iVOD / 159923

Field Value
IVOD_ID 159923
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159923
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-26-5
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-04-09T09:28:09+08:00
結束時間 2025-04-09T09:41:27+08:00
影片長度 00:13:18
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdcedd1fcb38aba248d3a9dd72f8e909e2235ddd900faaa498be672f50a45871b9275ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳昭姿
委員發言時間 09:28:09 - 09:41:27
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長對於「勞動部所屬基金違規使用如何追回及究責」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.84034375
transcript.pyannote[0].end 5.43096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 5.43096875
transcript.pyannote[1].end 15.96096875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.33221875
transcript.pyannote[2].end 18.27284375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 18.39096875
transcript.pyannote[3].end 28.21221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.77346875
transcript.pyannote[4].end 33.96659375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 33.05534375
transcript.pyannote[5].end 35.40096875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 35.97471875
transcript.pyannote[6].end 53.82846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 54.52034375
transcript.pyannote[7].end 61.79346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 56.81534375
transcript.pyannote[8].end 58.41846875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 60.71346875
transcript.pyannote[9].end 71.04096875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 70.90596875
transcript.pyannote[10].end 74.58471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 74.24721875
transcript.pyannote[11].end 77.04846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 76.62659375
transcript.pyannote[12].end 93.36659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 93.13034375
transcript.pyannote[13].end 118.79721875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 96.72471875
transcript.pyannote[14].end 97.07909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 117.64971875
transcript.pyannote[15].end 119.35409375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 119.43846875
transcript.pyannote[16].end 146.55659375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 145.59471875
transcript.pyannote[17].end 151.33221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 151.60221875
transcript.pyannote[18].end 156.39471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 156.78284375
transcript.pyannote[19].end 170.56971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 171.05909375
transcript.pyannote[20].end 176.50971875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 176.98221875
transcript.pyannote[21].end 181.28534375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 178.48409375
transcript.pyannote[22].end 179.04096875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 179.74971875
transcript.pyannote[23].end 180.32346875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 180.77909375
transcript.pyannote[24].end 181.77471875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 182.61846875
transcript.pyannote[25].end 194.95409375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 193.45221875
transcript.pyannote[26].end 194.61659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 194.85284375
transcript.pyannote[27].end 197.80596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 198.27846875
transcript.pyannote[28].end 204.55596875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 204.85971875
transcript.pyannote[29].end 206.90159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 204.96096875
transcript.pyannote[30].end 205.24784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 207.05346875
transcript.pyannote[31].end 207.66096875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 208.30221875
transcript.pyannote[32].end 209.34846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 209.87159375
transcript.pyannote[33].end 213.38159375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 213.71909375
transcript.pyannote[34].end 215.00159375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 215.65971875
transcript.pyannote[35].end 229.90221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 229.56471875
transcript.pyannote[36].end 236.55096875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 236.87159375
transcript.pyannote[37].end 246.62534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 247.09784375
transcript.pyannote[38].end 260.14221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 260.76659375
transcript.pyannote[39].end 262.20096875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 262.28534375
transcript.pyannote[40].end 270.48659375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 270.89159375
transcript.pyannote[41].end 274.21596875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 272.12346875
transcript.pyannote[42].end 272.68034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 274.21596875
transcript.pyannote[43].end 278.35034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 277.03409375
transcript.pyannote[44].end 277.48971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 277.94534375
transcript.pyannote[45].end 279.29534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 278.65409375
transcript.pyannote[46].end 296.50784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 296.27159375
transcript.pyannote[47].end 314.19284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 314.71596875
transcript.pyannote[48].end 315.96471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 316.18409375
transcript.pyannote[49].end 317.09534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 317.24721875
transcript.pyannote[50].end 319.47471875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 318.68159375
transcript.pyannote[51].end 320.77409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 320.97659375
transcript.pyannote[52].end 326.61284375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 326.62971875
transcript.pyannote[53].end 329.00909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 329.34659375
transcript.pyannote[54].end 332.24909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 332.50221875
transcript.pyannote[55].end 338.39159375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 339.25221875
transcript.pyannote[56].end 348.11159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 349.52909375
transcript.pyannote[57].end 349.90034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 350.10284375
transcript.pyannote[58].end 352.38096875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 353.73096875
transcript.pyannote[59].end 354.57471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 355.11471875
transcript.pyannote[60].end 357.73034375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 358.45596875
transcript.pyannote[61].end 360.29534375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 360.36284375
transcript.pyannote[62].end 362.28659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 360.49784375
transcript.pyannote[63].end 360.86909375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 362.92784375
transcript.pyannote[64].end 365.02034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 365.47596875
transcript.pyannote[65].end 367.95659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 367.97346875
transcript.pyannote[66].end 367.99034375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 368.64846875
transcript.pyannote[67].end 388.30784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 368.74971875
transcript.pyannote[68].end 369.08721875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 389.60721875
transcript.pyannote[69].end 390.77159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 390.77159375
transcript.pyannote[70].end 395.14221875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 395.66534375
transcript.pyannote[71].end 400.49159375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 401.28471875
transcript.pyannote[72].end 402.39846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 402.19596875
transcript.pyannote[73].end 404.30534375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 404.30534375
transcript.pyannote[74].end 413.01284375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 411.89909375
transcript.pyannote[75].end 412.47284375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 412.75971875
transcript.pyannote[76].end 428.31846875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 424.18409375
transcript.pyannote[77].end 424.48784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 428.95971875
transcript.pyannote[78].end 439.28721875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 432.73971875
transcript.pyannote[79].end 434.27534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 438.69659375
transcript.pyannote[80].end 448.14659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 443.43846875
transcript.pyannote[81].end 444.72096875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 448.77096875
transcript.pyannote[82].end 471.11346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 473.45909375
transcript.pyannote[83].end 484.19159375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 485.00159375
transcript.pyannote[84].end 503.44596875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 499.22721875
transcript.pyannote[85].end 499.81784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 503.10846875
transcript.pyannote[86].end 504.40784375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 504.89721875
transcript.pyannote[87].end 505.79159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 505.52159375
transcript.pyannote[88].end 511.03971875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 509.41971875
transcript.pyannote[89].end 509.85846875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 511.73159375
transcript.pyannote[90].end 512.60909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 511.93409375
transcript.pyannote[91].end 516.77721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 516.77721875
transcript.pyannote[92].end 528.18471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 524.42159375
transcript.pyannote[93].end 527.50971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 528.52221875
transcript.pyannote[94].end 531.82971875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 532.33596875
transcript.pyannote[95].end 536.55471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 536.94284375
transcript.pyannote[96].end 541.26284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 537.85409375
transcript.pyannote[97].end 539.44034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 541.54971875
transcript.pyannote[98].end 542.27534375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 541.97159375
transcript.pyannote[99].end 551.42159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 546.98346875
transcript.pyannote[100].end 547.33784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 551.40471875
transcript.pyannote[101].end 559.50471875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 558.12096875
transcript.pyannote[102].end 562.74471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 562.25534375
transcript.pyannote[103].end 565.44471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 565.52909375
transcript.pyannote[104].end 568.78596875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 568.70159375
transcript.pyannote[105].end 570.06846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 568.93784375
transcript.pyannote[106].end 572.83596875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 573.08909375
transcript.pyannote[107].end 575.87346875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 576.34596875
transcript.pyannote[108].end 582.79221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 581.25659375
transcript.pyannote[109].end 581.74596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 582.50534375
transcript.pyannote[110].end 594.03096875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 594.06471875
transcript.pyannote[111].end 598.55346875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 598.60409375
transcript.pyannote[112].end 601.20284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 600.78096875
transcript.pyannote[113].end 602.09721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 602.51909375
transcript.pyannote[114].end 603.29534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 602.92409375
transcript.pyannote[115].end 604.29096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 604.71284375
transcript.pyannote[116].end 611.59784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 611.74971875
transcript.pyannote[117].end 613.08284375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 613.65659375
transcript.pyannote[118].end 614.11221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 614.58471875
transcript.pyannote[119].end 619.36034375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 618.63471875
transcript.pyannote[120].end 622.12784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 620.35596875
transcript.pyannote[121].end 620.74409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 621.35159375
transcript.pyannote[122].end 623.66346875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 624.10221875
transcript.pyannote[123].end 632.25284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 630.09284375
transcript.pyannote[124].end 631.12221875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 631.44284375
transcript.pyannote[125].end 641.77034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 639.39096875
transcript.pyannote[126].end 639.82971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 639.82971875
transcript.pyannote[127].end 640.47096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 644.43659375
transcript.pyannote[128].end 644.85846875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 645.07784375
transcript.pyannote[129].end 665.76659375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 666.12096875
transcript.pyannote[130].end 671.48721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 671.80784375
transcript.pyannote[131].end 679.97534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 676.53284375
transcript.pyannote[132].end 677.34284375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 679.97534375
transcript.pyannote[133].end 680.00909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 680.61659375
transcript.pyannote[134].end 680.65034375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 680.65034375
transcript.pyannote[135].end 681.57846875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 681.57846875
transcript.pyannote[136].end 681.64596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 681.73034375
transcript.pyannote[137].end 681.81471875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 681.81471875
transcript.pyannote[138].end 682.77659375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 683.18159375
transcript.pyannote[139].end 684.73409375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 685.07159375
transcript.pyannote[140].end 687.04596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 688.04159375
transcript.pyannote[141].end 688.64909375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 689.39159375
transcript.pyannote[142].end 693.77909375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 694.06596875
transcript.pyannote[143].end 696.02346875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 696.02346875
transcript.pyannote[144].end 696.36096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 696.36096875
transcript.pyannote[145].end 696.79971875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 696.79971875
transcript.pyannote[146].end 696.96846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 696.96846875
transcript.pyannote[147].end 697.33971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 697.33971875
transcript.pyannote[148].end 697.52534375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 697.52534375
transcript.pyannote[149].end 697.60971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 698.63909375
transcript.pyannote[150].end 727.52909375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 727.56284375
transcript.pyannote[151].end 754.37721875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 753.38159375
transcript.pyannote[152].end 754.00596875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 754.51221875
transcript.pyannote[153].end 756.23346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 754.54596875
transcript.pyannote[154].end 755.20409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 756.40221875
transcript.pyannote[155].end 761.70096875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 761.71784375
transcript.pyannote[156].end 761.73471875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 761.73471875
transcript.pyannote[157].end 762.66284375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 762.08909375
transcript.pyannote[158].end 762.81471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 763.38846875
transcript.pyannote[159].end 770.52659375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 766.35846875
transcript.pyannote[160].end 767.99534375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 770.27346875
transcript.pyannote[161].end 777.63096875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 777.90096875
transcript.pyannote[162].end 778.06971875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 778.23846875
transcript.pyannote[163].end 783.35159375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 783.50346875
transcript.pyannote[164].end 787.43534375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 787.89096875
transcript.pyannote[165].end 797.56034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 797.56034375
transcript.pyannote[166].end 797.89784375
transcript.whisperx[0].start 4.984
transcript.whisperx[0].end 27.942
transcript.whisperx[0].text 陳委員早部長早 部長就這個川普的關稅海嘯即將來襲那你目前的掌握哪一些產業的勞工會受到最嚴重的衝擊你手邊有這樣的評估嗎就目前其實因為美方其實在提供相關的資訊其實陸陸續續都還有一些新的資訊我想大家都知道
transcript.whisperx[1].start 28.402
transcript.whisperx[1].end 52.785
transcript.whisperx[1].text 所以應該是說目前還沒有具體的沒有應變的那個措施不是當然有我剛才講的是說因為美方確實現在他的相關的做法上面還陸續在提供一些新的資訊但我們目前是有認為確實來自一些傳統產業尤其是製造業出口的製造業可能會是受到影響比較重比方說機械
transcript.whisperx[2].start 54.611
transcript.whisperx[2].end 70.684
transcript.whisperx[2].text 汽車零組件包括橡膠、塑膠、石化、水五金等等我們其實重點在關注這些產業相關的勞工希望你的政策能夠讓勞工比較安心但是我要講說現在已經有企業開始裁員停工放無薪假了你知道這件事嗎
transcript.whisperx[3].start 71.244
transcript.whisperx[3].end 93.09
transcript.whisperx[3].text 我們其實最近在媒體上面有看到我們收到很多在野黨的立委都收到很多有看到這事情那我們現在把通報的機制給建立起來包括這些資訊的回報的機制給建立起來那媒體上面有目前聽聞的我們也會打電話過去我們也跟他們主動的去了解實際的狀況會如何來掌握這些最快速的掌握這些訊息
transcript.whisperx[4].start 93.69
transcript.whisperx[4].end 117.512
transcript.whisperx[4].text 我的目的是告訴你星期一我們也一起到行政院去跟卓院長共商國事啦那因為本黨立場非常清楚我們一定是國家利益高於政黨利益啦面對這個難關大家一起要來度過那如果說為了因應這個關稅的衝擊假設勞動部有任何特別的預算你要提出來那我們覺得只要是這個合理而且預期有效那我們一定支持好嗎我就先告訴部長謝謝
transcript.whisperx[5].start 119.454
transcript.whisperx[5].end 139.566
transcript.whisperx[5].text 部長那我們還是要回到今天的你的報告主題啦就業安定基金啦那這個你當然在善後啦你現在在善後當然我相信你會很頭大我不曉得你睡不睡了早不覺啦那當然這個總統講了用了一句不太下當的這個做法至少我們還有音樂不過那個部長你知道現在音樂會不能再用就業安定基金來處理了嗎部長
transcript.whisperx[6].start 141.607
transcript.whisperx[6].end 154.663
transcript.whisperx[6].text 是不是以後就業安定基金不可以用在這個只有我們會把就業安定基金的用途做出更清楚的規範部長那我現在想請教你因為剛剛幾個部首會
transcript.whisperx[7].start 156.886
transcript.whisperx[7].end 181.173
transcript.whisperx[7].text 不會算都報告了許前部長的演唱會記錄曝光他的法律依據竟然就是提升勞工福祉那個部分那審計部也揪出前5年救安基金違法大概有7224萬是不符合他們用的是關聯性不高啦那關聯性不高就是不符合法定用途對嗎不符合法定用途嗎關聯性不高不符合嘛我跟委員說明
transcript.whisperx[8].start 183.077
transcript.whisperx[8].end 206.587
transcript.whisperx[8].text 審計部的報告他的那最後的判定是關聯性不高因於修正收回但是否違法這部分還是需要由司法單位來去做這個你的意思說不符合法定用途就不等於違法你這個邏輯人民可以接受嗎不符合法定的用途就不等於違法這個邏輯大家可以接受嗎那個
transcript.whisperx[9].start 208.519
transcript.whisperx[9].end 236.149
transcript.whisperx[9].text 我要說的是說 審計部的判定是和關聯性不高當然他是跟救安基金的法定用途來去做對照 認為關聯性不高但是否是違法使用 是否違法營私是否人謀不章 這樣子的違法這部分當然這是另外一個層次我想要繼續請教你七千多萬被亂花了 只需要修正
transcript.whisperx[10].start 236.969
transcript.whisperx[10].end 247.299
transcript.whisperx[10].text 那你要怎麼究責目前我要看到的是不是修正的部分因為這是確定的部分那你這個究責的部分因為你說這個是歸納科目不當啦那這個很離譜啊我覺得這個玩文字遊戲啊那早期的蔡英文總統的那個專輯啊明明就是那個走私就是說是超買啊那你現在這個東西這個
transcript.whisperx[11].start 261.272
transcript.whisperx[11].end 270.099
transcript.whisperx[11].text 歸納成不當用法這個歸納不當那就是說意思是說如果用就業安定性辦演唱會不行那我們換個名目就行了嗎你的意思就變這樣啊這是歸納的名目不當成為你用的應該是我在臉書上面其實寫的
transcript.whisperx[12].start 279.087
transcript.whisperx[12].end 304.964
transcript.whisperx[12].text 這個我上面的說明是說明什麼叫做修正修正的意思是什麼所以我這句話的意思是如果被判定修正的話過去可能會有哪些種樣態歸納科目不當是其中一種樣態我的整個完整的句子是這樣的敘述的我也有繼續看你講了一句是說你要先行政院爭取編列明年的公務預算來這個歸還就業安定基金這個很離譜
transcript.whisperx[13].start 306.425
transcript.whisperx[13].end 311.731
transcript.whisperx[13].text 意思是說勞動部亂花人民的錢納稅錢你現在要叫人民的納稅錢再挖一筆錢來補這個洞這樣對嗎這樣對嗎這個預算能不砍嗎你先亂花了一筆人民錢現在叫人民的納稅錢再來補這個洞這是你的建議
transcript.whisperx[14].start 326.847
transcript.whisperx[14].end 351.717
transcript.whisperx[14].text 陳委員我向你說明第一個我們其實必須 勞動部是一個行政部門我們必須要尊重也依照審計部的審計結果以及相關規範來辦理那過去如果有被判定為修正檢列並收回的話編列公務預算來歸電是做法之一被判定為修正檢列
transcript.whisperx[15].start 353.766
transcript.whisperx[15].end 364.221
transcript.whisperx[15].text 要追回那編列公務預算規定是做法之一那我是一個行政部門我必須要依照審計的審計結果跟審計的規範來進行
transcript.whisperx[16].start 369.14
transcript.whisperx[16].end 388.086
transcript.whisperx[16].text 我們還有別的方法部長你現在在說明這個但人民能不能接受我們來談預算法第25條政府不得於預算所定之外動用公款那有違背的支出應該以民法的規定請求返還那我現在要請教你勞動部有沒有對許明春謝怡榮提告
transcript.whisperx[17].start 389.742
transcript.whisperx[17].end 400.273
transcript.whisperx[17].text 這是預算法跟陳委員說明我們接下來因為現在我知道大家很關心比方說決策者的責任
transcript.whisperx[18].start 402.428
transcript.whisperx[18].end 427.896
transcript.whisperx[18].text 你先說你有沒有打算提告大家關心絕對責任目前我們關於追究責任的部分我們會配合檢調跟司法的結果來追究部長你又來了檢調它追查的是一個圖利貪污的刑事責任我現在談的是民事責任根據預算法這個是兩件事請你要先分開根據預算法你可以去打民事官司討回來
transcript.whisperx[19].start 429.016
transcript.whisperx[19].end 447.87
transcript.whisperx[19].text 你不要什麼事都丟給丟皮球給檢調檢調辦的是刑事的我沒有丟皮球給檢調所以我請問勞動部你有沒有要對許明春謝宜榮提告什麼時候提告我們相關的責任的追究我們會配合目前檢調跟司法都在辦我們會配合檢調跟司法的結果來去做追究
transcript.whisperx[20].start 449.897
transcript.whisperx[20].end 470.205
transcript.whisperx[20].text 你就是不想按照預算法來處理民事行政的部分看來你是不會做這個提告你還是要納稅人權來補動那我現在下一題我問你這個警消組工會你在上一屆跟本屆立委的時候 您都有連署這個支持警消組工會的法案我想問你 你現在立場還一樣嗎
transcript.whisperx[21].start 473.673
transcript.whisperx[21].end 483.501
transcript.whisperx[21].text 部長因為你簽署過嘛你的立場還一樣嗎你不要跟我說時空背景不同你最新的一份是去年五月不到一年不到一年沒有時空背景不同的問題
transcript.whisperx[22].start 485.069
transcript.whisperx[22].end 502.32
transcript.whisperx[22].text 那個跟陳委員說明目前其實針對這個相關組工會的問題目前我們這是兩院在做討論目前考試院還是目前考試院會是以公務員學會法的方式來去處理團結權
transcript.whisperx[23].start 504.963
transcript.whisperx[23].end 525.84
transcript.whisperx[23].text 公會法是但是我說這個議題是兩院在討論目前在行政跟考試院因為公會法是你管的那我可以問你的態度你的態度是什麼就是這個議題是兩院在討論那目前考試院還是希望用協會法來去處理包括警校跟公務員的團結權跟協商權
transcript.whisperx[24].start 528.842
transcript.whisperx[24].end 549.782
transcript.whisperx[24].text 你擔心罷工權對不對你是擔心罷工權嗎你是擔心當初你連署那我先問你一件事老師可不可以組工會教師可以組工會現在教師是可以組工會的那教師沒有罷工權嘛對不對現在是組工會跟罷工權是可以討論的嘛第一個層次是你要不要讓他組工會然後再來才是說你要有哪些權利嘛
transcript.whisperx[25].start 550.242
transcript.whisperx[25].end 575.318
transcript.whisperx[25].text 那你的態度是什麼所以我跟陳委員說明在這個議題上面兩院目前的討論是希望用協會法你是勞動部長你一直在跟我說兩院啊你的工會法你在管啊你的態度是但是我是兩院的成員之一啊沒有你就代表勞動部去談啊談這件事啊對但是我的意思是說我這樣講可不可以就是說如果警消不給予罷工權那你同意他們組工會嗎
transcript.whisperx[26].start 577.28
transcript.whisperx[26].end 601.789
transcript.whisperx[26].text 呃陳委目前確實在兩院在商量這件事情在討論這件事情的時候目前還是以公務員協會法現在都不當勞動部長了就是病院的部長了好啦那我問你齁那個你們家柯總召齁說警消組工會齁會造成那個中共侵台啊你同意嗎你同意嗎齁寫得很清楚喔你同意嗎你就告訴我你同意這個說法嗎呃我尊重柯總召的你尊重他的說法
transcript.whisperx[27].start 603.071
transcript.whisperx[27].end 612.932
transcript.whisperx[27].text 他這個抹紅基層這個員工的警消的這個姓抹紅他們你還是打擊工會存在的意義你尊重他的說法
transcript.whisperx[28].start 614.637
transcript.whisperx[28].end 639.607
transcript.whisperx[28].text 我的意思是說這是柯總召他的認為我問你嘛 他的說法那你同意嗎那我還是回到在兩院在討論這些相關議題的時候我們還是希望能夠盡量的去協助團結權跟協商權罷工是很不得已是最後手段你知道政府要爛到一個程度罷工權才會處理我問你 你知道醫院已經有工會了你知道醫院有工會嗎那你擔心醫院會罷工嗎
transcript.whisperx[29].start 646.224
transcript.whisperx[29].end 665.442
transcript.whisperx[29].text 這個上次我說那個盧媽媽的事情她叫盧媽媽你叫盧媽媽那你就回到家庭去服務就好了我問你說為了性平你好好在那個時候做一個宣傳這個性平那你也不肯你說你們總召做這個你們也不肯現在總召說這個會清台景霄的主公會也會清台
transcript.whisperx[30].start 666.343
transcript.whisperx[30].end 677.732
transcript.whisperx[30].text 你也沒有態度喔?你怎麼這麼軟趴趴?你什麼都不敢講?你只敢罵我們家國昌喔?你只會罵這個國昌對不對?我不想講他的名字,他在去年審議宣的時候,他說他要保證三道讓國人有感啦!我問大家!
transcript.whisperx[31].start 689.454
transcript.whisperx[31].end 715.254
transcript.whisperx[31].text 我們的總預算被這樣亂刪亂砍你有感的嗎你憤怒嗎我知道已經憤怒到都已經坐不住了對不對人民當然憤怒啊你把這個錢拿去開演唱會拿去裝潢豪華的辦公室人民當然憤怒啊所以這個我覺得部長我再跟你最後講一句話我禮拜一進去行政院的時候因為卓院長說這一次的這是我面對這個
transcript.whisperx[32].start 717.075
transcript.whisperx[32].end 739.082
transcript.whisperx[32].text 關稅的海嘯我們有很多事要立法院配合不是只有關稅部分有很多非關稅貿易障礙的部分還有一些法規要鬆綁他希望我們配合我跟他講了一句話我說好你要大家配合那你現在不要搞這個你再搞大罷免這個部分那如果說民間團體我們尊重他立法院我們尊重他但是行政官員你現在要立法院配合啊
transcript.whisperx[33].start 739.622
transcript.whisperx[33].end 761.061
transcript.whisperx[33].text 那我可不可以勸你一句話你聽聽看因為我也跟左院長這樣講的可不可以行政官員行政人員不要上台不要去上大罷免的舞台去高談闊論發佈假訊息你可以嗎你可以嗎你做得到嗎我這樣跟左院長講的第一個事情是這個罷免與否跟行政部門的關聯比較不大那你上台啦
transcript.whisperx[34].start 763.462
transcript.whisperx[34].end 769.164
transcript.whisperx[34].text 我上面講我其實是復述黃委員的說法因為這個保證三道讓國人有感這是他講的話國難當前我剛剛就跟你講你要拿公務預算去補一個公務人員亂花的錢這個錢不砍怎麼行啊所以我還是要強調關於審計的部分我們必須尊重也依照審計的結果還有相關的規範來去做辦理
transcript.whisperx[35].start 787.93
transcript.whisperx[35].end 795.423
transcript.whisperx[35].text 好啦部長謝謝你要記得你是勞動部部長不要動不著跟我說病院病院兩個人一起談你都沒有自己態度這樣行不行部長你自己要記得勞動部長好謝謝