iVOD / 159455

Field Value
IVOD_ID 159455
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159455
日期 2025-03-20
會議資料.會議代碼 委員會-11-3-36-3
會議資料.會議代碼:str 第11屆第3會期司法及法制委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第3會期司法及法制委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-03-20T11:23:58+08:00
結束時間 2025-03-20T11:32:13+08:00
影片長度 00:08:15
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/51071748fba5feb0a961d344fb5ae7d14aa23c349ee8e69360f1855e115a4ba4fbd5a51b102a7b385ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:23:58 - 11:32:13
會議時間 2025-03-20T09:00:00+08:00
會議名稱 立法院第11屆第3會期司法及法制委員會第3次全體委員會議(事由:邀請行政院人事行政總處人事長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 9.44721875
transcript.pyannote[0].end 13.98659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 14.27346875
transcript.pyannote[1].end 16.19721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.56846875
transcript.pyannote[2].end 16.58534375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 16.58534375
transcript.pyannote[3].end 17.46284375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 19.89284375
transcript.pyannote[4].end 20.53409375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 20.66909375
transcript.pyannote[5].end 24.80346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 25.37721875
transcript.pyannote[6].end 25.73159375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 27.46971875
transcript.pyannote[7].end 28.16159375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 29.81534375
transcript.pyannote[8].end 32.95409375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 35.45159375
transcript.pyannote[9].end 36.37971875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 40.22721875
transcript.pyannote[10].end 41.29034375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 41.72909375
transcript.pyannote[11].end 41.79659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 41.79659375
transcript.pyannote[12].end 44.36159375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 44.85096875
transcript.pyannote[13].end 45.61034375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 45.84659375
transcript.pyannote[14].end 54.84096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 55.14471875
transcript.pyannote[15].end 61.59096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 62.02971875
transcript.pyannote[16].end 66.72096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 67.14284375
transcript.pyannote[17].end 69.43784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 69.79221875
transcript.pyannote[18].end 70.90596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 70.97346875
transcript.pyannote[19].end 72.18846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 75.88409375
transcript.pyannote[20].end 77.41971875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 77.68971875
transcript.pyannote[21].end 79.02284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 79.09034375
transcript.pyannote[22].end 81.53721875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 81.75659375
transcript.pyannote[23].end 87.12284375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 87.84846875
transcript.pyannote[24].end 98.09159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 98.36159375
transcript.pyannote[25].end 103.32284375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 104.65596875
transcript.pyannote[26].end 104.99346875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 105.95534375
transcript.pyannote[27].end 106.49534375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 107.42346875
transcript.pyannote[28].end 121.56471875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 118.07159375
transcript.pyannote[29].end 119.50596875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 120.26534375
transcript.pyannote[30].end 120.73784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 121.56471875
transcript.pyannote[31].end 135.58784375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 135.85784375
transcript.pyannote[32].end 142.87784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 142.87784375
transcript.pyannote[33].end 163.63409375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 143.56971875
transcript.pyannote[34].end 144.12659375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 144.68346875
transcript.pyannote[35].end 145.15596875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 163.71846875
transcript.pyannote[36].end 189.03096875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 190.65096875
transcript.pyannote[37].end 206.49659375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 206.61471875
transcript.pyannote[38].end 218.14034375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 207.12096875
transcript.pyannote[39].end 207.13784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 207.13784375
transcript.pyannote[40].end 207.96471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 207.96471875
transcript.pyannote[41].end 208.67346875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 211.59284375
transcript.pyannote[42].end 211.74471875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 216.99284375
transcript.pyannote[43].end 217.71846875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 218.37659375
transcript.pyannote[44].end 226.47659375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 226.61159375
transcript.pyannote[45].end 229.48034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 229.91909375
transcript.pyannote[46].end 232.38284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 232.58534375
transcript.pyannote[47].end 238.13721875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 238.64346875
transcript.pyannote[48].end 240.38159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 239.85846875
transcript.pyannote[49].end 240.09471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 240.33096875
transcript.pyannote[50].end 241.47846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 241.71471875
transcript.pyannote[51].end 245.52846875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 246.08534375
transcript.pyannote[52].end 253.03784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 253.12221875
transcript.pyannote[53].end 256.00784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 259.26471875
transcript.pyannote[54].end 259.65284375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 260.46284375
transcript.pyannote[55].end 264.93471875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 264.95159375
transcript.pyannote[56].end 268.98471875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 268.81596875
transcript.pyannote[57].end 269.99721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 269.08596875
transcript.pyannote[58].end 299.37659375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 299.52846875
transcript.pyannote[59].end 311.74596875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 312.11721875
transcript.pyannote[60].end 317.66909375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 317.98971875
transcript.pyannote[61].end 318.00659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 318.00659375
transcript.pyannote[62].end 335.84346875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 336.14721875
transcript.pyannote[63].end 336.94034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 337.19346875
transcript.pyannote[64].end 351.90846875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 352.33034375
transcript.pyannote[65].end 374.58846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 374.87534375
transcript.pyannote[66].end 377.91284375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 377.92971875
transcript.pyannote[67].end 403.02284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 384.30846875
transcript.pyannote[68].end 385.08471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 386.04659375
transcript.pyannote[69].end 387.68346875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 402.92159375
transcript.pyannote[70].end 403.30971875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 403.30971875
transcript.pyannote[71].end 404.32221875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 404.32221875
transcript.pyannote[72].end 415.10534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 415.37534375
transcript.pyannote[73].end 417.33284375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 416.84346875
transcript.pyannote[74].end 418.93596875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 418.26096875
transcript.pyannote[75].end 421.01159375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 421.01159375
transcript.pyannote[76].end 421.97346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 421.97346875
transcript.pyannote[77].end 423.42471875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 422.95221875
transcript.pyannote[78].end 426.14159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 423.96471875
transcript.pyannote[79].end 429.12846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 430.30971875
transcript.pyannote[80].end 430.42784375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 430.42784375
transcript.pyannote[81].end 435.40596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 430.88346875
transcript.pyannote[82].end 432.35159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 434.86596875
transcript.pyannote[83].end 448.19721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 447.60659375
transcript.pyannote[84].end 447.84284375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 451.04909375
transcript.pyannote[85].end 458.82846875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 460.24596875
transcript.pyannote[86].end 460.54971875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 460.54971875
transcript.pyannote[87].end 474.04971875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 469.32471875
transcript.pyannote[88].end 469.64534375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 474.11721875
transcript.pyannote[89].end 483.46596875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 476.24346875
transcript.pyannote[90].end 478.09971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 479.24721875
transcript.pyannote[91].end 481.49159375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 483.07784375
transcript.pyannote[92].end 484.76534375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 484.03971875
transcript.pyannote[93].end 485.03534375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 484.96784375
transcript.pyannote[94].end 485.00159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 485.01846875
transcript.pyannote[95].end 485.59221875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 485.10284375
transcript.pyannote[96].end 485.32221875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 485.59221875
transcript.pyannote[97].end 485.69346875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 487.00971875
transcript.pyannote[98].end 495.97034375
transcript.whisperx[0].start 9.605
transcript.whisperx[0].end 32.705
transcript.whisperx[0].text 主席 在場的委員 先進列席的政務機關長 官員 會長 工作夥伴 媒體記者 女士先生有請我們蘇惠仁市長請人事長委員早委員長早先輕鬆一下看一段影片我們來看一下來可以嗎怎麼抱歉 這時間暫停一下剛剛不是要播影片嗎按左邊
transcript.whisperx[1].start 40.273
transcript.whisperx[1].end 61.409
transcript.whisperx[1].text 这还没设定好抱歉这个还要设定一下值得看了回来就好那医院开给你的薪水是32K13个月三节奖金各500等一下怎么才32K当护理师薪水不是很高的吗我最近都在看新闻说年资不到一年的护理师平均薪资6到7万年资6至7年约74K才对耶
transcript.whisperx[2].start 62.062
transcript.whisperx[2].end 86.883
transcript.whisperx[2].text 放心我們除了底薪外還有輪班津貼跟餐費津貼簽約獎金等上小業會有600大約900元確定錄取你後醫院會跟你簽合約OK好來那個人長這個影片你覺得目前我們台灣社會是不是對於醫療機構的醫護人員我們都認為要提升他們的待遇
transcript.whisperx[3].start 88.161
transcript.whisperx[3].end 103.128
transcript.whisperx[3].text 大家普遍有這樣的一個期待那你知道我們公立醫療機構的護理人員的薪資是多少嗎他的薪資結構你們有做統計嗎因為我是指公立的喔衛福部上週公布各醫院護理人員的薪資人種有沒有類似的統計我我
transcript.whisperx[4].start 107.641
transcript.whisperx[4].end 135.414
transcript.whisperx[4].text 大概四升級大概四萬多啦四一六八零我們要有一個奉典奉額還有專業家籍的一個累積有私籍跟市籍的嘛對私籍到六萬七左右私籍到六萬七喔對我們部立屏東醫院如果是護理是私籍的最基層的之前的有46K如果是市籍的有39K經常薪資是本薪加固定津貼非經常薪資是加班費加非固定獎金是不是這樣子
transcript.whisperx[5].start 135.954
transcript.whisperx[5].end 162.826
transcript.whisperx[5].text 是好我補充一下師醫級的也算高九萬八千六六百六師醫級師那是最高啦醫師護理師都是師啦好那我們現在看來其實呢我遇到很多公立大型醫院的院長管理階層他們說現在大型醫院你也知道國人的就醫習慣很喜歡去大型醫院急診啊加護病房啊這醫護人力都過度勞動啊
transcript.whisperx[6].start 163.866
transcript.whisperx[6].end 188.263
transcript.whisperx[6].text 負荷過高 所以他說我們可不可以把業外收入拿來提獎金 為什麼因為事業收入呢 受到健保總額的限制他沒有辦法去調但是呢 如果公立醫院大型機構他的業外收入像停車場啦 美食街廣場啦他有這個空間 他想要公立醫院可不可以從業外收入提撥獎勵金來給這些特別辛苦的醫護人員
transcript.whisperx[7].start 191.384
transcript.whisperx[7].end 205.239
transcript.whisperx[7].text 我謝謝委員這個問題事實上這個問題之前我有跟主計長討論過我就拜託主計長他們可以去整體的衡量因為兩個角度啦一個就是說你要提供獎金是應該
transcript.whisperx[8].start 206.801
transcript.whisperx[8].end 229.292
transcript.whisperx[8].text 跟醫療這些相關嘛另外一個就是以更大的範圍裡面在醫院的場域裡面提供相關服務的他也把他的營收列入整個鋪合對 但是你有問過人事主計長我也問過主計長那主計長提醒一點不是每個醫院公立院都有這個條件大型機構人潮多錢潮多業外收入高
transcript.whisperx[9].start 229.972
transcript.whisperx[9].end 255.96
transcript.whisperx[9].text 比較中小型的公立醫院就沒有這個辦法搞不好這樣子會造成人才往醫學中心集中他提出這個顧慮你是不是也覺得有這個可能有 當然一定會有這個可能所以呢 要從大型公立醫院才有的業外收入去提高他們的獎金話說回來會有一些可能的後遺症那這樣好不好那如果我們普遍的把公職護理師的專業家級提高來留才這進一步還可以帶動私立醫院的加薪你覺得可不可行可以嗎
transcript.whisperx[10].start 261.039
transcript.whisperx[10].end 286.602
transcript.whisperx[10].text 我們這一次調薪會專業家計表24會調整會針對我們公立醫院的醫護人力是不是這樣對好你承諾了好我們等著看好那接下來另外我們來看到這是剛公佈的去年的金控全國的金控14家的平均薪資出爐了第一名是元大金那我們看到如果是泛公股的有兆豐有第一有和酷有華南四家入榜
transcript.whisperx[11].start 287.242
transcript.whisperx[11].end 310.202
transcript.whisperx[11].text 你認為國營的金融機構要如何與飯工股和民營徵財我跟您提醒 什麼叫國營的金融機構就是台灣銀行 土地銀行跟輸出的銀行他們簡稱叫台土輸你覺得有沒有辦法來跟他們談 這裡面都沒有台灣銀行沒有在入黨你覺得是不是要幫助這些國營金融機構他們的待遇提升來跟民間來爭取人才
transcript.whisperx[12].start 312.328
transcript.whisperx[12].end 335.508
transcript.whisperx[12].text 基本上我是支持,不過它本身有一個遊戲規則好,我們來看一下這個遊戲規則其實很遺憾的,不曉得那個時空背景在第八屆第四會前,國民黨委員提出的提案限制了財政部所屬的事業機構,就是指國營金融機構它的最高績效獎金只能4.4個月你知道嗎,這個跟民間差很大,我們往下看
transcript.whisperx[13].start 336.429
transcript.whisperx[13].end 351.075
transcript.whisperx[13].text 現在呢國營跟飯工股的呢 伙食費人家的是三千 他們是免稅的七百五再往下看那麼生育津貼呢 哇 人家都是什麼一胎十五萬 十萬結果呢 台土輸 台灣金控 土營輸營都
transcript.whisperx[14].start 352.395
transcript.whisperx[14].end 374.315
transcript.whisperx[14].text 大概不到一萬塊以下我們來看一下喔往前跳一頁台灣銀行的資產規模是另外四家的最前面第一名結果這四家金控啊是范工股的金控呢他們的待遇有進入到前十四名台灣銀行輸TIAMTIAM啊更不要說土地銀行跟輸出銀行所以叫做台土輸啊輸TIAMTIAM
transcript.whisperx[15].start 374.955
transcript.whisperx[15].end 397.337
transcript.whisperx[15].text 那您覺得要怎麼樣來改善呢?你是不是要改善?我跟委員報告大概兩個部分一個剛才提到的獎金4.4的部分的限制立法院那我們給他調啊你給他調,那點我認為立法院調就好第二點,生意補助的問題我們這個禮拜剛簽行政院就是每一胎你們都支持,都10萬塊
transcript.whisperx[16].start 399.458
transcript.whisperx[16].end 405.86
transcript.whisperx[16].text 這個生意補助十萬從以前到現在我們對這個議題都非常支持我跟你講我剛剛去財政委員會我問財政部長他們有五大基地措施我問他那什麼時候可以實施他說要報院但是院裡面會先問人總的意見我說好我現在馬上問人總你支不支持財政部的這個方案五大方案
transcript.whisperx[17].start 419.164
transcript.whisperx[17].end 427.287
transcript.whisperx[17].text 有大方案喔 不是只有生育娜娘喔阿哥4.4調到4.6的那個是那個我們立法院來解決我想立法院會有人反對所以人總支持吧我有跟他交換條件啦其中有兩個是要組總掛定你的部分那三個你支持組總的另外兩個我會再問主席長好不好那你就支持了齁因為我跟他相書啊我說人事長一定會支持他說不曉得咧我說我來馬上問支持啦齁好 謝謝
transcript.whisperx[18].start 451.075
transcript.whisperx[18].end 458.705
transcript.whisperx[18].text 要講一下我們請評估提升公職醫護待遇以帶動私立醫院加薪的可行性你們來提出一個書面報告可不可以
transcript.whisperx[19].start 460.653
transcript.whisperx[19].end 479.16
transcript.whisperx[19].text 好啦 OK那剛剛講的那個五大方案提升國營金融機構的員工待遇與飯宮股和民營的銀行可以來爭取搶取人才也是一樣你說五項 有三項是你的嘛把這三項拿出來然後呢 你掛簿先給他擠一擠這樣好不好我們應該是兩項啦喔 越來越少就多一項出了一項這項是立法院割的嘛立法院我們來改要煮給兩間嘛 都五間啊好 那我們一起努力好不好好 好 謝謝
transcript.whisperx[20].start 488.111
transcript.whisperx[20].end 491.859
transcript.whisperx[20].text 好 謝謝 人事長不錯 真開明這個少子化這個議題會不會補助啊 國家的投資啊