IVOD_ID |
159658 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159658 |
日期 |
2025-03-27 |
會議資料.會議代碼 |
委員會-11-3-20-5 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第5次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
5 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第5次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-27T09:40:31+08:00 |
結束時間 |
2025-03-27T09:49:25+08:00 |
影片長度 |
00:08:54 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900066c2232559e528f1a80f058510e45acab2aca70ba98bac03b3d0bf90661b4be5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
吳秉叡 |
委員發言時間 |
09:40:31 - 09:49:25 |
會議時間 |
2025-03-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
0.04784375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
0.04784375 |
transcript.pyannote[1].end |
1.17846875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
2.27534375 |
transcript.pyannote[2].end |
5.00909375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
5.34659375 |
transcript.pyannote[3].end |
7.30409375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
12.45096875 |
transcript.pyannote[4].end |
12.99096875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
13.37909375 |
transcript.pyannote[5].end |
20.07846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
20.93909375 |
transcript.pyannote[6].end |
21.36096875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
21.79971875 |
transcript.pyannote[7].end |
24.17909375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
24.48284375 |
transcript.pyannote[8].end |
26.49096875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
27.73971875 |
transcript.pyannote[9].end |
31.03034375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
32.97096875 |
transcript.pyannote[10].end |
33.37596875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
33.78096875 |
transcript.pyannote[11].end |
34.47284375 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
34.47284375 |
transcript.pyannote[12].end |
34.48971875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
37.83096875 |
transcript.pyannote[13].end |
37.84784375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
37.84784375 |
transcript.pyannote[14].end |
38.11784375 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
38.45534375 |
transcript.pyannote[15].end |
53.84534375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
53.84534375 |
transcript.pyannote[16].end |
58.60409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
58.73909375 |
transcript.pyannote[17].end |
60.40971875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
60.54471875 |
transcript.pyannote[18].end |
63.09284375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
63.70034375 |
transcript.pyannote[19].end |
64.83096875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
65.50596875 |
transcript.pyannote[20].end |
65.97846875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
66.51846875 |
transcript.pyannote[21].end |
69.85971875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
70.53471875 |
transcript.pyannote[22].end |
73.38659375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
74.43284375 |
transcript.pyannote[23].end |
75.66471875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
76.06971875 |
transcript.pyannote[24].end |
76.96409375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
77.33534375 |
transcript.pyannote[25].end |
78.14534375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
78.46596875 |
transcript.pyannote[26].end |
80.86221875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
81.80721875 |
transcript.pyannote[27].end |
84.01784375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
84.55784375 |
transcript.pyannote[28].end |
87.57846875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
88.08471875 |
transcript.pyannote[29].end |
92.67471875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
93.21471875 |
transcript.pyannote[30].end |
100.97721875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
101.34846875 |
transcript.pyannote[31].end |
103.49159375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
104.23409375 |
transcript.pyannote[32].end |
111.03471875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
111.08534375 |
transcript.pyannote[33].end |
111.38909375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
112.14846875 |
transcript.pyannote[34].end |
115.18596875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
115.94534375 |
transcript.pyannote[35].end |
120.67034375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
121.71659375 |
transcript.pyannote[36].end |
131.80784375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
121.81784375 |
transcript.pyannote[37].end |
121.88534375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
131.94284375 |
transcript.pyannote[38].end |
132.80346875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
133.03971875 |
transcript.pyannote[39].end |
136.22909375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
136.76909375 |
transcript.pyannote[40].end |
139.50284375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
139.63784375 |
transcript.pyannote[41].end |
142.33784375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
142.33784375 |
transcript.pyannote[42].end |
142.38846875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
142.91159375 |
transcript.pyannote[43].end |
142.94534375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
142.94534375 |
transcript.pyannote[44].end |
148.07534375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
148.14284375 |
transcript.pyannote[45].end |
150.48846875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
150.97784375 |
transcript.pyannote[46].end |
168.03846875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
166.38471875 |
transcript.pyannote[47].end |
167.34659375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
168.03846875 |
transcript.pyannote[48].end |
203.32409375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
203.59409375 |
transcript.pyannote[49].end |
212.74034375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
213.24659375 |
transcript.pyannote[50].end |
218.74784375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
217.71846875 |
transcript.pyannote[51].end |
235.06596875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
227.94471875 |
transcript.pyannote[52].end |
228.75471875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
233.66534375 |
transcript.pyannote[53].end |
235.26846875 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
235.26846875 |
transcript.pyannote[54].end |
235.31909375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
235.31909375 |
transcript.pyannote[55].end |
240.88784375 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
235.65659375 |
transcript.pyannote[56].end |
235.67346875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
241.69784375 |
transcript.pyannote[57].end |
242.91284375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
243.65534375 |
transcript.pyannote[58].end |
246.70971875 |
transcript.pyannote[59].speaker |
SPEAKER_03 |
transcript.pyannote[59].start |
248.09346875 |
transcript.pyannote[59].end |
251.24909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
250.99596875 |
transcript.pyannote[60].end |
252.83534375 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
253.27409375 |
transcript.pyannote[61].end |
256.00784375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
255.61971875 |
transcript.pyannote[62].end |
257.08784375 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
257.45909375 |
transcript.pyannote[63].end |
262.90971875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
262.21784375 |
transcript.pyannote[64].end |
264.15846875 |
transcript.pyannote[65].speaker |
SPEAKER_03 |
transcript.pyannote[65].start |
263.61846875 |
transcript.pyannote[65].end |
265.01909375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
264.61409375 |
transcript.pyannote[66].end |
269.84534375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
270.13221875 |
transcript.pyannote[67].end |
278.99159375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
281.10096875 |
transcript.pyannote[68].end |
284.32409375 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
284.32409375 |
transcript.pyannote[69].end |
284.35784375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
284.35784375 |
transcript.pyannote[70].end |
284.39159375 |
transcript.pyannote[71].speaker |
SPEAKER_03 |
transcript.pyannote[71].start |
285.69096875 |
transcript.pyannote[71].end |
294.24659375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
287.56409375 |
transcript.pyannote[72].end |
288.05346875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
291.81659375 |
transcript.pyannote[73].end |
296.96346875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
298.19534375 |
transcript.pyannote[74].end |
299.96721875 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
299.96721875 |
transcript.pyannote[75].end |
314.85096875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
312.43784375 |
transcript.pyannote[76].end |
314.73284375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
314.85096875 |
transcript.pyannote[77].end |
314.86784375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
314.86784375 |
transcript.pyannote[78].end |
315.94784375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
315.44159375 |
transcript.pyannote[79].end |
318.88409375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
319.52534375 |
transcript.pyannote[80].end |
322.86659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
323.67659375 |
transcript.pyannote[81].end |
335.13471875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
336.02909375 |
transcript.pyannote[82].end |
342.42471875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
343.47096875 |
transcript.pyannote[83].end |
345.02346875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
346.59284375 |
transcript.pyannote[84].end |
347.21721875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
347.89221875 |
transcript.pyannote[85].end |
352.33034375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
352.81971875 |
transcript.pyannote[86].end |
356.81909375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
360.56534375 |
transcript.pyannote[87].end |
366.13409375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
366.47159375 |
transcript.pyannote[88].end |
372.22596875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
372.54659375 |
transcript.pyannote[89].end |
384.69659375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
385.50659375 |
transcript.pyannote[90].end |
393.79221875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
389.20221875 |
transcript.pyannote[91].end |
389.64096875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
394.88909375 |
transcript.pyannote[92].end |
397.21784375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
395.39534375 |
transcript.pyannote[93].end |
395.90159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
398.04471875 |
transcript.pyannote[94].end |
404.55846875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
405.04784375 |
transcript.pyannote[95].end |
407.42721875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
408.45659375 |
transcript.pyannote[96].end |
409.53659375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
410.17784375 |
transcript.pyannote[97].end |
423.98159375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
424.65659375 |
transcript.pyannote[98].end |
428.35221875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
428.52096875 |
transcript.pyannote[99].end |
430.22534375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
431.20409375 |
transcript.pyannote[100].end |
437.53221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
438.20721875 |
transcript.pyannote[101].end |
444.85596875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
445.73346875 |
transcript.pyannote[102].end |
448.90596875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
450.76221875 |
transcript.pyannote[103].end |
453.27659375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
453.61409375 |
transcript.pyannote[104].end |
455.26784375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
455.85846875 |
transcript.pyannote[105].end |
457.30971875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
457.59659375 |
transcript.pyannote[106].end |
460.34721875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
461.39346875 |
transcript.pyannote[107].end |
463.18221875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
463.70534375 |
transcript.pyannote[108].end |
466.37159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
467.35034375 |
transcript.pyannote[109].end |
473.15534375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
473.69534375 |
transcript.pyannote[110].end |
475.75409375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
477.10409375 |
transcript.pyannote[111].end |
478.48784375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
478.70721875 |
transcript.pyannote[112].end |
479.56784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
480.07409375 |
transcript.pyannote[113].end |
482.04846875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
482.13284375 |
transcript.pyannote[114].end |
484.69784375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
485.62596875 |
transcript.pyannote[115].end |
486.25034375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
486.48659375 |
transcript.pyannote[116].end |
490.03034375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
490.58721875 |
transcript.pyannote[117].end |
491.39721875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
491.81909375 |
transcript.pyannote[118].end |
493.60784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
494.16471875 |
transcript.pyannote[119].end |
495.90284375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
497.06721875 |
transcript.pyannote[120].end |
501.35346875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
501.70784375 |
transcript.pyannote[121].end |
502.36596875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
502.99034375 |
transcript.pyannote[122].end |
510.76971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
511.61346875 |
transcript.pyannote[123].end |
514.85346875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
515.78159375 |
transcript.pyannote[124].end |
517.62096875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
517.92471875 |
transcript.pyannote[125].end |
522.63284375 |
transcript.pyannote[126].speaker |
SPEAKER_03 |
transcript.pyannote[126].start |
522.63284375 |
transcript.pyannote[126].end |
524.55659375 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
524.87721875 |
transcript.pyannote[127].end |
525.55221875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
525.55221875 |
transcript.pyannote[128].end |
529.11284375 |
transcript.whisperx[0].start |
0.329 |
transcript.whisperx[0].end |
26.001 |
transcript.whisperx[0].text |
經濟部江次長來經濟部副次長還有央行的朱副總裁我看到這個央行的報告去年的對美貿易順差是739億美元那國際貿易的大原理不是在基本上要追求平衡嗎 |
transcript.whisperx[1].start |
27.816 |
transcript.whisperx[1].end |
30.318 |
transcript.whisperx[1].text |
所以我們對人家的順超這麼高的時候該要怎麼處理啊這個誰要回答 |
transcript.whisperx[2].start |
39.959 |
transcript.whisperx[2].end |
64.211 |
transcript.whisperx[2].text |
其實國際貿易如果依據我們所看到的是一個基於比較利益的原則那剛好現在美國需要我們台灣提供的商品自動性商品教官你報告裡面有寫的就不用重複我只是說你自動性商品只是其中的一樣當然那是出口的大宗那我請教經濟部回答如果有一個國家他也是這樣跟你講 |
transcript.whisperx[3].start |
66.552 |
transcript.whisperx[3].end |
80.418 |
transcript.whisperx[3].text |
我要賺你台灣739億的美金一年順差然後我也是什麼產品是你台灣必須的這樣的講法很合理嗎我跟你說人家美國站在美國的立場 |
transcript.whisperx[4].start |
82.48 |
transcript.whisperx[4].end |
110.762 |
transcript.whisperx[4].text |
你這麼多的國家台灣是全世界排名第六的順差國那美國現在總底複造已經是46兆美金了所以美國他一定得想辦法平衡貿易嘛我們要解決這個問題之前要先了解對方的立場跟原因我們大家再來討論今天這個因素而不是只有站在台灣的本位立場不行啦 我就是要貪你的錢你就不應該對我做這個做那個要求 |
transcript.whisperx[5].start |
112.239 |
transcript.whisperx[5].end |
120.339 |
transcript.whisperx[5].text |
就算是普通在外面開公司的老闆他做人家生意賺了人家的錢也要對客戶好一點 |
transcript.whisperx[6].start |
121.852 |
transcript.whisperx[6].end |
146.588 |
transcript.whisperx[6].text |
對不對那是互動的嘛我們台灣已經在國際間我們已經是一個已開發國家我們要做一個有責任感負責任的大國在邏輯上是這樣所以我們常常講台灣can help那既然can help就是應該要承擔責任該承擔的要承擔好 那個基本上如果就出口貿易結構當然我們的貿易 |
transcript.whisperx[7].start |
151.532 |
transcript.whisperx[7].end |
153.956 |
transcript.whisperx[7].text |
致通性產品佔大宗當然在貿易政策上你若說不要出口這麼多美國同意的話那是可以出口自動設限另外還有一個我們是可以多進口我們需要的 |
transcript.whisperx[8].start |
167.515 |
transcript.whisperx[8].end |
186.362 |
transcript.whisperx[8].text |
對啊 我們台灣為什麼要對自己的出口自動設限而是相對的我們應該要多採購人家的東西嘛所以我們總統才會講說我們希望台灣優良的廠商如果覺得美國的市場可以 環境可以多去美國投資台積電才會宣布是幾年 |
transcript.whisperx[9].start |
187.842 |
transcript.whisperx[9].end |
207.612 |
transcript.whisperx[9].text |
那也要增加對美國多投資一千億美金嘛這個就是其實台灣在付國際上面應該大家要平等的責任的一個出發從這個角度來觀察你才能夠了解台灣跟美國之間真正的互動而不是只有完全站在台灣的角度講話今天如果你是美國總統 |
transcript.whisperx[10].start |
208.732 |
transcript.whisperx[10].end |
219.002 |
transcript.whisperx[10].text |
你的國家已經負債46兆美金然後每一年都還要出操這麼多的時候你不會想要解決這個問題嗎我提議委員的論點我們是像農產品的進口是民生所需還有一些相關的資源 |
transcript.whisperx[11].start |
229.071 |
transcript.whisperx[11].end |
246.044 |
transcript.whisperx[11].text |
甚至我們說我們需要有關國防設備等等的這個我都提過啦我們應該多跟美國投資多跟美國採購東西這是很合理的啦那再來就是要請教單項汽車關稅台灣是17.5對我們的汽車關稅是17.5這17.5有沒有包括公務稅啊 |
transcript.whisperx[12].start |
254.188 |
transcript.whisperx[12].end |
277.034 |
transcript.whisperx[12].text |
17.5是關稅沒有包含貨物稅那如果加上貨物稅是多少貨物稅大概是25%左右所以加起來37點多那也就是說如果美國的汽車要賣到台灣來它的基本上不論你的名目是關稅還是貨物稅反正它要增加的成本進到台灣來它就是要37點多的稅金對不對 |
transcript.whisperx[13].start |
281.224 |
transcript.whisperx[13].end |
296.051 |
transcript.whisperx[13].text |
那美國給我們課的關稅有算貨物稅嗎到美國去的部分 是不是美國的部分 目前他們所以我的意思是說你自己給我的報告裡面你都光只有講關稅 |
transcript.whisperx[14].start |
298.22 |
transcript.whisperx[14].end |
322.691 |
transcript.whisperx[14].text |
台灣還有其他的稅啊 所以你不能夠這樣子比啦沒有錯 跟委員報告也提到就是說除了關稅之外 其他的稅目前我們也在統計分析第一個 從美國進口的車種它如果是屬於電動車的話 那是零貨物稅你如果在這個地方的報告是這樣子扭曲的我如果是一個美國人 我看了會很不爽啊 |
transcript.whisperx[15].start |
323.895 |
transcript.whisperx[15].end |
335.123 |
transcript.whisperx[15].text |
對不對 明明我的關稅加貨運稅來到台灣的汽車就是要多37點多的稅金結果你的公文書的報告說我們的關稅只有17.5這個如果你是美國人在跟你討論這個問題的時候你這個講法他的気持會好嗎所以我們老實一點 |
transcript.whisperx[16].start |
346.633 |
transcript.whisperx[16].end |
356.061 |
transcript.whisperx[16].text |
第二個我們為什麼要這麼高的稅金因為原因是要保護台灣虛弱的產業結果那個就是要問經濟部保護了幾十年有用嗎報告委員我們的汽車產業的供應鏈相當的長所以我們大概也有7萬多個員工在這個汽車產業相關的產業包括了很多的零組件 |
transcript.whisperx[17].start |
372.591 |
transcript.whisperx[17].end |
393.525 |
transcript.whisperx[17].text |
那零組件我們零組件也可以賣到美國去啊所以我們才要相對對等關稅雙方關稅都降低啊為什麼台灣的零組件的廠商他的市場的打算只有在台灣呢我事實上認識很多廠商他的零件是賣到美國去的啊包括那個小貨車的那個蓋頂啊在我們樹林很大的廠啊對不對所以我覺得你這個講法 |
transcript.whisperx[18].start |
399.461 |
transcript.whisperx[18].end |
406.725 |
transcript.whisperx[18].text |
37.5的稅金耶結果你的報告說是17.5因為只有算關稅這個算法是掩耳盜鈴啦 |
transcript.whisperx[19].start |
408.79 |
transcript.whisperx[19].end |
430.051 |
transcript.whisperx[19].text |
我是覺得經濟部要考量的是這個產業還要保護到什麼時候你的市場的預設是怎麼樣我同意有很多的工作機會在這裡面那美國同樣的道理啊他也是那如果是要我把你的關稅提高那讓你到美國來設廠我也是讓美國的這個就業機會得到保障啊 |
transcript.whisperx[20].start |
431.32 |
transcript.whisperx[20].end |
460.185 |
transcript.whisperx[20].text |
所以所謂的關稅壁壘就是這樣造成的那我們自己數上37.5%的稅金去指責美國說我們美國25%會比我們高我跟你講美國如果只有對我們拿25%齁那是已經優待台灣啦因為台灣給人家拿37.5啊我說的這樣有沒有道理大家來評評理將心比心的評評理有沒有道理所謂對等關稅就是真正對等關稅是你坑我多少我坑你多少 |
transcript.whisperx[21].start |
461.448 |
transcript.whisperx[21].end |
478.283 |
transcript.whisperx[21].text |
照理來講 如果照這個數字你課我37.5 我又要課你37.5那人家說 人家現在宣布25就受不了了喔 美國夭壽喔 要讓我去這麼多關稅都沒有在考慮 自己在那裡扣多少這做人不可以這樣啦 國際之間大家在國際之間做正常的活動也要有一點道義啊 |
transcript.whisperx[22].start |
485.94 |
transcript.whisperx[22].end |
514.214 |
transcript.whisperx[22].text |
那受到不公平的對待我們當然可以挨我們可以講可以爭取那其實你回去檢視人家做的有不公平嗎那我們的貿易順差我覺得應該要集中一個焦點三位貿易順差是一個很大的問題如果台灣今年照這樣貿易順差陷入下去今年絕對會超過800億美金所以如何趕快增加對美國的採購 |
transcript.whisperx[23].start |
516.074 |
transcript.whisperx[23].end |
521.617 |
transcript.whisperx[23].text |
對美國的貿易平衡這個是當務之急好好的回去考慮這一點好不好 拜託 謝謝 |