iVOD / 159732

Field Value
IVOD_ID 159732
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159732
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T12:21:07+08:00
結束時間 2025-03-27T12:33:46+08:00
影片長度 00:12:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900ecc649297c87f66b1a80f058510e45ac9b62a44c83059aafc7b66ba030a8f37c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 12:21:07 - 12:33:46
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.04784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 0.08159375
transcript.pyannote[1].end 1.87034375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 1.87034375
transcript.pyannote[2].end 2.03909375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 2.03909375
transcript.pyannote[3].end 6.02159375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 7.01721875
transcript.pyannote[4].end 9.32909375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 8.58659375
transcript.pyannote[5].end 9.09284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 9.68346875
transcript.pyannote[6].end 11.35409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 11.35409375
transcript.pyannote[7].end 11.74221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.61971875
transcript.pyannote[8].end 14.98221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 14.98221875
transcript.pyannote[9].end 15.96096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 15.96096875
transcript.pyannote[10].end 16.11284375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 17.24346875
transcript.pyannote[11].end 17.98596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 18.25596875
transcript.pyannote[12].end 18.96471875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 19.50471875
transcript.pyannote[13].end 28.83659375
transcript.pyannote[14].speaker SPEAKER_05
transcript.pyannote[14].start 20.33159375
transcript.pyannote[14].end 21.29346875
transcript.pyannote[15].speaker SPEAKER_06
transcript.pyannote[15].start 27.95909375
transcript.pyannote[15].end 28.07721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 28.07721875
transcript.pyannote[16].end 28.12784375
transcript.pyannote[17].speaker SPEAKER_06
transcript.pyannote[17].start 28.12784375
transcript.pyannote[17].end 28.16159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 28.16159375
transcript.pyannote[18].end 28.17846875
transcript.pyannote[19].speaker SPEAKER_06
transcript.pyannote[19].start 28.17846875
transcript.pyannote[19].end 28.19534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 28.19534375
transcript.pyannote[20].end 28.24596875
transcript.pyannote[21].speaker SPEAKER_06
transcript.pyannote[21].start 28.24596875
transcript.pyannote[21].end 28.29659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 28.83659375
transcript.pyannote[22].end 29.52846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 28.98846875
transcript.pyannote[23].end 30.06846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 31.70534375
transcript.pyannote[24].end 33.54471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 34.03409375
transcript.pyannote[25].end 34.91159375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 35.53596875
transcript.pyannote[26].end 39.41721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 39.55221875
transcript.pyannote[27].end 43.65284375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 44.24346875
transcript.pyannote[28].end 46.50471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 47.63534375
transcript.pyannote[29].end 48.36096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 50.80784375
transcript.pyannote[30].end 51.34784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 51.53346875
transcript.pyannote[31].end 52.79909375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 54.25034375
transcript.pyannote[32].end 55.56659375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 56.44409375
transcript.pyannote[33].end 57.13596875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 57.72659375
transcript.pyannote[34].end 58.58721875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 59.44784375
transcript.pyannote[35].end 60.46034375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 61.37159375
transcript.pyannote[36].end 61.99596875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 62.38409375
transcript.pyannote[37].end 63.26159375
transcript.pyannote[38].speaker SPEAKER_04
transcript.pyannote[38].start 65.08409375
transcript.pyannote[38].end 68.08784375
transcript.pyannote[39].speaker SPEAKER_04
transcript.pyannote[39].start 68.49284375
transcript.pyannote[39].end 75.41159375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 75.14159375
transcript.pyannote[40].end 75.51284375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 75.79971875
transcript.pyannote[41].end 78.28034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 78.65159375
transcript.pyannote[42].end 79.86659375
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 81.63846875
transcript.pyannote[43].end 84.35534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 84.81096875
transcript.pyannote[44].end 85.26659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 86.00909375
transcript.pyannote[45].end 89.53596875
transcript.pyannote[46].speaker SPEAKER_04
transcript.pyannote[46].start 90.17721875
transcript.pyannote[46].end 94.83471875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 95.47596875
transcript.pyannote[47].end 96.47159375
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 97.09596875
transcript.pyannote[48].end 104.01471875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 102.52971875
transcript.pyannote[49].end 107.54159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 107.91284375
transcript.pyannote[50].end 112.90784375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 113.48159375
transcript.pyannote[51].end 114.47721875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 114.88221875
transcript.pyannote[52].end 116.87346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 117.22784375
transcript.pyannote[53].end 118.00409375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 119.26971875
transcript.pyannote[54].end 121.36221875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 121.53096875
transcript.pyannote[55].end 123.55596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 123.75846875
transcript.pyannote[56].end 125.91846875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 126.89721875
transcript.pyannote[57].end 128.21346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 129.19221875
transcript.pyannote[58].end 130.27221875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 131.53784375
transcript.pyannote[59].end 133.78221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 133.96784375
transcript.pyannote[60].end 135.80721875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 136.22909375
transcript.pyannote[61].end 137.54534375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 138.18659375
transcript.pyannote[62].end 138.52409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 139.16534375
transcript.pyannote[63].end 140.02596875
transcript.pyannote[64].speaker SPEAKER_05
transcript.pyannote[64].start 142.00034375
transcript.pyannote[64].end 153.61034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 153.64409375
transcript.pyannote[65].end 154.99409375
transcript.pyannote[66].speaker SPEAKER_05
transcript.pyannote[66].start 155.19659375
transcript.pyannote[66].end 155.97284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 155.97284375
transcript.pyannote[67].end 156.00659375
transcript.pyannote[68].speaker SPEAKER_05
transcript.pyannote[68].start 156.00659375
transcript.pyannote[68].end 156.02346875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 156.02346875
transcript.pyannote[69].end 157.82909375
transcript.pyannote[70].speaker SPEAKER_05
transcript.pyannote[70].start 156.04034375
transcript.pyannote[70].end 156.22596875
transcript.pyannote[71].speaker SPEAKER_05
transcript.pyannote[71].start 157.62659375
transcript.pyannote[71].end 158.09909375
transcript.pyannote[72].speaker SPEAKER_05
transcript.pyannote[72].start 158.47034375
transcript.pyannote[72].end 163.17846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 163.31346875
transcript.pyannote[73].end 165.82784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 166.35096875
transcript.pyannote[74].end 177.01596875
transcript.pyannote[75].speaker SPEAKER_05
transcript.pyannote[75].start 166.85721875
transcript.pyannote[75].end 167.27909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 167.27909375
transcript.pyannote[76].end 167.41409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 177.96096875
transcript.pyannote[77].end 208.65659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 207.77909375
transcript.pyannote[78].end 211.05284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 211.93034375
transcript.pyannote[79].end 214.78221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 215.10284375
transcript.pyannote[80].end 216.11534375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 216.41909375
transcript.pyannote[81].end 220.95846875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 222.47721875
transcript.pyannote[82].end 225.78471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 226.20659375
transcript.pyannote[83].end 226.81409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 227.16846875
transcript.pyannote[84].end 228.38346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 228.70409375
transcript.pyannote[85].end 229.90221875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 230.49284375
transcript.pyannote[86].end 230.79659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 231.85971875
transcript.pyannote[87].end 233.42909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 236.06159375
transcript.pyannote[88].end 237.24284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 237.51284375
transcript.pyannote[89].end 239.67284375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 239.97659375
transcript.pyannote[90].end 249.30846875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 250.11846875
transcript.pyannote[91].end 262.47096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 261.61034375
transcript.pyannote[92].end 263.60159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 263.60159375
transcript.pyannote[93].end 267.75284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 267.29721875
transcript.pyannote[94].end 269.92971875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 270.57096875
transcript.pyannote[95].end 273.18659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 272.52846875
transcript.pyannote[96].end 273.27096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 273.43971875
transcript.pyannote[97].end 275.07659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 275.05971875
transcript.pyannote[98].end 275.88659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 276.30846875
transcript.pyannote[99].end 277.01721875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 277.23659375
transcript.pyannote[100].end 278.60346875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 280.32471875
transcript.pyannote[101].end 287.98596875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 289.09971875
transcript.pyannote[102].end 290.19659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 290.01096875
transcript.pyannote[103].end 291.02346875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 291.98534375
transcript.pyannote[104].end 293.94284375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 294.98909375
transcript.pyannote[105].end 295.68096875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 296.18721875
transcript.pyannote[106].end 296.76096875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 297.30096875
transcript.pyannote[107].end 298.51596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 298.63409375
transcript.pyannote[108].end 300.25409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 301.01346875
transcript.pyannote[109].end 301.67159375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 302.81909375
transcript.pyannote[110].end 303.25784375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 303.71346875
transcript.pyannote[111].end 322.19159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 322.52909375
transcript.pyannote[112].end 327.87846875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 328.65471875
transcript.pyannote[113].end 335.75909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 335.99534375
transcript.pyannote[114].end 340.58534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 341.09159375
transcript.pyannote[115].end 345.59721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 345.15846875
transcript.pyannote[116].end 348.83721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 349.39409375
transcript.pyannote[117].end 354.55784375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 355.46909375
transcript.pyannote[118].end 358.77659375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 358.89471875
transcript.pyannote[119].end 361.10534375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 361.61159375
transcript.pyannote[120].end 364.32846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 365.08784375
transcript.pyannote[121].end 367.33221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 367.73721875
transcript.pyannote[122].end 369.86346875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 369.96471875
transcript.pyannote[123].end 376.15784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 376.37721875
transcript.pyannote[124].end 382.55346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 384.17346875
transcript.pyannote[125].end 396.84659375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 397.01534375
transcript.pyannote[126].end 399.07409375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 399.25971875
transcript.pyannote[127].end 401.26784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 402.22971875
transcript.pyannote[128].end 403.27596875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 404.03534375
transcript.pyannote[129].end 409.82346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 410.00909375
transcript.pyannote[130].end 412.32096875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 411.88221875
transcript.pyannote[131].end 417.82221875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 416.18534375
transcript.pyannote[132].end 416.65784375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 417.31596875
transcript.pyannote[133].end 419.27346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 419.47596875
transcript.pyannote[134].end 422.80034375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 423.52596875
transcript.pyannote[135].end 426.24284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 428.53784375
transcript.pyannote[136].end 431.23784375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 428.57159375
transcript.pyannote[137].end 429.29721875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 431.65971875
transcript.pyannote[138].end 447.82596875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 450.77909375
transcript.pyannote[139].end 451.30221875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 451.43721875
transcript.pyannote[140].end 452.04471875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 452.04471875
transcript.pyannote[141].end 452.38221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 453.31034375
transcript.pyannote[142].end 455.35221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 455.43659375
transcript.pyannote[143].end 456.55034375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 456.87096875
transcript.pyannote[144].end 457.22534375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 457.39409375
transcript.pyannote[145].end 457.84971875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 458.77784375
transcript.pyannote[146].end 462.16971875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 462.57471875
transcript.pyannote[147].end 462.89534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 463.11471875
transcript.pyannote[148].end 464.16096875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 465.74721875
transcript.pyannote[149].end 466.60784375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 466.84409375
transcript.pyannote[150].end 469.13909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 470.20221875
transcript.pyannote[151].end 470.60721875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 471.11346875
transcript.pyannote[152].end 471.77159375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 472.10909375
transcript.pyannote[153].end 479.04471875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 479.60159375
transcript.pyannote[154].end 481.81221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 482.38596875
transcript.pyannote[155].end 483.85409375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 484.76534375
transcript.pyannote[156].end 486.16596875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 487.63409375
transcript.pyannote[157].end 488.54534375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 489.72659375
transcript.pyannote[158].end 490.46909375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 490.99221875
transcript.pyannote[159].end 494.43471875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 494.60346875
transcript.pyannote[160].end 495.07596875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 496.40909375
transcript.pyannote[161].end 500.12159375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 499.37909375
transcript.pyannote[162].end 505.45409375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 505.97721875
transcript.pyannote[163].end 508.15409375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 511.09034375
transcript.pyannote[164].end 513.63846875
transcript.pyannote[165].speaker SPEAKER_06
transcript.pyannote[165].start 511.83284375
transcript.pyannote[165].end 512.62596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 513.89159375
transcript.pyannote[166].end 516.57471875
transcript.pyannote[167].speaker SPEAKER_06
transcript.pyannote[167].start 516.82784375
transcript.pyannote[167].end 517.01346875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 517.01346875
transcript.pyannote[168].end 523.93221875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 524.37096875
transcript.pyannote[169].end 525.14721875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 525.80534375
transcript.pyannote[170].end 526.63221875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 528.77534375
transcript.pyannote[171].end 529.34909375
transcript.pyannote[172].speaker SPEAKER_06
transcript.pyannote[172].start 529.78784375
transcript.pyannote[172].end 531.22221875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 530.15909375
transcript.pyannote[173].end 531.27284375
transcript.pyannote[174].speaker SPEAKER_06
transcript.pyannote[174].start 531.27284375
transcript.pyannote[174].end 532.15034375
transcript.pyannote[175].speaker SPEAKER_06
transcript.pyannote[175].start 532.30221875
transcript.pyannote[175].end 534.59721875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 535.23846875
transcript.pyannote[176].end 536.52096875
transcript.pyannote[177].speaker SPEAKER_06
transcript.pyannote[177].start 536.89221875
transcript.pyannote[177].end 537.49971875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 538.59659375
transcript.pyannote[178].end 541.41471875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 541.87034375
transcript.pyannote[179].end 544.26659375
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 544.60409375
transcript.pyannote[180].end 544.97534375
transcript.pyannote[181].speaker SPEAKER_06
transcript.pyannote[181].start 545.11034375
transcript.pyannote[181].end 545.85284375
transcript.pyannote[182].speaker SPEAKER_06
transcript.pyannote[182].start 546.25784375
transcript.pyannote[182].end 546.74721875
transcript.pyannote[183].speaker SPEAKER_06
transcript.pyannote[183].start 547.05096875
transcript.pyannote[183].end 550.96596875
transcript.pyannote[184].speaker SPEAKER_06
transcript.pyannote[184].start 551.25284375
transcript.pyannote[184].end 553.37909375
transcript.pyannote[185].speaker SPEAKER_06
transcript.pyannote[185].start 553.69971875
transcript.pyannote[185].end 554.47596875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 554.57721875
transcript.pyannote[186].end 555.26909375
transcript.pyannote[187].speaker SPEAKER_06
transcript.pyannote[187].start 555.60659375
transcript.pyannote[187].end 559.85909375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 560.39909375
transcript.pyannote[188].end 561.69846875
transcript.pyannote[189].speaker SPEAKER_06
transcript.pyannote[189].start 561.98534375
transcript.pyannote[189].end 563.57159375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 562.76159375
transcript.pyannote[190].end 563.30159375
transcript.pyannote[191].speaker SPEAKER_06
transcript.pyannote[191].start 564.26346875
transcript.pyannote[191].end 564.76971875
transcript.pyannote[192].speaker SPEAKER_06
transcript.pyannote[192].start 565.90034375
transcript.pyannote[192].end 568.66784375
transcript.pyannote[193].speaker SPEAKER_06
transcript.pyannote[193].start 568.92096875
transcript.pyannote[193].end 568.93784375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 568.93784375
transcript.pyannote[194].end 568.95471875
transcript.pyannote[195].speaker SPEAKER_06
transcript.pyannote[195].start 568.95471875
transcript.pyannote[195].end 574.35471875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 570.55784375
transcript.pyannote[196].end 570.76034375
transcript.pyannote[197].speaker SPEAKER_06
transcript.pyannote[197].start 574.42221875
transcript.pyannote[197].end 577.00409375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 575.77221875
transcript.pyannote[198].end 579.14721875
transcript.pyannote[199].speaker SPEAKER_06
transcript.pyannote[199].start 577.61159375
transcript.pyannote[199].end 584.66534375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 579.33284375
transcript.pyannote[200].end 580.32846875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 583.68659375
transcript.pyannote[201].end 586.33596875
transcript.pyannote[202].speaker SPEAKER_06
transcript.pyannote[202].start 584.73284375
transcript.pyannote[202].end 589.89659375
transcript.pyannote[203].speaker SPEAKER_06
transcript.pyannote[203].start 590.04846875
transcript.pyannote[203].end 590.65596875
transcript.pyannote[204].speaker SPEAKER_06
transcript.pyannote[204].start 591.07784375
transcript.pyannote[204].end 593.25471875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 592.54596875
transcript.pyannote[205].end 593.50784375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 593.81159375
transcript.pyannote[206].end 594.89159375
transcript.pyannote[207].speaker SPEAKER_06
transcript.pyannote[207].start 595.80284375
transcript.pyannote[207].end 597.99659375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 595.83659375
transcript.pyannote[208].end 596.44409375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 597.91221875
transcript.pyannote[209].end 598.43534375
transcript.pyannote[210].speaker SPEAKER_06
transcript.pyannote[210].start 598.63784375
transcript.pyannote[210].end 598.87409375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 599.05971875
transcript.pyannote[211].end 599.80221875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 601.79346875
transcript.pyannote[212].end 602.72159375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 603.88596875
transcript.pyannote[213].end 604.59471875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 604.86471875
transcript.pyannote[214].end 607.56471875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 607.96971875
transcript.pyannote[215].end 609.43784375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 610.31534375
transcript.pyannote[216].end 610.99034375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 612.35721875
transcript.pyannote[217].end 615.09096875
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 616.42409375
transcript.pyannote[218].end 625.50284375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 625.01346875
transcript.pyannote[219].end 630.78471875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 630.81846875
transcript.pyannote[220].end 639.93096875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 639.35721875
transcript.pyannote[221].end 639.99846875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 640.18409375
transcript.pyannote[222].end 642.46221875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 643.01909375
transcript.pyannote[223].end 643.98096875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 644.47034375
transcript.pyannote[224].end 644.82471875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 645.17909375
transcript.pyannote[225].end 647.45721875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 648.18284375
transcript.pyannote[226].end 649.78596875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 649.90409375
transcript.pyannote[227].end 650.64659375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 651.33846875
transcript.pyannote[228].end 652.18221875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 652.95846875
transcript.pyannote[229].end 654.29159375
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 655.13534375
transcript.pyannote[230].end 656.21534375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 656.40096875
transcript.pyannote[231].end 658.93221875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 659.01659375
transcript.pyannote[232].end 659.03346875
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 659.05034375
transcript.pyannote[233].end 660.26534375
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 661.29471875
transcript.pyannote[234].end 662.27346875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 664.34909375
transcript.pyannote[235].end 665.68221875
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 665.96909375
transcript.pyannote[236].end 669.74909375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 670.25534375
transcript.pyannote[237].end 682.33784375
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 683.02971875
transcript.pyannote[238].end 684.37971875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 684.76784375
transcript.pyannote[239].end 686.01659375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 686.06721875
transcript.pyannote[240].end 687.06284375
transcript.pyannote[241].speaker SPEAKER_01
transcript.pyannote[241].start 687.24846875
transcript.pyannote[241].end 687.73784375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 689.45909375
transcript.pyannote[242].end 689.91471875
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 691.16346875
transcript.pyannote[243].end 691.53471875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 692.24346875
transcript.pyannote[244].end 694.90971875
transcript.pyannote[245].speaker SPEAKER_06
transcript.pyannote[245].start 697.86284375
transcript.pyannote[245].end 704.25846875
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 704.25846875
transcript.pyannote[246].end 704.52846875
transcript.pyannote[247].speaker SPEAKER_06
transcript.pyannote[247].start 704.52846875
transcript.pyannote[247].end 704.56221875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 704.56221875
transcript.pyannote[248].end 705.45659375
transcript.pyannote[249].speaker SPEAKER_06
transcript.pyannote[249].start 704.57909375
transcript.pyannote[249].end 705.05159375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 706.43534375
transcript.pyannote[250].end 717.91034375
transcript.pyannote[251].speaker SPEAKER_03
transcript.pyannote[251].start 719.96909375
transcript.pyannote[251].end 723.00659375
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 720.86346875
transcript.pyannote[252].end 722.33159375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 723.04034375
transcript.pyannote[253].end 731.32596875
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 731.41034375
transcript.pyannote[254].end 734.05971875
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 736.87784375
transcript.pyannote[255].end 738.31221875
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 739.22346875
transcript.pyannote[256].end 741.40034375
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 741.53534375
transcript.pyannote[257].end 744.50534375
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 744.99471875
transcript.pyannote[258].end 746.76659375
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 746.76659375
transcript.pyannote[259].end 748.89284375
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 747.20534375
transcript.pyannote[260].end 747.30659375
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 748.70721875
transcript.pyannote[261].end 750.91784375
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 751.25534375
transcript.pyannote[262].end 751.28909375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 751.28909375
transcript.pyannote[263].end 755.42346875
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 755.79471875
transcript.pyannote[264].end 757.14471875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 757.58346875
transcript.pyannote[265].end 758.73096875
transcript.whisperx[0].start 0.109
transcript.whisperx[0].end 16.051
transcript.whisperx[0].text 特政部的總部長、聯網的主務總裁金管會金管會陳副主委王副局長桂買中興桂買中興陳立青總經理陳總國發高副主委國發會的高副主委
transcript.whisperx[1].start 17.284
transcript.whisperx[1].end 46.232
transcript.whisperx[1].text 以及經濟部江次長經濟部江次長農業部杜次長農業部杜次長最重要的是談判辦公室嚴惠欣嚴副總代表嚴副總好那因為這個議題很嚴肅即將面對的是一個很大的挑戰對台灣的未來可能會影響也許五年十年所以我想請教一下
transcript.whisperx[2].start 47.674
transcript.whisperx[2].end 62.984
transcript.whisperx[2].text 那個莊部長自從美國開啟關稅大戰以後可以說是碎碎不安他都很緊張啊那部長你準備好了嗎
transcript.whisperx[3].start 65.157
transcript.whisperx[3].end 91.032
transcript.whisperx[3].text 跟委員報告,是的,我們每一個部會都盯緊了相關的訊息而且會跟在行政院召開相關的工作小組會議既然你已經準備好了,那我請問你川普到底在想什麼?川普啊,讓美國再次的偉大所以他再次偉大,我們台灣每一年賺美國多少錢?從美國這邊的話,我們是順差700多億的美金
transcript.whisperx[4].start 95.726
transcript.whisperx[4].end 116.602
transcript.whisperx[4].text 這個金額大不大?在和美國的貿易夥伴國裡面,我們是大概排第六名那事實上,你講這個金額,影響周邊就很大比如說央行周邊啊,匯率的問題啊還有我們政企局相關,那我要請教一下是
transcript.whisperx[5].start 119.735
transcript.whisperx[5].end 139.67
transcript.whisperx[5].text 黃副局長嘛好那我請問一下最直接的請問上櫃的是誰陳總經理剛剛有提到啊如果關稅都調高的話汽車零組件大概有什麼行業會直接的影響
transcript.whisperx[6].start 142.092
transcript.whisperx[6].end 165.398
transcript.whisperx[6].text 就我們櫃買中心之前有詢問了一些上櫃的公司大概一些電子零組件有部分的公司會有稍許的影響但是都還在可控範圍之內電子還有呢電子零組件汽車的周邊不會嗎我們部分這部分的公司很少然後對他們的影響也不大好那我請一下黃副局長
transcript.whisperx[7].start 166.431
transcript.whisperx[7].end 176.796
transcript.whisperx[7].text 你們統計過所有1850家上市上櫃公司會因為關稅調整影響的有多少影響的範圍是多大
transcript.whisperx[8].start 177.964
transcript.whisperx[8].end 195.535
transcript.whisperx[8].text 跟委員報告我們之前有透過證交所跟歸買中心去對整個市場1800多家去做問卷調查那目前回來的話自己評估認為說影響會比較重大的大概會有22家左右那22家
transcript.whisperx[9].start 197.156
transcript.whisperx[9].end 219.088
transcript.whisperx[9].text 這個具體的名單我想我們都不便去提供但是現在只知道說這些的話就是剛剛提到的有一些電子產業或是一些汽車難怪我們看到台股現在都萎靡不振因為大家都看到未來的前途坎坷大家害怕那因為這樣的關稅的調整會不會有產業外移的問題我聽到很多的企業企業主說不會動的
transcript.whisperx[10].start 226.28
transcript.whisperx[10].end 249.074
transcript.whisperx[10].text 所以就轉進泰國啊跑到越南嗎那接著請經濟部好了經濟部那剛剛他們都講了嘛江次長你覺得影響的層面有多大這些人最好的建議是去哪裡去泰國好呢還是去越南好
transcript.whisperx[11].start 250.271
transcript.whisperx[11].end 278.44
transcript.whisperx[11].text 報告委員因為這個4月2號的報告還沒有出來所以確切會對哪些特定的產業哪些特定的國家科徵什麼樣的關稅現在還不清楚但是我們之前4月2號是什麼明年是不是不是4月2號他會公佈但是我們已經就各種情況4月2號是指今天的哪一天今年4月2號今天幾號今天是3月27號所以還有幾天下禮拜馬上就到了啊
transcript.whisperx[12].start 281.633
transcript.whisperx[12].end 301.52
transcript.whisperx[12].text 這個時間你應該要做砂盤推演嘛最嚴重他要課多少對各行業你們有沒有統計過比如說汽車周邊的零組件你們的預測你們砂盤推演最高他要課多少關稅提高多少
transcript.whisperx[13].start 303.842
transcript.whisperx[13].end 327.54
transcript.whisperx[13].text 汽車化因為很多都是電子產品其實它是如果是歸類於電子產品資訊業的話它是沒有關稅但是我們一般的汽車的話大概是百分之八汽車零組件是百分之八到百分之十五的關稅這是台灣的相較於美國來得高對 你有沒有算過到十五的話這些廠商的承受能力在哪裡
transcript.whisperx[14].start 328.817
transcript.whisperx[14].end 353.374
transcript.whisperx[14].text 個別的廠商現在都有做我們也交換過意見有些廠商呢其實已經有到國外去佈局那甚至有這個Tesla的供應鏈廠商已經在美國設廠也有一些廠商呢先前也有到墨西哥去設廠好那你剛剛說到國外佈局大概是首選是哪幾國看個別廠商都不一定那有去因為先前有這個
transcript.whisperx[15].start 355.509
transcript.whisperx[15].end 382.231
transcript.whisperx[15].text USMCA的優惠所以我們有很多的廠商電子業相關廠商是在墨西哥在墨西哥佈局的那昨天川普政府有公布232對於相關的這個汽車等等的產品要課徵25%的關稅但是墨西哥跟加拿大是豁免的那請問一下次長這個相關影響的產業別會有多少大概多少家公司
transcript.whisperx[16].start 384.212
transcript.whisperx[16].end 402.809
transcript.whisperx[16].text 因為昨天公布是只針對汽車業但是呢4月2號的報告出來之後我們還必須要去了解川普政府他會選哪些特定的產業或者是哪些特定的國家你們今天有盤點過嘛假設他強度弄到最強情況是怎麼樣
transcript.whisperx[17].start 404.713
transcript.whisperx[17].end 426.028
transcript.whisperx[17].text 強度最強的話那應該就是全世界最相關的國家都會被科證所以我們都也是會比照啊是不是而且我們也會去看其他對手國我們的競爭相關產品競爭那你要跟他講啊你這邊跟我們科其他國家一樣的關稅你跟他可不可以宣布台積電就不要去啦
transcript.whisperx[18].start 428.678
transcript.whisperx[18].end 447.742
transcript.whisperx[18].text 你做生意你要懂得談判嘛你台積電拿所謂一千億美元公佈兩千億美元那就六兆多啊你不能說這個也要那個也要通通他都要買東西拿去那我們這樣怎麼談判呢來 談判的代表是誰那談判的代表看起來都是漂漂亮亮的
transcript.whisperx[19].start 458.84
transcript.whisperx[19].end 485.941
transcript.whisperx[19].text 稱讚你的話大概就是美若天仙大概就是柔若是花你們談判你起碼找個像老柯一樣來談吧對不對談一談談不好說不定還可以把他的秘密武器拿出來敲一敲其實是蠻震驚的啊你們要有這樣的一個魄力啊好 談判代表是嚴富總你準備好了嗎
transcript.whisperx[20].start 489.938
transcript.whisperx[20].end 507.871
transcript.whisperx[20].text 我們包括經貿辦在內的所有的行政團隊都準備好了真的因為我們一直密集的召開會議都有做各種的你沒有談到一條啊你跟他講說台積電都過去了我們能給的都給的啊還有我跟你講一個來央行
transcript.whisperx[21].start 511.124
transcript.whisperx[21].end 537.636
transcript.whisperx[21].text 央行 剛剛有人提到說去 楊總裁去是好奇啊事實上 你知道長期以來啊美國每次在困難的時候賣不出去的東西房地美 房地美 叫誰來買 央行有沒有買你回答 點頭是什麼意思但是 我們持有的比例現在是降低的有沒有買 央行有沒有買現在有吧
transcript.whisperx[22].start 538.632
transcript.whisperx[22].end 564.566
transcript.whisperx[22].text 每次美國有難的時候台灣就站出來第一個都力挺啊我們進一步的資料就是央行主要買的是美國政府的債券買了多少目前比例好像是92%左右總金額是多少美金多少
transcript.whisperx[23].start 566.133
transcript.whisperx[23].end 594.694
transcript.whisperx[23].text 我們現在的外匯存底是我出鍋講一下但比較正確的我回去查一下因為那水準在變化外匯存底如果目前來講大概是五千七百多億我們跟他買了五千多億的那個是外匯存底乘上比例如果是百分之九十大概大概是四千多億好所有那個談判代表
transcript.whisperx[24].start 595.865
transcript.whisperx[24].end 614.825
transcript.whisperx[24].text 我們仔細資料到時候再提供給你麻煩那個嚴副總所以你談判的時候你要有底氣啊你要有籌碼啊美國除了要拿台積電他還要拿什麼
transcript.whisperx[25].start 616.679
transcript.whisperx[25].end 643.647
transcript.whisperx[25].text 我想美國的政策很明白他就是要強化他的經濟安全國家安全所以台積電只是他確保供應鏈安全的一環哪一家公司是他的安全的一環除了台積電還有哪一家應該是說他覺得的關鍵產業都是他的經濟安全的一環所以晶片是一種那其他的礦場稀土也都是他所關鍵的所以你們在談判的時候要整理一下
transcript.whisperx[26].start 645.27
transcript.whisperx[26].end 659.874
transcript.whisperx[26].text 比如說你要請教一下央行總裁啊你如果給我課關稅你要向加拿大總理的那個氣魄談判不要輸嘛你見面看到川普你就輸一半那怎麼談下去咧強硬一點好不好
transcript.whisperx[27].start 664.383
transcript.whisperx[27].end 687.676
transcript.whisperx[27].text 你請教央行如果他要用高關稅我們已經對他們很好了要買武器就買武器要叫什麼就做什麼我們全力配合你還要一致性的跟其他國家來對我們課高關稅這是不公平的你就帶一句那那個外匯存體買美國國債買多少你再講一次央行央行多少
transcript.whisperx[28].start 692.401
transcript.whisperx[28].end 717.637
transcript.whisperx[28].text 買了多少億的美國公債 來你說我們剛才講目前持有的美國公債部會是外匯存底的九成九成是多少那有四千多億的美元啊對 四千多億好 就是這句話 那個台灣代表你說你可以弄高關稅我四千多億的美國的公債我全部贖回
transcript.whisperx[29].start 723.135
transcript.whisperx[29].end 734.33
transcript.whisperx[29].text 本席的用心理解請你們多多站在所有產業的未來的發展的辛苦方面多多考量另外那個什麼 健康食品的部分現在人口老化
transcript.whisperx[30].start 739.324
transcript.whisperx[30].end 745.429
transcript.whisperx[30].text 吃的健康食品都是老人啊結果負擔的成本是那麼高你們趕緊檢討一下吧