iVOD / 159600

Field Value
IVOD_ID 159600
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159600
日期 2025-03-26
會議資料.會議代碼 委員會-11-3-20-4
會議資料.會議代碼:str 第11屆第3會期財政委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-26T09:24:33+08:00
結束時間 2025-03-26T09:35:27+08:00
影片長度 00:10:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8cb7ec0b2cd1ea343b3faab7d7bc0ecf9336bc333af6bdb0c80eeefacbca121b96fa539d5614b54a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:24:33 - 09:35:27
會議時間 2025-03-26T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第4次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【3月24日及26日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.26721875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 1.00971875
transcript.pyannote[1].end 1.75221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 4.53659375
transcript.pyannote[2].end 5.02596875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 5.22846875
transcript.pyannote[3].end 6.24096875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 6.78096875
transcript.pyannote[4].end 10.24034375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 8.46846875
transcript.pyannote[5].end 8.65409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 10.56096875
transcript.pyannote[6].end 12.16409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 12.80534375
transcript.pyannote[7].end 15.64034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 16.72034375
transcript.pyannote[8].end 19.03221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 19.62284375
transcript.pyannote[9].end 24.60096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 25.15784375
transcript.pyannote[10].end 28.39784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 28.80284375
transcript.pyannote[11].end 30.52409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 31.08096875
transcript.pyannote[12].end 32.66721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 33.34221875
transcript.pyannote[13].end 34.23659375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 34.96221875
transcript.pyannote[14].end 37.25721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 37.49346875
transcript.pyannote[15].end 38.48909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 39.53534375
transcript.pyannote[16].end 40.07534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 41.07096875
transcript.pyannote[17].end 43.11284375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 44.54721875
transcript.pyannote[18].end 45.77909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 46.82534375
transcript.pyannote[19].end 50.79096875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 51.39846875
transcript.pyannote[20].end 52.17471875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 52.61346875
transcript.pyannote[21].end 54.08159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 54.67221875
transcript.pyannote[22].end 56.95034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 57.15284375
transcript.pyannote[23].end 58.70534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 59.22846875
transcript.pyannote[24].end 60.59534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 61.15221875
transcript.pyannote[25].end 62.62034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 62.89034375
transcript.pyannote[26].end 63.29534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 63.54846875
transcript.pyannote[27].end 65.99534375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 66.60284375
transcript.pyannote[28].end 71.41221875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 71.58096875
transcript.pyannote[29].end 72.40784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 72.79596875
transcript.pyannote[30].end 74.14596875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 74.58471875
transcript.pyannote[31].end 77.90909375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 78.22971875
transcript.pyannote[32].end 79.93409375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 80.32221875
transcript.pyannote[33].end 82.02659375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 82.39784375
transcript.pyannote[34].end 83.52846875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 84.23721875
transcript.pyannote[35].end 85.85721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 86.51534375
transcript.pyannote[36].end 87.49409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 87.78096875
transcript.pyannote[37].end 93.90659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 94.21034375
transcript.pyannote[38].end 95.39159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 95.91471875
transcript.pyannote[39].end 101.95596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 102.34409375
transcript.pyannote[40].end 103.06971875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 103.30596875
transcript.pyannote[41].end 107.69346875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 107.79471875
transcript.pyannote[42].end 107.84534375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 107.84534375
transcript.pyannote[43].end 111.25409375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 111.62534375
transcript.pyannote[44].end 114.98346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 115.21971875
transcript.pyannote[45].end 122.10471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 122.27346875
transcript.pyannote[46].end 124.29846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 124.55159375
transcript.pyannote[47].end 131.41971875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 131.79096875
transcript.pyannote[48].end 159.88784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 160.51221875
transcript.pyannote[49].end 182.01096875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 182.50034375
transcript.pyannote[50].end 186.06096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 186.63471875
transcript.pyannote[51].end 189.99284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 190.38096875
transcript.pyannote[52].end 211.66034375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 211.66034375
transcript.pyannote[53].end 216.31784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 216.35159375
transcript.pyannote[54].end 218.07284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 218.49471875
transcript.pyannote[55].end 220.80659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 220.92471875
transcript.pyannote[56].end 225.17721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 225.41346875
transcript.pyannote[57].end 230.71221875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 231.58971875
transcript.pyannote[58].end 236.55096875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 236.85471875
transcript.pyannote[59].end 244.53284375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 244.80284375
transcript.pyannote[60].end 245.89971875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 246.18659375
transcript.pyannote[61].end 247.68846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 247.90784375
transcript.pyannote[62].end 261.28971875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 261.64409375
transcript.pyannote[63].end 275.34659375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 276.32534375
transcript.pyannote[64].end 278.77221875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 278.87346875
transcript.pyannote[65].end 286.11284375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 286.53471875
transcript.pyannote[66].end 290.71971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 291.52971875
transcript.pyannote[67].end 295.14096875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 295.79909375
transcript.pyannote[68].end 302.38034375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 300.01784375
transcript.pyannote[69].end 300.35534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 300.37221875
transcript.pyannote[70].end 300.40596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 302.43096875
transcript.pyannote[71].end 302.49846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 302.49846875
transcript.pyannote[72].end 311.07096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 310.63221875
transcript.pyannote[73].end 310.95284375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 311.17221875
transcript.pyannote[74].end 311.25659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 311.25659375
transcript.pyannote[75].end 311.30721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 311.30721875
transcript.pyannote[76].end 311.35784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 311.35784375
transcript.pyannote[77].end 312.38721875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 313.66971875
transcript.pyannote[78].end 314.80034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 314.91846875
transcript.pyannote[79].end 316.15034375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 316.38659375
transcript.pyannote[80].end 317.73659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 317.97284375
transcript.pyannote[81].end 320.97659375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 320.97659375
transcript.pyannote[82].end 321.21284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 321.21284375
transcript.pyannote[83].end 325.51596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 325.76909375
transcript.pyannote[84].end 326.20784375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 326.66346875
transcript.pyannote[85].end 330.03846875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 330.35909375
transcript.pyannote[86].end 333.34596875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 333.78471875
transcript.pyannote[87].end 336.36659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 336.77159375
transcript.pyannote[88].end 339.13409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 339.65721875
transcript.pyannote[89].end 340.45034375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 340.73721875
transcript.pyannote[90].end 341.05784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 341.22659375
transcript.pyannote[91].end 344.73659375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 345.54659375
transcript.pyannote[92].end 345.86721875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 346.23846875
transcript.pyannote[93].end 346.98096875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 347.58846875
transcript.pyannote[94].end 350.18721875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 350.79471875
transcript.pyannote[95].end 351.62159375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 352.21221875
transcript.pyannote[96].end 352.98846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 353.19096875
transcript.pyannote[97].end 354.49034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 354.55784375
transcript.pyannote[98].end 355.73909375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 356.26221875
transcript.pyannote[99].end 357.29159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 357.79784375
transcript.pyannote[100].end 358.92846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 359.80596875
transcript.pyannote[101].end 360.48096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 360.98721875
transcript.pyannote[102].end 363.48471875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 363.60284375
transcript.pyannote[103].end 366.37034375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 367.11284375
transcript.pyannote[104].end 368.39534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 368.61471875
transcript.pyannote[105].end 368.90159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 369.10409375
transcript.pyannote[106].end 370.45409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 370.74096875
transcript.pyannote[107].end 374.72346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 375.16221875
transcript.pyannote[108].end 376.78221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 377.25471875
transcript.pyannote[109].end 378.82409375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 378.97596875
transcript.pyannote[110].end 381.20346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 381.20346875
transcript.pyannote[111].end 381.49034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 382.18221875
transcript.pyannote[112].end 384.52784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 384.52784375
transcript.pyannote[113].end 405.85784375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 406.11096875
transcript.pyannote[114].end 413.50221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 413.78909375
transcript.pyannote[115].end 442.61159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 442.99971875
transcript.pyannote[116].end 444.88971875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 445.22721875
transcript.pyannote[117].end 452.41596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 452.70284375
transcript.pyannote[118].end 453.96846875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 454.17096875
transcript.pyannote[119].end 459.45284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 459.01409375
transcript.pyannote[120].end 459.35159375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 459.97596875
transcript.pyannote[121].end 474.28596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 464.24534375
transcript.pyannote[122].end 464.65034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 474.28596875
transcript.pyannote[123].end 474.45471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 474.45471875
transcript.pyannote[124].end 476.09159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 476.56409375
transcript.pyannote[125].end 482.04846875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 481.96409375
transcript.pyannote[126].end 490.36784375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 484.36034375
transcript.pyannote[127].end 484.78221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 491.05971875
transcript.pyannote[128].end 498.45096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 498.50159375
transcript.pyannote[129].end 515.20784375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 498.70409375
transcript.pyannote[130].end 498.80534375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 515.30909375
transcript.pyannote[131].end 528.04971875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 528.89346875
transcript.pyannote[132].end 528.91034375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 528.91034375
transcript.pyannote[133].end 528.97784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 528.97784375
transcript.pyannote[134].end 529.43346875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 529.70346875
transcript.pyannote[135].end 538.47846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 538.84971875
transcript.pyannote[136].end 553.19346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 538.91721875
transcript.pyannote[137].end 539.89596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 553.19346875
transcript.pyannote[138].end 554.88096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 554.98221875
transcript.pyannote[139].end 563.18346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 563.18346875
transcript.pyannote[140].end 565.96784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 565.12409375
transcript.pyannote[141].end 571.46909375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 571.68846875
transcript.pyannote[142].end 580.29471875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 580.29471875
transcript.pyannote[143].end 580.31159375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 581.23971875
transcript.pyannote[144].end 582.03284375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 582.03284375
transcript.pyannote[145].end 602.75534375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 603.09284375
transcript.pyannote[146].end 606.75471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 606.88971875
transcript.pyannote[147].end 606.90659375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 606.90659375
transcript.pyannote[148].end 606.95721875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 606.95721875
transcript.pyannote[149].end 607.19346875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 607.19346875
transcript.pyannote[150].end 607.24409375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 607.24409375
transcript.pyannote[151].end 607.37909375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 607.37909375
transcript.pyannote[152].end 607.46346875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 607.46346875
transcript.pyannote[153].end 611.17596875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 611.17596875
transcript.pyannote[154].end 612.89721875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 611.32784375
transcript.pyannote[155].end 611.76659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 612.89721875
transcript.pyannote[156].end 612.94784375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 613.01534375
transcript.pyannote[157].end 614.55096875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 614.88846875
transcript.pyannote[158].end 621.67221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 620.60909375
transcript.pyannote[159].end 622.24596875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 622.12784375
transcript.pyannote[160].end 637.99034375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 628.25346875
transcript.pyannote[161].end 629.97471875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 636.04971875
transcript.pyannote[162].end 640.92659375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 638.34471875
transcript.pyannote[163].end 638.74971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 640.92659375
transcript.pyannote[164].end 641.51721875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 641.51721875
transcript.pyannote[165].end 641.53409375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 641.53409375
transcript.pyannote[166].end 641.58471875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 641.58471875
transcript.pyannote[167].end 643.35659375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 641.65221875
transcript.pyannote[168].end 642.64784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 643.67721875
transcript.pyannote[169].end 646.17471875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 646.47846875
transcript.pyannote[170].end 648.45284375
transcript.whisperx[0].start 1.37
transcript.whisperx[0].end 7.612
transcript.whisperx[0].text 最近媒體上常常在講你們要修正因為大法庭對於強制執行
transcript.whisperx[1].start 17.555
transcript.whisperx[1].end 45.572
transcript.whisperx[1].text 這個法律見解所以你們要修改保險法那我看到那個媒體上面的報導說你們基本上每張保單保留各地區的生活費基本生活費三個月這樣的額度以這樣的額度超過了才去進行強制執行可是我們這個執行也要有那個成本的概念
transcript.whisperx[2].start 47.315
transcript.whisperx[2].end 61.991
transcript.whisperx[2].text 你媒體裡面講說你可以分為戶籍所在地住所地然後還可以工作地都在跨不同的縣市的時候那變成不同的標準這樣勞費實在太大了我們應該要化繁為簡
transcript.whisperx[3].start 63.593
transcript.whisperx[3].end 83.351
transcript.whisperx[3].text 我要提一個idea給你思考就以全國生活費用最高的地方三個月以這個做標準假設全國最高的基本生活費是在台北市的話那就以台北市基本生活費的三個月的標準全國都一致
transcript.whisperx[4].start 84.292
transcript.whisperx[4].end 111.056
transcript.whisperx[4].text 那這樣全國的法院就很清楚的了解到這個法律的標準在哪裡而不是說以生活地、以工作地、以戶籍地都可以來挑一個對債務人最有利然後就每個個案光是這個就要進入有沒有到達什麼範圍的增值這個太浪費了不知道這個你來考慮看看這個適不可行
transcript.whisperx[5].start 111.836
transcript.whisperx[5].end 130.322
transcript.whisperx[5].text 謝謝委員,我想上個禮拜公聽會的時候,因為我有另一位沒有參與,不過我仔細的聆聽了各界對這個的看法,誠如剛才委員所指正的,就是說這次的修改保險法,我們是被動的修法,是因為已經衍生了很多的問題,我們必須要去解決這問題。
transcript.whisperx[6].start 131.903
transcript.whisperx[6].end 159.752
transcript.whisperx[6].text 不過在我的印象裡我在保險市場已經快40年的時間我們過去的保險契約一直都不會構成強制執行的問題的標的但是111年以後大法庭的解釋當然就湧出了這麼大的問題所以金管會責無旁貸必須要透過立法來解決這問題我們在這次的修法草案裡面呢剛剛委員的指證就是這個建議其實我們就思考了三個非常重要的原則來做這個修法第一個社會成本
transcript.whisperx[7].start 160.572
transcript.whisperx[7].end 179.121
transcript.whisperx[7].text 我們一定要用最低的社會成本來解決這問題第二個就是我們要公平的看待債權跟債務人的關係第三個也很重要就是我們要確保保險安定社會的功能能夠繼續的維持這三個是我們在考慮的所以說我們在這裡面我們剛剛委員的建議我覺得是可以來思考因為當時我們會訂這個法案的這樣內容是我們是
transcript.whisperx[8].start 182.583
transcript.whisperx[8].end 202.97
transcript.whisperx[8].text 因為認為說過去如果訂一個固定的金額可能會隨著時間經過會產生一些變化那我們就是依循那個強制執行法的概念來用這個當然它背後有一套解決的方法剛剛委員也提到了它有主要生活區域、戶籍地如果再加上保單還有一個邀保人的住所
transcript.whisperx[9].start 203.73
transcript.whisperx[9].end 230.573
transcript.whisperx[9].text 這些都是一個非常非常難判斷當然司法院有他一套的解決方法我覺得委員這個想法說不定我們可以來思考司法院有解決方法我們了解啊但是我舉一個例子假設我是被強制執行的債務人那我又主張我的戶籍地在新北而我生活工作地在台北那假設我還有其他的地方那關於我這個主張債權人就可以說不行喔你不能用台北市你要用新北市的
transcript.whisperx[10].start 231.613
transcript.whisperx[10].end 260.652
transcript.whisperx[10].text 那就又要進入個案的認定在強制執行中間其實不需要這麼多的認定因為這樣子會增加很多的債務人意之數還會增加很多的這個程序上面的這些的攻防所以我是覺得抓一個一致的標準那抓一個一致的標準當然以全國為之因為台灣現在已經是一日生活圈了你要說台北市三個月大概是7萬多然後這個南部大概是5萬東部可能剩下4萬多
transcript.whisperx[11].start 261.733
transcript.whisperx[11].end 290.326
transcript.whisperx[11].text 我覺得這樣子光是為了說你應該這個債權人應該是在算在東部還是在算在北部還是北部的台北市還是新北市個案你都去逐一認定那如果大家意見不一樣的時候就再另外一個訴訟那這個是整個社會的勞費會增加很多我們應該要考慮司法也有成本啊我們做這些執行也有成本那讓這個投保人將來也可以很清楚的了解說哪一些保險
transcript.whisperx[12].start 291.567
transcript.whisperx[12].end 312.065
transcript.whisperx[12].text 如果你的保險的產值是超過這個金額是會被可能會被強制執行如果你有債務的話那這樣子是比較減省的啦是我說劃減為凡啦對確實像我剛剛提到如何以最低的社會成本執行這樣的一個效益我想剛剛那個建議我們會回來思考好謝謝那第二個就是
transcript.whisperx[13].start 313.715
transcript.whisperx[13].end 340.168
transcript.whisperx[13].text 我們過去這些年在中國的曝險大家都是計算國營國家的銀行在中國的曝險金額是逐年下降有定一個標準這個逐年下降是可喜可樂因為要在不穩定的地方當然你那個風險高的地方盡量曝險要少一點可是我覺得那個計算有很多的黑數以前最被常提出來的黑數就是影子銀行
transcript.whisperx[14].start 341.429
transcript.whisperx[14].end 367.618
transcript.whisperx[14].text 這租賃公司他的付錢你沒有辦法計算在這裡面那你未來租賃公司的納管會越來越嚴格嘛再來就是國營如果他的分行那有統計進來 放款有統計進來但是那紙行就漏掉了因為他是依照中國的法令在中國的紙行但是他其實的大股東母公司是國營那那個也統計不到
transcript.whisperx[15].start 369.179
transcript.whisperx[15].end 380.845
transcript.whisperx[15].text 有沒有什麼辦法因為一切的政策的考量要從事實的調查做基礎有沒有辦法把台灣在中國的曝險更清楚更明確的算出來
transcript.whisperx[16].start 382.387
transcript.whisperx[16].end 402.364
transcript.whisperx[16].text 有沒有打算往這個方向來努力?我上次委員在詢問這個問題的時候我們大概那個曝險大概18.5%現在大概降到18%大概又在持續的下降中當然剛剛委員有指證說我們還有其他業態的公司在那邊也有類似做一些獸性的類似獸性的業務我們也持續在關注
transcript.whisperx[17].start 406.407
transcript.whisperx[17].end 435.285
transcript.whisperx[17].text 剛剛就是確實沒有錯我們現在的法令規定說我們現在國營的曝險不可以超過他淨值的一倍那現在大部分的國營剛剛講那個18就是只有占我們淨值的18全體平均當然我們的算法有分子行跟分行的算法分行的話就是用他的壽信同業拆借還有就是他們就是這些的投資但是我們對子行的算法是以他的投資金額為主就投資額為主這兩個標準是有點差異所以我們現在也
transcript.whisperx[18].start 436.245
transcript.whisperx[18].end 458.951
transcript.whisperx[18].text 會來考慮說怎麼樣從實質衡量曝險的角度我們會重新來做一個盤點對 因為這個數字如果精確我們在做一些金融政策上面的時候能夠比較了解真正的狀況是怎麼樣比較接近真實所以這方面要努力再來就是明年一個大課題就是要接這個IFRS17的消耗公報
transcript.whisperx[19].start 460.271
transcript.whisperx[19].end 475.463
transcript.whisperx[19].text 這個目前前兩年是保險業都有提出一些他們不一樣的看法或他有困難啊怎麼樣的難題希望你們能夠暫緩或是給他協力解決這一些這近半年多來這個聲音減少了那減少是因為我們的
transcript.whisperx[20].start 476.664
transcript.whisperx[20].end 489.965
transcript.whisperx[20].text 越來越了解呢協助有成呢還是有什麼其他的因素我這最近比較少聽到這樣子的聲音那個其實沒有新聞就是好新聞嘛就是一樣其實我覺得這個東西就這套制度剛開始實施的時候台灣的利率還是處於低檔
transcript.whisperx[21].start 491.087
transcript.whisperx[21].end 514.629
transcript.whisperx[21].text 那我們現在呢,因為現在利率大家都知道比以前提高了我們保險業最大的一個負債科目就是受到利率的影響我們利率的假設現在提高了所以大家在這個未來接軌iPhone 17的時候呢本來就是它在那個負債的提高本來就是會減輕那當然經過主管機關在這麼多年來不斷的強化做所謂的商品體質的改變
transcript.whisperx[22].start 515.47
transcript.whisperx[22].end 527.688
transcript.whisperx[22].text 他們現在累積了很多商品的轉型其實未來在接軌日那個主力確實小很多其實像陳儒剛才委員所指正的確實我們在這部分在我們現在所有的監控過程當中都非常順利
transcript.whisperx[23].start 528.925
transcript.whisperx[23].end 554.291
transcript.whisperx[23].text 那你譬如說你今天的報告一開始說去年這個各行各金融業這三大行業賺了多少錢這裡面有包括匯差嗎譬如說我在保險公司在美國資產那投資的金額那本來用美金換算那這幾年來台幣是貶值啊所以你再換算成台幣回來的話它就帳面上就增加了很多啊這個有算在這裡面嗎這個我們就是
transcript.whisperx[24].start 555.191
transcript.whisperx[24].end 580.029
transcript.whisperx[24].text 我剛才報告的這個損益數字是財報的損益數字就依據我們現在的會計準則所計算出來的損益數字所以有的有放有的沒放當然會計損益裡面是把匯率的那部分是它的實現跟已實現收入都有考慮在內對那你要知道因為匯率跟這個利率都是不確定的東西改天換台幣升值的時候那是不是就又挨天
transcript.whisperx[25].start 581.314
transcript.whisperx[25].end 605.805
transcript.whisperx[25].text 有時候遇到多的虧損就跑出來啊確實其實我覺得財報的特性就是它是一個中性的它今天的比如說整個經濟環境的波動有時候好有時候壞本來就是它忠實的反映它的真實的狀況所以我也常跟保險院的在提醒今年獲益好其實也不要說就這樣其實也隱含著未來這個波動性
transcript.whisperx[26].start 607.006
transcript.whisperx[26].end 629.265
transcript.whisperx[26].text 有的時候多賺錢是因為剛好就是這個政策的時機問題還是時間點的問題所以不能我們台語在說好天要積福來牛不能每天想說天天都是好天氣非常同意另外就是說你剛剛提到說因為利率是保險業一個很重要的東西利率也是一樣的狀況也是會升降
transcript.whisperx[27].start 629.825
transcript.whisperx[27].end 642.762
transcript.whisperx[27].text 但是如果你擴大能夠在台灣有投資的管道的話至少避險的這一部分的成本可以降低一些啦我們已經採取一些措施來去降低他們的那個避險成本好 這我們需要去努力了加油謝謝 謝謝委員 謝謝好 謝謝委員的質詢 下一位請你袁寬文委員質詢 請