iVOD / 159750

Field Value
IVOD_ID 159750
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159750
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T12:44:54+08:00
結束時間 2025-03-27T12:52:45+08:00
影片長度 00:07:51
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db90093ac639f9e637d061a80f058510e45ac3cf129e64e549d19d7dcd980b23cef445ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 12:44:54 - 12:52:45
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.25034375
transcript.pyannote[0].end 0.90846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 2.54534375
transcript.pyannote[1].end 2.91659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 3.18659375
transcript.pyannote[2].end 5.24534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 5.61659375
transcript.pyannote[3].end 6.69659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 7.18596875
transcript.pyannote[4].end 8.67096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 9.04221875
transcript.pyannote[5].end 9.93659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 10.25721875
transcript.pyannote[6].end 10.67909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 11.25284375
transcript.pyannote[7].end 11.50596875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 11.50596875
transcript.pyannote[8].end 11.52284375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 15.13409375
transcript.pyannote[9].end 16.29846875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 17.12534375
transcript.pyannote[10].end 18.40784375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 22.99784375
transcript.pyannote[11].end 24.49971875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 41.18909375
transcript.pyannote[12].end 46.60596875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 45.05346875
transcript.pyannote[13].end 45.42471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 46.97721875
transcript.pyannote[14].end 47.68596875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 47.98971875
transcript.pyannote[15].end 53.38971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 51.60096875
transcript.pyannote[16].end 52.61346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 53.54159375
transcript.pyannote[17].end 54.23346875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 55.54971875
transcript.pyannote[18].end 57.50721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 58.97534375
transcript.pyannote[19].end 60.29159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 61.60784375
transcript.pyannote[20].end 65.18534375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 64.47659375
transcript.pyannote[21].end 64.93221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 65.74221875
transcript.pyannote[22].end 70.02846875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 65.87721875
transcript.pyannote[23].end 65.97846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 65.97846875
transcript.pyannote[24].end 66.51846875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 70.56846875
transcript.pyannote[25].end 72.64409375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 73.15034375
transcript.pyannote[26].end 85.46909375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 75.41159375
transcript.pyannote[27].end 75.44534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 85.68846875
transcript.pyannote[28].end 88.75971875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 86.12721875
transcript.pyannote[29].end 86.93721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 89.26596875
transcript.pyannote[30].end 90.46409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 90.81846875
transcript.pyannote[31].end 92.72534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 92.84346875
transcript.pyannote[32].end 94.12596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 94.51409375
transcript.pyannote[33].end 95.18909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 95.50971875
transcript.pyannote[34].end 96.16784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 96.91034375
transcript.pyannote[35].end 98.10846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 99.55971875
transcript.pyannote[36].end 102.05721875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 102.86721875
transcript.pyannote[37].end 103.93034375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 104.18346875
transcript.pyannote[38].end 107.40659375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 108.08159375
transcript.pyannote[39].end 108.87471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 109.21221875
transcript.pyannote[40].end 110.19096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 110.62971875
transcript.pyannote[41].end 112.33409375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 113.05971875
transcript.pyannote[42].end 113.38034375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 114.02159375
transcript.pyannote[43].end 117.09284375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 118.00409375
transcript.pyannote[44].end 119.13471875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 120.11346875
transcript.pyannote[45].end 120.60284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 121.64909375
transcript.pyannote[46].end 123.52221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 123.87659375
transcript.pyannote[47].end 125.81721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 126.07034375
transcript.pyannote[48].end 129.20909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 129.59721875
transcript.pyannote[49].end 136.76909375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 137.19096875
transcript.pyannote[50].end 140.61659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 140.92034375
transcript.pyannote[51].end 144.83534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 145.34159375
transcript.pyannote[52].end 145.64534375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 146.67471875
transcript.pyannote[53].end 151.33221875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 151.53471875
transcript.pyannote[54].end 151.92284375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 153.12096875
transcript.pyannote[55].end 157.64346875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 158.43659375
transcript.pyannote[56].end 163.29659375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 163.76909375
transcript.pyannote[57].end 166.50284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 167.04284375
transcript.pyannote[58].end 169.11846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 169.65846875
transcript.pyannote[59].end 173.20221875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 173.33721875
transcript.pyannote[60].end 177.52221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 178.28159375
transcript.pyannote[61].end 180.01971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 180.22221875
transcript.pyannote[62].end 181.42034375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 182.19659375
transcript.pyannote[63].end 184.35659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 184.64346875
transcript.pyannote[64].end 184.96409375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 184.96409375
transcript.pyannote[65].end 192.00096875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 192.03471875
transcript.pyannote[66].end 192.06846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 192.18659375
transcript.pyannote[67].end 194.59971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 194.59971875
transcript.pyannote[68].end 195.94971875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 194.61659375
transcript.pyannote[69].end 207.01971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 207.20534375
transcript.pyannote[70].end 211.69409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 211.96409375
transcript.pyannote[71].end 213.83721875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 214.19159375
transcript.pyannote[72].end 214.98471875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 215.54159375
transcript.pyannote[73].end 220.14846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 220.38471875
transcript.pyannote[74].end 223.33784375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 224.19846875
transcript.pyannote[75].end 227.91096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 228.53534375
transcript.pyannote[76].end 229.51409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 229.85159375
transcript.pyannote[77].end 230.88096875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 231.25221875
transcript.pyannote[78].end 231.65721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 231.87659375
transcript.pyannote[79].end 234.44159375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 233.37846875
transcript.pyannote[80].end 236.14596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 235.28534375
transcript.pyannote[81].end 250.50659375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 246.11909375
transcript.pyannote[82].end 246.30471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 250.87784375
transcript.pyannote[83].end 254.50596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 255.60284375
transcript.pyannote[84].end 256.42971875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 256.78409375
transcript.pyannote[85].end 259.66971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 257.81346875
transcript.pyannote[86].end 258.13409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 260.51346875
transcript.pyannote[87].end 265.35659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 265.45784375
transcript.pyannote[88].end 269.10284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 269.30534375
transcript.pyannote[89].end 278.56971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 278.56971875
transcript.pyannote[90].end 287.66534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 287.93534375
transcript.pyannote[91].end 303.08909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 304.00034375
transcript.pyannote[92].end 314.32784375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 313.21409375
transcript.pyannote[93].end 315.82971875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 315.40784375
transcript.pyannote[94].end 317.48346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 316.69034375
transcript.pyannote[95].end 321.31409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 321.31409375
transcript.pyannote[96].end 321.75284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 322.20846875
transcript.pyannote[97].end 326.22471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 326.44409375
transcript.pyannote[98].end 329.38034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 329.73471875
transcript.pyannote[99].end 330.07221875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 331.18596875
transcript.pyannote[100].end 333.71721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 335.25284375
transcript.pyannote[101].end 336.53534375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 337.71659375
transcript.pyannote[102].end 341.12534375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 342.34034375
transcript.pyannote[103].end 342.62721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 342.96471875
transcript.pyannote[104].end 351.52034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 352.63409375
transcript.pyannote[105].end 353.42721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 353.30909375
transcript.pyannote[106].end 357.44346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 357.25784375
transcript.pyannote[107].end 358.40534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 357.46034375
transcript.pyannote[108].end 359.80596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 360.41346875
transcript.pyannote[109].end 378.48659375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 378.85784375
transcript.pyannote[110].end 382.18221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 378.90846875
transcript.pyannote[111].end 380.64659375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 381.13596875
transcript.pyannote[112].end 381.38909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 382.24971875
transcript.pyannote[113].end 384.59534375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 385.05096875
transcript.pyannote[114].end 387.76784375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 388.69596875
transcript.pyannote[115].end 389.35409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 389.99534375
transcript.pyannote[116].end 392.91471875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 390.90659375
transcript.pyannote[117].end 391.09221875
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 391.09221875
transcript.pyannote[118].end 391.73346875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 393.33659375
transcript.pyannote[119].end 394.11284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 394.97346875
transcript.pyannote[120].end 397.15034375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 396.25596875
transcript.pyannote[121].end 397.09971875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 397.63971875
transcript.pyannote[122].end 398.68596875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 399.27659375
transcript.pyannote[123].end 401.09909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 401.31846875
transcript.pyannote[124].end 404.81159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 404.87909375
transcript.pyannote[125].end 406.07721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 407.83221875
transcript.pyannote[126].end 409.94159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 410.39721875
transcript.pyannote[127].end 413.80596875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 410.41409375
transcript.pyannote[128].end 410.83596875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 414.29534375
transcript.pyannote[129].end 414.76784375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 415.51034375
transcript.pyannote[130].end 415.52721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 415.52721875
transcript.pyannote[131].end 416.82659375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 415.54409375
transcript.pyannote[132].end 416.62409375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 416.99534375
transcript.pyannote[133].end 417.83909375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 418.09221875
transcript.pyannote[134].end 419.45909375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 419.74596875
transcript.pyannote[135].end 420.35346875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 420.96096875
transcript.pyannote[136].end 422.27721875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 422.80034375
transcript.pyannote[137].end 425.78721875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 423.30659375
transcript.pyannote[138].end 428.08221875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 428.50409375
transcript.pyannote[139].end 430.49534375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 428.89221875
transcript.pyannote[140].end 431.99721875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 432.84096875
transcript.pyannote[141].end 433.27971875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 433.88721875
transcript.pyannote[142].end 437.07659375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 433.90409375
transcript.pyannote[143].end 435.59159375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 437.07659375
transcript.pyannote[144].end 450.96471875
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 441.36284375
transcript.pyannote[145].end 441.86909375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 448.36596875
transcript.pyannote[146].end 449.78346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 450.17159375
transcript.pyannote[147].end 451.70721875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 452.48346875
transcript.pyannote[148].end 452.92221875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 452.92221875
transcript.pyannote[149].end 455.60534375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 454.17096875
transcript.pyannote[150].end 455.65596875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 455.74034375
transcript.pyannote[151].end 459.38534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 456.98909375
transcript.pyannote[152].end 459.35159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 459.38534375
transcript.pyannote[153].end 459.97596875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 459.97596875
transcript.pyannote[154].end 460.09409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 460.09409375
transcript.pyannote[155].end 460.11096875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 460.11096875
transcript.pyannote[156].end 460.14471875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 460.14471875
transcript.pyannote[157].end 460.48221875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 460.48221875
transcript.pyannote[158].end 460.97159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 461.51159375
transcript.pyannote[159].end 461.52846875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 461.52846875
transcript.pyannote[160].end 462.27096875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 462.62534375
transcript.pyannote[161].end 466.13534375
transcript.whisperx[0].start 0.329
transcript.whisperx[0].end 9.117
transcript.whisperx[0].text 詹宇宇 詹宇宇 詹宇宇委員他不發言 下一位請邱志偉委員諮詢請
transcript.whisperx[1].start 41.718
transcript.whisperx[1].end 64.917
transcript.whisperx[1].text 謝謝主席 是不是有請央行副總裁央行的主副總裁財政部 那個經濟部的次長跟農業部的次長經濟部江次長經濟部還有農業部農業部的杜次長總裁我仔細看您的報告副總裁
transcript.whisperx[2].start 65.919
transcript.whisperx[2].end 91.84
transcript.whisperx[2].text 直接看中央銀行的報告第二頁跟第三頁幾個敘述讓我覺得比較印象深刻這可能是未來美國要對台灣實行關稅的相關依據就是說台灣對美國貿易粗糙較大需審慎因應可能的貿易爭端你第二頁也提到第三頁也提到
transcript.whisperx[3].start 93.201
transcript.whisperx[3].end 120.474
transcript.whisperx[3].text 第三頁的下半段所以這個問題就是說台灣對美國的貿易粗糙較大那你要避免美國因為粗糙較大對你執行關稅加強關稅所以你必須要把粗糙的規模縮小對不對粗糙的規模縮小大概就是減少出口跟增加進口沒有錯吧
transcript.whisperx[4].start 121.701
transcript.whisperx[4].end 144.631
transcript.whisperx[4].text 有可能就是減少出口跟增加進口減少出口我又看到經濟部的報告經濟部報告怎麼寫呢台美之間的這個順差是反映供應鏈的移轉這供應鏈移轉是一個現在進行式而且會逐漸加大所以對美國的出口不可能減少只會增加預備
transcript.whisperx[5].start 146.721
transcript.whisperx[5].end 157.459
transcript.whisperx[5].text 那你唯一可以降低這個粗糙規模就是增加進口 對不對政策手段啦 增加進口好 我提到增加進口有很多部位都有提到
transcript.whisperx[6].start 158.499
transcript.whisperx[6].end 180.953
transcript.whisperx[6].text 要加強對美的採購從國防部的軍事採購那為什麼請經濟部跟農業部呢我先請教一下經濟部江次長您也是國貿局出身未來戰略進步立場怎麼樣增加進口對美國的進口有哪些品項
transcript.whisperx[7].start 182.253
transcript.whisperx[7].end 191.219
transcript.whisperx[7].text 是可以朝這方向去努力的是 各位分兩個部分來報告第一個呢是我們希望能夠增加對於美國天然氣的
transcript.whisperx[8].start 192.304
transcript.whisperx[8].end 219.198
transcript.whisperx[8].text 採購所以在天然氣是一項另外我們也有詢問我們相關業者的意見可能會針對我們的業者對於這個能源的產品航太的產品等等都有興趣所以經濟部規劃在下半年的時候會在美國的南部跟讓我們的潛在的買主跟美國的供應商來做這個
transcript.whisperx[9].start 220.938
transcript.whisperx[9].end 244.89
transcript.whisperx[9].text 接洽來做洽談會你們現在行政院底下有一個台美經貿小組在做因應對不對是那您是成員嗎還是不成員我們這是跨部會的單位所以是動態的檢討你必須跟美國讓他們了解跟他們溝通台灣在未來針對哪些品項可能會加強對美國的採購
transcript.whisperx[10].start 246.11
transcript.whisperx[10].end 274.238
transcript.whisperx[10].text 以降低對美國的這個這個粗糙規模您剛剛所提到的航太產品也可能能源 天然氣等等那還有沒有其他的呢因為這個如果有國家機密就不用講了對 這些都是可能採購的大象這是也是經濟部規劃在下半年在美國辦理的一個一個重要的活動那至於呢比較細項的部分因為這個涉及到未來跟美國進行談判
transcript.whisperx[11].start 275.003
transcript.whisperx[11].end 302.945
transcript.whisperx[11].text 所以細項的部分我們就不便對外說明好 那你要降低到多少規模比如說日本跟南韓是我們主要競爭對手我們的初超是大概740億日本是685 南韓是660如果我們降到跟南韓日本水準美國會不會就比較對我們未來的關稅會用比較和緩的方式呢
transcript.whisperx[12].start 304.022
transcript.whisperx[12].end 333.199
transcript.whisperx[12].text 跟委員報告因為我們現在還是要看這個4月2號的報告出來之後因為他現在還不太確定到底會對哪些國家或者哪些產品我想請教一下有沒有沙盤推演有我們有進行沙盤推演各種樣態各種他的這個做法策略都有沙盤推演有我們也有去研究競爭對手國的相關的產品項目你所謂競爭對手國就是日本韓國跟中國嗎是但是我們的粗糙的規模都比他們還大
transcript.whisperx[13].start 335.267
transcript.whisperx[13].end 359.45
transcript.whisperx[13].text 我說你日本韓國啦對但是呢韓國他比較集中在特定的產業好我只要確定你們都有相關的準備就好了好謝謝經濟部次長另外那個農業部杜次長是委員好農產品也是農產品是美國對我們出超多啦對28億美元那未來有可能再增加嗎
transcript.whisperx[14].start 361.716
transcript.whisperx[14].end 387.337
transcript.whisperx[14].text 應該這樣講其實全球的氣候變遷各國因為我們主要進口的最大宗單是黃小玉那全世界的氣候變遷我想對我們畜牧產業能夠有長期的佈局應該也是有好處所以我們的飼料業者這些黃豆小麥玉米的進口業者他們是有這樣子的規劃是為了穩定供應黃小玉的部分量會再增加他們正在評估那品項呢應該也是黃豆玉米這些必要的品項
transcript.whisperx[15].start 390.473
transcript.whisperx[15].end 413.482
transcript.whisperx[15].text 這個主席啊 再給我35秒就好了35秒央行跟財經部會 央行跟財經部會所謂的美女所作 骯髒事故事上這不是官方的我想副總裁這個所謂骯髒事故 這不是官方的文字嘛 對不對
transcript.whisperx[16].start 415.738
transcript.whisperx[16].end 431.662
transcript.whisperx[16].text 這是媒體文字嗎?不是,應該是那個...2015是官方文字還是媒體文字?那個有一個接受新聞訪問的時候才正部長不是正式的官方文字嘛,對不對?
transcript.whisperx[17].start 434.62
transcript.whisperx[17].end 451.533
transcript.whisperx[17].text 不是官方用的文字是在對啦 透露出有可能的一個方向有可能有朝向這個對我們增加關稅那未來我們受到衝擊哪些重要的品項你們可能要問以稠薄先去了解時間超過很多了
transcript.whisperx[18].start 452.64
transcript.whisperx[18].end 452.86
transcript.whisperx[18].text 謝謝邱委員的諮詢