iVOD / 159765

Field Value
IVOD_ID 159765
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159765
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-26-4
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-27T13:43:55+08:00
結束時間 2025-03-27T13:57:47+08:00
影片長度 00:13:52
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900a969d475303798a37648dfe0a0275fc5c923c0b21f6ae56173d84130179852065ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳瑩
委員發言時間 13:43:55 - 13:57:47
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議(事由:邀請衛生福利部、勞動部、國家發展委員會、教育部、法務部針對「少子女化衝擊,如何營造友善托育環境」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 1.78596875
transcript.pyannote[0].end 5.21159375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 12.13034375
transcript.pyannote[1].end 13.02471875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 13.34534375
transcript.pyannote[2].end 14.49284375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 15.67409375
transcript.pyannote[3].end 16.34909375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 17.47971875
transcript.pyannote[4].end 19.16721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.51721875
transcript.pyannote[5].end 23.04846875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 24.06096875
transcript.pyannote[6].end 30.06846875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 30.89534375
transcript.pyannote[7].end 33.52784375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 34.20284375
transcript.pyannote[8].end 41.76284375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 43.45034375
transcript.pyannote[9].end 44.81721875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 45.39096875
transcript.pyannote[10].end 48.39471875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 49.74471875
transcript.pyannote[11].end 51.82034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.82034375
transcript.pyannote[12].end 52.47846875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 51.97221875
transcript.pyannote[13].end 54.25034375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 54.41909375
transcript.pyannote[14].end 57.84471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 58.08096875
transcript.pyannote[15].end 64.76346875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 65.53971875
transcript.pyannote[16].end 72.34034375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 67.86846875
transcript.pyannote[17].end 69.16784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 72.07034375
transcript.pyannote[18].end 72.45846875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 72.40784375
transcript.pyannote[19].end 76.59284375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 77.16659375
transcript.pyannote[20].end 78.58409375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 78.39846875
transcript.pyannote[21].end 83.22471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 83.22471875
transcript.pyannote[22].end 83.39346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 83.52846875
transcript.pyannote[23].end 87.67971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 88.01721875
transcript.pyannote[24].end 90.76784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 91.29096875
transcript.pyannote[25].end 93.09659375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 94.17659375
transcript.pyannote[26].end 94.19346875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 94.19346875
transcript.pyannote[27].end 104.11596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 94.41284375
transcript.pyannote[28].end 95.88096875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 104.38596875
transcript.pyannote[29].end 105.02721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 104.43659375
transcript.pyannote[30].end 105.26346875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 105.39846875
transcript.pyannote[31].end 110.62971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 113.17784375
transcript.pyannote[32].end 115.00034375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 115.06784375
transcript.pyannote[33].end 116.50221875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 116.82284375
transcript.pyannote[34].end 120.45096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 120.60284375
transcript.pyannote[35].end 124.19721875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 123.67409375
transcript.pyannote[36].end 127.31909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 125.04096875
transcript.pyannote[37].end 125.05784375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 125.05784375
transcript.pyannote[38].end 125.15909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 125.15909375
transcript.pyannote[39].end 125.71596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 125.71596875
transcript.pyannote[40].end 126.03659375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 126.03659375
transcript.pyannote[41].end 126.23909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 126.23909375
transcript.pyannote[42].end 126.30659375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 126.30659375
transcript.pyannote[43].end 126.32346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 126.32346875
transcript.pyannote[44].end 126.61034375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 126.61034375
transcript.pyannote[45].end 126.66096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 126.66096875
transcript.pyannote[46].end 126.67784375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 126.67784375
transcript.pyannote[47].end 126.71159375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 128.95596875
transcript.pyannote[48].end 143.33346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 141.03846875
transcript.pyannote[49].end 141.32534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 143.33346875
transcript.pyannote[50].end 148.29471875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 143.89034375
transcript.pyannote[51].end 145.25721875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 145.69596875
transcript.pyannote[52].end 146.80971875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 147.07971875
transcript.pyannote[53].end 147.23159375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 148.00784375
transcript.pyannote[54].end 155.83784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 151.63596875
transcript.pyannote[55].end 151.99034375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 156.02346875
transcript.pyannote[56].end 158.30159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 160.12409375
transcript.pyannote[57].end 162.28409375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 162.28409375
transcript.pyannote[58].end 169.30409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 162.94221875
transcript.pyannote[59].end 164.35971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 164.81534375
transcript.pyannote[60].end 165.33846875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 170.21534375
transcript.pyannote[61].end 172.12221875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 175.91909375
transcript.pyannote[62].end 178.90596875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 178.43346875
transcript.pyannote[63].end 181.04909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 180.03659375
transcript.pyannote[64].end 193.31721875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 181.70721875
transcript.pyannote[65].end 181.82534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 193.70534375
transcript.pyannote[66].end 196.28721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 196.47284375
transcript.pyannote[67].end 202.90221875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 196.50659375
transcript.pyannote[68].end 196.54034375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 196.54034375
transcript.pyannote[69].end 197.19846875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 201.24846875
transcript.pyannote[70].end 208.42034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 203.83034375
transcript.pyannote[71].end 205.04534375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 209.01096875
transcript.pyannote[72].end 214.76534375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 215.54159375
transcript.pyannote[73].end 217.88721875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 216.97596875
transcript.pyannote[74].end 225.93659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 221.54909375
transcript.pyannote[75].end 221.97096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 224.04659375
transcript.pyannote[76].end 224.87346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 225.64971875
transcript.pyannote[77].end 225.66659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 225.66659375
transcript.pyannote[78].end 226.03784375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 226.02096875
transcript.pyannote[79].end 229.44659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 229.69971875
transcript.pyannote[80].end 236.04471875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 236.75346875
transcript.pyannote[81].end 237.27659375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 237.71534375
transcript.pyannote[82].end 238.06971875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 238.39034375
transcript.pyannote[83].end 244.70159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 245.12346875
transcript.pyannote[84].end 253.12221875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 247.84034375
transcript.pyannote[85].end 247.92471875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 253.18971875
transcript.pyannote[86].end 256.51409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 255.90659375
transcript.pyannote[87].end 257.30721875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 257.27346875
transcript.pyannote[88].end 259.01159375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 259.55159375
transcript.pyannote[89].end 267.49971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 260.95221875
transcript.pyannote[90].end 261.42471875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 267.68534375
transcript.pyannote[91].end 275.95409375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 275.68409375
transcript.pyannote[92].end 280.39221875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 277.52346875
transcript.pyannote[93].end 277.81034375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 282.83909375
transcript.pyannote[94].end 286.60221875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 287.26034375
transcript.pyannote[95].end 288.20534375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 288.54284375
transcript.pyannote[96].end 290.97284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 290.09534375
transcript.pyannote[97].end 295.73159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 295.83284375
transcript.pyannote[98].end 295.86659375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 295.86659375
transcript.pyannote[99].end 304.11846875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 304.69221875
transcript.pyannote[100].end 306.27846875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 306.21096875
transcript.pyannote[101].end 320.09909375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 312.33659375
transcript.pyannote[102].end 312.74159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 312.74159375
transcript.pyannote[103].end 312.85971875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 318.91784375
transcript.pyannote[104].end 320.43659375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 320.33534375
transcript.pyannote[105].end 338.83034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 329.53221875
transcript.pyannote[106].end 329.97096875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 329.97096875
transcript.pyannote[107].end 329.98784375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 333.85221875
transcript.pyannote[108].end 334.40909375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 339.08346875
transcript.pyannote[109].end 339.11721875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 339.94409375
transcript.pyannote[110].end 349.15784375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 349.84971875
transcript.pyannote[111].end 357.47721875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 357.51096875
transcript.pyannote[112].end 359.55284375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 360.39659375
transcript.pyannote[113].end 362.65784375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 363.29909375
transcript.pyannote[114].end 367.28159375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 367.16346875
transcript.pyannote[115].end 368.07471875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 368.05784375
transcript.pyannote[116].end 375.46596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 375.17909375
transcript.pyannote[117].end 375.68534375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 375.48284375
transcript.pyannote[118].end 375.51659375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 375.68534375
transcript.pyannote[119].end 394.60221875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 394.90596875
transcript.pyannote[120].end 397.55534375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 397.53846875
transcript.pyannote[121].end 404.20409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 399.09096875
transcript.pyannote[122].end 399.59721875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 404.54159375
transcript.pyannote[123].end 406.80284375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 404.57534375
transcript.pyannote[124].end 404.81159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 407.12346875
transcript.pyannote[125].end 407.14034375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 407.14034375
transcript.pyannote[126].end 407.15721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 407.15721875
transcript.pyannote[127].end 407.32596875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 407.19096875
transcript.pyannote[128].end 410.14409375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 407.34284375
transcript.pyannote[129].end 407.35971875
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 411.05534375
transcript.pyannote[130].end 411.67971875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 411.94971875
transcript.pyannote[131].end 414.24471875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 414.78471875
transcript.pyannote[132].end 449.49659375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 422.14221875
transcript.pyannote[133].end 422.58096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 423.52596875
transcript.pyannote[134].end 423.69471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 450.71159375
transcript.pyannote[135].end 460.06034375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 459.21659375
transcript.pyannote[136].end 459.80721875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 460.54971875
transcript.pyannote[137].end 463.08096875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 461.81534375
transcript.pyannote[138].end 462.96284375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 463.31721875
transcript.pyannote[139].end 467.80596875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 468.16034375
transcript.pyannote[140].end 485.92971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 470.67471875
transcript.pyannote[141].end 470.97846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 470.97846875
transcript.pyannote[142].end 471.97409375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 471.97409375
transcript.pyannote[143].end 472.02471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 476.76659375
transcript.pyannote[144].end 477.08721875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 477.08721875
transcript.pyannote[145].end 477.18846875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 477.18846875
transcript.pyannote[146].end 477.22221875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 486.01409375
transcript.pyannote[147].end 490.03034375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 490.87409375
transcript.pyannote[148].end 491.12721875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 491.12721875
transcript.pyannote[149].end 491.17784375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 491.17784375
transcript.pyannote[150].end 491.24534375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 491.24534375
transcript.pyannote[151].end 492.15659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 492.17346875
transcript.pyannote[152].end 504.27284375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 502.29846875
transcript.pyannote[153].end 503.51346875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 504.34034375
transcript.pyannote[154].end 515.07284375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 513.01409375
transcript.pyannote[155].end 522.71721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 517.65471875
transcript.pyannote[156].end 517.72221875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 523.02096875
transcript.pyannote[157].end 539.87909375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 539.87909375
transcript.pyannote[158].end 540.23346875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 540.23346875
transcript.pyannote[159].end 549.98721875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 550.39221875
transcript.pyannote[160].end 585.54284375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 585.86346875
transcript.pyannote[161].end 607.93596875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 590.36909375
transcript.pyannote[162].end 590.85846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 600.35909375
transcript.pyannote[163].end 600.40971875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 600.40971875
transcript.pyannote[164].end 600.74721875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 608.34096875
transcript.pyannote[165].end 644.99346875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 645.07784375
transcript.pyannote[166].end 653.56596875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 654.10596875
transcript.pyannote[167].end 654.84846875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 655.23659375
transcript.pyannote[168].end 661.78409375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 662.66159375
transcript.pyannote[169].end 688.95284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 688.04159375
transcript.pyannote[170].end 690.06659375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 690.15096875
transcript.pyannote[171].end 690.21846875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 690.21846875
transcript.pyannote[172].end 698.11596875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 690.47159375
transcript.pyannote[173].end 692.83409375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 697.64346875
transcript.pyannote[174].end 699.19596875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 699.07784375
transcript.pyannote[175].end 702.97596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 702.19971875
transcript.pyannote[176].end 704.03909375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 703.70159375
transcript.pyannote[177].end 717.11721875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 717.11721875
transcript.pyannote[178].end 717.69096875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 717.60659375
transcript.pyannote[179].end 740.77596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 723.10784375
transcript.pyannote[180].end 723.34409375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 730.71846875
transcript.pyannote[181].end 731.20784375
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 740.94471875
transcript.pyannote[182].end 745.34909375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 745.95659375
transcript.pyannote[183].end 746.36159375
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 747.61034375
transcript.pyannote[184].end 776.39909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 756.75659375
transcript.pyannote[185].end 757.04346875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 757.06034375
transcript.pyannote[186].end 757.61721875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 773.80034375
transcript.pyannote[187].end 774.08721875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 776.65221875
transcript.pyannote[188].end 776.75346875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 776.75346875
transcript.pyannote[189].end 776.77034375
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 776.77034375
transcript.pyannote[190].end 776.82096875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 776.82096875
transcript.pyannote[191].end 777.14159375
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 777.44534375
transcript.pyannote[192].end 779.01471875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 779.01471875
transcript.pyannote[193].end 808.07346875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 802.30221875
transcript.pyannote[194].end 803.04471875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 808.24221875
transcript.pyannote[195].end 812.12346875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 812.44409375
transcript.pyannote[196].end 820.24034375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 818.18159375
transcript.pyannote[197].end 818.77221875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 820.24034375
transcript.pyannote[198].end 820.91534375
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 820.51034375
transcript.pyannote[199].end 826.39971875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 825.89346875
transcript.pyannote[200].end 826.95659375
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 826.66971875
transcript.pyannote[201].end 827.37846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 827.37846875
transcript.pyannote[202].end 828.52596875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 828.88034375
transcript.pyannote[203].end 831.25971875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 829.09971875
transcript.pyannote[204].end 829.36971875
gazette.lineno 1799
gazette.blocks[0][0] 陳委員瑩:(13時44分)謝謝主席。麻煩請呂次長和國健署署長。吳署長又沒來?出國嗎?我看今天出席大概都是副司長以上,只有國健署是派組長來,各單位比較起來,國健署好像比較不關心少子化的問題。既然他沒來,那就組長先上。
gazette.blocks[1][0] 主席:請呂次長。
gazette.blocks[2][0] 呂次長建德:委員好。
gazette.blocks[3][0] 陳委員瑩:次長好。目前每年菸捐平均收入金額大約多少?
gazette.blocks[4][0] 呂次長建德:報告委員,據我粗淺的了解,過去十年平均值大概313億元。
gazette.blocks[5][0] 陳委員瑩:沒錯,15年的資料彙整大概是313億元。用於國健署相關業務組的業務使用是多少?
gazette.blocks[6][0] 呂次長建德:如果沒記錯,我記得好像是二千多萬元。
gazette.blocks[7][0] 陳委員瑩:沒關係,組長不用緊張。如果你現在翻不到,給你們一週的時間,好好算清楚,給我們辦公室就好了。
gazette.blocks[8][0] 呂次長建德:感謝委員。
gazette.blocks[9][0] 陳委員瑩:用於補助董氏基金會等民間團體的經費又是多少?
gazette.blocks[10][0] 呂次長建德:因為我們有三位次長,這不是我督導的業務。
gazette.blocks[11][0] 陳委員瑩:他們又沒來,但是有國健署。沒關係,因為這個問題我們也找了很久,不好找,我們沒有在你們裡面也是看不到,所以也給你們一週的時間,這個應該以前都有問過,一週喔!兩個數字。
gazette.blocks[12][0] 呂次長建德:好,一週內。
gazette.blocks[13][0] 陳委員瑩:這邊我舉董氏基金會為例,董氏基金會職員的薪資有沒有使用到菸捐?
gazette.blocks[14][0] 呂次長建德:據我了解好像有。
gazette.blocks[15][0] 陳委員瑩:應該是有?
gazette.blocks[16][0] 呂次長建德:應該有。
gazette.blocks[17][0] 陳委員瑩:如果有使用的話,薪資水準有沒有經過衛福部或國健署的審核?
gazette.blocks[18][0] 呂次長建德:一般來說,像我所督導的婦女權益促進基金會和賑災基金會,他們的薪資都要報我們主管機關核備,但我不知道董氏基金會的情況是怎樣,我請同仁回去趕快了解,再回報給委員,一般來說是要。
gazette.blocks[19][0] 陳委員瑩:麻煩你們。請問他們的薪資有沒有隨著公務人員加薪或基本工資的調升而調整?
gazette.blocks[20][0] 呂次長建德:一般來說也是。
gazette.blocks[21][0] 陳委員瑩:請你們一併了解完之後,全部都一週內一起回報我們辦公室。
gazette.blocks[22][0] 呂次長建德:好的。
gazette.blocks[23][0] 陳委員瑩:再請教次長,菸害對人體影響最大的兩個器官是什麼?
gazette.blocks[24][0] 呂次長建德:我自己不抽,但我的了解好像是心和肺。
gazette.blocks[25][0] 陳委員瑩:沒錯。鑑別這兩個器官的重要檢查醫療儀器設備是什麼?
gazette.blocks[26][0] 呂次長建德:好像是CT和MRI,一個是電腦斷層,一個是核磁共振。
gazette.blocks[27][0] 陳委員瑩:我們絕對沒有洩題給呂次長,謝謝你很厲害的準備。再來,這些是不是都由醫事放射師的專業人員來操作?
gazette.blocks[28][0] 呂次長建德:對,一般來說,這需要專業的放射師來操作相關的程序。
gazette.blocks[29][0] 陳委員瑩:你知道醫事放射師的起薪是多少嗎?
gazette.blocks[30][0] 呂次長建德:如果沒有記錯,好像3萬1,108元,低於中位數。
gazette.blocks[31][0] 陳委員瑩:就你剛剛講的,我待會會給你一個數字。你知道二十年前他們的起薪跟現在差不多嗎?
gazette.blocks[32][0] 呂次長建德:我不太清楚。
gazette.blocks[33][0] 陳委員瑩:我今天的質詢就揭露一件驚人的事情。二十年前的起薪和現在其實是差不多的!這二十年來我們基本工資調整多少,簡報上都幫你們整理了。民國95年的時候是1萬5,840元,那時醫事放射師的薪水就是三萬多元。今年的最低工資是2萬8,590元,這個時候醫事放射師的薪水還是一樣三萬多元。這是上網看的徵人廣告,時間都是上個月,左上角的那家醫院我不好意思說在哪裡,那家醫院薪水就是3萬0,937元。左下角的醫院是3萬3,000元到3萬7,000元之間。最近大家一直在吵,也非常重視護理薪資很低的問題,殊不知醫事放射師的薪資是更低的,我很熱心的換算了一下,他們的時薪每個小時平均是129元。大家知道目前最低時薪是多少嗎?
gazette.blocks[34][0] 呂次長建德:190元。
gazette.blocks[35][0] 陳委員瑩:對,190元,所以這些醫事放射師不如去50嵐打工賣飲料,還有每個小時190元可以賺,而且又不用暴露在輻射的風險,多好!所以你看這樣人會不會都跑光光?你們可以回頭去看一下,主修這個科系的人畢業之後有多少比率是從事這樣的工作?看一下就知道了,非常低啊!次長,維持這樣的水準,搞不好沒多久,他們連起薪都要被最低工資超越了。我想一個通過國家考試、具有專業證照的醫事專業人員,領的薪水竟然跟基本工資差不多,甚至平均起來時薪還比在50嵐賣飲料打工的人還低,這樣合理嗎?
gazette.blocks[36][0] 呂次長建德:因為這不是我業管,但是以我自己個人來看,老實說,委員說的這件事情是讓我滿訝異的,說真的有點偏低。
gazette.blocks[37][0] 陳委員瑩:這個問題跟你有沒有督導這個業務無關,持平來看一下這個薪資水準就很清楚。次長,你知道在疫情期間醫事放射師是第一線接觸病患,為病患提供準確照攝服務的工作人員,但是他們並沒有獲得任何的危險補助,其他醫護人員都有,為何獨獨漏掉他們?
gazette.blocks[38][0] 陳代理副司長青梅:謝謝委員的關切。如果是在COVID-19的時候,事實上政府對於醫護人員、醫事人員的支持是有兩部分:一個叫做津貼補助;一個叫獎勵金。獎勵金的部分,醫院就會根據他們參與的程度,核撥給院內的員工,所以獎勵金的部分應該會有。
gazette.blocks[39][0] 陳委員瑩:他們實際上到底有沒有領到,你也可以去了解一下。獎勵金和危險補助是不太一樣的,且他們起薪三萬多元,又要暴露在游離輻射和病毒細菌的感染風險中,他們領的薪水幾乎是所有醫事人員最低的水準。所以本席要在這裡很嚴肅的提醒衛福部,這樣對待你們第一線的工作人員其實是相當不公平的。
gazette.blocks[39][1] 另外,有一位自稱是一位心痛為孩子忡忡憂心的媽媽,這是兩年前他寫信給中華民國醫事放射師公會全聯會的信件,他希望杜理事長可以幫忙。這位媽媽將醫事放射師的職業困境做了一個詮釋,主要提到放射師職缺少、薪水被醫院壓得很低、人力又被刪減,美其名是考取一個高考的放射師執照等等。這個媽媽等了兩年,終於有機會輾轉透過本席再把這個信件轉給主管機關衛福部。目前賴總統的健康台灣政策要減少臺灣罹癌人數的增加,更要提早發現來減少罹癌的死亡人數,這些都需要醫事放射師提供準確的機器,讓電腦斷層掃描和磁振造影的操作。因為精準、貴重的儀器設備都非常需要他們的專業去操作,但醫事司居然用牴觸母法的函釋來開後門,要求醫事放射師打對比劑,還有直腸氣球處置的侵入性醫療行為。我講到這些,你們不要否認,說絕對沒有這種情形發生!甚至也不要像有些人說北部的醫院沒有,都是中南部醫院的事情!我覺得你們要好好去了解,我也不是這種專業,但是我卻知道了這個事情,我也不可能憑空捏造出來。像你們都只有提供邊際勞工的薪資待遇給他們,次長,我覺得這其實是一種歧視特定專業的行為,不要這樣不清不楚,不重視他們的勞動權益。
gazette.blocks[39][2] 再來,次長知道勞動部的勞工職災保險有做職災勞工的職業重建的工作嗎?
gazette.blocks[40][0] 呂次長建德:我知道。
gazette.blocks[41][0] 陳委員瑩:你不知道沒關係,就當作是一個新知識的吸收。
gazette.blocks[42][0] 呂次長建德:這我知道。
gazette.blocks[43][0] 陳委員瑩:你怎麼那麼聰明,什麼都知道。這些工作裡面有一塊很重要的復工計畫,就是用職災保險基金來補助事業單位的雇主聘僱職災勞工,給勞工30%到70%的薪資補助。所以我要在這裡具體建議,應該將菸捐的部分用來提升第一線的檢測癌症篩檢的醫事放射師人員的薪資,讓菸捐的使用更加合理。我想這項用途一定比你們業務單位不編列公務預算,反而用基金更有說服力,甚至比提供給民間團體,例如最有名、最強的董氏基金會對於業務及薪資的使用更有意義。
gazette.blocks[43][1] 最後提醒,不要忘了你們的加熱菸要開放所增加的菸捐金額是非常龐大的,菸捐的使用以及醫事放射師薪資水準的調升,衛福部是不是可以好好的規劃,次長怎麼看這個事情?
gazette.blocks[44][0] 呂次長建德:報告委員,誠如委員剛剛所說的,菸捐的部分其實在本部裡面基本上有一個配置,我覺得剛剛委員的建議相當好,是不是容許我帶回去跟部長報告?這個部分我覺得確實朝委員剛才建議的方向,我覺得這個確實是福國利民的,加熱菸的議題大家也都非常關心,我覺得這應該要積極來處理。
gazette.blocks[45][0] 陳委員瑩:請你們兩週內把相關規劃以書面提供給本席,當然,菸捐也要落實收到,我們才有可能落實後面講的這些事情。
gazette.blocks[46][0] 呂次長建德:沒錯。
gazette.blocks[47][0] 陳委員瑩:謝謝。
gazette.blocks[48][0] 呂次長建德:感謝委員指導。
gazette.blocks[49][0] 主席:我剛剛幫你查了區域醫院協會。放射師起薪差不多4萬5,000元,每個月的加給和大小夜加一加,差不多五萬多元。在COVID-19期間,只要有去幫別人照片子,1個月加1萬元,所以那兩、三年有去報的都是12萬元、12萬元,不過還是偏低。
gazette.blocks[50][0] 陳委員瑩:確實還有醫院起薪是三萬多元。
gazette.blocks[51][0] 主席:我剛才是查區域醫院協會,地區醫院是不是有差一點?
gazette.blocks[52][0] 陳委員瑩:區域醫院不多。
gazette.blocks[53][0] 主席:80幾家,醫學中心應該高一點點,不過跑到新加坡去,臺灣的放射師到新加坡一個月薪水差不多16萬元到18萬元。
gazette.blocks[53][1] 陳培瑜委員改書面質詢。
gazette.blocks[53][2] 鄭天財委員不在。
gazette.blocks[53][3] 請鄭正鈐委員質詢。
gazette.agenda.page_end 120
gazette.agenda.meet_id 委員會-11-3-26-4
gazette.agenda.speakers[0] 蘇清泉
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 林月琴
gazette.agenda.speakers[3] 陳菁徽
gazette.agenda.speakers[4] 王育敏
gazette.agenda.speakers[5] 盧縣一
gazette.agenda.speakers[6] 黃秀芳
gazette.agenda.speakers[7] 劉建國
gazette.agenda.speakers[8] 邱鎮軍
gazette.agenda.speakers[9] 廖偉翔
gazette.agenda.speakers[10] 涂權吉
gazette.agenda.speakers[11] 林淑芬
gazette.agenda.speakers[12] 王正旭
gazette.agenda.speakers[13] 羅廷瑋
gazette.agenda.speakers[14] 楊瓊瓔
gazette.agenda.speakers[15] 洪孟楷
gazette.agenda.speakers[16] 張雅琳
gazette.agenda.speakers[17] 楊曜
gazette.agenda.speakers[18] 李坤城
gazette.agenda.speakers[19] 麥玉珍
gazette.agenda.speakers[20] 陳瑩
gazette.agenda.speakers[21] 鄭正鈐
gazette.agenda.speakers[22] 黃捷
gazette.agenda.speakers[23] 林德福
gazette.agenda.speakers[24] 陳培瑜
gazette.agenda.page_start 1
gazette.agenda.meetingDate[0] 2025-03-27
gazette.agenda.gazette_id 1143301
gazette.agenda.agenda_lcidc_ids[0] 1143301_00002
gazette.agenda.meet_name 立法院第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議紀錄
gazette.agenda.content 邀請衛生福利部、勞動部、國家發展委員會、教育部、法務部針對「少子女化衝擊,如何營造 友善托育環境」進行專題報告,並備質詢
gazette.agenda.agenda_id 1143301_00001