IVOD_ID |
159966 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159966 |
日期 |
2025-04-09 |
會議資料.會議代碼 |
委員會-11-3-19-7 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-09T11:18:08+08:00 |
結束時間 |
2025-04-09T11:26:48+08:00 |
影片長度 |
00:08:40 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdcee0e38218fbbab116a0ce932bdb5123482eb6e21b32d8c6be233332d118b3cbf45ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
呂玉玲 |
委員發言時間 |
11:18:08 - 11:26:48 |
會議時間 |
2025-04-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.06471875 |
transcript.pyannote[0].end |
1.02659375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
6.54471875 |
transcript.pyannote[1].end |
8.67096875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
9.66659375 |
transcript.pyannote[2].end |
10.15596875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
18.55971875 |
transcript.pyannote[3].end |
19.09971875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
19.21784375 |
transcript.pyannote[4].end |
19.75784375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
21.29346875 |
transcript.pyannote[5].end |
23.13284375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
23.28471875 |
transcript.pyannote[6].end |
27.18284375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
27.31784375 |
transcript.pyannote[7].end |
39.50159375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
40.07534375 |
transcript.pyannote[8].end |
44.54721875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
45.18846875 |
transcript.pyannote[9].end |
50.04846875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
50.70659375 |
transcript.pyannote[10].end |
60.34221875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
60.35909375 |
transcript.pyannote[11].end |
60.49409375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
60.54471875 |
transcript.pyannote[12].end |
80.28846875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
81.13221875 |
transcript.pyannote[13].end |
84.62534375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
85.18221875 |
transcript.pyannote[14].end |
91.76346875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
92.89409375 |
transcript.pyannote[15].end |
104.50409375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
104.08221875 |
transcript.pyannote[16].end |
106.39409375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
104.92596875 |
transcript.pyannote[17].end |
120.34971875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
110.79846875 |
transcript.pyannote[18].end |
111.20346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
112.70534375 |
transcript.pyannote[19].end |
113.04284375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
121.02471875 |
transcript.pyannote[20].end |
132.29721875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
132.48284375 |
transcript.pyannote[21].end |
140.17784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
138.42284375 |
transcript.pyannote[22].end |
138.96284375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
139.28346875 |
transcript.pyannote[23].end |
143.06346875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
142.59096875 |
transcript.pyannote[24].end |
143.23221875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
143.23221875 |
transcript.pyannote[25].end |
144.16034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
144.41346875 |
transcript.pyannote[26].end |
148.39596875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
149.39159375 |
transcript.pyannote[27].end |
162.23346875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
162.63846875 |
transcript.pyannote[28].end |
167.41409375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
167.61659375 |
transcript.pyannote[29].end |
171.64971875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
172.32471875 |
transcript.pyannote[30].end |
180.49221875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
180.89721875 |
transcript.pyannote[31].end |
184.25534375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
183.58034375 |
transcript.pyannote[32].end |
188.99721875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
189.72284375 |
transcript.pyannote[33].end |
195.22409375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
190.73534375 |
transcript.pyannote[34].end |
190.98846875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
195.96659375 |
transcript.pyannote[35].end |
198.61596875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
198.85221875 |
transcript.pyannote[36].end |
199.86471875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
200.26971875 |
transcript.pyannote[37].end |
204.64034375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
202.68284375 |
transcript.pyannote[38].end |
202.88534375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
205.11284375 |
transcript.pyannote[39].end |
220.19909375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
220.48596875 |
transcript.pyannote[40].end |
222.32534375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
223.13534375 |
transcript.pyannote[41].end |
227.38784375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
226.02096875 |
transcript.pyannote[42].end |
231.80909375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
230.07096875 |
transcript.pyannote[43].end |
232.55159375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
231.97784375 |
transcript.pyannote[44].end |
245.34284375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
246.43971875 |
transcript.pyannote[45].end |
257.88096875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
258.75846875 |
transcript.pyannote[46].end |
279.76784375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
279.76784375 |
transcript.pyannote[47].end |
285.03284375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
285.03284375 |
transcript.pyannote[48].end |
285.04971875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
285.04971875 |
transcript.pyannote[49].end |
285.11721875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
285.11721875 |
transcript.pyannote[50].end |
293.65596875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
294.02721875 |
transcript.pyannote[51].end |
297.35159375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
297.70596875 |
transcript.pyannote[52].end |
303.52784375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
303.89909375 |
transcript.pyannote[53].end |
314.46284375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
310.90221875 |
transcript.pyannote[54].end |
311.35784375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
312.48846875 |
transcript.pyannote[55].end |
316.65659375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
315.94784375 |
transcript.pyannote[56].end |
317.12909375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
317.12909375 |
transcript.pyannote[57].end |
318.00659375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
317.31471875 |
transcript.pyannote[58].end |
317.41596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
317.46659375 |
transcript.pyannote[59].end |
323.72721875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
318.66471875 |
transcript.pyannote[60].end |
318.79971875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
323.99721875 |
transcript.pyannote[61].end |
326.19096875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
327.03471875 |
transcript.pyannote[62].end |
359.38409375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
340.04534375 |
transcript.pyannote[63].end |
340.75409375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
341.73284375 |
transcript.pyannote[64].end |
343.63971875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
344.60159375 |
transcript.pyannote[65].end |
346.10346875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
347.95971875 |
transcript.pyannote[66].end |
348.33096875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
359.83971875 |
transcript.pyannote[67].end |
397.97721875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
362.26971875 |
transcript.pyannote[68].end |
363.78846875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
368.86784375 |
transcript.pyannote[69].end |
369.32346875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
397.97721875 |
transcript.pyannote[70].end |
397.99409375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
399.02346875 |
transcript.pyannote[71].end |
399.04034375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
399.04034375 |
transcript.pyannote[72].end |
405.19971875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
403.90034375 |
transcript.pyannote[73].end |
408.47346875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
406.41471875 |
transcript.pyannote[74].end |
411.32534375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
410.53221875 |
transcript.pyannote[75].end |
412.40534375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
411.88221875 |
transcript.pyannote[76].end |
413.01284375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
413.01284375 |
transcript.pyannote[77].end |
418.32846875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
418.75034375 |
transcript.pyannote[78].end |
419.64471875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
420.72471875 |
transcript.pyannote[79].end |
421.61909375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
420.91034375 |
transcript.pyannote[80].end |
423.37409375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
422.83409375 |
transcript.pyannote[81].end |
433.44846875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
434.24159375 |
transcript.pyannote[82].end |
434.66346875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
434.66346875 |
transcript.pyannote[83].end |
434.68034375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
434.68034375 |
transcript.pyannote[84].end |
434.74784375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
434.74784375 |
transcript.pyannote[85].end |
443.06721875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
436.21596875 |
transcript.pyannote[86].end |
437.66721875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
443.37096875 |
transcript.pyannote[87].end |
461.56221875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
461.69721875 |
transcript.pyannote[88].end |
482.94284375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
477.12096875 |
transcript.pyannote[89].end |
498.38346875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
487.76909375 |
transcript.pyannote[90].end |
488.76471875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
490.01346875 |
transcript.pyannote[91].end |
490.41846875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
496.02096875 |
transcript.pyannote[92].end |
500.25659375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
498.97409375 |
transcript.pyannote[93].end |
510.70221875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
503.49659375 |
transcript.pyannote[94].end |
503.90159375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
506.19659375 |
transcript.pyannote[95].end |
506.93909375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
509.95971875 |
transcript.pyannote[96].end |
511.37721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
511.00596875 |
transcript.pyannote[97].end |
518.61659375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
515.41034375 |
transcript.pyannote[98].end |
517.77284375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
520.01721875 |
transcript.pyannote[99].end |
520.27034375 |
transcript.whisperx[0].start |
0.029 |
transcript.whisperx[0].end |
0.569 |
transcript.whisperx[0].text |
謝謝主席 請郭部長郭部長委員好部長 |
transcript.whisperx[1].start |
21.311 |
transcript.whisperx[1].end |
49.797 |
transcript.whisperx[1].text |
美國總統川普他現在在進行的就是貿易的保護所以要對我們全世界的國家都要課一個對等的關稅在4月2號公布的話我們國家台灣就被課了32%那馬上4月7號我們的股市一開盤也大跌了2000點以上所以在這種情況之下我們立即要應對的事情非常的多 |
transcript.whisperx[2].start |
50.777 |
transcript.whisperx[2].end |
79.977 |
transcript.whisperx[2].text |
本席想詢問的就是說像我們看到日本他是被課了24%韓國被課了25%這都是我們鄰近的國家最有跟我們競爭力在競爭的國家所以我們被課了比較高的這個關稅那我們的因應方式我相信在這幾天你們也會去盤點那尤其最重要的你原先在這個川普一直在預告的當下應該要先 |
transcript.whisperx[3].start |
81.378 |
transcript.whisperx[3].end |
91.628 |
transcript.whisperx[3].text |
來跟我們所有的產業來做一個溝通或者是說你們要先跟美國來做一個溝通跟評估你們溝通評估了沒有 |
transcript.whisperx[4].start |
93.067 |
transcript.whisperx[4].end |
106.709 |
transcript.whisperx[4].text |
報告委員我想這個這一次確實是如您所講的這個來的這個比我們預期我們當然是有預期到35%最高35%最低就10%所以我們32%是算高的吧我們高的這個是計算方式我們後來發現這樣的一個計算方式 |
transcript.whisperx[5].start |
121.801 |
transcript.whisperx[5].end |
148.2 |
transcript.whisperx[5].text |
這個導致於我們會被課比較高的這樣的一個關稅不過我想透那個美國他也有講這個就是你最高的關稅是然後接著來談判談判到我想那個談判只有這個關稅不會比這個再高因為會比這個更低就那些項目之內那我們也啟動一定要跟美國再談談我們當然現在就是要那你要去談之前一定要盤點各產業的需求 |
transcript.whisperx[6].start |
149.531 |
transcript.whisperx[6].end |
166.338 |
transcript.whisperx[6].text |
對不對 那你要怎麼談這單項談還是總個談還是說我們要讓這個關稅要降到多少心裡都要抵最重要心裡的抵是什麼我們要有籌碼去談嘛那因為川普在等著你們來談為什麼要等著你們來談你們來談 一定要帶著他說你要帶著錢來談嘛帶著利多來談嘛 |
transcript.whisperx[7].start |
172.401 |
transcript.whisperx[7].end |
194.878 |
transcript.whisperx[7].text |
所以在這個情況之下雖然說都是未知數談的結果怎麼樣我們也不敢有樂觀但是我們要準備好所以現在盤點的情況怎麼樣了報委員我們現在最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最 |
transcript.whisperx[8].start |
196.055 |
transcript.whisperx[8].end |
221.856 |
transcript.whisperx[8].text |
然後我們如果能夠談到10%這樣的關稅我們會有什麼樣的一個情境這個就是分析然後哪一些東西可能會被課32%但是是不是我們的優勢商品是不是我們的供應性商品是不是互補性的商品這裡面我們可以看就是說你美國需要但是只有我台灣可以供應 |
transcript.whisperx[9].start |
223.206 |
transcript.whisperx[9].end |
232.35 |
transcript.whisperx[9].text |
那你課我32%你的客戶要買單嗎所以說要部長好好的盤點嘛我們確實是都有盤點台灣對美國的出口金額從2020年一直到2024年逐年增加從505億一直到去年的1114億在這個裡面的剩了52%就是資通訊 |
transcript.whisperx[10].start |
246.499 |
transcript.whisperx[10].end |
257.41 |
transcript.whisperx[10].text |
就是資通訊所以現在雖然說台積電不要說台積電雖然半導體跟藥品目前是暫時豁免但是我們要談的 |
transcript.whisperx[11].start |
258.84 |
transcript.whisperx[11].end |
279.493 |
transcript.whisperx[11].text |
就是準備看看我們台積電在已經過去投資了那現在投審會也在審查了那可不可以請美國在這方面給我們多一點力多來保障保護到我們的產業不然的話我們台積電就白白去美國投資沒有獲得更多的優惠的部分是不是 |
transcript.whisperx[12].start |
279.833 |
transcript.whisperx[12].end |
293.458 |
transcript.whisperx[12].text |
我想委員的意見我們都會提供給談判小組人做參考是好那本市也要知道你們現在因應方式就是特別預算增加880億這880億工業700億農業180億真的對這些產業來講真的是杯水車薪不夠那在不夠的情形之下 |
transcript.whisperx[13].start |
304.162 |
transcript.whisperx[13].end |
324.556 |
transcript.whisperx[13].text |
現在是先應急啦根本解決就關稅對等關稅趕快談嘛對我們再更加的有利啦所以也請你們好好盤點那現在不夠的部分我們會支持我們會支持因為產業太辛苦了因為你關稅提高的話就算產業的成本就是提高提高的話萬一訂單減少 |
transcript.whisperx[14].start |
327.113 |
transcript.whisperx[14].end |
344.567 |
transcript.whisperx[14].text |
的話就會裁員裁員又會發生的就是無薪假的部分再來就會失業這是連帶關係整個產業都會受到很大的衝擊所以我們一定會支持應急的方式你們趕快把每個產業都了解怎麼要去輔導該轉型的部分都要去轉型所以這不夠的部分本席在這邊也是要建議因為去年的超收稅金5283億 |
transcript.whisperx[15].start |
356.757 |
transcript.whisperx[15].end |
370.791 |
transcript.whisperx[15].text |
這個部分也可以做產業的紓困基金這個部分也請部長可以呈報去給行政院這個能夠解決我們產業的需求這樣子好不好是 謝謝委員好那接下來剛剛有特別提到說你們盤整要盤整去談的話我們進口的美國的部分你們有沒有盤整 |
transcript.whisperx[16].start |
377.757 |
transcript.whisperx[16].end |
397.335 |
transcript.whisperx[16].text |
他們進口我們將近30個品項的產品這些產品的話你們有沒有去盤整說哪些我們也要說釋出善意啊除了台積電來談的話這半導體來談的話其他他進口的一些品項裡面有沒有我們可以調整一下這個他們進口台灣的部分的這個關稅 |
transcript.whisperx[17].start |
399.076 |
transcript.whisperx[17].end |
415.802 |
transcript.whisperx[17].text |
我想這個關稅談判他不是做只有單一啦他們會總的當然是總的那我們自己要盤點嘛我們當然會盤點我們都提供這個資料讓談判小組他們可以去做參考有盤點這30個品項嗎對對對有嗎我們都有分析你們盤整出來數額聽你們講是都夠怎麼樣叫夠 |
transcript.whisperx[18].start |
420.762 |
transcript.whisperx[18].end |
432.736 |
transcript.whisperx[18].text |
你說700億的部分不是就是美國進口是30個品項你們看哪些品項可以降低這個關稅的部分來釋出我們的善意跟美國可以進一步的對談嗎 |
transcript.whisperx[19].start |
434.315 |
transcript.whisperx[19].end |
461.169 |
transcript.whisperx[19].text |
我們現在都會盤點其實我們從美國進口的工業性產品不多我們倒是賣到美國的東西是工業性產品多於這個農業性產品那我們現在農業產品是美國進到台灣的是比較多比我們輸到美國的這個農業性產品是比較多的所以我們會綜合去討論那其實要解決這一個關稅的問題它有很多的方法 |
transcript.whisperx[20].start |
461.849 |
transcript.whisperx[20].end |
479.841 |
transcript.whisperx[20].text |
那我們行政院大概就是有分配各部門大家應該分工合作然後提供給談判小組一些有利的談判的資訊我相信我們跟委員報告也都是一樣當然委員有更好的這個指教我們也希望我們能夠告訴我們你剛才那些好的意見我們都會轉達會向上報告因為剛剛提到的是台積電半導體都到 |
transcript.whisperx[21].start |
486.885 |
transcript.whisperx[21].end |
499.596 |
transcript.whisperx[21].text |
美國去投資了啦你增加要增加一千億那投審會都在審查了那現在美國也把這個半導體為他們的主軸利益嘛所以他們一定會非常的重視這個是非常有利的一個條件投審會這邊要加強的來審查那我們也可以拿這個當籌碼跟美國來談讓這個有更多的利多給我們來保護我們的產業謝謝委員提示 |
transcript.whisperx[22].start |
511.666 |
transcript.whisperx[22].end |
518.142 |
transcript.whisperx[22].text |
這樣子的話半導體或者是藥品它可以永久的豁免這才是重點好不好加油加油謝謝 |