.06971875
transcript.pyannote[1793].speaker SPEAKER_33
transcript.pyannote[1793].start 10742.77409375
transcript.pyannote[1793].end 10743.29721875
transcript.pyannote[1794].speaker SPEAKER_33
transcript.pyannote[1794].start 10743.56721875
transcript.pyannote[1794].end 10746.79034375
transcript.pyannote[1795].speaker SPEAKER_24
transcript.pyannote[1795].start 10746.79034375
transcript.pyannote[1795].end 10746.82409375
transcript.pyannote[1796].speaker SPEAKER_33
transcript.pyannote[1796].start 10746.82409375
transcript.pyannote[1796].end 10747.97159375
transcript.pyannote[1797].speaker SPEAKER_34
transcript.pyannote[1797].start 10747.34721875
transcript.pyannote[1797].end 10748.32596875
transcript.pyannote[1798].speaker SPEAKER_24
transcript.pyannote[1798].start 10747.97159375
transcript.pyannote[1798].end 10748.27534375
transcript.pyannote[1799].speaker SPEAKER_24
transcript.pyannote[1799].start 10748.32596875
transcript.pyannote[1799].end 10749.25409375
transcript.pyannote[1800].speaker SPEAKER_34
transcript.pyannote[1800].start 10749.25409375
transcript.pyannote[1800].end 10749.96284375
transcript.pyannote[1801].speaker SPEAKER_24
transcript.pyannote[1801].start 10749.28784375
transcript.pyannote[1801].end 10753.55721875
transcript.pyannote[1802].speaker SPEAKER_34
transcript.pyannote[1802].start 10750.43534375
transcript.pyannote[1802].end 10751.02596875
transcript.pyannote[1803].speaker SPEAKER_34
transcript.pyannote[1803].start 10753.28721875
transcript.pyannote[1803].end 10761.89346875
transcript.pyannote[1804].speaker SPEAKER_34
transcript.pyannote[1804].start 10762.90596875
transcript.pyannote[1804].end 10763.39534375
transcript.pyannote[1805].speaker SPEAKER_34
transcript.pyannote[1805].start 10763.59784375
transcript.pyannote[1805].end 10764.94784375
transcript.pyannote[1806].speaker SPEAKER_34
transcript.pyannote[1806].start 10765.43721875
transcript.pyannote[1806].end 10766.88846875
transcript.pyannote[1807].speaker SPEAKER_34
transcript.pyannote[1807].start 10767.44534375
transcript.pyannote[1807].end 10768.55909375
transcript.pyannote[1808].speaker SPEAKER_34
transcript.pyannote[1808].start 10768.59284375
transcript.pyannote[1808].end 10769.08221875
transcript.pyannote[1809].speaker SPEAKER_34
transcript.pyannote[1809].start 10769.33534375
transcript.pyannote[1809].end 10770.28034375
transcript.pyannote[1810].speaker SPEAKER_15
transcript.pyannote[1810].start 10772.84534375
transcript.pyannote[1810].end 10773.72284375
transcript.pyannote[1811].speaker SPEAKER_34
transcript.pyannote[1811].start 10776.33846875
transcript.pyannote[1811].end 10782.17721875
transcript.pyannote[1812].speaker SPEAKER_34
transcript.pyannote[1812].start 10782.98721875
transcript.pyannote[1812].end 10783.56096875
transcript.pyannote[1813].speaker SPEAKER_34
transcript.pyannote[1813].start 10784.18534375
transcript.pyannote[1813].end 10788.97784375
transcript.pyannote[1814].speaker SPEAKER_34
transcript.pyannote[1814].start 10789.63596875
transcript.pyannote[1814].end 10791.15471875
transcript.pyannote[1815].speaker SPEAKER_34
transcript.pyannote[1815].start 10791.23909375
transcript.pyannote[1815].end 10791.69471875
transcript.pyannote[1816].speaker SPEAKER_34
transcript.pyannote[1816].start 10792.43721875
transcript.pyannote[1816].end 10794.91784375
transcript.pyannote[1817].speaker SPEAKER_34
transcript.pyannote[1817].start 10795.67721875
transcript.pyannote[1817].end 10797.33096875
transcript.pyannote[1818].speaker SPEAKER_34
transcript.pyannote[1818].start 10798.15784375
transcript.pyannote[1818].end 10800.67221875
transcript.pyannote[1819].speaker SPEAKER_34
transcript.pyannote[1819].start 10801.44846875
transcript.pyannote[1819].end 10804.78971875
transcript.pyannote[1820].speaker SPEAKER_34
transcript.pyannote[1820].start 10805.19471875
transcript.pyannote[1820].end 10807.60784375
transcript.pyannote[1821].speaker SPEAKER_34
transcript.pyannote[1821].start 10807.99596875
transcript.pyannote[1821].end 10810.42596875
transcript.pyannote[1822].speaker SPEAKER_34
transcript.pyannote[1822].start 10811.35409375
transcript.pyannote[1822].end 10812.29909375
transcript.pyannote[1823].speaker SPEAKER_25
transcript.pyannote[1823].start 10814.94846875
transcript.pyannote[1823].end 10815.47159375
transcript.pyannote[1824].speaker SPEAKER_25
transcript.pyannote[1824].start 10816.53471875
transcript.pyannote[1824].end 10819.20096875
transcript.pyannote[1825].speaker SPEAKER_25
transcript.pyannote[1825].start 10819.26846875
transcript.pyannote[1825].end 10823.70659375
transcript.pyannote[1826].speaker SPEAKER_25
transcript.pyannote[1826].start 10824.17909375
transcript.pyannote[1826].end 10826.89596875
transcript.pyannote[1827].speaker SPEAKER_25
transcript.pyannote[1827].start 10827.80721875
transcript.pyannote[1827].end 10829.32596875
transcript.pyannote[1828].speaker SPEAKER_25
transcript.pyannote[1828].start 10829.91659375
transcript.pyannote[1828].end 10830.81096875
transcript.pyannote[1829].speaker SPEAKER_34
transcript.pyannote[1829].start 10830.81096875
transcript.pyannote[1829].end 10836.56534375
transcript.pyannote[1830].speaker SPEAKER_34
transcript.pyannote[1830].start 10837.05471875
transcript.pyannote[1830].end 10839.29909375
transcript.pyannote[1831].speaker SPEAKER_34
transcript.pyannote[1831].start 10839.80534375
transcript.pyannote[1831].end 10842.45471875
transcript.pyannote[1832].speaker SPEAKER_25
transcript.pyannote[1832].start 10843.06221875
transcript.pyannote[1832].end 10855.81971875
transcript.pyannote[1833].speaker SPEAKER_34
transcript.pyannote[1833].start 10856.19096875
transcript.pyannote[1833].end 10857.20346875
transcript.pyannote[1834].speaker SPEAKER_34
transcript.pyannote[1834].start 10858.36784375
transcript.pyannote[1834].end 10863.98721875
transcript.pyannote[1835].speaker SPEAKER_34
transcript.pyannote[1835].start 10864.27409375
transcript.pyannote[1835].end 10867.09221875
transcript.pyannote[1836].speaker SPEAKER_34
transcript.pyannote[1836].start 10868.03721875
transcript.pyannote[1836].end 10869.94409375
transcript.pyannote[1837].speaker SPEAKER_34
transcript.pyannote[1837].start 10870.18034375
transcript.pyannote[1837].end 10870.93971875
transcript.pyannote[1838].speaker SPEAKER_34
transcript.pyannote[1838].start 10871.61471875
transcript.pyannote[1838].end 10873.62284375
transcript.pyannote[1839].speaker SPEAKER_25
transcript.pyannote[1839].start 10873.62284375
transcript.pyannote[1839].end 10873.63971875
transcript.pyannote[1840].speaker SPEAKER_34
transcript.pyannote[1840].start 10874.23034375
transcript.pyannote[1840].end 10874.97284375
transcript.pyannote[1841].speaker SPEAKER_25
transcript.pyannote[1841].start 10874.97284375
transcript.pyannote[1841].end 10879.49534375
transcript.pyannote[1842].speaker SPEAKER_34
transcript.pyannote[1842].start 10879.24221875
transcript.pyannote[1842].end 10883.15721875
transcript.pyannote[1843].speaker SPEAKER_24
transcript.pyannote[1843].start 10884.22034375
transcript.pyannote[1843].end 10912.03034375
transcript.pyannote[1844].speaker SPEAKER_34
transcript.pyannote[1844].start 10912.03034375
transcript.pyannote[1844].end 10924.92284375
transcript.pyannote[1845].speaker SPEAKER_24
transcript.pyannote[1845].start 10912.08096875
transcript.pyannote[1845].end 10912.21596875
transcript.pyannote[1846].speaker SPEAKER_34
transcript.pyannote[1846].start 10925.10846875
transcript.pyannote[1846].end 10927.06596875
transcript.pyannote[1847].speaker SPEAKER_34
transcript.pyannote[1847].start 10927.15034375
transcript.pyannote[1847].end 10931.31846875
transcript.pyannote[1848].speaker SPEAKER_34
transcript.pyannote[1848].start 10932.63471875
transcript.pyannote[1848].end 10933.96784375
transcript.pyannote[1849].speaker SPEAKER_34
transcript.pyannote[1849].start 10934.65971875
transcript.pyannote[1849].end 10942.05096875
transcript.pyannote[1850].speaker SPEAKER_34
transcript.pyannote[1850].start 10942.55721875
transcript.pyannote[1850].end 10946.69159375
transcript.pyannote[1851].speaker SPEAKER_16
transcript.pyannote[1851].start 10948.29471875
transcript.pyannote[1851].end 10949.69534375
transcript.pyannote[1852].speaker SPEAKER_34
transcript.pyannote[1852].start 10949.83034375
transcript.pyannote[1852].end 10956.42846875
transcript.pyannote[1853].speaker SPEAKER_34
transcript.pyannote[1853].start 10957.55909375
transcript.pyannote[1853].end 10958.57159375
transcript.pyannote[1854].speaker SPEAKER_34
transcript.pyannote[1854].start 10958.90909375
transcript.pyannote[1854].end 10960.96784375
transcript.pyannote[1855].speaker SPEAKER_24
transcript.pyannote[1855].start 10960.96784375
transcript.pyannote[1855].end 10961.03534375
transcript.pyannote[1856].speaker SPEAKER_34
transcript.pyannote[1856].start 10961.03534375
transcript.pyannote[1856].end 10967.56596875
transcript.pyannote[1857].speaker SPEAKER_24
transcript.pyannote[1857].start 10961.18721875
transcript.pyannote[1857].end 10961.60909375
transcript.pyannote[1858].speaker SPEAKER_34
transcript.pyannote[1858].start 10968.05534375
transcript.pyannote[1858].end 10971.00846875
transcript.pyannote[1859].speaker SPEAKER_34
transcript.pyannote[1859].start 10972.39221875
transcript.pyannote[1859].end 10974.53534375
transcript.pyannote[1860].speaker SPEAKER_34
transcript.pyannote[1860].start 10975.42971875
transcript.pyannote[1860].end 10979.96909375
transcript.pyannote[1861].speaker SPEAKER_16
transcript.pyannote[1861].start 10978.83846875
transcript.pyannote[1861].end 10978.99034375
transcript.pyannote[1862].speaker SPEAKER_16
transcript.pyannote[1862].start 10979.74971875
transcript.pyannote[1862].end 10992.11909375
transcript.pyannote[1863].speaker SPEAKER_34
transcript.pyannote[1863].start 10991.34284375
transcript.pyannote[1863].end 10994.07659375
transcript.pyannote[1864].speaker SPEAKER_16
transcript.pyannote[1864].start 10995.25784375
transcript.pyannote[1864].end 10995.73034375
transcript.pyannote[1865].speaker SPEAKER_34
transcript.pyannote[1865].start 10995.73034375
transcript.pyannote[1865].end 10995.96659375
transcript.pyannote[1866].speaker SPEAKER_16
transcript.pyannote[1866].start 10995.96659375
transcript.pyannote[1866].end 10997.56971875
transcript.pyannote[1867].speaker SPEAKER_34
transcript.pyannote[1867].start 10998.26159375
transcript.pyannote[1867].end 10999.02096875
transcript.pyannote[1868].speaker SPEAKER_16
transcript.pyannote[1868].start 10999.02096875
transcript.pyannote[1868].end 11000.70846875
transcript.pyannote[1869].speaker SPEAKER_16
transcript.pyannote[1869].start 11001.19784375
transcript.pyannote[1869].end 11006.05784375
transcript.pyannote[1870].speaker SPEAKER_34
transcript.pyannote[1870].start 11002.63221875
transcript.pyannote[1870].end 11003.74596875
transcript.pyannote[1871].speaker SPEAKER_34
transcript.pyannote[1871].start 11006.51346875
transcript.pyannote[1871].end 11010.69846875
transcript.pyannote[1872].speaker SPEAKER_16
transcript.pyannote[1872].start 11010.69846875
transcript.pyannote[1872].end 11010.71534375
transcript.pyannote[1873].speaker SPEAKER_34
transcript.pyannote[1873].start 11011.72784375
transcript.pyannote[1873].end 11011.96409375
transcript.pyannote[1874].speaker SPEAKER_16
transcript.pyannote[1874].start 11011.96409375
transcript.pyannote[1874].end 11014.88346875
transcript.pyannote[1875].speaker SPEAKER_16
transcript.pyannote[1875].start 11015.45721875
transcript.pyannote[1875].end 11018.24159375
transcript.pyannote[1876].speaker SPEAKER_34
transcript.pyannote[1876].start 11015.98034375
transcript.pyannote[1876].end 11018.20784375
transcript.pyannote[1877].speaker SPEAKER_34
transcript.pyannote[1877].start 11018.24159375
transcript.pyannote[1877].end 11020.36784375
transcript.pyannote[1878].speaker SPEAKER_34
transcript.pyannote[1878].start 11020.50284375
transcript.pyannote[1878].end 11021.32971875
transcript.pyannote[1879].speaker SPEAKER_16
transcript.pyannote[1879].start 11021.36346875
transcript.pyannote[1879].end 11021.81909375
transcript.pyannote[1880].speaker SPEAKER_16
transcript.pyannote[1880].start 11022.13971875
transcript.pyannote[1880].end 11025.12659375
transcript.pyannote[1881].speaker SPEAKER_34
transcript.pyannote[1881].start 11022.20721875
transcript.pyannote[1881].end 11022.81471875
transcript.pyannote[1882].speaker SPEAKER_34
transcript.pyannote[1882].start 11026.49346875
transcript.pyannote[1882].end 11027.11784375
transcript.pyannote[1883].speaker SPEAKER_34
transcript.pyannote[1883].start 11028.40034375
transcript.pyannote[1883].end 11032.53471875
transcript.pyannote[1884].speaker SPEAKER_34
transcript.pyannote[1884].start 11032.95659375
transcript.pyannote[1884].end 11034.08721875
transcript.pyannote[1885].speaker SPEAKER_34
transcript.pyannote[1885].start 11034.59346875
transcript.pyannote[1885].end 11035.60596875
transcript.pyannote[1886].speaker SPEAKER_34
transcript.pyannote[1886].start 11036.17971875
transcript.pyannote[1886].end 11038.66034375
transcript.pyannote[1887].speaker SPEAKER_34
transcript.pyannote[1887].start 11038.84596875
transcript.pyannote[1887].end 11040.11159375
transcript.pyannote[1888].speaker SPEAKER_34
transcript.pyannote[1888].start 11040.24659375
transcript.pyannote[1888].end 11042.62596875
transcript.pyannote[1889].speaker SPEAKER_34
transcript.pyannote[1889].start 11042.99721875
transcript.pyannote[1889].end 11044.97159375
transcript.pyannote[1890].speaker SPEAKER_25
transcript.pyannote[1890].start 11047.73909375
transcript.pyannote[1890].end 11049.69659375
transcript.pyannote[1891].speaker SPEAKER_34
transcript.pyannote[1891].start 11049.46034375
transcript.pyannote[1891].end 11049.49409375
transcript.pyannote[1892].speaker SPEAKER_03
transcript.pyannote[1892].start 11049.49409375
transcript.pyannote[1892].end 11050.23659375
transcript.pyannote[1893].speaker SPEAKER_03
transcript.pyannote[1893].start 11050.74284375
transcript.pyannote[1893].end 11058.87659375
transcript.pyannote[1894].speaker SPEAKER_34
transcript.pyannote[1894].start 11058.87659375
transcript.pyannote[1894].end 11059.55159375
transcript.pyannote[1895].speaker SPEAKER_34
transcript.pyannote[1895].start 11059.78784375
transcript.pyannote[1895].end 11060.02409375
transcript.pyannote[1896].speaker SPEAKER_34
transcript.pyannote[1896].start 11060.24346875
transcript.pyannote[1896].end 11067.36471875
transcript.pyannote[1897].speaker SPEAKER_03
transcript.pyannote[1897].start 11064.05721875
transcript.pyannote[1897].end 11064.27659375
transcript.pyannote[1898].speaker SPEAKER_34
transcript.pyannote[1898].start 11068.07346875
transcript.pyannote[1898].end 11070.36846875
transcript.pyannote[1899].speaker SPEAKER_03
transcript.pyannote[1899].start 11070.77346875
transcript.pyannote[1899].end 11081.62409375
transcript.pyannote[1900].speaker SPEAKER_34
transcript.pyannote[1900].start 11076.54471875
transcript.pyannote[1900].end 11076.93284375
transcript.pyannote[1901].speaker SPEAKER_34
transcript.pyannote[1901].start 11077.05096875
transcript.pyannote[1901].end 11083.42971875
transcript.pyannote[1902].speaker SPEAKER_34
transcript.pyannote[1902].start 11083.80096875
transcript.pyannote[1902].end 11087.19284375
transcript.pyannote[1903].speaker SPEAKER_34
transcript.pyannote[1903].start 11088.49221875
transcript.pyannote[1903].end 11091.41159375
transcript.pyannote[1904].speaker SPEAKER_34
transcript.pyannote[1904].start 11091.90096875
transcript.pyannote[1904].end 11092.82909375
transcript.pyannote[1905].speaker SPEAKER_34
transcript.pyannote[1905].start 11093.16659375
transcript.pyannote[1905].end 11093.18346875
transcript.pyannote[1906].speaker SPEAKER_03
transcript.pyannote[1906].start 11093.18346875
transcript.pyannote[1906].end 11093.31846875
transcript.pyannote[1907].speaker SPEAKER_34
transcript.pyannote[1907].start 11093.31846875
transcript.pyannote[1907].end 11093.63909375
transcript.pyannote[1908].speaker SPEAKER_03
transcript.pyannote[1908].start 11093.63909375
transcript.pyannote[1908].end 11096.06909375
transcript.pyannote[1909].speaker SPEAKER_34
transcript.pyannote[1909].start 11095.36034375
transcript.pyannote[1909].end 11095.83284375
transcript.pyannote[1910].speaker SPEAKER_03
transcript.pyannote[1910].start 11096.35596875
transcript.pyannote[1910].end 11105.55284375
transcript.pyannote[1911].speaker SPEAKER_34
transcript.pyannote[1911].start 11099.27534375
transcript.pyannote[1911].end 11101.03034375
transcript.pyannote[1912].speaker SPEAKER_34
transcript.pyannote[1912].start 11103.46034375
transcript.pyannote[1912].end 11103.69659375
transcript.pyannote[1913].speaker SPEAKER_03
transcript.pyannote[1913].start 11106.02534375
transcript.pyannote[1913].end 11106.58221875
transcript.pyannote[1914].speaker SPEAKER_03
transcript.pyannote[1914].start 11106.73409375
transcript.pyannote[1914].end 11110.73346875
transcript.pyannote[1915].speaker SPEAKER_03
transcript.pyannote[1915].start 11111.12159375
transcript.pyannote[1915].end 11111.96534375
transcript.pyannote[1916].speaker SPEAKER_34
transcript.pyannote[1916].start 11111.96534375
transcript.pyannote[1916].end 11118.02346875
transcript.pyannote[1917].speaker SPEAKER_34
transcript.pyannote[1917].start 11118.10784375
transcript.pyannote[1917].end 11123.08596875
transcript.pyannote[1918].speaker SPEAKER_34
transcript.pyannote[1918].start 11123.50784375
transcript.pyannote[1918].end 11124.46971875
transcript.pyannote[1919].speaker SPEAKER_34
transcript.pyannote[1919].start 11124.94221875
transcript.pyannote[1919].end 11127.00096875
transcript.pyannote[1920].speaker SPEAKER_25
transcript.pyannote[1920].start 11127.37221875
transcript.pyannote[1920].end 11128.62096875
transcript.pyannote[1921].speaker SPEAKER_34
transcript.pyannote[1921].start 11128.09784375
transcript.pyannote[1921].end 11130.73034375
transcript.pyannote[1922].speaker SPEAKER_25
transcript.pyannote[1922].start 11130.39284375
transcript.pyannote[1922].end 11149.90034375
transcript.pyannote[1923].speaker SPEAKER_34
transcript.pyannote[1923].start 11149.32659375
transcript.pyannote[1923].end 11152.90409375
transcript.pyannote[1924].speaker SPEAKER_34
transcript.pyannote[1924].start 11153.59596875
transcript.pyannote[1924].end 11154.45659375
transcript.pyannote[1925].speaker SPEAKER_34
transcript.pyannote[1925].start 11155.85721875
transcript.pyannote[1925].end 11156.76846875
transcript.pyannote[1926].speaker SPEAKER_34
transcript.pyannote[1926].start 11157.44346875
transcript.pyannote[1926].end 11157.62909375
transcript.pyannote[1927].speaker SPEAKER_34
transcript.pyannote[1927].start 11157.84846875
transcript.pyannote[1927].end 11159.63721875
transcript.pyannote[1928].speaker SPEAKER_34
transcript.pyannote[1928].start 11160.22784375
transcript.pyannote[1928].end 11162.47221875
transcript.pyannote[1929].speaker SPEAKER_34
transcript.pyannote[1929].start 11163.40034375
transcript.pyannote[1929].end 11164.37909375
transcript.pyannote[1930].speaker SPEAKER_34
transcript.pyannote[1930].start 11164.58159375
transcript.pyannote[1930].end 11167.02846875
transcript.pyannote[1931].speaker SPEAKER_34
transcript.pyannote[1931].start 11168.20971875
transcript.pyannote[1931].end 11168.68221875
transcript.pyannote[1932].speaker SPEAKER_34
transcript.pyannote[1932].start 11168.81721875
transcript.pyannote[1932].end 11169.45846875
transcript.pyannote[1933].speaker SPEAKER_34
transcript.pyannote[1933].start 11169.72846875
transcript.pyannote[1933].end 11170.45409375
transcript.pyannote[1934].speaker SPEAKER_34
transcript.pyannote[1934].start 11170.67346875
transcript.pyannote[1934].end 11172.14159375
transcript.pyannote[1935].speaker SPEAKER_06
transcript.pyannote[1935].start 11173.03596875
transcript.pyannote[1935].end 11174.08221875
transcript.pyannote[1936].speaker SPEAKER_34
transcript.pyannote[1936].start 11177.92971875
transcript.pyannote[1936].end 11180.44409375
transcript.pyannote[1937].speaker SPEAKER_34
transcript.pyannote[1937].start 11180.95034375
transcript.pyannote[1937].end 11181.52409375
transcript.pyannote[1938].speaker SPEAKER_34
transcript.pyannote[1938].start 11182.13159375
transcript.pyannote[1938].end 11188.15596875
transcript.pyannote[1939].speaker SPEAKER_34
transcript.pyannote[1939].start 11189.03346875
transcript.pyannote[1939].end 11191.00784375
transcript.pyannote[1940].speaker SPEAKER_27
transcript.pyannote[1940].start 11192.86409375
transcript.pyannote[1940].end 11193.03284375
transcript.pyannote[1941].speaker SPEAKER_34
transcript.pyannote[1941].start 11193.03284375
transcript.pyannote[1941].end 11193.97784375
transcript.pyannote[1942].speaker SPEAKER_27
transcript.pyannote[1942].start 11193.97784375
transcript.pyannote[1942].end 11194.02846875
transcript.pyannote[1943].speaker SPEAKER_34
transcript.pyannote[1943].start 11194.02846875
transcript.pyannote[1943].end 11195.47971875
transcript.pyannote[1944].speaker SPEAKER_27
transcript.pyannote[1944].start 11195.47971875
transcript.pyannote[1944].end 11195.53034375
transcript.pyannote[1945].speaker SPEAKER_34
transcript.pyannote[1945].start 11195.53034375
transcript.pyannote[1945].end 11195.59784375
transcript.pyannote[1946].speaker SPEAKER_27
transcript.pyannote[1946].start 11195.59784375
transcript.pyannote[1946].end 11195.63159375
transcript.pyannote[1947].speaker SPEAKER_34
transcript.pyannote[1947].start 11195.63159375
transcript.pyannote[1947].end 11196.17159375
transcript.pyannote[1948].speaker SPEAKER_34
transcript.pyannote[1948].start 11196.30659375
transcript.pyannote[1948].end 11196.64409375
transcript.pyannote[1949].speaker SPEAKER_34
transcript.pyannote[1949].start 11197.55534375
transcript.pyannote[1949].end 11203.14096875
transcript.pyannote[1950].speaker SPEAKER_34
transcript.pyannote[1950].start 11203.36034375
transcript.pyannote[1950].end 11204.42346875
transcript.pyannote[1951].speaker SPEAKER_34
transcript.pyannote[1951].start 11204.64284375
transcript.pyannote[1951].end 11204.87909375
transcript.pyannote[1952].speaker SPEAKER_34
transcript.pyannote[1952].start 11205.04784375
transcript.pyannote[1952].end 11206.53284375
transcript.pyannote[1953].speaker SPEAKER_34
transcript.pyannote[1953].start 11207.10659375
transcript.pyannote[1953].end 11207.96721875
transcript.pyannote[1954].speaker SPEAKER_16
transcript.pyannote[1954].start 11209.51971875
transcript.pyannote[1954].end 11209.53659375
transcript.pyannote[1955].speaker SPEAKER_34
transcript.pyannote[1955].start 11209.53659375
transcript.pyannote[1955].end 11209.87409375
transcript.pyannote[1956].speaker SPEAKER_34
transcript.pyannote[1956].start 11211.69659375
transcript.pyannote[1956].end 11214.51471875
transcript.pyannote[1957].speaker SPEAKER_34
transcript.pyannote[1957].start 11215.69596875
transcript.pyannote[1957].end 11229.85409375
transcript.pyannote[1958].speaker SPEAKER_34
transcript.pyannote[1958].start 11230.09034375
transcript.pyannote[1958].end 11231.59221875
transcript.pyannote[1959].speaker SPEAKER_27
transcript.pyannote[1959].start 11230.12409375
transcript.pyannote[1959].end 11230.52909375
transcript.pyannote[1960].speaker SPEAKER_34
transcript.pyannote[1960].start 11231.94659375
transcript.pyannote[1960].end 11233.71846875
transcript.pyannote[1961].speaker SPEAKER_27
transcript.pyannote[1961].start 11232.04784375
transcript.pyannote[1961].end 11236.51971875
transcript.pyannote[1962].speaker SPEAKER_34
transcript.pyannote[1962].start 11236.70534375
transcript.pyannote[1962].end 11240.92409375
transcript.pyannote[1963].speaker SPEAKER_27
transcript.pyannote[1963].start 11239.47284375
transcript.pyannote[1963].end 11240.89034375
transcript.pyannote[1964].speaker SPEAKER_27
transcript.pyannote[1964].start 11240.92409375
transcript.pyannote[1964].end 11244.33284375
transcript.pyannote[1965].speaker SPEAKER_34
transcript.pyannote[1965].start 11242.98284375
transcript.pyannote[1965].end 11246.13846875
transcript.pyannote[1966].speaker SPEAKER_27
transcript.pyannote[1966].start 11247.30284375
transcript.pyannote[1966].end 11252.24721875
transcript.pyannote[1967].speaker SPEAKER_34
transcript.pyannote[1967].start 11247.38721875
transcript.pyannote[1967].end 11247.82596875
transcript.pyannote[1968].speaker SPEAKER_34
transcript.pyannote[1968].start 11251.08284375
transcript.pyannote[1968].end 11261.14034375
transcript.pyannote[1969].speaker SPEAKER_34
transcript.pyannote[1969].start 11261.84909375
transcript.pyannote[1969].end 11265.22409375
transcript.pyannote[1970].speaker SPEAKER_28
transcript.pyannote[1970].start 11262.05159375
transcript.pyannote[1970].end 11262.40596875
transcript.pyannote[1971].speaker SPEAKER_34
transcript.pyannote[1971].start 11265.94971875
transcript.pyannote[1971].end 11266.28721875
transcript.pyannote[1972].speaker SPEAKER_34
transcript.pyannote[1972].start 11266.89471875
transcript.pyannote[1972].end 11267.45159375
transcript.pyannote[1973].speaker SPEAKER_34
transcript.pyannote[1973].start 11268.83534375
transcript.pyannote[1973].end 11270.67471875
transcript.pyannote[1974].speaker SPEAKER_34
transcript.pyannote[1974].start 11271.77159375
transcript.pyannote[1974].end 11274.65721875
transcript.pyannote[1975].speaker SPEAKER_34
transcript.pyannote[1975].start 11274.97784375
transcript.pyannote[1975].end 11277.69471875
transcript.pyannote[1976].speaker SPEAKER_34
transcript.pyannote[1976].start 11278.45409375
transcript.pyannote[1976].end 11280.64784375
transcript.pyannote[1977].speaker SPEAKER_34
transcript.pyannote[1977].start 11281.40721875
transcript.pyannote[1977].end 11284.69784375
transcript.pyannote[1978].speaker SPEAKER_34
transcript.pyannote[1978].start 11284.83284375
transcript.pyannote[1978].end 11287.65096875
transcript.pyannote[1979].speaker SPEAKER_34
transcript.pyannote[1979].start 11288.15721875
transcript.pyannote[1979].end 11289.23721875
transcript.pyannote[1980].speaker SPEAKER_34
transcript.pyannote[1980].start 11289.37221875
transcript.pyannote[1980].end 11289.94596875
transcript.pyannote[1981].speaker SPEAKER_34
transcript.pyannote[1981].start 11290.26659375
transcript.pyannote[1981].end 11292.42659375
transcript.pyannote[1982].speaker SPEAKER_34
transcript.pyannote[1982].start 11293.75971875
transcript.pyannote[1982].end 11294.38409375
transcript.pyannote[1983].speaker SPEAKER_34
transcript.pyannote[1983].start 11294.62034375
transcript.pyannote[1983].end 11297.03346875
transcript.pyannote[1984].speaker SPEAKER_34
transcript.pyannote[1984].start 11297.21909375
transcript.pyannote[1984].end 11299.75034375
transcript.pyannote[1985].speaker SPEAKER_34
transcript.pyannote[1985].start 11299.88534375
transcript.pyannote[1985].end 11300.12159375
transcript.pyannote[1986].speaker SPEAKER_34
transcript.pyannote[1986].start 11300.84721875
transcript.pyannote[1986].end 11302.29846875
transcript.pyannote[1987].speaker SPEAKER_28
transcript.pyannote[1987].start 11301.38721875
transcript.pyannote[1987].end 11302.04534375
transcript.pyannote[1988].speaker SPEAKER_27
transcript.pyannote[1988].start 11302.04534375
transcript.pyannote[1988].end 11302.06221875
transcript.pyannote[1989].speaker SPEAKER_28
transcript.pyannote[1989].start 11302.45034375
transcript.pyannote[1989].end 11302.46721875
transcript.pyannote[1990].speaker SPEAKER_34
transcript.pyannote[1990].start 11302.46721875
transcript.pyannote[1990].end 11302.48409375
transcript.pyannote[1991].speaker SPEAKER_28
transcript.pyannote[1991].start 11302.48409375
transcript.pyannote[1991].end 11302.50096875
transcript.pyannote[1992].speaker SPEAKER_34
transcript.pyannote[1992].start 11302.50096875
transcript.pyannote[1992].end 11309.36909375
transcript.pyannote[1993].speaker SPEAKER_27
transcript.pyannote[1993].start 11310.38159375
transcript.pyannote[1993].end 11315.84909375
transcript.pyannote[1994].speaker SPEAKER_34
transcript.pyannote[1994].start 11316.43971875
transcript.pyannote[1994].end 11320.86096875
transcript.pyannote[1995].speaker SPEAKER_27
transcript.pyannote[1995].start 11321.68784375
transcript.pyannote[1995].end 11321.73846875
transcript.pyannote[1996].speaker SPEAKER_34
transcript.pyannote[1996].start 11321.73846875
transcript.pyannote[1996].end 11321.75534375
transcript.pyannote[1997].speaker SPEAKER_27
transcript.pyannote[1997].start 11321.75534375
transcript.pyannote[1997].end 11323.25721875
transcript.pyannote[1998].speaker SPEAKER_34
transcript.pyannote[1998].start 11323.25721875
transcript.pyannote[1998].end 11326.54784375
transcript.pyannote[1999].speaker SPEAKER_27
transcript.pyannote[1999].start 11323.30784375
transcript.pyannote[1999].end 11324.79284375
transcript.pyannote[2000].speaker SPEAKER_34
transcript.pyannote[2000].start 11326.85159375
transcript.pyannote[2000].end 11333.83784375
transcript.pyannote[2001].speaker SPEAKER_27
transcript.pyannote[2001].start 11334.09096875
transcript.pyannote[2001].end 11340.03096875
transcript.pyannote[2002].speaker SPEAKER_34
transcript.pyannote[2002].start 11340.03096875
transcript.pyannote[2002].end 11352.13034375
transcript.pyannote[2003].speaker SPEAKER_27
transcript.pyannote[2003].start 11352.13034375
transcript.pyannote[2003].end 11359.06596875
transcript.pyannote[2004].speaker SPEAKER_34
transcript.pyannote[2004].start 11357.63159375
transcript.pyannote[2004].end 11365.20846875
transcript.pyannote[2005].speaker SPEAKER_34
transcript.pyannote[2005].start 11365.81596875
transcript.pyannote[2005].end 11368.44846875
transcript.pyannote[2006].speaker SPEAKER_34
transcript.pyannote[2006].start 11368.76909375
transcript.pyannote[2006].end 11369.27534375
transcript.pyannote[2007].speaker SPEAKER_15
transcript.pyannote[2007].start 11370.94596875
transcript.pyannote[2007].end 11371.57034375
transcript.pyannote[2008].speaker SPEAKER_15
transcript.pyannote[2008].start 11375.38409375
transcript.pyannote[2008].end 11378.99534375
transcript.pyannote[2009].speaker SPEAKER_00
transcript.pyannote[2009].start 11388.98534375
transcript.pyannote[2009].end 11390.14971875
transcript.pyannote[2010].speaker SPEAKER_00
transcript.pyannote[2010].start 11390.97659375
transcript.pyannote[2010].end 11393.18721875
transcript.pyannote[2011].speaker SPEAKER_00
transcript.pyannote[2011].start 11393.99721875
transcript.pyannote[2011].end 11394.62159375
transcript.pyannote[2012].speaker SPEAKER_00
transcript.pyannote[2012].start 11395.06034375
transcript.pyannote[2012].end 11396.15721875
transcript.pyannote[2013].speaker SPEAKER_00
transcript.pyannote[2013].start 11397.22034375
transcript.pyannote[2013].end 11401.08471875
transcript.pyannote[2014].speaker SPEAKER_00
transcript.pyannote[2014].start 11401.59096875
transcript.pyannote[2014].end 11404.03784375
transcript.pyannote[2015].speaker SPEAKER_00
transcript.pyannote[2015].start 11404.17284375
transcript.pyannote[2015].end 11405.74221875
transcript.pyannote[2016].speaker SPEAKER_00
transcript.pyannote[2016].start 11405.92784375
transcript.pyannote[2016].end 11407.51409375
transcript.pyannote[2017].speaker SPEAKER_00
transcript.pyannote[2017].start 11408.15534375
transcript.pyannote[2017].end 11411.80034375
transcript.pyannote[2018].speaker SPEAKER_00
transcript.pyannote[2018].start 11412.10409375
transcript.pyannote[2018].end 11413.65659375
transcript.pyannote[2019].speaker SPEAKER_00
transcript.pyannote[2019].start 11414.58471875
transcript.pyannote[2019].end 11416.99784375
transcript.pyannote[2020].speaker SPEAKER_00
transcript.pyannote[2020].start 11417.72346875
transcript.pyannote[2020].end 11419.20846875
transcript.pyannote[2021].speaker SPEAKER_00
transcript.pyannote[2021].start 11419.76534375
transcript.pyannote[2021].end 11421.28409375
transcript.pyannote[2022].speaker SPEAKER_00
transcript.pyannote[2022].start 11422.09409375
transcript.pyannote[2022].end 11423.71409375
transcript.pyannote[2023].speaker SPEAKER_00
transcript.pyannote[2023].start 11423.86596875
transcript.pyannote[2023].end 11429.92409375
transcript.pyannote[2024].speaker SPEAKER_00
transcript.pyannote[2024].start 11430.59909375
transcript.pyannote[2024].end 11433.04596875
transcript.pyannote[2025].speaker SPEAKER_00
transcript.pyannote[2025].start 11433.61971875
transcript.pyannote[2025].end 11434.95284375
transcript.pyannote[2026].speaker SPEAKER_00
transcript.pyannote[2026].start 11435.47596875
transcript.pyannote[2026].end 11436.57284375
transcript.pyannote[2027].speaker SPEAKER_00
transcript.pyannote[2027].start 11437.02846875
transcript.pyannote[2027].end 11440.99409375
transcript.pyannote[2028].speaker SPEAKER_00
transcript.pyannote[2028].start 11441.83784375
transcript.pyannote[2028].end 11444.45346875
transcript.pyannote[2029].speaker SPEAKER_00
transcript.pyannote[2029].start 11444.60534375
transcript.pyannote[2029].end 11446.49534375
transcript.pyannote[2030].speaker SPEAKER_00
transcript.pyannote[2030].start 11447.47409375
transcript.pyannote[2030].end 11448.60471875
transcript.pyannote[2031].speaker SPEAKER_00
transcript.pyannote[2031].start 11449.33034375
transcript.pyannote[2031].end 11457.02534375
transcript.pyannote[2032].speaker SPEAKER_00
transcript.pyannote[2032].start 11457.09284375
transcript.pyannote[2032].end 11458.78034375
transcript.pyannote[2033].speaker SPEAKER_00
transcript.pyannote[2033].start 11460.02909375
transcript.pyannote[2033].end 11465.58096875
transcript.pyannote[2034].speaker SPEAKER_00
transcript.pyannote[2034].start 11465.90159375
transcript.pyannote[2034].end 11466.93096875
transcript.pyannote[2035].speaker SPEAKER_00
transcript.pyannote[2035].start 11466.96471875
transcript.pyannote[2035].end 11467.03221875
transcript.pyannote[2036].speaker SPEAKER_00
transcript.pyannote[2036].start 11467.04909375
transcript.pyannote[2036].end 11468.70284375
transcript.pyannote[2037].speaker SPEAKER_00
transcript.pyannote[2037].start 11469.00659375
transcript.pyannote[2037].end 11470.99784375
transcript.pyannote[2038].speaker SPEAKER_00
transcript.pyannote[2038].start 11471.77409375
transcript.pyannote[2038].end 11474.33909375
transcript.pyannote[2039].speaker SPEAKER_00
transcript.pyannote[2039].start 11474.82846875
transcript.pyannote[2039].end 11477.93346875
transcript.pyannote[2040].speaker SPEAKER_00
transcript.pyannote[2040].start 11479.30034375
transcript.pyannote[2040].end 11481.39284375
transcript.pyannote[2041].speaker SPEAKER_15
transcript.pyannote[2041].start 11481.47721875
transcript.pyannote[2041].end 11483.11409375
transcript.pyannote[2042].speaker SPEAKER_00
transcript.pyannote[2042].start 11490.10034375
transcript.pyannote[2042].end 11491.33221875
transcript.pyannote[2043].speaker SPEAKER_00
transcript.pyannote[2043].start 11491.68659375
transcript.pyannote[2043].end 11492.09159375
transcript.pyannote[2044].speaker SPEAKER_00
transcript.pyannote[2044].start 11492.31096875
transcript.pyannote[2044].end 11492.69909375
transcript.pyannote[2045].speaker SPEAKER_00
transcript.pyannote[2045].start 11493.13784375
transcript.pyannote[2045].end 11494.80846875
transcript.pyannote[2046].speaker SPEAKER_00
transcript.pyannote[2046].start 11495.24721875
transcript.pyannote[2046].end 11496.95159375
transcript.pyannote[2047].speaker SPEAKER_00
transcript.pyannote[2047].start 11497.52534375
transcript.pyannote[2047].end 11499.17909375
transcript.pyannote[2048].speaker SPEAKER_00
transcript.pyannote[2048].start 11499.88784375
transcript.pyannote[2048].end 11501.64284375
transcript.pyannote[2049].speaker SPEAKER_00
transcript.pyannote[2049].start 11502.01409375
transcript.pyannote[2049].end 11503.21221875
transcript.pyannote[2050].speaker SPEAKER_00
transcript.pyannote[2050].start 11503.41471875
transcript.pyannote[2050].end 11509.32096875
transcript.pyannote[2051].speaker SPEAKER_00
transcript.pyannote[2051].start 11509.91159375
transcript.pyannote[2051].end 11518.11284375
transcript.pyannote[2052].speaker SPEAKER_17
transcript.pyannote[2052].start 11510.29971875
transcript.pyannote[2052].end 11510.97471875
transcript.pyannote[2053].speaker SPEAKER_01
transcript.pyannote[2053].start 11510.97471875
transcript.pyannote[2053].end 11511.48096875
transcript.pyannote[2054].speaker SPEAKER_00
transcript.pyannote[2054].start 11518.12971875
transcript.pyannote[2054].end 11521.96034375
transcript.pyannote[2055].speaker SPEAKER_00
transcript.pyannote[2055].start 11522.88846875
transcript.pyannote[2055].end 11525.57159375
transcript.pyannote[2056].speaker SPEAKER_15
transcript.pyannote[2056].start 11526.29721875
transcript.pyannote[2056].end 11527.81596875
transcript.pyannote[2057].speaker SPEAKER_00
transcript.pyannote[2057].start 11533.30034375
transcript.pyannote[2057].end 11535.25784375
transcript.pyannote[2058].speaker SPEAKER_00
transcript.pyannote[2058].start 11535.61221875
transcript.pyannote[2058].end 11538.41346875
transcript.pyannote[2059].speaker SPEAKER_00
transcript.pyannote[2059].start 11538.76784375
transcript.pyannote[2059].end 11542.12596875
transcript.pyannote[2060].speaker SPEAKER_00
transcript.pyannote[2060].start 11542.80096875
transcript.pyannote[2060].end 11545.34909375
transcript.pyannote[2061].speaker SPEAKER_00
transcript.pyannote[2061].start 11546.10846875
transcript.pyannote[2061].end 11548.35284375
transcript.pyannote[2062].speaker SPEAKER_00
transcript.pyannote[2062].start 11549.12909375
transcript.pyannote[2062].end 11551.86284375
transcript.pyannote[2063].speaker SPEAKER_00
transcript.pyannote[2063].start 11552.52096875
transcript.pyannote[2063].end 11554.24221875
transcript.pyannote[2064].speaker SPEAKER_00
transcript.pyannote[2064].start 11555.00159375
transcript.pyannote[2064].end 11558.37659375
transcript.pyannote[2065].speaker SPEAKER_00
transcript.pyannote[2065].start 11559.06846875
transcript.pyannote[2065].end 11560.03034375
transcript.pyannote[2066].speaker SPEAKER_00
transcript.pyannote[2066].start 11560.62096875
transcript.pyannote[2066].end 11563.69221875
transcript.pyannote[2067].speaker SPEAKER_00
transcript.pyannote[2067].start 11564.36721875
transcript.pyannote[2067].end 11570.39159375
transcript.pyannote[2068].speaker SPEAKER_00
transcript.pyannote[2068].start 11571.15096875
transcript.pyannote[2068].end 11571.60659375
transcript.pyannote[2069].speaker SPEAKER_00
transcript.pyannote[2069].start 11571.96096875
transcript.pyannote[2069].end 11572.97346875
transcript.pyannote[2070].speaker SPEAKER_00
transcript.pyannote[2070].start 11573.42909375
transcript.pyannote[2070].end 11575.03221875
transcript.pyannote[2071].speaker SPEAKER_00
transcript.pyannote[2071].start 11575.40346875
transcript.pyannote[2071].end 11576.50034375
transcript.pyannote[2072].speaker SPEAKER_00
transcript.pyannote[2072].start 11577.05721875
transcript.pyannote[2072].end 11577.73221875
transcript.pyannote[2073].speaker SPEAKER_00
transcript.pyannote[2073].start 11578.00221875
transcript.pyannote[2073].end 11578.93034375
transcript.pyannote[2074].speaker SPEAKER_00
transcript.pyannote[2074].start 11579.45346875
transcript.pyannote[2074].end 11580.87096875
transcript.pyannote[2075].speaker SPEAKER_00
transcript.pyannote[2075].start 11581.27596875
transcript.pyannote[2075].end 11587.08096875
transcript.pyannote[2076].speaker SPEAKER_00
transcript.pyannote[2076].start 11587.18221875
transcript.pyannote[2076].end 11591.63721875
transcript.pyannote[2077].speaker SPEAKER_32
transcript.pyannote[2077].start 11591.99159375
transcript.pyannote[2077].end 11592.44721875
transcript.pyannote[2078].speaker SPEAKER_00
transcript.pyannote[2078].start 11593.81409375
transcript.pyannote[2078].end 11595.14721875
transcript.pyannote[2079].speaker SPEAKER_00
transcript.pyannote[2079].start 11595.80534375
transcript.pyannote[2079].end 11598.25221875
transcript.pyannote[2080].speaker SPEAKER_00
transcript.pyannote[2080].start 11599.07909375
transcript.pyannote[2080].end 11602.52159375
transcript.pyannote[2081].speaker SPEAKER_00
transcript.pyannote[2081].start 11602.94346875
transcript.pyannote[2081].end 11603.21346875
transcript.pyannote[2082].speaker SPEAKER_00
transcript.pyannote[2082].start 11603.77034375
transcript.pyannote[2082].end 11618.33346875
transcript.pyannote[2083].speaker SPEAKER_27
transcript.pyannote[2083].start 11620.57784375
transcript.pyannote[2083].end 11626.04534375
transcript.pyannote[2084].speaker SPEAKER_27
transcript.pyannote[2084].start 11626.24784375
transcript.pyannote[2084].end 11626.90596875
transcript.pyannote[2085].speaker SPEAKER_27
transcript.pyannote[2085].start 11627.37846875
transcript.pyannote[2085].end 11628.03659375
transcript.pyannote[2086].speaker SPEAKER_00
transcript.pyannote[2086].start 11628.03659375
transcript.pyannote[2086].end 11632.76159375
transcript.pyannote[2087].speaker SPEAKER_27
transcript.pyannote[2087].start 11632.98096875
transcript.pyannote[2087].end 11638.76909375
transcript.pyannote[2088].speaker SPEAKER_00
transcript.pyannote[2088].start 11638.76909375
transcript.pyannote[2088].end 11638.81971875
transcript.pyannote[2089].speaker SPEAKER_27
transcript.pyannote[2089].start 11639.22471875
transcript.pyannote[2089].end 11639.24159375
transcript.pyannote[2090].speaker SPEAKER_00
transcript.pyannote[2090].start 11639.24159375
transcript.pyannote[2090].end 11648.50596875
transcript.pyannote[2091].speaker SPEAKER_00
transcript.pyannote[2091].start 11649.13034375
transcript.pyannote[2091].end 11649.21471875
transcript.pyannote[2092].speaker SPEAKER_00
transcript.pyannote[2092].start 11649.48471875
transcript.pyannote[2092].end 11652.10034375
transcript.pyannote[2093].speaker SPEAKER_00
transcript.pyannote[2093].start 11653.04534375
transcript.pyannote[2093].end 11658.10784375
transcript.pyannote[2094].speaker SPEAKER_00
transcript.pyannote[2094].start 11658.12471875
transcript.pyannote[2094].end 11660.45346875
transcript.pyannote[2095].speaker SPEAKER_00
transcript.pyannote[2095].start 11662.19159375
transcript.pyannote[2095].end 11664.41909375
transcript.pyannote[2096].speaker SPEAKER_00
transcript.pyannote[2096].start 11665.09409375
transcript.pyannote[2096].end 11665.98846875
transcript.pyannote[2097].speaker SPEAKER_00
transcript.pyannote[2097].start 11666.35971875
transcript.pyannote[2097].end 11667.25409375
transcript.pyannote[2098].speaker SPEAKER_00
transcript.pyannote[2098].start 11667.86159375
transcript.pyannote[2098].end 11671.40534375
transcript.pyannote[2099].speaker SPEAKER_00
transcript.pyannote[2099].start 11671.84409375
transcript.pyannote[2099].end 11678.35784375
transcript.pyannote[2100].speaker SPEAKER_00
transcript.pyannote[2100].start 11678.81346875
transcript.pyannote[2100].end 11680.73721875
transcript.pyannote[2101].speaker SPEAKER_00
transcript.pyannote[2101].start 11681.46284375
transcript.pyannote[2101].end 11683.21784375
transcript.pyannote[2102].speaker SPEAKER_00
transcript.pyannote[2102].start 11683.82534375
transcript.pyannote[2102].end 11688.53346875
transcript.pyannote[2103].speaker SPEAKER_00
transcript.pyannote[2103].start 11689.78221875
transcript.pyannote[2103].end 11693.34284375
transcript.pyannote[2104].speaker SPEAKER_15
transcript.pyannote[2104].start 11691.21659375
transcript.pyannote[2104].end 11692.12784375
transcript.pyannote[2105].speaker SPEAKER_15
transcript.pyannote[2105].start 11693.25846875
transcript.pyannote[2105].end 11694.18659375
transcript.pyannote[2106].speaker SPEAKER_00
transcript.pyannote[2106].start 11696.75159375
transcript.pyannote[2106].end 11697.19034375
transcript.pyannote[2107].speaker SPEAKER_00
transcript.pyannote[2107].start 11697.42659375
transcript.pyannote[2107].end 11697.76409375
transcript.pyannote[2108].speaker SPEAKER_00
transcript.pyannote[2108].start 11698.05096875
transcript.pyannote[2108].end 11698.91159375
transcript.pyannote[2109].speaker SPEAKER_00
transcript.pyannote[2109].start 11699.16471875
transcript.pyannote[2109].end 11700.56534375
transcript.pyannote[2110].speaker SPEAKER_00
transcript.pyannote[2110].start 11701.64534375
transcript.pyannote[2110].end 11703.70409375
transcript.pyannote[2111].speaker SPEAKER_00
transcript.pyannote[2111].start 11703.88971875
transcript.pyannote[2111].end 11705.69534375
transcript.pyannote[2112].speaker SPEAKER_00
transcript.pyannote[2112].start 11706.57284375
transcript.pyannote[2112].end 11710.15034375
transcript.pyannote[2113].speaker SPEAKER_00
transcript.pyannote[2113].start 11710.20096875
transcript.pyannote[2113].end 11710.21784375
transcript.pyannote[2114].speaker SPEAKER_00
transcript.pyannote[2114].start 11710.26846875
transcript.pyannote[2114].end 11711.17971875
transcript.pyannote[2115].speaker SPEAKER_16
transcript.pyannote[2115].start 11711.17971875
transcript.pyannote[2115].end 11715.38159375
transcript.pyannote[2116].speaker SPEAKER_00
transcript.pyannote[2116].start 11711.21346875
transcript.pyannote[2116].end 11712.19221875
transcript.pyannote[2117].speaker SPEAKER_16
transcript.pyannote[2117].start 11715.85409375
transcript.pyannote[2117].end 11718.72284375
transcript.pyannote[2118].speaker SPEAKER_16
transcript.pyannote[2118].start 11719.49909375
transcript.pyannote[2118].end 11722.94159375
transcript.pyannote[2119].speaker SPEAKER_16
transcript.pyannote[2119].start 11723.16096875
transcript.pyannote[2119].end 11723.19471875
transcript.pyannote[2120].speaker SPEAKER_00
transcript.pyannote[2120].start 11723.19471875
transcript.pyannote[2120].end 11724.07221875
transcript.pyannote[2121].speaker SPEAKER_00
transcript.pyannote[2121].start 11724.61221875
transcript.pyannote[2121].end 11725.38846875
transcript.pyannote[2122].speaker SPEAKER_00
transcript.pyannote[2122].start 11725.55721875
transcript.pyannote[2122].end 11726.87346875
transcript.pyannote[2123].speaker SPEAKER_00
transcript.pyannote[2123].start 11727.31221875
transcript.pyannote[2123].end 11730.50159375
transcript.pyannote[2124].speaker SPEAKER_00
transcript.pyannote[2124].start 11731.22721875
transcript.pyannote[2124].end 11732.76284375
transcript.pyannote[2125].speaker SPEAKER_00
transcript.pyannote[2125].start 11733.11721875
transcript.pyannote[2125].end 11736.00284375
transcript.pyannote[2126].speaker SPEAKER_00
transcript.pyannote[2126].start 11736.45846875
transcript.pyannote[2126].end 11737.87596875
transcript.pyannote[2127].speaker SPEAKER_00
transcript.pyannote[2127].start 11738.19659375
transcript.pyannote[2127].end 11739.39471875
transcript.pyannote[2128].speaker SPEAKER_00
transcript.pyannote[2128].start 11739.96846875
transcript.pyannote[2128].end 11741.63909375
transcript.pyannote[2129].speaker SPEAKER_16
transcript.pyannote[2129].start 11741.63909375
transcript.pyannote[2129].end 11741.77409375
transcript.pyannote[2130].speaker SPEAKER_16
transcript.pyannote[2130].start 11742.17909375
transcript.pyannote[2130].end 11742.53346875
transcript.pyannote[2131].speaker SPEAKER_00
transcript.pyannote[2131].start 11743.12409375
transcript.pyannote[2131].end 11743.14096875
transcript.pyannote[2132].speaker SPEAKER_16
transcript.pyannote[2132].start 11743.14096875
transcript.pyannote[2132].end 11750.81909375
transcript.pyannote[2133].speaker SPEAKER_00
transcript.pyannote[2133].start 11747.12346875
transcript.pyannote[2133].end 11747.61284375
transcript.pyannote[2134].speaker SPEAKER_16
transcript.pyannote[2134].start 11750.92034375
transcript.pyannote[2134].end 11759.66159375
transcript.pyannote[2135].speaker SPEAKER_00
transcript.pyannote[2135].start 11759.66159375
transcript.pyannote[2135].end 11761.66971875
transcript.pyannote[2136].speaker SPEAKER_00
transcript.pyannote[2136].start 11762.05784375
transcript.pyannote[2136].end 11764.77471875
transcript.pyannote[2137].speaker SPEAKER_16
transcript.pyannote[2137].start 11764.77471875
transcript.pyannote[2137].end 11767.77846875
transcript.pyannote[2138].speaker SPEAKER_00
transcript.pyannote[2138].start 11764.97721875
transcript.pyannote[2138].end 11765.63534375
transcript.pyannote[2139].speaker SPEAKER_16
transcript.pyannote[2139].start 11768.23409375
transcript.pyannote[2139].end 11773.80284375
transcript.pyannote[2140].speaker SPEAKER_00
transcript.pyannote[2140].start 11771.84534375
transcript.pyannote[2140].end 11774.79846875
transcript.pyannote[2141].speaker SPEAKER_00
transcript.pyannote[2141].start 11774.96721875
transcript.pyannote[2141].end 11779.59096875
transcript.pyannote[2142].speaker SPEAKER_16
transcript.pyannote[2142].start 11777.43096875
transcript.pyannote[2142].end 11777.80221875
transcript.pyannote[2143].speaker SPEAKER_00
transcript.pyannote[2143].start 11779.87784375
transcript.pyannote[2143].end 11783.47221875
transcript.pyannote[2144].speaker SPEAKER_16
transcript.pyannote[2144].start 11780.04659375
transcript.pyannote[2144].end 11780.09721875
transcript.pyannote[2145].speaker SPEAKER_28
transcript.pyannote[2145].start 11780.09721875
transcript.pyannote[2145].end 11780.24909375
transcript.pyannote[2146].speaker SPEAKER_00
transcript.pyannote[2146].start 11784.11346875
transcript.pyannote[2146].end 11784.16409375
transcript.pyannote[2147].speaker SPEAKER_00
transcript.pyannote[2147].start 11784.60284375
transcript.pyannote[2147].end 11785.64909375
transcript.pyannote[2148].speaker SPEAKER_00
transcript.pyannote[2148].start 11786.18909375
transcript.pyannote[2148].end 11787.26909375
transcript.pyannote[2149].speaker SPEAKER_00
transcript.pyannote[2149].start 11787.58971875
transcript.pyannote[2149].end 11788.99034375
transcript.pyannote[2150].speaker SPEAKER_00
transcript.pyannote[2150].start 11789.37846875
transcript.pyannote[2150].end 11791.92659375
transcript.pyannote[2151].speaker SPEAKER_00
transcript.pyannote[2151].start 11791.97721875
transcript.pyannote[2151].end 11795.85846875
transcript.pyannote[2152].speaker SPEAKER_00
transcript.pyannote[2152].start 11796.29721875
transcript.pyannote[2152].end 11797.22534375
transcript.pyannote[2153].speaker SPEAKER_00
transcript.pyannote[2153].start 11797.74846875
transcript.pyannote[2153].end 11799.28409375
transcript.pyannote[2154].speaker SPEAKER_00
transcript.pyannote[2154].start 11800.21221875
transcript.pyannote[2154].end 11802.74346875
transcript.pyannote[2155].speaker SPEAKER_15
transcript.pyannote[2155].start 11806.28721875
transcript.pyannote[2155].end 11807.02971875
transcript.pyannote[2156].speaker SPEAKER_15
transcript.pyannote[2156].start 11807.08034375
transcript.pyannote[2156].end 11807.36721875
transcript.pyannote[2157].speaker SPEAKER_00
transcript.pyannote[2157].start 11813.15534375
transcript.pyannote[2157].end 11818.04909375
transcript.pyannote[2158].speaker SPEAKER_00
transcript.pyannote[2158].start 11819.06159375
transcript.pyannote[2158].end 11819.36534375
transcript.pyannote[2159].speaker SPEAKER_00
transcript.pyannote[2159].start 11819.66909375
transcript.pyannote[2159].end 11822.62221875
transcript.pyannote[2160].speaker SPEAKER_00
transcript.pyannote[2160].start 11822.80784375
transcript.pyannote[2160].end 11828.39346875
transcript.pyannote[2161].speaker SPEAKER_00
transcript.pyannote[2161].start 11830.08096875
transcript.pyannote[2161].end 11830.97534375
transcript.pyannote[2162].speaker SPEAKER_24
transcript.pyannote[2162].start 11830.97534375
transcript.pyannote[2162].end 11838.87284375
transcript.pyannote[2163].speaker SPEAKER_24
transcript.pyannote[2163].start 11839.37909375
transcript.pyannote[2163].end 11839.86846875
transcript.pyannote[2164].speaker SPEAKER_24
transcript.pyannote[2164].start 11840.50971875
transcript.pyannote[2164].end 11840.54346875
transcript.pyannote[2165].speaker SPEAKER_00
transcript.pyannote[2165].start 11840.54346875
transcript.pyannote[2165].end 11843.98596875
transcript.pyannote[2166].speaker SPEAKER_00
transcript.pyannote[2166].start 11844.45846875
transcript.pyannote[2166].end 11847.46221875
transcript.pyannote[2167].speaker SPEAKER_00
transcript.pyannote[2167].start 11848.20471875
transcript.pyannote[2167].end 11848.96409375
transcript.pyannote[2168].speaker SPEAKER_00
transcript.pyannote[2168].start 11849.63909375
transcript.pyannote[2168].end 11853.53721875
transcript.pyannote[2169].speaker SPEAKER_00
transcript.pyannote[2169].start 11853.82409375
transcript.pyannote[2169].end 11855.39346875
transcript.pyannote[2170].speaker SPEAKER_33
transcript.pyannote[2170].start 11855.68034375
transcript.pyannote[2170].end 11855.93346875
transcript.pyannote[2171].speaker SPEAKER_00
transcript.pyannote[2171].start 11855.93346875
transcript.pyannote[2171].end 11856.62534375
transcript.pyannote[2172].speaker SPEAKER_00
transcript.pyannote[2172].start 11857.24971875
transcript.pyannote[2172].end 11859.12284375
transcript.pyannote[2173].speaker SPEAKER_00
transcript.pyannote[2173].start 11860.64159375
transcript.pyannote[2173].end 11869.12971875
transcript.pyannote[2174].speaker SPEAKER_00
transcript.pyannote[2174].start 11870.04096875
transcript.pyannote[2174].end 11871.77909375
transcript.pyannote[2175].speaker SPEAKER_00
transcript.pyannote[2175].start 11871.86346875
transcript.pyannote[2175].end 11873.33159375
transcript.pyannote[2176].speaker SPEAKER_00
transcript.pyannote[2176].start 11873.97284375
transcript.pyannote[2176].end 11878.79909375
transcript.pyannote[2177].speaker SPEAKER_00
transcript.pyannote[2177].start 11879.45721875
transcript.pyannote[2177].end 11882.96721875
transcript.pyannote[2178].speaker SPEAKER_00
transcript.pyannote[2178].start 11883.43971875
transcript.pyannote[2178].end 11885.17784375
transcript.pyannote[2179].speaker SPEAKER_00
transcript.pyannote[2179].start 11885.63346875
transcript.pyannote[2179].end 11889.73409375
transcript.pyannote[2180].speaker SPEAKER_00
transcript.pyannote[2180].start 11890.35846875
transcript.pyannote[2180].end 11891.45534375
transcript.pyannote[2181].speaker SPEAKER_00
transcript.pyannote[2181].start 11892.21471875
transcript.pyannote[2181].end 11893.10909375
transcript.pyannote[2182].speaker SPEAKER_00
transcript.pyannote[2182].start 11894.00346875
transcript.pyannote[2182].end 11898.64409375
transcript.pyannote[2183].speaker SPEAKER_00
transcript.pyannote[2183].start 11899.20096875
transcript.pyannote[2183].end 11901.95159375
transcript.pyannote[2184].speaker SPEAKER_00
transcript.pyannote[2184].start 11902.62659375
transcript.pyannote[2184].end 11906.38971875
transcript.pyannote[2185].speaker SPEAKER_00
transcript.pyannote[2185].start 11907.01409375
transcript.pyannote[2185].end 11909.73096875
transcript.pyannote[2186].speaker SPEAKER_00
transcript.pyannote[2186].start 11910.20346875
transcript.pyannote[2186].end 11913.34221875
transcript.pyannote[2187].speaker SPEAKER_00
transcript.pyannote[2187].start 11913.83159375
transcript.pyannote[2187].end 11917.69596875
transcript.pyannote[2188].speaker SPEAKER_00
transcript.pyannote[2188].start 11918.40471875
transcript.pyannote[2188].end 11920.51409375
transcript.pyannote[2189].speaker SPEAKER_00
transcript.pyannote[2189].start 11921.10471875
transcript.pyannote[2189].end 11923.70346875
transcript.pyannote[2190].speaker SPEAKER_00
transcript.pyannote[2190].start 11924.10846875
transcript.pyannote[2190].end 11925.49221875
transcript.pyannote[2191].speaker SPEAKER_00
transcript.pyannote[2191].start 11925.98159375
transcript.pyannote[2191].end 11927.60159375
transcript.pyannote[2192].speaker SPEAKER_00
transcript.pyannote[2192].start 11928.37784375
transcript.pyannote[2192].end 11930.03159375
transcript.pyannote[2193].speaker SPEAKER_00
transcript.pyannote[2193].start 11930.62221875
transcript.pyannote[2193].end 11931.83721875
transcript.pyannote[2194].speaker SPEAKER_00
transcript.pyannote[2194].start 11932.27596875
transcript.pyannote[2194].end 11933.42346875
transcript.pyannote[2195].speaker SPEAKER_00
transcript.pyannote[2195].start 11933.71034375
transcript.pyannote[2195].end 11936.03909375
transcript.pyannote[2196].speaker SPEAKER_00
transcript.pyannote[2196].start 11936.74784375
transcript.pyannote[2196].end 11942.46846875
transcript.pyannote[2197].speaker SPEAKER_00
transcript.pyannote[2197].start 11943.12659375
transcript.pyannote[2197].end 11945.52284375
transcript.pyannote[2198].speaker SPEAKER_00
transcript.pyannote[2198].start 11946.41721875
transcript.pyannote[2198].end 11947.15971875
transcript.pyannote[2199].speaker SPEAKER_00
transcript.pyannote[2199].start 11948.02034375
transcript.pyannote[2199].end 11948.99909375
transcript.pyannote[2200].speaker SPEAKER_00
transcript.pyannote[2200].start 11949.82596875
transcript.pyannote[2200].end 11950.51784375
transcript.pyannote[2201].speaker SPEAKER_00
transcript.pyannote[2201].start 11950.97346875
transcript.pyannote[2201].end 11952.10409375
transcript.pyannote[2202].speaker SPEAKER_00
transcript.pyannote[2202].start 11953.63971875
transcript.pyannote[2202].end 11955.25971875
transcript.pyannote[2203].speaker SPEAKER_00
transcript.pyannote[2203].start 11956.23846875
transcript.pyannote[2203].end 11958.41534375
transcript.pyannote[2204].speaker SPEAKER_00
transcript.pyannote[2204].start 11959.14096875
transcript.pyannote[2204].end 11961.52034375
transcript.pyannote[2205].speaker SPEAKER_00
transcript.pyannote[2205].start 11962.33034375
transcript.pyannote[2205].end 11964.54096875
transcript.pyannote[2206].speaker SPEAKER_00
transcript.pyannote[2206].start 11965.30034375
transcript.pyannote[2206].end 11967.54471875
transcript.pyannote[2207].speaker SPEAKER_00
transcript.pyannote[2207].start 11968.01721875
transcript.pyannote[2207].end 11971.47659375
transcript.pyannote[2208].speaker SPEAKER_00
transcript.pyannote[2208].start 11971.84784375
transcript.pyannote[2208].end 11973.34971875
transcript.pyannote[2209].speaker SPEAKER_00
transcript.pyannote[2209].start 11973.63659375
transcript.pyannote[2209].end 11977.46721875
transcript.pyannote[2210].speaker SPEAKER_00
transcript.pyannote[2210].start 11978.44596875
transcript.pyannote[2210].end 11980.65659375
transcript.pyannote[2211].speaker SPEAKER_00
transcript.pyannote[2211].start 11981.66909375
transcript.pyannote[2211].end 11983.77846875
transcript.pyannote[2212].speaker SPEAKER_00
transcript.pyannote[2212].start 11984.01471875
transcript.pyannote[2212].end 11984.50409375
transcript.pyannote[2213].speaker SPEAKER_00
transcript.pyannote[2213].start 11985.14534375
transcript.pyannote[2213].end 11986.37721875
transcript.pyannote[2214].speaker SPEAKER_00
transcript.pyannote[2214].start 11986.98471875
transcript.pyannote[2214].end 11988.67221875
transcript.pyannote[2215].speaker SPEAKER_00
transcript.pyannote[2215].start 11989.68471875
transcript.pyannote[2215].end 11992.03034375
transcript.pyannote[2216].speaker SPEAKER_00
transcript.pyannote[2216].start 11992.51971875
transcript.pyannote[2216].end 11992.95846875
transcript.pyannote[2217].speaker SPEAKER_00
transcript.pyannote[2217].start 11993.31284375
transcript.pyannote[2217].end 12000.85596875
transcript.pyannote[2218].speaker SPEAKER_00
transcript.pyannote[2218].start 12001.59846875
transcript.pyannote[2218].end 12003.16784375
transcript.pyannote[2219].speaker SPEAKER_00
transcript.pyannote[2219].start 12003.53909375
transcript.pyannote[2219].end 12014.35596875
transcript.pyannote[2220].speaker SPEAKER_00
transcript.pyannote[2220].start 12015.01409375
transcript.pyannote[2220].end 12017.24159375
transcript.pyannote[2221].speaker SPEAKER_00
transcript.pyannote[2221].start 12017.91659375
transcript.pyannote[2221].end 12019.77284375
transcript.pyannote[2222].speaker SPEAKER_00
transcript.pyannote[2222].start 12020.41409375
transcript.pyannote[2222].end 12024.00846875
transcript.pyannote[2223].speaker SPEAKER_00
transcript.pyannote[2223].start 12024.93659375
transcript.pyannote[2223].end 12029.03721875
transcript.pyannote[2224].speaker SPEAKER_00
transcript.pyannote[2224].start 12029.34096875
transcript.pyannote[2224].end 12040.69784375
transcript.pyannote[2225].speaker SPEAKER_00
transcript.pyannote[2225].start 12041.94659375
transcript.pyannote[2225].end 12048.22409375
transcript.pyannote[2226].speaker SPEAKER_00
transcript.pyannote[2226].start 12049.01721875
transcript.pyannote[2226].end 12055.26096875
transcript.pyannote[2227].speaker SPEAKER_00
transcript.pyannote[2227].start 12055.81784375
transcript.pyannote[2227].end 12057.50534375
transcript.pyannote[2228].speaker SPEAKER_00
transcript.pyannote[2228].start 12058.11284375
transcript.pyannote[2228].end 12060.08721875
transcript.pyannote[2229].speaker SPEAKER_00
transcript.pyannote[2229].start 12060.72846875
transcript.pyannote[2229].end 12063.61409375
transcript.pyannote[2230].speaker SPEAKER_00
transcript.pyannote[2230].start 12064.15409375
transcript.pyannote[2230].end 12066.44909375
transcript.pyannote[2231].speaker SPEAKER_00
transcript.pyannote[2231].start 12066.87096875
transcript.pyannote[2231].end 12068.81159375
transcript.pyannote[2232].speaker SPEAKER_15
transcript.pyannote[2232].start 12069.72284375
transcript.pyannote[2232].end 12070.24596875
transcript.pyannote[2233].speaker SPEAKER_15
transcript.pyannote[2233].start 12071.66346875
transcript.pyannote[2233].end 12074.65034375
transcript.pyannote[2234].speaker SPEAKER_15
transcript.pyannote[2234].start 12075.39284375
transcript.pyannote[2234].end 12075.81471875
transcript.pyannote[2235].speaker SPEAKER_15
transcript.pyannote[2235].start 12076.54034375
transcript.pyannote[2235].end 12083.18909375
transcript.pyannote[2236].speaker SPEAKER_15
transcript.pyannote[2236].start 12083.67846875
transcript.pyannote[2236].end 12084.03284375
transcript.pyannote[2237].speaker SPEAKER_20
transcript.pyannote[2237].start 12084.03284375
transcript.pyannote[2237].end 12087.62721875
transcript.pyannote[2238].speaker SPEAKER_20
transcript.pyannote[2238].start 12088.04909375
transcript.pyannote[2238].end 12088.79159375
transcript.pyannote[2239].speaker SPEAKER_20
transcript.pyannote[2239].start 12092.67284375
transcript.pyannote[2239].end 12092.87534375
transcript.pyannote[2240].speaker SPEAKER_20
transcript.pyannote[2240].start 12093.46596875
transcript.pyannote[2240].end 12094.95096875
transcript.pyannote[2241].speaker SPEAKER_20
transcript.pyannote[2241].start 12095.52471875
transcript.pyannote[2241].end 12119.68971875
transcript.pyannote[2242].speaker SPEAKER_27
transcript.pyannote[2242].start 12120.87096875
transcript.pyannote[2242].end 12126.35534375
transcript.pyannote[2243].speaker SPEAKER_27
transcript.pyannote[2243].start 12126.79409375
transcript.pyannote[2243].end 12135.18096875
transcript.pyannote[2244].speaker SPEAKER_27
transcript.pyannote[2244].start 12135.83909375
transcript.pyannote[2244].end 12152.32596875
transcript.pyannote[2245].speaker SPEAKER_27
transcript.pyannote[2245].start 12152.78159375
transcript.pyannote[2245].end 12159.16034375
transcript.pyannote[2246].speaker SPEAKER_27
transcript.pyannote[2246].start 12159.58221875
transcript.pyannote[2246].end 12164.35784375
transcript.pyannote[2247].speaker SPEAKER_27
transcript.pyannote[2247].start 12164.62784375
transcript.pyannote[2247].end 12168.12096875
transcript.pyannote[2248].speaker SPEAKER_20
transcript.pyannote[2248].start 12168.12096875
transcript.pyannote[2248].end 12168.13784375
transcript.pyannote[2249].speaker SPEAKER_20
transcript.pyannote[2249].start 12168.20534375
transcript.pyannote[2249].end 12168.25596875
transcript.pyannote[2250].speaker SPEAKER_27
transcript.pyannote[2250].start 12168.25596875
transcript.pyannote[2250].end 12169.03221875
transcript.pyannote[2251].speaker SPEAKER_20
transcript.pyannote[2251].start 12169.03221875
transcript.pyannote[2251].end 12169.48784375
transcript.pyannote[2252].speaker SPEAKER_27
transcript.pyannote[2252].start 12169.48784375
transcript.pyannote[2252].end 12170.78721875
transcript.pyannote[2253].speaker SPEAKER_20
transcript.pyannote[2253].start 12170.21346875
transcript.pyannote[2253].end 12179.71409375
transcript.pyannote[2254].speaker SPEAKER_30
transcript.pyannote[2254].start 12180.47346875
transcript.pyannote[2254].end 12183.94971875
transcript.pyannote[2255].speaker SPEAKER_30
transcript.pyannote[2255].start 12184.21971875
transcript.pyannote[2255].end 12190.96971875
transcript.pyannote[2256].speaker SPEAKER_20
transcript.pyannote[2256].start 12190.96971875
transcript.pyannote[2256].end 12214.93221875
transcript.pyannote[2257].speaker SPEAKER_20
transcript.pyannote[2257].start 12215.42159375
transcript.pyannote[2257].end 12221.44596875
transcript.pyannote[2258].speaker SPEAKER_16
transcript.pyannote[2258].start 12221.61471875
transcript.pyannote[2258].end 12233.05596875
transcript.pyannote[2259].speaker SPEAKER_16
transcript.pyannote[2259].start 12233.47784375
transcript.pyannote[2259].end 12253.03596875
transcript.pyannote[2260].speaker SPEAKER_20
transcript.pyannote[2260].start 12241.62846875
transcript.pyannote[2260].end 12242.86034375
transcript.pyannote[2261].speaker SPEAKER_20
transcript.pyannote[2261].start 12243.09659375
transcript.pyannote[2261].end 12243.51846875
transcript.pyannote[2262].speaker SPEAKER_20
transcript.pyannote[2262].start 12253.03596875
transcript.pyannote[2262].end 12253.54221875
transcript.pyannote[2263].speaker SPEAKER_16
transcript.pyannote[2263].start 12253.54221875
transcript.pyannote[2263].end 12253.55909375
transcript.pyannote[2264].speaker SPEAKER_20
transcript.pyannote[2264].start 12253.55909375
transcript.pyannote[2264].end 12253.57596875
transcript.pyannote[2265].speaker SPEAKER_16
transcript.pyannote[2265].start 12254.57159375
transcript.pyannote[2265].end 12254.58846875
transcript.pyannote[2266].speaker SPEAKER_20
transcript.pyannote[2266].start 12254.58846875
transcript.pyannote[2266].end 12308.20034375
transcript.pyannote[2267].speaker SPEAKER_20
transcript.pyannote[2267].start 12308.48721875
transcript.pyannote[2267].end 12316.75596875
transcript.pyannote[2268].speaker SPEAKER_20
transcript.pyannote[2268].start 12317.22846875
transcript.pyannote[2268].end 12327.20159375
transcript.pyannote[2269].speaker SPEAKER_20
transcript.pyannote[2269].start 12327.75846875
transcript.pyannote[2269].end 12348.34596875
transcript.pyannote[2270].speaker SPEAKER_20
transcript.pyannote[2270].start 12348.83534375
transcript.pyannote[2270].end 12354.26909375
transcript.pyannote[2271].speaker SPEAKER_20
transcript.pyannote[2271].start 12354.58971875
transcript.pyannote[2271].end 12357.96471875
transcript.pyannote[2272].speaker SPEAKER_27
transcript.pyannote[2272].start 12357.96471875
transcript.pyannote[2272].end 12358.23471875
transcript.pyannote[2273].speaker SPEAKER_27
transcript.pyannote[2273].start 12358.53846875
transcript.pyannote[2273].end 12373.81034375
transcript.pyannote[2274].speaker SPEAKER_27
transcript.pyannote[2274].start 12375.21096875
transcript.pyannote[2274].end 12377.94471875
transcript.pyannote[2275].speaker SPEAKER_20
transcript.pyannote[2275].start 12377.94471875
transcript.pyannote[2275].end 12377.97846875
transcript.pyannote[2276].speaker SPEAKER_27
transcript.pyannote[2276].start 12378.58596875
transcript.pyannote[2276].end 12378.60284375
transcript.pyannote[2277].speaker SPEAKER_20
transcript.pyannote[2277].start 12378.60284375
transcript.pyannote[2277].end 12379.42971875
transcript.pyannote[2278].speaker SPEAKER_20
transcript.pyannote[2278].start 12379.49721875
transcript.pyannote[2278].end 12422.51159375
transcript.pyannote[2279].speaker SPEAKER_28
transcript.pyannote[2279].start 12383.54721875
transcript.pyannote[2279].end 12383.96909375
transcript.pyannote[2280].speaker SPEAKER_00
transcript.pyannote[2280].start 12383.96909375
transcript.pyannote[2280].end 12384.05346875
transcript.pyannote[2281].speaker SPEAKER_20
transcript.pyannote[2281].start 12422.64659375
transcript.pyannote[2281].end 12424.97534375
transcript.pyannote[2282].speaker SPEAKER_27
transcript.pyannote[2282].start 12422.88284375
transcript.pyannote[2282].end 12423.32159375
transcript.pyannote[2283].speaker SPEAKER_27
transcript.pyannote[2283].start 12424.97534375
transcript.pyannote[2283].end 12425.36346875
transcript.pyannote[2284].speaker SPEAKER_20
transcript.pyannote[2284].start 12425.36346875
transcript.pyannote[2284].end 12431.57346875
transcript.pyannote[2285].speaker SPEAKER_27
transcript.pyannote[2285].start 12425.44784375
transcript.pyannote[2285].end 12425.80221875
transcript.pyannote[2286].speaker SPEAKER_27
transcript.pyannote[2286].start 12428.28284375
transcript.pyannote[2286].end 12428.62034375
transcript.pyannote[2287].speaker SPEAKER_20
transcript.pyannote[2287].start 12432.23159375
transcript.pyannote[2287].end 12441.81659375
transcript.pyannote[2288].speaker SPEAKER_20
transcript.pyannote[2288].start 12442.12034375
transcript.pyannote[2288].end 12443.82471875
transcript.pyannote[2289].speaker SPEAKER_20
transcript.pyannote[2289].start 12444.28034375
transcript.pyannote[2289].end 12447.14909375
transcript.pyannote[2290].speaker SPEAKER_20
transcript.pyannote[2290].start 12447.60471875
transcript.pyannote[2290].end 12447.89159375
transcript.pyannote[2291].speaker SPEAKER_20
transcript.pyannote[2291].start 12448.39784375
transcript.pyannote[2291].end 12458.96159375
transcript.pyannote[2292].speaker SPEAKER_20
transcript.pyannote[2292].start 12459.34971875
transcript.pyannote[2292].end 12461.57721875
transcript.pyannote[2293].speaker SPEAKER_30
transcript.pyannote[2293].start 12461.57721875
transcript.pyannote[2293].end 12461.76284375
transcript.pyannote[2294].speaker SPEAKER_20
transcript.pyannote[2294].start 12461.76284375
transcript.pyannote[2294].end 12500.79471875
transcript.pyannote[2295].speaker SPEAKER_20
transcript.pyannote[2295].start 12501.06471875
transcript.pyannote[2295].end 12501.77346875
transcript.pyannote[2296].speaker SPEAKER_20
transcript.pyannote[2296].start 12502.14471875
transcript.pyannote[2296].end 12502.76909375
transcript.pyannote[2297].speaker SPEAKER_20
transcript.pyannote[2297].start 12503.00534375
transcript.pyannote[2297].end 12504.32159375
transcript.pyannote[2298].speaker SPEAKER_20
transcript.pyannote[2298].start 12504.55784375
transcript.pyannote[2298].end 12507.32534375
transcript.pyannote[2299].speaker SPEAKER_20
transcript.pyannote[2299].start 12509.14784375
transcript.pyannote[2299].end 12509.80596875
transcript.pyannote[2300].speaker SPEAKER_06
transcript.pyannote[2300].start 12509.67096875
transcript.pyannote[2300].end 12511.08846875
transcript.pyannote[2301].speaker SPEAKER_20
transcript.pyannote[2301].start 12512.87721875
transcript.pyannote[2301].end 12513.09659375
transcript.pyannote[2302].speaker SPEAKER_20
transcript.pyannote[2302].start 12513.58596875
transcript.pyannote[2302].end 12514.31159375
transcript.pyannote[2303].speaker SPEAKER_20
transcript.pyannote[2303].start 12514.73346875
transcript.pyannote[2303].end 12519.76221875
transcript.pyannote[2304].speaker SPEAKER_24
transcript.pyannote[2304].start 12519.76221875
transcript.pyannote[2304].end 12519.89721875
transcript.pyannote[2305].speaker SPEAKER_24
transcript.pyannote[2305].start 12520.21784375
transcript.pyannote[2305].end 12532.19909375
transcript.pyannote[2306].speaker SPEAKER_24
transcript.pyannote[2306].start 12532.31721875
transcript.pyannote[2306].end 12550.20471875
transcript.pyannote[2307].speaker SPEAKER_20
transcript.pyannote[2307].start 12550.08659375
transcript.pyannote[2307].end 12550.15409375
transcript.pyannote[2308].speaker SPEAKER_20
transcript.pyannote[2308].start 12550.20471875
transcript.pyannote[2308].end 12557.74784375
transcript.pyannote[2309].speaker SPEAKER_20
transcript.pyannote[2309].start 12558.38909375
transcript.pyannote[2309].end 12558.96284375
transcript.pyannote[2310].speaker SPEAKER_24
transcript.pyannote[2310].start 12558.96284375
transcript.pyannote[2310].end 12574.48784375
transcript.pyannote[2311].speaker SPEAKER_24
transcript.pyannote[2311].start 12575.07846875
transcript.pyannote[2311].end 12578.03159375
transcript.pyannote[2312].speaker SPEAKER_20
transcript.pyannote[2312].start 12578.03159375
transcript.pyannote[2312].end 12583.04346875
transcript.pyannote[2313].speaker SPEAKER_20
transcript.pyannote[2313].start 12583.24596875
transcript.pyannote[2313].end 12585.18659375
transcript.pyannote[2314].speaker SPEAKER_16
transcript.pyannote[2314].start 12590.13096875
transcript.pyannote[2314].end 12596.37471875
transcript.pyannote[2315].speaker SPEAKER_20
transcript.pyannote[2315].start 12596.37471875
transcript.pyannote[2315].end 12596.52659375
transcript.pyannote[2316].speaker SPEAKER_16
transcript.pyannote[2316].start 12596.52659375
transcript.pyannote[2316].end 12597.43784375
transcript.pyannote[2317].speaker SPEAKER_20
transcript.pyannote[2317].start 12597.43784375
transcript.pyannote[2317].end 12597.45471875
transcript.pyannote[2318].speaker SPEAKER_16
transcript.pyannote[2318].start 12597.45471875
transcript.pyannote[2318].end 12597.47159375
transcript.pyannote[2319].speaker SPEAKER_20
transcript.pyannote[2319].start 12597.47159375
transcript.pyannote[2319].end 12597.82596875
transcript.pyannote[2320].speaker SPEAKER_16
transcript.pyannote[2320].start 12597.48846875
transcript.pyannote[2320].end 12597.79221875
transcript.pyannote[2321].speaker SPEAKER_16
transcript.pyannote[2321].start 12597.82596875
transcript.pyannote[2321].end 12597.85971875
transcript.pyannote[2322].speaker SPEAKER_20
transcript.pyannote[2322].start 12597.85971875
transcript.pyannote[2322].end 12602.87159375
transcript.pyannote[2323].speaker SPEAKER_16
transcript.pyannote[2323].start 12602.87159375
transcript.pyannote[2323].end 12603.29346875
transcript.pyannote[2324].speaker SPEAKER_20
transcript.pyannote[2324].start 12603.29346875
transcript.pyannote[2324].end 12604.17096875
transcript.pyannote[2325].speaker SPEAKER_16
transcript.pyannote[2325].start 12604.17096875
transcript.pyannote[2325].end 12604.27221875
transcript.pyannote[2326].speaker SPEAKER_20
transcript.pyannote[2326].start 12604.27221875
transcript.pyannote[2326].end 12604.96409375
transcript.pyannote[2327].speaker SPEAKER_16
transcript.pyannote[2327].start 12604.96409375
transcript.pyannote[2327].end 12609.40221875
transcript.pyannote[2328].speaker SPEAKER_20
transcript.pyannote[2328].start 12605.13284375
transcript.pyannote[2328].end 12605.52096875
transcript.pyannote[2329].speaker SPEAKER_20
transcript.pyannote[2329].start 12609.40221875
transcript.pyannote[2329].end 12674.40471875
transcript.pyannote[2330].speaker SPEAKER_25
transcript.pyannote[2330].start 12625.82159375
transcript.pyannote[2330].end 12626.26034375
transcript.pyannote[2331].speaker SPEAKER_20
transcript.pyannote[2331].start 12674.55659375
transcript.pyannote[2331].end 12679.09596875
transcript.pyannote[2332].speaker SPEAKER_16
transcript.pyannote[2332].start 12676.31159375
transcript.pyannote[2332].end 12676.69971875
transcript.pyannote[2333].speaker SPEAKER_15
transcript.pyannote[2333].start 12679.78784375
transcript.pyannote[2333].end 12704.17221875
transcript.pyannote[2334].speaker SPEAKER_29
transcript.pyannote[2334].start 12709.40346875
transcript.pyannote[2334].end 12711.17534375
transcript.pyannote[2335].speaker SPEAKER_29
transcript.pyannote[2335].start 12711.46221875
transcript.pyannote[2335].end 12712.96409375
transcript.pyannote[2336].speaker SPEAKER_15
transcript.pyannote[2336].start 12712.96409375
transcript.pyannote[2336].end 12713.99346875
transcript.pyannote[2337].speaker SPEAKER_15
transcript.pyannote[2337].start 12714.58409375
transcript.pyannote[2337].end 12715.81596875
transcript.pyannote[2338].speaker SPEAKER_27
transcript.pyannote[2338].start 12722.54909375
transcript.pyannote[2338].end 12722.56596875
transcript.pyannote[2339].speaker SPEAKER_29
transcript.pyannote[2339].start 12722.56596875
transcript.pyannote[2339].end 12723.05534375
transcript.pyannote[2340].speaker SPEAKER_29
transcript.pyannote[2340].start 12723.56159375
transcript.pyannote[2340].end 12724.28721875
transcript.pyannote[2341].speaker SPEAKER_29
transcript.pyannote[2341].start 12725.01284375
transcript.pyannote[2341].end 12728.75909375
transcript.pyannote[2342].speaker SPEAKER_29
transcript.pyannote[2342].start 12728.99534375
transcript.pyannote[2342].end 12730.27784375
transcript.pyannote[2343].speaker SPEAKER_29
transcript.pyannote[2343].start 12731.44221875
transcript.pyannote[2343].end 12732.53909375
transcript.pyannote[2344].speaker SPEAKER_29
transcript.pyannote[2344].start 12733.01159375
transcript.pyannote[2344].end 12733.48409375
transcript.pyannote[2345].speaker SPEAKER_29
transcript.pyannote[2345].start 12734.54721875
transcript.pyannote[2345].end 12736.57221875
transcript.pyannote[2346].speaker SPEAKER_29
transcript.pyannote[2346].start 12737.80409375
transcript.pyannote[2346].end 12739.05284375
transcript.pyannote[2347].speaker SPEAKER_29
transcript.pyannote[2347].start 12740.72346875
transcript.pyannote[2347].end 12741.58409375
transcript.pyannote[2348].speaker SPEAKER_29
transcript.pyannote[2348].start 12742.81596875
transcript.pyannote[2348].end 12744.79034375
transcript.pyannote[2349].speaker SPEAKER_29
transcript.pyannote[2349].start 12745.88721875
transcript.pyannote[2349].end 12748.73909375
transcript.pyannote[2350].speaker SPEAKER_29
transcript.pyannote[2350].start 12748.92471875
transcript.pyannote[2350].end 12749.75159375
transcript.pyannote[2351].speaker SPEAKER_29
transcript.pyannote[2351].start 12750.49409375
transcript.pyannote[2351].end 12752.21534375
transcript.pyannote[2352].speaker SPEAKER_29
transcript.pyannote[2352].start 12752.35034375
transcript.pyannote[2352].end 12753.59909375
transcript.pyannote[2353].speaker SPEAKER_29
transcript.pyannote[2353].start 12755.65784375
transcript.pyannote[2353].end 12756.63659375
transcript.pyannote[2354].speaker SPEAKER_29
transcript.pyannote[2354].start 12756.82221875
transcript.pyannote[2354].end 12758.62784375
transcript.pyannote[2355].speaker SPEAKER_29
transcript.pyannote[2355].start 12759.33659375
transcript.pyannote[2355].end 12759.45471875
transcript.pyannote[2356].speaker SPEAKER_04
transcript.pyannote[2356].start 12759.57284375
transcript.pyannote[2356].end 12760.01159375
transcript.pyannote[2357].speaker SPEAKER_29
transcript.pyannote[2357].start 12760.58534375
transcript.pyannote[2357].end 12761.46284375
transcript.pyannote[2358].speaker SPEAKER_29
transcript.pyannote[2358].start 12761.69909375
transcript.pyannote[2358].end 12762.30659375
transcript.pyannote[2359].speaker SPEAKER_29
transcript.pyannote[2359].start 12764.12909375
transcript.pyannote[2359].end 12764.38221875
transcript.pyannote[2360].speaker SPEAKER_29
transcript.pyannote[2360].start 12764.90534375
transcript.pyannote[2360].end 12766.40721875
transcript.pyannote[2361].speaker SPEAKER_29
transcript.pyannote[2361].start 12767.01471875
transcript.pyannote[2361].end 12768.88784375
transcript.pyannote[2362].speaker SPEAKER_29
transcript.pyannote[2362].start 12769.19159375
transcript.pyannote[2362].end 12770.47409375
transcript.pyannote[2363].speaker SPEAKER_29
transcript.pyannote[2363].start 12771.23346875
transcript.pyannote[2363].end 12772.63409375
transcript.pyannote[2364].speaker SPEAKER_29
transcript.pyannote[2364].start 12773.34284375
transcript.pyannote[2364].end 12774.65909375
transcript.pyannote[2365].speaker SPEAKER_29
transcript.pyannote[2365].start 12775.73909375
transcript.pyannote[2365].end 12776.75159375
transcript.pyannote[2366].speaker SPEAKER_29
transcript.pyannote[2366].start 12778.45596875
transcript.pyannote[2366].end 12779.06346875
transcript.pyannote[2367].speaker SPEAKER_29
transcript.pyannote[2367].start 12779.78909375
transcript.pyannote[2367].end 12780.64971875
transcript.pyannote[2368].speaker SPEAKER_29
transcript.pyannote[2368].start 12781.17284375
transcript.pyannote[2368].end 12782.18534375
transcript.pyannote[2369].speaker SPEAKER_29
transcript.pyannote[2369].start 12783.31596875
transcript.pyannote[2369].end 12785.59409375
transcript.pyannote[2370].speaker SPEAKER_29
transcript.pyannote[2370].start 12785.84721875
transcript.pyannote[2370].end 12786.55596875
transcript.pyannote[2371].speaker SPEAKER_29
transcript.pyannote[2371].start 12787.65284375
transcript.pyannote[2371].end 12789.22221875
transcript.pyannote[2372].speaker SPEAKER_29
transcript.pyannote[2372].start 12789.94784375
transcript.pyannote[2372].end 12791.12909375
transcript.pyannote[2373].speaker SPEAKER_29
transcript.pyannote[2373].start 12791.80409375
transcript.pyannote[2373].end 12793.40721875
transcript.pyannote[2374].speaker SPEAKER_29
transcript.pyannote[2374].start 12793.77846875
transcript.pyannote[2374].end 12795.43221875
transcript.pyannote[2375].speaker SPEAKER_29
transcript.pyannote[2375].start 12796.07346875
transcript.pyannote[2375].end 12797.42346875
transcript.pyannote[2376].speaker SPEAKER_29
transcript.pyannote[2376].start 12798.21659375
transcript.pyannote[2376].end 12798.90846875
transcript.pyannote[2377].speaker SPEAKER_29
transcript.pyannote[2377].start 12799.58346875
transcript.pyannote[2377].end 12801.03471875
transcript.pyannote[2378].speaker SPEAKER_29
transcript.pyannote[2378].start 12801.86159375
transcript.pyannote[2378].end 12802.73909375
transcript.pyannote[2379].speaker SPEAKER_27
transcript.pyannote[2379].start 12805.20284375
transcript.pyannote[2379].end 12810.34971875
transcript.pyannote[2380].speaker SPEAKER_27
transcript.pyannote[2380].start 12810.58596875
transcript.pyannote[2380].end 12816.07034375
transcript.pyannote[2381].speaker SPEAKER_27
transcript.pyannote[2381].start 12816.42471875
transcript.pyannote[2381].end 12821.90909375
transcript.pyannote[2382].speaker SPEAKER_27
transcript.pyannote[2382].start 12822.63471875
transcript.pyannote[2382].end 12827.39346875
transcript.pyannote[2383].speaker SPEAKER_27
transcript.pyannote[2383].start 12828.27096875
transcript.pyannote[2383].end 12830.71784375
transcript.pyannote[2384].speaker SPEAKER_29
transcript.pyannote[2384].start 12829.67159375
transcript.pyannote[2384].end 12830.81909375
transcript.pyannote[2385].speaker SPEAKER_29
transcript.pyannote[2385].start 12831.30846875
transcript.pyannote[2385].end 12833.72159375
transcript.pyannote[2386].speaker SPEAKER_29
transcript.pyannote[2386].start 12834.05909375
transcript.pyannote[2386].end 12834.48096875
transcript.pyannote[2387].speaker SPEAKER_29
transcript.pyannote[2387].start 12835.10534375
transcript.pyannote[2387].end 12837.09659375
transcript.pyannote[2388].speaker SPEAKER_29
transcript.pyannote[2388].start 12837.43409375
transcript.pyannote[2388].end 12838.37909375
transcript.pyannote[2389].speaker SPEAKER_29
transcript.pyannote[2389].start 12838.53096875
transcript.pyannote[2389].end 12839.18909375
transcript.pyannote[2390].speaker SPEAKER_29
transcript.pyannote[2390].start 12840.33659375
transcript.pyannote[2390].end 12842.32784375
transcript.pyannote[2391].speaker SPEAKER_29
transcript.pyannote[2391].start 12842.86784375
transcript.pyannote[2391].end 12844.09971875
transcript.pyannote[2392].speaker SPEAKER_29
transcript.pyannote[2392].start 12844.36971875
transcript.pyannote[2392].end 12844.87596875
transcript.pyannote[2393].speaker SPEAKER_29
transcript.pyannote[2393].start 12845.60159375
transcript.pyannote[2393].end 12847.33971875
transcript.pyannote[2394].speaker SPEAKER_29
transcript.pyannote[2394].start 12847.87971875
transcript.pyannote[2394].end 12848.48721875
transcript.pyannote[2395].speaker SPEAKER_27
transcript.pyannote[2395].start 12848.48721875
transcript.pyannote[2395].end 12848.57159375
transcript.pyannote[2396].speaker SPEAKER_29
transcript.pyannote[2396].start 12848.57159375
transcript.pyannote[2396].end 12848.58846875
transcript.pyannote[2397].speaker SPEAKER_27
transcript.pyannote[2397].start 12848.58846875
transcript.pyannote[2397].end 12848.72346875
transcript.pyannote[2398].speaker SPEAKER_29
transcript.pyannote[2398].start 12848.72346875
transcript.pyannote[2398].end 12851.27159375
transcript.pyannote[2399].speaker SPEAKER_27
transcript.pyannote[2399].start 12848.75721875
transcript.pyannote[2399].end 12848.95971875
transcript.pyannote[2400].speaker SPEAKER_29
transcript.pyannote[2400].start 12851.47409375
transcript.pyannote[2400].end 12852.57096875
transcript.pyannote[2401].speaker SPEAKER_29
transcript.pyannote[2401].start 12853.58346875
transcript.pyannote[2401].end 12856.84034375
transcript.pyannote[2402].speaker SPEAKER_29
transcript.pyannote[2402].start 12857.26221875
transcript.pyannote[2402].end 12859.81034375
transcript.pyannote[2403].speaker SPEAKER_29
transcript.pyannote[2403].start 12860.33346875
transcript.pyannote[2403].end 12861.88596875
transcript.pyannote[2404].speaker SPEAKER_29
transcript.pyannote[2404].start 12862.13909375
transcript.pyannote[2404].end 12866.00346875
transcript.pyannote[2405].speaker SPEAKER_29
transcript.pyannote[2405].start 12867.30284375
transcript.pyannote[2405].end 12867.70784375
transcript.pyannote[2406].speaker SPEAKER_29
transcript.pyannote[2406].start 12868.43346875
transcript.pyannote[2406].end 12870.82971875
transcript.pyannote[2407].speaker SPEAKER_29
transcript.pyannote[2407].start 12871.26846875
transcript.pyannote[2407].end 12872.19659375
transcript.pyannote[2408].speaker SPEAKER_29
transcript.pyannote[2408].start 12872.60159375
transcript.pyannote[2408].end 12875.01471875
transcript.pyannote[2409].speaker SPEAKER_29
transcript.pyannote[2409].start 12875.18346875
transcript.pyannote[2409].end 12877.52909375
transcript.pyannote[2410].speaker SPEAKER_29
transcript.pyannote[2410].start 12877.71471875
transcript.pyannote[2410].end 12879.63846875
transcript.pyannote[2411].speaker SPEAKER_29
transcript.pyannote[2411].start 12880.14471875
transcript.pyannote[2411].end 12881.03909375
transcript.pyannote[2412].speaker SPEAKER_29
transcript.pyannote[2412].start 12882.16971875
transcript.pyannote[2412].end 12882.67596875
transcript.pyannote[2413].speaker SPEAKER_29
transcript.pyannote[2413].start 12883.51971875
transcript.pyannote[2413].end 12888.10971875
transcript.pyannote[2414].speaker SPEAKER_29
transcript.pyannote[2414].start 12888.49784375
transcript.pyannote[2414].end 12889.30784375
transcript.pyannote[2415].speaker SPEAKER_29
transcript.pyannote[2415].start 12889.78034375
transcript.pyannote[2415].end 12890.43846875
transcript.pyannote[2416].speaker SPEAKER_29
transcript.pyannote[2416].start 12891.01221875
transcript.pyannote[2416].end 12892.51409375
transcript.pyannote[2417].speaker SPEAKER_29
transcript.pyannote[2417].start 12892.81784375
transcript.pyannote[2417].end 12895.36596875
transcript.pyannote[2418].speaker SPEAKER_29
transcript.pyannote[2418].start 12896.17596875
transcript.pyannote[2418].end 12897.07034375
transcript.pyannote[2419].speaker SPEAKER_29
transcript.pyannote[2419].start 12898.30221875
transcript.pyannote[2419].end 12901.28909375
transcript.pyannote[2420].speaker SPEAKER_29
transcript.pyannote[2420].start 12902.26784375
transcript.pyannote[2420].end 12905.00159375
transcript.pyannote[2421].speaker SPEAKER_27
transcript.pyannote[2421].start 12906.26721875
transcript.pyannote[2421].end 12909.33846875
transcript.pyannote[2422].speaker SPEAKER_29
transcript.pyannote[2422].start 12911.00909375
transcript.pyannote[2422].end 12913.57409375
transcript.pyannote[2423].speaker SPEAKER_29
transcript.pyannote[2423].start 12914.01284375
transcript.pyannote[2423].end 12917.13471875
transcript.pyannote[2424].speaker SPEAKER_29
transcript.pyannote[2424].start 12918.13034375
transcript.pyannote[2424].end 12920.23971875
transcript.pyannote[2425].speaker SPEAKER_29
transcript.pyannote[2425].start 12920.62784375
transcript.pyannote[2425].end 12923.46284375
transcript.pyannote[2426].speaker SPEAKER_29
transcript.pyannote[2426].start 12924.35721875
transcript.pyannote[2426].end 12925.77471875
transcript.pyannote[2427].speaker SPEAKER_29
transcript.pyannote[2427].start 12926.51721875
transcript.pyannote[2427].end 12929.80784375
transcript.pyannote[2428].speaker SPEAKER_29
transcript.pyannote[2428].start 12930.01034375
transcript.pyannote[2428].end 12932.59221875
transcript.pyannote[2429].speaker SPEAKER_29
transcript.pyannote[2429].start 12932.67659375
transcript.pyannote[2429].end 12933.63846875
transcript.pyannote[2430].speaker SPEAKER_29
transcript.pyannote[2430].start 12933.90846875
transcript.pyannote[2430].end 12934.16159375
transcript.pyannote[2431].speaker SPEAKER_29
transcript.pyannote[2431].start 12935.07284375
transcript.pyannote[2431].end 12936.82784375
transcript.pyannote[2432].speaker SPEAKER_29
transcript.pyannote[2432].start 12937.51971875
transcript.pyannote[2432].end 12938.51534375
transcript.pyannote[2433].speaker SPEAKER_29
transcript.pyannote[2433].start 12940.62471875
transcript.pyannote[2433].end 12941.13096875
transcript.pyannote[2434].speaker SPEAKER_29
transcript.pyannote[2434].start 12942.41346875
transcript.pyannote[2434].end 12944.80971875
transcript.pyannote[2435].speaker SPEAKER_29
transcript.pyannote[2435].start 12945.55221875
transcript.pyannote[2435].end 12947.50971875
transcript.pyannote[2436].speaker SPEAKER_29
transcript.pyannote[2436].start 12947.69534375
transcript.pyannote[2436].end 12948.72471875
transcript.pyannote[2437].speaker SPEAKER_29
transcript.pyannote[2437].start 12949.66971875
transcript.pyannote[2437].end 12952.03221875
transcript.pyannote[2438].speaker SPEAKER_29
transcript.pyannote[2438].start 12953.31471875
transcript.pyannote[2438].end 12955.49159375
transcript.pyannote[2439].speaker SPEAKER_29
transcript.pyannote[2439].start 12955.79534375
transcript.pyannote[2439].end 12957.46596875
transcript.pyannote[2440].speaker SPEAKER_29
transcript.pyannote[2440].start 12957.95534375
transcript.pyannote[2440].end 12958.95096875
transcript.pyannote[2441].speaker SPEAKER_29
transcript.pyannote[2441].start 12959.01846875
transcript.pyannote[2441].end 12960.19971875
transcript.pyannote[2442].speaker SPEAKER_29
transcript.pyannote[2442].start 12961.17846875
transcript.pyannote[2442].end 12961.75221875
transcript.pyannote[2443].speaker SPEAKER_29
transcript.pyannote[2443].start 12963.32159375
transcript.pyannote[2443].end 12964.82346875
transcript.pyannote[2444].speaker SPEAKER_29
transcript.pyannote[2444].start 12965.24534375
transcript.pyannote[2444].end 12966.34221875
transcript.pyannote[2445].speaker SPEAKER_29
transcript.pyannote[2445].start 12967.48971875
transcript.pyannote[2445].end 12970.17284375
transcript.pyannote[2446].speaker SPEAKER_29
transcript.pyannote[2446].start 12970.35846875
transcript.pyannote[2446].end 12971.67471875
transcript.pyannote[2447].speaker SPEAKER_29
transcript.pyannote[2447].start 12972.19784375
transcript.pyannote[2447].end 12973.39596875
transcript.pyannote[2448].speaker SPEAKER_29
transcript.pyannote[2448].start 12974.10471875
transcript.pyannote[2448].end 12975.21846875
transcript.pyannote[2449].speaker SPEAKER_29
transcript.pyannote[2449].start 12975.69096875
transcript.pyannote[2449].end 12976.33221875
transcript.pyannote[2450].speaker SPEAKER_29
transcript.pyannote[2450].start 12977.19284375
transcript.pyannote[2450].end 12978.13784375
transcript.pyannote[2451].speaker SPEAKER_29
transcript.pyannote[2451].start 12978.32346875
transcript.pyannote[2451].end 12978.84659375
transcript.pyannote[2452].speaker SPEAKER_29
transcript.pyannote[2452].start 12979.48784375
transcript.pyannote[2452].end 12980.07846875
transcript.pyannote[2453].speaker SPEAKER_27
transcript.pyannote[2453].start 12980.07846875
transcript.pyannote[2453].end 12980.11221875
transcript.pyannote[2454].speaker SPEAKER_27
transcript.pyannote[2454].start 12980.90534375
transcript.pyannote[2454].end 12984.53346875
transcript.pyannote[2455].speaker SPEAKER_29
transcript.pyannote[2455].start 12984.53346875
transcript.pyannote[2455].end 12985.02284375
transcript.pyannote[2456].speaker SPEAKER_29
transcript.pyannote[2456].start 12985.05659375
transcript.pyannote[2456].end 12985.12409375
transcript.pyannote[2457].speaker SPEAKER_27
transcript.pyannote[2457].start 12985.12409375
transcript.pyannote[2457].end 12989.64659375
transcript.pyannote[2458].speaker SPEAKER_29
transcript.pyannote[2458].start 12985.15784375
transcript.pyannote[2458].end 12986.52471875
transcript.pyannote[2459].speaker SPEAKER_29
transcript.pyannote[2459].start 12986.86221875
transcript.pyannote[2459].end 12986.87909375
transcript.pyannote[2460].speaker SPEAKER_29
transcript.pyannote[2460].start 12986.94659375
transcript.pyannote[2460].end 12987.77346875
transcript.pyannote[2461].speaker SPEAKER_29
transcript.pyannote[2461].start 12988.54971875
transcript.pyannote[2461].end 12989.30909375
transcript.pyannote[2462].speaker SPEAKER_27
transcript.pyannote[2462].start 12990.33846875
transcript.pyannote[2462].end 12993.22409375
transcript.pyannote[2463].speaker SPEAKER_29
transcript.pyannote[2463].start 12992.19471875
transcript.pyannote[2463].end 12992.86971875
transcript.pyannote[2464].speaker SPEAKER_27
transcript.pyannote[2464].start 12993.56159375
transcript.pyannote[2464].end 12995.40096875
transcript.pyannote[2465].speaker SPEAKER_27
transcript.pyannote[2465].start 12995.80596875
transcript.pyannote[2465].end 13000.15971875
transcript.pyannote[2466].speaker SPEAKER_27
transcript.pyannote[2466].start 13000.51409375
transcript.pyannote[2466].end 13002.60659375
transcript.pyannote[2467].speaker SPEAKER_27
transcript.pyannote[2467].start 13002.77534375
transcript.pyannote[2467].end 13007.88846875
transcript.pyannote[2468].speaker SPEAKER_29
transcript.pyannote[2468].start 13005.45846875
transcript.pyannote[2468].end 13006.69034375
transcript.pyannote[2469].speaker SPEAKER_29
transcript.pyannote[2469].start 13008.39471875
transcript.pyannote[2469].end 13008.42846875
transcript.pyannote[2470].speaker SPEAKER_27
transcript.pyannote[2470].start 13008.42846875
transcript.pyannote[2470].end 13008.44534375
transcript.pyannote[2471].speaker SPEAKER_29
transcript.pyannote[2471].start 13008.44534375
transcript.pyannote[2471].end 13009.76159375
transcript.pyannote[2472].speaker SPEAKER_27
transcript.pyannote[2472].start 13009.76159375
transcript.pyannote[2472].end 13014.53721875
transcript.pyannote[2473].speaker SPEAKER_29
transcript.pyannote[2473].start 13010.03159375
transcript.pyannote[2473].end 13010.26784375
transcript.pyannote[2474].speaker SPEAKER_29
transcript.pyannote[2474].start 13014.58784375
transcript.pyannote[2474].end 13016.81534375
transcript.pyannote[2475].speaker SPEAKER_27
transcript.pyannote[2475].start 13016.86596875
transcript.pyannote[2475].end 13023.78471875
transcript.pyannote[2476].speaker SPEAKER_27
transcript.pyannote[2476].start 13023.93659375
transcript.pyannote[2476].end 13024.05471875
transcript.pyannote[2477].speaker SPEAKER_29
transcript.pyannote[2477].start 13024.05471875
transcript.pyannote[2477].end 13024.35846875
transcript.pyannote[2478].speaker SPEAKER_27
transcript.pyannote[2478].start 13024.35846875
transcript.pyannote[2478].end 13025.03346875
transcript.pyannote[2479].speaker SPEAKER_29
transcript.pyannote[2479].start 13025.03346875
transcript.pyannote[2479].end 13025.28659375
transcript.pyannote[2480].speaker SPEAKER_27
transcript.pyannote[2480].start 13025.28659375
transcript.pyannote[2480].end 13025.30346875
transcript.pyannote[2481].speaker SPEAKER_29
transcript.pyannote[2481].start 13025.97846875
transcript.pyannote[2481].end 13026.67034375
transcript.pyannote[2482].speaker SPEAKER_29
transcript.pyannote[2482].start 13028.18909375
transcript.pyannote[2482].end 13029.33659375
transcript.pyannote[2483].speaker SPEAKER_29
transcript.pyannote[2483].start 13029.55596875
transcript.pyannote[2483].end 13031.36159375
transcript.pyannote[2484].speaker SPEAKER_29
transcript.pyannote[2484].start 13031.61471875
transcript.pyannote[2484].end 13032.98159375
transcript.pyannote[2485].speaker SPEAKER_29
transcript.pyannote[2485].start 13035.14159375
transcript.pyannote[2485].end 13035.74909375
transcript.pyannote[2486].speaker SPEAKER_29
transcript.pyannote[2486].start 13037.25096875
transcript.pyannote[2486].end 13037.95971875
transcript.pyannote[2487].speaker SPEAKER_29
transcript.pyannote[2487].start 13038.78659375
transcript.pyannote[2487].end 13039.79909375
transcript.pyannote[2488].speaker SPEAKER_29
transcript.pyannote[2488].start 13040.84534375
transcript.pyannote[2488].end 13044.40596875
transcript.pyannote[2489].speaker SPEAKER_29
transcript.pyannote[2489].start 13044.96284375
transcript.pyannote[2489].end 13047.35909375
transcript.pyannote[2490].speaker SPEAKER_29
transcript.pyannote[2490].start 13047.69659375
transcript.pyannote[2490].end 13050.29534375
transcript.pyannote[2491].speaker SPEAKER_29
transcript.pyannote[2491].start 13051.07159375
transcript.pyannote[2491].end 13053.34971875
transcript.pyannote[2492].speaker SPEAKER_29
transcript.pyannote[2492].start 13054.64909375
transcript.pyannote[2492].end 13057.31534375
transcript.pyannote[2493].speaker SPEAKER_29
transcript.pyannote[2493].start 13057.51784375
transcript.pyannote[2493].end 13058.86784375
transcript.pyannote[2494].speaker SPEAKER_29
transcript.pyannote[2494].start 13059.01971875
transcript.pyannote[2494].end 13060.65659375
transcript.pyannote[2495].speaker SPEAKER_29
transcript.pyannote[2495].start 13060.79159375
transcript.pyannote[2495].end 13061.87159375
transcript.pyannote[2496].speaker SPEAKER_29
transcript.pyannote[2496].start 13063.05284375
transcript.pyannote[2496].end 13063.54221875
transcript.pyannote[2497].speaker SPEAKER_27
transcript.pyannote[2497].start 13065.16221875
transcript.pyannote[2497].end 13067.49096875
transcript.pyannote[2498].speaker SPEAKER_29
transcript.pyannote[2498].start 13066.83284375
transcript.pyannote[2498].end 13069.97159375
transcript.pyannote[2499].speaker SPEAKER_27
transcript.pyannote[2499].start 13069.97159375
transcript.pyannote[2499].end 13070.62971875
transcript.pyannote[2500].speaker SPEAKER_29
transcript.pyannote[2500].start 13070.62971875
transcript.pyannote[2500].end 13070.78159375
transcript.pyannote[2501].speaker SPEAKER_27
transcript.pyannote[2501].start 13070.78159375
transcript.pyannote[2501].end 13078.05471875
transcript.pyannote[2502].speaker SPEAKER_29
transcript.pyannote[2502].start 13070.79846875
transcript.pyannote[2502].end 13073.00909375
transcript.pyannote[2503].speaker SPEAKER_29
transcript.pyannote[2503].start 13075.94534375
transcript.pyannote[2503].end 13077.02534375
transcript.pyannote[2504].speaker SPEAKER_29
transcript.pyannote[2504].start 13078.35846875
transcript.pyannote[2504].end 13081.61534375
transcript.pyannote[2505].speaker SPEAKER_29
transcript.pyannote[2505].start 13082.12159375
transcript.pyannote[2505].end 13084.55159375
transcript.pyannote[2506].speaker SPEAKER_27
transcript.pyannote[2506].start 13084.16346875
transcript.pyannote[2506].end 13087.69034375
transcript.pyannote[2507].speaker SPEAKER_29
transcript.pyannote[2507].start 13088.34846875
transcript.pyannote[2507].end 13098.79409375
transcript.pyannote[2508].speaker SPEAKER_27
transcript.pyannote[2508].start 13096.60034375
transcript.pyannote[2508].end 13097.15721875
transcript.pyannote[2509].speaker SPEAKER_29
transcript.pyannote[2509].start 13099.09784375
transcript.pyannote[2509].end 13099.82346875
transcript.pyannote[2510].speaker SPEAKER_29
transcript.pyannote[2510].start 13100.75159375
transcript.pyannote[2510].end 13101.94971875
transcript.pyannote[2511].speaker SPEAKER_29
transcript.pyannote[2511].start 13102.84409375
transcript.pyannote[2511].end 13103.53596875
transcript.pyannote[2512].speaker SPEAKER_27
transcript.pyannote[2512].start 13104.51471875
transcript.pyannote[2512].end 13104.85221875
transcript.pyannote[2513].speaker SPEAKER_29
transcript.pyannote[2513].start 13105.17284375
transcript.pyannote[2513].end 13105.45971875
transcript.pyannote[2514].speaker SPEAKER_29
transcript.pyannote[2514].start 13106.65784375
transcript.pyannote[2514].end 13109.56034375
transcript.pyannote[2515].speaker SPEAKER_29
transcript.pyannote[2515].start 13109.91471875
transcript.pyannote[2515].end 13113.42471875
transcript.pyannote[2516].speaker SPEAKER_29
transcript.pyannote[2516].start 13113.71159375
transcript.pyannote[2516].end 13114.96034375
transcript.pyannote[2517].speaker SPEAKER_29
transcript.pyannote[2517].start 13115.44971875
transcript.pyannote[2517].end 13117.06971875
transcript.pyannote[2518].speaker SPEAKER_29
transcript.pyannote[2518].start 13117.49159375
transcript.pyannote[2518].end 13117.76159375
transcript.pyannote[2519].speaker SPEAKER_29
transcript.pyannote[2519].start 13118.41971875
transcript.pyannote[2519].end 13120.96784375
transcript.pyannote[2520].speaker SPEAKER_29
transcript.pyannote[2520].start 13121.25471875
transcript.pyannote[2520].end 13122.68909375
transcript.pyannote[2521].speaker SPEAKER_29
transcript.pyannote[2521].start 13123.36409375
transcript.pyannote[2521].end 13124.61284375
transcript.pyannote[2522].speaker SPEAKER_29
transcript.pyannote[2522].start 13125.08534375
transcript.pyannote[2522].end 13127.11034375
transcript.pyannote[2523].speaker SPEAKER_29
transcript.pyannote[2523].start 13127.14409375
transcript.pyannote[2523].end 13129.40534375
transcript.pyannote[2524].speaker SPEAKER_29
transcript.pyannote[2524].start 13129.48971875
transcript.pyannote[2524].end 13130.01284375
transcript.pyannote[2525].speaker SPEAKER_29
transcript.pyannote[2525].start 13130.31659375
transcript.pyannote[2525].end 13130.83971875
transcript.pyannote[2526].speaker SPEAKER_29
transcript.pyannote[2526].start 13131.19409375
transcript.pyannote[2526].end 13133.64096875
transcript.pyannote[2527].speaker SPEAKER_29
transcript.pyannote[2527].start 13134.24846875
transcript.pyannote[2527].end 13136.10471875
transcript.pyannote[2528].speaker SPEAKER_29
transcript.pyannote[2528].start 13136.57721875
transcript.pyannote[2528].end 13137.85971875
transcript.pyannote[2529].speaker SPEAKER_29
transcript.pyannote[2529].start 13138.06221875
transcript.pyannote[2529].end 13139.20971875
transcript.pyannote[2530].speaker SPEAKER_29
transcript.pyannote[2530].start 13139.88471875
transcript.pyannote[2530].end 13140.23909375
transcript.pyannote[2531].speaker SPEAKER_29
transcript.pyannote[2531].start 13140.45846875
transcript.pyannote[2531].end 13141.28534375
transcript.pyannote[2532].speaker SPEAKER_29
transcript.pyannote[2532].start 13141.79159375
transcript.pyannote[2532].end 13143.05721875
transcript.pyannote[2533].speaker SPEAKER_15
transcript.pyannote[2533].start 13141.82534375
transcript.pyannote[2533].end 13142.55096875
transcript.pyannote[2534].speaker SPEAKER_15
transcript.pyannote[2534].start 13144.03596875
transcript.pyannote[2534].end 13145.47034375
transcript.pyannote[2535].speaker SPEAKER_15
transcript.pyannote[2535].start 13145.84159375
transcript.pyannote[2535].end 13146.82034375
transcript.pyannote[2536].speaker SPEAKER_15
transcript.pyannote[2536].start 13146.97221875
transcript.pyannote[2536].end 13149.45284375
transcript.pyannote[2537].speaker SPEAKER_15
transcript.pyannote[2537].start 13149.72284375
transcript.pyannote[2537].end 13154.65034375
transcript.pyannote[2538].speaker SPEAKER_15
transcript.pyannote[2538].start 13154.75159375
transcript.pyannote[2538].end 13157.56971875
transcript.pyannote[2539].speaker SPEAKER_15
transcript.pyannote[2539].start 13158.51471875
transcript.pyannote[2539].end 13159.42596875
transcript.pyannote[2540].speaker SPEAKER_19
transcript.pyannote[2540].start 13167.08721875
transcript.pyannote[2540].end 13170.69846875
transcript.pyannote[2541].speaker SPEAKER_19
transcript.pyannote[2541].start 13170.79971875
transcript.pyannote[2541].end 13176.38534375
transcript.pyannote[2542].speaker SPEAKER_19
transcript.pyannote[2542].start 13176.73971875
transcript.pyannote[2542].end 13177.75221875
transcript.pyannote[2543].speaker SPEAKER_19
transcript.pyannote[2543].start 13181.68409375
transcript.pyannote[2543].end 13182.19034375
transcript.pyannote[2544].speaker SPEAKER_19
transcript.pyannote[2544].start 13182.57846875
transcript.pyannote[2544].end 13183.20284375
transcript.pyannote[2545].speaker SPEAKER_19
transcript.pyannote[2545].start 13183.47284375
transcript.pyannote[2545].end 13185.27846875
transcript.pyannote[2546].speaker SPEAKER_19
transcript.pyannote[2546].start 13185.36284375
transcript.pyannote[2546].end 13189.91909375
transcript.pyannote[2547].speaker SPEAKER_19
transcript.pyannote[2547].start 13190.05409375
transcript.pyannote[2547].end 13194.61034375
transcript.pyannote[2548].speaker SPEAKER_19
transcript.pyannote[2548].start 13194.69471875
transcript.pyannote[2548].end 13195.79159375
transcript.pyannote[2549].speaker SPEAKER_19
transcript.pyannote[2549].start 13196.16284375
transcript.pyannote[2549].end 13201.52909375
transcript.pyannote[2550].speaker SPEAKER_19
transcript.pyannote[2550].start 13201.71471875
transcript.pyannote[2550].end 13202.59221875
transcript.pyannote[2551].speaker SPEAKER_19
transcript.pyannote[2551].start 13203.01409375
transcript.pyannote[2551].end 13209.25784375
transcript.pyannote[2552].speaker SPEAKER_19
transcript.pyannote[2552].start 13210.13534375
transcript.pyannote[2552].end 13211.83971875
transcript.pyannote[2553].speaker SPEAKER_19
transcript.pyannote[2553].start 13212.00846875
transcript.pyannote[2553].end 13213.98284375
transcript.pyannote[2554].speaker SPEAKER_19
transcript.pyannote[2554].start 13214.15159375
transcript.pyannote[2554].end 13216.22721875
transcript.pyannote[2555].speaker SPEAKER_19
transcript.pyannote[2555].start 13216.51409375
transcript.pyannote[2555].end 13219.65284375
transcript.pyannote[2556].speaker SPEAKER_19
transcript.pyannote[2556].start 13220.29409375
transcript.pyannote[2556].end 13221.30659375
transcript.pyannote[2557].speaker SPEAKER_19
transcript.pyannote[2557].start 13221.84659375
transcript.pyannote[2557].end 13222.21784375
transcript.pyannote[2558].speaker SPEAKER_19
transcript.pyannote[2558].start 13222.38659375
transcript.pyannote[2558].end 13239.12659375
transcript.pyannote[2559].speaker SPEAKER_19
transcript.pyannote[2559].start 13239.81846875
transcript.pyannote[2559].end 13246.82159375
transcript.pyannote[2560].speaker SPEAKER_19
transcript.pyannote[2560].start 13246.87221875
transcript.pyannote[2560].end 13254.53346875
transcript.pyannote[2561].speaker SPEAKER_19
transcript.pyannote[2561].start 13254.65159375
transcript.pyannote[2561].end 13256.81159375
transcript.pyannote[2562].speaker SPEAKER_27
transcript.pyannote[2562].start 13256.81159375
transcript.pyannote[2562].end 13256.84534375
transcript.pyannote[2563].speaker SPEAKER_19
transcript.pyannote[2563].start 13256.84534375
transcript.pyannote[2563].end 13256.89596875
transcript.pyannote[2564].speaker SPEAKER_27
transcript.pyannote[2564].start 13256.89596875
transcript.pyannote[2564].end 13257.82409375
transcript.pyannote[2565].speaker SPEAKER_19
transcript.pyannote[2565].start 13257.82409375
transcript.pyannote[2565].end 13262.09346875
transcript.pyannote[2566].speaker SPEAKER_27
transcript.pyannote[2566].start 13257.84096875
transcript.pyannote[2566].end 13258.46534375
transcript.pyannote[2567].speaker SPEAKER_19
transcript.pyannote[2567].start 13262.36346875
transcript.pyannote[2567].end 13266.02534375
transcript.pyannote[2568].speaker SPEAKER_19
transcript.pyannote[2568].start 13266.04221875
transcript.pyannote[2568].end 13270.91909375
transcript.pyannote[2569].speaker SPEAKER_19
transcript.pyannote[2569].start 13271.35784375
transcript.pyannote[2569].end 13275.45846875
transcript.pyannote[2570].speaker SPEAKER_19
transcript.pyannote[2570].start 13275.69471875
transcript.pyannote[2570].end 13277.21346875
transcript.pyannote[2571].speaker SPEAKER_19
transcript.pyannote[2571].start 13277.39909375
transcript.pyannote[2571].end 13278.05721875
transcript.pyannote[2572].speaker SPEAKER_19
transcript.pyannote[2572].start 13278.31034375
transcript.pyannote[2572].end 13278.86721875
transcript.pyannote[2573].speaker SPEAKER_19
transcript.pyannote[2573].start 13279.18784375
transcript.pyannote[2573].end 13282.12409375
transcript.pyannote[2574].speaker SPEAKER_19
transcript.pyannote[2574].start 13283.40659375
transcript.pyannote[2574].end 13285.04346875
transcript.pyannote[2575].speaker SPEAKER_19
transcript.pyannote[2575].start 13285.27971875
transcript.pyannote[2575].end 13287.62534375
transcript.pyannote[2576].speaker SPEAKER_19
transcript.pyannote[2576].start 13288.73909375
transcript.pyannote[2576].end 13290.08909375
transcript.pyannote[2577].speaker SPEAKER_19
transcript.pyannote[2577].start 13290.25784375
transcript.pyannote[2577].end 13291.84409375
transcript.pyannote[2578].speaker SPEAKER_19
transcript.pyannote[2578].start 13293.54846875
transcript.pyannote[2578].end 13294.30784375
transcript.pyannote[2579].speaker SPEAKER_19
transcript.pyannote[2579].start 13294.57784375
transcript.pyannote[2579].end 13295.91096875
transcript.pyannote[2580].speaker SPEAKER_19
transcript.pyannote[2580].start 13296.23159375
transcript.pyannote[2580].end 13304.12909375
transcript.pyannote[2581].speaker SPEAKER_19
transcript.pyannote[2581].start 13304.55096875
transcript.pyannote[2581].end 13306.89659375
transcript.pyannote[2582].speaker SPEAKER_19
transcript.pyannote[2582].start 13307.36909375
transcript.pyannote[2582].end 13309.37721875
transcript.pyannote[2583].speaker SPEAKER_19
transcript.pyannote[2583].start 13309.71471875
transcript.pyannote[2583].end 13311.06471875
transcript.pyannote[2584].speaker SPEAKER_19
transcript.pyannote[2584].start 13311.90846875
transcript.pyannote[2584].end 13312.85346875
transcript.pyannote[2585].speaker SPEAKER_19
transcript.pyannote[2585].start 13312.90409375
transcript.pyannote[2585].end 13314.16971875
transcript.pyannote[2586].speaker SPEAKER_19
transcript.pyannote[2586].start 13315.97534375
transcript.pyannote[2586].end 13321.71284375
transcript.pyannote[2587].speaker SPEAKER_19
transcript.pyannote[2587].start 13322.11784375
transcript.pyannote[2587].end 13323.82221875
transcript.pyannote[2588].speaker SPEAKER_19
transcript.pyannote[2588].start 13324.02471875
transcript.pyannote[2588].end 13325.03721875
transcript.pyannote[2589].speaker SPEAKER_19
transcript.pyannote[2589].start 13326.91034375
transcript.pyannote[2589].end 13327.41659375
transcript.pyannote[2590].speaker SPEAKER_19
transcript.pyannote[2590].start 13327.95659375
transcript.pyannote[2590].end 13332.34409375
transcript.pyannote[2591].speaker SPEAKER_19
transcript.pyannote[2591].start 13332.41159375
transcript.pyannote[2591].end 13338.84096875
transcript.pyannote[2592].speaker SPEAKER_19
transcript.pyannote[2592].start 13339.06034375
transcript.pyannote[2592].end 13345.74284375
transcript.pyannote[2593].speaker SPEAKER_19
transcript.pyannote[2593].start 13346.06346875
transcript.pyannote[2593].end 13349.50596875
transcript.pyannote[2594].speaker SPEAKER_19
transcript.pyannote[2594].start 13349.75909375
transcript.pyannote[2594].end 13350.68721875
transcript.pyannote[2595].speaker SPEAKER_19
transcript.pyannote[2595].start 13351.17659375
transcript.pyannote[2595].end 13352.96534375
transcript.pyannote[2596].speaker SPEAKER_27
transcript.pyannote[2596].start 13352.96534375
transcript.pyannote[2596].end 13353.47159375
transcript.pyannote[2597].speaker SPEAKER_27
transcript.pyannote[2597].start 13353.53909375
transcript.pyannote[2597].end 13353.60659375
transcript.pyannote[2598].speaker SPEAKER_19
transcript.pyannote[2598].start 13353.60659375
transcript.pyannote[2598].end 13353.97784375
transcript.pyannote[2599].speaker SPEAKER_27
transcript.pyannote[2599].start 13353.97784375
transcript.pyannote[2599].end 13355.02409375
transcript.pyannote[2600].speaker SPEAKER_27
transcript.pyannote[2600].start 13356.25596875
transcript.pyannote[2600].end 13364.79471875
transcript.pyannote[2601].speaker SPEAKER_19
transcript.pyannote[2601].start 13364.17034375
transcript.pyannote[2601].end 13364.59221875
transcript.pyannote[2602].speaker SPEAKER_19
transcript.pyannote[2602].start 13364.79471875
transcript.pyannote[2602].end 13366.22909375
transcript.pyannote[2603].speaker SPEAKER_19
transcript.pyannote[2603].start 13366.65096875
transcript.pyannote[2603].end 13367.17409375
transcript.pyannote[2604].speaker SPEAKER_19
transcript.pyannote[2604].start 13367.44409375
transcript.pyannote[2604].end 13368.38909375
transcript.pyannote[2605].speaker SPEAKER_19
transcript.pyannote[2605].start 13368.62534375
transcript.pyannote[2605].end 13369.97534375
transcript.pyannote[2606].speaker SPEAKER_19
transcript.pyannote[2606].start 13370.31284375
transcript.pyannote[2606].end 13376.55659375
transcript.pyannote[2607].speaker SPEAKER_19
transcript.pyannote[2607].start 13377.40034375
transcript.pyannote[2607].end 13379.69534375
transcript.pyannote[2608].speaker SPEAKER_27
transcript.pyannote[2608].start 13379.32409375
transcript.pyannote[2608].end 13385.02784375
transcript.pyannote[2609].speaker SPEAKER_19
transcript.pyannote[2609].start 13385.02784375
transcript.pyannote[2609].end 13394.02221875
transcript.pyannote[2610].speaker SPEAKER_19
transcript.pyannote[2610].start 13394.52846875
transcript.pyannote[2610].end 13400.18159375
transcript.pyannote[2611].speaker SPEAKER_00
transcript.pyannote[2611].start 13394.57909375
transcript.pyannote[2611].end 13394.86596875
transcript.pyannote[2612].speaker SPEAKER_19
transcript.pyannote[2612].start 13400.36721875
transcript.pyannote[2612].end 13403.08409375
transcript.pyannote[2613].speaker SPEAKER_19
transcript.pyannote[2613].start 13403.28659375
transcript.pyannote[2613].end 13404.68721875
transcript.pyannote[2614].speaker SPEAKER_19
transcript.pyannote[2614].start 13405.15971875
transcript.pyannote[2614].end 13405.91909375
transcript.pyannote[2615].speaker SPEAKER_19
transcript.pyannote[2615].start 13407.60659375
transcript.pyannote[2615].end 13413.02346875
transcript.pyannote[2616].speaker SPEAKER_19
transcript.pyannote[2616].start 13413.20909375
transcript.pyannote[2616].end 13413.44534375
transcript.pyannote[2617].speaker SPEAKER_19
transcript.pyannote[2617].start 13413.49596875
transcript.pyannote[2617].end 13417.88346875
transcript.pyannote[2618].speaker SPEAKER_19
transcript.pyannote[2618].start 13418.35596875
transcript.pyannote[2618].end 13418.98034375
transcript.pyannote[2619].speaker SPEAKER_27
transcript.pyannote[2619].start 13418.67659375
transcript.pyannote[2619].end 13418.86221875
transcript.pyannote[2620].speaker SPEAKER_27
transcript.pyannote[2620].start 13418.98034375
transcript.pyannote[2620].end 13419.01409375
transcript.pyannote[2621].speaker SPEAKER_27
transcript.pyannote[2621].start 13419.35159375
transcript.pyannote[2621].end 13424.68409375
transcript.pyannote[2622].speaker SPEAKER_27
transcript.pyannote[2622].start 13425.74721875
transcript.pyannote[2622].end 13426.40534375
transcript.pyannote[2623].speaker SPEAKER_27
transcript.pyannote[2623].start 13426.96221875
transcript.pyannote[2623].end 13427.02971875
transcript.pyannote[2624].speaker SPEAKER_19
transcript.pyannote[2624].start 13427.02971875
transcript.pyannote[2624].end 13452.46034375
transcript.pyannote[2625].speaker SPEAKER_00
transcript.pyannote[2625].start 13444.30971875
transcript.pyannote[2625].end 13444.81596875
transcript.pyannote[2626].speaker SPEAKER_19
transcript.pyannote[2626].start 13452.57846875
transcript.pyannote[2626].end 13455.48096875
transcript.pyannote[2627].speaker SPEAKER_19
transcript.pyannote[2627].start 13455.78471875
transcript.pyannote[2627].end 13457.96159375
transcript.pyannote[2628].speaker SPEAKER_19
transcript.pyannote[2628].start 13458.28221875
transcript.pyannote[2628].end 13459.83471875
transcript.pyannote[2629].speaker SPEAKER_19
transcript.pyannote[2629].start 13461.58971875
transcript.pyannote[2629].end 13465.67346875
transcript.pyannote[2630].speaker SPEAKER_19
transcript.pyannote[2630].start 13465.87596875
transcript.pyannote[2630].end 13469.20034375
transcript.pyannote[2631].speaker SPEAKER_19
transcript.pyannote[2631].start 13469.53784375
transcript.pyannote[2631].end 13472.32221875
transcript.pyannote[2632].speaker SPEAKER_16
transcript.pyannote[2632].start 13473.90846875
transcript.pyannote[2632].end 13474.22909375
transcript.pyannote[2633].speaker SPEAKER_16
transcript.pyannote[2633].start 13474.58346875
transcript.pyannote[2633].end 13477.23284375
transcript.pyannote[2634].speaker SPEAKER_16
transcript.pyannote[2634].start 13477.60409375
transcript.pyannote[2634].end 13483.84784375
transcript.pyannote[2635].speaker SPEAKER_16
transcript.pyannote[2635].start 13483.99971875
transcript.pyannote[2635].end 13494.49596875
transcript.pyannote[2636].speaker SPEAKER_19
transcript.pyannote[2636].start 13491.13784375
transcript.pyannote[2636].end 13491.52596875
transcript.pyannote[2637].speaker SPEAKER_19
transcript.pyannote[2637].start 13494.49596875
transcript.pyannote[2637].end 13502.46096875
transcript.pyannote[2638].speaker SPEAKER_19
transcript.pyannote[2638].start 13502.47784375
transcript.pyannote[2638].end 13507.42221875
transcript.pyannote[2639].speaker SPEAKER_16
transcript.pyannote[2639].start 13507.42221875
transcript.pyannote[2639].end 13507.67534375
transcript.pyannote[2640].speaker SPEAKER_19
transcript.pyannote[2640].start 13507.67534375
transcript.pyannote[2640].end 13510.98284375
transcript.pyannote[2641].speaker SPEAKER_19
transcript.pyannote[2641].start 13511.25284375
transcript.pyannote[2641].end 13519.23471875
transcript.pyannote[2642].speaker SPEAKER_16
transcript.pyannote[2642].start 13519.23471875
transcript.pyannote[2642].end 13519.25159375
transcript.pyannote[2643].speaker SPEAKER_19
transcript.pyannote[2643].start 13519.96034375
transcript.pyannote[2643].end 13519.97721875
transcript.pyannote[2644].speaker SPEAKER_16
transcript.pyannote[2644].start 13519.97721875
transcript.pyannote[2644].end 13528.61721875
transcript.pyannote[2645].speaker SPEAKER_19
transcript.pyannote[2645].start 13528.61721875
transcript.pyannote[2645].end 13537.61159375
transcript.pyannote[2646].speaker SPEAKER_19
transcript.pyannote[2646].start 13537.67909375
transcript.pyannote[2646].end 13541.12159375
transcript.pyannote[2647].speaker SPEAKER_19
transcript.pyannote[2647].start 13541.56034375
transcript.pyannote[2647].end 13545.05346875
transcript.pyannote[2648].speaker SPEAKER_19
transcript.pyannote[2648].start 13545.45846875
transcript.pyannote[2648].end 13548.52971875
transcript.pyannote[2649].speaker SPEAKER_19
transcript.pyannote[2649].start 13548.63096875
transcript.pyannote[2649].end 13558.72221875
transcript.pyannote[2650].speaker SPEAKER_19
transcript.pyannote[2650].start 13558.94159375
transcript.pyannote[2650].end 13562.51909375
transcript.pyannote[2651].speaker SPEAKER_15
transcript.pyannote[2651].start 13563.22784375
transcript.pyannote[2651].end 13563.76784375
transcript.pyannote[2652].speaker SPEAKER_15
transcript.pyannote[2652].start 13565.45534375
transcript.pyannote[2652].end 13569.26909375
transcript.pyannote[2653].speaker SPEAKER_15
transcript.pyannote[2653].start 13569.48846875
transcript.pyannote[2653].end 13571.88471875
transcript.pyannote[2654].speaker SPEAKER_15
transcript.pyannote[2654].start 13572.25596875
transcript.pyannote[2654].end 13573.20096875
transcript.pyannote[2655].speaker SPEAKER_08
transcript.pyannote[2655].start 13577.90909375
transcript.pyannote[2655].end 13578.55034375
transcript.pyannote[2656].speaker SPEAKER_08
transcript.pyannote[2656].start 13579.10721875
transcript.pyannote[2656].end 13579.86659375
transcript.pyannote[2657].speaker SPEAKER_08
transcript.pyannote[2657].start 13580.25471875
transcript.pyannote[2657].end 13585.40159375
transcript.pyannote[2658].speaker SPEAKER_08
transcript.pyannote[2658].start 13586.59971875
transcript.pyannote[2658].end 13588.47284375
transcript.pyannote[2659].speaker SPEAKER_08
transcript.pyannote[2659].start 13590.93659375
transcript.pyannote[2659].end 13592.45534375
transcript.pyannote[2660].speaker SPEAKER_08
transcript.pyannote[2660].start 13592.94471875
transcript.pyannote[2660].end 13616.46846875
transcript.pyannote[2661].speaker SPEAKER_16
transcript.pyannote[2661].start 13617.09284375
transcript.pyannote[2661].end 13617.61596875
transcript.pyannote[2662].speaker SPEAKER_08
transcript.pyannote[2662].start 13617.61596875
transcript.pyannote[2662].end 13645.42596875
transcript.pyannote[2663].speaker SPEAKER_16
transcript.pyannote[2663].start 13617.63284375
transcript.pyannote[2663].end 13617.70034375
transcript.pyannote[2664].speaker SPEAKER_08
transcript.pyannote[2664].start 13645.72971875
transcript.pyannote[2664].end 13646.86034375
transcript.pyannote[2665].speaker SPEAKER_08
transcript.pyannote[2665].start 13647.16409375
transcript.pyannote[2665].end 13653.61034375
transcript.pyannote[2666].speaker SPEAKER_08
transcript.pyannote[2666].start 13653.74534375
transcript.pyannote[2666].end 13653.82971875
transcript.pyannote[2667].speaker SPEAKER_08
transcript.pyannote[2667].start 13654.28534375
transcript.pyannote[2667].end 13671.86909375
transcript.pyannote[2668].speaker SPEAKER_08
transcript.pyannote[2668].start 13672.47659375
transcript.pyannote[2668].end 13677.91034375
transcript.pyannote[2669].speaker SPEAKER_16
transcript.pyannote[2669].start 13679.20971875
transcript.pyannote[2669].end 13686.63471875
transcript.pyannote[2670].speaker SPEAKER_08
transcript.pyannote[2670].start 13684.44096875
transcript.pyannote[2670].end 13684.91346875
transcript.pyannote[2671].speaker SPEAKER_08
transcript.pyannote[2671].start 13686.17909375
transcript.pyannote[2671].end 13688.94659375
transcript.pyannote[2672].speaker SPEAKER_16
transcript.pyannote[2672].start 13688.37284375
transcript.pyannote[2672].end 13698.21096875
transcript.pyannote[2673].speaker SPEAKER_08
transcript.pyannote[2673].start 13689.77346875
transcript.pyannote[2673].end 13691.19096875
transcript.pyannote[2674].speaker SPEAKER_08
transcript.pyannote[2674].start 13698.04221875
transcript.pyannote[2674].end 13701.61971875
transcript.pyannote[2675].speaker SPEAKER_16
transcript.pyannote[2675].start 13701.83909375
transcript.pyannote[2675].end 13701.97409375
transcript.pyannote[2676].speaker SPEAKER_27
transcript.pyannote[2676].start 13701.97409375
transcript.pyannote[2676].end 13706.81721875
transcript.pyannote[2677].speaker SPEAKER_27
transcript.pyannote[2677].start 13707.40784375
transcript.pyannote[2677].end 13711.20471875
transcript.pyannote[2678].speaker SPEAKER_27
transcript.pyannote[2678].start 13712.11596875
transcript.pyannote[2678].end 13715.67659375
transcript.pyannote[2679].speaker SPEAKER_08
transcript.pyannote[2679].start 13712.43659375
transcript.pyannote[2679].end 13743.04784375
transcript.pyannote[2680].speaker SPEAKER_08
transcript.pyannote[2680].start 13743.48659375
transcript.pyannote[2680].end 13844.60159375
transcript.pyannote[2681].speaker SPEAKER_27
transcript.pyannote[2681].start 13845.47909375
transcript.pyannote[2681].end 13848.29721875
transcript.pyannote[2682].speaker SPEAKER_08
transcript.pyannote[2682].start 13848.73596875
transcript.pyannote[2682].end 13850.45721875
transcript.pyannote[2683].speaker SPEAKER_08
transcript.pyannote[2683].start 13851.25034375
transcript.pyannote[2683].end 13851.28409375
transcript.pyannote[2684].speaker SPEAKER_27
transcript.pyannote[2684].start 13851.28409375
transcript.pyannote[2684].end 13854.28784375
transcript.pyannote[2685].speaker SPEAKER_08
transcript.pyannote[2685].start 13854.45659375
transcript.pyannote[2685].end 13872.76596875
transcript.pyannote[2686].speaker SPEAKER_16
transcript.pyannote[2686].start 13873.23846875
transcript.pyannote[2686].end 13877.22096875
transcript.pyannote[2687].speaker SPEAKER_08
transcript.pyannote[2687].start 13877.28846875
transcript.pyannote[2687].end 13884.30846875
transcript.pyannote[2688].speaker SPEAKER_16
transcript.pyannote[2688].start 13885.30409375
transcript.pyannote[2688].end 13886.56971875
transcript.pyannote[2689].speaker SPEAKER_08
transcript.pyannote[2689].start 13886.65409375
transcript.pyannote[2689].end 13888.32471875
transcript.pyannote[2690].speaker SPEAKER_16
transcript.pyannote[2690].start 13888.45971875
transcript.pyannote[2690].end 13888.79721875
transcript.pyannote[2691].speaker SPEAKER_08
transcript.pyannote[2691].start 13888.91534375
transcript.pyannote[2691].end 13891.95284375
transcript.pyannote[2692].speaker SPEAKER_08
transcript.pyannote[2692].start 13892.12159375
transcript.pyannote[2692].end 13893.10034375
transcript.pyannote[2693].speaker SPEAKER_15
transcript.pyannote[2693].start 13893.10034375
transcript.pyannote[2693].end 13893.11721875
transcript.pyannote[2694].speaker SPEAKER_15
transcript.pyannote[2694].start 13896.39096875
transcript.pyannote[2694].end 13899.09096875
transcript.pyannote[2695].speaker SPEAKER_10
transcript.pyannote[2695].start 13907.86596875
transcript.pyannote[2695].end 13916.18534375
transcript.pyannote[2696].speaker SPEAKER_10
transcript.pyannote[2696].start 13920.72471875
transcript.pyannote[2696].end 13997.18534375
transcript.pyannote[2697].speaker SPEAKER_27
transcript.pyannote[2697].start 13997.89409375
transcript.pyannote[2697].end 14009.28471875
transcript.pyannote[2698].speaker SPEAKER_10
transcript.pyannote[2698].start 14007.95159375
transcript.pyannote[2698].end 14074.43909375
transcript.pyannote[2699].speaker SPEAKER_10
transcript.pyannote[2699].start 14074.79346875
transcript.pyannote[2699].end 14077.66221875
transcript.pyannote[2700].speaker SPEAKER_27
transcript.pyannote[2700].start 14078.79284375
transcript.pyannote[2700].end 14084.26034375
transcript.pyannote[2701].speaker SPEAKER_27
transcript.pyannote[2701].start 14084.96909375
transcript.pyannote[2701].end 14090.92596875
transcript.pyannote[2702].speaker SPEAKER_28
transcript.pyannote[2702].start 14091.41534375
transcript.pyannote[2702].end 14091.44909375
transcript.pyannote[2703].speaker SPEAKER_10
transcript.pyannote[2703].start 14091.44909375
transcript.pyannote[2703].end 14091.85409375
transcript.pyannote[2704].speaker SPEAKER_27
transcript.pyannote[2704].start 14091.44909375
transcript.pyannote[2704].end 14092.34346875
transcript.pyannote[2705].speaker SPEAKER_27
transcript.pyannote[2705].start 14092.73159375
transcript.pyannote[2705].end 14094.57096875
transcript.pyannote[2706].speaker SPEAKER_10
transcript.pyannote[2706].start 14095.29659375
transcript.pyannote[2706].end 14108.99909375
transcript.pyannote[2707].speaker SPEAKER_10
transcript.pyannote[2707].start 14109.23534375
transcript.pyannote[2707].end 14112.50909375
transcript.pyannote[2708].speaker SPEAKER_10
transcript.pyannote[2708].start 14113.16721875
transcript.pyannote[2708].end 14157.54846875
transcript.pyannote[2709].speaker SPEAKER_26
transcript.pyannote[2709].start 14158.02096875
transcript.pyannote[2709].end 14194.52159375
transcript.pyannote[2710].speaker SPEAKER_00
transcript.pyannote[2710].start 14187.18096875
transcript.pyannote[2710].end 14187.19784375
transcript.pyannote[2711].speaker SPEAKER_10
transcript.pyannote[2711].start 14187.19784375
transcript.pyannote[2711].end 14187.65346875
transcript.pyannote[2712].speaker SPEAKER_10
transcript.pyannote[2712].start 14192.15909375
transcript.pyannote[2712].end 14192.49659375
transcript.pyannote[2713].speaker SPEAKER_10
transcript.pyannote[2713].start 14194.47096875
transcript.pyannote[2713].end 14216.17221875
transcript.pyannote[2714].speaker SPEAKER_26
transcript.pyannote[2714].start 14216.50971875
transcript.pyannote[2714].end 14231.86596875
transcript.pyannote[2715].speaker SPEAKER_28
transcript.pyannote[2715].start 14221.25159375
transcript.pyannote[2715].end 14221.94346875
transcript.pyannote[2716].speaker SPEAKER_26
transcript.pyannote[2716].start 14232.40596875
transcript.pyannote[2716].end 14239.59471875
transcript.pyannote[2717].speaker SPEAKER_10
transcript.pyannote[2717].start 14239.56096875
transcript.pyannote[2717].end 14240.96159375
transcript.pyannote[2718].speaker SPEAKER_10
transcript.pyannote[2718].start 14241.38346875
transcript.pyannote[2718].end 14243.34096875
transcript.pyannote[2719].speaker SPEAKER_15
transcript.pyannote[2719].start 14246.37846875
transcript.pyannote[2719].end 14252.50409375
transcript.pyannote[2720].speaker SPEAKER_31
transcript.pyannote[2720].start 14265.66659375
transcript.pyannote[2720].end 14268.09659375
transcript.pyannote[2721].speaker SPEAKER_31
transcript.pyannote[2721].start 14268.18096875
transcript.pyannote[2721].end 14268.73784375
transcript.pyannote[2722].speaker SPEAKER_15
transcript.pyannote[2722].start 14269.29471875
transcript.pyannote[2722].end 14270.30721875
transcript.pyannote[2723].speaker SPEAKER_31
transcript.pyannote[2723].start 14276.82096875
transcript.pyannote[2723].end 14277.44534375
transcript.pyannote[2724].speaker SPEAKER_31
transcript.pyannote[2724].start 14277.78284375
transcript.pyannote[2724].end 14278.28909375
transcript.pyannote[2725].speaker SPEAKER_31
transcript.pyannote[2725].start 14278.71096875
transcript.pyannote[2725].end 14289.34221875
transcript.pyannote[2726].speaker SPEAKER_31
transcript.pyannote[2726].start 14289.78096875
transcript.pyannote[2726].end 14290.37159375
transcript.pyannote[2727].speaker SPEAKER_31
transcript.pyannote[2727].start 14290.48971875
transcript.pyannote[2727].end 14300.05784375
transcript.pyannote[2728].speaker SPEAKER_31
transcript.pyannote[2728].start 14300.36159375
transcript.pyannote[2728].end 14305.47471875
transcript.pyannote[2729].speaker SPEAKER_31
transcript.pyannote[2729].start 14306.21721875
transcript.pyannote[2729].end 14310.46971875
transcript.pyannote[2730].speaker SPEAKER_31
transcript.pyannote[2730].start 14310.97596875
transcript.pyannote[2730].end 14311.31346875
transcript.pyannote[2731].speaker SPEAKER_16
transcript.pyannote[2731].start 14311.31346875
transcript.pyannote[2731].end 14311.34721875
transcript.pyannote[2732].speaker SPEAKER_31
transcript.pyannote[2732].start 14311.95471875
transcript.pyannote[2732].end 14312.96721875
transcript.pyannote[2733].speaker SPEAKER_16
transcript.pyannote[2733].start 14312.96721875
transcript.pyannote[2733].end 14332.79534375
transcript.pyannote[2734].speaker SPEAKER_31
transcript.pyannote[2734].start 14316.62909375
transcript.pyannote[2734].end 14316.76409375
transcript.pyannote[2735].speaker SPEAKER_01
transcript.pyannote[2735].start 14316.76409375
transcript.pyannote[2735].end 14316.96659375
transcript.pyannote[2736].speaker SPEAKER_00
transcript.pyannote[2736].start 14316.96659375
transcript.pyannote[2736].end 14317.01721875
transcript.pyannote[2737].speaker SPEAKER_16
transcript.pyannote[2737].start 14332.87971875
transcript.pyannote[2737].end 14339.35971875
transcript.pyannote[2738].speaker SPEAKER_16
transcript.pyannote[2738].start 14339.76471875
transcript.pyannote[2738].end 14344.00034375
transcript.pyannote[2739].speaker SPEAKER_31
transcript.pyannote[2739].start 14344.55721875
transcript.pyannote[2739].end 14352.72471875
transcript.pyannote[2740].speaker SPEAKER_31
transcript.pyannote[2740].start 14352.99471875
transcript.pyannote[2740].end 14363.86221875
transcript.pyannote[2741].speaker SPEAKER_31
transcript.pyannote[2741].start 14364.62159375
transcript.pyannote[2741].end 14364.63846875
transcript.pyannote[2742].speaker SPEAKER_16
transcript.pyannote[2742].start 14364.63846875
transcript.pyannote[2742].end 14380.36596875
transcript.pyannote[2743].speaker SPEAKER_31
transcript.pyannote[2743].start 14364.67221875
transcript.pyannote[2743].end 14364.95909375
transcript.pyannote[2744].speaker SPEAKER_31
transcript.pyannote[2744].start 14371.72596875
transcript.pyannote[2744].end 14372.11409375
transcript.pyannote[2745].speaker SPEAKER_31
transcript.pyannote[2745].start 14376.92346875
transcript.pyannote[2745].end 14377.10909375
transcript.pyannote[2746].speaker SPEAKER_16
transcript.pyannote[2746].start 14380.65284375
transcript.pyannote[2746].end 14381.69909375
transcript.pyannote[2747].speaker SPEAKER_31
transcript.pyannote[2747].start 14380.70346875
transcript.pyannote[2747].end 14382.64409375
transcript.pyannote[2748].speaker SPEAKER_31
transcript.pyannote[2748].start 14382.81284375
transcript.pyannote[2748].end 14390.10284375
transcript.pyannote[2749].speaker SPEAKER_16
transcript.pyannote[2749].start 14389.76534375
transcript.pyannote[2749].end 14394.25409375
transcript.pyannote[2750].speaker SPEAKER_16
transcript.pyannote[2750].start 14394.47346875
transcript.pyannote[2750].end 14396.11034375
transcript.pyannote[2751].speaker SPEAKER_31
transcript.pyannote[2751].start 14394.70971875
transcript.pyannote[2751].end 14420.57909375
transcript.pyannote[2752].speaker SPEAKER_28
transcript.pyannote[2752].start 14412.00659375
transcript.pyannote[2752].end 14412.15846875
transcript.pyannote[2753].speaker SPEAKER_00
transcript.pyannote[2753].start 14412.15846875
transcript.pyannote[2753].end 14412.17534375
transcript.pyannote[2754].speaker SPEAKER_16
transcript.pyannote[2754].start 14420.57909375
transcript.pyannote[2754].end 14443.25909375
transcript.pyannote[2755].speaker SPEAKER_31
transcript.pyannote[2755].start 14422.46909375
transcript.pyannote[2755].end 14422.82346875
transcript.pyannote[2756].speaker SPEAKER_16
transcript.pyannote[2756].start 14443.32659375
transcript.pyannote[2756].end 14451.03846875
transcript.pyannote[2757].speaker SPEAKER_31
transcript.pyannote[2757].start 14451.03846875
transcript.pyannote[2757].end 14453.75534375
transcript.pyannote[2758].speaker SPEAKER_31
transcript.pyannote[2758].start 14454.36284375
transcript.pyannote[2758].end 14463.39096875
transcript.pyannote[2759].speaker SPEAKER_16
transcript.pyannote[2759].start 14463.57659375
transcript.pyannote[2759].end 14463.96471875
transcript.pyannote[2760].speaker SPEAKER_31
transcript.pyannote[2760].start 14463.71159375
transcript.pyannote[2760].end 14467.00221875
transcript.pyannote[2761].speaker SPEAKER_16
transcript.pyannote[2761].start 14467.00221875
transcript.pyannote[2761].end 14467.40721875
transcript.pyannote[2762].speaker SPEAKER_16
transcript.pyannote[2762].start 14467.55909375
transcript.pyannote[2762].end 14467.93034375
transcript.pyannote[2763].speaker SPEAKER_31
transcript.pyannote[2763].start 14467.93034375
transcript.pyannote[2763].end 14467.96409375
transcript.pyannote[2764].speaker SPEAKER_16
transcript.pyannote[2764].start 14467.96409375
transcript.pyannote[2764].end 14476.58721875
transcript.pyannote[2765].speaker SPEAKER_16
transcript.pyannote[2765].start 14476.90784375
transcript.pyannote[2765].end 14477.17784375
transcript.pyannote[2766].speaker SPEAKER_31
transcript.pyannote[2766].start 14476.97534375
transcript.pyannote[2766].end 14477.16096875
transcript.pyannote[2767].speaker SPEAKER_30
transcript.pyannote[2767].start 14477.16096875
transcript.pyannote[2767].end 14477.27909375
transcript.pyannote[2768].speaker SPEAKER_31
transcript.pyannote[2768].start 14477.17784375
transcript.pyannote[2768].end 14477.43096875
transcript.pyannote[2769].speaker SPEAKER_16
transcript.pyannote[2769].start 14477.27909375
transcript.pyannote[2769].end 14478.03846875
transcript.pyannote[2770].speaker SPEAKER_31
transcript.pyannote[2770].start 14478.03846875
transcript.pyannote[2770].end 14479.28721875
transcript.pyannote[2771].speaker SPEAKER_30
transcript.pyannote[2771].start 14479.18596875
transcript.pyannote[2771].end 14479.52346875
transcript.pyannote[2772].speaker SPEAKER_31
transcript.pyannote[2772].start 14479.52346875
transcript.pyannote[2772].end 14482.56096875
transcript.pyannote[2773].speaker SPEAKER_31
transcript.pyannote[2773].start 14482.86471875
transcript.pyannote[2773].end 14503.09784375
transcript.pyannote[2774].speaker SPEAKER_16
transcript.pyannote[2774].start 14500.60034375
transcript.pyannote[2774].end 14501.20784375
transcript.pyannote[2775].speaker SPEAKER_16
transcript.pyannote[2775].start 14501.49471875
transcript.pyannote[2775].end 14506.45596875
transcript.pyannote[2776].speaker SPEAKER_31
transcript.pyannote[2776].start 14503.28346875
transcript.pyannote[2776].end 14503.50284375
transcript.pyannote[2777].speaker SPEAKER_31
transcript.pyannote[2777].start 14506.45596875
transcript.pyannote[2777].end 14506.54034375
transcript.pyannote[2778].speaker SPEAKER_16
transcript.pyannote[2778].start 14506.54034375
transcript.pyannote[2778].end 14506.70909375
transcript.pyannote[2779].speaker SPEAKER_31
transcript.pyannote[2779].start 14506.70909375
transcript.pyannote[2779].end 14507.14784375
transcript.pyannote[2780].speaker SPEAKER_16
transcript.pyannote[2780].start 14506.74284375
transcript.pyannote[2780].end 14506.97909375
transcript.pyannote[2781].speaker SPEAKER_31
transcript.pyannote[2781].start 14507.43471875
transcript.pyannote[2781].end 14511.34971875
transcript.pyannote[2782].speaker SPEAKER_31
transcript.pyannote[2782].start 14511.72096875
transcript.pyannote[2782].end 14512.80096875
transcript.pyannote[2783].speaker SPEAKER_31
transcript.pyannote[2783].start 14513.50971875
transcript.pyannote[2783].end 14514.64034375
transcript.pyannote[2784].speaker SPEAKER_31
transcript.pyannote[2784].start 14514.91034375
transcript.pyannote[2784].end 14521.47471875
transcript.pyannote[2785].speaker SPEAKER_31
transcript.pyannote[2785].start 14521.74471875
transcript.pyannote[2785].end 14525.81159375
transcript.pyannote[2786].speaker SPEAKER_31
transcript.pyannote[2786].start 14526.21659375
transcript.pyannote[2786].end 14529.60846875
transcript.pyannote[2787].speaker SPEAKER_31
transcript.pyannote[2787].start 14530.18221875
transcript.pyannote[2787].end 14542.29846875
transcript.pyannote[2788].speaker SPEAKER_31
transcript.pyannote[2788].start 14542.58534375
transcript.pyannote[2788].end 14547.19221875
transcript.pyannote[2789].speaker SPEAKER_31
transcript.pyannote[2789].start 14547.36096875
transcript.pyannote[2789].end 14553.23346875
transcript.pyannote[2790].speaker SPEAKER_31
transcript.pyannote[2790].start 14553.82409375
transcript.pyannote[2790].end 14554.51596875
transcript.pyannote[2791].speaker SPEAKER_31
transcript.pyannote[2791].start 14555.34284375
transcript.pyannote[2791].end 14581.33034375
transcript.pyannote[2792].speaker SPEAKER_31
transcript.pyannote[2792].start 14581.56659375
transcript.pyannote[2792].end 14583.25409375
transcript.pyannote[2793].speaker SPEAKER_31
transcript.pyannote[2793].start 14583.45659375
transcript.pyannote[2793].end 14587.42221875
transcript.pyannote[2794].speaker SPEAKER_16
transcript.pyannote[2794].start 14587.81034375
transcript.pyannote[2794].end 14607.92534375
transcript.pyannote[2795].speaker SPEAKER_16
transcript.pyannote[2795].start 14607.97596875
transcript.pyannote[2795].end 14623.36596875
transcript.pyannote[2796].speaker SPEAKER_16
transcript.pyannote[2796].start 14623.53471875
transcript.pyannote[2796].end 14628.14159375
transcript.pyannote[2797].speaker SPEAKER_31
transcript.pyannote[2797].start 14627.85471875
transcript.pyannote[2797].end 14659.20846875
transcript.pyannote[2798].speaker SPEAKER_28
transcript.pyannote[2798].start 14638.67159375
transcript.pyannote[2798].end 14639.53221875
transcript.pyannote[2799].speaker SPEAKER_16
transcript.pyannote[2799].start 14659.49534375
transcript.pyannote[2799].end 14660.17034375
transcript.pyannote[2800].speaker SPEAKER_16
transcript.pyannote[2800].start 14660.27159375
transcript.pyannote[2800].end 14661.63846875
transcript.pyannote[2801].speaker SPEAKER_16
transcript.pyannote[2801].start 14662.14471875
transcript.pyannote[2801].end 14663.73096875
transcript.pyannote[2802].speaker SPEAKER_31
transcript.pyannote[2802].start 14664.00096875
transcript.pyannote[2802].end 14665.06409375
transcript.pyannote[2803].speaker SPEAKER_31
transcript.pyannote[2803].start 14665.26659375
transcript.pyannote[2803].end 14668.18596875
transcript.pyannote[2804].speaker SPEAKER_16
transcript.pyannote[2804].start 14668.18596875
transcript.pyannote[2804].end 14668.25346875
transcript.pyannote[2805].speaker SPEAKER_31
transcript.pyannote[2805].start 14669.28284375
transcript.pyannote[2805].end 14669.29971875
transcript.pyannote[2806].speaker SPEAKER_16
transcript.pyannote[2806].start 14669.29971875
transcript.pyannote[2806].end 14671.71284375
transcript.pyannote[2807].speaker SPEAKER_16
transcript.pyannote[2807].start 14671.84784375
transcript.pyannote[2807].end 14679.62721875
transcript.pyannote[2808].speaker SPEAKER_25
transcript.pyannote[2808].start 14674.04159375
transcript.pyannote[2808].end 14674.48034375
transcript.pyannote[2809].speaker SPEAKER_25
transcript.pyannote[2809].start 14676.52221875
transcript.pyannote[2809].end 14682.81659375
transcript.pyannote[2810].speaker SPEAKER_28
transcript.pyannote[2810].start 14679.62721875
transcript.pyannote[2810].end 14679.72846875
transcript.pyannote[2811].speaker SPEAKER_25
transcript.pyannote[2811].start 14682.86721875
transcript.pyannote[2811].end 14699.97846875
transcript.pyannote[2812].speaker SPEAKER_25
transcript.pyannote[2812].start 14700.70409375
transcript.pyannote[2812].end 14714.25471875
transcript.pyannote[2813].speaker SPEAKER_25
transcript.pyannote[2813].start 14715.73971875
transcript.pyannote[2813].end 14715.77346875
transcript.pyannote[2814].speaker SPEAKER_31
transcript.pyannote[2814].start 14715.77346875
transcript.pyannote[2814].end 14717.76471875
transcript.pyannote[2815].speaker SPEAKER_31
transcript.pyannote[2815].start 14718.13596875
transcript.pyannote[2815].end 14723.46846875
transcript.pyannote[2816].speaker SPEAKER_31
transcript.pyannote[2816].start 14723.77221875
transcript.pyannote[2816].end 14729.13846875
transcript.pyannote[2817].speaker SPEAKER_31
transcript.pyannote[2817].start 14729.49284375
transcript.pyannote[2817].end 14764.87971875
transcript.pyannote[2818].speaker SPEAKER_31
transcript.pyannote[2818].start 14765.06534375
transcript.pyannote[2818].end 14771.08971875
transcript.pyannote[2819].speaker SPEAKER_16
transcript.pyannote[2819].start 14771.42721875
transcript.pyannote[2819].end 14792.11596875
transcript.pyannote[2820].speaker SPEAKER_31
transcript.pyannote[2820].start 14772.74346875
transcript.pyannote[2820].end 14773.16534375
transcript.pyannote[2821].speaker SPEAKER_00
transcript.pyannote[2821].start 14780.65784375
transcript.pyannote[2821].end 14780.99534375
transcript.pyannote[2822].speaker SPEAKER_31
transcript.pyannote[2822].start 14790.59721875
transcript.pyannote[2822].end 14799.45659375
transcript.pyannote[2823].speaker SPEAKER_16
transcript.pyannote[2823].start 14797.43159375
transcript.pyannote[2823].end 14798.30909375
transcript.pyannote[2824].speaker SPEAKER_16
transcript.pyannote[2824].start 14799.45659375
transcript.pyannote[2824].end 14809.66596875
transcript.pyannote[2825].speaker SPEAKER_31
transcript.pyannote[2825].start 14809.95284375
transcript.pyannote[2825].end 14810.44221875
transcript.pyannote[2826].speaker SPEAKER_16
transcript.pyannote[2826].start 14810.54346875
transcript.pyannote[2826].end 14812.70346875
transcript.pyannote[2827].speaker SPEAKER_31
transcript.pyannote[2827].start 14812.70346875
transcript.pyannote[2827].end 14824.51596875
transcript.pyannote[2828].speaker SPEAKER_16
transcript.pyannote[2828].start 14813.81721875
transcript.pyannote[2828].end 14814.61034375
transcript.pyannote[2829].speaker SPEAKER_31
transcript.pyannote[2829].start 14824.56659375
transcript.pyannote[2829].end 14830.57409375
transcript.pyannote[2830].speaker SPEAKER_31
transcript.pyannote[2830].start 14830.99596875
transcript.pyannote[2830].end 14837.81346875
transcript.pyannote[2831].speaker SPEAKER_31
transcript.pyannote[2831].start 14838.23534375
transcript.pyannote[2831].end 14838.52221875
transcript.pyannote[2832].speaker SPEAKER_31
transcript.pyannote[2832].start 14838.92721875
transcript.pyannote[2832].end 14864.37471875
transcript.pyannote[2833].speaker SPEAKER_31
transcript.pyannote[2833].start 14865.06659375
transcript.pyannote[2833].end 14866.97346875
transcript.pyannote[2834].speaker SPEAKER_31
transcript.pyannote[2834].start 14867.24346875
transcript.pyannote[2834].end 14868.69471875
transcript.pyannote[2835].speaker SPEAKER_31
transcript.pyannote[2835].start 14869.85909375
transcript.pyannote[2835].end 14869.87596875
transcript.pyannote[2836].speaker SPEAKER_15
transcript.pyannote[2836].start 14869.87596875
transcript.pyannote[2836].end 14870.60159375
transcript.pyannote[2837].speaker SPEAKER_15
transcript.pyannote[2837].start 14875.25909375
transcript.pyannote[2837].end 14878.09409375
transcript.pyannote[2838].speaker SPEAKER_18
transcript.pyannote[2838].start 14885.97471875
transcript.pyannote[2838].end 14887.32471875
transcript.pyannote[2839].speaker SPEAKER_15
transcript.pyannote[2839].start 14887.69596875
transcript.pyannote[2839].end 14889.01221875
transcript.pyannote[2840].speaker SPEAKER_18
transcript.pyannote[2840].start 14894.98596875
transcript.pyannote[2840].end 14896.30221875
transcript.pyannote[2841].speaker SPEAKER_18
transcript.pyannote[2841].start 14897.02784375
transcript.pyannote[2841].end 14928.80346875
transcript.pyannote[2842].speaker SPEAKER_27
transcript.pyannote[2842].start 14929.37721875
transcript.pyannote[2842].end 14937.46034375
transcript.pyannote[2843].speaker SPEAKER_27
transcript.pyannote[2843].start 14938.00034375
transcript.pyannote[2843].end 14944.95284375
transcript.pyannote[2844].speaker SPEAKER_27
transcript.pyannote[2844].start 14944.96971875
transcript.pyannote[2844].end 14949.39096875
transcript.pyannote[2845].speaker SPEAKER_27
transcript.pyannote[2845].start 14949.54284375
transcript.pyannote[2845].end 14954.40284375
transcript.pyannote[2846].speaker SPEAKER_27
transcript.pyannote[2846].start 14954.63909375
transcript.pyannote[2846].end 14961.03471875
transcript.pyannote[2847].speaker SPEAKER_18
transcript.pyannote[2847].start 14961.03471875
transcript.pyannote[2847].end 14979.04034375
transcript.pyannote[2848].speaker SPEAKER_00
transcript.pyannote[2848].start 14966.60346875
transcript.pyannote[2848].end 14966.67096875
transcript.pyannote[2849].speaker SPEAKER_28
transcript.pyannote[2849].start 14966.67096875
transcript.pyannote[2849].end 14967.19409375
transcript.pyannote[2850].speaker SPEAKER_00
transcript.pyannote[2850].start 14967.19409375
transcript.pyannote[2850].end 14967.26159375
transcript.pyannote[2851].speaker SPEAKER_00
transcript.pyannote[2851].start 14968.49346875
transcript.pyannote[2851].end 14968.78034375
transcript.pyannote[2852].speaker SPEAKER_27
transcript.pyannote[2852].start 14972.39159375
transcript.pyannote[2852].end 14972.40846875
transcript.pyannote[2853].speaker SPEAKER_28
transcript.pyannote[2853].start 14972.40846875
transcript.pyannote[2853].end 14972.62784375
transcript.pyannote[2854].speaker SPEAKER_27
transcript.pyannote[2854].start 14979.32721875
transcript.pyannote[2854].end 14996.75909375
transcript.pyannote[2855].speaker SPEAKER_27
transcript.pyannote[2855].start 14996.80971875
transcript.pyannote[2855].end 14998.07534375
transcript.pyannote[2856].speaker SPEAKER_18
transcript.pyannote[2856].start 14998.07534375
transcript.pyannote[2856].end 15048.04221875
transcript.pyannote[2857].speaker SPEAKER_18
transcript.pyannote[2857].start 15048.58221875
transcript.pyannote[2857].end 15056.07471875
transcript.pyannote[2858].speaker SPEAKER_27
transcript.pyannote[2858].start 15056.51346875
transcript.pyannote[2858].end 15068.25846875
transcript.pyannote[2859].speaker SPEAKER_27
transcript.pyannote[2859].start 15068.42721875
transcript.pyannote[2859].end 15072.03846875
transcript.pyannote[2860].speaker SPEAKER_18
transcript.pyannote[2860].start 15072.03846875
transcript.pyannote[2860].end 15073.28721875
transcript.pyannote[2861].speaker SPEAKER_18
transcript.pyannote[2861].start 15073.60784375
transcript.pyannote[2861].end 15084.00284375
transcript.pyannote[2862].speaker SPEAKER_18
transcript.pyannote[2862].start 15084.34034375
transcript.pyannote[2862].end 15088.99784375
transcript.pyannote[2863].speaker SPEAKER_18
transcript.pyannote[2863].start 15089.41971875
transcript.pyannote[2863].end 15092.49096875
transcript.pyannote[2864].speaker SPEAKER_18
transcript.pyannote[2864].start 15093.63846875
transcript.pyannote[2864].end 15095.52846875
transcript.pyannote[2865].speaker SPEAKER_18
transcript.pyannote[2865].start 15095.57909375
transcript.pyannote[2865].end 15112.11659375
transcript.pyannote[2866].speaker SPEAKER_18
transcript.pyannote[2866].start 15112.69034375
transcript.pyannote[2866].end 15119.50784375
transcript.pyannote[2867].speaker SPEAKER_18
transcript.pyannote[2867].start 15120.16596875
transcript.pyannote[2867].end 15132.11346875
transcript.pyannote[2868].speaker SPEAKER_27
transcript.pyannote[2868].start 15132.99096875
transcript.pyannote[2868].end 15149.78159375
transcript.pyannote[2869].speaker SPEAKER_18
transcript.pyannote[2869].start 15145.81596875
transcript.pyannote[2869].end 15146.06909375
transcript.pyannote[2870].speaker SPEAKER_18
transcript.pyannote[2870].start 15148.58346875
transcript.pyannote[2870].end 15153.15659375
transcript.pyannote[2871].speaker SPEAKER_18
transcript.pyannote[2871].start 15153.69659375
transcript.pyannote[2871].end 15157.40909375
transcript.pyannote[2872].speaker SPEAKER_18
transcript.pyannote[2872].start 15158.08409375
transcript.pyannote[2872].end 15172.02284375
transcript.pyannote[2873].speaker SPEAKER_18
transcript.pyannote[2873].start 15172.29284375
transcript.pyannote[2873].end 15175.44846875
transcript.pyannote[2874].speaker SPEAKER_15
transcript.pyannote[2874].start 15176.49471875
transcript.pyannote[2874].end 15177.23721875
transcript.pyannote[2875].speaker SPEAKER_15
transcript.pyannote[2875].start 15181.28721875
transcript.pyannote[2875].end 15182.63721875
transcript.pyannote[2876].speaker SPEAKER_15
transcript.pyannote[2876].start 15182.87346875
transcript.pyannote[2876].end 15184.59471875
transcript.pyannote[2877].speaker SPEAKER_23
transcript.pyannote[2877].start 15193.38659375
transcript.pyannote[2877].end 15200.00159375
transcript.pyannote[2878].speaker SPEAKER_15
transcript.pyannote[2878].start 15200.44034375
transcript.pyannote[2878].end 15201.85784375
transcript.pyannote[2879].speaker SPEAKER_23
transcript.pyannote[2879].start 15207.67971875
transcript.pyannote[2879].end 15229.19534375
transcript.pyannote[2880].speaker SPEAKER_23
transcript.pyannote[2880].start 15231.74346875
transcript.pyannote[2880].end 15250.89659375
transcript.pyannote[2881].speaker SPEAKER_23
transcript.pyannote[2881].start 15251.04846875
transcript.pyannote[2881].end 15251.38596875
transcript.pyannote[2882].speaker SPEAKER_23
transcript.pyannote[2882].start 15251.90909375
transcript.pyannote[2882].end 15295.78409375
transcript.pyannote[2883].speaker SPEAKER_23
transcript.pyannote[2883].start 15296.15534375
transcript.pyannote[2883].end 15317.70471875
transcript.pyannote[2884].speaker SPEAKER_27
transcript.pyannote[2884].start 15317.99159375
transcript.pyannote[2884].end 15323.23971875
transcript.pyannote[2885].speaker SPEAKER_27
transcript.pyannote[2885].start 15323.76284375
transcript.pyannote[2885].end 15345.73409375
transcript.pyannote[2886].speaker SPEAKER_28
transcript.pyannote[2886].start 15326.14221875
transcript.pyannote[2886].end 15326.15909375
transcript.pyannote[2887].speaker SPEAKER_23
transcript.pyannote[2887].start 15326.15909375
transcript.pyannote[2887].end 15326.46284375
transcript.pyannote[2888].speaker SPEAKER_32
transcript.pyannote[2888].start 15326.46284375
transcript.pyannote[2888].end 15328.21784375
transcript.pyannote[2889].speaker SPEAKER_23
transcript.pyannote[2889].start 15344.46846875
transcript.pyannote[2889].end 15345.10971875
transcript.pyannote[2890].speaker SPEAKER_23
transcript.pyannote[2890].start 15345.58221875
transcript.pyannote[2890].end 15362.81159375
transcript.pyannote[2891].speaker SPEAKER_27
transcript.pyannote[2891].start 15346.52721875
transcript.pyannote[2891].end 15347.05034375
transcript.pyannote[2892].speaker SPEAKER_23
transcript.pyannote[2892].start 15363.41909375
transcript.pyannote[2892].end 15382.58909375
transcript.pyannote[2893].speaker SPEAKER_23
transcript.pyannote[2893].start 15382.77471875
transcript.pyannote[2893].end 15413.60534375
transcript.pyannote[2894].speaker SPEAKER_16
transcript.pyannote[2894].start 15413.60534375
transcript.pyannote[2894].end 15413.63909375
transcript.pyannote[2895].speaker SPEAKER_16
transcript.pyannote[2895].start 15414.38159375
transcript.pyannote[2895].end 15414.53346875
transcript.pyannote[2896].speaker SPEAKER_16
transcript.pyannote[2896].start 15415.15784375
transcript.pyannote[2896].end 15429.29909375
transcript.pyannote[2897].speaker SPEAKER_23
transcript.pyannote[2897].start 15422.04284375
transcript.pyannote[2897].end 15422.88659375
transcript.pyannote[2898].speaker SPEAKER_23
transcript.pyannote[2898].start 15429.29909375
transcript.pyannote[2898].end 15430.68284375
transcript.pyannote[2899].speaker SPEAKER_16
transcript.pyannote[2899].start 15429.70409375
transcript.pyannote[2899].end 15434.41221875
transcript.pyannote[2900].speaker SPEAKER_23
transcript.pyannote[2900].start 15434.41221875
transcript.pyannote[2900].end 15470.59221875
transcript.pyannote[2901].speaker SPEAKER_27
transcript.pyannote[2901].start 15470.59221875
transcript.pyannote[2901].end 15470.60909375
transcript.pyannote[2902].speaker SPEAKER_23
transcript.pyannote[2902].start 15471.80721875
transcript.pyannote[2902].end 15471.82409375
transcript.pyannote[2903].speaker SPEAKER_27
transcript.pyannote[2903].start 15471.82409375
transcript.pyannote[2903].end 15474.16971875
transcript.pyannote[2904].speaker SPEAKER_27
transcript.pyannote[2904].start 15474.57471875
transcript.pyannote[2904].end 15478.62471875
transcript.pyannote[2905].speaker SPEAKER_27
transcript.pyannote[2905].start 15478.96221875
transcript.pyannote[2905].end 15479.46846875
transcript.pyannote[2906].speaker SPEAKER_27
transcript.pyannote[2906].start 15480.58221875
transcript.pyannote[2906].end 15488.41221875
transcript.pyannote[2907].speaker SPEAKER_27
transcript.pyannote[2907].start 15488.95221875
transcript.pyannote[2907].end 15493.32284375
transcript.pyannote[2908].speaker SPEAKER_27
transcript.pyannote[2908].start 15493.87971875
transcript.pyannote[2908].end 15501.20346875
transcript.pyannote[2909].speaker SPEAKER_27
transcript.pyannote[2909].start 15501.86159375
transcript.pyannote[2909].end 15522.33096875
transcript.pyannote[2910].speaker SPEAKER_27
transcript.pyannote[2910].start 15522.78659375
transcript.pyannote[2910].end 15527.29221875
transcript.pyannote[2911].speaker SPEAKER_27
transcript.pyannote[2911].start 15527.88284375
transcript.pyannote[2911].end 15535.22346875
transcript.pyannote[2912].speaker SPEAKER_27
transcript.pyannote[2912].start 15535.40909375
transcript.pyannote[2912].end 15539.44221875
transcript.pyannote[2913].speaker SPEAKER_23
transcript.pyannote[2913].start 15539.44221875
transcript.pyannote[2913].end 15608.59596875
transcript.pyannote[2914].speaker SPEAKER_27
transcript.pyannote[2914].start 15539.45909375
transcript.pyannote[2914].end 15539.61096875
transcript.pyannote[2915].speaker SPEAKER_23
transcript.pyannote[2915].start 15609.15284375
transcript.pyannote[2915].end 15611.05971875
transcript.pyannote[2916].speaker SPEAKER_23
transcript.pyannote[2916].start 15611.27909375
transcript.pyannote[2916].end 15612.02159375
transcript.pyannote[2917].speaker SPEAKER_15
transcript.pyannote[2917].start 15611.34659375
transcript.pyannote[2917].end 15612.30846875
transcript.pyannote[2918].speaker SPEAKER_15
transcript.pyannote[2918].start 15613.62471875
transcript.pyannote[2918].end 15614.55284375
transcript.pyannote[2919].speaker SPEAKER_15
transcript.pyannote[2919].start 15616.05471875
transcript.pyannote[2919].end 15631.78221875
transcript.pyannote[2920].speaker SPEAKER_15
transcript.pyannote[2920].start 15632.94659375
transcript.pyannote[2920].end 15637.36784375
transcript.pyannote[2921].speaker SPEAKER_15
transcript.pyannote[2921].start 15637.63784375
transcript.pyannote[2921].end 15637.87409375
transcript.pyannote[2922].speaker SPEAKER_15
transcript.pyannote[2922].start 15638.17784375
transcript.pyannote[2922].end 15638.51534375
transcript.pyannote[2923].speaker SPEAKER_15
transcript.pyannote[2923].start 15638.85284375
transcript.pyannote[2923].end 15639.29159375
transcript.pyannote[2924].speaker SPEAKER_15
transcript.pyannote[2924].start 15640.18596875
transcript.pyannote[2924].end 15640.81034375
transcript.pyannote[2925].speaker SPEAKER_15
transcript.pyannote[2925].start 15642.90284375
transcript.pyannote[2925].end 15682.81221875
transcript.pyannote[2926].speaker SPEAKER_15
transcript.pyannote[2926].start 15683.45346875
transcript.pyannote[2926].end 15711.58409375
transcript.pyannote[2927].speaker SPEAKER_15
transcript.pyannote[2927].start 15711.88784375
transcript.pyannote[2927].end 15734.14596875
transcript.pyannote[2928].speaker SPEAKER_15
transcript.pyannote[2928].start 15737.18346875
transcript.pyannote[2928].end 15742.97159375
transcript.pyannote[2929].speaker SPEAKER_15
transcript.pyannote[2929].start 15745.03034375
transcript.pyannote[2929].end 15747.03846875
transcript.pyannote[2930].speaker SPEAKER_15
transcript.pyannote[2930].start 15747.20721875
transcript.pyannote[2930].end 15747.25784375
transcript.pyannote[2931].speaker SPEAKER_15
transcript.pyannote[2931].start 15747.27471875
transcript.pyannote[2931].end 15749.36721875
transcript.pyannote[2932].speaker SPEAKER_04
transcript.pyannote[2932].start 15748.30409375
transcript.pyannote[2932].end 15748.96221875
transcript.pyannote[2933].speaker SPEAKER_04
transcript.pyannote[2933].start 15749.36721875
transcript.pyannote[2933].end 15749.43471875
transcript.pyannote[2934].speaker SPEAKER_04
transcript.pyannote[2934].start 15749.97471875
transcript.pyannote[2934].end 15750.02534375
transcript.pyannote[2935].speaker SPEAKER_04
transcript.pyannote[2935].start 15752.33721875
transcript.pyannote[2935].end 15752.40471875
transcript.pyannote[2936].speaker SPEAKER_17
transcript.pyannote[2936].start 15752.40471875
transcript.pyannote[2936].end 15754.61534375
transcript.pyannote[2937].speaker SPEAKER_04
transcript.pyannote[2937].start 15754.61534375
transcript.pyannote[2937].end 15754.68284375
transcript.pyannote[2938].speaker SPEAKER_04
transcript.pyannote[2938].start 15756.72471875
transcript.pyannote[2938].end 15757.97346875
transcript.pyannote[2939].speaker SPEAKER_04
transcript.pyannote[2939].start 15757.99034375
transcript.pyannote[2939].end 15758.02409375
transcript.pyannote[2940].speaker SPEAKER_17
transcript.pyannote[2940].start 15758.81721875
transcript.pyannote[2940].end 15759.47534375
transcript.pyannote[2941].speaker SPEAKER_30
transcript.pyannote[2941].start 15769.38096875
transcript.pyannote[2941].end 15769.46534375
transcript.pyannote[2942].speaker SPEAKER_30
transcript.pyannote[2942].start 15773.24534375
transcript.pyannote[2942].end 15774.32534375
transcript.pyannote[2943].speaker SPEAKER_30
transcript.pyannote[2943].start 15776.63721875
transcript.pyannote[2943].end 15778.76346875
transcript.pyannote[2944].speaker SPEAKER_04
transcript.pyannote[2944].start 15778.84784375
transcript.pyannote[2944].end 15779.05034375
transcript.pyannote[2945].speaker SPEAKER_04
transcript.pyannote[2945].start 15779.16846875
transcript.pyannote[2945].end 15781.36221875
transcript.pyannote[2946].speaker SPEAKER_28
transcript.pyannote[2946].start 15795.55409375
transcript.pyannote[2946].end 15796.49909375
transcript.pyannote[2947].speaker SPEAKER_28
transcript.pyannote[2947].start 15797.66346875
transcript.pyannote[2947].end 15797.79846875
transcript.pyannote[2948].speaker SPEAKER_28
transcript.pyannote[2948].start 15797.93346875
transcript.pyannote[2948].end 15802.03409375
transcript.whisperx[0].start 360.265
transcript.whisperx[0].end 361.067
transcript.whisperx[0].text MING PAO CANADA MANGA
transcript.whisperx[1].start 955.364
transcript.whisperx[1].end 955.508
transcript.whisperx[1].text 其中:
transcript.whisperx[2].start 1578.414
transcript.whisperx[2].end 1578.516
transcript.whisperx[2].text 全體委員會主任委員
transcript.whisperx[3].start 1628.359
transcript.whisperx[3].end 1632.036
transcript.whisperx[3].text 全體委員會主任委員會主席
transcript.whisperx[4].start 1754.878
transcript.whisperx[4].end 1760.663
transcript.whisperx[4].text 我們現在主法定人數現在正式開會進行報告事項請宣讀上次會議意思錄
transcript.whisperx[5].start 1773.24
transcript.whisperx[5].end 1795.303
transcript.whisperx[5].text 立法院第11屆第1會期經濟委員會第15次全體委員會議議事錄時間113年6月5日星期三9時至13時40分地點紅樓10會議室出席委員、林代化委員等14人略席委員、洪孟楷委員等26人略席人員、經濟部部長、郭志輝及相關人員、主席、邱昭吉委員、易雲
transcript.whisperx[6].start 1796.937
transcript.whisperx[6].end 1822.153
transcript.whisperx[6].text 報告事項一 宣讀上次會議事務決定確定二 邀請經濟部部長列席報告業務概況並備質詢經濟部部長郭志輝報告後委員林大化等27人提出質詢均由經濟部郭部長及鄉外人即席答覆決定一 登記方委員除在不在場外其餘均與發言完畢詢答結束二 委員李博義所提書面質詢列入紀錄刊登公報
transcript.whisperx[7].start 1822.933
transcript.whisperx[7].end 1829.139
transcript.whisperx[7].text 三 書面執行案未及答覆部分請相關單位於一週內以書面答覆並赴日本會 散會宣讀完畢
transcript.whisperx[8].start 1832.247
transcript.whisperx[8].end 1836.768
transcript.whisperx[8].text 邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教育部首長就:「為掌握生成式AI等關鍵技術
transcript.whisperx[9].start 1857.233
transcript.whisperx[9].end 1859.574
transcript.whisperx[9].text 及擴展產業發展打造智慧未來進行報告並備諮詢 宣讀完畢
transcript.whisperx[10].start 1878.8
transcript.whisperx[10].end 1906.276
transcript.whisperx[10].text 好 那我們今日議程排定是為掌握生成式的AI等關鍵技術.帶來的產業革命機會.台灣要如何的來深化AI生態系以及充實AI人才與產業AI化.促進台灣產業數位轉型與運用AI賦能的升級.擴展產業的發展打造智慧未來
transcript.whisperx[11].start 1907.336
transcript.whisperx[11].end 1930.945
transcript.whisperx[11].text 進行報告以及備諮詢。」我們在進行詢問之前首先要來介紹今天列席的部會首長我們首先歡迎國發會主委 劉主委我們國發會發展管理基金的代理執行秘書 汪執行秘書
transcript.whisperx[12].start 1933.999
transcript.whisperx[12].end 1960.08
transcript.whisperx[12].text 我們經濟部 郭部長我們國科會副主委 林副主委接下來我們書發部的政事 林政事接下來還有我們教育部我們的葉政事歡迎
transcript.whisperx[13].start 1962.691
transcript.whisperx[13].end 1964.012
transcript.whisperx[13].text 來接下來我們要請國發會劉靜欽主委來進行報告請
transcript.whisperx[14].start 1981.772
transcript.whisperx[14].end 1992.267
transcript.whisperx[14].text 主席、各位委員、各位在場的記者大家好今天很榮幸代表國安會來到貴會、貴委員會針對促進AI產業發展進行報告與質詢
transcript.whisperx[15].start 1998.576
transcript.whisperx[15].end 2027.207
transcript.whisperx[15].text AI這個議題其實也不是今天才有的在之前就已經開始發生了但是這幾年的生成式AI帶動了一個浪潮這個浪潮看起來會讓整個世界有一個很大的進化跟進步因此其實政府在112年就已經看到了所以在112年我們訂定了台灣AI行動計畫2.0也成立了這個精創台灣方案這兩個方案都在進行中
transcript.whisperx[16].start 2028.027
transcript.whisperx[16].end 2051.401
transcript.whisperx[16].text 那之後在我們總統的競選的政見裡面加上卓院長整合出來的希望工程也有創新經濟、智慧國家兩個重要的政策發展也就造成我們今天朝向創新經濟的發展尤其在信賴無產業裡面講得很清楚那兩個很重要的核心關鍵就是第一個是半導體第二個就是我們的AI的發展
transcript.whisperx[17].start 2053.482
transcript.whisperx[17].end 2068.29
transcript.whisperx[17].text 這兩個發展很明顯會成為台灣在未來經濟成長最重要的兩支支柱與核心為了強化這個支柱與核心本會從整個生態系重新整理在市場、能力、人才、資本、法規這五個構面
transcript.whisperx[18].start 2070.411
transcript.whisperx[18].end 2096.261
transcript.whisperx[18].text 進行強化希望讓台灣的產業能夠抓到這一次的脈絡的動機機會然後往前走那這個機會的市場的部分我們是用微笑曲線來做一個分析我們微笑曲線大概是一個弧形分成三段最底端的是製造也就是過去台灣非常強的一塊那目前我們在伺服器的製造甚至在一些主機板等等的應用我們已經到了
transcript.whisperx[19].start 2097.081
transcript.whisperx[19].end 2113.749
transcript.whisperx[19].text 大概全球有90%的市佔率簡單的講這個世界沒有台灣就很難看到server很難看到AI server的產生這個關鍵的部位抓到之後我們往上游供應鏈走的部分從目前散熱的模組也好
transcript.whisperx[20].start 2114.369
transcript.whisperx[20].end 2131.33
transcript.whisperx[20].text 到連接器﹐各種電子零組件﹐到半導體的生產﹐到設計﹐台灣也取得了關鍵位置再往前一走上去是Sensor跟Data Collect的部分是我們還要再加強的部分
transcript.whisperx[21].start 2131.71
transcript.whisperx[21].end 2150.604
transcript.whisperx[21].text 所以在Research的部分從物理學、光學這些地方雷射等等我們會希望在這個地方再強化讓我們在前端的Sensor取得Data的部分再運作回來的話它是一個供應鏈更強化完整的部分另外還有一塊就是整個Server做完以後供應出去是應用面
transcript.whisperx[22].start 2151.464
transcript.whisperx[22].end 2180.318
transcript.whisperx[22].text 這個應用面來自於解決方案從智慧的解決方案到智慧人員到智慧的醫療生活的應用、智慧生活的應用等等都是一個很大的市場這塊市場是台灣目前比較少著墨的那估計整個市場大概佔全球來講大概有2.3兆美元一年的市場那我們目前市佔率應該是在千分之一左右所以這一塊是我們會很強化發展的地方
transcript.whisperx[23].start 2180.958
transcript.whisperx[23].end 2196.876
transcript.whisperx[23].text 這樣的話讓台灣在整個AI的這個價值鏈裡面都能夠有一定的發展機會那這個在執行的部分在AI運用的部分是我們會跟這個數碼部一起在努力往這條路走那另外在
transcript.whisperx[24].start 2197.856
transcript.whisperx[24].end 2210.406
transcript.whisperx[24].text 國科會會負責在零件跟經濟部會在零件端跟研究端的發展然後經濟部會在製造端當然教育部跟勞動部都會在人力上面提供比較大的協助
transcript.whisperx[25].start 2212.367
transcript.whisperx[25].end 2229.112
transcript.whisperx[25].text 整個市場看到之後依據市場的開發我們協助廠商之後其實我們要建構後面的幾個關鍵的生態系統那第一個比較大的關鍵系統是來自於人才我們可以看得到輝達過來就號稱他一次就要找一千人
transcript.whisperx[26].start 2229.992
transcript.whisperx[26].end 2243.701
transcript.whisperx[26].text 那這裡面形成一個很巨大的壓力就是過去可能整個台灣的市場在考慮上面永遠不知道下一個廠商會要幾千人那這個是永遠在追逐那全世界目前都遇到人才荒都在努力解決這個方向
transcript.whisperx[27].start 2245.282
transcript.whisperx[27].end 2268.439
transcript.whisperx[27].text 那這個方向我們現在朝幾個方向做從比較短期到中期長期都開始在進行那這個進行也是兩年前就開始在發展那目前我們會從人才會有Build and Buy就是從自己培育跟從外面獵財、攬財這兩個方向來做那自己培育我們目前是從政府、學校、社會三個構面在發展
transcript.whisperx[28].start 2270.04
transcript.whisperx[28].end 2297.621
transcript.whisperx[28].text 那在攬財的部分呢我們現在正在盤點世界各國主要競爭國的他的人才吸引條件那我們必須創造比他們更好的吸引條件才有機會把這群人吸引過來、流過來那所以我們也正在規劃中那以政府的部分目前是做得比較多的我們政府跟學校兩個地方合計起來在今年2024年預計會有10萬9千7百位數位相關人才投入市場
transcript.whisperx[29].start 2298.542
transcript.whisperx[29].end 2326.112
transcript.whisperx[29].text 投入市場。」那這裡面最大的一塊是來自教育部教育部大概會有8.3萬那除了有2萬多人來自於這個數位相關科系之外教育部也很積極地推動STEM就是讓非資訊科系非數位科系的學生可以透過學程的方式去培養自己這方面的能力那這個地方培養出來的人力現在也是非常多大概有一年可以有6萬2千人
transcript.whisperx[30].start 2329.069
transcript.whisperx[30].end 2336.737
transcript.whisperx[30].text 同時,國發會也跟教育部學校合作,做了很多企業專班,培養人才發展。社會方面,從勞動部
transcript.whisperx[31].start 2345.805
transcript.whisperx[31].end 2359.58
transcript.whisperx[31].text 這個國科會等單位也都有在做這方面人才的協助與發展那這樣的話目前來看的話在短期內還算是可以使用但是比較會大的落差是來自於尖端特殊
transcript.whisperx[32].start 2360.821
transcript.whisperx[32].end 2362.081
transcript.whisperx[32].text 特殊領域需要的人才。」
transcript.whisperx[33].start 2383.886
transcript.whisperx[33].end 2404.591
transcript.whisperx[33].text 企業的部分我們也會大幅的去協助企業來做大幅的培育那早年其實整個資訊行業每個領域外表看起來是叫AI往裡面一展下去它可能有數百個領域那數百個領域的人才我們就要協助企業去進行發展那另外對於勞動部也對於中小企業提供了相當的補助
transcript.whisperx[34].start 2406.212
transcript.whisperx[34].end 2421.644
transcript.whisperx[34].text 這個補助方案也會讓中小企業可以比較輕鬆地去培育這樣的人才所以我們從輔佐大型的企業到中型、小型企業目前都有考慮到也在努力當中當然在一個全球的競爭上面我們還是希望奮力地往前走
transcript.whisperx[35].start 2422.364
transcript.whisperx[35].end 2448.619
transcript.whisperx[35].text 那另外一部分就是我們也開始創造這個有利條件之外我們開始在持續鬆綁法規我們希望這個法規的鬆綁能讓更多的人留在台灣那更多的人願意到台灣來那我們把這些誘因整理完之後呢我們也對於這個整理完之後其實我們會還要進一步的跟企業用企業的方法來做什麼叫企業的方法呢就是我們從過去設立網站
transcript.whisperx[36].start 2451.641
transcript.whisperx[36].end 2459.1
transcript.whisperx[36].text 然後放寬法規然後培養人才然後等待這些人才進來到我們到不同的國家去投放廣告
transcript.whisperx[37].start 2460.034
transcript.whisperx[37].end 2489.614
transcript.whisperx[37].text 所以我們會開始進入精準廣告的投放到我們特定的美國或者是中歐一帶我們目標的市場開始去吸引這些人然後透過精準廣告的投放讓他們可以想要來台灣的人或是想要到海外發展的人可以找到台灣的訊息那透過我們網站的吸引來走進來所以我們會強化我們在Talent台灣這個Program跟網站上的發展那另外在資金面的部分
transcript.whisperx[38].start 2491.235
transcript.whisperx[38].end 2502.022
transcript.whisperx[38].text 我們會在融資跟投資兩面同時下手。」那投資的部分我們目前跟這個出發部我們稍微有一個討論我們計劃曠業100億AI的創新專業投資那由出發部來執行做
transcript.whisperx[39].start 2509.326
transcript.whisperx[39].end 2522.162
transcript.whisperx[39].text 做大幅的投資專注在AI領域的發展:同時我們也會強化國際基金在相關領域的發展讓這個資金的面向會拉得更大我們也同時希望找金管會來放寬法規
transcript.whisperx[40].start 2525.065
transcript.whisperx[40].end 2541.457
transcript.whisperx[40].text 讓保險資金也可以進到這個領域創造更多的投資的量能另外我們也會強化在我們目前在整個被投資標的5的改善這個標的5的改善包括我們跟GaragePlus等等這些單位在合作
transcript.whisperx[41].start 2542.117
transcript.whisperx[41].end 2559.184
transcript.whisperx[41].text 所以這次在黃仁勳在台大演講他在他的背板上打出了很多公司裡面有5家就是我們投資輔導的公司被在黃仁勳的那個演講裡面出來那我們裡面也有2家是我們合作的夥伴那我們共同在培養
transcript.whisperx[42].start 2559.904
transcript.whisperx[42].end 2576.122
transcript.whisperx[42].text 那另外在融資的方面我們也會在這方面跟銀行協調希望給予更多的資金進到這個市場讓資金更充裕再投資更方便另外在研發上面的合作我們現在也積極的去建立一個Tech Hub
transcript.whisperx[43].start 2577.083
transcript.whisperx[43].end 2597.583
transcript.whisperx[43].text 所謂Tech Hub就是把一個Hub把各種相關的科技從AI的發展領域到先進科技發展領域到創新創業領域我們集中在一個區那這個生態區包括也有住宿的部分去整合起來那其中AI的部分目前是我們協助速發部開始在規劃工建的部分那如果
transcript.whisperx[44].start 2599.11
transcript.whisperx[44].end 2628.479
transcript.whisperx[44].text 我們將來就是很快的會去協助審核完成這個部分讓它盡快可以運作起來那這個運作起來的話就可以跟國外合作那目前我們也找了一些學校希望跟國外進行整個AI的合作因為在美國這個領域是比較新的所以譬如說我們跟台大目前大概在合作台大跟伊利諾那在德州這些地方的學校都有進行相關的合作我們希望去進行產學的合作一起帶動所以讓我們的研發可以更完整那同時呢
transcript.whisperx[45].start 2629.72
transcript.whisperx[45].end 2645.716
transcript.whisperx[45].text 當然我想經濟部也會做相關的法規更進一步的鬆綁那這樣的話呢就讓我們的研發的量能可以拉得比較高一些那繼續往前邁進那同時我們在學校方面我們也投資了投資了資金跟企業合作那讓什麼讓老師
transcript.whisperx[46].start 2648.078
transcript.whisperx[46].end 2657.946
transcript.whisperx[46].text 的待遇不再是受限於政府的規定:可以有更高的金額去吸引到比較有經驗的產業的業士進來然後透過實務跟學校兩邊的產學合作培養比較務實的人
transcript.whisperx[47].start 2663.73
transcript.whisperx[47].end 2678.333
transcript.whisperx[47].text 另外在市場面我們除了去發展創新創業領域我們希望大力投資在AI的新創跟轉型跟創業這三個領域上面我們都會引入國發基金來協助之外我們也會透過我們投資的創新創業去協助百工百業的帶動
transcript.whisperx[48].start 2684.855
transcript.whisperx[48].end 2705.899
transcript.whisperx[48].text 尤其是讓這些單位去協助傳產跟中小企業原因是傳產跟中小企業過去在人才戰爭上面他處於比較低的弱勢那我們引導我們的新創團隊或是創業比較成熟的或是一些企業的轉型團隊轉到這裡面來那透過資金的協助跟誘導讓他進來之後呢透過財務政策的誘導讓他進來之後呢就會讓這個產業比較容易有機會讓他的產品開始進入比較AI的世界
transcript.whisperx[49].start 2714.04
transcript.whisperx[49].end 2726.294
transcript.whisperx[49].text 也可以把關鍵零組件改善比如說在工具機的關鍵零組件我們過去仰賴於日本跟德國那如果我們好好的發展的話可以取代下來那第二個把大量的AI導進這個產業裡面也會讓它的整個產品的競爭力會提升
transcript.whisperx[50].start 2730.058
transcript.whisperx[50].end 2752.723
transcript.whisperx[50].text 那我們都會朝這幾個地方去發展那我們同時也積極地會在東京跟矽谷都設立我們的創新中心那這個創新中心的主要目的是每一屆台灣的創新創業團隊能夠走入全球也跟著試著也把美國、日本等地的創新團隊引進台灣進行一個交流合作
transcript.whisperx[51].start 2753.463
transcript.whisperx[51].end 2777.001
transcript.whisperx[51].text 這些合作都在進行中我們的新放的基地也預計今年下半年會設置完成不論是在美國或是在矽谷或是在東京我們都會盡快地把它做起來這樣的話就會形成一個比較完整的生態系從市場面看得精準
transcript.whisperx[52].start 2778.502
transcript.whisperx[52].end 2796.012
transcript.whisperx[52].text 從這個人才面大力的扶植跟培育那再從這個資金面我們提供足夠的資金與發展然後在研發面跟市場面我們都把它可以投資下去的話我想這個產業的發展就很快可以實現政府信賴產業跟創新經濟的發展也可以帶動這個產業的發展我的報告到此了 謝謝
transcript.whisperx[53].start 2802.742
transcript.whisperx[53].end 2808.83
transcript.whisperx[53].text 好 謝謝我們國防會主委的報告那接下來我們請經濟部 郭部長請
transcript.whisperx[54].start 2836.963
transcript.whisperx[54].end 2858.575
transcript.whisperx[54].text 主席、各位委員大家好陳孟貴委員的邀請就AI相關主題來進行報告那麼敬請各位委員先進不吝視教那麼首先跟各位報告就是AI人工智慧發展的趨勢剛才我想這個劉主委也說了很多
transcript.whisperx[55].start 2859.605
transcript.whisperx[55].end 2875.838
transcript.whisperx[55].text 隨著OpenAI於2022年推出的CHOP GPT﹐AI技術進入一個新時代﹐預計將啟動新一波的AI應用大爆發﹐台灣具備半導體與資通訊的產業優勢﹐是支持AI發展的關鍵要素﹐
transcript.whisperx[56].start 2880.59
transcript.whisperx[56].end 2902.33
transcript.whisperx[56].text 今年臺北國際電腦展Computex中全球AI科技大廠如輝達、超維、英特爾、高通、美超維以及國內聯發科等重要廠商的高層都出現足證台灣已經躍居為全球AI發展的關鍵核心
transcript.whisperx[57].start 2904.673
transcript.whisperx[57].end 2928.141
transcript.whisperx[57].text 那麼我們要談這個培育國內所需的AI人才呢那麼在這個全球面臨AI應用成長的爆發期台灣必須要加速推動AI產業創新以創臥巨大商機並帶動企業全面數位轉型為此培育各行業AI人才刻不容返本人已經在貴委員會經濟部業務報告中宣誓
transcript.whisperx[58].start 2933.784
transcript.whisperx[58].end 2958.436
transcript.whisperx[58].text 將在4年內培育20萬名AI人才將涵蓋大語言模型訓練與微調等人才加速百工百業的AI應用人才培育並推動AI人才認證以符合AI發展的趨勢期待透過跨部會合作達成共同目標滿足AI時代的人才需求
transcript.whisperx[59].start 2960.936
transcript.whisperx[59].end 2985.566
transcript.whisperx[59].text 台灣專屬生成式AI核心技術是可以看到現在國際AI科技大廠陸續推出生成式AI工具但主要以一般知識的問答、英文資料為主對於產業專業知識如半導體製程、我國的金融法規乃至於繁體中文的運用
transcript.whisperx[60].start 2987.591
transcript.whisperx[60].end 3012.189
transcript.whisperx[60].text 就無法完全滿足使用者的需求另外,國際大廠的AI服務都需要使用者把資料上傳到雲端對企業會有機密資料外洩的風險本部將建立專屬的生成式AI核心技術運用台灣在製造和服務產業豐富的知識和資料
transcript.whisperx[61].start 3014.636
transcript.whisperx[61].end 3037.53
transcript.whisperx[61].text 打造出台灣產業專屬模型讓AI服務可以在企業內部使用以提升資安等級而且懂得企業想要知道的特定知識協助業者實現產業AI化提升產業競爭力引進國際大廠來台設立研發中心
transcript.whisperx[62].start 3042.369
transcript.whisperx[62].end 3060.527
transcript.whisperx[62].text 本部積極引進國際領先企業來臺設立研發中心這不僅能帶來最先進的技術也能讓台灣的廠商進入全球創新價值鏈同時吸引頂尖人才來臺促進台灣人才的培訓與升級
transcript.whisperx[63].start 3062.817
transcript.whisperx[63].end 3080.148
transcript.whisperx[63].text 這些國際人才來此學習台灣AI發展的經驗回國以後能夠貢獻母國促進雙方科技研發的雙贏攜手共創商機今年本部把握盛大的臺北國際電腦展的機會與多家國際大廠深入洽談合作
transcript.whisperx[64].start 3085.967
transcript.whisperx[64].end 3112.066
transcript.whisperx[64].text 未來將會陸續引進更多外資企業進駐台灣相關合作內容將在適當的時間向各位委員報告輔導百工百業導入AI本部積極整合產業需求與各方資源開通法人與工協會支付業者合作
transcript.whisperx[65].start 3113.939
transcript.whisperx[65].end 3138.962
transcript.whisperx[65].text 推動AI技術在各行各業的普及提升產業競爭力與數位轉型具體措施包括一、擴散生成式AI核心技術與領域專屬模型提供跨部會與GAI共通平台上的應用協助中小企業數位轉型二、透過應用
transcript.whisperx[66].start 3141.743
transcript.whisperx[66].end 3153.771
transcript.whisperx[66].text 驗證以及大大小方式擴散普及﹐輔導百工百業運用生成式AI﹐建立產業導入AI資運﹐透過專家顧問輔導企業導入成熟AI工具﹐促進
transcript.whisperx[67].start 3161.333
transcript.whisperx[67].end 3187.652
transcript.whisperx[67].text 製造業AI普及加速將運用產創條例十之一創新租稅優惠修正案提高產業對AI應用的投資預計在117年製造業AI應用普及率從目前的12.3%提升到50%最後經濟部最重要的任務就是活絡台灣經濟與產業發展
transcript.whisperx[68].start 3190.302
transcript.whisperx[68].end 3219.565
transcript.whisperx[68].text 本部將致力於推動人工智慧在台灣產業化且持續發展建立具備AI算力的超級電腦此外也將培養產業所需人才讓人工智慧在台灣有更多創新的面貌更重要的是要推動AI在百工百業的運用強化競爭力讓台灣成為世界的支柱讓台灣成為人工智慧島
transcript.whisperx[69].start 3220.908
transcript.whisperx[69].end 3241.189
transcript.whisperx[69].text 期盼各位委員對於本部施政指正視教本會期送請大院審議的相關議案亦懇請委員鼎力資助最後敬祝各位委員身體健康萬事如意以上報告敬請各位委員指教謝謝
transcript.whisperx[70].start 3246.104
transcript.whisperx[70].end 3257.717
transcript.whisperx[70].text 好 謝謝郭部長的報告那我們先來處理議事錄現在已足法定人數三位請問剛剛所宣讀的議事錄有沒有意見好 那我們議事錄確認那現在呢
transcript.whisperx[71].start 3262.624
transcript.whisperx[71].end 3280.695
transcript.whisperx[71].text 這個我們還有國科會以及數發部還有教育部的書面報告我們請委員自行參閱並刊登公報謝謝那現在我們要進行詢答在委員詢答前主席台依照慣例做以下幾項的宣告
transcript.whisperx[72].start 3281.255
transcript.whisperx[72].end 3301.926
transcript.whisperx[72].text 每位委員發言的時間本會委員6分鐘加必要時加2分鐘非本會委員4分鐘10點半截止發言登記那我要拜託我們委員時間掌控一下因為今天登記的委員非常的熱情謝謝那我們現在請登記第一位的林黛樺委員請做發言有請國發會主委我們請國發會主委
transcript.whisperx[73].start 3314.039
transcript.whisperx[73].end 3335.985
transcript.whisperx[73].text 主委我就先看你的簡報你第一頁當中去講到說您報告有台灣AI行動2.0跟精創台灣方案這未來的9年那我要提醒你的你的精創台灣方案當中補助都在優勢產業也就是在最基層的硬體的部分它在終端的相關的運算中心包括相關的運用領域是沒有的
transcript.whisperx[74].start 3336.385
transcript.whisperx[74].end 3354.966
transcript.whisperx[74].text 所以我提醒你這是在你竟然是今年開始你也放在你的這個簡報當中表示你是很重視的那包括你的台灣AI行動2.0這當中的執行計畫但既然你先來我要拜託你等一下我質詢的時候也會講你們的計畫方案也講得很好包括今年你們也編列119億
transcript.whisperx[75].start 3357.749
transcript.whisperx[75].end 3372.202
transcript.whisperx[75].text 那我要拜託你要重新的來檢視它是不是真的符合AI的運作再來你的人才培訓當中你花了這個兩大部分一個是鼓勵資訊人才包括這個協助企業人才的佈局
transcript.whisperx[76].start 3373.283
transcript.whisperx[76].end 3391.719
transcript.whisperx[76].text 我就根據你的企業人才布局有一點我不知道你們能克服光是你說要3、4、5到國際的點財、列財要參照新加坡、日本、韓國要盤點我們的居住租稅等光是台灣個人所得最高克40%
transcript.whisperx[77].start 3393.701
transcript.whisperx[77].end 3401.868
transcript.whisperx[77].text 然後你要獵財來你知道新加坡獵財來之後他們在60天以下來這邊的優秀人60天以下免稅60天到182天是課15%的個人所得稅如果你多於180天以上
transcript.whisperx[78].start 3411.417
transcript.whisperx[78].end 3414.802
transcript.whisperx[78].text 6個月以上是淨所得課22%總收入課15%公司董事一律課22%我不知道您能不能去說服財政部光是你的列財你就列了三
transcript.whisperx[79].start 3430.242
transcript.whisperx[79].end 3434.704
transcript.whisperx[79].text 2、3、4、5一個列才當中的3、4、5多大的拼譜5項有3項是講到這個東西好本席提點你那再來本席針對今天講到AI那我也認為國發會當則不讓我這邊針對幾個面向跟你一起討論包括台灣人工智慧的全球排名第二個產業結構第三個針對產業能做什麼以及垂直領域的專家才是成功成敗的關鍵
transcript.whisperx[80].start 3455.355
transcript.whisperx[80].end 3481.88
transcript.whisperx[80].text 當然 跨部會的協作 國發會是當然當則不讓當然本席最後有具體的要求那在我覺得爬出了是一個在英國有這樣的一個雜誌這個Total is Media它針對全球AI的排名我們全球整體AI的指數我們排名26新加坡排名3韓國排名6那在政府投入的部分上面有兩張表
transcript.whisperx[81].start 3483.62
transcript.whisperx[81].end 3488.884
transcript.whisperx[81].text 總排名的部分是左邊這張表那右邊有講到左邊這邊也講到政府的投入我們在2022年政府的投入是全球42名2023年我們是全球33名好再看右邊那張圖他所講的是我們在研究的部分我們全球排名36發展51規模38所以我要講的你會覺得落差很大
transcript.whisperx[82].start 3506.394
transcript.whisperx[82].end 3526.772
transcript.whisperx[82].text 哇我們的這個所以我們的晶圓代工我們的伺服器全球排行數一數二再加上這個AI教父教母來了現在離台之後這麼的風光其實它證明了一件事情我們的基礎產業是好的但是你看我們全球AI的應用包括政府的投入是這麼的低好
transcript.whisperx[83].start 3528.873
transcript.whisperx[83].end 3532.835
transcript.whisperx[83].text 所以本席認為在你們優勢產業當中已經投入這麼多資源了重點你們也講到AI應用在各行各業才是AI創造價值的核心關鍵好本席用這一張圖
transcript.whisperx[84].start 3544.958
transcript.whisperx[84].end 3564.032
transcript.whisperx[84].text 這個你們現在有基礎層、中間層、應用層你們現在所有的資源都在右下方基礎層我們從最基層AI晶片運算晶圓的代工伺服器中間的雲端運算中心是我們現在各縣市都在爭取的在AI核心技術當中從基層、中層到最後的應用軟體的部分
transcript.whisperx[85].start 3565.029
transcript.whisperx[85].end 3580.943
transcript.whisperx[85].text 好這才是應用好那另外還AI應用的價值鏈從下面的我們的預先訓練微調啦對於這個我們的晶片當中的所有的這個資料標注等啊以及我們現在你們也花很大規模的在生成式的AI模型但
transcript.whisperx[86].start 3581.758
transcript.whisperx[86].end 3602.267
transcript.whisperx[86].text 我今天要有AI價值創造的核心關鍵就是在左上角的各行各業的應用所以你看你的資源配置你是放在最右下端的在晶片代工跟伺服器頂多現在是這個國際的投資在雲端資訊中心但是我們要做的是左上角這件事情那就要盤點你的預算
transcript.whisperx[87].start 3604.648
transcript.whisperx[87].end 3618.734
transcript.whisperx[87].text 你的執行的科目有沒有符合這個東西有沒有符合呢好那個人工產業可以做什麼本席特別針對幾個領域在醫療、保健、金融服務、製造業、零售、電子、教育、農業在醫療的部分我有幾個案例速發部今天速發部的副署長副署長有來我之前就有一個陳情案那我就練給我就呢陳述給大家聽他是被駁回了來跟我哭訴說我們的速發部根本就不懂AI
transcript.whisperx[88].start 3634.8
transcript.whisperx[88].end 3648.787
transcript.whisperx[88].text 這是眼科眼體鏡進行視網膜神經及血管攝影結合了失智症的患者有發生原血管跟神經萎縮病的近症進行匹配也就是我單純的眼科醫生我只會做眼體鏡的視網膜的神經可是這個資料
transcript.whisperx[89].start 3651.889
transcript.whisperx[89].end 3657.914
transcript.whisperx[89].text 其實在我們教學醫院榮總長跟已經有研究在醫院內有研究他其實這樣的數據分區是可以跟我私自站可以匹配在一塊這都有教學醫院的一個研究他希望來跟政府爭取經費說我能擴大到醫院外的人民來蒐集更大的這樣的一個數據來做AI的匹配結果被你們打回來後來我瞭解了結果原來你們審查委員是有眼科經由眼科專業根本沒有AI產業
transcript.whisperx[90].start 3680.333
transcript.whisperx[90].end 3693.625
transcript.whisperx[90].text 也沒有這個老年失智的跨領域你知道這個早期預防可以減少大量的這個健保支出又可以造福多少個家庭光是這個失智症的文明病我光是做一個眼睛的檢查我就可以去跟早期發現我的這個文明病失智症他可以減緩可以提早預防減緩他的發病
transcript.whisperx[91].start 3702.833
transcript.whisperx[91].end 3717.959
transcript.whisperx[91].text 好包括金融我們說詐騙今天我們都是政府叫被動啊我發現這個是不是我打電話到打詐中心啊我被動的接受人民的陳情啊但是如果我有AI導入的話我整個這個欺詐的檢測其實他只要導入的時候我的人民他不需要打了
transcript.whisperx[92].start 3723.922
transcript.whisperx[92].end 3753.124
transcript.whisperx[92].text 只要他要再做他的行為的時候就已經政府的這個AI的模型已經套路了告訴你欸這個就是這就是告訴你喔政府告訴你你這是詐騙喔甚至本席一直主張的我們的農業智慧決策連農業決策能夠要都要智慧的精準農業講坦白的就是農業優生學我們的農業預測等好這個就是等本席就是提供給你在現在符合民意當中你AI的應用面包括你的預算為什麼你要
transcript.whisperx[93].start 3753.604
transcript.whisperx[93].end 3778.267
transcript.whisperx[93].text 重新的檢視好 我們這個人工智慧啊它也不是萬能有優點缺點優點就是它能短時間內處理大量的數據提高工作效能 節省時間成本在作業精準度上是堪稱完美經過專家系統的定義過的作業可以全天候24小時準確的執行我的指定作業缺點是什麼AI它只是一個工具這句話是重點
transcript.whisperx[94].start 3779.048
transcript.whisperx[94].end 3797.914
transcript.whisperx[94].text AI只是個工具所以它缺乏創造力它的技術還沒有辦法具備人類的創造力跟想像力無法創造新的東西所以儘管AI可以通過大量的數據訓練來提升自身的智能水平但是還是需要相關專家明確的定義才行好 這句話的結果也就是
transcript.whisperx[95].start 3798.434
transcript.whisperx[95].end 3823.37
transcript.whisperx[95].text 台灣人工智慧產業當中你們講到人才專家很可惜你們就講到法人及學研當中包括說你們要到外面獵財我也沒意見但是你光是突破那個租稅的部分就請你好好的跟財政部研究了好我在這邊具體主張你這個一定要有各行各業業界的實務專家導入你的專家人才庫這是本席的重點
transcript.whisperx[96].start 3824.45
transcript.whisperx[96].end 3846.688
transcript.whisperx[96].text 主委就在你在籌組各部會今天來了好多各部會你們的專家一定要各產業的實務專家才有可能成為專家好那在這邊呢我這個也是上週我針對經濟部質詢的已經明確杜絕我們紅色供應鏈下我又要在怎麼的發展各製造業的AI升級的輔導杜絕紅色供應鏈
transcript.whisperx[97].start 3849.49
transcript.whisperx[97].end 3870.777
transcript.whisperx[97].text 這也提醒給我們的這個主委跨部會的協作當國發會就當則不讓了本席我就以這個案例國家農業治理的一個智慧化我就以我的選區裡面的這個石斑魚我會舉這個案例是因為中國拒絕我石斑魚進口到中國的時候所以我就替我自己的產業
transcript.whisperx[98].start 3871.937
transcript.whisperx[98].end 3877.462
transcript.whisperx[98].text 找了速發部他就是呢這個速發部協助下確實補助這個經費做了AI的相關的定序數據的收集所以這是這個速發部支持但是這個計畫是從哪裡來呢誰發想呢是我教育部是我一個科技大學的一個學者他的一個團隊所以他把他技術來找我的這個農民這是農業部應該輔導的
transcript.whisperx[99].start 3900
transcript.whisperx[99].end 3913.281
transcript.whisperx[99].text 那但是呢跟經濟部有什麼關係因為呢我們不能輸到中國啦我們就走南向所以他就輸到東南亞那所以呢這又跨了農業部跨了書發部跟經濟部跟教育部所以你今天AI要完成當然是要跨部會
transcript.whisperx[100].start 3915.904
transcript.whisperx[100].end 3930.129
transcript.whisperx[100].text 我的具體建議四點第一個盤點現行狀態第二個盤點各單位使用人工智慧的可行性第三個建立專家人才系統第四個加速普惠百工百業我舉兩張圖怎麼叫盤點現行的狀態這一張圖我辦公室這樣盤整出來了光是你們賓的這個AI2.0你在簡報上講的119億這個當中你就要去盤點
transcript.whisperx[101].start 3944.733
transcript.whisperx[101].end 3964.06
transcript.whisperx[101].text 好 盤點什麼呢到底目前我有關智慧化應用的經費跟計畫狀況是否都適合導入人工智慧智慧化的應用並不代表所有的人工智慧但是你要專門在AI的這個工具上的應用你要在你智慧編了119億的這個2.0行動的2.0當中台灣AI行動2.0當中你就要去盤點了
transcript.whisperx[102].start 3970.663
transcript.whisperx[102].end 3989.442
transcript.whisperx[102].text 好那第二個盤點各單位就針對政府部門你自己就要以身作則哪些是中央單位可以建立封閉式跟開放式的人工智慧剛才譬如說開放式就打炸就好了我的警政署你們可以協助警政署在開放他們的這個開放式的哪些是一個詐騙的相關的事先預測
transcript.whisperx[103].start 3992.945
transcript.whisperx[103].end 4001.807
transcript.whisperx[103].text 這人民超有感的我不用再被動打電話給警察去不用打電話到打詐中心的他任何的行為我直接在金融系統當中他要會的時候我就告訴他了他或者他樣態的一個告知啊第三建立專栽人才庫本席在這邊重點是各產業領域涵蓋各產業的業界人才這我舉一個例子比如說我在補習班我這邊工作22年了
transcript.whisperx[104].start 4017.031
transcript.whisperx[104].end 4022.673
transcript.whisperx[104].text 好 那你說要AI啊一定是這個補習班內的長期的資深員工譬如說我有一個資訊部門由我在這個補習班內的資深的資訊部門的人來受你的訓練啊而不是這樣才有可能成為專家如果你從外部他怎麼可能
transcript.whisperx[105].start 4034.918
transcript.whisperx[105].end 4049.046
transcript.whisperx[105].text 他怎麼可能會是一個對補習班瞭解或者是對我這個螺絲工具區瞭解的人他來設計他的AI呢不可能吶包括我的高雄市當中的所有金屬扣件包括我們的離岸風電等等相關所有中小企業都遍佈整個我高雄市那你怎麼當然是從他們裡面的資訊部門去訓練所以你的國內人才的訓練是要從這邊來
transcript.whisperx[106].start 4064.474
transcript.whisperx[106].end 4080.266
transcript.whisperx[106].text 好那當然我們普惠百工百業的部分與公共建設這個是你要公建的角度這是因為一個公建就是四年計畫所以針對國內產業中小企業的組成特性提供主題式的計畫補助人工智慧導入並採審查重觀審查和重演為什麼
transcript.whisperx[107].start 4083.769
transcript.whisperx[107].end 4091.435
transcript.whisperx[107].text 因為中小企業有910萬的從業人口半導體29萬的人口如果你再繼續補助優勢產業半導體就29萬有感中小企業913萬人無感重點就在這邊好 您簡單回應一下
transcript.whisperx[108].start 4100.1
transcript.whisperx[108].end 4101.721
transcript.whisperx[108].text 接下來我們請陳廷飛委員請做詢談
transcript.whisperx[109].start 4134.327
transcript.whisperx[109].end 4136.514
transcript.whisperx[109].text 謝謝主席 教委我們請主委我們再請國發委主委
transcript.whisperx[110].start 4145.27
transcript.whisperx[110].end 4173.269
transcript.whisperx[110].text 委員長主委我想我第一次也在這個地方我跟你談的就是AI的研發中心也就是黃仁勳執行長他一直希望就是說在台南在高雄有一個AI研發中心所以我們也希望說我們的國發會要怎麼樣去掌握這樣的訊息然後我們要怎麼去push然後把這樣的一個所謂AI的研發中心
transcript.whisperx[111].start 4176.431
transcript.whisperx[111].end 4202.484
transcript.whisperx[111].text 我們也希望現在擴大變成生態園區這是我們現在政府所非常重要的一個指標叫生態園區可是這個生態園區我相信在台南的部分我們有很多包括綠能科技產業園區也就是在沙崙然後再加上我們的南科
transcript.whisperx[112].start 4203.544
transcript.whisperx[112].end 4229.618
transcript.whisperx[112].text 那再加上我們目前所有的一些電一些水利的部分在整個的條件當中我們認為在台南是非常適當的那可是我們的AI生態園區到底我們現在我們的目標在哪裡重點在哪裡預算在哪裡速發部一下子說要實體一下子說可以虛擬
transcript.whisperx[113].start 4230.919
transcript.whisperx[113].end 4245.948
transcript.whisperx[113].text 然後呢國科會說他們都可以配合因為他們本來在南科園區就有這樣的一個所謂相關AI的產業他們沒有問題那國發會呢你們的態度是如何你們的態度是如何
transcript.whisperx[114].start 4249.312
transcript.whisperx[114].end 4277.682
transcript.whisperx[114].text 我們的態度現在是積極的跟數發部跟國科會我們一起在合作那台南的部分的確像委員講的我想委員我很佩服您一直在爭取台南然後也一直在把台南的優勢不斷的讓我們清楚所以我們現在感受的也很深那我們會去在最後評估我們現在在評估階段我們一定不會忘記委員特別一直跟我們銷售的台南的好處我們會認真的來考慮這一點
transcript.whisperx[115].start 4278.513
transcript.whisperx[115].end 4301.712
transcript.whisperx[115].text 因為現在整個護國神山的所有它的機能還有它所有的零星產業基本上都落腳在台南而且我們有我們的腹地所以如果在這樣的一個前提之下我覺得我們的態度要更確認說到底AI的生態園區它是要實體還是虛擬
transcript.whisperx[116].start 4304.946
transcript.whisperx[116].end 4331.565
transcript.whisperx[116].text 實體跟虛擬不一樣我們現在是這樣子實體跟虛擬都會同時存在的原因是在AI的世界裡面它必須串聯全世界所以我們除了會建立實體的中心之外我們也會我想數位發展部也在積極的建立一個國際的脈絡的聯網包括讓沒辦法進入園區的一些單位也都可以參與進來變成一個整合性的一個虛實整合的一個AI生態園區
transcript.whisperx[117].start 4332.446
transcript.whisperx[117].end 4343.355
transcript.whisperx[117].text 那土地重要嗎?土地重要就是有私底的地方可以做更好的討論那所以這兩者會同時並行土地重要經費呢?那經費來源呢?
transcript.whisperx[118].start 4348.176
transcript.whisperx[118].end 4365.369
transcript.whisperx[118].text 經費來源是第一個國發基金我們現在正在作業中如果得到核准的話我們會有100億投到這個領域來所以我們現在預估在AI生態園區在實體的部分我們預計要投入的是國發基金100億的預算
transcript.whisperx[119].start 4366.97
transcript.whisperx[119].end 4385.744
transcript.whisperx[119].text 而且100億主要是在投資創新創業就是進駐廠商還有在虛擬進駐廠商的投資那硬體的部分其實現在因為公建預算正在審核當中那我們也請各單位盡快的提出來進入我們的審核程序
transcript.whisperx[120].start 4386.334
transcript.whisperx[120].end 4408.972
transcript.whisperx[120].text 所以主委你的意思是說國發基金這100億我們是希望創新創業進入到這樣的一個實體的生態園區然後在其他各部會的我們還會再去另外編列相關的預算然後進入到這個AI的方向是不是所以不只100億
transcript.whisperx[121].start 4409.873
transcript.whisperx[121].end 4435.379
transcript.whisperx[121].text 不只,它這個工件預算是另計那現在在等實體,我們是審核單位所以我們有幾個單位在規劃上面從國科會跟數發部他們會送上這樣的一個工件計畫那在於實體的所以國科會是負責實體然後數發部是負責虛擬,是這樣意思嗎?沒有,他們都有,都會有實體的運作
transcript.whisperx[122].start 4436.539
transcript.whisperx[122].end 4447.887
transcript.whisperx[122].text 都有實體的運作那你要了解速發部的速發部最近他所講的並不是如此他所講的是他要把實體變虛擬也許是不是可以讓速發部次長來說明
transcript.whisperx[123].start 4454.997
transcript.whisperx[123].end 4467.982
transcript.whisperx[123].text 到底你們現在的態度是什麼如果以主委所說的我們是實體然後跟虛擬同步並進可是你們最近在媒體當中所講的是被誤解說實體要變虛擬你們負責的是虛擬
transcript.whisperx[124].start 4472.364
transcript.whisperx[124].end 4478.59
transcript.whisperx[124].text 是跟委員報告因為在政府的分工上面國發會這邊會負責包含台灣的硬體產業跟軟體產業而我們數發部負責的是軟體產業然後軟體產業一個特性所以你們數發部負責的就是在虛擬的部分嗎是實體用嗎
transcript.whisperx[125].start 4490.881
transcript.whisperx[125].end 4510.854
transcript.whisperx[125].text 實體的部分因為我們現在重點是在於生態而不在於園區那軟體產業的特性是第一個就是上下游產業之間並沒有零組件的運輸的需求所以上下游的這些產業並不需要在同一個地方再來就是說在軟體產業現在遠距上班也都是一件常見的現象所以我們這個
transcript.whisperx[126].start 4511.775
transcript.whisperx[126].end 4530.929
transcript.whisperx[126].text 所以市長你的意思就是說是你們數發部負責就是虛擬的部分是所以沒有實體的部分是對不對好那主委所以就有一點不一樣囉所以我們現在看到的確實是如此嘛數發部從實體變虛擬好那現在實體聚落的部分實體生態園區到底是誰在負責國科會嗎國科會也講的有一點保守欸他說我們的
transcript.whisperx[127].start 4542.939
transcript.whisperx[127].end 4563.139
transcript.whisperx[127].text 這個產業園區我們都可以配合他們是就他們目前目前的狀態那我們如果依照主委所講的我們是要做到我們是要做到我們除了國發基金以外我們還有公建計劃這是沒工的所以我們的方向到底怎麼拿捏來 國科會
transcript.whisperx[128].start 4568.692
transcript.whisperx[128].end 4570.076
transcript.whisperx[128].text 實體的部分你們負責的嗎?跟委員報告基本上我們還是會以沙輪
transcript.whisperx[129].start 4576.109
transcript.whisperx[129].end 4577.91
transcript.whisperx[129].text 委員會主任委員會主任委員會主任委員會主任委員會主任
transcript.whisperx[130].start 4600.522
transcript.whisperx[130].end 4615.21
transcript.whisperx[130].text 南部擴散目前都還在規劃中因為沙崙它有中央研究院南部院區然後又有你們國科會相關的一些所謂研發的地點
transcript.whisperx[131].start 4616.431
transcript.whisperx[131].end 4643.019
transcript.whisperx[131].text 所以我們看到的是綠能科技產業園區在沙崙我們把它這一塊土地放在這裡是很可惜的還有成大我們的相關還有交通大學這些研發的能量都在裡面但是並沒有發揮啊所以我為什麼說要爭取AI的生態園區在台南當然就是在我們的沙崙這個區塊嘛從過去到現在我們看到的是能量沒有發揮嘛
transcript.whisperx[132].start 4644.139
transcript.whisperx[132].end 4660.757
transcript.whisperx[132].text 那如果是這樣子的話我們再加上有些隱形產業我們必須是實體跟虛擬要並進嘛是不是一個負責實體一個負責虛擬嘛這樣才對嘛然後國發會是know-how嘛他做串聯嘛
transcript.whisperx[133].start 4661.778
transcript.whisperx[133].end 4677.661
transcript.whisperx[133].text 是不是這樣子所以我們期待的AI生態園區除了有像黃仁勳執行長所說的他必須是AI的研發中心他可以併進來嘛對不對他可以把1加1大於2嘛
transcript.whisperx[134].start 4678.562
transcript.whisperx[134].end 4696.613
transcript.whisperx[134].text 如果我們有這樣的一個生態園區他在投注他們的一些原本預期的計劃跟目標對我們來講是加分了所以我覺得說AI生態園區在整個地理位置經費當中最適合的就是台南就在沙崙
transcript.whisperx[135].start 4697.874
transcript.whisperx[135].end 4715.064
transcript.whisperx[135].text 這非常的清楚主委謝謝委員我會負責來整合兩個部會的結果然後再跟你們報告再拜託那還有一個部分您的誠意我們是一直感受很深對因為我覺得我們臺南現缺的就是一個整合
transcript.whisperx[136].start 4716.144
transcript.whisperx[136].end 4738.898
transcript.whisperx[136].text 如果把它整合起來我們的能量是無限大我們有那個條件但是缺了一個整合那我相信今天有一點我覺得還是要澄清清楚我們請這個經濟部長就是說外媒說台灣缺電會衝擊全球的產業基本上我覺得今天起碼台灣的能量
transcript.whisperx[137].start 4739.838
transcript.whisperx[137].end 4762.172
transcript.whisperx[137].text 我們的經濟能量、企業能量是被外媒所看到的這個對我們來講是好的可是因為被看到大家會擔心我們是不是會有缺電的問題部長我們應該準備好了尤其我們現在投注AIAI的用電非常的大那這個部分呢我們準備好了沒報告委員準備好了
transcript.whisperx[138].start 4762.512
transcript.whisperx[138].end 4789.489
transcript.whisperx[138].text 準備好了所以我們不會像外媒所講的會因為有這個缺電而影響到我們整個全球產業因為大家已經把台灣變成是一個全球產業包括半導體的一個指標囉這對我們來講其實是一個非常棒的可是他們擔心我們要把他擔心把他斷絕台灣電的部分沒有問題
transcript.whisperx[139].start 4790.47
transcript.whisperx[139].end 4812.448
transcript.whisperx[139].text 是不是這樣?是的,缺電影響全球是事實但是我們沒有缺電我們沒有缺電,我們準備好了對不對?我們在準備,應該是好的好,我想AI產業如果進到我們在整個整合的體系當中電、水,它永遠都是最重要再麻煩部長,謝謝好,謝謝接下來我們請邱毅文委員請做詢答
transcript.whisperx[140].start 4834.554
transcript.whisperx[140].end 4857.951
transcript.whisperx[140].text 謝謝昭緯我現在是不是請一下經濟部跟教育部好了好 郭部長跟教育部正次好 這個來 部長好 郭部長這個我想從您上個禮拜來做業務報告裡頭您有談到
transcript.whisperx[141].start 4861.166
transcript.whisperx[141].end 4874.523
transcript.whisperx[141].text 4年之內要培育20萬個AI人才所以台灣大概是全世界少數搭上這個第一波的AI浪潮的國家但我們其實看得到
transcript.whisperx[142].start 4875.785
transcript.whisperx[142].end 4897.819
transcript.whisperx[142].text 就實際面來說台灣在所謂的半導體的先進製程在AI伺服器的這個製造其實我們是有優勢但是在AI相關的IC設計或生成式AI應用服務的這些人才上面其實台灣的優勢是不大的您同意我的看法嗎同意
transcript.whisperx[143].start 4899.912
transcript.whisperx[143].end 4920.644
transcript.whisperx[143].text 如果是這樣我們今天要來談這個未來搭上這一波AI浪潮之後首先要談的是要培育20萬名AI人才請問一下部長這20萬名AI人才是全部是自己培育嗎還是你有包括一部分是從國外攬才進來的
transcript.whisperx[144].start 4922.535
transcript.whisperx[144].end 4946.789
transcript.whisperx[144].text 我們大概在這個LM的部分必須要從國外攬產所以我有請來台灣投資的這些比較大的國外廠商我都告訴他們你最少要帶一半的人才進來所以像這個輝達它要有1000位工程師所以我們就強烈的要求它要有帶500位工程師進來可是輝達現在大概只能帶10%的人進來
transcript.whisperx[145].start 4949.672
transcript.whisperx[145].end 4958.912
transcript.whisperx[145].text 那個是過去我後來有跟他們在溝通如果未來是這樣那經濟部就不是培育20萬名AI人才
transcript.whisperx[146].start 4960.789
transcript.whisperx[146].end 4982.94
transcript.whisperx[146].text 應該是培育加攬財對不對因為我為什麼會請教育部上來是今天很可惜沒有辦法聽到教育部的這個報告但是我看了一下教育部的書面你們所有的AI教育這一些數位的教育通常都是從高等教育才開始做起包括你的在職專班包括你的碩博士班等等
transcript.whisperx[147].start 4983.92
transcript.whisperx[147].end 5003.3
transcript.whisperx[147].text 比如說你110年開始透過國家重點領域產學合作培育人才創新條例要招攬972名碩士博士生就我看了你們這個所謂的招攬名額要達到20萬名四年內根本做不到那請問教育部有什麼方式嗎
transcript.whisperx[148].start 5005.575
transcript.whisperx[148].end 5020.514
transcript.whisperx[148].text 我看到韓國韓國他們現在是要從國民教育裡頭去推廣AI數位教育2025年開始韓國就會在中小學導入AI數位教科書那請問台灣呢
transcript.whisperx[149].start 5022.536
transcript.whisperx[149].end 5046.158
transcript.whisperx[149].text 市長跟委員報告我想我們在AI人才培育這一塊我們過去一個非常重要的就是我們透過國家重點領域產學合作及人才培育創新條例我們有重點科技學院這重點科技學院十三家裡面有其中五家是跟人工智慧有關的我們每年在這裡面我們大概有
transcript.whisperx[150].start 5046.778
transcript.whisperx[150].end 5059.006
transcript.whisperx[150].text 培養大概972位教授博士對嘛你一年才培養900多名嘛那要達到部長講的20萬名那個差距是很大的還沒講嗎還沒講剛才講是說博士那我們大學部這一邊的話因為我們有這個每年我們這個有這個大專院校
transcript.whisperx[151].start 5067.552
transcript.whisperx[151].end 5069.794
transcript.whisperx[151].text 智慧科技及資訊安全碩士人才計畫
transcript.whisperx[152].start 5098.013
transcript.whisperx[152].end 5118.631
transcript.whisperx[152].text 跟委員報告我們在這個教育部現在在研擬這個數位教學指引這個預計在10月會出來那這個指引其實蠻全面包括說我們會告訴校長如果像一些跟不管跟數位跟AI的導入要怎麼做然後老師還有家長10月會出來數位教學指引那預計什麼時候會開始實施其實它出來以後
transcript.whisperx[153].start 5121.129
transcript.whisperx[153].end 5148.354
transcript.whisperx[153].text 下個學期就開始了下個學期就會開始實施所以這個是一個非常重大的教育的改變我覺得教育部應該是要好好的規劃然後要好好的宣導我們有這個所謂的生生用平板的這樣的一個很好的政策所以你們在推廣所謂的AI數位教科書的這個課綱其實對他們來講應該是要更快上手所以我期待如果是有一個這麼好的政策的話教育部應該是要好好的
transcript.whisperx[154].start 5149.174
transcript.whisperx[154].end 5149.194
transcript.whisperx[154].text 來作規劃
transcript.whisperx[155].start 5165.53
transcript.whisperx[155].end 5190.12
transcript.whisperx[155].text 我們自己中央廚房設計出這樣的課線上課程再搭配各個高中的種子學老師那來推這個也是我們未來會努力的目標我覺得就是說創造台灣的整體AI環境不會是只有國發會也不會是只有經濟部我覺得教育部我們在整個的教育體系裡頭共同去努力創造這個是很重要的一件事來那個教育部次長那您請回
transcript.whisperx[156].start 5191.4
transcript.whisperx[156].end 5194.766
transcript.whisperx[156].text 那那個郭部長你也可以請回我請一下國發會請問一下國發會
transcript.whisperx[157].start 5203.218
transcript.whisperx[157].end 5230.694
transcript.whisperx[157].text 來 劉主委您剛剛在那個報告的時候其實你有特別談到未來導入AI包括我們的流財、纜財等等你要用企業的方法所以剛剛其實也有委員問到我們的流財、纜財政策裡頭其實對於您在海外纜財的這一些誘因技術人員的誘因其實是不太夠的
transcript.whisperx[158].start 5231.794
transcript.whisperx[158].end 5248.671
transcript.whisperx[158].text 包括稅責包括他們的居留等等您覺得正在國家發展的角度上面台灣有沒有必要檢討我們現行的所謂的移民政策如何讓您這些企業方法的這些攬財的條件
transcript.whisperx[159].start 5251.373
transcript.whisperx[159].end 5279.025
transcript.whisperx[159].text 讓它更人性化或者是說讓它更具備誘因比如說剛剛講的人才來到這裡之後他的課稅問題他的居留問題子女的教育問題這個過去我們在攬財專案的法規討論上面其實都討論了很多但是對於這些海外的人不管他是華人也好不管是台裔也好或者是他是外國籍的人也好他要到台灣來
transcript.whisperx[160].start 5280.646
transcript.whisperx[160].end 5297.274
transcript.whisperx[160].text 右鷹其實不太夠就是跟台灣的整個移民政策是有相關的就國發會的立場您覺得台灣的移民政策是不是需要檢討或者是在我們要攬AI人才的這個區塊上面我們是不是應該要有一些更大幅的開放
transcript.whisperx[161].start 5298.331
transcript.whisperx[161].end 5321.242
transcript.whisperx[161].text 是的我們目前看起來是需要檢討才會具備國際的競爭力要更加的開放也才有機會去吸引人才好那這樣子國發會有沒有就這個部分跟其他的各部會比如說移民署、內政部或者是說你們有沒有做一個總體的規劃總體檢你們先要提AI的基本法經濟部要培育
transcript.whisperx[162].start 5322.603
transcript.whisperx[162].end 5332.595
transcript.whisperx[162].text 20萬的AI人才要從國外攬財進來你說輝達進來投資他必須帶一半以上的人是從海外進來的那海外進來的這一些人要怎麼樣留在台灣
transcript.whisperx[163].start 5334.932
transcript.whisperx[163].end 5360.783
transcript.whisperx[163].text 他要符合台灣的什麼樣的法令你要怎麼樣把這些人讓他有足夠的誘因留在這這個其實是都需要你們有一個跨部會的檢討我其實不太喜歡你們每次都講說什麼東西就會變成第二座護國神山現在你們已經有把AI捧得很高又說AI是第二座護國神山你真的要當護國神山的時候其實你是必須要各部會
transcript.whisperx[164].start 5362.103
transcript.whisperx[164].end 5380.055
transcript.whisperx[164].text 所有相關的法令配套都必須要完整人才的獲得這個劣材都其實都是需要一個完整的配套但我現在看不出來你們所謂完整的配套上面比如說AI生態園區到底它是實體還是虛擬
transcript.whisperx[165].start 5382.657
transcript.whisperx[165].end 5408.573
transcript.whisperx[165].text 你們都講不清楚啦國發會跟事務發布的態度意見根本就完全講不清楚啊然後包括你們跟經濟部的配合包括跟教育部的配合甚至跟財務財政部的配合這個其實是需要花很長的時間去討論而不是你自己今天一個國發會隨便就丟一個東西出來就我不知道
transcript.whisperx[166].start 5409.741
transcript.whisperx[166].end 5435.088
transcript.whisperx[166].text 你們在行政院裡面到底有沒有就這一塊去做過討論我們現在就初步的意見是有溝通過但是細部的部分我們其實已經在整理我們現在整理了六個國家的優缺點因為我們要定位我們的競爭定位在哪裡那也跟委員報告不只是剛才講的稅包括這些人進來他的小孩的教育等等其實我們都會整體規劃以後然後去溝通各部會
transcript.whisperx[167].start 5435.984
transcript.whisperx[167].end 5457.855
transcript.whisperx[167].text 好 這個主委我覺得這個動作可能要快啦這個如果說你們要把AI變成第二座護國神山的話相關的所有的法令配套各部會的配合各部會的推動遇到有致愛難行的地方我覺得大家都應該要趕快把這個問題都丟出來然後來集思廣益趕快來解決你才有辦法來
transcript.whisperx[168].start 5459.036
transcript.whisperx[168].end 5477.543
transcript.whisperx[168].text 很快速的把台灣變成是一個AI島那甚至說你現在要做的這些AI的產業不只是中小企業產業要有AI化我們的醫療、農業是不是都能夠運用這樣的一個AI技術把它全面的推廣出去那你講到農業講到醫療
transcript.whisperx[169].start 5479.824
transcript.whisperx[169].end 5496.948
transcript.whisperx[169].text 你要牽扯到的又會到農業部、衛福部所以其實它整個就是一個大行政院、大政府的架構去推動這個所謂的AI產業這個其實千頭萬緒但是我們期待跟你們一起努力好不好好 謝謝委員接下來我們請呂玉玲委員請做詢答
transcript.whisperx[170].start 5511.863
transcript.whisperx[170].end 5513.207
transcript.whisperx[170].text 謝謝召委 請郭部長我們請郭部長
transcript.whisperx[171].start 5520.933
transcript.whisperx[171].end 5541.591
transcript.whisperx[171].text 部長好委員好部長在近期來輝達的旋風席捲全台那尤其是輝達的執行長黃仁勳他也特別表示說台灣AI跟我們的半導體產業是非常重要的國家未來會在台灣會設立第二的研發中心跟總部這可見得台灣
transcript.whisperx[172].start 5542.572
transcript.whisperx[172].end 5563.881
transcript.whisperx[172].text 在全球的科技產業鏈通通會來台灣來投資但是黃仁勳臨走的時候特別擔憂也警示我們說臺灣電力整個配電的要充足產業才能來投資才不會影響到全球的發展整個AI的發展可是早上我們看到一個新聞就是美國智庫
transcript.whisperx[173].start 5564.901
transcript.whisperx[173].end 5592.184
transcript.whisperx[173].text 美國智庫說臺灣的電力短缺部長早上的報告裡面也說臺灣的電力是不會缺電的那這樣子的話那是表示美國智庫在造謠那你要不要抗議報告委員我想美國智庫他只是他的那個新聞的這個說明他是說如果臺灣電力短缺會造成世界經濟的影響並沒有說臺灣這個電力他指明是臺灣電力短缺喔
transcript.whisperx[174].start 5594.145
transcript.whisperx[174].end 5608.695
transcript.whisperx[174].text 他只是假設性的假設性的那所以你對於我們台灣電力是有信心我們不缺電是的那那跳電停電都是動物惹的禍目前來講的話這個妥善率其實是有一些不足
transcript.whisperx[175].start 5609.349
transcript.whisperx[175].end 5628.257
transcript.whisperx[175].text 因為AI產業的話你要拿到全球的訂單必須要是綠電那你2026年的話要達到20%的再生能源的綠電2030年要達到30%你一直說有信心除了用光電除了還有我們的離岸風電外你還有什麼方式可以達成你的信心呢
transcript.whisperx[176].start 5628.917
transcript.whisperx[176].end 5646.883
transcript.whisperx[176].text 我們現在朝著這兩個方面在努力跟委員報告說現在我們有一些新的科技進來包括地熱、包括氫能這些都是我們在考慮的部分是,好,部長本席會這麼講的原因就是因為我們再生能源的話離岸風電我們目前採取示範獎勵跟我們的
transcript.whisperx[177].start 5651.084
transcript.whisperx[177].end 5657.929
transcript.whisperx[177].text 展覽廠子及區塊開發已經進入第三階段第二期選廠商在6月底前都要把這個廠商給選出來那能不能完成為什麼這樣子問因為你第一期的區塊開發就已經延期了都已經delay了在2026年跟2027年你的併電
transcript.whisperx[178].start 5678.484
transcript.whisperx[178].end 5690.52
transcript.whisperx[178].text 並往發電你要做到那現在你連選商都還沒有完成的話那會不會等第二期也會無限的延期下去就不到你的這個離岸風電不能完成了
transcript.whisperx[179].start 5691.645
transcript.whisperx[179].end 5707.915
transcript.whisperx[179].text 在之前會有點延遲主要是因為這個世界上面的環境的影響那這個歐洲它也一直在朝這個風力在這邊發電所以它有一些這個船的問題沒有辦法來到我們這個
transcript.whisperx[180].start 5709.777
transcript.whisperx[180].end 5734.136
transcript.whisperx[180].text 因為你第一期延期成本就提高了第二期的話你如果再延期的話成本又會提高你要怎麼提升這樣產業能夠繼續的來台灣開發你的電力是要非常非常的充足他們才能夠成本穩定才會有競爭力 是不是是 讓這個廠商有競爭力我們會把這個電價的部分做充分的考量
transcript.whisperx[181].start 5735.336
transcript.whisperx[181].end 5736.877
transcript.whisperx[181].text 因為你規劃說2030年我們整個離岸風電它的這整個總發電量要達到13.1GW能不能完成
transcript.whisperx[182].start 5749.127
transcript.whisperx[182].end 5777.745
transcript.whisperx[182].text 我想以目前的這個進度我會督促我們的這個團隊照表就先把這個計畫13.6G的這樣的一個目標訂出來然後我們逐年逐月去檢討然後過去為什麼會慢把這個慢的因素拿掉然後這個全力去衝刺是你要全力衝刺我希望你能如期並往發電好不好是再來部長請教一下
transcript.whisperx[183].start 5779.567
transcript.whisperx[183].end 5796.219
transcript.whisperx[183].text 經濟部撤銷了桃園市市府終止三家SRF入住桃科的處分請問部長是你拍板決定的嗎?這個不是我拍板決定 這個是有一個審議委員會有11位專家學者然後他們開會決定的
transcript.whisperx[184].start 5803.257
transcript.whisperx[184].end 5830.729
transcript.whisperx[184].text 部長 在你們中央一直說尊重地方地方有自主的裁決權 是不是那所以地方做出了決定要終止它入園那你們到了接受這個這個溯源的時候你們又廢止了我們這個處分那這樣子的話你有尊重到地方嗎你在決定這些事情之前有沒有跟我們地方去溝通的
transcript.whisperx[185].start 5832.096
transcript.whisperx[185].end 5851.518
transcript.whisperx[185].text 我們是從法律面去看的這件事情因為那個入園許可是地方政府的是地方政府的地方政府決定了嘛終止他入園啦要考量民眾大家對空屋的影響會讓大家的健康堪慮所以終止了所以你就要尊重地方啊
transcript.whisperx[186].start 5852.506
transcript.whisperx[186].end 5861.58
transcript.whisperx[186].text 你為什麼要懷財執照?一定要這樣做呢?不是,我們沒有這個決定權那地方政府決定了嘛
transcript.whisperx[187].start 5862.995
transcript.whisperx[187].end 5888.805
transcript.whisperx[187].text 所以當時部長你來我辦公室的時候我跟你說明了很清楚所以我相信你這件事情你應該是很了解的在當時的王前部長的時候專案會議專案許可要讓他進來就是推薦函結果我們地方反彈的時候他說這個只是表述而已沒有法律效益收回兩度收回11月去年的11月12月兩度收回這個推薦函
transcript.whisperx[188].start 5889.665
transcript.whisperx[188].end 5917.744
transcript.whisperx[188].text 那所以說你們又一直表示說尊重地方政府那地方政府做出了決定你又撤銷了他的處分我沒有撤銷他的處分啊你現在撤銷啊要繼續要他進來啊正來書院然後這個是書院會我們召集專家、學者就他的這個內容來做出這個這樣的一個決定這裡面11位的委員有9位是大學教授跟這個法學專家所以他們一致做出這個決定不是我
transcript.whisperx[189].start 5919.685
transcript.whisperx[189].end 5930.963
transcript.whisperx[189].text 所以這個決定權不在地方政府了嗎?中央說尊重地方,地方做了決定,中央又撤銷了這個處分啊所以我們是讓這個書院委員會來做決定,不是我們經濟部做決定
transcript.whisperx[190].start 5932.95
transcript.whisperx[190].end 5949.535
transcript.whisperx[190].text 部長我們希望我們的政府既然尊重地方就要看到地方的民意地方重視他們的健康你們就不要當作沒看到不顧民意不顧民眾的健康到時候我們會努力的來跟你們抗爭因為
transcript.whisperx[191].start 5950.695
transcript.whisperx[191].end 5972.675
transcript.whisperx[191].text 你知道嗎?這觀音、陶科三家這個是固體的發電廠這發電廠的廢棄有多大?你應該都知道吧?那你們呢?你們的那個環境部環境部你自己不去修法這個是標準排廢量的標準你不去修法認為很困難結果你就大開後門然後大開綠燈讓他們進來
transcript.whisperx[192].start 5975.339
transcript.whisperx[192].end 5999.719
transcript.whisperx[192].text 每一次都在專案的我們桃園去年就已經反對了在陣前市長的時候就已經反對了你們用專案要他入園那結果後來又說選舉期限到了要尊重地方你們自己決定沒有法律效益那地方做出決定之後你們又說專家委員大家決定的要撤銷你的處分都跟你們沒關係甩鍋給地方嗎
transcript.whisperx[193].start 6001.823
transcript.whisperx[193].end 6024.809
transcript.whisperx[193].text 我們經濟部本來就不是這個對這個工業區有主管的權利這委員會經濟部你們的專案會議部長王美花部長就開了專案會議你們能源局的給他們這個同意這個設備的這個文件這都是你們這整個發下來的不是跟經濟部沒有關係啊報告委員現在這個問題已經是實際上是存在的
transcript.whisperx[194].start 6028.61
transcript.whisperx[194].end 6043.621
transcript.whisperx[194].text 我現在跟這個台灣市政府我們也都在協商如何處理這個問題那麼現在環境部他有提出他的態度就是說入園許可必須用歐盟的標準那你不修法啊
transcript.whisperx[195].start 6044.661
transcript.whisperx[195].end 6066.018
transcript.whisperx[195].text 我們就去修法我們要討論這個事情那你的修法我們會依法去嚴格審查它的標準多少面積有多少的排放就是固定的啊是不是所以在製之前你們就要尊重地方我們是尊重地方才會進行你說地方是決定權在於地方啊是不是
transcript.whisperx[196].start 6067.392
transcript.whisperx[196].end 6088.686
transcript.whisperx[196].text 所以現在台灣市政府他現在要求我們要給一個國際的定位跟管理的辦法所以我們現在提出一個新的這個定位在你們還沒決定下來我不曉得這個一再的被撤回一再的禁止入園一而再再而再從前朝的經濟部到現在的經濟部不曉得後面有什麼龐大的這個勢力還是有什麼利益你們一定要幫他們開別墾一定要讓他們進來報告委員這個是完全沒有的事情
transcript.whisperx[197].start 6097.793
transcript.whisperx[197].end 6116.392
transcript.whisperx[197].text 我們現在就是說我必須要說我們共同都有討論到台灣電力是要穩定供電不管我們整個產業AI或者是半導體等等我們要穩定供電所以我們還想說現在電力真的是不足連國際連美國智庫都這麼說了所以我們要努力尤其是綠電的問題那但是部長
transcript.whisperx[198].start 6120.144
transcript.whisperx[198].end 6139.331
transcript.whisperx[198].text 當時我們討論的時候我們必須要讓電力穩定必須要把核能列入考量做機載的用電才能夠穩定結果你現在被民進黨的高層校正回饋一下你就回來就爽說非核加鹽還是最終的目標
transcript.whisperx[199].start 6141.443
transcript.whisperx[199].end 6166.541
transcript.whisperx[199].text 這個是依法啦依法可是電力不穩定的話我們台灣怎麼發展我們的AI怎麼發展全球的產業鏈都怎麼來投資呢這個我們會努力因為現在發電的方法還是有很多不要因為沒有辦法拿到綠電就要我們桃科、觀音三個廢棄物的發電廠在我們這邊危害我們鄉親的健康
transcript.whisperx[200].start 6167.438
transcript.whisperx[200].end 6173.466
transcript.whisperx[200].text 部長請你們要尊重民意也尊重我們地方政府好不好是好 謝謝接下來我們請張祺凱委員請做巡討
transcript.whisperx[201].start 6197.402
transcript.whisperx[201].end 6203.208
transcript.whisperx[201].text 謝謝主席請主委及部長好我們請主委跟郭部長兩位請
transcript.whisperx[202].start 6214.952
transcript.whisperx[202].end 6230.668
transcript.whisperx[202].text 主要的補充是內閣的新亮點 大家對你們算是肯定啦 很多的期許不過現在看起來好像被那個電擋住了 對不對我們先看一下你們的老朋友 黃承信讓他講來記者問他說 你會煩惱台灣欠點嗎 你的朋友黃承信讓他講 他說 台灣需要比較多的點
transcript.whisperx[203].start 6237.878
transcript.whisperx[203].end 6261.035
transcript.whisperx[203].text 那未來幾年如果擴大對台灣投資呢?黃宁勳說電力限制當然是個挑戰是個挑戰所以對兩位是很大的挑戰其實有欠電沒欠電啦不是用嘴巴講他應該是科學問題嘛對不對至少兩個事情要做到嘛第一個你們任內不能大停電不能大停電第二個你要推AI、半導體
transcript.whisperx[204].start 6263.313
transcript.whisperx[204].end 6277.814
transcript.whisperx[204].text 產業要跟你講它便利是過的你求防人心你待會看就淡淡嘛這次是你要解決的問題了好來我直接問部長一個比較這幾天大家都在忙你的問題啦你看一下齁有人說你對核電的態度是不是因為一變再變
transcript.whisperx[205].start 6279.315
transcript.whisperx[205].end 6302.631
transcript.whisperx[205].text 你壓力太大嗎?你變了嗎?我練給你聽,你先看,看下螢幕你四月十六,準部長郭志輝說核電廠要不要研議啊?取決於前面評估五月十五你說核電、核能是乾淨的能源核電部分是由多數人同意來做決定,最重要是六月七個一個禮拜前你就站在這邊嘛,對不對?那時候我問你喔,你怎麼說?
transcript.whisperx[206].start 6305.753
transcript.whisperx[206].end 6318.048
transcript.whisperx[206].text 我們會考慮條件是要安全如果安全無疑法令的許可就要做更重要是下面那句話如果修法安全都通過了合二合三可以用20年到30年
transcript.whisperx[207].start 6321.038
transcript.whisperx[207].end 6339.657
transcript.whisperx[207].text 那最大轉變其實就是6月6號那天嘛 對不對?周院長叫你應該諸位也有在嘛 那天都有在嘛 對不對?周院長那天 宴請了民進黨立委那天 被震撼教育了你後來改口說 核電是沒有考慮的一部分 輝和家園的態度沒有改變
transcript.whisperx[208].start 6341.312
transcript.whisperx[208].end 6356.275
transcript.whisperx[208].text 這會不會轉得太大人民現在看的話對你們有期許對不對以前大家民調很高或者有期許的郭智輝郭部長是一個專業務實的負責的經濟部長可是你現在是被政治被意識形態綁架了
transcript.whisperx[209].start 6358.164
transcript.whisperx[209].end 6381.33
transcript.whisperx[209].text 報告委員 這個還是一樣我的前提就是非核家園是沒有變只是我那個時候在講的時候沒有講這一句話所以我的用詞不夠精準這點我非常抱歉但是我想我的意思就是說非核家園是沒有變但是其他的這些假設性問題我在敘述假設性的問題也就是說今天如果我們講說這個法
transcript.whisperx[210].start 6382.99
transcript.whisperx[210].end 6396.025
transcript.whisperx[210].text 已經解掉了然後我們去盤點然後去看他安全無虞然後這個核安會他也通過了認為他是可行的所以我是在講說前面都有前提
transcript.whisperx[211].start 6397.045
transcript.whisperx[211].end 6425.857
transcript.whisperx[211].text 那現在大概很多的朋友就是會比較不注意前面的那個假設部長你沒有很委屈啦沒有被震撼教育啦沒有沒有沒有沒有被震撼教育我問你一下你知道經濟部長你任的經濟部長任期最短的是誰嗎現在大家在關心你啦大家對你有問問嘛希望你當久一點啦謝謝在產業界希望你當久一點是
transcript.whisperx[212].start 6426.82
transcript.whisperx[212].end 6449.709
transcript.whisperx[212].text 可是你知道嗎?經濟部長有的任期很短喔左邊這一位中材宜你知道中材宜是幾岁嗎?你不知道?40多岁你應該不是誤闖叢林的小白兔啦你經驗那麼豐富企業界對你有期待嘛我期待你可以像王美花一樣王美花當了快四年
transcript.whisperx[213].start 6450.848
transcript.whisperx[213].end 6471.811
transcript.whisperx[213].text 可是你到底是一個短命的經濟部長還是一個長命的經濟部長這個很重要喔是一方面任期長不長第二個有沒有幫產業界解決問題我都要講了你任期絕對不要發生大停電產業界的人對你說說你講的是謊話或者你不了解我我根本不敢投資這兩個事情一出現我跟你講你明天就掉下來了
transcript.whisperx[214].start 6472.981
transcript.whisperx[214].end 6495.047
transcript.whisperx[214].text 好不好不要大停電讓產業界講真心話真的幫他們解決問題期待你是王美花的任期不是中產儀可是相對你要幫產業界解決問題好不好不要讓人家覺得說那個以前務實專業的鍋子會不見了好不好主委你要不要幫你的老朋友打打氣主委
transcript.whisperx[215].start 6496.878
transcript.whisperx[215].end 6521.149
transcript.whisperx[215].text 他可以解決剛剛講那兩個問題嘛對不對規大停電 滿足企業界的用電嗎用電是要不足夠喔要是穩定的電喔 低碳的電喔你記得你的老朋友 郭志輝 郭部長可以做得到嗎這個幾乎我們每天都有溝通啦我對他信心十足我信心啦好 所以希望可以做久一點而且可以解決問題啦來 可是啊 我剛才講過啦電夠不夠啊 是科學問題
transcript.whisperx[216].start 6523.973
transcript.whisperx[216].end 6541.334
transcript.whisperx[216].text 不是意識形態跟政治的問題,它還是簡單的數學問題。我們來看你的挑戰在這裡你現在河山廠的一號機727要停了明年五月二號機要停了減了7%的電力我們的電力少了7%
transcript.whisperx[217].start 6542.967
transcript.whisperx[217].end 6565.836
transcript.whisperx[217].text 然後呢你自己講的過去5年我們的平均用電每一年是成長2.03%郭部長你自己講的加上AI進來之後AI需求爆發的影響我們台灣每一年增加的電力是3%你到2029年剩多少萬用5年來算就好了我們的電力至少要增加16%少7%增加16%你去找這麼多電出來你去找這麼多電出來所以那個地方
transcript.whisperx[218].start 6570.646
transcript.whisperx[218].end 6588.358
transcript.whisperx[218].text 把核電當成一個備援的電力對不對然後第二個你現在看起來你的電量生出來你是從大潭電廠的7號機跟9號機嘛對不對可是現在看起來三接到現在端也見完啊你到時候會不會接不上來報告委員那個三接在明年的4月就會見完幾位
transcript.whisperx[219].start 6592.278
transcript.whisperx[219].end 6617.15
transcript.whisperx[219].text 這有把握啦不要不要用那個現在看起來4號跟4J跟5J環境我去看過了你去看過了下禁令狀喔每年4月是啦一定要搞喔是是是有夠的話有3J有成的話才有可能你的大潭電廠的7號機跟9號機才有天然氣可以用是是要不然的話你就真的是缺電了是好不好好來我們再看下一個除了
transcript.whisperx[220].start 6619.945
transcript.whisperx[220].end 6648.477
transcript.whisperx[220].text 4.5G要真的接上來之外還有一個問題就是低碳AI需要穩定的電嘛對不對而且是低碳嘛現在連環保環境部的部長都講2050年淨零碳排台灣不可能另外我提醒一個點發展產業之外台灣人的健康要顧到對不對我相信你有這個體認主委跟部長應該都很注意這個台灣人的費是比較耐操嗎台灣現在用電一年是3000
transcript.whisperx[221].start 6649.952
transcript.whisperx[221].end 6668.633
transcript.whisperx[221].text 三千億度,製造了多少?產生了多少的這個碳?1.27億噸!我們現在肺癌跟肺腺癌發生的是全世界第15離癌的、死掉的致死率最高的也是肺癌跟肺腺癌
transcript.whisperx[222].start 6669.636
transcript.whisperx[222].end 6687.822
transcript.whisperx[222].text 可是現在看起來你的替代方案你核電停掉了低碳的核電停掉了可是你現在都是天然氣喔都是燃煤喔甚至有個內幕很重要你前幾天啊你還把麥寮的燃煤的這個電廠它是民間的你本來跟它五月就是停止合約的嘛 對不對
transcript.whisperx[223].start 6689.281
transcript.whisperx[223].end 6717.255
transcript.whisperx[223].text 你跟他續約到明年底那個是用燃煤那個是對我自己人那個是對嘉義地區對雲林地區對台中、彰化地區那個健康影響是很大的我現在提醒要有足夠的電穩定的電低碳的電的同時顧到人民的健康好不好好的不過那個是報告委員那是婚姻管政府的要求婚姻管政府要求減煤的要求
transcript.whisperx[224].start 6719.365
transcript.whisperx[224].end 6739.776
transcript.whisperx[224].text 問題是你台電在買啊,你如果為了人民的健康,其實我覺得它是那麼古老的電廠,那麼古老的電廠,而且影響是燒的施展煤,為什麼不停呢?你如果電力夠的話,部長,你如果電力夠的話,我鄭重呼籲,我要再買它的電了,因為時間就是到了啊,而且又是施展煤了
transcript.whisperx[225].start 6743.672
transcript.whisperx[225].end 6767.754
transcript.whisperx[225].text 是的 是如您所指導的但是這個部分就是契約契約就夠了 契約就是5月31日夠了你們現在是延期 為什麼要延到明年底啊好不好 這個我們早先再來追啦我跟你講 站在人民的健康其實不是只有雲嘉蘭、彰化跟台中啦你看那個中南部的那個肺腺癌跟肺癌那麼嚴重好不好 人命關天 也注意一下最後我要求兩個東西好不好
transcript.whisperx[226].start 6769.636
transcript.whisperx[226].end 6795.213
transcript.whisperx[226].text 第一個部長你提出電力設施如果銜接不上你有什麼緊急的方案好不好你本來7%的電力硬要把它停掉我知道你可能也為難因為你是政務官嘛你可能也為難河山廠也要計劃停可是緊急發生狀況銜接不上的時候你有什麼緊急方案第二個你現在核能不研議了增加多少的未來一年好了好不好未來一年因為河山廠
transcript.whisperx[227].start 6796.496
transcript.whisperx[227].end 6819.962
transcript.whisperx[227].text 一要及OIT停完之後,你增加多少的碳排跟發電的成本?你兩個禮拜給我的報告好不好?好的好,加油期待不是一個短命的經濟部長可是,如果像黃部長要當4年的話不要大停電而且電力要充,充足的同時要是低碳的,又是一個穩定的電好不好?讓產業真正可以發展好不好?是是好,謝謝部長,也謝謝主委好,謝謝
transcript.whisperx[228].start 6830.02
transcript.whisperx[228].end 6838.187
transcript.whisperx[228].text 謝謝 那我們待會主席還要宣告一下到鄭振權委員質詢我們休息三分鐘請楊瓊議員
transcript.whisperx[229].start 6861.495
transcript.whisperx[229].end 6864.383
transcript.whisperx[229].text 謝謝主席 楊全元發言首先邀請郭部長
transcript.whisperx[230].start 6872.714
transcript.whisperx[230].end 6894.011
transcript.whisperx[230].text 國務部長好在主委跟您的報告當中我們聽到了幾點重點這個主委說他說沒有台灣很難看到世界因為我們台灣佔有關鍵的位置這個非常nice但是他也提到世界人才荒的這個問題
transcript.whisperx[231].start 6895.252
transcript.whisperx[231].end 6919.459
transcript.whisperx[231].text 所以我也歡喜在你的報告當中你首先會提出人才培育的問題在人才培育的問題之前我們上次有說過這個電力等於國力你也認同這樣子的一個論點所以本期呢要告訴你在你還沒有擔任經濟部長的時候那我們在立法院大院裡頭通過了
transcript.whisperx[232].start 6920.319
transcript.whisperx[232].end 6942.468
transcript.whisperx[232].text 也就是當3月份電價委員會審議的時候4月1號開始漲價漲價之餘呢我們立即提出也就是人民在這個時間非常的辛苦所以9月份因為一年要開兩次會9月份不能再漲要動漲今天我很高興的看到經濟報呢寫了卓葵暗示9月不漲電價請教部長卓葵聽到了民眾的聲音您聽到了嗎
transcript.whisperx[233].start 6950.908
transcript.whisperx[233].end 6979.707
transcript.whisperx[233].text 是不是9月我們會朝這個方向來進行請做說明報告委員我經濟部就是尊重這個院的這個指示啦院的指示所以昨回暗示9月部長店家就是動長就這個方向嘛是嗎我還沒有得到這個院長的這個直接的你看到經濟報吧我沒有看你沒有看啊我現在秀給你看謝謝你趕快看你看這麼大一片
transcript.whisperx[234].start 6980.834
transcript.whisperx[234].end 6988.034
transcript.whisperx[234].text 那是不是會朝這個方向呢?立法院大會也已經通過了也建議給行政部門
transcript.whisperx[235].start 6989.403
transcript.whisperx[235].end 7007.936
transcript.whisperx[235].text 報告委員 這個我們回去以後會請示院長那它是不是這樣的一個方向如果是這個方向我們就按照這個方向來做好 我們也希望能夠得到好的方向就是九月動漲 不漲電價大家一起來照顧我們的民生照顧我們的產業好 你拼命地點頭我們就繼續來討論這一個
transcript.whisperx[236].start 7011.599
transcript.whisperx[236].end 7025.708
transcript.whisperx[236].text 大家要清楚你提出宣示2028年要培育20萬名AI的應用工程師來協助我們整個中小產業導入AI智慧跟製造那依照你的規劃你必須要結盟產業工協會
transcript.whisperx[237].start 7029.051
transcript.whisperx[237].end 7058.033
transcript.whisperx[237].text 國際大廠、學校、職業訓練等機構來協助產業AI的課程﹐輔導企業導入AI的應用所以今天教育部也在現場市長也在現場也就是怎麼樣橫向的部會提升製造AI應用普及這個50%至少50%這是您所提出的所以本期要請教這是一個非常對的方向但是是一個大工程我們希望
transcript.whisperx[238].start 7058.373
transcript.whisperx[238].end 7085.249
transcript.whisperx[238].text 不是只有口號而是真正能夠落實所以請教部長四年培育的20萬名AI的人才你預估有多少是我們的國人是我們的國人大部分都是我們國人大部分都是我們國人我想這個劉主委他在講的部分是跟那個教育部在談的就是這個最高階的在做這個模型的這個工程師這個部分大概從外部進來大概我想大概兩三千人
transcript.whisperx[239].start 7086.149
transcript.whisperx[239].end 7098.017
transcript.whisperx[239].text 但是我要訓練的是實作的在現場操作的工程師跟微調設計的工程師所以這一部分我想大部分都是我們國人也就是20萬裡面我想應該有18萬都是國人
transcript.whisperx[240].start 7101.86
transcript.whisperx[240].end 7117.211
transcript.whisperx[240].text 好 20萬名你要訓練的有18萬名是我國我們自己中華民國的國人我們一起努力所以本期給你一個功課因為國防部也在這邊教育部也在這邊應該要將我國的這一些
transcript.whisperx[241].start 7118.132
transcript.whisperx[241].end 7129.335
transcript.whisperx[241].text AI的人才必須要做一個橫向前瞻性的一個完整的計劃我也希望你們橫向組織聯繫也一份書面資料給本席那接下來我們還是來講電的問題微軟的創辦人比爾蓋茲他主導的他在美國建了這個第四代的核電廠開工他也表示這是美國潮者
transcript.whisperx[242].start 7147.503
transcript.whisperx[242].end 7164.458
transcript.whisperx[242].text 安全、豐富以及零碳能源。」所以這一項工作成功之後對於美國未來的國家整個的競爭力是非常的重要請教郭部長你認同這樣的說法嗎?
transcript.whisperx[243].start 7170.765
transcript.whisperx[243].end 7188.28
transcript.whisperx[243].text 這個國外的新的技術我們都有在觀察有在留意因為它現在還是在做一些實驗還不是完全做商業運轉所以我們還沒有辦法看到它的基本所需求的安全、核廢料如果是這個樣子的話我們當然會再討論會來參考、豐富、安全
transcript.whisperx[244].start 7197.782
transcript.whisperx[244].end 7225.419
transcript.whisperx[244].text 還有零碳的這個能源這個是大家都希望的嘛所以我們也希望能夠跟世界來接軌主席我也請我們國防委主委主委對於比爾蓋茲所提出的這樣子的第四代核電廠的一個開工他的論點剛剛郭部長說如果是這個方向你們會來參考那您的立場呢?你的看法呢?
transcript.whisperx[245].start 7227.514
transcript.whisperx[245].end 7247.866
transcript.whisperx[245].text 報委員我大概有一點瞭解他現在是用鈉然後取代過去的水他的輻射量會低一些但是因為鈉碰到空氣會燃燒所以他的安全性還有待觀察那他現在是先凍土還沒有辦法到進一步的核准執照所以我們還要持續觀察他的結果才能定論
transcript.whisperx[246].start 7248.046
transcript.whisperx[246].end 7264.872
transcript.whisperx[246].text 好 這個回答非常好也就是我們各個部門都必須要能夠跟世界來接軌因為全球都在搶人才全球也都對於整個電力給予高度的關注我們必須要好好的去了解因為國力
transcript.whisperx[247].start 7266.727
transcript.whisperx[247].end 7273.172
transcript.whisperx[247].text 電力等於國力。」沒有電力,什麼都不用講了,對不對?好,所以在這樣的一個情況之下,我繼續要來請問那個郭部長,台電公司的財務問題也是一直我關心的
transcript.whisperx[248].start 7281.798
transcript.whisperx[248].end 7305.728
transcript.whisperx[248].text 您在上一次本席請教的時候您說了一句話你說你不支持以公務預算來指引但是目前情況會讓我們嚇一跳所以在這種情況之下呢本席要來請教目前我們自產的一度電2.3塊你買的電不夠你要買的是5.09塊你買了綠能風力發電的一度電多少一度電多少
transcript.whisperx[249].start 7308.766
transcript.whisperx[249].end 7313.149
transcript.whisperx[249].text Open Book已經在上面你自己看我已經給你Open Book了鋒利綠電多少?你買了多少?6.8塊所以在這樣情況之下台電的財務如果不解決它一直虧損你沒有辦法穩定供電
transcript.whisperx[250].start 7333.673
transcript.whisperx[250].end 7358.803
transcript.whisperx[250].text 這怎麼辦所以您跟我有約定兩件事情第一個在這個會期結束前你會公布包括AI所加入的電力的需求量第二個台電財務的問題要怎麼處理你都還是會在這個會期結束前會告訴我們國人嗎是的是的所以我們就拭目以待好好來做那最後我請國發會
transcript.whisperx[251].start 7362.779
transcript.whisperx[251].end 7386.426
transcript.whisperx[251].text 部長你請回國科會的主委吳主委他說了他說台灣廠商如果不走出去就是面臨嚴重的五缺缺工缺地缺資源等等這是吳主委所說的
transcript.whisperx[252].start 7387.489
transcript.whisperx[252].end 7410.229
transcript.whisperx[252].text 但是在剛剛郭部長所說的他要培育20萬人他也認為我們的電沒問題當然不包括AI的部分還要再統計所以本期要請教國科會主委台灣廠商如果真的不走出去是不是真的會面臨到缺工、缺地、缺資源的問題請教
transcript.whisperx[253].start 7413.989
transcript.whisperx[253].end 7437.207
transcript.whisperx[253].text 謝謝委員我輔導過很多廠商走出去他主要的目的主要是前進國際市場然後加入整個國際供應鏈的需求那這是整個國際的趨勢那也是台灣要進入一個日不落帝國的請回答本席的提問如果我們的廠商不出走我們會面臨在國內的缺工缺地缺資源嗎
transcript.whisperx[254].start 7438.851
transcript.whisperx[254].end 7457.987
transcript.whisperx[254].text 目前來看我認為台灣比較辛苦的會是土地面積的問題社會缺嗎所以你也認同國會會吳主委的說法只有土地因為我們現在你認同他的一部分好一部分接下來我要告訴你他講的是真的你們不要粉飾太平要面對問題去解決問題
transcript.whisperx[255].start 7460.129
transcript.whisperx[255].end 7483.338
transcript.whisperx[255].text 因為在我們的國科會半導體晶片研發的績效來說他申請的人數你看本期的資料OpenBook給你他是往下降的案件也在減少AI的這個A4代的半導體前瞻半導體及量子這個技術研究的計畫裡頭110年申請的是376年111年是201人112年是138人
transcript.whisperx[256].start 7489.841
transcript.whisperx[256].end 7508.141
transcript.whisperx[256].text 今年剩下25人所以你們的橫向必須要去看他那一邊已經短出那麼多了而且我們看到新興晶片設計研發的計畫跟次世代核物半導體的研發計畫申請的人數一直在低減今年剩下多少 30人
transcript.whisperx[257].start 7510.393
transcript.whisperx[257].end 7536.301
transcript.whisperx[257].text 主委本席給你這個數字在國科會的數量是如此心驚驚的真的會怕你不缺人嗎本席有疑慮有疑慮所以我希望的我們要如何的去協助推動產業橫向的聯繫不會非常的重要好不好因為我們要去面對這個問題一個國會委員會主委已經告訴你如果不出走會怎麼樣了那到時候台灣怎麼辦
transcript.whisperx[258].start 7538.962
transcript.whisperx[258].end 7547.247
transcript.whisperx[258].text 台灣怎麼辦?所以本席非常的希望因為這是一個大功課也是一個人類改變的關鍵時刻就誠如你所說的沒有台灣看不到全世界我們很高興的我們的人才都在台灣產生在全世界發揚光大我們更要實際去面對問題橫向政府有這個職責必須要協助產業這是本席給你的功課請你去把它整理好
transcript.whisperx[259].start 7566.638
transcript.whisperx[259].end 7579.711
transcript.whisperx[259].text 去把它整理好我們該缺的要怎麼樣去應對這是我們必要做的好不好你把它整理好順便資料給本席好嗎我會跟國科會討論一下謝謝好 謝謝劉書偉請回好 謝謝接下來我們請謝一鋒委員請做詢答
transcript.whisperx[260].start 7600.502
transcript.whisperx[260].end 7607.692
transcript.whisperx[260].text 謝謝主席我想要請我們國發會的劉主委跟我們經濟部的郭部長我們再請劉主委跟郭部長
transcript.whisperx[261].start 7617.042
transcript.whisperx[261].end 7635.338
transcript.whisperx[261].text 我想請教一下今天早上我們郭部長說如果計算進去就是說我們AI的這個用電的話那未來是3%的這個成長用電的成長那我想要了解
transcript.whisperx[262].start 7636.638
transcript.whisperx[262].end 7653.384
transcript.whisperx[262].text 這個3%的用電成長是我們原先預估的就是在AI沒有蓬勃發展的情況下我們所預估的3%還是在我們看到了AI產業有回答
transcript.whisperx[263].start 7654.224
transcript.whisperx[263].end 7654.784
transcript.whisperx[263].text 這兩個用電的估算還是3%嗎?
transcript.whisperx[264].start 7673.508
transcript.whisperx[264].end 7693.485
transcript.whisperx[264].text 跟委員報告上禮拜我剛好有參加這方面的會議的確是上禮拜重新估計的上禮拜重新估計但是我說了你說的是上禮拜重新估計但是我說的是估計的是原先預估保守的這種成長還是是爆炸性的成長
transcript.whisperx[265].start 7694.585
transcript.whisperx[265].end 7709.741
transcript.whisperx[265].text 這是含AI的成長我知道這是含AI過去你的3%就是含AI的成長了但是我們所說的是說如果AI蓬勃發展的時候你的用電供電的成長還是3%嗎
transcript.whisperx[266].start 7713.021
transcript.whisperx[266].end 7741.863
transcript.whisperx[266].text 我們現在是以目前的狀態評估出來的數字是目前的那我不清楚委員彭博的定義大概會到什麼程度那目前我們大概我的了解是郭部長他們去問了很多業界然後台電也問了很多業界綜合出來業界所反映的訊息整理出來的也許郭部長可以做進一步的說可是如果按照回答他的架構他的新產品他的用電量會激增2到3倍
transcript.whisperx[267].start 7742.623
transcript.whisperx[267].end 7770.901
transcript.whisperx[267].text 那這樣子的情況下我們的用電量是否還是3%每年的成長?國部長你有數字嗎?報告委員這個這一部分它們雖然是會增加但是它新的這個晶片也會降能會降能對對對就是說降低它的這個電的能耗所以它未來的用電的成長不會像
transcript.whisperx[268].start 7771.857
transcript.whisperx[268].end 7795.112
transcript.whisperx[268].text 我們大家一般業界的評估的這麼高嗎?是不是?不會這樣這麼高,是不是?而且我跟委員報告主要是這樣子就是說他們現在所晶片有在有降能那另外做成的這個伺服器啊伺服器也會因為這個他剛開始要做這個數據中心他可能不會用那麼大的這個伺服器
transcript.whisperx[269].start 7795.872
transcript.whisperx[269].end 7811.124
transcript.whisperx[269].text 所以他會漸漸地看然後看完以後他最後他那個比較大台的比如說那個350M的或者500M的那個那個一定都是放在比較後面的投資不會一開始就投資那麼大我想對投資者來講他也會慢慢地去
transcript.whisperx[270].start 7812.125
transcript.whisperx[270].end 7827.653
transcript.whisperx[270].text 去測試我們的電到底是有沒有那麼多啦我想這個是事實嘛大家都清楚啦不可能一聲就國伯要勤奮三八五十年勤奮所以初期是不會那麼高對 初期一定不會那麼高所以我們過去的這個現在雖然講說3%我們認為3%其實是應該可以滿足這個市場的需求但2028年以後如果這個AI的熱潮整個非常的好
transcript.whisperx[271].start 7839.261
transcript.whisperx[271].end 7865.858
transcript.whisperx[271].text 那麼我們就是要比較擔心但是我想因為我們現在在看了觀察我們是動態的在觀察所以我們現在另外一個我可以在這個地方跟各位報告就是說大家都擔心我們店可能不夠不過我們從現在一直在檢討做這個節能的這個方案所以這個方案如果我推的下去的話我事實上非常有機會來滿足
transcript.whisperx[272].start 7869.34
transcript.whisperx[272].end 7883.746
transcript.whisperx[272].text 這個2025到2028的成長那我想要了解的就是目前大家都認為說你說未來就是政府部門不應該再就是撥補給台電嗎那電價電價會不會漲是不是你看這是台電的資產負債表4月底的資產負債表它累計的虧損是4400億這樣子高的數字那如果未來
transcript.whisperx[273].start 7896.621
transcript.whisperx[273].end 7915.402
transcript.whisperx[273].text 政府部門過去都是由政府部門吸收以及當初你也講的你原本是要降低就是平均的發電的成本因為從你過去的經驗你認為台電應該要降低平均發電的成本那未來有沒有可能
transcript.whisperx[274].start 7915.842
transcript.whisperx[274].end 7932.282
transcript.whisperx[274].text 在如果目前大家看來好像核能是比較成本是相對比較低的這個情況下那未來沒有可能降低那政府部門又不撥補的情況下那是不是勢必電價就會
transcript.whisperx[275].start 7934.417
transcript.whisperx[275].end 7962.074
transcript.whisperx[275].text 如果我們沒有從效益上面去推估那麼只從這個成本上面去考量的話就會像這個委員你所指教的不過我認為啦這個一個公司的經營必須要看我這個營運的效益跟我所使用材料的成本跟我人力我想這個成本的部分我們除了這個材料的成本以外人力的成本然後運作的這個效益
transcript.whisperx[276].start 7962.954
transcript.whisperx[276].end 7983.411
transcript.whisperx[276].text 這些都是我可以去努力的部分那雖然我們材料成本佔非常的高不過我們現在就是就是女人的成本嗎天然氣跟燃煤的成本嗎您所說的關心的這個核能的這個成本如果核能成本我全部替換了以後我事實上每一度增加的成本並不高
transcript.whisperx[277].start 7984.893
transcript.whisperx[277].end 7990.376
transcript.whisperx[277].text 並不高因為過去我們的這個可能只佔了這個目前是只佔了這個6%到7%所以他真的這個
transcript.whisperx[278].start 7996.311
transcript.whisperx[278].end 8024.249
transcript.whisperx[278].text 90幾%的成本在那邊是固定的啦這個部分真的能佔的部分太小它所影響出來的這個價格是非常的小的那我必須要由這個一些這個妥善率啊或者是漏食的部分啊或者是一些績效不好的地方去努力報告委員我們現在最快的方式就是去推動節能方案節能方案就是ESCO這個方案那麼這個方案呢我可以讓
transcript.whisperx[279].start 8025.836
transcript.whisperx[279].end 8025.856
transcript.whisperx[279].text 業者
transcript.whisperx[280].start 8026.991
transcript.whisperx[280].end 8055.871
transcript.whisperx[280].text 他們也可以降低它的電費那多久可以執行?你節能的方向多久可以執行?因為你必須要在缺口產生之前你如果這樣子說這樣子會增加企業多少的成本?你不能只用高科技產業來看你必須要看影響就業人口最多數的中小企業的人
transcript.whisperx[281].start 8056.852
transcript.whisperx[281].end 8081.526
transcript.whisperx[281].text 他會增加多少成本?基本上我們先滿足中小企業以及一般的商家跟一般的住家的用電我們朝向這一部分剛才我想楊委員也有特別指導我們這一部分的話就是按照院長他如果說只是這一部分我們不長的話我們就努力朝這個部分來努力的
transcript.whisperx[282].start 8082.549
transcript.whisperx[282].end 8098.772
transcript.whisperx[282].text 所以你在不漲電價的情況下你是以節能的方式去因應嗎對對對我們會朝著這個節能的部分來努力臺電的成本呢臺電的虧損呢臺電不會產生虧損不會產生虧損如果我們這個推的數據的話臺電會不會倒閉不會不會倒閉不會不會倒閉是你說的是不是我說的
transcript.whisperx[283].start 8112.18
transcript.whisperx[283].end 8139.655
transcript.whisperx[283].text 經營公司我想我們不可能讓它倒閉啦這個財務有財務的問題我們會去努力但是我個人認為經營一個公司最重要是效益跟效率的問題台電會不會倒閉那如果不會倒閉就不會產生你的認知是這樣是不是你是說不會缺電不會缺電也不會倒閉不會也不會增加成本
transcript.whisperx[284].start 8141.254
transcript.whisperx[284].end 8153.979
transcript.whisperx[284].text 不會增加成本也不會有虧損虧損就過去的虧損是新的不會虧損對新的不會虧損那總經理要不要說一下是不是不會虧損
transcript.whisperx[285].start 8156.844
transcript.whisperx[285].end 8170.796
transcript.whisperx[285].text 報告委員部長因為來自於企業界他對整個成本方面都會有要求那我們會把整個的細節再分析給部長聽到時候會做比較詳細的一個瞭解之後再判斷好 謝謝好 謝謝
transcript.whisperx[286].start 8183.837
transcript.whisperx[286].end 8203.163
transcript.whisperx[286].text 我給部長補充因為前任的部長說有政府台電就不會倒你要大方一點沒問題當然我們也歡喜聽到你是以經營的方式台電不會倒這個是讓國人有信心但是你說台電不增加成本
transcript.whisperx[287].start 8204.093
transcript.whisperx[287].end 8214.399
transcript.whisperx[287].text 那不會虧損這個有一點疑慮啦我們也拭目以待你可以提出方案好 接下來我們請鄭振賢委員請做巡討謝主席我想請一下國防匯流主委、經濟部郭部長還有我們國科會的林部主委請以上三位
transcript.whisperx[288].start 8240.756
transcript.whisperx[288].end 8264.21
transcript.whisperx[288].text 謝謝主席今天特別針對AI這個部分做了一個安排的一個專題報告那我在想說過去這一兩個禮拜以來因為Computex就是那個輝達NVIDIA他們經常到台灣來的時候也引起了一個很大的一個旋風那讓全世界都看到台灣在AI這領域的一個重要性那也讓台灣
transcript.whisperx[289].start 8265.211
transcript.whisperx[289].end 8293.89
transcript.whisperx[289].text 就是認為除了在半導體這個護國神山之外的時候我們可能還會有很多護國神山會陸續的一個生成我們也非常的開心可是在講AI這部分的時候我覺得有三個力三力一定要去處理的一個是人力一個是算力一個是電力這三力我覺得是發展我們AI很重要的三個不同的領域那我在想說我目前因為很多
transcript.whisperx[290].start 8295.311
transcript.whisperx[290].end 8320.934
transcript.whisperx[290].text 委員同仁也都提到了人力跟電力的一個部分那我覺得這個部分我想先從算力這邊來切入算力這邊比較少人講那我這邊也要特別先問一下國防會主委這邊因為我們在講發展AI當中的時候可是好像沒有看到一個從政府的一個角度對於整個國家算力提升的部分有一個很具體的一個做法
transcript.whisperx[291].start 8321.514
transcript.whisperx[291].end 8334.747
transcript.whisperx[291].text 這個部分有沒有一些具體的後續要去做的部分那個主委這邊可不可以先講一下報告委員這個分工上能不能請國科會來他主導我請他是不是先做說明我再補充
transcript.whisperx[292].start 8336.014
transcript.whisperx[292].end 8350.36
transcript.whisperx[292].text 讓國科會做說明是不是這個部分我本來是要講說整個AI相關的部分因為算力是整個AI裡面很重要的一環那整個AI這個部分的時候如果說你要讓國科會這邊先講的時候也沒問題我想說讓國科會這邊先來回應一下
transcript.whisperx[293].start 8355.034
transcript.whisperx[293].end 8373.422
transcript.whisperx[293].text 那個跟委員報告目前整個國網的算力大概是36的Peta Flow的PF那相較於這個韓國跟日本比起來的確是差很多現在韓國跟日本都有四五百以上那麼所以呢我們未來如果要以
transcript.whisperx[294].start 8374.102
transcript.whisperx[294].end 8402.898
transcript.whisperx[294].text AI去發展百工百業然後讓台灣成為一個AI的大國的話的確是我們在算力事要大幅增進 確實不夠嘛 因為其實本席從上一屆當中的時候對於整個國家算力的部分就非常的關注我們國網中心 坦白說我舉個簡單的例子我們國網中心支援了半導體研究中心半導體研究中心它支援了很多高校裡面大家的一個研究的一個計畫一堆學生在抱怨 裡面根本都跑不動
transcript.whisperx[295].start 8404.219
transcript.whisperx[295].end 8423.835
transcript.whisperx[295].text 就是排程跑不動那時間都跑不動然後光是一個學術單位都沒辦法支援的時候你要怎麼樣去帶動產業這個部分我其實是很懷疑的我後來去看了一下調了一下我們所有的預算就看到我們跟整個算力提供有關的大概只有在整個國研院下面
transcript.whisperx[296].start 8424.676
transcript.whisperx[296].end 8444.286
transcript.whisperx[296].text 有一個高效能計算技術研發建置與維運今年113的預算總共只有6.6億,非常的少總共只有6.2億,抱歉只有6.2億,其實非常的少這裡面還包括維運的部分建置的部分又再砍一半所以我覺得以這樣的部分要用
transcript.whisperx[297].start 8445.226
transcript.whisperx[297].end 8468.245
transcript.whisperx[297].text 國家的力量來支援算力我就本席是非常擔心的可是我覺得因為算力其實當我們現在整個在做尤其像今天在做AI的一個主題當中我們還希望讓整個產業從數位轉型走到AI轉型的時候那政府就必須要更有一些算力掌控在手上作為我們一些政策的工具我這樣講應該是對的嘛 對不對
transcript.whisperx[298].start 8470.467
transcript.whisperx[298].end 8494.47
transcript.whisperx[298].text 所以目前看起來若只靠國網中因為國網中本來就是在支援學術研究的一個機制對產業來說其實是遠遠的不夠所以我在這邊要請教一下郭部長因為我在看你在針對之前那個業務報告的時候你有特別提到就是在整個推動產業AI應用的部分你提到說本部爭取國際大廠免費提供
transcript.whisperx[299].start 8495.131
transcript.whisperx[299].end 8511.58
transcript.whisperx[299].text AI超級電腦部分算力資源提到算力資源那麼要加速建構台灣專屬生成式AI核心技術這個部分所以就是說以經濟部的角度來看的時候經濟部的算力也是要依靠企業這邊來支持是這樣子嗎經濟部的算力有經濟部的這個預算吧
transcript.whisperx[300].start 8517.968
transcript.whisperx[300].end 8519.83
transcript.whisperx[300].text 經濟部有哪些具體預算在提升算力?
transcript.whisperx[301].start 8549.149
transcript.whisperx[301].end 8572.888
transcript.whisperx[301].text 這個是目前就台灣幾個比較重要的一個超級電腦的一個部分目前排第一個是台北萬是輝達提供的那提供部分這當然就是經濟部這邊有大Aplus計畫當中有支持60億左右的一個預算所以我在想說部長這邊提到說要用企業的資源我以為你要用的是這個部分
transcript.whisperx[302].start 8573.668
transcript.whisperx[302].end 8597.064
transcript.whisperx[302].text 那這個部分本席也接受因為經濟部有補助經費那麼要從台北灣這邊去share資源給政府來使用給企業使用我都覺得可以沒有不行所以你剛剛提到說我們經濟部有另外的一個算力的一個研究中心算力中心的一個計畫你再提供給我因為我目前看預算書是沒有看到的那我要講的狀態是目前台灣的這幾個重要的超級電腦當中排名第二個是
transcript.whisperx[303].start 8604.089
transcript.whisperx[303].end 8630.605
transcript.whisperx[303].text 氣象署的超級電腦第三個就是台三二號這個部分排名目前是排名106全世界排名106他剛成立的時候排名第20排名第20本來是很好的一個狀態現在完全往後退了那我們接下來再看到就是接下來的部分呢台灣這邊排名比較前面的這些超級電腦的部分就是兩個是
transcript.whisperx[304].start 8633.053
transcript.whisperx[304].end 8647.087
transcript.whisperx[304].text 兩個是氣象署的 兩個是國網中心的兩個氣象署 兩個國網中心然後一個是額蘇時 另外一個是輝達大概就是這樣子那以這個部分來看的時候呢我覺得台灣的算力其實是明顯的不足我剛剛舉這個例子
transcript.whisperx[305].start 8648.328
transcript.whisperx[305].end 8668.61
transcript.whisperx[305].text 就從前年的時候我在看在質詢就是我們國防中心預算的時候我就覺得整個這部分是不夠的可是雖然今年的預算有增加十幾%可是金額還是非常的小對於台灣要去成就這樣的一個算力中心我覺得是非常的不夠那所以這部分我希望說就國發會主委這一邊你能夠
transcript.whisperx[306].start 8670.692
transcript.whisperx[306].end 8685.462
transcript.whisperx[306].text 跟橫向聯繫跟我們經濟部跟我們國科會這邊一起來提升看怎麼樣子來讓台灣的算力是夠的因為算力不夠的時候AI要去發展其實是緣木求魚我覺得這部分在這邊特別提這個部分
transcript.whisperx[307].start 8686.723
transcript.whisperx[307].end 8715.322
transcript.whisperx[307].text 謝謝委員我順便補充一下我們現在國科會在沙倫這邊規劃一個超級電腦中心會超過100的Peta Flow那另外在金創計畫以後再往上加那應該會額外增加100多的Peta Flow所以我們在金創計畫當中的時候要成立就是新的我們的算力中心是這樣子嘛 對不對在金創計畫接下來10年過程當中我們要建立兩個我們的算力中心 對不對國科會主委
transcript.whisperx[308].start 8716.383
transcript.whisperx[308].end 8718.986
transcript.whisperx[308].text 這個部分我們就拭目以待那接下來的部分我覺得我還是要特別提到電力因為事實上算力器就是電力
transcript.whisperx[309].start 8736.283
transcript.whisperx[309].end 8751.17
transcript.whisperx[309].text 那我這邊要特別問一下郭部長因為坦白說你在就職之前的時候來拜訪的時候你就特別提到了說我們也建築媒體就是說你就是電力提供充足是最重要的一個關鍵從企業界來一定需要有電力嘛
transcript.whisperx[310].start 8752.03
transcript.whisperx[310].end 8760.618
transcript.whisperx[310].text 那當時你也提到河山研議其實是選項之一因為到時候要如果不夠的時候河山研議可是因為你吃了一頓飯之後我發現變了那這個部分我要講一個點就是說說實話你從企業界來接這個位置大家對你有很多的期待
transcript.whisperx[311].start 8769.045
transcript.whisperx[311].end 8795.562
transcript.whisperx[311].text 因為大家認為也許你可以把企業經營的概念跟務實的態度引進政府的部門所以我們希望你能夠堅持對的事情那我這邊要特別講其實整個河南的狀態其實整個世界也在改變你上次你有回答我說你們也在關注很多新科技的一個部分那至少目前為止在發展整個高科技產業當中包括微軟包括Amazon
transcript.whisperx[312].start 8796.183
transcript.whisperx[312].end 8811.123
transcript.whisperx[312].text 包括openAI他們都已經很具體要自己去投入核電站那這個部分就是因為他們覺得電力供應非常非常的重要那你從高科技來我希望你對於電力的供應能夠更務實那你
transcript.whisperx[313].start 8811.784
transcript.whisperx[313].end 8827.912
transcript.whisperx[313].text 去吃了飯之後你跟我們講說現在電力是夠的未來也都會夠即使碰到了AI的一個爆炸期之後還會夠那我希望你到時候到本辦公室做一個更細部的一個說明那我這邊也要給你一個鼓勵啦因為你去吃了飯之後呢這個政策改變的時候很多
transcript.whisperx[314].start 8829.008
transcript.whisperx[314].end 8854.368
transcript.whisperx[314].text 竹科的朋友開始擔心你會做不久說實話因為他們覺得你會不適應可是問題是大家又希望你能夠帶來一些改變針對這個部分你可以簡單做一個回應報告委員我想這個河山的問題這個是有很多假設性跟前提我可能說話不夠精準不過我想這部分這個報告的部分我會更精準來跟委員報告
transcript.whisperx[315].start 8855.109
transcript.whisperx[315].end 8874.99
transcript.whisperx[315].text 那麼這個新的核能剛才您所指導的這三家公司它是第四代的核能那麼我們對新的核能科技我們會持續的觀察持續的注意那如果它能夠得到我們國人大家的同意我想我們會有一些考慮
transcript.whisperx[316].start 8876.792
transcript.whisperx[316].end 8900.486
transcript.whisperx[316].text 所以說針對第四代合理反而是可以考慮的一個方向那今天我再補一個CNBC美國一個很重要的財經媒體他今天也特別報導了台灣面臨缺電的一個問題當我們整個全國都在熱情地表達支持半導體產業表達支持AI的部分可是我們也不能夠忽略這兩個確實都是吃電的一個
transcript.whisperx[317].start 8901.863
transcript.whisperx[317].end 8917.515
transcript.whisperx[317].text 特別的一個產業所以連美國的財經媒體都擔心台灣電力不夠的時候我希望部長這邊的時候也能夠加快的去做一些調整然後到時候給本辦公室一個很詳細的一個報告好不好好的謝謝 以上好 謝謝好 我們現在休息三分鐘
transcript.whisperx[318].start 8934.153
transcript.whisperx[318].end 8947.963
transcript.whisperx[318].text 臺山三秒是GP,不是GP,臺山二秒是GP,不是GP,不是GP,
transcript.whisperx[319].start 8963.818
transcript.whisperx[319].end 8965.421
transcript.whisperx[319].text 全球首發展委員會主任委員會主席
transcript.whisperx[320].start 8977.552
transcript.whisperx[320].end 8983.716
transcript.whisperx[320].text 這個他都看不到捏,我們傳寄他都看不到啊我們是這隻啊我們是這隻的啊暗掉的對啊他沒有開啊他都沒開啊
transcript.whisperx[321].start 8993.622
transcript.whisperx[321].end 9009.733
transcript.whisperx[321].text 不是,都沒看到,因為部長這樣弄,他不會去按那個,所以他剛剛都沒看到,我們傳他都沒看到啊,因為我在這邊看,他才,對,保證這樣看不到了,我們傳東西他就看不到,他這樣看不到了,對,你要按那個
transcript.whisperx[322].start 9019.94
transcript.whisperx[322].end 9028.686
transcript.whisperx[322].text 有有有,我們有,我家群組有看到署長可是他看不到這樣夠大嗎?應該是要這樣這個這個這個
transcript.whisperx[323].start 9035.391
transcript.whisperx[323].end 9042.194
transcript.whisperx[323].text 啊你看看那張圖好好好謝謝謝謝師傅那你那個框框框框框框框框框框框框框框框框框框框框
transcript.whisperx[324].start 9320.728
transcript.whisperx[324].end 9348.848
transcript.whisperx[324].text 好謝謝大家辛苦了我們繼續開會來請就座我們現在請鄭天才委員請做詢答主席、各位委員有請那個國發會主委、經濟部部長好請兩位謝謝
transcript.whisperx[325].start 9350.438
transcript.whisperx[325].end 9377.455
transcript.whisperx[325].text 再加上這個教育部外部次長大家好這個對於這個國部長對於核電又改變這樣的一個我還是要其免上次在這裡我也特別跟這個國部長提到
transcript.whisperx[326].start 9381.854
transcript.whisperx[326].end 9403.208
transcript.whisperx[326].text 這個核能、核電它是一個專業的部分所以在你上次的報告裡面,郭部長上次的報告核安、核電議題三大前提核安要確保、核廢墟處理社會有共識尊重國會審議及討論
transcript.whisperx[327].start 9406.716
transcript.whisperx[327].end 9432.291
transcript.whisperx[327].text 這些都是涉及到專業上次我也特別提到就算立法院要審議立法委員大部分沒有這個專業所以還是要靠專業請問一下郭部長你上任到現在有沒有跟台電各
transcript.whisperx[328].start 9434.867
transcript.whisperx[328].end 9463.402
transcript.whisperx[328].text 負責核電的這些台電的人員討論過?負責核電的同仁是沒有討論過啦但是跟台電的同仁是幾乎每天都在討論好這個我建議部長要跟台電負責核電的同仁還有核能研究所要討論也許還有其他的相關涉及到的
transcript.whisperx[329].start 9464.737
transcript.whisperx[329].end 9491.275
transcript.whisperx[329].text 這個部會這個是涉及到專業的而且這個涉及到我們今天討論的AI各方面都是需要電力的這個我不是專業但是我認為應該是要去好好的討論這個當然我們之所以合適
transcript.whisperx[330].start 9493.39
transcript.whisperx[330].end 9512.599
transcript.whisperx[330].text 這個整個關閉就是因為福島事故嘛日本的福島事故但是日本馬上就很快的就重啟了對不對他很快重啟所以他這個整個已經重啟了10部機組所以他從目前的
transcript.whisperx[331].start 9513.581
transcript.whisperx[331].end 9527.008
transcript.whisperx[331].text 百分之不到百分之五在2030年提高到百分之二十之二十二這是他們日本對核電的一個處理所以這個部分是科技一直在進步
transcript.whisperx[332].start 9528.71
transcript.whisperx[332].end 9546.91
transcript.whisperx[332].text 所以相關的這些過去引發的這些事故都也會因為科技的進步然後去解決所以這個怎麼樣讓人民安心產業更安心這很重要回到今天的主題
transcript.whisperx[333].start 9550.364
transcript.whisperx[333].end 9558.486
transcript.whisperx[333].text 這個經濟部的這裏面提到AI運用普及力能從目前12.3%提升至50%製造業以及2028年製造業AI運用普及力能從目前12.3%提升至50%這個是要這個積極的來達成這個目標當然這裏面
transcript.whisperx[334].start 9578.208
transcript.whisperx[334].end 9604.858
transcript.whisperx[334].text 無論是經濟部的報告、國發會的報告或者是數發部的報告都提到AI人才、AI人才的培育百工百業的這些應用然後相關的認證、發展各方面而且是跨部會,確實是跨部會
transcript.whisperx[335].start 9606.508
transcript.whisperx[335].end 9629.152
transcript.whisperx[335].text 請問一下部長還是或者是國安會主委這個跨部會誰來負責整合或是說來召集國安會主委你來回答可能比較適合是的跨部會是國安會會來負責國安會當然你的人力也是有限這個國安會負責很多的業務
transcript.whisperx[336].start 9634.243
transcript.whisperx[336].end 9662.691
transcript.whisperx[336].text 這個相關的這些各部會的業務都有關係中長程計劃的核定各方面審議人力怎麼樣去這個人力最多的書發部都請他們多發揮這方面的這樣可以節省你們的人力因為我是老公務員我會強調會比較考慮這個我是30年公務員會比較考慮這個部分
transcript.whisperx[337].start 9663.936
transcript.whisperx[337].end 9689.591
transcript.whisperx[337].text 好 這個那個主委你就先回座部長還有那個教育部因為時間的關係這個我還是要談到原住民的部分畢竟原住民的立委我要讓部長還有教育部了解我過去在台灣省政府服務
transcript.whisperx[338].start 9691.202
transcript.whisperx[338].end 9712.808
transcript.whisperx[338].text 20年然後經審之後到中央服務常務副主委當過6年多民國85年民國85年當時的省政府教育廳跟明智工專明智工專也就是王永慶這個企業
transcript.whisperx[339].start 9716.185
transcript.whisperx[339].end 9743.919
transcript.whisperx[339].text 對原住民開設專班在明治公專最早的專班就是這個專班開設專班培育原住民的人才能夠到台售的企業所以當時這些人這些開設專班的人大部分現在都在雲林雲林的台售廠我講這個部分就是說AI
transcript.whisperx[340].start 9745.429
transcript.whisperx[340].end 9773.343
transcript.whisperx[340].text 這個部分我上次也有跟部長提到AI原住民的人才怎麼樣能夠鼓勵他們所以這必須要產業跟教育教育部大專校院怎麼樣能夠合作也讓原住民的人才會往這個方向去發展因為這個原住民的教育我再講一次
transcript.whisperx[341].start 9774.525
transcript.whisperx[341].end 9801.459
transcript.whisperx[341].text 沿漢的教育落差帶大專校園的出債協力出債協力高達30%的落差但是很多的學校尤其是科技大學它去開專班之後到產業界就有很好的一個發展所以這個部分要請
transcript.whisperx[342].start 9803.825
transcript.whisperx[342].end 9814
transcript.whisperx[342].text 經濟部跟教育部這邊共同的來去合作及推動這個部長要不要先發表一下
transcript.whisperx[343].start 9815.351
transcript.whisperx[343].end 9837.516
transcript.whisperx[343].text 報告委員我們的百工百業對AI的人才沒有訓練那麼高階的LLM的部分但是我們是訓練在微調跟使用上面那這個就是說它除了接受一段的訓練以後它就可以發揮所以這個是訓練很快它可能是半年的訓練以後就馬上可以再
transcript.whisperx[344].start 9838.616
transcript.whisperx[344].end 9866.633
transcript.whisperx[344].text 馬上可以在它工作上面應用所以我才有辦法說訓練那麼多人那麼多人來以後因為透過AI來訓練AI我想那個是更快所以可以讓整個經濟提升提升那個價值減少那個loss這個就是我們推動AI的最大的目的好 那個教育部政策我先簡要說明剛才部長講得也非常好
transcript.whisperx[345].start 9868.463
transcript.whisperx[345].end 9889.151
transcript.whisperx[345].text 當初啊我那時候在省政府原住民行政局當副局長去協調這個教育廳然後這個明治公專其實他也不是正式的那個我所謂的這個專班啊也不是正式的協程啊他就是利用暑假開了那個專班
transcript.whisperx[346].start 9891.053
transcript.whisperx[346].end 9909.21
transcript.whisperx[346].text 然後就去學會一技之長然後就到台塑企業是這樣所以剛剛部長也講了他不一定是要一個是一個整個大學的四年的學程部長可以往這方向去市長可以往這方向去努力嗎
transcript.whisperx[347].start 9910.691
transcript.whisperx[347].end 9933.177
transcript.whisperx[347].text 跟這個委員報告那其實像剛剛委員提到我們現在這個在技職這一塊我們有這個產業這個產業產息這2.0這個計畫他基本上就是要結合這個技高還有這個科大跟企業合在一起就讓這些學生其他學的技術因為以前都是學技術之後可能還要考試但是我們現在就是讓他可以
transcript.whisperx[348].start 9934.217
transcript.whisperx[348].end 9960.552
transcript.whisperx[348].text 順利的在科大的即高畢業就可以就業然後可以領薪水然後一邊工作然後一邊也可以這個學技術然後在科大然後可以得到學位那這個部分的人數其實目前全台灣其實大概是7000多人其實一直在往上提升那我們未來也會繼續推動這一塊讓這個那特別是另外也跟委員報告就是說我們在原住民這邊其實在我們在目前在我們有25個大學我們有
transcript.whisperx[349].start 9961.772
transcript.whisperx[349].end 9982.905
transcript.whisperx[349].text 這個設立25個專班那也給這些大學經費鼓勵他們就是在這邊給原住民的同學他有一些一好的training所以我想這部分是教育部是在持續的都一直在努力在做希望教育部能夠跟經濟部合作對這個AI產業的部分對原住民的部分能夠給他們這個學習的機會進入產業界的機會好不好 謝謝好 謝謝
transcript.whisperx[350].start 9990.32
transcript.whisperx[350].end 10012.159
transcript.whisperx[350].text 這個就是之前教育部我們推的是4加1現在又來一個3加2所以我們就很希望說委員所希望的就是你要針對需求者去讓他落實在產業當中這樣子不是只有口號啊所以你現在是改3加2應該要給委員說明清楚謝謝來接下來我們請張家俊委員
transcript.whisperx[351].start 10020.024
transcript.whisperx[351].end 10037.512
transcript.whisperx[351].text 主席我想先請國發會主委 劉主委我們再請劉主委主委今天委員會的這個主題聚焦在產業AI化請教一下主委您覺得目前台灣的AI指數在全世界的排名如何你知道嗎
transcript.whisperx[352].start 10041.127
transcript.whisperx[352].end 10063.842
transcript.whisperx[352].text 這有很多不同方面的排名目前根據英國的機構公布的2023全球AI指數的排名我們台灣排名全世界的第26名美國跟中國大陸分居第一名跟第二名新加坡是第三名根據這個排名我們還有很大的進步空間
transcript.whisperx[353].start 10065.143
transcript.whisperx[353].end 10086.819
transcript.whisperx[353].text 尤其如何增加投資規模、增加企業數量以及實踐都是重要的指標這一點有賴國發會繼續去鬆綁相關的規範法規在刺激民間的投資再請教主委有沒有看過由人工智慧科技基金會進行的台灣產業AI化的調查
transcript.whisperx[354].start 10090.032
transcript.whisperx[354].end 10116.332
transcript.whisperx[354].text 這份沒有看過好 沒有看過那這個調查裡面主要我細節就不講了主要就是說開始將AI導入公司的運營流程裡面這個報導裡面說有將近54%都開始已經導入了這就證明了實務界總是跑在這個政府的政策之前那本席想請教的就是說行政體系AI化有沒有做過相關的調查
transcript.whisperx[355].start 10119.221
transcript.whisperx[355].end 10133.815
transcript.whisperx[355].text 行政體系AI化我目前了解應該是沒有是沒有嗎?那有沒有想過一些公部門在哪些方面可以很迅速的導入AI優化這個行政流程呢?
transcript.whisperx[356].start 10135.424
transcript.whisperx[356].end 10154.375
transcript.whisperx[356].text 這個部分就我了解就是各單位都有用到CHAP GDP然後去主要去做資料的搜尋報表的整理那本席舉幾個例子給這個國發會主委建議譬如這個交通管控系統可以透過AI適度的來減少員警的工作量
transcript.whisperx[357].start 10154.995
transcript.whisperx[357].end 10170.286
transcript.whisperx[357].text 然後減少用路人的行車時間包括各級政府的1999通報系統也可以透過AI的運用來提高服務品質那包括各級司法單位的意識系統都可以
transcript.whisperx[358].start 10170.666
transcript.whisperx[358].end 10185.842
transcript.whisperx[358].text 用AI來協助書記官做筆錄甚至可以更公正客觀這都仰賴國發會去制定一套進程讓各級政府可以去遵守請問主委你覺得本席所提的這個您同意嗎
transcript.whisperx[359].start 10187.024
transcript.whisperx[359].end 10213.204
transcript.whisperx[359].text 這一點我同意也順便跟委員報告這些我過去在一些地方政府也規劃過類似的專案譬如說救護車經過的時候透過5G沿路就可以亮綠燈然後車上跟計程車連線就可以開始控制那有些醫院現在也開始導入這樣的系統所以希望未來提AI化的部分絕對不要忘記增列我們行政機關其實也迫切需要導入一些AI的這個系統
transcript.whisperx[360].start 10214.965
transcript.whisperx[360].end 10217.528
transcript.whisperx[360].text 那我可不可以請經濟部長也一起上來請過部長部長就是說今天我們討論AI的議題那AI的伺服器耗電量是傳統伺服器的3至20倍以上大家都知道包括說這個GPT每天
transcript.whisperx[361].start 10238.186
transcript.whisperx[361].end 10241.387
transcript.whisperx[361].text 在美國是要耗56萬度電大約是我們台灣這個每日4萬戶的平均用電量那這樣子來說我們的這個電力問題我也想部長跟主委必須要重視因為現在我們的半導體主要競爭對手就是韓國
transcript.whisperx[362].start 10259.795
transcript.whisperx[362].end 10261.958
transcript.whisperx[362].text 韓國他現在一直在操作說我們台灣有能源問題所以我們政府一定要不要再粉飾太平了你看這麼多的韓國集體的在抹黑我們
transcript.whisperx[363].start 10274.753
transcript.whisperx[363].end 10276.295
transcript.whisperx[363].text 不只韓國,連美國的財經媒體CNBC都報導身為全球半導體的重鎮台灣正面臨電力短缺的疑慮
transcript.whisperx[364].start 10296.294
transcript.whisperx[364].end 10318.782
transcript.whisperx[364].text 那比爾蓋茲投資的泰拉能源也在昨天宣布要蓋這個新的核電廠那NVIDIA的黃仁勳執行長他在離開台灣之前他也說他說台灣的能源問題將會是他設廠的一大挑戰那你們都說不用擔心可不可以告訴我為什麼我們不用擔心能源問題報告委員我們現在
transcript.whisperx[365].start 10323.134
transcript.whisperx[365].end 10330.328
transcript.whisperx[365].text 不用擔心的意思就是我的供電的容量跟需求我的供電還是大於需求的
transcript.whisperx[366].start 10331.994
transcript.whisperx[366].end 10355.847
transcript.whisperx[366].text 就是您自己說的你們要推動這個AI未來會增加每年3%以上的用電那這個核電減少之後核三廠退役之後我們還會有個7%的電力缺口加起來有10%的電力缺口你現在告訴我不用擔心的理由到底是什麼我們為什麼可以不用擔心我們在之前就已經把這個都考慮進去了
transcript.whisperx[367].start 10357.898
transcript.whisperx[367].end 10358.719
transcript.whisperx[367].text 我們的基礎是在這幾年會一直上來
transcript.whisperx[368].start 10374.997
transcript.whisperx[368].end 10391.832
transcript.whisperx[368].text 怎麼上來?有哪些基礎?可不可以一一跟我說明說有哪些發電的基礎是今年、明年會跟上可以補正10%的缺口之外還可以再支持AI產業來推動?報告委員我可以請台電的總經理跟您
transcript.whisperx[369].start 10392.992
transcript.whisperx[369].end 10410.364
transcript.whisperx[369].text 我想要部長說因為部長本來包括主委都告訴我說核能是選項之一結果最近你們兩位都轉向了我想要知道說兩位是不是有受到上級單位指示說不要再講你們支持核能了報告委員我們過去個人的這個
transcript.whisperx[370].start 10418.106
transcript.whisperx[370].end 10423.65
transcript.whisperx[370].text 言論我想這個是有時間的差還差不到幾天就變化這麼大你告訴我是因為時間差時空背景不一樣本席不能接受所以部長跟主委我真心希望你們不要違背你們自己的初衷你們是產業界的希望這是未來我們台灣放眼50年產業界的希望是決定在你們現在
transcript.whisperx[371].start 10447.469
transcript.whisperx[371].end 10468.146
transcript.whisperx[371].text 所以你們一定要拿出大刀闊斧的精神講出實話讓我們台灣面對能源有問題能源供應有問題的真相你不要在這裡告訴我說沒有問題我們都準備好了你們準備好的東西在哪裡在哪裡到目前為止從早上到現在沒有一個講得出說我們能源問題有解決的方法在哪裡
transcript.whisperx[372].start 10475.492
transcript.whisperx[372].end 10493.02
transcript.whisperx[372].text 我們還是有發電的機組會在未來的45年不斷的上來所以我們到2030年的時候我們會有產生900多萬千瓦的電然後我們實際需求只有700
transcript.whisperx[373].start 10494.281
transcript.whisperx[373].end 10497.063
transcript.whisperx[373].text 那部長我問你喔就在你上任之前你知道桃園兩個月跳多少次電嗎?報告委員桃園跳電跟電母50幾次耶而且還在全台灣就只有備載容量3%就要全台大停電的狀態之下了所以部長還有主委我真心希望你們要認真的去考慮這個問題
transcript.whisperx[374].start 10520.322
transcript.whisperx[374].end 10541.112
transcript.whisperx[374].text 而且呢是不是可以向本委員會提出說你們具體的因應方式是什麼你們具體的告訴我們說不用擔心缺電的理由是什麼而不是在告訴我說不用擔心我們絕對沒有問題這樣子的話我不只是本委員會沒有辦法相信甚至整個國際喔我們的競爭對手韓國還有
transcript.whisperx[375].start 10545.035
transcript.whisperx[375].end 10548.839
transcript.whisperx[375].text 這個美國他們要不要投資他們都在觀察我們台灣的這個能源的這個政策那是不是可以有一些具體的說法說服本委員會也說服這些外媒讓他們知道說我們台灣的確是才有競爭力的
transcript.whisperx[376].start 10562.469
transcript.whisperx[376].end 10581.695
transcript.whisperx[376].text 包括委員我們會把這個未來每一年增加多少然後這個會降多少然後從哪裡增加從什麼機組增加對包括說這些機組到底它的它蓋到什麼程度它會不會有其他的原因去影響它供電的這個程度呢這個我們會提供好 謝謝好 謝謝
transcript.whisperx[377].start 10589.103
transcript.whisperx[377].end 10597.625
transcript.whisperx[377].text 謝謝 不知道每個人問的問題都一樣就期待你7月16號以前所公布的答案 謝謝接下來我們請邱智偉委員請做詢答謝謝主席 請這個速發部林次長請速發部林次長
transcript.whisperx[378].start 10620.499
transcript.whisperx[378].end 10641.483
transcript.whisperx[378].text 市長這個賴總統在出席這個臺北電腦展他提出三項的政策目標是你們報告裡面寫的穩定供電穩定供電大概這部分主管機關是經濟部是台電請台電王總經理也一起來那個建制超級電腦那個市長
transcript.whisperx[379].start 10645.356
transcript.whisperx[379].end 10646.297
transcript.whisperx[379].text 穩定供電這點,總統的要求有沒有?
transcript.whisperx[380].start 10659.062
transcript.whisperx[380].end 10673.936
transcript.whisperx[380].text 在未來這幾年我們大概有十幾部機組正在興建或規劃中你要說中期短期一年中期3到5年長於10年你要做電力的規劃按照這個AI的這個產業的發展這個你我覺得這個
transcript.whisperx[381].start 10677.018
transcript.whisperx[381].end 10701.635
transcript.whisperx[381].text 電力供應我最信任你啊!是!跟委員報告齁目前能不能穩定?我們趕工中光趕工中齁已經正在興建中的機組就有包括大潭7號到9號新達的1號到3號還有台中的1號到2號這麼多部的機組正在興建中你也來動用看看沒問題!沒問題啦!中期、長期都沒問題!還有包括抓標中的還有已經通過環評還沒有通過環評的短中長期為了AI的產業發展你也來動用看看沒問題!沒問題!請回座!
transcript.whisperx[382].start 10707.64
transcript.whisperx[382].end 10717.081
transcript.whisperx[382].text 是這個建制超級電腦我們在2018這個我們誕生了台灣三對不對是那個時候我們投入多少的經費
transcript.whisperx[383].start 10720.13
transcript.whisperx[383].end 10740.951
transcript.whisperx[383].text 我跟你講你不要東張西望我跟你講4.3億啦那時候是科技部提供給這個所謂這個國網中心4.3億在2018年建立這個台灣三嘛因為台灣三是台灣特有種嘛是他那時候的這個計算能量在全球排名是多少
transcript.whisperx[384].start 10744.091
transcript.whisperx[384].end 10768.822
transcript.whisperx[384].text 因為這個是國科會的主管變成你們的業務我跟你講但是那個國網中心現在不是由數位部負責的現在他的這個計算比當時在2018年上線的時候是全球95名那這個建制的超級電腦是你的工作還是這個國華會的工作是國科會的工作國科會來請國科會
transcript.whisperx[385].start 10773.344
transcript.whisperx[385].end 10800.514
transcript.whisperx[385].text 請國科會我剛剛講的數據您知道嗎我知道你都知道喔可是我好像問錯對象了喔不好意思難怪你這個這個你現在的農量啊在2024到今年年底你要到16 petaflop對不對到明年你要到100 petaflop到2028你要200 petaflop這種的這個超級電腦的算力啊
transcript.whisperx[386].start 10801.499
transcript.whisperx[386].end 10811.936
transcript.whisperx[386].text 你在2018我們的計算能量是全球排名第95按照你的目標值你到2028才到200要投入多少經費
transcript.whisperx[387].start 10817.396
transcript.whisperx[387].end 10842.288
transcript.whisperx[387].text 跟委員大概講一個數字我們最近有看過就是如果我們採用NVIDIA最新的如果要200 petaflop的話要一百多億嘛一百三十幾億那你是告訴我這個我剛提出的數據你的目標2028要到200 petaflop那這個你要建置這個算力提升算力要增加多少預算
transcript.whisperx[388].start 10843.72
transcript.whisperx[388].end 10866.409
transcript.whisperx[388].text 就光電腦本身要一百三十幾億那當然你還要蓋Data CenterData Center裡面要有空調然後有一些其他的基礎設施那個還要另外三四十億所以加起來兩百億兩百億你到2028才提到提升到兩百Petal Flop 對不對是你那個虛擬的這個園區啊虛擬的園區本來是那個你們主委
transcript.whisperx[389].start 10871.656
transcript.whisperx[389].end 10880.285
transcript.whisperx[389].text 有說的園區是虛擬的概念嗎?那個虛擬就是基本上是在寫軟體那個是那個速發部的主則你現在生態園區是虛擬的還是實體的?這個速發部
transcript.whisperx[390].start 10884.464
transcript.whisperx[390].end 10897.876
transcript.whisperx[390].text 跟委員報告現在我們政府的那個工作職長的分工是這樣子就是說國發部國發會這邊是要負責那個有硬體跟軟體都是他們都是要負責這邊都有規劃那我們那個數發部主要是負責軟體那因為軟體產業這個特性是
transcript.whisperx[391].start 10904.102
transcript.whisperx[391].end 10930.993
transcript.whisperx[391].text 因為在上下游產業之間並沒有實體貨物的運輸而且現在軟體人才大部分都是...所以我的感覺就是說數位發展部、國科會跟國發會好像大家沒有完全整合大家工作雖然有分工但是沒有有效整合所以包括國發會的報告你的微笑曲線是失衡的 對不對
transcript.whisperx[392].start 10932.697
transcript.whisperx[392].end 10956.31
transcript.whisperx[392].text 在這個製造的部分是最底端然後這個前端的技術研發它的條件非常好但是智慧應用全球佔比是非常低的所以這部分你說智慧應用的部分這是軟體的部分軟體的部分是誰負責的軟體部分是速發部對啊你速發部速發部你要怎麼樣把目前的佔比低於1%要提升到什麼目標值
transcript.whisperx[393].start 10957.605
transcript.whisperx[393].end 10974.357
transcript.whisperx[393].text 也沒有一個目標值你現況智慧應用全球佔比是低1%嘛所以微笑體驗是不均衡的微笑嘛那你要把這微笑變得更美好的微笑不能這樣好像歪嘴巴的微笑
transcript.whisperx[394].start 10975.518
transcript.whisperx[394].end 10997.32
transcript.whisperx[394].text 你這微笑曲線你要把它提升到多少目標你這微笑曲線才會更漂亮各位委員報告我們現在有一個目標那我們原來在這個部分佔全國GDP的比重是1.2%我們希望把它成倍到2.4%的GDP那全球占比你要大概要達到多少目標如果是這樣的話全球占比也是要翻倍
transcript.whisperx[395].start 10998.311
transcript.whisperx[395].end 11023.81
transcript.whisperx[395].text 反正就是從不到1%變成2%目前的短期目標是這樣長期我們當然希望它能夠佔30%以上所以你覺得現在的微效曲線是不是一個不均衡的微效曲線目前是不均衡所以我們才要大力的讓它均衡那尤其是抓到我們可以高速成長的地方所以在軟體的部分是速發部要負責的是的我們會一起共同做我們開過兩次會議了那個
transcript.whisperx[396].start 11028.482
transcript.whisperx[396].end 11044.822
transcript.whisperx[396].text 建制超級電腦我繼續請教你剛剛說的到2028要到200 petaflop如果這個算力到2028你們達標在國際上的這個計算能力計算能量那個評比大概是多少
transcript.whisperx[397].start 11047.919
transcript.whisperx[397].end 11070.249
transcript.whisperx[397].text 我請那個國防中心主任跟您報告報告委員 這個每年都在改變 照現在來看如果有200 petaflops大概可以列到前10名以內我們本來2018是全世界95名那如果2028到你們的目標200 petaflops可以到全球前10名
transcript.whisperx[398].start 11071.219
transcript.whisperx[398].end 11085.891
transcript.whisperx[398].text 報告委員我稍微更正一下2018的時候台灣32號其實是排20名第20名是AI的MACHINE是這樣子嗎對你剛剛提的那個CPU MACHINE那你的目標2028前任到全球前10名在亞洲我們相對的這個競爭的國家比方韓國日本
transcript.whisperx[399].start 11088.527
transcript.whisperx[399].end 11109.407
transcript.whisperx[399].text 他的這方面的這個計算能量有沒有超出台灣當然 兩個國家都超過台灣日本是多少日本他是超級電腦的大國所以他其實都是可以說上千的配套化所以這200會不會太未保守我個人意見是有一點但是我們現在已經在規劃擴充當中
transcript.whisperx[400].start 11111.289
transcript.whisperx[400].end 11126.798
transcript.whisperx[400].text 所以你說你的目標就是建制超級電腦就是你的算力要提升嘛還有伺服器要增加嘛對不對你說所謂的重點就是伺服器跟這個算力那你算力他說這個市長就說這個國防中心主任就說這個太過於保守
transcript.whisperx[401].start 11127.698
transcript.whisperx[401].end 11154.298
transcript.whisperx[401].text 那為什麼不能double到400呢?是是 跟委員報告因為政府的整體的科技預算還是有限制所以我們現在做的就是也是在尋求國際廠商的合作例如我們會跟國際這些大廠他既然要來台灣生產的話他是不是也應該要協助台灣建立超級電腦我們現在是朝這一方面那如果兩相加成的話應該會超過200 超過蠻多的我覺得這個目標實在太過於保守了你最起碼要double到400你看日本有多少?
transcript.whisperx[402].start 11155.936
transcript.whisperx[402].end 11169.22
transcript.whisperx[402].text 日本現況是多少?五百到一千五百到一千?我們二零二八才到兩百欸那太過去了吧?那我們怎麼樣跟其他國家競爭呢?另外部長齁,最後這個壓軸請部長,經濟部部長我們請郭部長
transcript.whisperx[403].start 11177.95
transcript.whisperx[403].end 11203.919
transcript.whisperx[403].text 部長我完全由你的報告來跟您請教這個經濟部在建立專屬生成式AI核心技術運用在台灣的製造跟服務業這個部分什麼時候可以完成我們的計畫應該是在這個你們要建立專屬生成式的AI核心技術這核心技術是什麼東西馬上會這個計畫馬上會送出來
transcript.whisperx[404].start 11207.162
transcript.whisperx[404].end 11235.435
transcript.whisperx[404].text 那要花多少錢你們要建立這你們報告寫的我用你的報告來問你啊你要目標是要協助產業AI化產業包括傳統產業也包括中小企業對不對你要讓所有產業都能夠達到AI化所以你要建置我們自己專屬的AI核心技術那什麼時候會出來我們應該馬上今年會送出來但是我們大概要花兩億的這個預算
transcript.whisperx[405].start 11237.456
transcript.whisperx[405].end 11245.587
transcript.whisperx[405].text 兩億就可以把這個生成式的AI因為我是最底層最底層的應用工程師兩億就可以讓所有產業讓它AI化
transcript.whisperx[406].start 11247.495
transcript.whisperx[406].end 11270.477
transcript.whisperx[406].text 對 那是運用嘛 就是說一個它操作的訓練你講的還是太空泛 還是太抽象能夠更具體的把你們怎麼做 這個核心技術的內涵是什麼能夠達到預學效果 是不是可以有一個書面資料給我們然後你引進國際大廠 你目前有沒有口袋名單有有幾家目前有三家目前有三家
transcript.whisperx[407].start 11271.823
transcript.whisperx[407].end 11297.495
transcript.whisperx[407].text 那我就不問你是哪三家有時候是機密問題另外最後一頁第三頁你要說你的具體的措施要透過驗證或代小方式來普及擴散然後建立產業導入AI指引這個部分你們船上條例也要修10-1對不對讓租稅優惠能夠調整這個部分我來幫忙
transcript.whisperx[408].start 11300.882
transcript.whisperx[408].end 11320.997
transcript.whisperx[408].text 我來幫忙你加快速度把它送進來那你要怎麼樣建立這個產業導入AI的指引這個什麼時候會出來一樣我們這個應該是在這個一個月裡面應該可以把這個計畫送出來那你製造業的AI普及加速那服務業的AI有沒有可能普及
transcript.whisperx[409].start 11321.718
transcript.whisperx[409].end 11337.614
transcript.whisperx[409].text 服務業也是一樣我一直覺得你們偏重在製造業那對於就是中小企業對於這服務業這如何讓他這個產業AI化這也是很重要服務業的話我們大概會在那個scan他的那個那個
transcript.whisperx[410].start 11338.174
transcript.whisperx[410].end 11364.722
transcript.whisperx[410].text 所以一般坊間這些產業就說我們是重視製造業製造業裡面的高階或高科技產業傳統的製造業或中小型的製造業卻得不到政府的太多的關愛報告委員服務業或商業我們對盤點庫存或是銷售的都可以這個擴大宣傳讓這些中小型跟服務業知道說我們經濟部、政府幫他們做了哪些前瞻性的規劃
transcript.whisperx[411].start 11365.862
transcript.whisperx[411].end 11393.013
transcript.whisperx[411].text 跟政策的作為﹐這個要廣為宣傳是好 謝謝好 謝謝好 接下來我們請陳昌明委員請做詢答卓鑫各位委員大家好
transcript.whisperx[412].start 11394.042
transcript.whisperx[412].end 11416.58
transcript.whisperx[412].text 今天討論AI的主題臺北六月份天空都是在AI在飄我要特別深化我們的招委這個主題寫得好用詞非常精準為掌握生成式AI等關鍵的技術帶來產業的革命臺灣如何深化AI生態
transcript.whisperx[413].start 11417.765
transcript.whisperx[413].end 11446.372
transcript.whisperx[413].text 充實AI人才與產業AI化,來促動我們台灣數位的一個轉型與應用AI的人才與產業AI化,來擴展我們產業的發展打造智慧的未來這是台灣兩個未來最重要經濟參觀的一個動力站今天莊委我特別稱讚你真的寫得好最重要
transcript.whisperx[414].start 11447.52
transcript.whisperx[414].end 11458.528
transcript.whisperx[414].text 你厲害在哪裡?你把所有單位找過來不管經濟部、不管國安會、不管數位部、不管教育部、不管國安會因為我們的AI
transcript.whisperx[415].start 11461.266
transcript.whisperx[415].end 11481.571
transcript.whisperx[415].text 這個產業化發展其實真的要做幾個單位通力的合作同心協力才有辦法打造打造我們未來的AI產業那今天我第一個要詢問的是誰我們臺電的王總經理你不曉得我把你請上來我們請臺電王總經理
transcript.whisperx[416].start 11490.334
transcript.whisperx[416].end 11509.102
transcript.whisperx[416].text 黃總經理你好你好大家都很擔心缺點我曉得你壓力很大但是我認識你那麼久我相信這幾年以來你電力公司一定要有充足的電力有沒有信心有信心包括AI的一個發展
transcript.whisperx[417].start 11509.983
transcript.whisperx[417].end 11527.475
transcript.whisperx[417].text 有,我們這一部分都在盤點我們可能要用電量很大,要規劃好你不要讓我們郭部長下台,要小心、要努力、加油好不好電一定足夠,是好,你可以請回座那第一個我要來請教我們郭部長我們再請經濟部郭部長
transcript.whisperx[418].start 11533.325
transcript.whisperx[418].end 11551.708
transcript.whisperx[418].text 委員好部長好我請教一個這個比較沒有關心但是跟AI生存是未來發展有關心今天所有報紙都在講蓮花坑我們台版的晶片法案那軟體的話都為您享受到
transcript.whisperx[419].start 11553.29
transcript.whisperx[419].end 11569.684
transcript.whisperx[419].text 經變化的一個優惠尤其蓮花哥所以代表台灣的IC設計那裡面說我們的政府只種硬的不種軟的那蓮花哥出來這個代表未來你很多生存式的應用裡面跟這個有關係喔
transcript.whisperx[420].start 11571.286
transcript.whisperx[420].end 11597.774
transcript.whisperx[420].text 所以關於聯發科聯發科我們台新晶片的法案我相信要幫他解決他是台灣人之光在晶片領域裡面能跟美國幾個晶片的設計對抗的話他的成就實在不得了你要多協助你的看法是如何這部分我們會來幫忙真的要加強因為你未來
transcript.whisperx[421].start 11599.63
transcript.whisperx[421].end 11624.701
transcript.whisperx[421].text 這個AI的軟體是非常重要重要的你就又再講你說AI這個產業我們可以在台灣吃五十年所以我們的AI的產業裡面軟體你要排名變成世界第二你有沒有信心軟體排名世界第二我想我們現在在半導體來講的話
transcript.whisperx[422].start 11628.101
transcript.whisperx[422].end 11651.232
transcript.whisperx[422].text 這是你工作報告寫的不是我講的你不要忘了你可能忘了報告委員那個是工作報告裡面講的是IC設計世界第二不是IC設計IC設計美國人掌握在我們不可能說變成第二你那時的報告是講AI產業的那個生成那個應用的AI裡面的軟體
transcript.whisperx[423].start 11653.603
transcript.whisperx[423].end 11677.996
transcript.whisperx[423].text 您的策略我都趴在旁邊你講過都忘記了要檢討一下好不好好這個你可以看你的報告那個我相信你講的沒有錯AI有兩個一個半導體一個生成式的AI就是運算力非常的重要那因為生成AI完成了以後它的應用那一端也是很複雜不是我們想像那麼簡單它還有各種參數來的
transcript.whisperx[424].start 11681.496
transcript.whisperx[424].end 11700.234
transcript.whisperx[424].text 好不好,你加強努力那現在我要請我們國外委我們的劉志偉沒有問到的可以請回座我們請劉志偉我們問的話比較輕鬆部長回座指揮我給你請教一下我們行政院長的一個施政報告裡面
transcript.whisperx[425].start 11706.621
transcript.whisperx[425].end 11711.363
transcript.whisperx[425].text 你知道他說要來創新、創業、變化、創新、你知道嗎?知道,1500億,我們4年後要達到每年1500億4年後要達到每年1500億
transcript.whisperx[426].start 11719.551
transcript.whisperx[426].end 11733.895
transcript.whisperx[426].text 的創新創業投資4年要達到1500億每一年對好好有認真因為我特別看了這一段你的創新創業你說要創新創業以零生態你每一年要編1500億連續5年還是4年
transcript.whisperx[427].start 11743.258
transcript.whisperx[427].end 11754.924
transcript.whisperx[427].text 是到第四年後每一年有1500億是到第四年還是從現在開始從現在開始第四年那逐年會增加是每一年1500億還是四年1500億到了第四年的時候每一年1500億你講得很模糊我聽不懂
transcript.whisperx[428].start 11762.488
transcript.whisperx[428].end 11778.8
transcript.whisperx[428].text 是一年1500億,還是1500億?現在一年差不多700億,我們現在逐年增加,就每年多多少年多多少年?你給他依舊說的不一樣,你看他的施政報告,每年1500億,5年之內創造2萬個就業的機會
transcript.whisperx[429].start 11784.653
transcript.whisperx[429].end 11802.497
transcript.whisperx[429].text 好嗎?再談一談,把疫情給救掉,繼續為我們台灣做出貢獻,好不好?這一點很重要,我跟您請教,那個,世衛部,我來請回座,世衛部是誰?
transcript.whisperx[430].start 11814.813
transcript.whisperx[430].end 11826.767
transcript.whisperx[430].text 現在可能跟你們國外會跟經濟部有關係剛剛你們講如果要開發一個生成式的AI剛剛我是聽到哪一個部大概講說200億台幣
transcript.whisperx[431].start 11830.637
transcript.whisperx[431].end 11858.686
transcript.whisperx[431].text 報告委員,如果要做那個大型語言模型的話要開發一個生成式AI大型語言模型的話一千億台幣大概都不夠你是衛部的處長,你講的就實在所以你講的那幾百億台幣,那個人手是AI主權台灣既然是要做成AI生態關鍵的一個地區你曉得,一個生成式的AI
transcript.whisperx[432].start 11860.694
transcript.whisperx[432].end 11887.564
transcript.whisperx[432].text 要做到像美國的輝達、微軟、Google、臉書的話還有OpenAI你曉得最起碼多少起跳50億美金起跳那還是普通的如果要做好了好大概100億美金所以我現在跟國安會主委、經濟部長這個是基本的所以要投資很大你要當為一個關鍵核心要帶動台灣的經濟成長
transcript.whisperx[433].start 11890.387
transcript.whisperx[433].end 11917.065
transcript.whisperx[433].text 不要那麼小氣你去看他們我得到資訊最少50億美金做得好百億美金台灣要把這個起碼錢要花下去當為你一個訓練的中心我們有國際的水準不然你會被那幾個大公司控制死掉台灣永遠掌握在人家的手中也不能達成像我們經濟部長不是IC軟體
transcript.whisperx[434].start 11918.862
transcript.whisperx[434].end 11945.429
transcript.whisperx[434].text 你的報告裡面是講關於AI未來的軟體裡面我們要進出我們不好意思搶美國但是你說排名第二我覺得你這個策略也是對的所以各位官員你們這幾個部最起碼50億起跳做得好要100億美金我是告訴大家不是我們想像的那麼容易好不好
transcript.whisperx[435].start 11948.29
transcript.whisperx[435].end 11964.228
transcript.whisperx[435].text 請回座今天討論到很多的AIAI的人才非常的重要現在你們真的我相信部長你在產業界都了解
transcript.whisperx[436].start 11965.599
transcript.whisperx[436].end 11988.638
transcript.whisperx[436].text 那個劉子瑞你也都了解那美國大公司來那個薪水非常的高啊!咱台灣出名啊!咱是為人做家咧!講到台灣人是打工的咧!咱這裡知道這大公司來當然它的研發信息設在台灣我們都非常歡迎但是人才一定要教育
transcript.whisperx[437].start 11990.021
transcript.whisperx[437].end 12017.04
transcript.whisperx[437].text 這個人才培養非常的重要像以前的QICOM我們7億美金本來要賠償的單位投資來他把薪水拉的高其他台積電我講了一次台積電去到他研發科的研發科的就開始他所有那些IC設計軟體產業一定造成這樣不要把台灣電工力很高跟世界每一個國家要合作
transcript.whisperx[438].start 12017.961
transcript.whisperx[438].end 12040.502
transcript.whisperx[438].text 你被掏空都不曉得啊所謂台灣的人才自己培養、自己用不要說此材什麼用啊經用還是經用此材你們不要有這種想法這個是降生的世界啊我們好不容易訓練這麼多的人才出來怎麼隨隨便便可以流出去啊我希望你們特別注意
transcript.whisperx[439].start 12042.011
transcript.whisperx[439].end 12068.193
transcript.whisperx[439].text 再來要運用外來的人才暫時我們所得稅那大概都超過五百萬以上的現在你看Amelia在招人都起碼幾百萬台幣以上五百萬的很多阿你扣稅40%所以這個地方特別注意一下人才如何跟國際交流都加強一下因為這個都是要硬算力的人才非常非常的重要謝謝謝謝
transcript.whisperx[440].start 12072.21
transcript.whisperx[440].end 12084.795
transcript.whisperx[440].text 謝謝我們陳昌明委員貼心的提醒謝謝接下來我們請賴瑞榮委員請做詢答那麼我們中午不休息一直到今天會議結束謝謝請發言好 謝謝昭偉我先請那個劉朱偉跟郭部長我們請兩位
transcript.whisperx[441].start 12093.515
transcript.whisperx[441].end 12119.31
transcript.whisperx[441].text 主委跟部長辛苦了總統其實在6月4號的臺北國際電腦展其實有提到未來的三大的發展策略是把台灣打造成AI島我先請教兩位國務部長就是AI這件事情其實經濟部也做了相當長一段時間那現在投入多少資源未來一定要投入多少資源來爭取讓台灣成為AI島甚至更多的國際大廠來到台灣來投資
transcript.whisperx[442].start 12121.216
transcript.whisperx[442].end 12141.879
transcript.whisperx[442].text 報告委員我們現在就是積極的在對國外的大廠來請他們來台灣投資那麼研發中心或者數據中心那剛才我想順便在這邊補充一下我們在邀請國際大廠來台灣的時候因為我們現在的人才就可能剛才陳委員他在講的
transcript.whisperx[443].start 12143.46
transcript.whisperx[443].end 12167.241
transcript.whisperx[443].text 就是怕擔心這樣子所以我們現在改變改變的就是說他要來台灣如果每一家公司要1000位人才我們都希望他帶進50%的人才進來這部分都是由我自己在溝通所以我們現在目前大概談了三家就是要來台灣設數據中心的那麼他應該是不會發生來我們台灣搶人才的這個現象
transcript.whisperx[444].start 12168.382
transcript.whisperx[444].end 12197.322
transcript.whisperx[444].text 哪三家可以講嗎這個是保密那個可不可以請司長也補充一下吧我們過去來花的錢跟未來一定要投入的錢好不好我們應該花了相當多的經費了啦司長要不要補充一下我們如果是連包含外商補助的錢的話幫一些技術的一些研發外商的一些補助的話超過100億以上超過100億了啦包括所以現在在進行當中不管是輝達或是AMD都是啦政府都投入了錢
transcript.whisperx[445].start 12197.882
transcript.whisperx[445].end 12221.238
transcript.whisperx[445].text 就像當年在半導體產業我們也投入相當多的資源然後引進來台灣這個也在做部長我也希望未來持續好不好就是說一方面當然是國家資源但我們希望把AI島建立起來的話就需要投入更多的資源我們希望這個持續來進行那再來問一下國發會主委好不好國發會未來我們再請主委主委對包括國發基金包括一定要投入多少資源來做這件事情
transcript.whisperx[446].start 12222.319
transcript.whisperx[446].end 12242.511
transcript.whisperx[446].text 國家基金目前我們是已經同意目前是同意速發部我們投入第一個是100億的創業創新基金專門給AI的部分那另外其實我們另外之前有有Funding這個經濟部大概100億那現在用了7億還有90多億所以投入200億的一個
transcript.whisperx[447].start 12243.912
transcript.whisperx[447].end 12264.143
transcript.whisperx[447].text 之外我們今年也匡列國發基金的投資可以有到188億所以這些都可以拿來運用那其中專注AI的至少有100億如果我們要落實這樣的AI導的概念的話事實上當然政府的投入重要的然後看國發基金還有報告基金或相關資源都是重要的一環我們希望來整個匡列出來
transcript.whisperx[448].start 12265.484
transcript.whisperx[448].end 12279.974
transcript.whisperx[448].text 那我要提醒的是這個到現在為止其實全台灣當然是不缺電但是其實北部電力上是有缺口的電力上有缺口南部的在如果沒有更新那個統計其實有470萬的一個缺口北部
transcript.whisperx[449].start 12281.475
transcript.whisperx[449].end 12304.097
transcript.whisperx[449].text 臺灣的南部的部分,高雄是有,我也講過很多次,高雄用電60%,40%是中宋北宋那現在還在,包括新達跟大嶺燃氣機組都還在興建那我要講的是說,就是不斷的提醒這件事情,區域均衡發展上不要讓南部在電力上面不斷的供應的同時的時候,產業的聚落都形成在北部
transcript.whisperx[450].start 12304.858
transcript.whisperx[450].end 12326.638
transcript.whisperx[450].text 所以現在包括大家在談的很多不管是從輝達或者是AMD的部分都在談的這個研發中心的投資的時候那我們希望這些思考不要比如說像輝達現在傳起來有可能大家考慮的點是臺北、台南、高雄但我們希望他能夠更清楚的知道我剛剛講到政府其實是有給予補助
transcript.whisperx[451].start 12328.959
transcript.whisperx[451].end 12353.505
transcript.whisperx[451].text 這個補貼的那我們希望這樣在引導的過程中也要不斷讓他們知道說一方面政府希望南北兩大核心的發展這個AI生態系統是應該南北聚落多去完成它這個才是北部相對容易完成但是南部會比較辛苦一點但是也就是因為這樣而政府要施加一些力道包括電力的部分當南部這麼充分供應電力說AI也是相當耗掉相當多的電力的時候那更應該往
transcript.whisperx[452].start 12354.825
transcript.whisperx[452].end 12377.73
transcript.whisperx[452].text 南部來移動。」我先問一下部長同意這樣的看法嗎?報告委員 我想我們經濟部的立場就是所有的外商要來台灣我們都歡迎到達哪一個城市我們尊重他的選擇不過我在這邊跟委員報告廠商他在選擇的時候不會只考慮水跟電他考慮的是他可以找到多少人
transcript.whisperx[453].start 12378.672
transcript.whisperx[453].end 12404.686
transcript.whisperx[453].text 所以水、電、人才包括場地都是重要的一些句對但是這個東西一定要不斷的長期的去做如果我們不有意識去處理的話所有的東西基本北部的聚落是容易形成的所以我還講的是既然國家有資源下去的時候南部的聚落也形成的時候但我會請蘇發波為什麼我們現在講南北兩大AI的聚落也就是這樣希望他能夠有一個形成好的一個聚落的方式
transcript.whisperx[454].start 12405.126
transcript.whisperx[454].end 12431.339
transcript.whisperx[454].text 那如果只是順著所有的話那基本上你可以預期基本上多數都會在台北所以我還希望說這件事情部長要很有意識的那我也知道現在經濟部有一些計畫在進行當中我也希望部長能夠承諾既有進行的計畫不要去改變跟影響到好嗎我們不會去影響既有進行的計畫進行這種計畫務必要去落實來完成是的好那接下來要請教一下主委因為時間非常有限
transcript.whisperx[455].start 12432.279
transcript.whisperx[455].end 12446.68
transcript.whisperx[455].text 主委認同我這樣的看法嗎就國發基金的投入之後我也希望南北兩大那我知道現在國發會跟數發部有在進行一些南北的這個AI的生態系統AI生態園區的這樣的一個概念
transcript.whisperx[456].start 12448.482
transcript.whisperx[456].end 12467.694
transcript.whisperx[456].text 主委,朝這個方向來規劃,讓實體園區讓南北形成兩大聚落,主委同意這樣的看法嗎?是的,均衡台灣是總統的政策,所以我們會落實這個政策實體園區其實是個政策嘛,我要講啦,當時我知道有一些壓力之後又變成虛擬,如果走為虛擬的話,那其實就是空的嘛
transcript.whisperx[457].start 12468.334
transcript.whisperx[457].end 12488.05
transcript.whisperx[457].text 其實它一定要是實體而且台灣的兩大聚落必然是南北兩大聚落北部以台北為核心包括到新竹這一塊一定是一個聚落南部一定是以高雄跟台南為核心的一個聚落而現在不管是從亞灣或者是台南的這個南科的園區等等其實都看得出來其實已經有聚落形成了包括
transcript.whisperx[458].start 12489.271
transcript.whisperx[458].end 12506.925
transcript.whisperx[458].text 臺積電的一個進駐等我認為那個聚落已經形成那現在是要政府更加大那個力道那我也希望在實體園區的部分國發會未來能夠大力支持這個實體園區南北兩大聚落完成主委可以嗎?可以可以好 這個請主委那個啦好 兩位請坐我接下來請教一下速發部好嗎?副主委啦請回座我們請速發部
transcript.whisperx[459].start 12513.756
transcript.whisperx[459].end 12538.699
transcript.whisperx[459].text 次長請教一下現在的這個南北的AI生態園區的規劃的方向目前是怎麼樣就如同剛才郭部長所講的其實我們在發展科技的時候最重要是人才對於軟體業來講尤其是這樣子那軟體業的主要的對於那個廠商的設廠的那個應該說設公司主要的考量不是在土地跟廠房而是在於人才
transcript.whisperx[460].start 12539.259
transcript.whisperx[460].end 12553.845
transcript.whisperx[460].text 而人才總是會選擇他覺得最好的地方他最想住的地方去居住我們看美國的那個軟體產業的興起其實也是走這條路那至於說這個聚落的形成我請教一下南北的AI生態園區的設施這個持續在進行當中嗎什麼時候會把它規劃出來
transcript.whisperx[461].start 12559.059
transcript.whisperx[461].end 12585.018
transcript.whisperx[461].text 跟委員報告因為我們的數發部負責的是軟體那軟體的尤其軟體產業這個地方我們並目前重點是在於生態而不在於園區那國發會這邊會有整體考量因為國發會這邊會那這件事情是由數發部主導還是由國發會來主導就是如果包含硬體的話是由國發部主導如果是單單軟體的部分的話是由數發部來主導那是由誰整體的總的規劃是由誰來他一定有一個還是主委講一下好了好不好
transcript.whisperx[462].start 12590.245
transcript.whisperx[462].end 12608.777
transcript.whisperx[462].text 整體總的部分我們現在正在是我們這邊在主導那整個均衡在北、中、南都會我希望規劃出來的方案給我們一份參考好不好那我也希望國發基金再大力支持這樣的一個計畫好的再不影響那個保密原則我們會送過去好
transcript.whisperx[463].start 12610.178
transcript.whisperx[463].end 12627.136
transcript.whisperx[463].text 然後再來我也要提醒其實我們現在的包括半導體學院這個不管是中山大學的甚至清大包括陽明交大的部分其實都在高雄也設置了這些半導體學院我覺得善加運用這樣的一個優勢
transcript.whisperx[464].start 12628.217
transcript.whisperx[464].end 12648.613
transcript.whisperx[464].text 那我要講的是其實人才的聚落其實一定是不斷的政府有刻意去引導教育部的次長在這邊我也希望持續的支持南部的這個人才的一個養成的部分不要讓南部永遠只是作為工業不管是電力或者是石化或者是這個港口所需的東西都不斷的供應而已但是在於
transcript.whisperx[465].start 12649.874
transcript.whisperx[465].end 12673.968
transcript.whisperx[465].text 新產業的形成或人才聚落的形成的時候反倒缺乏力道我認為那個對於整個南北的均衡發展是不利的我希望這件事情國發會主委還有各位部長、次長要不斷地放在心上我認為這個才是執政的一個重要的價值位置都會來來去去但是未來怎麼樣讓台灣留下一個均衡發展讓人才能夠留在每個地方事才事所的發展我認為這個才是執政上最重要的價值
transcript.whisperx[466].start 12674.688
transcript.whisperx[466].end 12703.2
transcript.whisperx[466].text 好不好 與各位共勉啦好 謝謝我們一定會在北中發展均衡還好主委你講北中南我剛才聽了心驚膽跳一直南北南北AI生態園區我們台中跟南跟北都一樣都符合最好的條件北中南才能夠均衡還好你講到這一點好 因為你有答應我台中一定要納入 謝謝接下來我們請賴司保委員請做詢問 謝謝
transcript.whisperx[467].start 12709.797
transcript.whisperx[467].end 12715.861
transcript.whisperx[467].text 謝謝主席一切各位先進有請經濟部長、郭部長我們再請郭部長委員好部長你好你上台之後不斷地說不缺電不缺電我就給你看一張圖這是台電的圖備轉容量
transcript.whisperx[468].start 12740.748
transcript.whisperx[468].end 12751.314
transcript.whisperx[468].text 在過去已經有7天低於10%了最近的6月9號今天是6月12號6月9號備轉容量9.49備轉容量284.5萬千瓦
transcript.whisperx[469].start 12764.983
transcript.whisperx[469].end 12776.25
transcript.whisperx[469].text 夏天還沒有到勒前幾天我們梅雨季節天氣很涼快用電來掃勒你已經有7次低於10%我就問你你說不確定那為什麼你們對台塑的賣鳥一號機還要給它延長一年勒
transcript.whisperx[470].start 12789.997
transcript.whisperx[470].end 12802.586
transcript.whisperx[470].text 他是藍美的他把他蓋成藍氣體的結果你們就是怕沒電60萬、千萬趕快賣掉再延一年到明年底你要不要回答一下報告委員這個低於10%大概就是這麼一次
transcript.whisperx[471].start 12810.68
transcript.whisperx[471].end 12833.477
transcript.whisperx[471].text 那我們的意思就是說這個在10%左右這個因為還可以容許幾個機組他如果有狀況的時候這個是這個這些備載的狀況這樣所以應該不至於在這個情況之下會跳馬上夏天喔夏天日和現在超過30度喔來我就納悶了納得悶了部長聽好喔
transcript.whisperx[472].start 12840.373
transcript.whisperx[472].end 12850.28
transcript.whisperx[472].text 河山廠的1號機裝置容量有多少?你告訴我台電應該知道,打發試一下98萬千萬我這裡數字95萬,將近100萬這個東西我們法都給你改了讓你可以申請不要前面5年結果你後來丟棄了你原來講河河山修完完畢以後就可以
transcript.whisperx[473].start 12867.363
transcript.whisperx[473].end 12867.383
transcript.whisperx[473].text 演繹
transcript.whisperx[474].start 12898.359
transcript.whisperx[474].end 12923.329
transcript.whisperx[474].text 你還有意思說你希望能夠做滿四年你知道哪一個經濟部長做滿四年你告訴我我是回答說一個任期是四年你查一查那跟院長一齊院長沒有做過四年的除了蘇貞昌第二次會過過去從2000年以後的院長有的一年多賴清德兩年左右
transcript.whisperx[475].start 12924.4
transcript.whisperx[475].end 12938.412
transcript.whisperx[475].text 跟院長一起的啊這個啊,你講這個話要坐滿四年有一點類似喔這句話沒有很老聽啦但是我的感覺就這樣我的feel就這樣叫青蛙打哈欠好大的口氣你知道嗎跟著院長走啊院長沒有四年的除了蘇貞昌是很奇怪的剛好這樣讓他轉告幾乎沒有四年的有的一年有的兩年
transcript.whisperx[476].start 12953.356
transcript.whisperx[476].end 12979.893
transcript.whisperx[476].text 跟著院長走你說你要做四年這代表你也不進入狀況然後你現在我們感覺到是SRF你怎麼突然又發一個可以推薦函呢你們可能又發給桃園那三家可以進推進這個推進它進桃園觀音呢桃殼呢為什麼你要發我請教你為什麼你要發
transcript.whisperx[477].start 12981.093
transcript.whisperx[477].end 12995.945
transcript.whisperx[477].text 這一部分我們不是主管單位桃園才是主管單位你還被罰了我沒有罰我們只是他來這個場來訴願然後我們透過訴願委員會然後把他退回去這樣他是訴願委員會決定的不是經濟部決定的
transcript.whisperx[478].start 13008.57
transcript.whisperx[478].end 13031.923
transcript.whisperx[478].text 書院委員就是你經濟部的底下的沒有沒有沒有那個報告委員這個書院委員會一共有11位委員其實底下都是經濟部的官員沒有經濟部的官員只有兩位其他的九位是外面的學者跟專家主要是你們主導我跟你講我們的立法委員國民黨的立法委員有一個將軍陳永康上將他推了
transcript.whisperx[479].start 13037.301
transcript.whisperx[479].end 13061.458
transcript.whisperx[479].text 兵推他講了一個概念不要再擔心老共打我們能夠撐多久啊什麼之類的重要是一打仗台灣能不能撐電能不能撐兩天48小時醫療能不能撐48小時我就去詢問你我發現國安局長問了他說你才有答案能不能撐48小時就打仗的時候撐48小時供電無虞請你回答
transcript.whisperx[480].start 13065.325
transcript.whisperx[480].end 13087.646
transcript.whisperx[480].text 這一部分我不是專家我沒有幫我回答打仗的時候打仗的時候打仗的時候我想這個是由國家調度的不是經濟部可以調度的我剛才去國安局局長問他說經濟部管的要經濟部長回答所以我來這裡問你那這個如果以電網的韌性我們是可以的
transcript.whisperx[481].start 13089.468
transcript.whisperx[481].end 13117.587
transcript.whisperx[481].text 兩48小時撐得住是撐得住是因為電很重要喔電如果撐不住的話你醫療就有問題血漿就有問題冷鏈就有問題沒有問題你參加過兵推沒有兵推沒有沒有有機會參加兵推請你特別注意這一關現在大家都覺得說兩岸打仗怎麼樣其實兩岸打仗電最重要電的韌性電最重要我
transcript.whisperx[482].start 13119.202
transcript.whisperx[482].end 13142.015
transcript.whisperx[482].text 這是臺電董事館告訴你的啦我請你回去study一下好好做功課啦不要張大口下做死年如果你這樣子完全沒有自己的一個mindset然後隨波逐流這樣你是做不死的啦真的我都覺得你shake it shake it好好加油吧謝謝委員
transcript.whisperx[483].start 13144.677
transcript.whisperx[483].end 13155.467
transcript.whisperx[483].text 剛剛賴司保委員講的是推薦文你們回答的是蘇院委員會的結果所以雞同鴨講還是要給賴司保委員說明清楚 謝謝接下來我們請鍾嘉斌委員請做詢答10分鐘 謝謝
transcript.whisperx[484].start 13167.25
transcript.whisperx[484].end 13173.859
transcript.whisperx[484].text 主席、在場的委員先進、列席的正午江蘇黨官員、會場工作夥伴、媒體記者女士先生有請我們國發會劉主委和經濟部郭部長請兩位 謝謝
transcript.whisperx[485].start 13181.704
transcript.whisperx[485].end 13201.888
transcript.whisperx[485].text 主委好部長好來先請教部長部長最近你很紅我們提到AI它的應用跟生產耗能大不只它的製造它的硬體的運作跟冷卻用電需求量很大那這裡有一個綠色的民主制指出我們台灣到2023的工業耗電佔了55%那到了這個台積電它的半耗力產業到2021年到2030年要增加兩倍多是不是這樣子
transcript.whisperx[486].start 13210.168
transcript.whisperx[486].end 13238.759
transcript.whisperx[486].text 那這麼大的數量我們來看一下當然是這麼多的半導體產業台積電要蓋7座3奈米預估到2030年台積電用電占全台六分之一經濟部有把握嗎有有把握好那你還告訴他一個好消息因為這個各縣市首長都在搶回答你說沒有關係沒有關係2030年至少還有10座的資料中心要建置對不對大家趕快去分那請問一下這10座資料中心耗不耗能用不用電
transcript.whisperx[487].start 13239.907
transcript.whisperx[487].end 13259.57
transcript.whisperx[487].text 耗能與用電那好 那請教一下那就是為了滿足未來半導體製造還有人工智慧的硬體運作及冷卻需求你們有對未來的用電需求做了評估了嗎有那也知道要怎麼樣去把目前的供電提高到未來的滿足對未來的需求有做了一個計畫了嗎有做這樣的這個假設了好 那我就開始來問一下了
transcript.whisperx[488].start 13260.771
transcript.whisperx[488].end 13286.038
transcript.whisperx[488].text 2030年您是說不會缺電除非明年起AI用電暴增我這個不太清楚去年我們國家台灣大概用了2821度多的電那其中的再生能源占了大概267億多大概占比大概9%是這樣子那請問到了2030年你預估台灣的用電需求要多少2030年台灣需要用到多少電我聽說是3400億度是這樣嗎
transcript.whisperx[489].start 13288.96
transcript.whisperx[489].end 13313.699
transcript.whisperx[489].text 數字正確吧是那這當中的綠電要多少綠電需求我們的規劃是30%30%大概就是408億度的電好那從不到300億度要增大到400億度那怎麼來呢我們往下看那目前國際企業要求RE100供應內要100%的綠能那這其中的綠能有1、2、3、4、5你覺得台灣都有具備嗎
transcript.whisperx[490].start 13316.041
transcript.whisperx[490].end 13324.624
transcript.whisperx[490].text 目前生智能是比較少的有潛力風光不錯水利在發展當中那有包含核電嗎
transcript.whisperx[491].start 13326.94
transcript.whisperx[491].end 13354.69
transcript.whisperx[491].text R100R100沒有包含所以其實大家要去關心的未來因應台灣的產業的外銷需求我們需要的綠電不包含核電英文過第三次了接下來那請問你估計國際企業在台灣建制數據中心及高科技產業的廠商要合乎R100的再生能源需求未來的綠電供應足夠了嗎你如何來提高這些綠電滿足他們的需求報告委員經過我們的盤算是足夠的足夠那有什麼手段嗎
transcript.whisperx[492].start 13356.311
transcript.whisperx[492].end 13376.415
transcript.whisperx[492].text 我們會把綠電需求的廠商我們就給他綠電那不需要綠電的廠商我們就給他其他的綠電綠電不夠賣目前那要買綠電買不到那目前有一個說法說1000度的綠電被台階拿走900度了中小企業買不到為什麼
transcript.whisperx[493].start 13378.335
transcript.whisperx[493].end 13405.581
transcript.whisperx[493].text 這是在過去啦那報告委員這是我來了以後我們現在馬上要成立一個綠電平台是所以我想這些中小企業都買得到好 那我們來往下看其實呢大廠購電的合約可以讓風光業者、風電業者去融資這您知道吧目前光電、風電它需要很大的融資嘛是所以這些購電契約它可能要用專業融資你知道為什麼中小企業拿不到這個購電契約嗎因為銀行不同意貸款那怎麼解決
transcript.whisperx[494].start 13408.638
transcript.whisperx[494].end 13421.013
transcript.whisperx[494].text 我封電廠我要跟銀行融資嘛我拿上市會公司購電契約我可以拿去做專案融資中小企業來跟我買電打的契約沒有用怎麼辦這部分我想我們經濟部會來處理我想我們會給他一些
transcript.whisperx[495].start 13425.799
transcript.whisperx[495].end 13444.711
transcript.whisperx[495].text 他可以他也可以賣給我們會可能會去撮合一下所以你們希望用電價分級的方式來處理是這個目的嗎是最近就是說你們就買綠電、一般電、低碳電分開來需要綠電的去買你中小企業就算沒有辦法去跟風電業者取得購電契約你都可以透過這個平台來購買是不是這樣意思是的
transcript.whisperx[496].start 13445.171
transcript.whisperx[496].end 13472.194
transcript.whisperx[496].text 好 那就要明白的說出來 不然大家搞不清楚為什麼店家要分級是看我家的用電多寡還是用什麼方式好 往下看所以現在來請教我們國發會的主委我們風光發電機的建設性我們供應機載用電是不是要輕能輕能是我們的一部分一部分 儲能的部分輕能很重要對好 那你目前台灣的輕能除了儲能之外還有待發展的空間各部會怎麼去做
transcript.whisperx[497].start 13474.637
transcript.whisperx[497].end 13494.334
transcript.whisperx[497].text 我們目前除了這個儲能的部分以外我們其實跟中研院現在也會跟他有一些計畫做來練習的發展那另外其實我們最近也在探尋地熱因為菲律賓就已經有一點多Gigawatt已經在運轉的地熱所以這些都是多元力的人是我們現在在探尋的方向
transcript.whisperx[498].start 13494.534
transcript.whisperx[498].end 13518.588
transcript.whisperx[498].text 您說得很好,多元力能這是我搜尋到的上一頁包括電解海水去置氫包括把天然氣轉成綠氫或藍綠氫以及我們要燃料電池要來作為我們的儲能設備很重要的一個基礎,是不是這樣?是的所以國科也要盤點這些技術了,是嗎?是的好,最後所以未來氫能的發展和技術補助要從基礎設施切入有沒有大幅的擴大民生需求有沒有具體的計畫?
transcript.whisperx[499].start 13520.169
transcript.whisperx[499].end 13537.279
transcript.whisperx[499].text 目前我們這個部分因為它的成本比較高我們還是在實驗階段但是只是預備否未來比較長期的發展好 最後再請郭部長請經濟部能夠盤點未來國際企業及台廠需求就符合R1-100再生能源供給是否足夠
transcript.whisperx[500].start 13537.859
transcript.whisperx[500].end 13562.398
transcript.whisperx[500].text 提出一個符合R100增增能源的商業模式評估。」可以嗎?可以就是商業模式我剛剛講到了小企業買不到電你有商業模式怎麼樣讓他買得到綠電第二個請國發會研議未達成2050淨零碳…對不起淨寫錯了能源結構的轉化行政院推動汽能產業的部會分工部會有分工可以提出來評估後給本席嗎?好沒問題好謝謝部長謝謝主委謝謝主席謝謝
transcript.whisperx[501].start 13565.492
transcript.whisperx[501].end 13573.018
transcript.whisperx[501].text 接下來我們請張智倫委員、張智倫、張智倫委員我們請陳沛宇委員請發言10分鐘 謝謝4分鐘喔4分鐘好 謝謝主席有請國發會主委還有經濟部長 謝謝主席我感覺我身分清曉好
transcript.whisperx[502].start 13591.279
transcript.whisperx[502].end 13615.892
transcript.whisperx[502].text 請兩位謝謝那部長好那主委好部長我之前已經跟您請教過關於中小企業的部分那我今天要繼續針對中小企業在AI這個面向要拜託國發會跟經濟部在你們所有所有人都只提到黃仁勛所有人都提到Supermicro的時候大家不要忘記了台灣的經濟主力是所有的中小企業這件事情我相信部長跟主委一定有放在心上對嗎
transcript.whisperx[503].start 13617.827
transcript.whisperx[503].end 13646.229
transcript.whisperx[503].text 在賴總統的競選政見當中他有特別提到一定要在走向人工智慧島上的這個路上不要忘記台灣的傳統產業還有相關的服務業所以今天我雖然只有4分鐘但是我想要快速跟兩位請教在你們日後的政策規劃當中或是眼前已經在分配的資源當中是不是有協助到中小企業深化AI生態系還有相關AI轉型這件事情不要讓中小企業在這整個
transcript.whisperx[504].start 13647.11
transcript.whisperx[504].end 13669.066
transcript.whisperx[504].text 在這個浪潮當中他們已經開始感到恐懼跟焦慮不知道政府將即將如何協助他們好嗎來下一頁我想要談的是傳統產業有非常多的樣態而且樣態上他們所需要的AI的協助截然的不同但是經濟部跟國發會你們在盤點相關政策跟資源的時候目前是不是已經開啟跟相關中小企業或是傳統產業的團體對話了呢已經開始了嗎
transcript.whisperx[505].start 13672.649
transcript.whisperx[505].end 13677.319
transcript.whisperx[505].text 還是只有跟所謂的大廠、大公司、國際大廠碰過面?」我想要積極地問一下
transcript.whisperx[506].start 13679.772
transcript.whisperx[506].end 13706.606
transcript.whisperx[506].text 我們這邊是有跟一些中南部的業者開始在溝通了解他們的需求這個是中南部的業者嗎?可能是單一?都是中小企業這個我覺得沒有問題主要是均衡台灣是總統政策包含產業的均衡所以我們對中小企業目前是有在明確的規劃但是聽起來好像沒有更具體的東西那經濟部這邊呢?報告委員經濟部這邊是先了解這些業者他們的需求
transcript.whisperx[507].start 13707.466
transcript.whisperx[507].end 13715.752
transcript.whisperx[507].text 那因為這個智慧化、智能化我想我們瞭解他的需求我才會針對他們的需求下去講那我們就離開科技我們來回到所謂傳統產業或者是服務產業這件事情那我就先講出結論好了我希望經濟部跟國發會必須要積極
transcript.whisperx[508].start 13727.099
transcript.whisperx[508].end 13740.676
transcript.whisperx[508].text 整合你們必須要一起去想如何促進在地產業升級因為這也可以積極協助他們缺工的問題我相信兩位來自業界一定非常清楚傳統產業面臨缺工的困境最後提供策略性的協助我就先講結論我們辦公室之後會積極跟國發會和經濟部討論
transcript.whisperx[509].start 13743.839
transcript.whisperx[509].end 13772.268
transcript.whisperx[509].text 這個相關的Discovery紀錄片裡面談到台灣的創新能量非常的強他們表現在智慧機械上這件事情我相信你們來自產業一定明白那目前的困境就是台灣這些中小企業有沒有辦法承擔支付這樣的研發經費或者是他們有沒有辦法找到相關的研究單位協助他們去客製化他們的需求我相信一定有困境那例如說我時間有限我就不再舉例我以我在教育文化委員會最理解我們之前在推動的一個法案就是營養午餐法
transcript.whisperx[510].start 13773.588
transcript.whisperx[510].end 13788.682
transcript.whisperx[510].text 營養午餐產業大量的缺工而且很多中年的或者是已經靠近60歲70歲的很多阿姨還有叔叔伯伯在現場他們要搬運他們要煮食然後他們有非常多細緻的工作有沒有機會透過協作機器人去解決
transcript.whisperx[511].start 13789.162
transcript.whisperx[511].end 13815.018
transcript.whisperx[511].text 我相信是有的台灣也有很多產業我們就不一一點名這些公司我想你們都非常清楚所以我要說有沒有機會你們真的針對不同業種的需求去理解他們去傾聽他們甚至幫他們找到適當的資源因為你們要跟大公司對話真的非常非常容易可是我們非常多中小企業的團體跟朋友如同您說的在中南部的很多業者我相信他們現在非常非常的焦慮那我就不再一一舉例了我想要問
transcript.whisperx[512].start 13815.618
transcript.whisperx[512].end 13844.398
transcript.whisperx[512].text 目前我們可以提供給他們的我覺得是技術上他們非常不熟悉相關技術還有相關的成本他們到底要花出多少錢能夠得到多少效益他們也是沒有把握的所以我這邊想要拜託國發會跟經濟部可不可以協助他們在三個部分一個是專業的顧問服務第二個是經費補助第三個是我們有沒有機會協助他們產業升級創新發展讓他們持續在台灣這個島上做自己喜歡而且做自己擅長的中小企業這件事情不要被AI的浪潮甩在後面
transcript.whisperx[513].start 13845.829
transcript.whisperx[513].end 13872.455
transcript.whisperx[513].text 謝謝委員的這個方向指導 謝謝所以你要不要多說一點就是我們會按照這樣的去做好 那我相信相關的政策我們日後會有機會再討論那國發會這邊呢剛剛在不同的委員的質詢當中你們提到有100億、100億、188億有非常多的經費都已經開始要動用下去了那在中小企業相關AI產業升級人才這些照顧上呢
transcript.whisperx[514].start 13873.648
transcript.whisperx[514].end 13892.873
transcript.whisperx[514].text 這個部分我們也會來強化再跟委員回覆好,我們希望有沒有機會在一個月內我們跟國發會跟經濟部開啟相關會議跟討論有機會在一個月內嗎?一個月應該可以可以,國發會可以,那經濟部呢?可以好,可以,謝謝,謝謝主席,謝謝部長跟主委,謝謝好,謝謝接下來我們請林一錦委員請做詢問
transcript.whisperx[515].start 13908.135
transcript.whisperx[515].end 13916
transcript.whisperx[515].text 謝謝主席 有請國發會劉主委、經濟部郭部長、國科會林副主委、教育部葉次長好 請以上四位
transcript.whisperx[516].start 13920.762
transcript.whisperx[516].end 13941.552
transcript.whisperx[516].text 我們台灣需要民主AI的創新需要在AI的使用上牢記民主自由不歧視、不侵犯他人人格權的精神這是昨天卓榮泰院長在院會答詢的時候對我國AI發展期許的回答本席今天想在經濟委員會中強調我國在AI產業的發展除了產業聚落的群聚效應
transcript.whisperx[517].start 13947.295
transcript.whisperx[517].end 13976.073
transcript.whisperx[517].text 以外以及技術持續的提升.我想必須要留意的就是開發者以及使用者的人文社科素養要發展以人為本的AI本席上週在教育委員會質詢國科會的時候就提醒國科會在Tide的生成式AI對話引擎的時候要避免歧視跟偏見的出現並且要在AI監管的法制作業上建立
transcript.whisperx[518].start 13976.693
transcript.whisperx[518].end 13995.062
transcript.whisperx[518].text 好智慧財產權的完善保護.既然智慧財產權的業務是經濟部主管.那就要請問部長.AI生成的創作.在智慧財產權的保護上.有什麼需要法規補強的部分.或者說哪些情況.又不應該落入智慧財產權的保護的範疇呢.部長
transcript.whisperx[519].start 13998.492
transcript.whisperx[519].end 14024.193
transcript.whisperx[519].text 這部分的話我想我們會研擬我目前是沒有收到這方面的關心所以我想我們會回去以後會來討論這件事情再給委員一個報告包括入納入智慧財產權法規的補強跟哪些範疇是不用的好那我想這幾週AI的旋風席捲了全台那不少委員都希望AI的產業園區能在各自委員的有
transcript.whisperx[520].start 14024.893
transcript.whisperx[520].end 14045.178
transcript.whisperx[520].text 有擁有科學園區的城市裡頭在這裡我也想給予經濟部長跟國發會的主委一些建議目前擴建中的南科三期臺南市政府目前有發布新聞稿指出我們這個地方都市機能、交通建設、水電的供應都非常的充分、無虞
transcript.whisperx[521].start 14045.618
transcript.whisperx[521].end 14062.628
transcript.whisperx[521].text 那台南市相關的上下游的產業垂直的產業的整合也非常完整具備半導體整個企業發展最好的利基所以台南市政府跟我們所有台南市民都歡迎半導體跟高科技的廠商來台南設廠所以請問經濟部長還有國發部的主委還有國科會的副主委南科三期的AI生態系這個建構是否可能那產業的AI化
transcript.whisperx[522].start 14074.975
transcript.whisperx[522].end 14094.184
transcript.whisperx[522].text 可不可能在南科來加速實現?我想我們如果能夠把這些這個區域的環境打造成AI最佳的環境的話應該業者都會去就是說花若盛開蝴蝶自來
transcript.whisperx[523].start 14095.53
transcript.whisperx[523].end 14112.105
transcript.whisperx[523].text 因為南科確實現在整個半導體產值已經超越竹科這個副主委應該非常清楚所以我想這部分再請多參照一下台南這塊沃土那我另外最後是想請教教育部
transcript.whisperx[524].start 14113.206
transcript.whisperx[524].end 14115.748
transcript.whisperx[524].text 讓AI的開發者以及使用者具備相關的人文社科素養希望科學的發展快速之外AI的發展能兼顧人文社會關懷的基本素養
transcript.whisperx[525].start 14132.099
transcript.whisperx[525].end 14157.18
transcript.whisperx[525].text 那未來教育現場會大量的使用AI那這也應該是個趨勢所以想要請教一下說有沒有把握在日新月異的這個AI發展的浪潮下我們可以推出相對應的教育政策提供正確的AI使用的這個教育同時卓友院長期待的民主AI的創新這個概念未來會不會融入在教育裡面那目前的規劃如何?次長
transcript.whisperx[526].start 14158.155
transcript.whisperx[526].end 14187.835
transcript.whisperx[526].text 我想跟委員報告就是說這個我們目前其實都有在加強這個資訊素養跟倫理的課程我們想這件事是非常非常重要就是他在用科技的時候怎麼樣這些用科技要用在好的地方那另外其實在中小學這部分我們在8月底的時候會公布這個數位教學指引的2.0這裡面其實就會有談到就是說幫他數位的還有AI的這些很多這些關鍵的資訊素養數位素養這些孩子們應該要懂的然後老師要怎麼樣去教育小孩子
transcript.whisperx[527].start 14189.276
transcript.whisperx[527].end 14215.711
transcript.whisperx[527].text 從小養成到一個正確的觀念他長大的時候再用這技術就不會歪掉最後一小題我們如何讓AI的人才留在學界而非在一窩蜂的湧進產業界因為學界如果人才有的話我們才能培育下一代所謂的人才培育所以請問次長你對於這部分一窩蜂要湧進產業界你有什麼解方嗎
transcript.whisperx[528].start 14216.97
transcript.whisperx[528].end 14242.003
transcript.whisperx[528].text 我想這個大概就是還是要透過這個攬柴跟這個彈性心智那另外我想這個其實AI的這個師資的培育其實我想特別是在高教裡面的這些老師這其實也是我們未來可能透過這博士班這邊很多的一些力度下去讓更多的同學有志於學術的可以往這邊走這是我們也是現在在做的事情好 謝謝次長 謝謝主席 謝謝
transcript.whisperx[529].start 14247.017
transcript.whisperx[529].end 14252.081
transcript.whisperx[529].text 謝謝接下來我們請羅明財委員羅明財羅明財委員不在現場我們請蔡育宇委員請做詢問好謝謝主席那我們是不是請國發會留主委好我們請主委
transcript.whisperx[530].start 14276.837
transcript.whisperx[530].end 14288.862
transcript.whisperx[530].text 委員午安各位好 嗯 主委那因為今天這個議題是這個AI的議題那這幾個禮拜來大概整個台灣都是席選了這個AI的這個浪潮齁
transcript.whisperx[531].start 14290.684
transcript.whisperx[531].end 14310.072
transcript.whisperx[531].text 事實上今天也是討論了包括針對AI的產業應用甚至人才培育講了很多我想先就教主委就AI的這個產業公部門部分有哪些是公部門可以開始來採用AI的技術
transcript.whisperx[532].start 14312.391
transcript.whisperx[532].end 14338.066
transcript.whisperx[532].text 跟委員報告公部門很早就開始使用生成式AI做一些資料的分析整理跟查詢所以國科會也因為這樣它有因為它這也有安全跟效率兩個構面安全面國科會有提出了一個使用生成式AI的參考指引確保在資料上的安全那另外在政府的應用部分目前是速發部有一個智慧政府辦公室專門在做
transcript.whisperx[533].start 14340.668
transcript.whisperx[533].end 14363.405
transcript.whisperx[533].text 這個整個公部門數位化的跟智慧化的部分就說公部門部分當然是用生成式AI嘛那這包括說未來很多公部門的一些政策的制定那甚至說一些包括說可能來立法院來做的最簡單的這樣的一些報告是不是都未來會用AI然後來做基礎的一些架構
transcript.whisperx[534].start 14364.713
transcript.whisperx[534].end 14380.088
transcript.whisperx[534].text 是的 各單位就我的我們上次稍微大家聊了一下幾乎每個部會都在使用中每個單位都在使用然後速發部也特別政府特別成立了智慧政府辦公室專門在推動我們整個智慧政府的發展
transcript.whisperx[535].start 14381.21
transcript.whisperx[535].end 14397.268
transcript.whisperx[535].text 所以現在公部門的教育訓練這一塊就是說大家都會使用嗎?還是說會用的人會用,不會的人就讓他們自己去學習?以本會而言,我們普遍都有全部都有上過課全部都有上過課,所以大家都大概會去使用
transcript.whisperx[536].start 14397.748
transcript.whisperx[536].end 14415.363
transcript.whisperx[536].text 好那這第一個齁那第二個在就叫這個主委就是說因為這個是生成式AI嘛齁他主要還是所謂的生成式就是說必須他的生成要有他的未資料齁所謂的未資料那這部分會不會有涉及到政府的
transcript.whisperx[537].start 14416.423
transcript.whisperx[537].end 14442.874
transcript.whisperx[537].text 這個機密的一些資訊外洩的一個問題那如何去預防謝謝委員 這裡面有兩個構面就像如同我前面講的當我們在查詢整理資料的時候怎麼樣做到安全國科會已經給了一個指引那第二個部分是就我了解國科會現在正在做一個AI基本法它的目的就希望做到主權AI讓台灣的資料能夠保存在台灣而不會被其他地方拿到
transcript.whisperx[538].start 14444.174
transcript.whisperx[538].end 14466.343
transcript.whisperx[538].text 這個進一步說明當然我們可以請國科會來補充,但是就我了解目前政府很積極在做這個步驟那如果涉及到機密資料已經跑進去了呢?如果涉及到真的有一些屬於比較機密、機敏性的結果它已經在AI的基本資料裡面,但是你也沒辦法把它抽離啊那這部分你要怎麼樣去做未來的預防?
transcript.whisperx[539].start 14468.761
transcript.whisperx[539].end 14482.218
transcript.whisperx[539].text 這裡以政府目前現在是有在做資料治理的管控那這個資料治理管控是不會讓機密資料進去的所以一開始就必須一開始先管控好嗎我想這個應該也不只台灣啦全世界大概都
transcript.whisperx[540].start 14482.939
transcript.whisperx[540].end 14484
transcript.whisperx[540].text 主權AI的確是目前台灣很重要的一件事情
transcript.whisperx[541].start 14507.515
transcript.whisperx[541].end 14521.832
transcript.whisperx[541].text 在第三個再來就叫這個主委那當然是說台灣過去也有在發展類似台版的這個叫做CHAT、GDP的台版的叫做TIDE
transcript.whisperx[542].start 14523.137
transcript.whisperx[542].end 14546.876
transcript.whisperx[542].text 那這樣的一個泰德的這樣的一個他的跟確實比較不一樣是他比較靠台灣B啦他的使用的可能是以繁體中文然後可能比較有一些台灣的一些語言本土語言的一些特色那但是呢畢竟市場有限所以如果要打向國際的話他可能還要更多的
transcript.whisperx[543].start 14547.517
transcript.whisperx[543].end 14547.677
transcript.whisperx[543].text 所以,未來,
transcript.whisperx[544].start 14555.707
transcript.whisperx[544].end 14579.521
transcript.whisperx[544].text 臺灣的政策會在這一個這一個開發自己的這個AI的軟體還是說因為畢竟現在黃仁勳他也是帶著臺灣的產業對不對所以還是我們就是說在這兩個抉擇上我們還是要發展自己的開發自己的軟體還是說就讓他順其自然業界本來這個業界本來就是強者很強如果
transcript.whisperx[545].start 14581.642
transcript.whisperx[545].end 14607.526
transcript.whisperx[545].text 不夠強的話自然會被淘汰那這個國發會你們的具體的策略是怎樣這個部分我有整個看過TED的展示那的確台灣需要有自己的工具原因是他不論是用台語也好或者是用中文也好他所得到的資料的精準度都會比國外的產品好
transcript.whisperx[546].start 14608.166
transcript.whisperx[546].end 14623.158
transcript.whisperx[546].text 那英文的部分國外本來就會有所以呢基本上它會兼具英文兼具中文兼具台語那它所能夠服務台灣人民的資料查詢的精準度我看到的展示都會比國外的來得好很多
transcript.whisperx[547].start 14623.658
transcript.whisperx[547].end 14639.336
transcript.whisperx[547].text 那對服務國民、人民的一些政府服務也都可以做得會比較好一點所以泰德他的優勢就是說他比較本土化啦可能是我們的台語啦或是我們比較講的比較一些方言的東西他這一套軟體他是有辦法掌握的
transcript.whisperx[548].start 14639.776
transcript.whisperx[548].end 14668.047
transcript.whisperx[548].text 但是它的掌握度總是在專業度上可能會不夠不會像其他的軟體它為的資料可能比較多而且比較多元可能會有這樣的問題那所以主委你的說法是說這一套軟體還是有它的優勢所以未來我們還是會扶持這一套軟體讓它繼續壯大嘍是就我了解國科會目前的做法是這樣好那除了除了扶持它之外可是我們要怎麼鼓勵大家使用
transcript.whisperx[549].start 14669.512
transcript.whisperx[549].end 14698.06
transcript.whisperx[549].text 他現在等到他們應該是有一個發展進程接收之後他應該就會開始開放出來是不是我請國科會這邊來說明一下跟委員報告那基本上台德這個計畫原來是到4月底可是我們會把它延續到12月底就是讓台德他在這個資料的收集還有模型的訓練能夠各號台灣V然後明年開始我們會加強他的推廣跟應用
transcript.whisperx[550].start 14698.84
transcript.whisperx[550].end 14714.12
transcript.whisperx[550].text 那目前來講我們這個調整後的那個model我們是會把新的版本都會公佈然後讓這個業界還有讓那個什麼我們講的公務機關都能夠下載然後它經過微調之後就可以來使用
transcript.whisperx[551].start 14715.796
transcript.whisperx[551].end 14742.356
transcript.whisperx[551].text 就是說過去類似這樣的我想在幾年前就是說像那個LINE剛在興起的時候台灣也有一度說要去開發我們自己的通訊軟體那但是後來也是卡在市場因素整個市場大家就是都用LINE所以台灣的通訊軟體後來在當時也差不多無聲而起了所以我現在也開心你現在去開發這一套Tide但是
transcript.whisperx[552].start 14745.718
transcript.whisperx[552].end 14762.033
transcript.whisperx[552].text 他的市場的優勢究竟在哪邊以及他這個市場優勢足以讓他未來是可以支撐在這個競爭的環境中這件事情我是問號的所以你若沒有講出一套你未來要怎麼去推廣去行銷我感覺起來我們這套軟體要怎麼跟
transcript.whisperx[553].start 14765.47
transcript.whisperx[553].end 14791.885
transcript.whisperx[553].text 講白了要怎麼跟CHAT的GDP他們現在還不斷的在成長中我們要怎麼跟人家競爭啊這個有兩個部分喔它跟LINE比較不像喔這裡面其實對服務台灣人民我們整個是大人其實它需要用台語來服務或是客語來服務那所以呢它對於本土性的服務對於做智慧政府或者是廠商要做智慧醫療智慧零售都會有很好所以主委你的意思說我們的優勢就是說
transcript.whisperx[554].start 14793.306
transcript.whisperx[554].end 14808.671
transcript.whisperx[554].text 他對於台語對於方言的適應度是更高的那將來辨別度也會比較好對東南亞市場的華人市場我們都還是可以進入那另外因為他的邏輯是一樣的他轉回到英文跟中文的時候在華人市場跟海外市場還是有機會做進展
transcript.whisperx[555].start 14810.651
transcript.whisperx[555].end 14829.843
transcript.whisperx[555].text 所以它跟LINE會比較不太一樣當然我LINE只是一個舉例啦但是未必是類似的狀況但是我只要跟強調就是說我們既然要發展這一套軟體我們要怎麼把它的優勢發揮到我相信啊CHAT的GDP總有一天它的台語的功能也許會變強喔
transcript.whisperx[556].start 14831.244
transcript.whisperx[556].end 14841.937
transcript.whisperx[556].text 哪一天他覺得這一塊有市場的時候,他就會在哪一塊強化?等他那一塊強化的時候,我們的優勢就會對得起所以我們既然要在這個軟體上要做競逐的話,我們一定要有一個我們要如何提供的一個重點,好不好?
transcript.whisperx[557].start 14850.266
transcript.whisperx[557].end 14865.953
transcript.whisperx[557].text 我認為這可以再研究看看我是給你們鼓勵啦但是我也知道說台灣以我們的市場我們要開發出足以支撐然後讓它能夠賺錢的軟體那是很困難的我也是在你們鼓勵啦好 謝謝好 謝謝接下來我們請羅志祥委員請做詢答 謝謝
transcript.whisperx[558].start 14885.99
transcript.whisperx[558].end 14888.816
transcript.whisperx[558].text 主席有請郭部長我們再請郭部長部長好委員好
transcript.whisperx[559].start 14897.116
transcript.whisperx[559].end 14921.713
transcript.whisperx[559].text 最近台灣因為輝達的執行長黃仁勛AMD的執行長蘇之鋒先後訪問然後黃仁勛說要輝達在5年內在台灣要興建大型的設計公司至少要僱用1000名工程師那當然各地方政府爭相邀請那我這邊倒不是在跟你討論他們落腳何處而是事實上落腳台灣之後
transcript.whisperx[560].start 14922.634
transcript.whisperx[560].end 14928.534
transcript.whisperx[560].text 我們能否給輝達或超為足夠的一個我們講發展的環境有沒有信心
transcript.whisperx[561].start 14929.737
transcript.whisperx[561].end 14953.812
transcript.whisperx[561].text 在這部分的話因為輝達要來他想說他要招聘一千位工程師我們是比較擔心我們這樣會不會把我們台灣的人才給大量用走那起這個連鎖效應所以我有後來剛開始是講說10個person他們要帶10person的engineer進來
transcript.whisperx[562].start 14954.753
transcript.whisperx[562].end 14978.632
transcript.whisperx[562].text 但是我到經濟部服務以後,我跟輝達,我有直接要求他要提升到50%所以基本上你也會擔心產生人才排擠,工程師的部分所以你要求是要50%的那個比例那我想請教除了說人才的concern之外的話,你對他們的用電的部分你有信心嗎?
transcript.whisperx[563].start 14979.383
transcript.whisperx[563].end 15008.317
transcript.whisperx[563].text 用電的部分因為他不會一開始就用這很高的電那我們當然是根據他的這個計畫我們來盤點我們自己的這個準備那跟委員報告到目前為止到2030年的這樣的一個規劃我們是有信心的好 非常謝謝部長的信心齁其實我談的也不是回答的個案啦因為將來部長也是希望能夠來我們AI是未來一個發展重心嘛
transcript.whisperx[564].start 15008.797
transcript.whisperx[564].end 15033.812
transcript.whisperx[564].text 但大家全世界都知道說AI其實是個耗電的產業對不對可是我們剛好又看到就是說外媒對台灣有一個嚴重的示警認為我們電力短缺而且動輒缺水那美國的財經媒體CNBC說過去七年時間台灣發生了三次規模較大的停電那過去一年則有一系列小規模的停電
transcript.whisperx[565].start 15034.733
transcript.whisperx[565].end 15055.977
transcript.whisperx[565].text 北台灣近年4月更在3天內發生停電多起的事件﹐那台灣有97%的能源依賴進口﹐那主要是煤炭跟天然氣﹐很容易使得台灣受到能源供應中斷的影響我覺得﹐請問一下你覺得這個﹐國外的財經媒體對這樣的一個產業的擔心﹐是不是其來有據呢?
transcript.whisperx[566].start 15057.388
transcript.whisperx[566].end 15065.939
transcript.whisperx[566].text 國外的媒體擔心如果台灣缺電的話會造成世界經濟上的問題我在這邊要跟委員報告根據我們現在的盤點我們是不會缺電
transcript.whisperx[567].start 15073.669
transcript.whisperx[567].end 15092.179
transcript.whisperx[567].text 可是我們上次有跟部長在詢答過你也坦承嘛停電的狀況實質上也讓民眾非常不安嘛對不對因為現在政府其實一直否認缺電啦但是我也慢慢懂大家的邏輯因為缺不缺齁是你的判斷問題但對人民來講我家有停電跟沒停電就是
transcript.whisperx[568].start 15093.7
transcript.whisperx[568].end 15119.254
transcript.whisperx[568].text 一分為二的問題嘛 對不對可是現在也確實從數據來看的話我們停電的狀況變得當然你也可能是電網的問題所以我們要強韌電網嘛 對不對但有一部分是不是因為這供電上的一個不足造成說今天配電上的一些其他問題當然也有人有這些疑慮啦可是不管怎麼樣講現在連國際媒體看到都是停電增加跟停電平衡的這個事情
transcript.whisperx[569].start 15120.214
transcript.whisperx[569].end 15131.454
transcript.whisperx[569].text 你原因不歸為缺電你要歸為電網也好但停電就是最鐵針針的狀況啊那我想請問部長你怎麼去消滅外資或是其他的廠商對這樣的疑慮呢
transcript.whisperx[570].start 15133.055
transcript.whisperx[570].end 15150.205
transcript.whisperx[570].text 我們談點電的容量是夠的但是委員你所指導的這一部分我們電網的韌性我們會快速的來修改就是說有比較weak的地方我最後做一個簡單的結論其實電網的韌性我們已經談了很多年了
transcript.whisperx[571].start 15153.769
transcript.whisperx[571].end 15174.464
transcript.whisperx[571].text 但如果交出的成績單是這樣子的話你也不要怪國際媒體懷疑我們其實是不是缺電造成的所以這個我想部長因為您才剛上來希望不只在所謂供電無虞不缺電的問題上電網韌性上總而言之我們要追求一個結果就是至少停電不能比以前嚴重嘛是不是是的好我們一起努力好不好謝謝部長好謝謝謝謝委員好謝謝
transcript.whisperx[572].start 15181.405
transcript.whisperx[572].end 15201.702
transcript.whisperx[572].text 接下來我們請盧君委員請做詢問好 謝謝主席 大家都辛苦了有請經濟部部長、國發會主委、國科會林法政副主委備詢好 我們請以上三位
transcript.whisperx[573].start 15208.191
transcript.whisperx[573].end 15228.523
transcript.whisperx[573].text 謝謝也都辛苦了昨天本席在總質詢的時候有提到AI人型機器人的議題院長說政府都有在做那今天剛好經濟部、國發會、國科會都在這裡想請教您三個部會誰在主導國家的AI人型機器人Humanoid的政策三個部會是不是都有相關的計畫
transcript.whisperx[574].start 15232.226
transcript.whisperx[574].end 15250.613
transcript.whisperx[574].text 我看到有人在這個很誠實的搖頭我覺得這是很好的不然的話早上說A下午變成B也不好有關計劃的話我想還是給各位一點時間去搜羅一下也許有可能比較小規模怎麼樣能不能在今天下班前將資料提供給本席
transcript.whisperx[575].start 15251.977
transcript.whisperx[575].end 15272.793
transcript.whisperx[575].text 就有的話就提供沒有的話我們就知道沒有也沒有關係那機器人裡頭也很多軟體包括像是對話因為你要跟機器人講話眼睛機器人的眼睛要能夠看得懂這個世界同時也可能有新的IC需要被設計所以今天有媒體報導指出產業創新條例第十之二條的租稅抵減
transcript.whisperx[576].start 15273.553
transcript.whisperx[576].end 15289.306
transcript.whisperx[576].text 吃硬不吃軟 優惠硬體生產廠 獨露IC設計業過去本席在質詢AI和晶片產業創新的議題的時候一直都在講四個字軟硬兼施隨著全球IC設計的產業競爭激烈
transcript.whisperx[577].start 15291.027
transcript.whisperx[577].end 15313.271
transcript.whisperx[577].text 同時生成式AI也可能導入到IC設計的行業裡頭我們有沒有可能由政府單位在租稅優惠上擴大範圍來幫助台廠的IC設計業甚至更多的AI或機器人或人型機器人的軟體業拉高研發的動能?國務部長、劉主委你們覺得廠商的建議合理嗎?國際趨勢是否將軟體研發的經費也納入稅務優惠的範圍?
transcript.whisperx[578].start 15318.412
transcript.whisperx[578].end 15337.363
transcript.whisperx[578].text 報告委員,這個早上的這個吃軟不吃硬這個它沒有達到我們的標準它沒有達到標準不是我們沒有,我們的產創條例是有的不過您的這個指導我在想說我們可以在為了將來的這整個IC業的這個設計業的發展
transcript.whisperx[579].start 15341.505
transcript.whisperx[579].end 15361.081
transcript.whisperx[579].text 我們可以再來討論一下那個條件放寬一下其實就怕搞錯所以我後面直接就附了第12條真的是有一點吃硬不吃軟但沒有關係我們都一起來評估目前這個競爭很激烈希望請經濟部和國發會共同研議一個月內能不能提供本席的書面報告關於這個部分
transcript.whisperx[580].start 15363.562
transcript.whisperx[580].end 15381.878
transcript.whisperx[580].text 報告委員可以好謝謝謝謝國發會在今天的報告當中也提到定標AI國際頂尖人才開展全球劣才計劃昨天這個院長我早上質詢完說美國白宮這個每一個部會都要有AI人才下午院長就說部部有AI
transcript.whisperx[581].start 15382.879
transcript.whisperx[581].end 15406.819
transcript.whisperx[581].text 那我想我們的就業金卡還有人才AI人才不足我們希望能夠往外部往內就是從外部往內來往羅那我們一直在外流我們希望可以有入超所以半導體AI的產業演進快速人才的需求迫在眉睫現在就業金卡顯然不足能不能請教國發會留主委除了就業金卡以外我們能否研議新增條件較為彈性的AI就業銀卡
transcript.whisperx[582].start 15410.082
transcript.whisperx[582].end 15413.427
transcript.whisperx[582].text 擴大對全球攬AI人才的機制
transcript.whisperx[583].start 15415.219
transcript.whisperx[583].end 15442.218
transcript.whisperx[583].text 跟委員報告我們目前是因為現在是人才戰爭那它不僅僅是AI數位人才也很缺所以呢我們現在是要準備正在我們現在找了6個國家做比較我們準備全面把它放寬太好了我們今天也太感動了不是只有AI因為各個地方的人才我們都需要吸引進來軟硬兼施好不好然後呢這個AI的產業因為既然都已經AI內閣我覺得稍微重視一下也不為過啦最後針對能源議題郭部長
transcript.whisperx[584].start 15444.099
transcript.whisperx[584].end 15470.465
transcript.whisperx[584].text 本席知道您這段時間內也許內心有一定的掙扎、煎熬或評估我昨天本來要問你但時間有點衝觸今天有沒有更新說法因為過去這個我想這都不是大家的本意因為科學、事實、理性就擺在眼前那我想在此能不能爭取主席給我一點時間那我給郭部長一點時間能不能表達一下您現在對於核電廠演藝的看法
transcript.whisperx[585].start 15471.837
transcript.whisperx[585].end 15485.706
transcript.whisperx[585].text 核電廠我的看法都沒有改變以現在的法規定我沒有辦法討論除去這個法以外就核電的部分我想它還是沒有辦法滿足綠電的需求
transcript.whisperx[586].start 15489.005
transcript.whisperx[586].end 15516.152
transcript.whisperx[586].text 那如果說就其他的這個討論我想這個我們要討論這個核酸的核酸或者核二這些問題都不是在我們可以討論的範圍之內所以這一點我們會關注這個新的核能新的核電的這個發展因為美國我想美國日本這些先進國家他們也都在關注這些議題我們當然也是關注這個議題但是以目前來講
transcript.whisperx[587].start 15517.392
transcript.whisperx[587].end 15534.288
transcript.whisperx[587].text 我們現在的畢竟還是核廢料是非常大的處理的問題那這個安全上面我們確實目前是沒有辦法而且運作了40年它必須要下來下來以後再重新再檢討檢討它確實沒有問題了我們才來考慮現在這個都不是在議題裡面
transcript.whisperx[588].start 15538.772
transcript.whisperx[588].end 15553.425
transcript.whisperx[588].text 非常抱歉謝謝部長您的回應我覺得還是相對客觀那我們也會持續的來交流核電的研議其實除了法規的修正我們希望行政院可以提出之外研議其實也是需要時間需要機組的整修這些其實是可以評估的
transcript.whisperx[589].start 15556.628
transcript.whisperx[589].end 15579.693
transcript.whisperx[589].text 而不是說我們有委員在這邊質詢結果就說目前為止有電那這樣以後我們只要燈還亮著我們是不是就不用質詢核電的議題其實不是這樣所以能源政策非常務實客觀那您昨天院長也有提到這個基本法有這個限制什麼時候突然我們的院長又對我們的這個法令對我們大院這個出台的法案又這麼的尊重我今天才從剛剛才從程序委員會用衝的衝過來我們就在處理複議案我們很尊重他的複議案
transcript.whisperx[590].start 15584.714
transcript.whisperx[590].end 15606.825
transcript.whisperx[590].text 但是我們立出來的法令結果變成這樣所以我想能源政策很科學客觀希望半導體和AI產業的未來提高了能源需求能不能請經濟部具體提出近5年因為半導體行業可能還會倍數增長我們講的是年增3%很可能都還是低估能不能提出近5年具備可行性的電力規劃讓產業安心好的 可以謝謝 謝謝部長好 謝謝
transcript.whisperx[591].start 15616.091
transcript.whisperx[591].end 15635.544
transcript.whisperx[591].text 謝謝接下來我們請羅庭惠委員、羅庭惠委員不在現場我們請林楚英委員、林楚英、林楚英委員不在現場請陳冠廷委員、陳冠廷、陳冠廷委員請洪孟楷委員、洪孟楷、洪孟楷委員請莊瑞雄委員、莊瑞雄、莊瑞雄委員
transcript.whisperx[592].start 15642.947
transcript.whisperx[592].end 15663.582
transcript.whisperx[592].text 我們現在登記發言的委員除了不在場之外其餘都已經發言完畢那詢談結束我們有莊瑞雄委員以及陳冠廷委員所提書面質詢請列入記錄刊登公報那書面質詢以及位置答覆的部分請於相關單位於一週以內以書面答覆並複製本委員會
transcript.whisperx[593].start 15665.984
transcript.whisperx[593].end 15681.264
transcript.whisperx[593].text 今天要特別感謝我們所有列席的官員因為這是一個產業的革命所以我們透過這樣的一個交流一個互相的了解我們希望這只是開端也給行政部門一點時間好好去盤點包括
transcript.whisperx[594].start 15683.907
transcript.whisperx[594].end 15711.045
transcript.whisperx[594].text 未來我們的方向走向但是有一點也就是希望國發會這邊因為其他的國家我們在跟進的時候人家量體都500到1000了如果我們未來的設定只有200那我們不知道以後怎麼應對所以我們也希望將實際國際的情況呢在國發會所handle的這個相關部會給行政院報告我們不要未來到最後人家都已經1000了我們設定了3年4年之後才200
transcript.whisperx[595].start 15711.946
transcript.whisperx[595].end 15733.697
transcript.whisperx[595].text 那我想跟我們的國際要接軌是有困難的所以這一點也特別請國防會以及經濟部等相關單位也據實的給行政院來說明來重新規劃我想唯一的我們的目標就是大家團結一致讓台灣能夠在世界能夠發光所以我們今天
transcript.whisperx[596].start 15737.233
transcript.whisperx[596].end 15741.52
transcript.whisperx[596].text 我們本日的議程處理完畢明天星期四繼續開會現在休息
transcript.whisperx[597].start 15745.097
transcript.whisperx[597].end 15748.719
transcript.whisperx[597].text 好 我們的議事主任也辛苦了辛苦 辛苦 辛苦 辛苦
transcript.whisperx[598].start 15774.997
transcript.whisperx[598].end 15777.058
transcript.whisperx[598].text 全體委員會主任委員會主任委員會主任