iVOD / 159669

Field Value
IVOD_ID 159669
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159669
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T09:49:30+08:00
結束時間 2025-03-27T10:03:34+08:00
影片長度 00:14:04
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db90049f98df19e0964ca1a80f058510e45ac1f25d2de176b75bca776b5aef8effbec5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:49:30 - 10:03:34
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.97159375
transcript.pyannote[0].end 6.84846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 7.43909375
transcript.pyannote[1].end 10.61159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.88159375
transcript.pyannote[2].end 13.58159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.63221875
transcript.pyannote[3].end 14.64471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.81346875
transcript.pyannote[4].end 16.23096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 18.30659375
transcript.pyannote[5].end 18.61034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 21.79971875
transcript.pyannote[6].end 23.03159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 23.03159375
transcript.pyannote[7].end 23.25096875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 23.89221875
transcript.pyannote[8].end 24.55034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 25.19159375
transcript.pyannote[9].end 26.64284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 27.26721875
transcript.pyannote[10].end 32.56596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 33.02159375
transcript.pyannote[11].end 34.25346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 34.74284375
transcript.pyannote[12].end 35.31659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 36.36284375
transcript.pyannote[13].end 37.13909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 38.50596875
transcript.pyannote[14].end 44.20971875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 44.66534375
transcript.pyannote[15].end 47.06159375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 47.36534375
transcript.pyannote[16].end 50.21721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 50.68971875
transcript.pyannote[17].end 57.67596875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 58.18221875
transcript.pyannote[18].end 63.32909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 64.76346875
transcript.pyannote[19].end 64.99971875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 64.99971875
transcript.pyannote[20].end 65.42159375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 65.53971875
transcript.pyannote[21].end 93.78846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 72.66096875
transcript.pyannote[22].end 73.01534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 76.20471875
transcript.pyannote[23].end 76.71096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 82.97159375
transcript.pyannote[24].end 84.50721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 85.23284375
transcript.pyannote[25].end 85.94159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 90.29534375
transcript.pyannote[26].end 90.73409375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 94.31159375
transcript.pyannote[27].end 101.21346875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 101.34846875
transcript.pyannote[28].end 105.14534375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 105.26346875
transcript.pyannote[29].end 121.34534375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 121.71659375
transcript.pyannote[30].end 123.53909375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 124.46721875
transcript.pyannote[31].end 134.11971875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 128.85471875
transcript.pyannote[32].end 129.46221875
transcript.pyannote[33].speaker SPEAKER_04
transcript.pyannote[33].start 129.64784375
transcript.pyannote[33].end 129.66471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 129.66471875
transcript.pyannote[34].end 130.03596875
transcript.pyannote[35].speaker SPEAKER_04
transcript.pyannote[35].start 130.55909375
transcript.pyannote[35].end 130.57596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 130.57596875
transcript.pyannote[36].end 131.82471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 132.41534375
transcript.pyannote[37].end 132.95534375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 134.57534375
transcript.pyannote[38].end 137.03909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 137.03909375
transcript.pyannote[39].end 139.24971875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 139.43534375
transcript.pyannote[40].end 141.05534375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 142.74284375
transcript.pyannote[41].end 145.17284375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 146.18534375
transcript.pyannote[42].end 148.66596875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 149.00346875
transcript.pyannote[43].end 151.43346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 152.39534375
transcript.pyannote[44].end 152.76659375
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 152.95221875
transcript.pyannote[45].end 158.89221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 158.03159375
transcript.pyannote[46].end 158.80784375
transcript.pyannote[47].speaker SPEAKER_04
transcript.pyannote[47].start 159.17909375
transcript.pyannote[47].end 162.79034375
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 163.09409375
transcript.pyannote[48].end 168.89909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 169.23659375
transcript.pyannote[49].end 170.33346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 170.65409375
transcript.pyannote[50].end 172.54409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 172.91534375
transcript.pyannote[51].end 172.93221875
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 172.93221875
transcript.pyannote[52].end 172.94909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 172.94909375
transcript.pyannote[53].end 173.01659375
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 173.01659375
transcript.pyannote[54].end 173.96159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 173.25284375
transcript.pyannote[55].end 173.89409375
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 174.13034375
transcript.pyannote[56].end 177.13409375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 176.59409375
transcript.pyannote[57].end 178.51784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 178.97346875
transcript.pyannote[58].end 181.08284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 181.11659375
transcript.pyannote[59].end 185.97659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 186.28034375
transcript.pyannote[60].end 186.68534375
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 186.68534375
transcript.pyannote[61].end 195.47721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 193.87409375
transcript.pyannote[62].end 194.19471875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 194.34659375
transcript.pyannote[63].end 195.08909375
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 196.91159375
transcript.pyannote[64].end 198.09284375
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 198.78471875
transcript.pyannote[65].end 212.53784375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 213.46596875
transcript.pyannote[66].end 222.19034375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 222.46034375
transcript.pyannote[67].end 225.73409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 227.11784375
transcript.pyannote[68].end 228.19784375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 228.40034375
transcript.pyannote[69].end 229.78409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 229.86846875
transcript.pyannote[70].end 234.42471875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 235.11659375
transcript.pyannote[71].end 240.82034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 240.34784375
transcript.pyannote[72].end 240.80346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 240.82034375
transcript.pyannote[73].end 242.54159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 243.06471875
transcript.pyannote[74].end 244.66784375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 244.92096875
transcript.pyannote[75].end 246.64221875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 247.04721875
transcript.pyannote[76].end 250.48971875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 251.48534375
transcript.pyannote[77].end 251.89034375
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 252.44721875
transcript.pyannote[78].end 269.82846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 268.49534375
transcript.pyannote[79].end 272.29221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 272.64659375
transcript.pyannote[80].end 273.76034375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 273.97971875
transcript.pyannote[81].end 275.24534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 276.27471875
transcript.pyannote[82].end 277.18596875
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 276.34221875
transcript.pyannote[83].end 277.05096875
transcript.pyannote[84].speaker SPEAKER_04
transcript.pyannote[84].start 277.65846875
transcript.pyannote[84].end 287.96909375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 285.84284375
transcript.pyannote[85].end 291.88409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 292.69409375
transcript.pyannote[86].end 294.56721875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 295.00596875
transcript.pyannote[87].end 295.39409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 295.49534375
transcript.pyannote[88].end 297.57096875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 297.89159375
transcript.pyannote[89].end 299.62971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 300.03471875
transcript.pyannote[90].end 301.84034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 302.43096875
transcript.pyannote[91].end 303.34221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 303.89909375
transcript.pyannote[92].end 304.33784375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 304.91159375
transcript.pyannote[93].end 305.67096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 305.99159375
transcript.pyannote[94].end 306.66659375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 306.70034375
transcript.pyannote[95].end 307.39221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 307.78034375
transcript.pyannote[96].end 309.40034375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 310.00784375
transcript.pyannote[97].end 311.32409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 312.28596875
transcript.pyannote[98].end 314.74971875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 314.98596875
transcript.pyannote[99].end 316.55534375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 316.97721875
transcript.pyannote[100].end 317.31471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 317.73659375
transcript.pyannote[101].end 319.50846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 320.11596875
transcript.pyannote[102].end 321.48284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 322.34346875
transcript.pyannote[103].end 325.56659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 326.07284375
transcript.pyannote[104].end 327.03471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 327.11909375
transcript.pyannote[105].end 328.33409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 328.50284375
transcript.pyannote[106].end 332.46846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 332.55284375
transcript.pyannote[107].end 333.37971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 333.71721875
transcript.pyannote[108].end 334.61159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 334.64534375
transcript.pyannote[109].end 335.13471875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 335.30346875
transcript.pyannote[110].end 335.65784375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 335.80971875
transcript.pyannote[111].end 340.07909375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 341.05784375
transcript.pyannote[112].end 360.97034375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 350.59221875
transcript.pyannote[113].end 351.04784375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 353.59596875
transcript.pyannote[114].end 353.93346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 360.10971875
transcript.pyannote[115].end 362.18534375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 362.37096875
transcript.pyannote[116].end 366.50534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 369.27284375
transcript.pyannote[117].end 369.86346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 369.86346875
transcript.pyannote[118].end 369.89721875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 370.25159375
transcript.pyannote[119].end 370.26846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 370.26846875
transcript.pyannote[120].end 371.02784375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 371.98971875
transcript.pyannote[121].end 373.93034375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 374.48721875
transcript.pyannote[122].end 375.55034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 376.22534375
transcript.pyannote[123].end 377.65971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 377.65971875
transcript.pyannote[124].end 377.69346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 378.85784375
transcript.pyannote[125].end 378.89159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 378.89159375
transcript.pyannote[126].end 388.34159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 388.88159375
transcript.pyannote[127].end 390.92346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 391.56471875
transcript.pyannote[128].end 392.89784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 393.18471875
transcript.pyannote[129].end 394.63596875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 395.46284375
transcript.pyannote[130].end 396.01971875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 396.10409375
transcript.pyannote[131].end 397.69034375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 400.27221875
transcript.pyannote[132].end 401.20034375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 402.55034375
transcript.pyannote[133].end 405.23346875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 406.09409375
transcript.pyannote[134].end 406.83659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 407.05596875
transcript.pyannote[135].end 409.67159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 410.26221875
transcript.pyannote[136].end 415.13909375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 415.56096875
transcript.pyannote[137].end 416.55659375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 418.44659375
transcript.pyannote[138].end 420.91034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 422.10846875
transcript.pyannote[139].end 425.95596875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 427.03596875
transcript.pyannote[140].end 427.66034375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 429.34784375
transcript.pyannote[141].end 431.60909375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 431.86221875
transcript.pyannote[142].end 432.63846875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 433.68471875
transcript.pyannote[143].end 436.77284375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 437.26221875
transcript.pyannote[144].end 439.23659375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 440.28284375
transcript.pyannote[145].end 441.21096875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 441.21096875
transcript.pyannote[146].end 441.39659375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 441.39659375
transcript.pyannote[147].end 441.97034375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 441.97034375
transcript.pyannote[148].end 443.30346875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 443.72534375
transcript.pyannote[149].end 449.37846875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 449.59784375
transcript.pyannote[150].end 453.04034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 453.04034375
transcript.pyannote[151].end 455.94284375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 453.05721875
transcript.pyannote[152].end 453.96846875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 456.31409375
transcript.pyannote[153].end 457.51221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 458.17034375
transcript.pyannote[154].end 459.23346875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 460.12784375
transcript.pyannote[155].end 460.58346875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 461.19096875
transcript.pyannote[156].end 461.61284375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 462.00096875
transcript.pyannote[157].end 464.97096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 465.86534375
transcript.pyannote[158].end 468.26159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 469.13909375
transcript.pyannote[159].end 470.59034375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 471.40034375
transcript.pyannote[160].end 473.17221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 474.28596875
transcript.pyannote[161].end 475.45034375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 476.73284375
transcript.pyannote[162].end 479.95596875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 480.31034375
transcript.pyannote[163].end 481.01909375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 481.45784375
transcript.pyannote[164].end 483.75284375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 485.08596875
transcript.pyannote[165].end 487.21221875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 488.34284375
transcript.pyannote[166].end 490.94159375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 491.48159375
transcript.pyannote[167].end 496.05471875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 496.88159375
transcript.pyannote[168].end 497.52284375
transcript.pyannote[169].speaker SPEAKER_05
transcript.pyannote[169].start 498.09659375
transcript.pyannote[169].end 500.94846875
transcript.pyannote[170].speaker SPEAKER_05
transcript.pyannote[170].start 500.96534375
transcript.pyannote[170].end 500.98221875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 500.98221875
transcript.pyannote[171].end 500.99909375
transcript.pyannote[172].speaker SPEAKER_05
transcript.pyannote[172].start 500.99909375
transcript.pyannote[172].end 502.06221875
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 502.95659375
transcript.pyannote[173].end 508.06971875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 503.90159375
transcript.pyannote[174].end 503.91846875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 504.37409375
transcript.pyannote[175].end 504.77909375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 504.81284375
transcript.pyannote[176].end 504.82971875
transcript.pyannote[177].speaker SPEAKER_05
transcript.pyannote[177].start 508.40721875
transcript.pyannote[177].end 511.12409375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 511.12409375
transcript.pyannote[178].end 514.12784375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 515.41034375
transcript.pyannote[179].end 516.72659375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 517.16534375
transcript.pyannote[180].end 519.30846875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 520.43909375
transcript.pyannote[181].end 525.26534375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 526.02471875
transcript.pyannote[182].end 527.98221875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 528.70784375
transcript.pyannote[183].end 529.56846875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 529.85534375
transcript.pyannote[184].end 533.58471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 533.85471875
transcript.pyannote[185].end 535.99784375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 536.45346875
transcript.pyannote[186].end 537.38159375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 538.44471875
transcript.pyannote[187].end 540.65534375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 541.33034375
transcript.pyannote[188].end 543.72659375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 544.19909375
transcript.pyannote[189].end 545.80221875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 546.30846875
transcript.pyannote[190].end 546.83159375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 547.01721875
transcript.pyannote[191].end 548.06346875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 548.24909375
transcript.pyannote[192].end 550.64534375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 551.21909375
transcript.pyannote[193].end 551.96159375
transcript.pyannote[194].speaker SPEAKER_05
transcript.pyannote[194].start 552.34971875
transcript.pyannote[194].end 586.94346875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 554.22284375
transcript.pyannote[195].end 556.23096875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 557.10846875
transcript.pyannote[196].end 558.59346875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 577.47659375
transcript.pyannote[197].end 577.51034375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 577.51034375
transcript.pyannote[198].end 577.52721875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 577.52721875
transcript.pyannote[199].end 577.59471875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 577.59471875
transcript.pyannote[200].end 577.64534375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 577.64534375
transcript.pyannote[201].end 581.98221875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 582.47159375
transcript.pyannote[202].end 585.28971875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 585.84659375
transcript.pyannote[203].end 586.52159375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 586.70721875
transcript.pyannote[204].end 590.45346875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 591.43221875
transcript.pyannote[205].end 602.02971875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 603.46409375
transcript.pyannote[206].end 605.23596875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 605.64096875
transcript.pyannote[207].end 607.78409375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 608.10471875
transcript.pyannote[208].end 610.01159375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 610.73721875
transcript.pyannote[209].end 614.12909375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 615.41159375
transcript.pyannote[210].end 616.18784375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 616.27221875
transcript.pyannote[211].end 616.74471875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 617.68971875
transcript.pyannote[212].end 618.51659375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 618.80346875
transcript.pyannote[213].end 620.33909375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 620.79471875
transcript.pyannote[214].end 623.44409375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 625.08096875
transcript.pyannote[215].end 625.70534375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 626.97096875
transcript.pyannote[216].end 627.79784375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 628.38846875
transcript.pyannote[217].end 629.08034375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 629.63721875
transcript.pyannote[218].end 630.83534375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 632.25284375
transcript.pyannote[219].end 632.94471875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 633.06284375
transcript.pyannote[220].end 634.80096875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 637.36596875
transcript.pyannote[221].end 637.97346875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 640.26846875
transcript.pyannote[222].end 641.93909375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 642.63096875
transcript.pyannote[223].end 645.55034375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 647.10284375
transcript.pyannote[224].end 649.02659375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 649.73534375
transcript.pyannote[225].end 649.87034375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 649.87034375
transcript.pyannote[226].end 651.91221875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 652.18221875
transcript.pyannote[227].end 653.34659375
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 653.80221875
transcript.pyannote[228].end 654.08909375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 654.08909375
transcript.pyannote[229].end 655.03409375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 655.55721875
transcript.pyannote[230].end 658.54409375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 659.30346875
transcript.pyannote[231].end 660.63659375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 660.99096875
transcript.pyannote[232].end 666.96471875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 668.24721875
transcript.pyannote[233].end 669.25971875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 669.93471875
transcript.pyannote[234].end 671.92596875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 672.51659375
transcript.pyannote[235].end 674.91284375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 675.70596875
transcript.pyannote[236].end 676.92096875
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 677.05596875
transcript.pyannote[237].end 679.62096875
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 679.92471875
transcript.pyannote[238].end 684.31221875
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 684.80159375
transcript.pyannote[239].end 685.78034375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 686.62409375
transcript.pyannote[240].end 687.53534375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 688.04159375
transcript.pyannote[241].end 691.02846875
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 691.09596875
transcript.pyannote[242].end 692.19284375
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 693.37409375
transcript.pyannote[243].end 694.20096875
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 694.69034375
transcript.pyannote[244].end 696.47909375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 697.49159375
transcript.pyannote[245].end 702.65534375
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 703.27971875
transcript.pyannote[246].end 706.94159375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 707.22846875
transcript.pyannote[247].end 708.20721875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 708.37596875
transcript.pyannote[248].end 710.01284375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 713.91096875
transcript.pyannote[249].end 717.31971875
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 717.52221875
transcript.pyannote[250].end 717.92721875
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 718.75409375
transcript.pyannote[251].end 720.22221875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 721.21784375
transcript.pyannote[252].end 722.63534375
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 722.95596875
transcript.pyannote[253].end 724.81221875
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 725.77409375
transcript.pyannote[254].end 725.94284375
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 726.09471875
transcript.pyannote[255].end 727.66409375
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 728.13659375
transcript.pyannote[256].end 728.99721875
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 731.14034375
transcript.pyannote[257].end 732.10221875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 732.10221875
transcript.pyannote[258].end 732.23721875
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 732.23721875
transcript.pyannote[259].end 733.97534375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 733.97534375
transcript.pyannote[260].end 748.08284375
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 748.08284375
transcript.pyannote[261].end 753.65159375
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 754.10721875
transcript.pyannote[262].end 755.00159375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 755.35596875
transcript.pyannote[263].end 762.57846875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 755.69346875
transcript.pyannote[264].end 757.24596875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 763.16909375
transcript.pyannote[265].end 769.15971875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 764.02971875
transcript.pyannote[266].end 764.35034375
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 764.46846875
transcript.pyannote[267].end 764.48534375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 766.03784375
transcript.pyannote[268].end 779.95971875
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 777.19221875
transcript.pyannote[269].end 782.49096875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 780.06096875
transcript.pyannote[270].end 780.85409375
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 782.77784375
transcript.pyannote[271].end 783.06471875
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 783.06471875
transcript.pyannote[272].end 788.00909375
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 788.12721875
transcript.pyannote[273].end 800.12534375
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 789.39284375
transcript.pyannote[274].end 789.49409375
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 797.44221875
transcript.pyannote[275].end 798.21846875
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 798.69096875
transcript.pyannote[276].end 803.63534375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 803.63534375
transcript.pyannote[277].end 803.65221875
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 804.25971875
transcript.pyannote[278].end 804.96846875
transcript.pyannote[279].speaker SPEAKER_02
transcript.pyannote[279].start 804.96846875
transcript.pyannote[279].end 805.94721875
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 805.94721875
transcript.pyannote[280].end 805.96409375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 806.52096875
transcript.pyannote[281].end 806.53784375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 806.53784375
transcript.pyannote[282].end 820.54409375
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 819.53159375
transcript.pyannote[283].end 821.75909375
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 822.04596875
transcript.pyannote[284].end 830.97284375
transcript.pyannote[285].speaker SPEAKER_02
transcript.pyannote[285].start 826.56846875
transcript.pyannote[285].end 827.19284375
transcript.pyannote[286].speaker SPEAKER_01
transcript.pyannote[286].start 829.03221875
transcript.pyannote[286].end 829.11659375
transcript.pyannote[287].speaker SPEAKER_01
transcript.pyannote[287].start 830.97284375
transcript.pyannote[287].end 831.29346875
transcript.pyannote[288].speaker SPEAKER_00
transcript.pyannote[288].start 831.29346875
transcript.pyannote[288].end 832.55909375
transcript.pyannote[289].speaker SPEAKER_01
transcript.pyannote[289].start 831.95159375
transcript.pyannote[289].end 834.01034375
transcript.pyannote[290].speaker SPEAKER_00
transcript.pyannote[290].start 832.89659375
transcript.pyannote[290].end 833.95971875
transcript.pyannote[291].speaker SPEAKER_00
transcript.pyannote[291].start 834.63471875
transcript.pyannote[291].end 834.66846875
transcript.pyannote[292].speaker SPEAKER_02
transcript.pyannote[292].start 834.66846875
transcript.pyannote[292].end 834.68534375
transcript.pyannote[293].speaker SPEAKER_01
transcript.pyannote[293].start 834.68534375
transcript.pyannote[293].end 838.58346875
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 834.98909375
transcript.pyannote[294].end 835.03971875
transcript.pyannote[295].speaker SPEAKER_00
transcript.pyannote[295].start 835.03971875
transcript.pyannote[295].end 835.22534375
transcript.pyannote[296].speaker SPEAKER_02
transcript.pyannote[296].start 835.22534375
transcript.pyannote[296].end 835.24221875
transcript.pyannote[297].speaker SPEAKER_00
transcript.pyannote[297].start 835.24221875
transcript.pyannote[297].end 835.27596875
transcript.whisperx[0].start 2.348
transcript.whisperx[0].end 13.174
transcript.whisperx[0].text 謝謝主席 以及各位先進有請經濟部的江市長以及經貿談判的副總代表 嚴副總代表兩位長官請
transcript.whisperx[1].start 22.057
transcript.whisperx[1].end 35.092
transcript.whisperx[1].text 首先要請教原來大家都以為說當川普總統在講關稅的時候全世界幾乎都是總理總統去跟他談我們呢
transcript.whisperx[2].start 38.561
transcript.whisperx[2].end 63.212
transcript.whisperx[2].text 原來以為說因為我們沒有邦交嘛好歹部長 因為部長沒有去就找次長去所以次長跑一個神秘之旅部長公開說你是去蒐集資料的我就覺得很奇怪喔 蒐集資料你Google一下也可以啊照顧被告去蒐集資料你要不要跟我們講一下你去那裡蒐集資料 你總要見一些人吧見哪些人
transcript.whisperx[3].start 64.775
transcript.whisperx[3].end 93.552
transcript.whisperx[3].text 可以講嗎是 報告委員我確實是有去美國我去見了相關的智庫還有業者以及相關的行政部門的官員行政部門的官員到哪個層級因為基於台美的互信我想在這邊我不便透露但是經貿官員是吧經貿官員經貿官員就是經濟部本來就跟美國有經貿的互動我們平常的溝通管道也很順暢溝通的重點在哪裡
transcript.whisperx[4].start 94.692
transcript.whisperx[4].end 123.288
transcript.whisperx[4].text 最主要呢是想了解因為那個時候是川普政府剛上任我們想知道一下川普新政他的這個確切的內容是什麼我們收集的資料呢也都在回來以後都有呈報長官那我去美國之後我們也有發現其實很多國家的這個不是只有總理包括一些資深的官員也都紛紛的去到美國去結果你們不總不去總理去
transcript.whisperx[5].start 124.502
transcript.whisperx[5].end 138.471
transcript.whisperx[5].text 因為我的目的是要去收集資料因為你比他能力更強是不是絕對不是所以我負責國際貿易所以部長不要去 部長不敢去我負責國際貿易的業務所以金貿的副總代表 原副總代表我請教這一段時間川普一直講關稅的事情談判金貿總談判處這裡有沒有跟美國相關的去談一下
transcript.whisperx[6].start 152.403
transcript.whisperx[6].end 168.472
transcript.whisperx[6].text 有沒有謝謝委員的詢問因為美國USTR負責談判對他前陣子才剛上任所以我們目前先透過其他的這些蘇星往返的管道來維持我們跟他的溝通
transcript.whisperx[7].start 169.292
transcript.whisperx[7].end 195.115
transcript.whisperx[7].text 所以都沒有跟他談 完全沒有談到因為他剛上面是這樣子嗎我們是透過其他我想我們談我們都被列為骯髒3015呢看起來就還蠻緊張的結果你們經貿團辦處好像動都不動欸變這個樣子喔我們有完全在掌握這個相關的資訊然後提供給國內來做參考然後以及我們在研擬各種你不需要去美國
transcript.whisperx[8].start 196.943
transcript.whisperx[8].end 225.275
transcript.whisperx[8].text 你不需要去美國不需要去跟他談我們現在就是在等待他的4月1號公布之後因為美國也有提到說他們希望在4月1號公布了這些關稅那才會建立一個美國跟其他國家的一個更公平的基礎談判基礎我請教你啊這談判基礎是不是美國當然希望能夠降低這個他的貿易逆差就是我們的順差700多億美金這個對吧就是希望我們多買他一些
transcript.whisperx[9].start 227.248
transcript.whisperx[9].end 248.753
transcript.whisperx[9].text 少賣 要他多賣我們一點是不是這樣子要縮短這個gap這個對吧對 就是他的所謂的公平貿易就是他希望可以多增加美國的產品我能不能這樣講一個極端因為川普是勝利人你賺我700多億美金想辦法你吐出來700多億美金我這種傢伙對不對
transcript.whisperx[10].start 251.499
transcript.whisperx[10].end 275.058
transcript.whisperx[10].text 請問你我覺得美國現在的政策基本上它最終目標是要追求國家跟經濟的安全所以呢它透過了不論是要在製造業的重建或者是說它讓美國的這個可以有更強大的這些出口能力來增加它的就業率你沒有回答問題啊它是不是要盡量七百多億盡量拿回去或者最少拿一半
transcript.whisperx[11].start 276.399
transcript.whisperx[11].end 304.146
transcript.whisperx[11].text 我可以這樣講嗎就是我們目前沒有看到這麼具體的金額那我剛才提到他應該是以他發展他國內的產業增加就業率以及人民的收入為目標這個教科書你不用講了你要回答我問題了你這個沒有回答我問題來 次長次長你剛上任這個次長了是你心目中有沒有感覺到川普會希望我們多給他買多少有沒有這個數字一半
transcript.whisperx[12].start 305.324
transcript.whisperx[12].end 311.078
transcript.whisperx[12].text 700多億 最少說 叫我一半在過去來講 請問在過去我們那時候平均
transcript.whisperx[13].start 312.658
transcript.whisperx[13].end 340.042
transcript.whisperx[13].text 這幾年才賺的多啊 以前沒有賺這麼多啊以前兩百億美金而已啊以前呢 我就記得很清楚啊這個好久好久以前吧我們大概大概每一年賺美國兩百億美金然後每一年這個虧跟日本貿易力差兩百億美金從美國賺來的剛好給日本過去是這樣子 對不對我們有沒有可能回到那個光景說我只賺他兩百億美金 有沒有可能
transcript.whisperx[14].start 341.227
transcript.whisperx[14].end 364.274
transcript.whisperx[14].text 報告委員因為這是整個貿易結構的改變在川普上任的第一階段的時候我們大概對美的順差大概是六十幾億到現在就增長了十倍那最主要是因為整個全球供應鏈的改變現在美國的客戶呢對我們的沒有問題因為我時間不多其他的教科書不會講我跟你講個具體的
transcript.whisperx[15].start 370.496
transcript.whisperx[15].end 397.335
transcript.whisperx[15].text 這個 請那個財政部的莊部長一起上來莊部長我調出來了113年去年美國進出口前30道的貨品跟我國的進口稅率最高的稅率是什麼最高的稅率叫做其他石油原油濾清提出的原油多少呢 2000多億新台幣喔
transcript.whisperx[16].start 400.659
transcript.whisperx[16].end 416.372
transcript.whisperx[16].text 關稅是零然後其他集體電路關稅也是零這些就是一百五十五億美金了關稅零跟專部長比較沒關係你稍微休息一下還是請你站在那裡來 江市長對我來講我覺得說很簡單這裡面前面五項加起來就一百五十五億美金了
transcript.whisperx[17].start 429.414
transcript.whisperx[17].end 438.408
transcript.whisperx[17].text 跟美國其他國家買的不要再買跟美國買我就可以少掉155億美金的順差我這樣講法合理嗎 請問
transcript.whisperx[18].start 440.339
transcript.whisperx[18].end 467.819
transcript.whisperx[18].text 合不合理 我這樣推論合不合理這個是因為台灣最主要是資通訊大國所以這些就是我們生產的產品所以美國自然會跟我們進行採購所以我們現在要做的事情這個都是零趴啊 所以我可以盡量多買啊關稅是零的啊 我多買啊對不對 次長你今天來這裡就是要鋸石與刀所以你剛接了這個次長要好好表現啊
transcript.whisperx[19].start 469.315
transcript.whisperx[19].end 486.53
transcript.whisperx[19].text 對不對 我現在告訴你這個關稅都是零所以就給它double紅稅紅稅我就可以少掉一百五十億美金的順差我都幫你撿了來 再看到下一頁對等關稅啊 降關稅啊
transcript.whisperx[20].start 489.153
transcript.whisperx[20].end 504.782
transcript.whisperx[20].text 財政部的專務部長 你知道第一項嗎其他位列名的食物調製品那是什麼 你知道嗎那是什麼其他位列的 你說食物調製品是什麼 你知道嗎有啊 是什麼舉落那些啊雜項 雜項調製品還有很大一塊 這叫健康食品
transcript.whisperx[21].start 515.47
transcript.whisperx[21].end 537.191
transcript.whisperx[21].text 健康食品這裡關稅30%第二個冷凍雞腿來農委會的次長一起來農業部的冷凍雞腿跟雞翅20%車輛剛才有委員提到了11.5%可是我們車輛賣到美國其實很少啦很少啦
transcript.whisperx[22].start 538.739
transcript.whisperx[22].end 565.519
transcript.whisperx[22].text 幾乎沒有啦 我們是零組件多零組件多 車輛也少所以這個 要弄清楚我就問部長一件事情健康食品的關稅有沒有可能跳降30%您講的是那個保健 維他命啊什麼的30%這個部分對 30% 30%那這個部分我們跟產發署也持續在做聯繫那這個產發署的部分它目前有很具體的一個方向第一個就是說
transcript.whisperx[23].start 566.82
transcript.whisperx[23].end 588.938
transcript.whisperx[23].text 部分產品可以做分年、分階段的降這個關稅有一些也可以調降那至於具體的項目我們現在請產發署能夠把它提供給我們所以大方向健康食品的關稅要調降就對了這個是保健食品的部分對 產發署已經有一些有相當具體的分析意見請問產發署 各位看好這個破破文的我還有學問的喔
transcript.whisperx[24].start 591.882
transcript.whisperx[24].end 612.456
transcript.whisperx[24].text 這裡面是我們從美國進來關稅30% 20% 17.5% 6.5%全部加起來台幣你不會多一二十億美金一點點而已啦就這一部分你怎麼去關稅啊你說這個農業部的我們也不希望去影響到我們這裡的這個
transcript.whisperx[25].start 615.718
transcript.whisperx[25].end 634.817
transcript.whisperx[25].text 農家嘛 對不對我們的產業也是要考慮到全部給你錢你就20億美金要多少錢倒是有一項經濟部的這個次長你聽好喔你知不知道原油我們一年進口多少原油
transcript.whisperx[26].start 640.325
transcript.whisperx[26].end 666.35
transcript.whisperx[26].text 我們整個的原油是兩千多億新台幣啦從美國進來兩千多億啦佔全世界四千多億啦 佔四十趴啦那一部分原油全部跟美國買又多了一百億啦所以我都替你算啦我剛才說一百五十五億double就一百五十五億減掉再加上原油還通通跟美國買
transcript.whisperx[27].start 668.319
transcript.whisperx[27].end 695.016
transcript.whisperx[27].text 他們在美國買 要減少100億美金了就減少了100億美金了 因為現在100億美金40%跟美國買 60%跟其他國家 中東的那些通通不要 我們現在反正不兌國籍 不兌國籍 到底他們在美國買 就少了100億剛才150億加100億就比你少掉250億 那個叫做什麼你今天來這裡賺到 你知道嗎
transcript.whisperx[28].start 697.652
transcript.whisperx[28].end 710.421
transcript.whisperx[28].text 我們教你怎麼去縮短這個台美貿易利差啊一天就少掉250億再加上我們在期望最後一個好不好 目前就結束了請鍾英龍的副總裁 朱副總裁朱副總裁 一個人講這個問題 時間到了不要耽誤太多時間好 台幣省值
transcript.whisperx[29].start 721.26
transcript.whisperx[29].end 724.183
transcript.whisperx[29].text 你是降低順差啦 你要減10% 你要減10%就很簡單的事情 可以嗎 請問你可以嗎
transcript.whisperx[30].start 731.195
transcript.whisperx[30].end 733.436
transcript.whisperx[30].text 其實對進口貿易的確是委員講但是我們要考慮到金融市場的穩定性這會引起資金的移動所以這也是我們要考慮現在的川普希望美金弱勢
transcript.whisperx[31].start 755.762
transcript.whisperx[31].end 782.282
transcript.whisperx[31].text 他希望其他的國家不要貶值他恨得要死 說其他國家的幣值都在貶他氣得要命他希望維持弱勢美金所以我們講說川普的意思喔 台幣升值對 可是川普政策的不確定性會導致他 譬如說本身他利率要維持比較高的水準我承認到了喔我就問你 有沒有可能台幣升值啊
transcript.whisperx[32].start 783.562
transcript.whisperx[32].end 803.192
transcript.whisperx[32].text 來降低我們的貿易對美的順差這又可以講了幾十億美金了 我跟你講好 我知道有沒有可能對 但我們同時就是我們也蠻關心金融市場就一升值之後的金融市場影響最後一個巴菲特說美國未來一年內經濟衰退的機率超過
transcript.whisperx[33].start 805.333
transcript.whisperx[33].end 818.001
transcript.whisperx[33].text 50% 這個你同意嗎我覺得現在的因為美國的政策到底具體的方向我們不確定我承認有衰退的可能性但會不會超過50%現在我們沒辦法沒有超過50% 你們要聽清楚50%以上的機會衰退50% OK對 是因為川普的關稅政策不穩定是這樣子的
transcript.whisperx[34].start 835.955
transcript.whisperx[34].end 838.019
transcript.whisperx[34].text 謝謝我們接下來郭國文 郭委員