iVOD / 159751

Field Value
IVOD_ID 159751
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159751
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T12:52:51+08:00
結束時間 2025-03-27T13:01:48+08:00
影片長度 00:08:57
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db90003b48a9c3c1554771a80f058510e45ac3cf129e64e549d190a24d4c92cf601975ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 12:52:51 - 13:01:48
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.38534375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 0.80721875
transcript.pyannote[1].end 1.71846875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 2.17409375
transcript.pyannote[2].end 6.59534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 6.12284375
transcript.pyannote[3].end 7.23659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 12.53534375
transcript.pyannote[4].end 12.56909375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 12.56909375
transcript.pyannote[5].end 13.19346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 14.83034375
transcript.pyannote[6].end 16.70346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 16.63596875
transcript.pyannote[7].end 17.47971875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 17.63159375
transcript.pyannote[8].end 19.90971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 20.01096875
transcript.pyannote[9].end 20.43284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 20.14596875
transcript.pyannote[10].end 28.98846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 29.19096875
transcript.pyannote[11].end 41.64471875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 41.94846875
transcript.pyannote[12].end 47.46659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 47.71971875
transcript.pyannote[13].end 54.82409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 55.09409375
transcript.pyannote[14].end 55.46534375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 56.10659375
transcript.pyannote[15].end 61.08471875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 61.38846875
transcript.pyannote[16].end 66.04596875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 66.48471875
transcript.pyannote[17].end 71.12534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 71.81721875
transcript.pyannote[18].end 74.31471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 74.48346875
transcript.pyannote[19].end 74.97284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 75.36096875
transcript.pyannote[20].end 76.71096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 76.94721875
transcript.pyannote[21].end 77.53784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 77.87534375
transcript.pyannote[22].end 79.57971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 79.91721875
transcript.pyannote[23].end 81.84096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 82.00971875
transcript.pyannote[24].end 88.20284375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 89.51909375
transcript.pyannote[25].end 94.58159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 94.96971875
transcript.pyannote[26].end 96.97784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 97.33221875
transcript.pyannote[27].end 98.80034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 99.18846875
transcript.pyannote[28].end 104.57159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 104.97659375
transcript.pyannote[29].end 105.97221875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 106.47846875
transcript.pyannote[30].end 114.47721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 115.15221875
transcript.pyannote[31].end 116.04659375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 116.01284375
transcript.pyannote[32].end 118.07159375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 117.41346875
transcript.pyannote[33].end 138.97971875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 120.28221875
transcript.pyannote[34].end 122.44221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 122.44221875
transcript.pyannote[35].end 122.45909375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 139.18221875
transcript.pyannote[36].end 142.47284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 142.70909375
transcript.pyannote[37].end 147.80534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 147.94034375
transcript.pyannote[38].end 158.41971875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 155.97284375
transcript.pyannote[39].end 164.15721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 160.02284375
transcript.pyannote[40].end 160.39409375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 164.69721875
transcript.pyannote[41].end 170.35034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 171.17721875
transcript.pyannote[42].end 171.73409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 172.07159375
transcript.pyannote[43].end 174.16409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 174.45096875
transcript.pyannote[44].end 180.18846875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 180.47534375
transcript.pyannote[45].end 182.83784375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 182.98971875
transcript.pyannote[46].end 184.93034375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 185.14971875
transcript.pyannote[47].end 190.44846875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 191.35971875
transcript.pyannote[48].end 204.31971875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 204.89346875
transcript.pyannote[49].end 212.75721875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 212.89221875
transcript.pyannote[50].end 214.05659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 214.22534375
transcript.pyannote[51].end 215.71034375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 216.63846875
transcript.pyannote[52].end 218.15721875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 219.28784375
transcript.pyannote[53].end 224.45159375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 224.67096875
transcript.pyannote[54].end 225.78471875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 226.13909375
transcript.pyannote[55].end 228.14721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 228.75471875
transcript.pyannote[56].end 229.07534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 229.36221875
transcript.pyannote[57].end 230.00346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 230.93159375
transcript.pyannote[58].end 236.06159375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 236.56784375
transcript.pyannote[59].end 242.03534375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 242.81159375
transcript.pyannote[60].end 244.51596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 243.03096875
transcript.pyannote[61].end 266.30159375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 266.35221875
transcript.pyannote[62].end 267.55034375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 267.87096875
transcript.pyannote[63].end 269.81159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 270.09846875
transcript.pyannote[64].end 288.96471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 274.30034375
transcript.pyannote[65].end 276.89909375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 288.03659375
transcript.pyannote[66].end 292.57596875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 289.58909375
transcript.pyannote[67].end 290.11221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 291.66471875
transcript.pyannote[68].end 292.18784375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 292.64346875
transcript.pyannote[69].end 311.12159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 310.12596875
transcript.pyannote[70].end 310.49721875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 311.23971875
transcript.pyannote[71].end 314.73284375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 316.42034375
transcript.pyannote[72].end 317.24721875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 317.24721875
transcript.pyannote[73].end 323.27159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 319.37346875
transcript.pyannote[74].end 321.46596875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 321.95534375
transcript.pyannote[75].end 325.63409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 325.92096875
transcript.pyannote[76].end 337.14284375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 337.64909375
transcript.pyannote[77].end 340.97346875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 341.32784375
transcript.pyannote[78].end 343.96034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 344.09534375
transcript.pyannote[79].end 344.29784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 345.15846875
transcript.pyannote[80].end 346.96409375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 347.25096875
transcript.pyannote[81].end 347.77409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 347.97659375
transcript.pyannote[82].end 349.74846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 350.27159375
transcript.pyannote[83].end 350.82846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 350.82846875
transcript.pyannote[84].end 350.84534375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 351.41909375
transcript.pyannote[85].end 352.71846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 353.59596875
transcript.pyannote[86].end 355.92471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 356.26221875
transcript.pyannote[87].end 358.62471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 359.67096875
transcript.pyannote[88].end 362.21909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 361.29096875
transcript.pyannote[89].end 364.00784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 364.00784375
transcript.pyannote[90].end 364.49721875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 364.49721875
transcript.pyannote[91].end 366.79221875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 367.18034375
transcript.pyannote[92].end 371.12909375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 371.65221875
transcript.pyannote[93].end 372.02346875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 372.05721875
transcript.pyannote[94].end 374.68971875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 375.28034375
transcript.pyannote[95].end 382.28346875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 383.41409375
transcript.pyannote[96].end 393.03284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 383.54909375
transcript.pyannote[97].end 384.35909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 385.97909375
transcript.pyannote[98].end 386.38409375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 391.91909375
transcript.pyannote[99].end 396.03659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 396.39096875
transcript.pyannote[100].end 413.36721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 413.94096875
transcript.pyannote[101].end 418.05846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 418.32846875
transcript.pyannote[102].end 419.61096875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 420.04971875
transcript.pyannote[103].end 420.97784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 421.95659375
transcript.pyannote[104].end 431.82846875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 423.82971875
transcript.pyannote[105].end 424.84221875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 425.56784375
transcript.pyannote[106].end 426.29346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 427.17096875
transcript.pyannote[107].end 427.66034375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 428.09909375
transcript.pyannote[108].end 429.04409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 430.10721875
transcript.pyannote[109].end 434.56221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 435.08534375
transcript.pyannote[110].end 436.70534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 437.12721875
transcript.pyannote[111].end 437.38034375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 437.63346875
transcript.pyannote[112].end 437.97096875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 438.79784375
transcript.pyannote[113].end 439.62471875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 440.28284375
transcript.pyannote[114].end 446.44221875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 446.89784375
transcript.pyannote[115].end 455.06534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 455.11596875
transcript.pyannote[116].end 456.12846875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 456.38159375
transcript.pyannote[117].end 457.49534375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 457.79909375
transcript.pyannote[118].end 459.63846875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 460.27971875
transcript.pyannote[119].end 466.03409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 466.57409375
transcript.pyannote[120].end 467.92409375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 468.31221875
transcript.pyannote[121].end 468.63284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 468.97034375
transcript.pyannote[122].end 471.58596875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 471.88971875
transcript.pyannote[123].end 484.19159375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 484.29284375
transcript.pyannote[124].end 485.33909375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 485.81159375
transcript.pyannote[125].end 489.05159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 489.67596875
transcript.pyannote[126].end 490.23284375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 490.94159375
transcript.pyannote[127].end 493.37159375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 493.45596875
transcript.pyannote[128].end 493.96221875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 494.01284375
transcript.pyannote[129].end 495.68346875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 495.80159375
transcript.pyannote[130].end 505.94346875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 507.02346875
transcript.pyannote[131].end 519.89909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 510.14534375
transcript.pyannote[132].end 510.24659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 510.93846875
transcript.pyannote[133].end 511.30971875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 511.30971875
transcript.pyannote[134].end 511.32659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 520.25346875
transcript.pyannote[135].end 521.55284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 523.59471875
transcript.pyannote[136].end 526.21034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 526.51409375
transcript.pyannote[137].end 528.75846875
transcript.whisperx[0].start 1.31
transcript.whisperx[0].end 4.932
transcript.whisperx[0].text 經濟部的江次長還有財政部的莊部長委員好
transcript.whisperx[1].start 15.444
transcript.whisperx[1].end 39.74
transcript.whisperx[1].text 市長 部長好市委員好先請教江次長美國財政部長點名全世界骯髒15國4月2號是關稅重點柯震對象如果對於沒有提出讓美國滿意的做法就會以可以高關稅昨天也已經宣布了對台的汽車關稅要提高到25%
transcript.whisperx[2].start 41.175
transcript.whisperx[2].end 53.812
transcript.whisperx[2].text 那這15國其實就是美國的貿易逆差國就是美國的前15大貿易夥伴那台灣去年對美國出差648億創歷史新高那一定會被課以高關稅
transcript.whisperx[3].start 56.355
transcript.whisperx[3].end 70.625
transcript.whisperx[3].text 我們的電子製造業、半導體、重工業、農產都非常不利那如果不按照美國期待的方向調整4月2號川普的關稅大禮一定會嚴重影響我國的整體發展
transcript.whisperx[4].start 71.866
transcript.whisperx[4].end 87.759
transcript.whisperx[4].text 那想要這個15國的黑名單要從這黑名單除名就是要對美國要減少輸出嘛對不對然後要增加對於美國的採購所以我就想到說我們那個中油
transcript.whisperx[5].start 89.854
transcript.whisperx[5].end 114.004
transcript.whisperx[5].text 簽署的那個天然氣買賣的意向書這個部分是不是就是我們可以讓美國滿意的做法可不可以就此就用這個來說想美國對台對美的一個貿易順差可以減少多少是跟委員報告第一點所謂的骯髒15國是他的到底包括哪些國家是
transcript.whisperx[6].start 116.059
transcript.whisperx[6].end 138.332
transcript.whisperx[6].text 台灣排第六名我們台灣對美是排第六名但是我們包括在15個國之內是國外的媒體自行排列的那委員有關心到中油跟阿拉斯加有簽一個液化天然氣的意向書我們在裡面有表達我們願意
transcript.whisperx[7].start 139.272
transcript.whisperx[7].end 146.467
transcript.whisperx[7].text 增加對於阿拉斯加的需要採購因為阿拉斯加如果直接運營天然氣的採購
transcript.whisperx[8].start 148.12
transcript.whisperx[8].end 170.096
transcript.whisperx[8].text 天然氣經由阿拉斯加到台灣的話它是不用經過巴拿馬運河而且騎乘會比較短這樣也可以擴大我們對於天然氣的穩定供應就這樣子可以縮短對美的順差嘛對不對好那這一次台灣產品的一個關稅調整那對於我們經濟發展是很大的衝擊不管經貿科技供應面安全
transcript.whisperx[9].start 172.107
transcript.whisperx[9].end 190.207
transcript.whisperx[9].text 我們跟美國都保持很密切的合作我們的護國神山台積電宣布在美國投資高達1650億美金但是一樣我們現在一樣被美國可以高關稅那代表我們在國際貿易的談判中是屬於非常被動的甚至於是
transcript.whisperx[10].start 191.448
transcript.whisperx[10].end 210.883
transcript.whisperx[10].text 任人宰割啦我們現在只能知道說4月2號4月2號川普政府就會正式的宣布他的關稅政策那除了昨天宣布的這個汽車關稅之外那其他的包括涵蓋範圍影響層面我們好像都不知道所以我想請教莊部長財政部莊部長那針對這個你們就是說
transcript.whisperx[11].start 219.369
transcript.whisperx[11].end 241.834
transcript.whisperx[11].text 通訊產品 機體電路 螺絲帽等對美國輸出的出口的前三十大貨品你們已經有進行砂盤推演有評估說這一波的關稅可能帶來的影響跟對應策略是不是部長你可不可以在這裡說明一下你們的這個推演是什麼樣的內容
transcript.whisperx[12].start 242.974
transcript.whisperx[12].end 259.079
transcript.whisperx[12].text 還有因應的策略是什麼我們先會對這個從美國進口以及或者是出口美國的主要貨品都去做一個盤點另外我們從出口到美國的許多的一些品項其實零關稅佔了居多我們這邊提到比如說資通訊產品還有電子零組件雙方都是零關稅的一個部分因為我們要掌握這個具體的衝擊數據
transcript.whisperx[13].start 270.488
transcript.whisperx[13].end 276.75
transcript.whisperx[13].text 具體的衝擊當然最後要看美方他所4月2號宣布的相應的反制跟這些補救措施都有在擬定嗎
transcript.whisperx[14].start 293.014
transcript.whisperx[14].end 314.523
transcript.whisperx[14].text 跟委員報告所以我們在行政院有一個台美經貿工作小組一個專案會議都非常密集的開會對所有的相關訊息以及對於有關的一些衝擊以及政府可採取的相關的一些措施都在那個經貿工作小組裡面去討論以及研擬方案那經濟部姜次長也請你回答一下剛剛我提問的部分
transcript.whisperx[15].start 316.485
transcript.whisperx[15].end 343.7
transcript.whisperx[15].text 分別回答是我們相關的對策的研議一樣有策略有有意義有而且都是跨部會討論那可不可以告訴我們是什麼怎麼實施因為這個還要涉及未來談判所以首先要看這個美國公布的對等關稅的國家產品別是什麼但是我們就各種情境也有做沙盤推演跟模擬所以這涉及到未來跟美方是不是要談判如果要談判的話我們採取的策略為何好
transcript.whisperx[16].start 345.182
transcript.whisperx[16].end 357.564
transcript.whisperx[16].text 好那個江次長先請回謝謝總部長再接著再請教是那個美國昨天宣布說對於汽車關稅提高到25%對不對
transcript.whisperx[17].start 359.841
transcript.whisperx[17].end 365.603
transcript.whisperx[17].text 先以汽車關稅來講 其他都還不知道目前我國的進口關稅是17.5%再加上貨物稅25% 30%所以我們對於美國的進口汽車是高達37.5% 42.5% 52.5% 是不是
transcript.whisperx[18].start 387.232
transcript.whisperx[18].end 402.948
transcript.whisperx[18].text 第一個就是說我們出美國提高他的一個汽車關稅25%其實這個大家討論很多啦就是說現在來講已經不合時宜啦其實去年我們就也都有提過說這項關稅要來調整而且應該要大幅度的調整
transcript.whisperx[19].start 405.791
transcript.whisperx[19].end 420.812
transcript.whisperx[19].text 當時沒有被列入 被納入考慮 沒有納入大家的一個討論那不如就是說 趁這一次的機會趁這一次的機會 也是滿足人民的期待來回應川普的要求部長你的看法
transcript.whisperx[20].start 422.045
transcript.whisperx[20].end 436.524
transcript.whisperx[20].text 各種情境以及運營的方案都會在我們的討論裡面而且也涉及到未來的一個洽商跟談判日本韓國的稅率都比我們低日本甚至零利率
transcript.whisperx[21].start 438.854
transcript.whisperx[21].end 465.587
transcript.whisperx[21].text 可是我們台灣現在的進口車已經超過50%以上在台灣市售的這些車輛但是我們買車卻要以不同的價格在美國買一部車可能90萬在台灣買要100多萬那如果更高的那差距又更多 對不對所以我們台灣購車是剛性的需求每個家庭都要有車
transcript.whisperx[22].start 466.847
transcript.whisperx[22].end 490.119
transcript.whisperx[22].text 我們家沒有捷運我們整個台中市只有一條捷運目前所以沒有車是不行的對不對那買車這個是剛性的需求所以必須要有車那現在台灣被納入這個黑名單我覺得現在就是改革最好的時機所以在這邊跟部長反映就是說這個降低進口車關稅是全民的心聲所以
transcript.whisperx[23].start 490.979
transcript.whisperx[23].end 519.654
transcript.whisperx[23].text 提出降稅的方案給我們也在現在這個時機來因應整個對美國的一個粗糙的一個我們長期對美國粗糙那現在做一個調整也可以符合人民的期待趁這個機會可不可以了解委員非常關心這個議題也有其他委員都關心我想這個關稅也涉及到我們整個國內的產業的發展以及消費者的一個權益這個部分委員的建議我們都會納入研議是
transcript.whisperx[24].start 520.285
transcript.whisperx[24].end 527.577
transcript.whisperx[24].text 好的 謝謝部長 謝謝好 謝謝顏委員的資訊 下一位請廖先生委員資訊