iVOD / 159695

Field Value
IVOD_ID 159695
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159695
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T10:39:48+08:00
結束時間 2025-03-27T10:50:30+08:00
影片長度 00:10:42
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db9003b2bc2c7469845e51a80f058510e45acb9e3eaef4bc7903317f2b9852dd2beff5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林思銘
委員發言時間 10:39:48 - 10:50:30
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.43596875
transcript.pyannote[0].end 0.92534375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.04346875
transcript.pyannote[1].end 1.98846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 2.03909375
transcript.pyannote[2].end 2.15721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 2.15721875
transcript.pyannote[3].end 2.22471875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 2.22471875
transcript.pyannote[4].end 2.32596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 6.47721875
transcript.pyannote[5].end 7.25346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 7.35471875
transcript.pyannote[6].end 21.15846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.68159375
transcript.pyannote[7].end 43.68659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 43.95659375
transcript.pyannote[8].end 49.93034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 50.47034375
transcript.pyannote[9].end 53.37284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 54.09846875
transcript.pyannote[10].end 58.92471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 59.38034375
transcript.pyannote[11].end 62.16471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 62.43471875
transcript.pyannote[12].end 64.49346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 64.93221875
transcript.pyannote[13].end 71.47971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 71.61471875
transcript.pyannote[14].end 73.15034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 73.77471875
transcript.pyannote[15].end 77.01471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 77.75721875
transcript.pyannote[16].end 78.68534375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 77.99346875
transcript.pyannote[17].end 78.06096875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 78.38159375
transcript.pyannote[18].end 83.05596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 83.22471875
transcript.pyannote[19].end 92.91096875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 86.68409375
transcript.pyannote[20].end 87.08909375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 93.16409375
transcript.pyannote[21].end 95.40846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 95.72909375
transcript.pyannote[22].end 98.88471875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 99.15471875
transcript.pyannote[23].end 100.30221875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 100.63971875
transcript.pyannote[24].end 109.43159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 109.63409375
transcript.pyannote[25].end 126.30659375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 126.34034375
transcript.pyannote[26].end 128.56784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 128.78721875
transcript.pyannote[27].end 131.80784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 132.29721875
transcript.pyannote[28].end 141.35909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 141.35909375
transcript.pyannote[29].end 141.44346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 141.76409375
transcript.pyannote[30].end 144.04221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 144.76784375
transcript.pyannote[31].end 145.96596875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 147.24846875
transcript.pyannote[32].end 155.24721875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 155.92221875
transcript.pyannote[33].end 160.51221875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 159.92159375
transcript.pyannote[34].end 160.22534375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 160.90034375
transcript.pyannote[35].end 169.97909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 162.80721875
transcript.pyannote[36].end 163.31346875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 168.98346875
transcript.pyannote[37].end 173.77596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 174.16409375
transcript.pyannote[38].end 181.31909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 174.83909375
transcript.pyannote[39].end 175.90221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 176.13846875
transcript.pyannote[40].end 176.52659375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 181.77471875
transcript.pyannote[41].end 185.90909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 186.31409375
transcript.pyannote[42].end 189.21659375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 189.21659375
transcript.pyannote[43].end 197.58659375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 198.07596875
transcript.pyannote[44].end 201.26534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 201.40034375
transcript.pyannote[45].end 203.64471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 203.35784375
transcript.pyannote[46].end 204.70784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 205.21409375
transcript.pyannote[47].end 220.65471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 216.85784375
transcript.pyannote[48].end 217.24596875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 221.38034375
transcript.pyannote[49].end 223.84409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 221.39721875
transcript.pyannote[50].end 222.30846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 223.84409375
transcript.pyannote[51].end 224.01284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 228.48471875
transcript.pyannote[52].end 232.63596875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 229.00784375
transcript.pyannote[53].end 229.66596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 233.19284375
transcript.pyannote[54].end 236.93909375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 233.22659375
transcript.pyannote[55].end 235.57221875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 237.32721875
transcript.pyannote[56].end 242.94659375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 243.26721875
transcript.pyannote[57].end 247.51971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 247.73909375
transcript.pyannote[58].end 250.05096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 250.35471875
transcript.pyannote[59].end 267.71909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 270.58784375
transcript.pyannote[60].end 271.06034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 271.80284375
transcript.pyannote[61].end 275.02596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 275.34659375
transcript.pyannote[62].end 275.98784375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 276.56159375
transcript.pyannote[63].end 310.44659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 282.95721875
transcript.pyannote[64].end 284.52659375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 284.83034375
transcript.pyannote[65].end 289.69034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 290.17971875
transcript.pyannote[66].end 290.38221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 296.81159375
transcript.pyannote[67].end 297.16596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 310.91909375
transcript.pyannote[68].end 327.99659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 328.11471875
transcript.pyannote[69].end 337.96971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 330.51096875
transcript.pyannote[70].end 330.84846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 338.27346875
transcript.pyannote[71].end 349.57971875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 349.98471875
transcript.pyannote[72].end 350.98034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 351.45284375
transcript.pyannote[73].end 351.84096875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 352.43159375
transcript.pyannote[74].end 355.35096875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 354.86159375
transcript.pyannote[75].end 354.87846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 354.87846875
transcript.pyannote[76].end 355.78971875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 355.73909375
transcript.pyannote[77].end 357.46034375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 357.74721875
transcript.pyannote[78].end 360.10971875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 360.29534375
transcript.pyannote[79].end 367.19721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 365.37471875
transcript.pyannote[80].end 365.94846875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 367.23096875
transcript.pyannote[81].end 368.29409375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 368.74971875
transcript.pyannote[82].end 370.15034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 370.53846875
transcript.pyannote[83].end 373.82909375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 373.82909375
transcript.pyannote[84].end 384.02159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 374.79096875
transcript.pyannote[85].end 376.91721875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 378.45284375
transcript.pyannote[86].end 378.55409375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 384.59534375
transcript.pyannote[87].end 387.37971875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 387.81846875
transcript.pyannote[88].end 389.10096875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 389.53971875
transcript.pyannote[89].end 391.69971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 391.71659375
transcript.pyannote[90].end 393.38721875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 394.14659375
transcript.pyannote[91].end 396.22221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 397.01534375
transcript.pyannote[92].end 406.43159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 403.42784375
transcript.pyannote[93].end 403.88346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 406.54971875
transcript.pyannote[94].end 407.93346875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 408.03471875
transcript.pyannote[95].end 412.05096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 412.08471875
transcript.pyannote[96].end 412.92846875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 412.92846875
transcript.pyannote[97].end 413.82284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 413.51909375
transcript.pyannote[98].end 429.73596875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 429.73596875
transcript.pyannote[99].end 430.12409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 430.12409375
transcript.pyannote[100].end 432.33471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 432.33471875
transcript.pyannote[101].end 464.65034375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 435.89534375
transcript.pyannote[102].end 436.99221875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 464.73471875
transcript.pyannote[103].end 469.69596875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 470.06721875
transcript.pyannote[104].end 478.25159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 478.50471875
transcript.pyannote[105].end 490.57034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 490.85721875
transcript.pyannote[106].end 502.93971875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 503.64846875
transcript.pyannote[107].end 503.96909375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 503.96909375
transcript.pyannote[108].end 508.28909375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 508.52534375
transcript.pyannote[109].end 511.52909375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 511.68096875
transcript.pyannote[110].end 512.71034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 512.96346875
transcript.pyannote[111].end 513.40221875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 513.65534375
transcript.pyannote[112].end 527.83034375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 514.58346875
transcript.pyannote[113].end 514.88721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 525.40034375
transcript.pyannote[114].end 545.61659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 545.97096875
transcript.pyannote[115].end 553.07534375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 546.30846875
transcript.pyannote[116].end 547.92846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 553.48034375
transcript.pyannote[117].end 564.49971875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 553.78409375
transcript.pyannote[118].end 554.15534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 565.07346875
transcript.pyannote[119].end 570.35534375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 570.69284375
transcript.pyannote[120].end 584.44596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 581.50971875
transcript.pyannote[121].end 581.76284375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 581.77971875
transcript.pyannote[122].end 581.88096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 583.83846875
transcript.pyannote[123].end 584.41221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 584.44596875
transcript.pyannote[124].end 584.56409375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 584.49659375
transcript.pyannote[125].end 586.42034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 586.84221875
transcript.pyannote[126].end 599.07659375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 588.17534375
transcript.pyannote[127].end 588.19221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 588.19221875
transcript.pyannote[128].end 589.96409375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 589.96409375
transcript.pyannote[129].end 590.08221875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 590.08221875
transcript.pyannote[130].end 590.20034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 590.87534375
transcript.pyannote[131].end 590.92596875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 590.92596875
transcript.pyannote[132].end 591.02721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 591.02721875
transcript.pyannote[133].end 591.56721875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 591.56721875
transcript.pyannote[134].end 591.58409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 591.58409375
transcript.pyannote[135].end 591.61784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 592.59659375
transcript.pyannote[136].end 593.32221875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 600.27471875
transcript.pyannote[137].end 613.97721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 610.88909375
transcript.pyannote[138].end 631.47659375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 632.16846875
transcript.pyannote[139].end 636.92721875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 637.63596875
transcript.pyannote[140].end 640.80846875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 641.12909375
transcript.pyannote[141].end 642.05721875
transcript.whisperx[0].start 0.424
transcript.whisperx[0].end 18.122
transcript.whisperx[0].text 委員 副總代表 請委員好市長 我想我延續剛才李燕秀委員她的一個這個直訊的內容我想我們一直關心說台灣到底會不會被列入我們所謂的骯髒15國the 1315的名單
transcript.whisperx[1].start 21.721
transcript.whisperx[1].end 36.403
transcript.whisperx[1].text 那我想這一次的安昌15國它主要美國所訂的就是對美國的課徵高關稅以及有貿易順差非常大的幾個國家進行管控的與壓力的施加
transcript.whisperx[2].start 37.344
transcript.whisperx[2].end 52.791
transcript.whisperx[2].text 那當然根據媒體的報導台灣有可能會被列入為這個名單之一但是我們剛才一直 李燕雄委員非常關心如果在4月2號以前他就要生效嘛 要公佈嘛那在4月2號以前到底我國
transcript.whisperx[3].start 54.144
transcript.whisperx[3].end 76.645
transcript.whisperx[3].text 跟美國有沒有進行相關的貿易談判或者我們在策略上要做什麼樣的因應能夠避免台灣被列入因為川普昨天對媒體來講可能對一些讓步的國家或者跟他們透過談判他們會把他豁免你認為台灣有可能被豁免嗎透過什麼樣的一個策略來做
transcript.whisperx[4].start 78.46
transcript.whisperx[4].end 90.808
transcript.whisperx[4].text 跟委員報告兩點第一點呢就如同委員所說的這骯髒15國到底是哪些國家現在不確定都是媒體的報導第二點呢因為要等到4月1號整個備忘錄的檢討報告出來之後
transcript.whisperx[5].start 93.188
transcript.whisperx[5].end 109.113
transcript.whisperx[5].text 我們才會知道川普政府會對主要的貿易的對手國採取什麼樣的關稅的措施但是在這個之前因為台美的關係經貿關係非常密切其實從川普還沒有上任之前我們就密切觀察
transcript.whisperx[6].start 109.793
transcript.whisperx[6].end 123.739
transcript.whisperx[6].text 川普的相關的言論然後他上任之後因為台美經貿溝通管道很多不論是我們過去有訪團或者有任何的美國的官員甚至國會議員到台灣來訪我們都會跟他們說明台美經貿關係的重要性以及台灣資通訊產品
transcript.whisperx[7].start 132.541
transcript.whisperx[7].end 143.457
transcript.whisperx[7].text 對於美國的重要性因為其實台灣的這個資通訊的產品之所以會輸美呢最主要也是美國的客戶下的單所以這樣聽起來那個次長你是很樂觀的喔
transcript.whisperx[8].start 147.301
transcript.whisperx[8].end 172.915
transcript.whisperx[8].text 你認為台美的經貿關係現在是溝通無礙非常的暢通美國也很諒解我國的一個處境所以我聽你開這句話你是認為我們不會被列入囉?您的評估我們還是很謹慎因為川普他還沒有公布他這樣的報告但是我們必須利用任何的各種的機會各種的管道所以在4月2號以前我們會進行相關的一些措施囉?會不會?
transcript.whisperx[9].start 174.218
transcript.whisperx[9].end 192.139
transcript.whisperx[9].text 我們會進行溝通因為現在不知道他美國會採取什麼樣的措施還沒有進入談判的階段那就來不及他4月2號之前如果沒有任何進行任何的一個作為他就公佈了你你如何你還要跟他談判報告委員在行政院有一個這個
transcript.whisperx[10].start 194.001
transcript.whisperx[10].end 220.395
transcript.whisperx[10].text 這個台美的專案小組我們有各種可能的方案來進行沙盤推演也研議了各種的應對我想市長我們還是希望台灣不要被列入那該怎麼樣來做談判那幾個項目要做讓步的或是怎麼樣我想我國應該要有積極的一個因應的措施請你們加油接下來請這個央行你請回
transcript.whisperx[11].start 221.653
transcript.whisperx[11].end 222.338
transcript.whisperx[11].text 楊瀾的副總裁
transcript.whisperx[12].start 228.69
transcript.whisperx[12].end 234.794
transcript.whisperx[12].text 副總裁央行去年11月15號也對外表示過台灣續留在美國的匯率操縱觀察名單內將可能會是常態主因是為台灣對美的貿易順差一直擴增而非匯率的問題
transcript.whisperx[13].start 256.508
transcript.whisperx[13].end 267.458
transcript.whisperx[13].text 所以我要請問副總裁如果主要原因是因為雙方的貿易的順差央行是否認為台灣被正式列入為骯髒十五國的名單的機率很大
transcript.whisperx[14].start 270.829
transcript.whisperx[14].end 288.379
transcript.whisperx[14].text 我剛才在報告中已經談到基本上央行被列入匯率操縱的可能性如果跟那些指標是很小的但是是不是會很小的 對不起到目前為止我們溝通
transcript.whisperx[15].start 293.962
transcript.whisperx[15].end 309.195
transcript.whisperx[15].text 管道等等都了解貿易順差到底是什麼原因那美國財政部也很了解這個部分所以我不覺得這個部分會是一個考慮的因素但是在關稅的
transcript.whisperx[16].start 311.016
transcript.whisperx[16].end 327.376
transcript.whisperx[16].text 部分就陳儒剛才各部會講其實他的標準到底最後是不是我們講的貿易順差或關稅稅率會有其他考量這個目前他沒有公佈之前我們是沒有確定的信息
transcript.whisperx[17].start 328.697
transcript.whisperx[17].end 348.846
transcript.whisperx[17].text 當然現在是不確定的狀態但是我們還是要預作因應所以我問你假設性的問題如果台灣真的被列為名單之一美國將會執行的對等關稅那就會攸關我們台灣的進出口到那個時候央行針對台幣對美元的匯率是否會進行必要的調節
transcript.whisperx[18].start 350.449
transcript.whisperx[18].end 366.966
transcript.whisperx[18].text 其實台幣的匯率都是市場供需決定的但是我們在面對這樣的問題金融的穩定性外匯市場的穩定性我們會去觀察那進一步當然
transcript.whisperx[19].start 369.607
transcript.whisperx[19].end 389.972
transcript.whisperx[19].text 這個部分市場波動比較大的時候當然 你到時候再說因應對 我們會去穩定但這不叫干預對 OK那對於今年經濟的成長率啊你預估可能會有什麼樣的影響這個都假設性的問題如果把我們列入1315對我們的經濟的成長率會有什麼樣的影響其實在那個我們的報告裡面
transcript.whisperx[20].start 397.079
transcript.whisperx[20].end 399.581
transcript.whisperx[20].text 他在做這個臆測的時候他有一些假設條件在那譬如說義孤關稅稅率等等不同的設定之下我們可以看到對台灣的影響
transcript.whisperx[21].start 413.309
transcript.whisperx[21].end 431.851
transcript.whisperx[21].text 經濟成長力其實很小而且在經濟成長力它在三月份的數值是大於在二月份調升的0.1%所以我們的經濟成長力在它這兒的估計是往上漲的物價是非常穩定的
transcript.whisperx[22].start 432.512
transcript.whisperx[22].end 446.863
transcript.whisperx[22].text 你的預估我們希望你的預估是如你所講的啦好 謝謝我想這個本席昨天在這邊我們有我有詢問這個金管會的彭主委關於國內銀行對投資新南向國家企業的販款的動能
transcript.whisperx[23].start 447.884
transcript.whisperx[23].end 461.656
transcript.whisperx[23].text 就今年前兩個月來看累積新增販款量是475億核准新社數也到達達標值的三分之二已達到全年目標728億元的65%市場上也認為2025年就全年有望達陣
transcript.whisperx[24].start 470.163
transcript.whisperx[24].end 486.611
transcript.whisperx[24].text 那所以這些新南向國家如果現在如果也被列入為這個骯髒15國之內那勢必會受到這個整個美國政策變動及美國採取對等關稅的一個政策的導向之下
transcript.whisperx[25].start 488.372
transcript.whisperx[25].end 501.865
transcript.whisperx[25].text 勢必會造成他們經濟放緩在這種情況之下就會影響當地企業的還款能力所以請問央行是否對於推進新南向的政策是否認為要調整
transcript.whisperx[26].start 504.378
transcript.whisperx[26].end 509.922
transcript.whisperx[26].text 其實央行對於金融機構這邊基本上我們都會有一個相關的檢視的標準比如說資本市足利還有預放款金額預放率等等那至少到目前為止我想金管會那邊應該也有相關
transcript.whisperx[27].start 526.656
transcript.whisperx[27].end 547.702
transcript.whisperx[27].text 是OK的我們了解是OK還沒發生嘛現在我只是說你要未來如果面對這個問題你要先做因應嘛所以我們新南向的政策未來的販款的信用的管制會不會有所管控這部分你也要做預你做一個相關的一個措施來對應好沒關係我想你你跟我講滾動式的檢討那個請經濟部好了經濟部次長請你再上來
transcript.whisperx[28].start 554.285
transcript.whisperx[28].end 569.779
transcript.whisperx[28].text 如果假設真的被列入了15國我們這個新南向的這15個國家也被列入為這個骯髒15國之內它的經濟會放緩嗎那我們對它的一個這個整個我們投資新南向的政策會不會有所調整
transcript.whisperx[29].start 571.961
transcript.whisperx[29].end 597.277
transcript.whisperx[29].text 報告委員因為新南向國家對美國有出超比較多的國家大概也就是像越南還有泰國等國我們新南向國家的印度也是新南向國家但是他跟美國也是有順差所以我們會因為現代經濟部採取的方向就是這個
transcript.whisperx[30].start 600.322
transcript.whisperx[30].end 611.838
transcript.whisperx[30].text 鼓勵我們的廠商全球佈局過去曾經有鼓勵到新南向國家所以現在其實在歐洲中歐的這個地方面對這種川普這種政策不確定性
transcript.whisperx[31].start 616.924
transcript.whisperx[31].end 630.862
transcript.whisperx[31].text 我是建議經濟部對於整個我們未來整個我們廠商的佈局要多元化的一個進行來降低整個我們投資的風險希望你們能夠儘早的做佈局以上 謝謝
gazette.lineno 557
gazette.blocks[0][0] 林委員思銘:(10時39分)好,謝謝主席。首先請經濟部江次長、行政院經貿談判處顏慧欣顏副總代表。
gazette.blocks[1][0] 主席:請江次長、顏副總代表。
gazette.blocks[2][0] 江次長文若:委員好。
gazette.blocks[3][0] 林委員思銘:次長,我想我延續剛才李彥秀委員的質詢內容,我想我們一直關心臺灣到底會不會被列入所謂骯髒15國(The Dirty 15)的名單,我想這一次的骯髒15國,美國主要鎖定的就是對美國課徵高關稅,以及有貿易順差非常大的幾個國家進行管控與壓力的施加,當然根據媒體的報導,臺灣有可能會被列入為名單之一。但是剛才李彥秀委員非常關心的是,如果在4月2號以前它就要生效、要公布,那在4月2號以前,到底我國跟美國有沒有進行相關的貿易談判,或者我們在策略上要做怎麼樣的因應,能夠避免臺灣被列入?因為川普昨天才對媒體講,有可能對一些讓步的國家,或者跟他們透過談判,他們會把他豁免,你認為臺灣有可能被豁免嗎?透過什麼樣的策略來做?
gazette.blocks[4][0] 江次長文若:跟委員報告兩點:第一點,如同委員所說的,骯髒15國到底是哪些國家,現在不確定,都是媒體的報導。第二點,因為要等到4月1號整個備忘錄的檢討報告出來之後,我們才會知道川普政府會對主要的貿易對手國採取什麼樣的關稅措施,但是在這個之前,因為臺美的經貿關係非常密切,其實從川普還沒有上任之前,我們就密切觀察川普的相關言論,然後他上任之後,因為臺美經貿溝通管道很多,不論是我們過去的訪團,或者有任何美國的官員,甚至國會議員到臺灣來訪,我們都會跟他們說明臺美經貿關係的重要性,以及臺灣資通訊產品對於美國的重要性,因為其實臺灣的資通訊產品之所以會輸美,最主要也是美國客戶下的單。
gazette.blocks[5][0] 林委員思銘:所以這樣聽起來,次長,您是很樂觀的喔?您認為臺美的經貿關係現在是溝通無礙,非常的暢通,美國也很諒解我國的處境,所以我聽你講這席話,您是認為我們不會被列入囉?您的評估。
gazette.blocks[6][0] 江次長文若:我們還是很謹慎,因為川普還沒有公布他的報告,但是我們必須利用任何各種的機會、各種的管道,甚至我們……
gazette.blocks[7][0] 林委員思銘:所以在4月2號以前,我們會進行相關的一些措施,會不會?
gazette.blocks[8][0] 江次長文若:我們會進行溝通。
gazette.blocks[9][0] 林委員思銘:你有去談判嗎?
gazette.blocks[10][0] 江次長文若:因為現在不知道美國會採取什麼樣的措施,還沒有進入談判的階段。
gazette.blocks[11][0] 林委員思銘:那就來不及啦!4月2號之前,如果沒有進行任何的作為,他就公布啦!你還要跟他談判啊?
gazette.blocks[12][0] 江次長文若:報告委員,在行政院有一個臺美的專案小組,我們有就各種可能的方案來進行沙盤推演,也研議了各種的應對。
gazette.blocks[13][0] 林委員思銘:我想次長,我們還是希望臺灣不要被列入,該怎麼樣來做談判,哪幾個項目要做讓步的或是怎麼樣,我想我國應該要有積極的因應措施。
gazette.blocks[14][0] 江次長文若:是。
gazette.blocks[15][0] 林委員思銘:請你們加油啦!
gazette.blocks[16][0] 江次長文若:是。
gazette.blocks[17][0] 林委員思銘:OK,好,你請回。接下來請央行朱副總裁。
gazette.blocks[18][0] 主席:央行的副總裁。
gazette.blocks[19][0] 林委員思銘:次長,你們請回。
gazette.blocks[20][0] 朱副總裁美麗:委員好。
gazette.blocks[21][0] 林委員思銘:次長,你請回。
gazette.blocks[22][0] 主席:經濟部的次長請回去休息。
gazette.blocks[23][0] 林委員思銘:還有談判代表請回。副總裁,央行去年1月15號也對外表示過,臺灣續留在美國的匯率操縱觀察名單內將可能會是常態,主因是為臺灣對美的貿易順差一直擴增,而非匯率的問題。所以要請問副總裁,如果主要原因是因為雙方的貿易順差,央行是否認為臺灣被正式列入骯髒15國名單的機率很大?
gazette.blocks[24][0] 朱副總裁美麗:我剛才在報告中已經談到,基本上央行被列入匯率操縱的可能性,如果根據那些指標是少的,但是……
gazette.blocks[25][0] 林委員思銘:很小、很小。
gazette.blocks[26][0] 朱副總裁美麗:很小的,可以說到目前……
gazette.blocks[27][0] 林委員思銘:很小。
gazette.blocks[28][0] 朱副總裁美麗:對不起。到目前為止,我們溝通管道等等都了解貿易順差到底是什麼原因,那美國財政部也很了解這個部分,所以我不覺得這個部分會是一個考慮的因素,但是在關稅的部分,就誠如剛才各部會講的,其實他的標準到底最後是不是我們講的貿易順差或關稅稅率,或是有其他考量,這個目前他沒有公布之前,我們是沒有確定的信息。
gazette.blocks[29][0] 林委員思銘:當然現在是不確定的狀態,但是我們還是要預做因應啦!所以我問你假設性的問題,如果臺灣真的被列為名單之一,美國將會執行的對等關稅就會攸關我們臺灣的進出口,到那個時候,央行針對臺幣兌美元的匯率,是否會進行必要的調節?
gazette.blocks[30][0] 朱副總裁美麗:其實臺幣的匯率都是市場供需決定啦!
gazette.blocks[31][0] 林委員思銘:是。
gazette.blocks[32][0] 朱副總裁美麗:但是我們在面對這樣的問題,金融的穩定性、外匯市場的穩定性,我們會去觀察,進一步……市場波動比較大的時候……
gazette.blocks[33][0] 林委員思銘:當然到時候再做因應。
gazette.blocks[34][0] 朱副總裁美麗:對,我們會去穩定,但這不叫干預。
gazette.blocks[35][0] 林委員思銘:OK,那對於今年經濟的成長率,你預估可能會有什麼樣的影響?這個都是假設性的問題,如果把我們列入The Dirty 15,對我們的經濟成長率會有什麼樣的影響?
gazette.blocks[36][0] 朱副總裁美麗:其實在我們的報告裡面,S&P Global他在做這個預測的時候,他有一些假設條件在那,譬如說預估關稅、稅率等等不同的設定之下,我們可以看到對臺灣的影響……
gazette.blocks[37][0] 林委員思銘:經濟成長率。
gazette.blocks[38][0] 朱副總裁美麗:其實很小,而且經濟成長率它在3月份的數值是大於2月份,調升了0.1%,所以我們的經濟成長率在他這邊的估計是往上漲的,物價是非常穩定的。
gazette.blocks[39][0] 林委員思銘:好,我們希望你的預估是如你所講的啦!
gazette.blocks[40][0] 朱副總裁美麗:好,謝謝。
gazette.blocks[41][0] 林委員思銘:我想本席昨天在這邊,我有詢問金管會的彭主委,關於國內銀行對投資新南向國家企業的放款動能,就今年前兩個月來看,累積新增放款量是475億,核准新設數也到達達標值的三分之二,已達到全年目標728億元的65%,市場上也認為2025年全年有望達陣,所以這些新南向國家如果也被列入骯髒15國之內,那勢必會受到整個美國政策變動及美國採取對等關稅的政策導向之下,造成他們的經濟放緩,在這種情況之下,就會影響當地企業的還款能力。所以我要請問央行,對於推進新南向的政策,是否認為要調整?
gazette.blocks[42][0] 朱副總裁美麗:其實央行對於金融機構這邊,基本上我們都會有一個相關的檢視標準,比如說資本適足率,還有逾放款金額、逾放率等等,那至少到目前為止,我想金管會那邊應該也有相關……
gazette.blocks[43][0] 林委員思銘:到目前當然是……
gazette.blocks[44][0] 朱副總裁美麗:是OK的。
gazette.blocks[45][0] 林委員思銘:副總裁,我們了解是OK,還沒發生嘛!現在我只是說未來如果面對這個問題,你要先做因應,所以我們的新南向政策,未來放款的信用管制會不會有所管控,這部分你也要預擬做一個相關的措施來對應。
gazette.blocks[46][0] 朱副總裁美麗:對,謝謝。
gazette.blocks[47][0] 林委員思銘:沒關係,我想你都跟我講過滾動式的檢討。請經濟部好了,經濟部次長,請你再上來。
gazette.blocks[48][0] 主席:請次長。
gazette.blocks[49][0] 林委員思銘:假設真的被列入了15國,我們新南向的這15個國家也被列入骯髒15國之內,他的經濟會放緩,那我們整個投資新南向的政策會不會有所調整?
gazette.blocks[50][0] 江次長文若:報告委員,因為新南向國家中對美國有出超比較多的國家,大概也就是像越南還有泰國等國,我們新南向國家的……
gazette.blocks[51][0] 林委員思銘:印度有沒有?印度、澳門應該也都含在內吧?
gazette.blocks[52][0] 江次長文若:印度也是新南向的國家,他跟美國也有順差,所以我們會……因為現在經濟部採取的方向就是鼓勵我們的廠商全球布局,過去曾經有鼓勵到新南向國家,現在其實對中歐這個地方我們的業者也非常有興趣。
gazette.blocks[53][0] 林委員思銘:面對川普這種政策的不確定性,我是建議經濟部對於我們未來整個廠商的布局要多元化的進行,來降低我們整個投資的風險。
gazette.blocks[54][0] 江次長文若:是。
gazette.blocks[55][0] 林委員思銘:希望你們能夠儘早的布局,以上,謝謝。
gazette.blocks[56][0] 主席:好,謝謝林思銘委員的質詢。
gazette.blocks[56][1] 下一位請賴惠員召委質詢。向委員會報告,在賴召委質詢完畢以後,我們休息10分鐘。
gazette.agenda.page_end 74
gazette.agenda.meet_id 委員會-11-3-20-5
gazette.agenda.speakers[0] 賴士葆
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 郭國文
gazette.agenda.speakers[4] 鍾佳濱
gazette.agenda.speakers[5] 李彥秀
gazette.agenda.speakers[6] 林思銘
gazette.agenda.speakers[7] 賴惠員
gazette.agenda.speakers[8] 李坤城
gazette.agenda.speakers[9] 陳玉珍
gazette.agenda.speakers[10] 黃珊珊
gazette.agenda.speakers[11] 王世堅
gazette.agenda.speakers[12] 許宇甄
gazette.agenda.speakers[13] 羅廷瑋
gazette.agenda.speakers[14] 楊瓊瓔
gazette.agenda.speakers[15] 羅明才
gazette.agenda.speakers[16] 葉元之
gazette.agenda.speakers[17] 邱志偉
gazette.agenda.speakers[18] 顏寬恒
gazette.agenda.speakers[19] 廖先翔
gazette.agenda.speakers[20] 鄭正鈐
gazette.agenda.page_start 1
gazette.agenda.meetingDate[0] 2025-03-27
gazette.agenda.gazette_id 1143201
gazette.agenda.agenda_lcidc_ids[0] 1143201_00002
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第5次全體委員會議紀錄
gazette.agenda.content 邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展 委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅 策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢
gazette.agenda.agenda_id 1143201_00001