iVOD / 159658

Field Value
IVOD_ID 159658
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159658
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T09:40:31+08:00
結束時間 2025-03-27T09:49:25+08:00
影片長度 00:08:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900066c2232559e528f1a80f058510e45acab2aca70ba98bac03b3d0bf90661b4be5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:40:31 - 09:49:25
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.04784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 0.04784375
transcript.pyannote[1].end 1.17846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 2.27534375
transcript.pyannote[2].end 5.00909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 5.34659375
transcript.pyannote[3].end 7.30409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 12.45096875
transcript.pyannote[4].end 12.99096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 13.37909375
transcript.pyannote[5].end 20.07846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 20.93909375
transcript.pyannote[6].end 21.36096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.79971875
transcript.pyannote[7].end 24.17909375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 24.48284375
transcript.pyannote[8].end 26.49096875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 27.73971875
transcript.pyannote[9].end 31.03034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 32.97096875
transcript.pyannote[10].end 33.37596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 33.78096875
transcript.pyannote[11].end 34.47284375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 34.47284375
transcript.pyannote[12].end 34.48971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 37.83096875
transcript.pyannote[13].end 37.84784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 37.84784375
transcript.pyannote[14].end 38.11784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 38.45534375
transcript.pyannote[15].end 53.84534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 53.84534375
transcript.pyannote[16].end 58.60409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 58.73909375
transcript.pyannote[17].end 60.40971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 60.54471875
transcript.pyannote[18].end 63.09284375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 63.70034375
transcript.pyannote[19].end 64.83096875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 65.50596875
transcript.pyannote[20].end 65.97846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 66.51846875
transcript.pyannote[21].end 69.85971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 70.53471875
transcript.pyannote[22].end 73.38659375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 74.43284375
transcript.pyannote[23].end 75.66471875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 76.06971875
transcript.pyannote[24].end 76.96409375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 77.33534375
transcript.pyannote[25].end 78.14534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 78.46596875
transcript.pyannote[26].end 80.86221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 81.80721875
transcript.pyannote[27].end 84.01784375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 84.55784375
transcript.pyannote[28].end 87.57846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 88.08471875
transcript.pyannote[29].end 92.67471875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 93.21471875
transcript.pyannote[30].end 100.97721875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 101.34846875
transcript.pyannote[31].end 103.49159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 104.23409375
transcript.pyannote[32].end 111.03471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 111.08534375
transcript.pyannote[33].end 111.38909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 112.14846875
transcript.pyannote[34].end 115.18596875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 115.94534375
transcript.pyannote[35].end 120.67034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 121.71659375
transcript.pyannote[36].end 131.80784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 121.81784375
transcript.pyannote[37].end 121.88534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 131.94284375
transcript.pyannote[38].end 132.80346875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 133.03971875
transcript.pyannote[39].end 136.22909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 136.76909375
transcript.pyannote[40].end 139.50284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 139.63784375
transcript.pyannote[41].end 142.33784375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 142.33784375
transcript.pyannote[42].end 142.38846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 142.91159375
transcript.pyannote[43].end 142.94534375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 142.94534375
transcript.pyannote[44].end 148.07534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 148.14284375
transcript.pyannote[45].end 150.48846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 150.97784375
transcript.pyannote[46].end 168.03846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 166.38471875
transcript.pyannote[47].end 167.34659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 168.03846875
transcript.pyannote[48].end 203.32409375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 203.59409375
transcript.pyannote[49].end 212.74034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 213.24659375
transcript.pyannote[50].end 218.74784375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 217.71846875
transcript.pyannote[51].end 235.06596875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 227.94471875
transcript.pyannote[52].end 228.75471875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 233.66534375
transcript.pyannote[53].end 235.26846875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 235.26846875
transcript.pyannote[54].end 235.31909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 235.31909375
transcript.pyannote[55].end 240.88784375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 235.65659375
transcript.pyannote[56].end 235.67346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 241.69784375
transcript.pyannote[57].end 242.91284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 243.65534375
transcript.pyannote[58].end 246.70971875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 248.09346875
transcript.pyannote[59].end 251.24909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 250.99596875
transcript.pyannote[60].end 252.83534375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 253.27409375
transcript.pyannote[61].end 256.00784375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 255.61971875
transcript.pyannote[62].end 257.08784375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 257.45909375
transcript.pyannote[63].end 262.90971875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 262.21784375
transcript.pyannote[64].end 264.15846875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 263.61846875
transcript.pyannote[65].end 265.01909375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 264.61409375
transcript.pyannote[66].end 269.84534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 270.13221875
transcript.pyannote[67].end 278.99159375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 281.10096875
transcript.pyannote[68].end 284.32409375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 284.32409375
transcript.pyannote[69].end 284.35784375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 284.35784375
transcript.pyannote[70].end 284.39159375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 285.69096875
transcript.pyannote[71].end 294.24659375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 287.56409375
transcript.pyannote[72].end 288.05346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 291.81659375
transcript.pyannote[73].end 296.96346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 298.19534375
transcript.pyannote[74].end 299.96721875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 299.96721875
transcript.pyannote[75].end 314.85096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 312.43784375
transcript.pyannote[76].end 314.73284375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 314.85096875
transcript.pyannote[77].end 314.86784375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 314.86784375
transcript.pyannote[78].end 315.94784375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 315.44159375
transcript.pyannote[79].end 318.88409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 319.52534375
transcript.pyannote[80].end 322.86659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 323.67659375
transcript.pyannote[81].end 335.13471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 336.02909375
transcript.pyannote[82].end 342.42471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 343.47096875
transcript.pyannote[83].end 345.02346875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 346.59284375
transcript.pyannote[84].end 347.21721875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 347.89221875
transcript.pyannote[85].end 352.33034375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 352.81971875
transcript.pyannote[86].end 356.81909375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 360.56534375
transcript.pyannote[87].end 366.13409375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 366.47159375
transcript.pyannote[88].end 372.22596875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 372.54659375
transcript.pyannote[89].end 384.69659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 385.50659375
transcript.pyannote[90].end 393.79221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 389.20221875
transcript.pyannote[91].end 389.64096875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 394.88909375
transcript.pyannote[92].end 397.21784375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 395.39534375
transcript.pyannote[93].end 395.90159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 398.04471875
transcript.pyannote[94].end 404.55846875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 405.04784375
transcript.pyannote[95].end 407.42721875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 408.45659375
transcript.pyannote[96].end 409.53659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 410.17784375
transcript.pyannote[97].end 423.98159375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 424.65659375
transcript.pyannote[98].end 428.35221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 428.52096875
transcript.pyannote[99].end 430.22534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 431.20409375
transcript.pyannote[100].end 437.53221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 438.20721875
transcript.pyannote[101].end 444.85596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 445.73346875
transcript.pyannote[102].end 448.90596875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 450.76221875
transcript.pyannote[103].end 453.27659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 453.61409375
transcript.pyannote[104].end 455.26784375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 455.85846875
transcript.pyannote[105].end 457.30971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 457.59659375
transcript.pyannote[106].end 460.34721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 461.39346875
transcript.pyannote[107].end 463.18221875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 463.70534375
transcript.pyannote[108].end 466.37159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 467.35034375
transcript.pyannote[109].end 473.15534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 473.69534375
transcript.pyannote[110].end 475.75409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 477.10409375
transcript.pyannote[111].end 478.48784375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 478.70721875
transcript.pyannote[112].end 479.56784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 480.07409375
transcript.pyannote[113].end 482.04846875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 482.13284375
transcript.pyannote[114].end 484.69784375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 485.62596875
transcript.pyannote[115].end 486.25034375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 486.48659375
transcript.pyannote[116].end 490.03034375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 490.58721875
transcript.pyannote[117].end 491.39721875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 491.81909375
transcript.pyannote[118].end 493.60784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 494.16471875
transcript.pyannote[119].end 495.90284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 497.06721875
transcript.pyannote[120].end 501.35346875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 501.70784375
transcript.pyannote[121].end 502.36596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 502.99034375
transcript.pyannote[122].end 510.76971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 511.61346875
transcript.pyannote[123].end 514.85346875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 515.78159375
transcript.pyannote[124].end 517.62096875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 517.92471875
transcript.pyannote[125].end 522.63284375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 522.63284375
transcript.pyannote[126].end 524.55659375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 524.87721875
transcript.pyannote[127].end 525.55221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 525.55221875
transcript.pyannote[128].end 529.11284375
transcript.whisperx[0].start 0.329
transcript.whisperx[0].end 26.001
transcript.whisperx[0].text 經濟部江次長來經濟部副次長還有央行的朱副總裁我看到這個央行的報告去年的對美貿易順差是739億美元那國際貿易的大原理不是在基本上要追求平衡嗎
transcript.whisperx[1].start 27.816
transcript.whisperx[1].end 30.318
transcript.whisperx[1].text 所以我們對人家的順超這麼高的時候該要怎麼處理啊這個誰要回答
transcript.whisperx[2].start 39.959
transcript.whisperx[2].end 64.211
transcript.whisperx[2].text 其實國際貿易如果依據我們所看到的是一個基於比較利益的原則那剛好現在美國需要我們台灣提供的商品自動性商品教官你報告裡面有寫的就不用重複我只是說你自動性商品只是其中的一樣當然那是出口的大宗那我請教經濟部回答如果有一個國家他也是這樣跟你講
transcript.whisperx[3].start 66.552
transcript.whisperx[3].end 80.418
transcript.whisperx[3].text 我要賺你台灣739億的美金一年順差然後我也是什麼產品是你台灣必須的這樣的講法很合理嗎我跟你說人家美國站在美國的立場
transcript.whisperx[4].start 82.48
transcript.whisperx[4].end 110.762
transcript.whisperx[4].text 你這麼多的國家台灣是全世界排名第六的順差國那美國現在總底複造已經是46兆美金了所以美國他一定得想辦法平衡貿易嘛我們要解決這個問題之前要先了解對方的立場跟原因我們大家再來討論今天這個因素而不是只有站在台灣的本位立場不行啦 我就是要貪你的錢你就不應該對我做這個做那個要求
transcript.whisperx[5].start 112.239
transcript.whisperx[5].end 120.339
transcript.whisperx[5].text 就算是普通在外面開公司的老闆他做人家生意賺了人家的錢也要對客戶好一點
transcript.whisperx[6].start 121.852
transcript.whisperx[6].end 146.588
transcript.whisperx[6].text 對不對那是互動的嘛我們台灣已經在國際間我們已經是一個已開發國家我們要做一個有責任感負責任的大國在邏輯上是這樣所以我們常常講台灣can help那既然can help就是應該要承擔責任該承擔的要承擔好 那個基本上如果就出口貿易結構當然我們的貿易
transcript.whisperx[7].start 151.532
transcript.whisperx[7].end 153.956
transcript.whisperx[7].text 致通性產品佔大宗當然在貿易政策上你若說不要出口這麼多美國同意的話那是可以出口自動設限另外還有一個我們是可以多進口我們需要的
transcript.whisperx[8].start 167.515
transcript.whisperx[8].end 186.362
transcript.whisperx[8].text 對啊 我們台灣為什麼要對自己的出口自動設限而是相對的我們應該要多採購人家的東西嘛所以我們總統才會講說我們希望台灣優良的廠商如果覺得美國的市場可以 環境可以多去美國投資台積電才會宣布是幾年
transcript.whisperx[9].start 187.842
transcript.whisperx[9].end 207.612
transcript.whisperx[9].text 那也要增加對美國多投資一千億美金嘛這個就是其實台灣在付國際上面應該大家要平等的責任的一個出發從這個角度來觀察你才能夠了解台灣跟美國之間真正的互動而不是只有完全站在台灣的角度講話今天如果你是美國總統
transcript.whisperx[10].start 208.732
transcript.whisperx[10].end 219.002
transcript.whisperx[10].text 你的國家已經負債46兆美金然後每一年都還要出操這麼多的時候你不會想要解決這個問題嗎我提議委員的論點我們是像農產品的進口是民生所需還有一些相關的資源
transcript.whisperx[11].start 229.071
transcript.whisperx[11].end 246.044
transcript.whisperx[11].text 甚至我們說我們需要有關國防設備等等的這個我都提過啦我們應該多跟美國投資多跟美國採購東西這是很合理的啦那再來就是要請教單項汽車關稅台灣是17.5對我們的汽車關稅是17.5這17.5有沒有包括公務稅啊
transcript.whisperx[12].start 254.188
transcript.whisperx[12].end 277.034
transcript.whisperx[12].text 17.5是關稅沒有包含貨物稅那如果加上貨物稅是多少貨物稅大概是25%左右所以加起來37點多那也就是說如果美國的汽車要賣到台灣來它的基本上不論你的名目是關稅還是貨物稅反正它要增加的成本進到台灣來它就是要37點多的稅金對不對
transcript.whisperx[13].start 281.224
transcript.whisperx[13].end 296.051
transcript.whisperx[13].text 那美國給我們課的關稅有算貨物稅嗎到美國去的部分 是不是美國的部分 目前他們所以我的意思是說你自己給我的報告裡面你都光只有講關稅
transcript.whisperx[14].start 298.22
transcript.whisperx[14].end 322.691
transcript.whisperx[14].text 台灣還有其他的稅啊 所以你不能夠這樣子比啦沒有錯 跟委員報告也提到就是說除了關稅之外 其他的稅目前我們也在統計分析第一個 從美國進口的車種它如果是屬於電動車的話 那是零貨物稅你如果在這個地方的報告是這樣子扭曲的我如果是一個美國人 我看了會很不爽啊
transcript.whisperx[15].start 323.895
transcript.whisperx[15].end 335.123
transcript.whisperx[15].text 對不對 明明我的關稅加貨運稅來到台灣的汽車就是要多37點多的稅金結果你的公文書的報告說我們的關稅只有17.5這個如果你是美國人在跟你討論這個問題的時候你這個講法他的気持會好嗎所以我們老實一點
transcript.whisperx[16].start 346.633
transcript.whisperx[16].end 356.061
transcript.whisperx[16].text 第二個我們為什麼要這麼高的稅金因為原因是要保護台灣虛弱的產業結果那個就是要問經濟部保護了幾十年有用嗎報告委員我們的汽車產業的供應鏈相當的長所以我們大概也有7萬多個員工在這個汽車產業相關的產業包括了很多的零組件
transcript.whisperx[17].start 372.591
transcript.whisperx[17].end 393.525
transcript.whisperx[17].text 那零組件我們零組件也可以賣到美國去啊所以我們才要相對對等關稅雙方關稅都降低啊為什麼台灣的零組件的廠商他的市場的打算只有在台灣呢我事實上認識很多廠商他的零件是賣到美國去的啊包括那個小貨車的那個蓋頂啊在我們樹林很大的廠啊對不對所以我覺得你這個講法
transcript.whisperx[18].start 399.461
transcript.whisperx[18].end 406.725
transcript.whisperx[18].text 37.5的稅金耶結果你的報告說是17.5因為只有算關稅這個算法是掩耳盜鈴啦
transcript.whisperx[19].start 408.79
transcript.whisperx[19].end 430.051
transcript.whisperx[19].text 我是覺得經濟部要考量的是這個產業還要保護到什麼時候你的市場的預設是怎麼樣我同意有很多的工作機會在這裡面那美國同樣的道理啊他也是那如果是要我把你的關稅提高那讓你到美國來設廠我也是讓美國的這個就業機會得到保障啊
transcript.whisperx[20].start 431.32
transcript.whisperx[20].end 460.185
transcript.whisperx[20].text 所以所謂的關稅壁壘就是這樣造成的那我們自己數上37.5%的稅金去指責美國說我們美國25%會比我們高我跟你講美國如果只有對我們拿25%齁那是已經優待台灣啦因為台灣給人家拿37.5啊我說的這樣有沒有道理大家來評評理將心比心的評評理有沒有道理所謂對等關稅就是真正對等關稅是你坑我多少我坑你多少
transcript.whisperx[21].start 461.448
transcript.whisperx[21].end 478.283
transcript.whisperx[21].text 照理來講 如果照這個數字你課我37.5 我又要課你37.5那人家說 人家現在宣布25就受不了了喔 美國夭壽喔 要讓我去這麼多關稅都沒有在考慮 自己在那裡扣多少這做人不可以這樣啦 國際之間大家在國際之間做正常的活動也要有一點道義啊
transcript.whisperx[22].start 485.94
transcript.whisperx[22].end 514.214
transcript.whisperx[22].text 那受到不公平的對待我們當然可以挨我們可以講可以爭取那其實你回去檢視人家做的有不公平嗎那我們的貿易順差我覺得應該要集中一個焦點三位貿易順差是一個很大的問題如果台灣今年照這樣貿易順差陷入下去今年絕對會超過800億美金所以如何趕快增加對美國的採購
transcript.whisperx[23].start 516.074
transcript.whisperx[23].end 521.617
transcript.whisperx[23].text 對美國的貿易平衡這個是當務之急好好的回去考慮這一點好不好 拜託 謝謝