iVOD / 15940

Field Value
IVOD_ID 15940
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/15940
日期 2024-05-23
會議資料.會議代碼 委員會-11-1-26-17
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Full
開始時間 2024-05-23T08:31:16+08:00
結束時間 2024-05-23T13:05:00+08:00
影片長度 04:33:44
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a6856cf3c1b5b9bab9d46c0396a52a6677963be8d109af184be4ea68f4dac8804f535ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-05-23T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。 【5月22日、23日二天一次會】)
委員名稱 完整會議
委員發言時間 08:31:16 - 13:05:00
transcript.pyannote[0].speaker SPEAKER_10
transcript.pyannote[0].start 1745.74971875
transcript.pyannote[0].end 1753.15784375
transcript.pyannote[1].speaker SPEAKER_10
transcript.pyannote[1].start 1753.63034375
transcript.pyannote[1].end 1758.13596875
transcript.pyannote[2].speaker SPEAKER_10
transcript.pyannote[2].start 1759.89096875
transcript.pyannote[2].end 1761.13971875
transcript.pyannote[3].speaker SPEAKER_10
transcript.pyannote[3].start 1762.20284375
transcript.pyannote[3].end 1763.55284375
transcript.pyannote[4].speaker SPEAKER_10
transcript.pyannote[4].start 1765.05471875
transcript.pyannote[4].end 1769.45909375
transcript.pyannote[5].speaker SPEAKER_10
transcript.pyannote[5].start 1771.21409375
transcript.pyannote[5].end 1773.94784375
transcript.pyannote[6].speaker SPEAKER_10
transcript.pyannote[6].start 1775.19659375
transcript.pyannote[6].end 1777.54221875
transcript.pyannote[7].speaker SPEAKER_10
transcript.pyannote[7].start 1778.67284375
transcript.pyannote[7].end 1781.86221875
transcript.pyannote[8].speaker SPEAKER_10
transcript.pyannote[8].start 1782.87471875
transcript.pyannote[8].end 1786.09784375
transcript.pyannote[9].speaker SPEAKER_10
transcript.pyannote[9].start 1786.28346875
transcript.pyannote[9].end 1790.29971875
transcript.pyannote[10].speaker SPEAKER_10
transcript.pyannote[10].start 1790.62034375
transcript.pyannote[10].end 1793.38784375
transcript.pyannote[11].speaker SPEAKER_10
transcript.pyannote[11].start 1794.02909375
transcript.pyannote[11].end 1796.66159375
transcript.pyannote[12].speaker SPEAKER_10
transcript.pyannote[12].start 1797.18471875
transcript.pyannote[12].end 1799.73284375
transcript.pyannote[13].speaker SPEAKER_10
transcript.pyannote[13].start 1800.32346875
transcript.pyannote[13].end 1803.59721875
transcript.pyannote[14].speaker SPEAKER_10
transcript.pyannote[14].start 1804.13721875
transcript.pyannote[14].end 1807.61346875
transcript.pyannote[15].speaker SPEAKER_10
transcript.pyannote[15].start 1808.33909375
transcript.pyannote[15].end 1812.00096875
transcript.pyannote[16].speaker SPEAKER_10
transcript.pyannote[16].start 1812.79409375
transcript.pyannote[16].end 1823.59409375
transcript.pyannote[17].speaker SPEAKER_10
transcript.pyannote[17].start 1823.96534375
transcript.pyannote[17].end 1824.91034375
transcript.pyannote[18].speaker SPEAKER_10
transcript.pyannote[18].start 1825.46721875
transcript.pyannote[18].end 1826.80034375
transcript.pyannote[19].speaker SPEAKER_10
transcript.pyannote[19].start 1827.39096875
transcript.pyannote[19].end 1828.40346875
transcript.pyannote[20].speaker SPEAKER_10
transcript.pyannote[20].start 1828.70721875
transcript.pyannote[20].end 1830.00659375
transcript.pyannote[21].speaker SPEAKER_10
transcript.pyannote[21].start 1830.98534375
transcript.pyannote[21].end 1831.50846875
transcript.pyannote[22].speaker SPEAKER_10
transcript.pyannote[22].start 1832.20034375
transcript.pyannote[22].end 1837.24596875
transcript.pyannote[23].speaker SPEAKER_10
transcript.pyannote[23].start 1838.14034375
transcript.pyannote[23].end 1838.61284375
transcript.pyannote[24].speaker SPEAKER_10
transcript.pyannote[24].start 1839.23721875
transcript.pyannote[24].end 1843.40534375
transcript.pyannote[25].speaker SPEAKER_13
transcript.pyannote[25].start 1852.28159375
transcript.pyannote[25].end 1894.08096875
transcript.pyannote[26].speaker SPEAKER_13
transcript.pyannote[26].start 1894.28346875
transcript.pyannote[26].end 1899.88596875
transcript.pyannote[27].speaker SPEAKER_13
transcript.pyannote[27].start 1900.24034375
transcript.pyannote[27].end 1913.99346875
transcript.pyannote[28].speaker SPEAKER_13
transcript.pyannote[28].start 1914.36471875
transcript.pyannote[28].end 1915.39409375
transcript.pyannote[29].speaker SPEAKER_13
transcript.pyannote[29].start 1915.76534375
transcript.pyannote[29].end 1935.10409375
transcript.pyannote[30].speaker SPEAKER_13
transcript.pyannote[30].start 1935.15471875
transcript.pyannote[30].end 1944.41909375
transcript.pyannote[31].speaker SPEAKER_13
transcript.pyannote[31].start 1945.02659375
transcript.pyannote[31].end 1949.65034375
transcript.pyannote[32].speaker SPEAKER_13
transcript.pyannote[32].start 1950.35909375
transcript.pyannote[32].end 1957.68284375
transcript.pyannote[33].speaker SPEAKER_13
transcript.pyannote[33].start 1958.32409375
transcript.pyannote[33].end 1967.16659375
transcript.pyannote[34].speaker SPEAKER_13
transcript.pyannote[34].start 1967.63909375
transcript.pyannote[34].end 1969.81596875
transcript.pyannote[35].speaker SPEAKER_13
transcript.pyannote[35].start 1970.27159375
transcript.pyannote[35].end 1971.09846875
transcript.pyannote[36].speaker SPEAKER_13
transcript.pyannote[36].start 1971.63846875
transcript.pyannote[36].end 1972.68471875
transcript.pyannote[37].speaker SPEAKER_13
transcript.pyannote[37].start 1973.05596875
transcript.pyannote[37].end 1973.88284375
transcript.pyannote[38].speaker SPEAKER_13
transcript.pyannote[38].start 1974.28784375
transcript.pyannote[38].end 1976.90346875
transcript.pyannote[39].speaker SPEAKER_13
transcript.pyannote[39].start 1976.97096875
transcript.pyannote[39].end 1979.46846875
transcript.pyannote[40].speaker SPEAKER_13
transcript.pyannote[40].start 1980.02534375
transcript.pyannote[40].end 1983.14721875
transcript.pyannote[41].speaker SPEAKER_13
transcript.pyannote[41].start 1983.95721875
transcript.pyannote[41].end 1998.57096875
transcript.pyannote[42].speaker SPEAKER_13
transcript.pyannote[42].start 1999.46534375
transcript.pyannote[42].end 2001.67596875
transcript.pyannote[43].speaker SPEAKER_13
transcript.pyannote[43].start 2002.33409375
transcript.pyannote[43].end 2009.32034375
transcript.pyannote[44].speaker SPEAKER_13
transcript.pyannote[44].start 2009.37096875
transcript.pyannote[44].end 2013.92721875
transcript.pyannote[45].speaker SPEAKER_13
transcript.pyannote[45].start 2014.68659375
transcript.pyannote[45].end 2018.88846875
transcript.pyannote[46].speaker SPEAKER_13
transcript.pyannote[46].start 2019.22596875
transcript.pyannote[46].end 2025.67221875
transcript.pyannote[47].speaker SPEAKER_13
transcript.pyannote[47].start 2025.77346875
transcript.pyannote[47].end 2036.28659375
transcript.pyannote[48].speaker SPEAKER_13
transcript.pyannote[48].start 2036.75909375
transcript.pyannote[48].end 2053.83659375
transcript.pyannote[49].speaker SPEAKER_13
transcript.pyannote[49].start 2054.00534375
transcript.pyannote[49].end 2058.39284375
transcript.pyannote[50].speaker SPEAKER_13
transcript.pyannote[50].start 2058.96659375
transcript.pyannote[50].end 2070.18846875
transcript.pyannote[51].speaker SPEAKER_13
transcript.pyannote[51].start 2070.55971875
transcript.pyannote[51].end 2088.91971875
transcript.pyannote[52].speaker SPEAKER_13
transcript.pyannote[52].start 2090.05034375
transcript.pyannote[52].end 2104.19159375
transcript.pyannote[53].speaker SPEAKER_13
transcript.pyannote[53].start 2105.33909375
transcript.pyannote[53].end 2116.78034375
transcript.pyannote[54].speaker SPEAKER_13
transcript.pyannote[54].start 2117.52284375
transcript.pyannote[54].end 2131.52909375
transcript.pyannote[55].speaker SPEAKER_13
transcript.pyannote[55].start 2131.95096875
transcript.pyannote[55].end 2133.73971875
transcript.pyannote[56].speaker SPEAKER_13
transcript.pyannote[56].start 2133.92534375
transcript.pyannote[56].end 2138.11034375
transcript.pyannote[57].speaker SPEAKER_13
transcript.pyannote[57].start 2138.49846875
transcript.pyannote[57].end 2146.73346875
transcript.pyannote[58].speaker SPEAKER_13
transcript.pyannote[58].start 2146.90221875
transcript.pyannote[58].end 2159.54159375
transcript.pyannote[59].speaker SPEAKER_13
transcript.pyannote[59].start 2159.94659375
transcript.pyannote[59].end 2187.80721875
transcript.pyannote[60].speaker SPEAKER_13
transcript.pyannote[60].start 2188.16159375
transcript.pyannote[60].end 2196.80159375
transcript.pyannote[61].speaker SPEAKER_13
transcript.pyannote[61].start 2196.85221875
transcript.pyannote[61].end 2199.56909375
transcript.pyannote[62].speaker SPEAKER_10
transcript.pyannote[62].start 2203.90596875
transcript.pyannote[62].end 2204.27721875
transcript.pyannote[63].speaker SPEAKER_10
transcript.pyannote[63].start 2204.56409375
transcript.pyannote[63].end 2209.35659375
transcript.pyannote[64].speaker SPEAKER_10
transcript.pyannote[64].start 2209.69409375
transcript.pyannote[64].end 2212.25909375
transcript.pyannote[65].speaker SPEAKER_10
transcript.pyannote[65].start 2212.96784375
transcript.pyannote[65].end 2230.04534375
transcript.pyannote[66].speaker SPEAKER_10
transcript.pyannote[66].start 2230.41659375
transcript.pyannote[66].end 2232.66096875
transcript.pyannote[67].speaker SPEAKER_10
transcript.pyannote[67].start 2232.86346875
transcript.pyannote[67].end 2236.99784375
transcript.pyannote[68].speaker SPEAKER_10
transcript.pyannote[68].start 2242.39784375
transcript.pyannote[68].end 2243.71409375
transcript.pyannote[69].speaker SPEAKER_10
transcript.pyannote[69].start 2244.06846875
transcript.pyannote[69].end 2244.99659375
transcript.pyannote[70].speaker SPEAKER_14
transcript.pyannote[70].start 2248.59096875
transcript.pyannote[70].end 2288.04471875
transcript.pyannote[71].speaker SPEAKER_14
transcript.pyannote[71].start 2288.17971875
transcript.pyannote[71].end 2300.29596875
transcript.pyannote[72].speaker SPEAKER_13
transcript.pyannote[72].start 2301.15659375
transcript.pyannote[72].end 2313.71159375
transcript.pyannote[73].speaker SPEAKER_14
transcript.pyannote[73].start 2311.99034375
transcript.pyannote[73].end 2312.76659375
transcript.pyannote[74].speaker SPEAKER_14
transcript.pyannote[74].start 2313.00284375
transcript.pyannote[74].end 2326.30034375
transcript.pyannote[75].speaker SPEAKER_13
transcript.pyannote[75].start 2313.98159375
transcript.pyannote[75].end 2314.58909375
transcript.pyannote[76].speaker SPEAKER_14
transcript.pyannote[76].start 2326.58721875
transcript.pyannote[76].end 2330.58659375
transcript.pyannote[77].speaker SPEAKER_14
transcript.pyannote[77].start 2330.99159375
transcript.pyannote[77].end 2345.87534375
transcript.pyannote[78].speaker SPEAKER_13
transcript.pyannote[78].start 2346.28034375
transcript.pyannote[78].end 2349.57096875
transcript.pyannote[79].speaker SPEAKER_14
transcript.pyannote[79].start 2352.91221875
transcript.pyannote[79].end 2353.41846875
transcript.pyannote[80].speaker SPEAKER_13
transcript.pyannote[80].start 2353.06409375
transcript.pyannote[80].end 2364.87659375
transcript.pyannote[81].speaker SPEAKER_13
transcript.pyannote[81].start 2365.21409375
transcript.pyannote[81].end 2383.18596875
transcript.pyannote[82].speaker SPEAKER_13
transcript.pyannote[82].start 2383.33784375
transcript.pyannote[82].end 2400.76971875
transcript.pyannote[83].speaker SPEAKER_14
transcript.pyannote[83].start 2400.70221875
transcript.pyannote[83].end 2421.12096875
transcript.pyannote[84].speaker SPEAKER_13
transcript.pyannote[84].start 2404.58346875
transcript.pyannote[84].end 2405.10659375
transcript.pyannote[85].speaker SPEAKER_13
transcript.pyannote[85].start 2407.16534375
transcript.pyannote[85].end 2407.73909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 2407.73909375
transcript.pyannote[86].end 2407.80659375
transcript.pyannote[87].speaker SPEAKER_14
transcript.pyannote[87].start 2421.57659375
transcript.pyannote[87].end 2428.24221875
transcript.pyannote[88].speaker SPEAKER_14
transcript.pyannote[88].start 2428.78221875
transcript.pyannote[88].end 2432.34284375
transcript.pyannote[89].speaker SPEAKER_14
transcript.pyannote[89].start 2432.83221875
transcript.pyannote[89].end 2434.09784375
transcript.pyannote[90].speaker SPEAKER_14
transcript.pyannote[90].start 2434.87409375
transcript.pyannote[90].end 2435.24534375
transcript.pyannote[91].speaker SPEAKER_13
transcript.pyannote[91].start 2435.24534375
transcript.pyannote[91].end 2435.27909375
transcript.pyannote[92].speaker SPEAKER_14
transcript.pyannote[92].start 2437.65846875
transcript.pyannote[92].end 2437.67534375
transcript.pyannote[93].speaker SPEAKER_13
transcript.pyannote[93].start 2437.67534375
transcript.pyannote[93].end 2441.55659375
transcript.pyannote[94].speaker SPEAKER_13
transcript.pyannote[94].start 2441.72534375
transcript.pyannote[94].end 2443.75034375
transcript.pyannote[95].speaker SPEAKER_13
transcript.pyannote[95].start 2443.88534375
transcript.pyannote[95].end 2448.66096875
transcript.pyannote[96].speaker SPEAKER_13
transcript.pyannote[96].start 2448.96471875
transcript.pyannote[96].end 2465.11409375
transcript.pyannote[97].speaker SPEAKER_14
transcript.pyannote[97].start 2464.32096875
transcript.pyannote[97].end 2475.66096875
transcript.pyannote[98].speaker SPEAKER_13
transcript.pyannote[98].start 2465.40096875
transcript.pyannote[98].end 2465.82284375
transcript.pyannote[99].speaker SPEAKER_13
transcript.pyannote[99].start 2467.00409375
transcript.pyannote[99].end 2467.24034375
transcript.pyannote[100].speaker SPEAKER_13
transcript.pyannote[100].start 2470.91909375
transcript.pyannote[100].end 2471.39159375
transcript.pyannote[101].speaker SPEAKER_13
transcript.pyannote[101].start 2474.63159375
transcript.pyannote[101].end 2476.89284375
transcript.pyannote[102].speaker SPEAKER_14
transcript.pyannote[102].start 2476.53846875
transcript.pyannote[102].end 2478.27659375
transcript.pyannote[103].speaker SPEAKER_13
transcript.pyannote[103].start 2478.27659375
transcript.pyannote[103].end 2486.96721875
transcript.pyannote[104].speaker SPEAKER_14
transcript.pyannote[104].start 2478.29346875
transcript.pyannote[104].end 2479.13721875
transcript.pyannote[105].speaker SPEAKER_14
transcript.pyannote[105].start 2486.89971875
transcript.pyannote[105].end 2486.95034375
transcript.pyannote[106].speaker SPEAKER_14
transcript.pyannote[106].start 2486.96721875
transcript.pyannote[106].end 2496.50159375
transcript.pyannote[107].speaker SPEAKER_13
transcript.pyannote[107].start 2487.18659375
transcript.pyannote[107].end 2487.91221875
transcript.pyannote[108].speaker SPEAKER_14
transcript.pyannote[108].start 2496.82221875
transcript.pyannote[108].end 2536.03971875
transcript.pyannote[109].speaker SPEAKER_13
transcript.pyannote[109].start 2536.39409375
transcript.pyannote[109].end 2544.10596875
transcript.pyannote[110].speaker SPEAKER_14
transcript.pyannote[110].start 2542.65471875
transcript.pyannote[110].end 2545.70909375
transcript.pyannote[111].speaker SPEAKER_13
transcript.pyannote[111].start 2545.70909375
transcript.pyannote[111].end 2545.96221875
transcript.pyannote[112].speaker SPEAKER_14
transcript.pyannote[112].start 2545.96221875
transcript.pyannote[112].end 2546.58659375
transcript.pyannote[113].speaker SPEAKER_14
transcript.pyannote[113].start 2547.68346875
transcript.pyannote[113].end 2551.14284375
transcript.pyannote[114].speaker SPEAKER_13
transcript.pyannote[114].start 2550.36659375
transcript.pyannote[114].end 2550.83909375
transcript.pyannote[115].speaker SPEAKER_13
transcript.pyannote[115].start 2552.03721875
transcript.pyannote[115].end 2560.94721875
transcript.pyannote[116].speaker SPEAKER_14
transcript.pyannote[116].start 2559.00659375
transcript.pyannote[116].end 2630.72534375
transcript.pyannote[117].speaker SPEAKER_13
transcript.pyannote[117].start 2562.31409375
transcript.pyannote[117].end 2563.07346875
transcript.pyannote[118].speaker SPEAKER_13
transcript.pyannote[118].start 2563.47846875
transcript.pyannote[118].end 2564.30534375
transcript.pyannote[119].speaker SPEAKER_11
transcript.pyannote[119].start 2564.30534375
transcript.pyannote[119].end 2564.33909375
transcript.pyannote[120].speaker SPEAKER_13
transcript.pyannote[120].start 2582.37846875
transcript.pyannote[120].end 2582.80034375
transcript.pyannote[121].speaker SPEAKER_13
transcript.pyannote[121].start 2584.01534375
transcript.pyannote[121].end 2585.26409375
transcript.pyannote[122].speaker SPEAKER_14
transcript.pyannote[122].start 2631.18096875
transcript.pyannote[122].end 2659.31159375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 2635.60221875
transcript.pyannote[123].end 2636.19284375
transcript.pyannote[124].speaker SPEAKER_22
transcript.pyannote[124].start 2640.41159375
transcript.pyannote[124].end 2640.46221875
transcript.pyannote[125].speaker SPEAKER_09
transcript.pyannote[125].start 2657.62409375
transcript.pyannote[125].end 2657.87721875
transcript.pyannote[126].speaker SPEAKER_14
transcript.pyannote[126].start 2659.59846875
transcript.pyannote[126].end 2661.38721875
transcript.pyannote[127].speaker SPEAKER_13
transcript.pyannote[127].start 2661.38721875
transcript.pyannote[127].end 2664.55971875
transcript.pyannote[128].speaker SPEAKER_13
transcript.pyannote[128].start 2664.72846875
transcript.pyannote[128].end 2680.01721875
transcript.pyannote[129].speaker SPEAKER_13
transcript.pyannote[129].start 2680.08471875
transcript.pyannote[129].end 2681.85659375
transcript.pyannote[130].speaker SPEAKER_13
transcript.pyannote[130].start 2682.04221875
transcript.pyannote[130].end 2683.08846875
transcript.pyannote[131].speaker SPEAKER_13
transcript.pyannote[131].start 2683.29096875
transcript.pyannote[131].end 2684.59034375
transcript.pyannote[132].speaker SPEAKER_13
transcript.pyannote[132].start 2684.74221875
transcript.pyannote[132].end 2721.49596875
transcript.pyannote[133].speaker SPEAKER_14
transcript.pyannote[133].start 2720.38221875
transcript.pyannote[133].end 2736.73409375
transcript.pyannote[134].speaker SPEAKER_13
transcript.pyannote[134].start 2722.60971875
transcript.pyannote[134].end 2726.64284375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 2726.64284375
transcript.pyannote[135].end 2726.69346875
transcript.pyannote[136].speaker SPEAKER_09
transcript.pyannote[136].start 2732.90346875
transcript.pyannote[136].end 2732.92034375
transcript.pyannote[137].speaker SPEAKER_10
transcript.pyannote[137].start 2732.92034375
transcript.pyannote[137].end 2733.42659375
transcript.pyannote[138].speaker SPEAKER_09
transcript.pyannote[138].start 2733.42659375
transcript.pyannote[138].end 2733.47721875
transcript.pyannote[139].speaker SPEAKER_10
transcript.pyannote[139].start 2733.74721875
transcript.pyannote[139].end 2733.83159375
transcript.pyannote[140].speaker SPEAKER_09
transcript.pyannote[140].start 2733.83159375
transcript.pyannote[140].end 2733.86534375
transcript.pyannote[141].speaker SPEAKER_10
transcript.pyannote[141].start 2737.49346875
transcript.pyannote[141].end 2742.03284375
transcript.pyannote[142].speaker SPEAKER_06
transcript.pyannote[142].start 2751.46596875
transcript.pyannote[142].end 2754.25034375
transcript.pyannote[143].speaker SPEAKER_06
transcript.pyannote[143].start 2757.57471875
transcript.pyannote[143].end 2758.23284375
transcript.pyannote[144].speaker SPEAKER_06
transcript.pyannote[144].start 2758.82346875
transcript.pyannote[144].end 2768.79659375
transcript.pyannote[145].speaker SPEAKER_06
transcript.pyannote[145].start 2769.16784375
transcript.pyannote[145].end 2808.87471875
transcript.pyannote[146].speaker SPEAKER_06
transcript.pyannote[146].start 2808.89159375
transcript.pyannote[146].end 2813.54909375
transcript.pyannote[147].speaker SPEAKER_06
transcript.pyannote[147].start 2813.73471875
transcript.pyannote[147].end 2816.16471875
transcript.pyannote[148].speaker SPEAKER_06
transcript.pyannote[148].start 2816.43471875
transcript.pyannote[148].end 2827.25159375
transcript.pyannote[149].speaker SPEAKER_06
transcript.pyannote[149].start 2827.77471875
transcript.pyannote[149].end 2831.60534375
transcript.pyannote[150].speaker SPEAKER_06
transcript.pyannote[150].start 2831.99346875
transcript.pyannote[150].end 2839.84034375
transcript.pyannote[151].speaker SPEAKER_06
transcript.pyannote[151].start 2839.99221875
transcript.pyannote[151].end 2844.29534375
transcript.pyannote[152].speaker SPEAKER_06
transcript.pyannote[152].start 2845.30784375
transcript.pyannote[152].end 2848.36221875
transcript.pyannote[153].speaker SPEAKER_06
transcript.pyannote[153].start 2848.98659375
transcript.pyannote[153].end 2850.96096875
transcript.pyannote[154].speaker SPEAKER_06
transcript.pyannote[154].start 2851.55159375
transcript.pyannote[154].end 2881.63971875
transcript.pyannote[155].speaker SPEAKER_06
transcript.pyannote[155].start 2883.17534375
transcript.pyannote[155].end 2883.56346875
transcript.pyannote[156].speaker SPEAKER_06
transcript.pyannote[156].start 2884.42409375
transcript.pyannote[156].end 2900.96159375
transcript.pyannote[157].speaker SPEAKER_06
transcript.pyannote[157].start 2901.70409375
transcript.pyannote[157].end 2914.25909375
transcript.pyannote[158].speaker SPEAKER_06
transcript.pyannote[158].start 2915.10284375
transcript.pyannote[158].end 2915.47409375
transcript.pyannote[159].speaker SPEAKER_06
transcript.pyannote[159].start 2915.82846875
transcript.pyannote[159].end 2916.38534375
transcript.pyannote[160].speaker SPEAKER_06
transcript.pyannote[160].start 2917.88721875
transcript.pyannote[160].end 2918.07284375
transcript.pyannote[161].speaker SPEAKER_06
transcript.pyannote[161].start 2918.66346875
transcript.pyannote[161].end 2919.37221875
transcript.pyannote[162].speaker SPEAKER_06
transcript.pyannote[162].start 2919.91221875
transcript.pyannote[162].end 2925.44721875
transcript.pyannote[163].speaker SPEAKER_06
transcript.pyannote[163].start 2926.05471875
transcript.pyannote[163].end 2940.38159375
transcript.pyannote[164].speaker SPEAKER_13
transcript.pyannote[164].start 2941.30971875
transcript.pyannote[164].end 2991.96846875
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 2955.97409375
transcript.pyannote[165].end 2956.05846875
transcript.pyannote[166].speaker SPEAKER_13
transcript.pyannote[166].start 2992.17096875
transcript.pyannote[166].end 2993.47034375
transcript.pyannote[167].speaker SPEAKER_13
transcript.pyannote[167].start 2993.63909375
transcript.pyannote[167].end 2997.03096875
transcript.pyannote[168].speaker SPEAKER_06
transcript.pyannote[168].start 2997.03096875
transcript.pyannote[168].end 3028.89096875
transcript.pyannote[169].speaker SPEAKER_13
transcript.pyannote[169].start 2997.04784375
transcript.pyannote[169].end 2998.80284375
transcript.pyannote[170].speaker SPEAKER_06
transcript.pyannote[170].start 3029.49846875
transcript.pyannote[170].end 3038.98221875
transcript.pyannote[171].speaker SPEAKER_06
transcript.pyannote[171].start 3039.57284375
transcript.pyannote[171].end 3040.02846875
transcript.pyannote[172].speaker SPEAKER_13
transcript.pyannote[172].start 3040.26471875
transcript.pyannote[172].end 3041.98596875
transcript.pyannote[173].speaker SPEAKER_13
transcript.pyannote[173].start 3042.42471875
transcript.pyannote[173].end 3042.54284375
transcript.pyannote[174].speaker SPEAKER_06
transcript.pyannote[174].start 3042.54284375
transcript.pyannote[174].end 3057.59534375
transcript.pyannote[175].speaker SPEAKER_13
transcript.pyannote[175].start 3042.72846875
transcript.pyannote[175].end 3044.11221875
transcript.pyannote[176].speaker SPEAKER_13
transcript.pyannote[176].start 3044.21346875
transcript.pyannote[176].end 3048.07784375
transcript.pyannote[177].speaker SPEAKER_06
transcript.pyannote[177].start 3059.09721875
transcript.pyannote[177].end 3060.05909375
transcript.pyannote[178].speaker SPEAKER_06
transcript.pyannote[178].start 3060.98721875
transcript.pyannote[178].end 3074.35221875
transcript.pyannote[179].speaker SPEAKER_06
transcript.pyannote[179].start 3074.62221875
transcript.pyannote[179].end 3076.30971875
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 3076.61346875
transcript.pyannote[180].end 3080.46096875
transcript.pyannote[181].speaker SPEAKER_06
transcript.pyannote[181].start 3080.79846875
transcript.pyannote[181].end 3089.10096875
transcript.pyannote[182].speaker SPEAKER_06
transcript.pyannote[182].start 3089.15159375
transcript.pyannote[182].end 3089.80971875
transcript.pyannote[183].speaker SPEAKER_06
transcript.pyannote[183].start 3089.92784375
transcript.pyannote[183].end 3096.67784375
transcript.pyannote[184].speaker SPEAKER_06
transcript.pyannote[184].start 3096.84659375
transcript.pyannote[184].end 3101.33534375
transcript.pyannote[185].speaker SPEAKER_06
transcript.pyannote[185].start 3102.44909375
transcript.pyannote[185].end 3104.33909375
transcript.pyannote[186].speaker SPEAKER_06
transcript.pyannote[186].start 3104.69346875
transcript.pyannote[186].end 3129.14534375
transcript.pyannote[187].speaker SPEAKER_06
transcript.pyannote[187].start 3129.53346875
transcript.pyannote[187].end 3141.70034375
transcript.pyannote[188].speaker SPEAKER_13
transcript.pyannote[188].start 3141.70034375
transcript.pyannote[188].end 3156.85409375
transcript.pyannote[189].speaker SPEAKER_06
transcript.pyannote[189].start 3156.85409375
transcript.pyannote[189].end 3161.88284375
transcript.pyannote[190].speaker SPEAKER_06
transcript.pyannote[190].start 3162.94596875
transcript.pyannote[190].end 3163.75596875
transcript.pyannote[191].speaker SPEAKER_06
transcript.pyannote[191].start 3163.87409375
transcript.pyannote[191].end 3169.72971875
transcript.pyannote[192].speaker SPEAKER_13
transcript.pyannote[192].start 3165.03846875
transcript.pyannote[192].end 3166.11846875
transcript.pyannote[193].speaker SPEAKER_13
transcript.pyannote[193].start 3168.26159375
transcript.pyannote[193].end 3169.32471875
transcript.pyannote[194].speaker SPEAKER_13
transcript.pyannote[194].start 3170.28659375
transcript.pyannote[194].end 3173.32409375
transcript.pyannote[195].speaker SPEAKER_13
transcript.pyannote[195].start 3173.47596875
transcript.pyannote[195].end 3176.83409375
transcript.pyannote[196].speaker SPEAKER_06
transcript.pyannote[196].start 3176.32784375
transcript.pyannote[196].end 3180.93471875
transcript.pyannote[197].speaker SPEAKER_06
transcript.pyannote[197].start 3181.86284375
transcript.pyannote[197].end 3232.55534375
transcript.pyannote[198].speaker SPEAKER_06
transcript.pyannote[198].start 3232.70721875
transcript.pyannote[198].end 3259.53846875
transcript.pyannote[199].speaker SPEAKER_22
transcript.pyannote[199].start 3254.32409375
transcript.pyannote[199].end 3254.34096875
transcript.pyannote[200].speaker SPEAKER_13
transcript.pyannote[200].start 3254.34096875
transcript.pyannote[200].end 3256.14659375
transcript.pyannote[201].speaker SPEAKER_20
transcript.pyannote[201].start 3256.14659375
transcript.pyannote[201].end 3256.16346875
transcript.pyannote[202].speaker SPEAKER_13
transcript.pyannote[202].start 3257.10846875
transcript.pyannote[202].end 3257.15909375
transcript.pyannote[203].speaker SPEAKER_20
transcript.pyannote[203].start 3257.15909375
transcript.pyannote[203].end 3257.20971875
transcript.pyannote[204].speaker SPEAKER_13
transcript.pyannote[204].start 3257.20971875
transcript.pyannote[204].end 3257.59784375
transcript.pyannote[205].speaker SPEAKER_20
transcript.pyannote[205].start 3257.59784375
transcript.pyannote[205].end 3257.66534375
transcript.pyannote[206].speaker SPEAKER_13
transcript.pyannote[206].start 3257.66534375
transcript.pyannote[206].end 3257.81721875
transcript.pyannote[207].speaker SPEAKER_06
transcript.pyannote[207].start 3259.70721875
transcript.pyannote[207].end 3261.32721875
transcript.pyannote[208].speaker SPEAKER_22
transcript.pyannote[208].start 3261.32721875
transcript.pyannote[208].end 3261.61409375
transcript.pyannote[209].speaker SPEAKER_06
transcript.pyannote[209].start 3261.64784375
transcript.pyannote[209].end 3261.66471875
transcript.pyannote[210].speaker SPEAKER_20
transcript.pyannote[210].start 3261.66471875
transcript.pyannote[210].end 3270.05159375
transcript.pyannote[211].speaker SPEAKER_06
transcript.pyannote[211].start 3271.19909375
transcript.pyannote[211].end 3275.85659375
transcript.pyannote[212].speaker SPEAKER_20
transcript.pyannote[212].start 3275.08034375
transcript.pyannote[212].end 3281.71221875
transcript.pyannote[213].speaker SPEAKER_06
transcript.pyannote[213].start 3282.15096875
transcript.pyannote[213].end 3286.90971875
transcript.pyannote[214].speaker SPEAKER_06
transcript.pyannote[214].start 3286.94346875
transcript.pyannote[214].end 3288.88409375
transcript.pyannote[215].speaker SPEAKER_20
transcript.pyannote[215].start 3289.05284375
transcript.pyannote[215].end 3290.74034375
transcript.pyannote[216].speaker SPEAKER_06
transcript.pyannote[216].start 3290.74034375
transcript.pyannote[216].end 3291.97221875
transcript.pyannote[217].speaker SPEAKER_10
transcript.pyannote[217].start 3291.97221875
transcript.pyannote[217].end 3292.78221875
transcript.pyannote[218].speaker SPEAKER_10
transcript.pyannote[218].start 3293.62596875
transcript.pyannote[218].end 3298.04721875
transcript.pyannote[219].speaker SPEAKER_17
transcript.pyannote[219].start 3306.75471875
transcript.pyannote[219].end 3311.74971875
transcript.pyannote[220].speaker SPEAKER_17
transcript.pyannote[220].start 3315.10784375
transcript.pyannote[220].end 3330.95346875
transcript.pyannote[221].speaker SPEAKER_17
transcript.pyannote[221].start 3331.62846875
transcript.pyannote[221].end 3338.19284375
transcript.pyannote[222].speaker SPEAKER_17
transcript.pyannote[222].start 3339.52596875
transcript.pyannote[222].end 3340.38659375
transcript.pyannote[223].speaker SPEAKER_30
transcript.pyannote[223].start 3343.08659375
transcript.pyannote[223].end 3343.96409375
transcript.pyannote[224].speaker SPEAKER_12
transcript.pyannote[224].start 3343.96409375
transcript.pyannote[224].end 3344.03159375
transcript.pyannote[225].speaker SPEAKER_17
transcript.pyannote[225].start 3344.03159375
transcript.pyannote[225].end 3344.97659375
transcript.pyannote[226].speaker SPEAKER_13
transcript.pyannote[226].start 3347.06909375
transcript.pyannote[226].end 3349.04346875
transcript.pyannote[227].speaker SPEAKER_13
transcript.pyannote[227].start 3349.12784375
transcript.pyannote[227].end 3350.20784375
transcript.pyannote[228].speaker SPEAKER_13
transcript.pyannote[228].start 3350.95034375
transcript.pyannote[228].end 3358.69596875
transcript.pyannote[229].speaker SPEAKER_22
transcript.pyannote[229].start 3358.69596875
transcript.pyannote[229].end 3358.76346875
transcript.pyannote[230].speaker SPEAKER_17
transcript.pyannote[230].start 3358.94909375
transcript.pyannote[230].end 3399.46596875
transcript.pyannote[231].speaker SPEAKER_17
transcript.pyannote[231].start 3401.42346875
transcript.pyannote[231].end 3402.77346875
transcript.pyannote[232].speaker SPEAKER_13
transcript.pyannote[232].start 3402.77346875
transcript.pyannote[232].end 3402.94221875
transcript.pyannote[233].speaker SPEAKER_13
transcript.pyannote[233].start 3403.09409375
transcript.pyannote[233].end 3408.78096875
transcript.pyannote[234].speaker SPEAKER_13
transcript.pyannote[234].start 3409.43909375
transcript.pyannote[234].end 3420.40784375
transcript.pyannote[235].speaker SPEAKER_17
transcript.pyannote[235].start 3419.17596875
transcript.pyannote[235].end 3425.68971875
transcript.pyannote[236].speaker SPEAKER_13
transcript.pyannote[236].start 3425.85846875
transcript.pyannote[236].end 3450.04034375
transcript.pyannote[237].speaker SPEAKER_17
transcript.pyannote[237].start 3428.65971875
transcript.pyannote[237].end 3429.89159375
transcript.pyannote[238].speaker SPEAKER_17
transcript.pyannote[238].start 3448.77471875
transcript.pyannote[238].end 3451.13721875
transcript.pyannote[239].speaker SPEAKER_13
transcript.pyannote[239].start 3451.98096875
transcript.pyannote[239].end 3451.99784375
transcript.pyannote[240].speaker SPEAKER_17
transcript.pyannote[240].start 3451.99784375
transcript.pyannote[240].end 3452.01471875
transcript.pyannote[241].speaker SPEAKER_13
transcript.pyannote[241].start 3452.01471875
transcript.pyannote[241].end 3452.03159375
transcript.pyannote[242].speaker SPEAKER_17
transcript.pyannote[242].start 3452.03159375
transcript.pyannote[242].end 3455.06909375
transcript.pyannote[243].speaker SPEAKER_13
transcript.pyannote[243].start 3453.66846875
transcript.pyannote[243].end 3453.95534375
transcript.pyannote[244].speaker SPEAKER_17
transcript.pyannote[244].start 3455.30534375
transcript.pyannote[244].end 3482.71034375
transcript.pyannote[245].speaker SPEAKER_13
transcript.pyannote[245].start 3456.16596875
transcript.pyannote[245].end 3456.95909375
transcript.pyannote[246].speaker SPEAKER_17
transcript.pyannote[246].start 3483.26721875
transcript.pyannote[246].end 3491.65409375
transcript.pyannote[247].speaker SPEAKER_26
transcript.pyannote[247].start 3500.32784375
transcript.pyannote[247].end 3500.83409375
transcript.pyannote[248].speaker SPEAKER_26
transcript.pyannote[248].start 3501.12096875
transcript.pyannote[248].end 3502.35284375
transcript.pyannote[249].speaker SPEAKER_26
transcript.pyannote[249].start 3502.57221875
transcript.pyannote[249].end 3503.55096875
transcript.pyannote[250].speaker SPEAKER_26
transcript.pyannote[250].start 3503.68596875
transcript.pyannote[250].end 3505.44096875
transcript.pyannote[251].speaker SPEAKER_15
transcript.pyannote[251].start 3506.77409375
transcript.pyannote[251].end 3512.57909375
transcript.pyannote[252].speaker SPEAKER_15
transcript.pyannote[252].start 3512.89971875
transcript.pyannote[252].end 3512.91659375
transcript.pyannote[253].speaker SPEAKER_09
transcript.pyannote[253].start 3512.95034375
transcript.pyannote[253].end 3513.08534375
transcript.pyannote[254].speaker SPEAKER_09
transcript.pyannote[254].start 3514.85721875
transcript.pyannote[254].end 3518.11409375
transcript.pyannote[255].speaker SPEAKER_15
transcript.pyannote[255].start 3517.08471875
transcript.pyannote[255].end 3517.16909375
transcript.pyannote[256].speaker SPEAKER_15
transcript.pyannote[256].start 3517.40534375
transcript.pyannote[256].end 3529.82534375
transcript.pyannote[257].speaker SPEAKER_09
transcript.pyannote[257].start 3518.82284375
transcript.pyannote[257].end 3518.95784375
transcript.pyannote[258].speaker SPEAKER_22
transcript.pyannote[258].start 3529.82534375
transcript.pyannote[258].end 3529.84221875
transcript.pyannote[259].speaker SPEAKER_17
transcript.pyannote[259].start 3529.84221875
transcript.pyannote[259].end 3529.87596875
transcript.pyannote[260].speaker SPEAKER_22
transcript.pyannote[260].start 3529.87596875
transcript.pyannote[260].end 3530.38221875
transcript.pyannote[261].speaker SPEAKER_15
transcript.pyannote[261].start 3530.26409375
transcript.pyannote[261].end 3531.02346875
transcript.pyannote[262].speaker SPEAKER_17
transcript.pyannote[262].start 3530.38221875
transcript.pyannote[262].end 3530.44971875
transcript.pyannote[263].speaker SPEAKER_17
transcript.pyannote[263].start 3531.02346875
transcript.pyannote[263].end 3532.50846875
transcript.pyannote[264].speaker SPEAKER_15
transcript.pyannote[264].start 3532.50846875
transcript.pyannote[264].end 3532.86284375
transcript.pyannote[265].speaker SPEAKER_17
transcript.pyannote[265].start 3533.31846875
transcript.pyannote[265].end 3538.66784375
transcript.pyannote[266].speaker SPEAKER_17
transcript.pyannote[266].start 3539.17409375
transcript.pyannote[266].end 3554.81721875
transcript.pyannote[267].speaker SPEAKER_17
transcript.pyannote[267].start 3555.28971875
transcript.pyannote[267].end 3557.66909375
transcript.pyannote[268].speaker SPEAKER_17
transcript.pyannote[268].start 3558.17534375
transcript.pyannote[268].end 3559.23846875
transcript.pyannote[269].speaker SPEAKER_22
transcript.pyannote[269].start 3559.23846875
transcript.pyannote[269].end 3559.72784375
transcript.pyannote[270].speaker SPEAKER_17
transcript.pyannote[270].start 3559.69409375
transcript.pyannote[270].end 3563.77784375
transcript.pyannote[271].speaker SPEAKER_22
transcript.pyannote[271].start 3564.11534375
transcript.pyannote[271].end 3564.21659375
transcript.pyannote[272].speaker SPEAKER_17
transcript.pyannote[272].start 3564.21659375
transcript.pyannote[272].end 3569.56596875
transcript.pyannote[273].speaker SPEAKER_17
transcript.pyannote[273].start 3570.57846875
transcript.pyannote[273].end 3635.02409375
transcript.pyannote[274].speaker SPEAKER_17
transcript.pyannote[274].start 3635.53034375
transcript.pyannote[274].end 3636.89721875
transcript.pyannote[275].speaker SPEAKER_17
transcript.pyannote[275].start 3637.48784375
transcript.pyannote[275].end 3637.50471875
transcript.pyannote[276].speaker SPEAKER_13
transcript.pyannote[276].start 3637.50471875
transcript.pyannote[276].end 3644.23784375
transcript.pyannote[277].speaker SPEAKER_11
transcript.pyannote[277].start 3643.88346875
transcript.pyannote[277].end 3644.00159375
transcript.pyannote[278].speaker SPEAKER_13
transcript.pyannote[278].start 3644.99721875
transcript.pyannote[278].end 3645.68909375
transcript.pyannote[279].speaker SPEAKER_13
transcript.pyannote[279].start 3646.16159375
transcript.pyannote[279].end 3652.75971875
transcript.pyannote[280].speaker SPEAKER_13
transcript.pyannote[280].start 3652.96221875
transcript.pyannote[280].end 3657.82221875
transcript.pyannote[281].speaker SPEAKER_13
transcript.pyannote[281].start 3657.87284375
transcript.pyannote[281].end 3657.97409375
transcript.pyannote[282].speaker SPEAKER_17
transcript.pyannote[282].start 3657.97409375
transcript.pyannote[282].end 3658.10909375
transcript.pyannote[283].speaker SPEAKER_13
transcript.pyannote[283].start 3658.10909375
transcript.pyannote[283].end 3659.69534375
transcript.pyannote[284].speaker SPEAKER_17
transcript.pyannote[284].start 3659.05409375
transcript.pyannote[284].end 3665.33159375
transcript.pyannote[285].speaker SPEAKER_13
transcript.pyannote[285].start 3664.67346875
transcript.pyannote[285].end 3678.79784375
transcript.pyannote[286].speaker SPEAKER_17
transcript.pyannote[286].start 3676.77284375
transcript.pyannote[286].end 3690.15471875
transcript.pyannote[287].speaker SPEAKER_13
transcript.pyannote[287].start 3680.36721875
transcript.pyannote[287].end 3682.35846875
transcript.pyannote[288].speaker SPEAKER_13
transcript.pyannote[288].start 3690.76221875
transcript.pyannote[288].end 3703.13159375
transcript.pyannote[289].speaker SPEAKER_17
transcript.pyannote[289].start 3697.24221875
transcript.pyannote[289].end 3698.67659375
transcript.pyannote[290].speaker SPEAKER_17
transcript.pyannote[290].start 3699.87471875
transcript.pyannote[290].end 3712.12596875
transcript.pyannote[291].speaker SPEAKER_13
transcript.pyannote[291].start 3703.75596875
transcript.pyannote[291].end 3703.90784375
transcript.pyannote[292].speaker SPEAKER_13
transcript.pyannote[292].start 3709.03784375
transcript.pyannote[292].end 3709.10534375
transcript.pyannote[293].speaker SPEAKER_13
transcript.pyannote[293].start 3712.12596875
transcript.pyannote[293].end 3713.74596875
transcript.pyannote[294].speaker SPEAKER_18
transcript.pyannote[294].start 3714.21846875
transcript.pyannote[294].end 3714.23534375
transcript.pyannote[295].speaker SPEAKER_17
transcript.pyannote[295].start 3714.23534375
transcript.pyannote[295].end 3714.47159375
transcript.pyannote[296].speaker SPEAKER_13
transcript.pyannote[296].start 3714.23534375
transcript.pyannote[296].end 3723.51659375
transcript.pyannote[297].speaker SPEAKER_18
transcript.pyannote[297].start 3714.47159375
transcript.pyannote[297].end 3714.55596875
transcript.pyannote[298].speaker SPEAKER_13
transcript.pyannote[298].start 3724.69784375
transcript.pyannote[298].end 3724.96784375
transcript.pyannote[299].speaker SPEAKER_17
transcript.pyannote[299].start 3724.96784375
transcript.pyannote[299].end 3733.50659375
transcript.pyannote[300].speaker SPEAKER_17
transcript.pyannote[300].start 3733.92846875
transcript.pyannote[300].end 3782.34284375
transcript.pyannote[301].speaker SPEAKER_13
transcript.pyannote[301].start 3782.91659375
transcript.pyannote[301].end 3807.72284375
transcript.pyannote[302].speaker SPEAKER_17
transcript.pyannote[302].start 3800.77034375
transcript.pyannote[302].end 3801.39471875
transcript.pyannote[303].speaker SPEAKER_09
transcript.pyannote[303].start 3801.54659375
transcript.pyannote[303].end 3801.64784375
transcript.pyannote[304].speaker SPEAKER_17
transcript.pyannote[304].start 3805.42784375
transcript.pyannote[304].end 3812.16096875
transcript.pyannote[305].speaker SPEAKER_17
transcript.pyannote[305].start 3812.51534375
transcript.pyannote[305].end 3813.40971875
transcript.pyannote[306].speaker SPEAKER_13
transcript.pyannote[306].start 3814.16909375
transcript.pyannote[306].end 3814.67534375
transcript.pyannote[307].speaker SPEAKER_13
transcript.pyannote[307].start 3815.13096875
transcript.pyannote[307].end 3830.74034375
transcript.pyannote[308].speaker SPEAKER_17
transcript.pyannote[308].start 3827.58471875
transcript.pyannote[308].end 3828.24284375
transcript.pyannote[309].speaker SPEAKER_17
transcript.pyannote[309].start 3829.45784375
transcript.pyannote[309].end 3830.82471875
transcript.pyannote[310].speaker SPEAKER_17
transcript.pyannote[310].start 3831.22971875
transcript.pyannote[310].end 3858.46596875
transcript.pyannote[311].speaker SPEAKER_13
transcript.pyannote[311].start 3858.65159375
transcript.pyannote[311].end 3861.48659375
transcript.pyannote[312].speaker SPEAKER_13
transcript.pyannote[312].start 3861.89159375
transcript.pyannote[312].end 3861.90846875
transcript.pyannote[313].speaker SPEAKER_18
transcript.pyannote[313].start 3861.90846875
transcript.pyannote[313].end 3879.96471875
transcript.pyannote[314].speaker SPEAKER_17
transcript.pyannote[314].start 3879.27284375
transcript.pyannote[314].end 3890.88284375
transcript.pyannote[315].speaker SPEAKER_18
transcript.pyannote[315].start 3883.18784375
transcript.pyannote[315].end 3884.03159375
transcript.pyannote[316].speaker SPEAKER_17
transcript.pyannote[316].start 3890.93346875
transcript.pyannote[316].end 3908.33159375
transcript.pyannote[317].speaker SPEAKER_13
transcript.pyannote[317].start 3909.63096875
transcript.pyannote[317].end 3917.02221875
transcript.pyannote[318].speaker SPEAKER_17
transcript.pyannote[318].start 3917.02221875
transcript.pyannote[318].end 3923.68784375
transcript.pyannote[319].speaker SPEAKER_13
transcript.pyannote[319].start 3917.51159375
transcript.pyannote[319].end 3918.86159375
transcript.pyannote[320].speaker SPEAKER_13
transcript.pyannote[320].start 3925.76346875
transcript.pyannote[320].end 3929.40846875
transcript.pyannote[321].speaker SPEAKER_17
transcript.pyannote[321].start 3929.40846875
transcript.pyannote[321].end 3931.29846875
transcript.pyannote[322].speaker SPEAKER_13
transcript.pyannote[322].start 3929.72909375
transcript.pyannote[322].end 3930.75846875
transcript.pyannote[323].speaker SPEAKER_17
transcript.pyannote[323].start 3933.03659375
transcript.pyannote[323].end 3954.16409375
transcript.pyannote[324].speaker SPEAKER_13
transcript.pyannote[324].start 3955.04159375
transcript.pyannote[324].end 3966.93846875
transcript.pyannote[325].speaker SPEAKER_17
transcript.pyannote[325].start 3961.89284375
transcript.pyannote[325].end 3961.97721875
transcript.pyannote[326].speaker SPEAKER_17
transcript.pyannote[326].start 3966.41534375
transcript.pyannote[326].end 3974.34659375
transcript.pyannote[327].speaker SPEAKER_17
transcript.pyannote[327].start 3974.92034375
transcript.pyannote[327].end 3975.57846875
transcript.pyannote[328].speaker SPEAKER_17
transcript.pyannote[328].start 3975.98346875
transcript.pyannote[328].end 3978.41346875
transcript.pyannote[329].speaker SPEAKER_17
transcript.pyannote[329].start 3978.98721875
transcript.pyannote[329].end 4007.55659375
transcript.pyannote[330].speaker SPEAKER_17
transcript.pyannote[330].start 4008.41721875
transcript.pyannote[330].end 4008.77159375
transcript.pyannote[331].speaker SPEAKER_17
transcript.pyannote[331].start 4009.05846875
transcript.pyannote[331].end 4020.38159375
transcript.pyannote[332].speaker SPEAKER_13
transcript.pyannote[332].start 4021.29284375
transcript.pyannote[332].end 4034.01659375
transcript.pyannote[333].speaker SPEAKER_17
transcript.pyannote[333].start 4034.01659375
transcript.pyannote[333].end 4035.02909375
transcript.pyannote[334].speaker SPEAKER_10
transcript.pyannote[334].start 4035.02909375
transcript.pyannote[334].end 4036.78409375
transcript.pyannote[335].speaker SPEAKER_13
transcript.pyannote[335].start 4036.05846875
transcript.pyannote[335].end 4036.51409375
transcript.pyannote[336].speaker SPEAKER_09
transcript.pyannote[336].start 4037.13846875
transcript.pyannote[336].end 4037.44221875
transcript.pyannote[337].speaker SPEAKER_10
transcript.pyannote[337].start 4037.81346875
transcript.pyannote[337].end 4041.72846875
transcript.pyannote[338].speaker SPEAKER_23
transcript.pyannote[338].start 4055.17784375
transcript.pyannote[338].end 4056.34221875
transcript.pyannote[339].speaker SPEAKER_10
transcript.pyannote[339].start 4056.51096875
transcript.pyannote[339].end 4057.35471875
transcript.pyannote[340].speaker SPEAKER_23
transcript.pyannote[340].start 4061.37096875
transcript.pyannote[340].end 4068.93096875
transcript.pyannote[341].speaker SPEAKER_22
transcript.pyannote[341].start 4067.14221875
transcript.pyannote[341].end 4068.12096875
transcript.pyannote[342].speaker SPEAKER_23
transcript.pyannote[342].start 4068.96471875
transcript.pyannote[342].end 4069.01534375
transcript.pyannote[343].speaker SPEAKER_23
transcript.pyannote[343].start 4069.23471875
transcript.pyannote[343].end 4074.60096875
transcript.pyannote[344].speaker SPEAKER_23
transcript.pyannote[344].start 4076.13659375
transcript.pyannote[344].end 4084.52346875
transcript.pyannote[345].speaker SPEAKER_13
transcript.pyannote[345].start 4077.04784375
transcript.pyannote[345].end 4077.60471875
transcript.pyannote[346].speaker SPEAKER_22
transcript.pyannote[346].start 4082.14409375
transcript.pyannote[346].end 4082.46471875
transcript.pyannote[347].speaker SPEAKER_22
transcript.pyannote[347].start 4084.52346875
transcript.pyannote[347].end 4084.79346875
transcript.pyannote[348].speaker SPEAKER_23
transcript.pyannote[348].start 4084.79346875
transcript.pyannote[348].end 4089.75471875
transcript.pyannote[349].speaker SPEAKER_22
transcript.pyannote[349].start 4089.75471875
transcript.pyannote[349].end 4090.86846875
transcript.pyannote[350].speaker SPEAKER_23
transcript.pyannote[350].start 4090.36221875
transcript.pyannote[350].end 4092.45471875
transcript.pyannote[351].speaker SPEAKER_23
transcript.pyannote[351].start 4093.56846875
transcript.pyannote[351].end 4094.51346875
transcript.pyannote[352].speaker SPEAKER_23
transcript.pyannote[352].start 4094.93534375
transcript.pyannote[352].end 4100.74034375
transcript.pyannote[353].speaker SPEAKER_22
transcript.pyannote[353].start 4100.74034375
transcript.pyannote[353].end 4101.14534375
transcript.pyannote[354].speaker SPEAKER_23
transcript.pyannote[354].start 4101.43221875
transcript.pyannote[354].end 4102.09034375
transcript.pyannote[355].speaker SPEAKER_23
transcript.pyannote[355].start 4102.52909375
transcript.pyannote[355].end 4104.65534375
transcript.pyannote[356].speaker SPEAKER_23
transcript.pyannote[356].start 4106.05596875
transcript.pyannote[356].end 4107.52409375
transcript.pyannote[357].speaker SPEAKER_23
transcript.pyannote[357].start 4107.54096875
transcript.pyannote[357].end 4107.55784375
transcript.pyannote[358].speaker SPEAKER_11
transcript.pyannote[358].start 4107.57471875
transcript.pyannote[358].end 4108.13159375
transcript.pyannote[359].speaker SPEAKER_23
transcript.pyannote[359].start 4108.13159375
transcript.pyannote[359].end 4109.97096875
transcript.pyannote[360].speaker SPEAKER_11
transcript.pyannote[360].start 4108.14846875
transcript.pyannote[360].end 4108.60409375
transcript.pyannote[361].speaker SPEAKER_11
transcript.pyannote[361].start 4109.90346875
transcript.pyannote[361].end 4110.69659375
transcript.pyannote[362].speaker SPEAKER_23
transcript.pyannote[362].start 4110.25784375
transcript.pyannote[362].end 4111.15221875
transcript.pyannote[363].speaker SPEAKER_11
transcript.pyannote[363].start 4111.15221875
transcript.pyannote[363].end 4111.69221875
transcript.pyannote[364].speaker SPEAKER_23
transcript.pyannote[364].start 4111.52346875
transcript.pyannote[364].end 4116.26534375
transcript.pyannote[365].speaker SPEAKER_22
transcript.pyannote[365].start 4116.26534375
transcript.pyannote[365].end 4116.68721875
transcript.pyannote[366].speaker SPEAKER_23
transcript.pyannote[366].start 4116.63659375
transcript.pyannote[366].end 4118.89784375
transcript.pyannote[367].speaker SPEAKER_23
transcript.pyannote[367].start 4120.06221875
transcript.pyannote[367].end 4122.39096875
transcript.pyannote[368].speaker SPEAKER_23
transcript.pyannote[368].start 4122.52596875
transcript.pyannote[368].end 4123.40346875
transcript.pyannote[369].speaker SPEAKER_23
transcript.pyannote[369].start 4123.72409375
transcript.pyannote[369].end 4125.25971875
transcript.pyannote[370].speaker SPEAKER_23
transcript.pyannote[370].start 4125.52971875
transcript.pyannote[370].end 4126.32284375
transcript.pyannote[371].speaker SPEAKER_23
transcript.pyannote[371].start 4126.77846875
transcript.pyannote[371].end 4128.70221875
transcript.pyannote[372].speaker SPEAKER_13
transcript.pyannote[372].start 4129.10721875
transcript.pyannote[372].end 4129.12409375
transcript.pyannote[373].speaker SPEAKER_11
transcript.pyannote[373].start 4129.12409375
transcript.pyannote[373].end 4129.14096875
transcript.pyannote[374].speaker SPEAKER_13
transcript.pyannote[374].start 4129.14096875
transcript.pyannote[374].end 4131.01409375
transcript.pyannote[375].speaker SPEAKER_23
transcript.pyannote[375].start 4130.91284375
transcript.pyannote[375].end 4135.21596875
transcript.pyannote[376].speaker SPEAKER_11
transcript.pyannote[376].start 4131.99284375
transcript.pyannote[376].end 4132.38096875
transcript.pyannote[377].speaker SPEAKER_11
transcript.pyannote[377].start 4132.43159375
transcript.pyannote[377].end 4132.46534375
transcript.pyannote[378].speaker SPEAKER_13
transcript.pyannote[378].start 4132.46534375
transcript.pyannote[378].end 4135.19909375
transcript.pyannote[379].speaker SPEAKER_13
transcript.pyannote[379].start 4135.21596875
transcript.pyannote[379].end 4135.38471875
transcript.pyannote[380].speaker SPEAKER_22
transcript.pyannote[380].start 4135.38471875
transcript.pyannote[380].end 4135.41846875
transcript.pyannote[381].speaker SPEAKER_13
transcript.pyannote[381].start 4135.41846875
transcript.pyannote[381].end 4135.75596875
transcript.pyannote[382].speaker SPEAKER_23
transcript.pyannote[382].start 4135.75596875
transcript.pyannote[382].end 4136.24534375
transcript.pyannote[383].speaker SPEAKER_13
transcript.pyannote[383].start 4136.24534375
transcript.pyannote[383].end 4136.97096875
transcript.pyannote[384].speaker SPEAKER_23
transcript.pyannote[384].start 4136.39721875
transcript.pyannote[384].end 4137.61221875
transcript.pyannote[385].speaker SPEAKER_13
transcript.pyannote[385].start 4137.73034375
transcript.pyannote[385].end 4144.17659375
transcript.pyannote[386].speaker SPEAKER_23
transcript.pyannote[386].start 4143.11346875
transcript.pyannote[386].end 4143.31596875
transcript.pyannote[387].speaker SPEAKER_23
transcript.pyannote[387].start 4144.17659375
transcript.pyannote[387].end 4144.46346875
transcript.pyannote[388].speaker SPEAKER_13
transcript.pyannote[388].start 4144.46346875
transcript.pyannote[388].end 4144.68284375
transcript.pyannote[389].speaker SPEAKER_23
transcript.pyannote[389].start 4144.68284375
transcript.pyannote[389].end 4144.69971875
transcript.pyannote[390].speaker SPEAKER_23
transcript.pyannote[390].start 4144.96971875
transcript.pyannote[390].end 4150.55534375
transcript.pyannote[391].speaker SPEAKER_13
transcript.pyannote[391].start 4147.46721875
transcript.pyannote[391].end 4148.07471875
transcript.pyannote[392].speaker SPEAKER_13
transcript.pyannote[392].start 4150.67346875
transcript.pyannote[392].end 4152.51284375
transcript.pyannote[393].speaker SPEAKER_13
transcript.pyannote[393].start 4153.00221875
transcript.pyannote[393].end 4153.03596875
transcript.pyannote[394].speaker SPEAKER_23
transcript.pyannote[394].start 4153.03596875
transcript.pyannote[394].end 4166.23221875
transcript.pyannote[395].speaker SPEAKER_13
transcript.pyannote[395].start 4154.74034375
transcript.pyannote[395].end 4156.66409375
transcript.pyannote[396].speaker SPEAKER_00
transcript.pyannote[396].start 4162.55346875
transcript.pyannote[396].end 4162.57034375
transcript.pyannote[397].speaker SPEAKER_22
transcript.pyannote[397].start 4162.57034375
transcript.pyannote[397].end 4163.09346875
transcript.pyannote[398].speaker SPEAKER_00
transcript.pyannote[398].start 4163.09346875
transcript.pyannote[398].end 4163.11034375
transcript.pyannote[399].speaker SPEAKER_23
transcript.pyannote[399].start 4166.56971875
transcript.pyannote[399].end 4174.07909375
transcript.pyannote[400].speaker SPEAKER_23
transcript.pyannote[400].start 4174.93971875
transcript.pyannote[400].end 4178.78721875
transcript.pyannote[401].speaker SPEAKER_13
transcript.pyannote[401].start 4176.94784375
transcript.pyannote[401].end 4177.31909375
transcript.pyannote[402].speaker SPEAKER_13
transcript.pyannote[402].start 4178.17971875
transcript.pyannote[402].end 4178.77034375
transcript.pyannote[403].speaker SPEAKER_13
transcript.pyannote[403].start 4178.78721875
transcript.pyannote[403].end 4182.53346875
transcript.pyannote[404].speaker SPEAKER_23
transcript.pyannote[404].start 4180.98096875
transcript.pyannote[404].end 4185.03096875
transcript.pyannote[405].speaker SPEAKER_13
transcript.pyannote[405].start 4183.54596875
transcript.pyannote[405].end 4192.01721875
transcript.pyannote[406].speaker SPEAKER_23
transcript.pyannote[406].start 4190.24534375
transcript.pyannote[406].end 4192.50659375
transcript.pyannote[407].speaker SPEAKER_23
transcript.pyannote[407].start 4195.15596875
transcript.pyannote[407].end 4207.35659375
transcript.pyannote[408].speaker SPEAKER_23
transcript.pyannote[408].start 4207.74471875
transcript.pyannote[408].end 4209.17909375
transcript.pyannote[409].speaker SPEAKER_23
transcript.pyannote[409].start 4209.36471875
transcript.pyannote[409].end 4225.09221875
transcript.pyannote[410].speaker SPEAKER_22
transcript.pyannote[410].start 4221.34596875
transcript.pyannote[410].end 4221.58221875
transcript.pyannote[411].speaker SPEAKER_22
transcript.pyannote[411].start 4222.34159375
transcript.pyannote[411].end 4223.75909375
transcript.pyannote[412].speaker SPEAKER_22
transcript.pyannote[412].start 4225.15971875
transcript.pyannote[412].end 4225.58159375
transcript.pyannote[413].speaker SPEAKER_23
transcript.pyannote[413].start 4228.63596875
transcript.pyannote[413].end 4248.43034375
transcript.pyannote[414].speaker SPEAKER_13
transcript.pyannote[414].start 4248.90284375
transcript.pyannote[414].end 4251.11346875
transcript.pyannote[415].speaker SPEAKER_12
transcript.pyannote[415].start 4251.07971875
transcript.pyannote[415].end 4251.09659375
transcript.pyannote[416].speaker SPEAKER_12
transcript.pyannote[416].start 4251.11346875
transcript.pyannote[416].end 4261.57596875
transcript.pyannote[417].speaker SPEAKER_23
transcript.pyannote[417].start 4258.31909375
transcript.pyannote[417].end 4276.49346875
transcript.pyannote[418].speaker SPEAKER_12
transcript.pyannote[418].start 4271.38034375
transcript.pyannote[418].end 4271.68409375
transcript.pyannote[419].speaker SPEAKER_12
transcript.pyannote[419].start 4274.19846875
transcript.pyannote[419].end 4277.92784375
transcript.pyannote[420].speaker SPEAKER_23
transcript.pyannote[420].start 4276.96596875
transcript.pyannote[420].end 4277.20221875
transcript.pyannote[421].speaker SPEAKER_23
transcript.pyannote[421].start 4277.92784375
transcript.pyannote[421].end 4291.57971875
transcript.pyannote[422].speaker SPEAKER_23
transcript.pyannote[422].start 4291.86659375
transcript.pyannote[422].end 4297.72221875
transcript.pyannote[423].speaker SPEAKER_11
transcript.pyannote[423].start 4297.72221875
transcript.pyannote[423].end 4298.07659375
transcript.pyannote[424].speaker SPEAKER_11
transcript.pyannote[424].start 4298.14409375
transcript.pyannote[424].end 4299.05534375
transcript.pyannote[425].speaker SPEAKER_23
transcript.pyannote[425].start 4299.44346875
transcript.pyannote[425].end 4307.40846875
transcript.pyannote[426].speaker SPEAKER_11
transcript.pyannote[426].start 4305.50159375
transcript.pyannote[426].end 4306.05846875
transcript.pyannote[427].speaker SPEAKER_23
transcript.pyannote[427].start 4307.44221875
transcript.pyannote[427].end 4316.20034375
transcript.pyannote[428].speaker SPEAKER_23
transcript.pyannote[428].start 4316.84159375
transcript.pyannote[428].end 4318.79909375
transcript.pyannote[429].speaker SPEAKER_11
transcript.pyannote[429].start 4318.37721875
transcript.pyannote[429].end 4319.13659375
transcript.pyannote[430].speaker SPEAKER_23
transcript.pyannote[430].start 4319.13659375
transcript.pyannote[430].end 4320.03096875
transcript.pyannote[431].speaker SPEAKER_23
transcript.pyannote[431].start 4322.89971875
transcript.pyannote[431].end 4323.37221875
transcript.pyannote[432].speaker SPEAKER_23
transcript.pyannote[432].start 4325.21159375
transcript.pyannote[432].end 4338.10409375
transcript.pyannote[433].speaker SPEAKER_11
transcript.pyannote[433].start 4328.19846875
transcript.pyannote[433].end 4328.80596875
transcript.pyannote[434].speaker SPEAKER_00
transcript.pyannote[434].start 4328.80596875
transcript.pyannote[434].end 4329.61596875
transcript.pyannote[435].speaker SPEAKER_23
transcript.pyannote[435].start 4339.50471875
transcript.pyannote[435].end 4351.23284375
transcript.pyannote[436].speaker SPEAKER_13
transcript.pyannote[436].start 4352.00909375
transcript.pyannote[436].end 4356.36284375
transcript.pyannote[437].speaker SPEAKER_13
transcript.pyannote[437].start 4356.71721875
transcript.pyannote[437].end 4357.45971875
transcript.pyannote[438].speaker SPEAKER_23
transcript.pyannote[438].start 4357.45971875
transcript.pyannote[438].end 4357.47659375
transcript.pyannote[439].speaker SPEAKER_13
transcript.pyannote[439].start 4357.83096875
transcript.pyannote[439].end 4358.42159375
transcript.pyannote[440].speaker SPEAKER_23
transcript.pyannote[440].start 4357.94909375
transcript.pyannote[440].end 4364.49659375
transcript.pyannote[441].speaker SPEAKER_13
transcript.pyannote[441].start 4364.51346875
transcript.pyannote[441].end 4373.99721875
transcript.pyannote[442].speaker SPEAKER_23
transcript.pyannote[442].start 4370.53784375
transcript.pyannote[442].end 4376.20784375
transcript.pyannote[443].speaker SPEAKER_13
transcript.pyannote[443].start 4375.97159375
transcript.pyannote[443].end 4383.76784375
transcript.pyannote[444].speaker SPEAKER_23
transcript.pyannote[444].start 4378.67159375
transcript.pyannote[444].end 4379.02596875
transcript.pyannote[445].speaker SPEAKER_23
transcript.pyannote[445].start 4382.94096875
transcript.pyannote[445].end 4383.10971875
transcript.pyannote[446].speaker SPEAKER_23
transcript.pyannote[446].start 4384.07159375
transcript.pyannote[446].end 4385.15159375
transcript.pyannote[447].speaker SPEAKER_23
transcript.pyannote[447].start 4385.48909375
transcript.pyannote[447].end 4386.18096875
transcript.pyannote[448].speaker SPEAKER_23
transcript.pyannote[448].start 4387.42971875
transcript.pyannote[448].end 4406.53221875
transcript.pyannote[449].speaker SPEAKER_23
transcript.pyannote[449].start 4407.74721875
transcript.pyannote[449].end 4414.80096875
transcript.pyannote[450].speaker SPEAKER_13
transcript.pyannote[450].start 4415.61096875
transcript.pyannote[450].end 4425.66846875
transcript.pyannote[451].speaker SPEAKER_13
transcript.pyannote[451].start 4425.82034375
transcript.pyannote[451].end 4426.07346875
transcript.pyannote[452].speaker SPEAKER_13
transcript.pyannote[452].start 4426.61346875
transcript.pyannote[452].end 4428.60471875
transcript.pyannote[453].speaker SPEAKER_13
transcript.pyannote[453].start 4430.14034375
transcript.pyannote[453].end 4432.19909375
transcript.pyannote[454].speaker SPEAKER_20
transcript.pyannote[454].start 4432.78971875
transcript.pyannote[454].end 4442.25659375
transcript.pyannote[455].speaker SPEAKER_23
transcript.pyannote[455].start 4442.10471875
transcript.pyannote[455].end 4452.85409375
transcript.pyannote[456].speaker SPEAKER_20
transcript.pyannote[456].start 4452.85409375
transcript.pyannote[456].end 4454.87909375
transcript.pyannote[457].speaker SPEAKER_23
transcript.pyannote[457].start 4453.12409375
transcript.pyannote[457].end 4453.81596875
transcript.pyannote[458].speaker SPEAKER_23
transcript.pyannote[458].start 4454.28846875
transcript.pyannote[458].end 4463.28284375
transcript.pyannote[459].speaker SPEAKER_20
transcript.pyannote[459].start 4462.69221875
transcript.pyannote[459].end 4462.77659375
transcript.pyannote[460].speaker SPEAKER_10
transcript.pyannote[460].start 4462.77659375
transcript.pyannote[460].end 4462.82721875
transcript.pyannote[461].speaker SPEAKER_20
transcript.pyannote[461].start 4462.82721875
transcript.pyannote[461].end 4462.87784375
transcript.pyannote[462].speaker SPEAKER_10
transcript.pyannote[462].start 4462.87784375
transcript.pyannote[462].end 4462.89471875
transcript.pyannote[463].speaker SPEAKER_20
transcript.pyannote[463].start 4462.89471875
transcript.pyannote[463].end 4465.78034375
transcript.pyannote[464].speaker SPEAKER_23
transcript.pyannote[464].start 4463.72159375
transcript.pyannote[464].end 4464.63284375
transcript.pyannote[465].speaker SPEAKER_10
transcript.pyannote[465].start 4468.96971875
transcript.pyannote[465].end 4471.23096875
transcript.pyannote[466].speaker SPEAKER_10
transcript.pyannote[466].start 4472.68221875
transcript.pyannote[466].end 4475.09534375
transcript.pyannote[467].speaker SPEAKER_02
transcript.pyannote[467].start 4484.08971875
transcript.pyannote[467].end 4485.42284375
transcript.pyannote[468].speaker SPEAKER_02
transcript.pyannote[468].start 4485.94596875
transcript.pyannote[468].end 4486.89096875
transcript.pyannote[469].speaker SPEAKER_10
transcript.pyannote[469].start 4487.21159375
transcript.pyannote[469].end 4488.05534375
transcript.pyannote[470].speaker SPEAKER_10
transcript.pyannote[470].start 4491.81846875
transcript.pyannote[470].end 4491.83534375
transcript.pyannote[471].speaker SPEAKER_13
transcript.pyannote[471].start 4491.83534375
transcript.pyannote[471].end 4492.32471875
transcript.pyannote[472].speaker SPEAKER_02
transcript.pyannote[472].start 4492.84784375
transcript.pyannote[472].end 4492.89846875
transcript.pyannote[473].speaker SPEAKER_13
transcript.pyannote[473].start 4493.84346875
transcript.pyannote[473].end 4494.29909375
transcript.pyannote[474].speaker SPEAKER_02
transcript.pyannote[474].start 4494.38346875
transcript.pyannote[474].end 4495.54784375
transcript.pyannote[475].speaker SPEAKER_13
transcript.pyannote[475].start 4495.26096875
transcript.pyannote[475].end 4496.18909375
transcript.pyannote[476].speaker SPEAKER_02
transcript.pyannote[476].start 4496.61096875
transcript.pyannote[476].end 4500.44159375
transcript.pyannote[477].speaker SPEAKER_22
transcript.pyannote[477].start 4500.67784375
transcript.pyannote[477].end 4500.91409375
transcript.pyannote[478].speaker SPEAKER_02
transcript.pyannote[478].start 4501.48784375
transcript.pyannote[478].end 4504.13721875
transcript.pyannote[479].speaker SPEAKER_02
transcript.pyannote[479].start 4504.91346875
transcript.pyannote[479].end 4505.63909375
transcript.pyannote[480].speaker SPEAKER_02
transcript.pyannote[480].start 4506.41534375
transcript.pyannote[480].end 4507.12409375
transcript.pyannote[481].speaker SPEAKER_02
transcript.pyannote[481].start 4507.66409375
transcript.pyannote[481].end 4510.22909375
transcript.pyannote[482].speaker SPEAKER_02
transcript.pyannote[482].start 4510.58346875
transcript.pyannote[482].end 4515.98346875
transcript.pyannote[483].speaker SPEAKER_09
transcript.pyannote[483].start 4515.57846875
transcript.pyannote[483].end 4516.47284375
transcript.pyannote[484].speaker SPEAKER_09
transcript.pyannote[484].start 4516.67534375
transcript.pyannote[484].end 4517.02971875
transcript.pyannote[485].speaker SPEAKER_02
transcript.pyannote[485].start 4517.85659375
transcript.pyannote[485].end 4519.07159375
transcript.pyannote[486].speaker SPEAKER_02
transcript.pyannote[486].start 4519.91534375
transcript.pyannote[486].end 4521.92346875
transcript.pyannote[487].speaker SPEAKER_02
transcript.pyannote[487].start 4522.46346875
transcript.pyannote[487].end 4524.97784375
transcript.pyannote[488].speaker SPEAKER_02
transcript.pyannote[488].start 4525.38284375
transcript.pyannote[488].end 4526.37846875
transcript.pyannote[489].speaker SPEAKER_02
transcript.pyannote[489].start 4526.86784375
transcript.pyannote[489].end 4527.59346875
transcript.pyannote[490].speaker SPEAKER_02
transcript.pyannote[490].start 4528.16721875
transcript.pyannote[490].end 4528.67346875
transcript.pyannote[491].speaker SPEAKER_13
transcript.pyannote[491].start 4528.67346875
transcript.pyannote[491].end 4528.70721875
transcript.pyannote[492].speaker SPEAKER_02
transcript.pyannote[492].start 4529.06159375
transcript.pyannote[492].end 4529.07846875
transcript.pyannote[493].speaker SPEAKER_13
transcript.pyannote[493].start 4529.07846875
transcript.pyannote[493].end 4530.02346875
transcript.pyannote[494].speaker SPEAKER_13
transcript.pyannote[494].start 4530.66471875
transcript.pyannote[494].end 4534.88346875
transcript.pyannote[495].speaker SPEAKER_02
transcript.pyannote[495].start 4534.41096875
transcript.pyannote[495].end 4539.79409375
transcript.pyannote[496].speaker SPEAKER_02
transcript.pyannote[496].start 4540.82346875
transcript.pyannote[496].end 4541.29596875
transcript.pyannote[497].speaker SPEAKER_02
transcript.pyannote[497].start 4543.75971875
transcript.pyannote[497].end 4544.55284375
transcript.pyannote[498].speaker SPEAKER_02
transcript.pyannote[498].start 4544.67096875
transcript.pyannote[498].end 4545.24471875
transcript.pyannote[499].speaker SPEAKER_02
transcript.pyannote[499].start 4545.70034375
transcript.pyannote[499].end 4546.32471875
transcript.pyannote[500].speaker SPEAKER_02
transcript.pyannote[500].start 4546.66221875
transcript.pyannote[500].end 4547.38784375
transcript.pyannote[501].speaker SPEAKER_02
transcript.pyannote[501].start 4548.19784375
transcript.pyannote[501].end 4549.17659375
transcript.pyannote[502].speaker SPEAKER_02
transcript.pyannote[502].start 4549.88534375
transcript.pyannote[502].end 4550.20596875
transcript.pyannote[503].speaker SPEAKER_02
transcript.pyannote[503].start 4550.99909375
transcript.pyannote[503].end 4557.00659375
transcript.pyannote[504].speaker SPEAKER_02
transcript.pyannote[504].start 4557.71534375
transcript.pyannote[504].end 4560.07784375
transcript.pyannote[505].speaker SPEAKER_02
transcript.pyannote[505].start 4560.65159375
transcript.pyannote[505].end 4562.91284375
transcript.pyannote[506].speaker SPEAKER_02
transcript.pyannote[506].start 4563.35159375
transcript.pyannote[506].end 4566.22034375
transcript.pyannote[507].speaker SPEAKER_02
transcript.pyannote[507].start 4566.74346875
transcript.pyannote[507].end 4567.77284375
transcript.pyannote[508].speaker SPEAKER_02
transcript.pyannote[508].start 4568.26221875
transcript.pyannote[508].end 4569.54471875
transcript.pyannote[509].speaker SPEAKER_02
transcript.pyannote[509].start 4570.40534375
transcript.pyannote[509].end 4571.43471875
transcript.pyannote[510].speaker SPEAKER_02
transcript.pyannote[510].start 4573.89846875
transcript.pyannote[510].end 4576.46346875
transcript.pyannote[511].speaker SPEAKER_02
transcript.pyannote[511].start 4577.17221875
transcript.pyannote[511].end 4579.24784375
transcript.pyannote[512].speaker SPEAKER_13
transcript.pyannote[512].start 4580.37846875
transcript.pyannote[512].end 4586.26784375
transcript.pyannote[513].speaker SPEAKER_02
transcript.pyannote[513].start 4586.26784375
transcript.pyannote[513].end 4587.97221875
transcript.pyannote[514].speaker SPEAKER_13
transcript.pyannote[514].start 4587.97221875
transcript.pyannote[514].end 4589.92971875
transcript.pyannote[515].speaker SPEAKER_13
transcript.pyannote[515].start 4590.36846875
transcript.pyannote[515].end 4598.41784375
transcript.pyannote[516].speaker SPEAKER_13
transcript.pyannote[516].start 4599.26159375
transcript.pyannote[516].end 4602.02909375
transcript.pyannote[517].speaker SPEAKER_22
transcript.pyannote[517].start 4599.51471875
transcript.pyannote[517].end 4599.73409375
transcript.pyannote[518].speaker SPEAKER_02
transcript.pyannote[518].start 4602.02909375
transcript.pyannote[518].end 4602.63659375
transcript.pyannote[519].speaker SPEAKER_13
transcript.pyannote[519].start 4603.76721875
transcript.pyannote[519].end 4603.78409375
transcript.pyannote[520].speaker SPEAKER_02
transcript.pyannote[520].start 4603.78409375
transcript.pyannote[520].end 4604.50971875
transcript.pyannote[521].speaker SPEAKER_02
transcript.pyannote[521].start 4605.23534375
transcript.pyannote[521].end 4609.77471875
transcript.pyannote[522].speaker SPEAKER_02
transcript.pyannote[522].start 4610.41596875
transcript.pyannote[522].end 4613.65596875
transcript.pyannote[523].speaker SPEAKER_13
transcript.pyannote[523].start 4613.65596875
transcript.pyannote[523].end 4613.74034375
transcript.pyannote[524].speaker SPEAKER_11
transcript.pyannote[524].start 4613.74034375
transcript.pyannote[524].end 4613.90909375
transcript.pyannote[525].speaker SPEAKER_13
transcript.pyannote[525].start 4613.90909375
transcript.pyannote[525].end 4614.02721875
transcript.pyannote[526].speaker SPEAKER_02
transcript.pyannote[526].start 4614.02721875
transcript.pyannote[526].end 4615.15784375
transcript.pyannote[527].speaker SPEAKER_13
transcript.pyannote[527].start 4615.71471875
transcript.pyannote[527].end 4617.01409375
transcript.pyannote[528].speaker SPEAKER_13
transcript.pyannote[528].start 4617.45284375
transcript.pyannote[528].end 4621.97534375
transcript.pyannote[529].speaker SPEAKER_13
transcript.pyannote[529].start 4622.27909375
transcript.pyannote[529].end 4639.76159375
transcript.pyannote[530].speaker SPEAKER_02
transcript.pyannote[530].start 4639.76159375
transcript.pyannote[530].end 4645.76909375
transcript.pyannote[531].speaker SPEAKER_13
transcript.pyannote[531].start 4640.09909375
transcript.pyannote[531].end 4640.47034375
transcript.pyannote[532].speaker SPEAKER_02
transcript.pyannote[532].start 4646.42721875
transcript.pyannote[532].end 4647.92909375
transcript.pyannote[533].speaker SPEAKER_02
transcript.pyannote[533].start 4648.51971875
transcript.pyannote[533].end 4649.68409375
transcript.pyannote[534].speaker SPEAKER_02
transcript.pyannote[534].start 4650.27471875
transcript.pyannote[534].end 4655.13471875
transcript.pyannote[535].speaker SPEAKER_02
transcript.pyannote[535].start 4655.53971875
transcript.pyannote[535].end 4657.24409375
transcript.pyannote[536].speaker SPEAKER_02
transcript.pyannote[536].start 4657.54784375
transcript.pyannote[536].end 4660.50096875
transcript.pyannote[537].speaker SPEAKER_02
transcript.pyannote[537].start 4660.95659375
transcript.pyannote[537].end 4663.03221875
transcript.pyannote[538].speaker SPEAKER_22
transcript.pyannote[538].start 4662.69471875
transcript.pyannote[538].end 4663.87596875
transcript.pyannote[539].speaker SPEAKER_02
transcript.pyannote[539].start 4663.57221875
transcript.pyannote[539].end 4668.16221875
transcript.pyannote[540].speaker SPEAKER_02
transcript.pyannote[540].start 4668.63471875
transcript.pyannote[540].end 4670.22096875
transcript.pyannote[541].speaker SPEAKER_02
transcript.pyannote[541].start 4670.47409375
transcript.pyannote[541].end 4671.58784375
transcript.pyannote[542].speaker SPEAKER_02
transcript.pyannote[542].start 4672.09409375
transcript.pyannote[542].end 4681.22346875
transcript.pyannote[543].speaker SPEAKER_02
transcript.pyannote[543].start 4682.45534375
transcript.pyannote[543].end 4685.35784375
transcript.pyannote[544].speaker SPEAKER_02
transcript.pyannote[544].start 4685.49284375
transcript.pyannote[544].end 4686.18471875
transcript.pyannote[545].speaker SPEAKER_02
transcript.pyannote[545].start 4686.70784375
transcript.pyannote[545].end 4689.23909375
transcript.pyannote[546].speaker SPEAKER_02
transcript.pyannote[546].start 4689.62721875
transcript.pyannote[546].end 4691.53409375
transcript.pyannote[547].speaker SPEAKER_02
transcript.pyannote[547].start 4692.54659375
transcript.pyannote[547].end 4697.44034375
transcript.pyannote[548].speaker SPEAKER_02
transcript.pyannote[548].start 4697.87909375
transcript.pyannote[548].end 4701.37221875
transcript.pyannote[549].speaker SPEAKER_02
transcript.pyannote[549].start 4701.77721875
transcript.pyannote[549].end 4702.67159375
transcript.pyannote[550].speaker SPEAKER_02
transcript.pyannote[550].start 4703.14409375
transcript.pyannote[550].end 4704.67971875
transcript.pyannote[551].speaker SPEAKER_02
transcript.pyannote[551].start 4705.55721875
transcript.pyannote[551].end 4707.75096875
transcript.pyannote[552].speaker SPEAKER_02
transcript.pyannote[552].start 4708.10534375
transcript.pyannote[552].end 4709.69159375
transcript.pyannote[553].speaker SPEAKER_02
transcript.pyannote[553].start 4709.97846875
transcript.pyannote[553].end 4712.93159375
transcript.pyannote[554].speaker SPEAKER_02
transcript.pyannote[554].start 4714.21409375
transcript.pyannote[554].end 4715.86784375
transcript.pyannote[555].speaker SPEAKER_02
transcript.pyannote[555].start 4717.58909375
transcript.pyannote[555].end 4723.02284375
transcript.pyannote[556].speaker SPEAKER_02
transcript.pyannote[556].start 4723.59659375
transcript.pyannote[556].end 4726.78596875
transcript.pyannote[557].speaker SPEAKER_02
transcript.pyannote[557].start 4727.30909375
transcript.pyannote[557].end 4730.92034375
transcript.pyannote[558].speaker SPEAKER_13
transcript.pyannote[558].start 4730.38034375
transcript.pyannote[558].end 4732.92846875
transcript.pyannote[559].speaker SPEAKER_02
transcript.pyannote[559].start 4732.92846875
transcript.pyannote[559].end 4737.48471875
transcript.pyannote[560].speaker SPEAKER_02
transcript.pyannote[560].start 4739.61096875
transcript.pyannote[560].end 4752.57096875
transcript.pyannote[561].speaker SPEAKER_02
transcript.pyannote[561].start 4753.11096875
transcript.pyannote[561].end 4755.60846875
transcript.pyannote[562].speaker SPEAKER_02
transcript.pyannote[562].start 4755.96284375
transcript.pyannote[562].end 4758.98346875
transcript.pyannote[563].speaker SPEAKER_02
transcript.pyannote[563].start 4759.54034375
transcript.pyannote[563].end 4761.54846875
transcript.pyannote[564].speaker SPEAKER_02
transcript.pyannote[564].start 4761.73409375
transcript.pyannote[564].end 4765.34534375
transcript.pyannote[565].speaker SPEAKER_02
transcript.pyannote[565].start 4766.18909375
transcript.pyannote[565].end 4772.97284375
transcript.pyannote[566].speaker SPEAKER_02
transcript.pyannote[566].start 4773.09096875
transcript.pyannote[566].end 4775.68971875
transcript.pyannote[567].speaker SPEAKER_13
transcript.pyannote[567].start 4775.89221875
transcript.pyannote[567].end 4776.70221875
transcript.pyannote[568].speaker SPEAKER_02
transcript.pyannote[568].start 4776.70221875
transcript.pyannote[568].end 4777.56284375
transcript.pyannote[569].speaker SPEAKER_13
transcript.pyannote[569].start 4777.00596875
transcript.pyannote[569].end 4786.65846875
transcript.pyannote[570].speaker SPEAKER_02
transcript.pyannote[570].start 4786.52346875
transcript.pyannote[570].end 4788.97034375
transcript.pyannote[571].speaker SPEAKER_02
transcript.pyannote[571].start 4789.57784375
transcript.pyannote[571].end 4790.50596875
transcript.pyannote[572].speaker SPEAKER_02
transcript.pyannote[572].start 4791.16409375
transcript.pyannote[572].end 4800.17534375
transcript.pyannote[573].speaker SPEAKER_02
transcript.pyannote[573].start 4800.46221875
transcript.pyannote[573].end 4808.29221875
transcript.pyannote[574].speaker SPEAKER_02
transcript.pyannote[574].start 4808.73096875
transcript.pyannote[574].end 4818.02909375
transcript.pyannote[575].speaker SPEAKER_02
transcript.pyannote[575].start 4818.24846875
transcript.pyannote[575].end 4819.37909375
transcript.pyannote[576].speaker SPEAKER_02
transcript.pyannote[576].start 4819.83471875
transcript.pyannote[576].end 4821.10034375
transcript.pyannote[577].speaker SPEAKER_02
transcript.pyannote[577].start 4821.53909375
transcript.pyannote[577].end 4823.49659375
transcript.pyannote[578].speaker SPEAKER_02
transcript.pyannote[578].start 4823.71596875
transcript.pyannote[578].end 4824.86346875
transcript.pyannote[579].speaker SPEAKER_02
transcript.pyannote[579].start 4825.18409375
transcript.pyannote[579].end 4827.83346875
transcript.pyannote[580].speaker SPEAKER_00
transcript.pyannote[580].start 4826.02784375
transcript.pyannote[580].end 4827.79971875
transcript.pyannote[581].speaker SPEAKER_02
transcript.pyannote[581].start 4828.54221875
transcript.pyannote[581].end 4829.11596875
transcript.pyannote[582].speaker SPEAKER_02
transcript.pyannote[582].start 4830.48284375
transcript.pyannote[582].end 4832.82846875
transcript.pyannote[583].speaker SPEAKER_02
transcript.pyannote[583].start 4833.92534375
transcript.pyannote[583].end 4835.19096875
transcript.pyannote[584].speaker SPEAKER_02
transcript.pyannote[584].start 4837.45221875
transcript.pyannote[584].end 4838.80221875
transcript.pyannote[585].speaker SPEAKER_02
transcript.pyannote[585].start 4839.08909375
transcript.pyannote[585].end 4840.87784375
transcript.pyannote[586].speaker SPEAKER_02
transcript.pyannote[586].start 4841.29971875
transcript.pyannote[586].end 4841.99159375
transcript.pyannote[587].speaker SPEAKER_02
transcript.pyannote[587].start 4843.07159375
transcript.pyannote[587].end 4846.15971875
transcript.pyannote[588].speaker SPEAKER_02
transcript.pyannote[588].start 4847.07096875
transcript.pyannote[588].end 4848.92721875
transcript.pyannote[589].speaker SPEAKER_02
transcript.pyannote[589].start 4849.99034375
transcript.pyannote[589].end 4852.48784375
transcript.pyannote[590].speaker SPEAKER_13
transcript.pyannote[590].start 4854.24284375
transcript.pyannote[590].end 4854.98534375
transcript.pyannote[591].speaker SPEAKER_02
transcript.pyannote[591].start 4854.73221875
transcript.pyannote[591].end 4855.82909375
transcript.pyannote[592].speaker SPEAKER_13
transcript.pyannote[592].start 4856.97659375
transcript.pyannote[592].end 4863.55784375
transcript.pyannote[593].speaker SPEAKER_02
transcript.pyannote[593].start 4864.78971875
transcript.pyannote[593].end 4866.96659375
transcript.pyannote[594].speaker SPEAKER_13
transcript.pyannote[594].start 4866.79784375
transcript.pyannote[594].end 4866.94971875
transcript.pyannote[595].speaker SPEAKER_22
transcript.pyannote[595].start 4866.96659375
transcript.pyannote[595].end 4867.52346875
transcript.pyannote[596].speaker SPEAKER_02
transcript.pyannote[596].start 4868.26596875
transcript.pyannote[596].end 4868.92409375
transcript.pyannote[597].speaker SPEAKER_02
transcript.pyannote[597].start 4869.32909375
transcript.pyannote[597].end 4871.10096875
transcript.pyannote[598].speaker SPEAKER_22
transcript.pyannote[598].start 4871.37096875
transcript.pyannote[598].end 4871.91096875
transcript.pyannote[599].speaker SPEAKER_02
transcript.pyannote[599].start 4873.34534375
transcript.pyannote[599].end 4889.44409375
transcript.pyannote[600].speaker SPEAKER_22
transcript.pyannote[600].start 4889.44409375
transcript.pyannote[600].end 4889.98409375
transcript.pyannote[601].speaker SPEAKER_02
transcript.pyannote[601].start 4889.66346875
transcript.pyannote[601].end 4899.95721875
transcript.pyannote[602].speaker SPEAKER_22
transcript.pyannote[602].start 4891.31721875
transcript.pyannote[602].end 4891.94159375
transcript.pyannote[603].speaker SPEAKER_13
transcript.pyannote[603].start 4900.71659375
transcript.pyannote[603].end 4905.88034375
transcript.pyannote[604].speaker SPEAKER_13
transcript.pyannote[604].start 4906.20096875
transcript.pyannote[604].end 4921.86096875
transcript.pyannote[605].speaker SPEAKER_13
transcript.pyannote[605].start 4921.92846875
transcript.pyannote[605].end 4928.08784375
transcript.pyannote[606].speaker SPEAKER_02
transcript.pyannote[606].start 4928.08784375
transcript.pyannote[606].end 4928.18909375
transcript.pyannote[607].speaker SPEAKER_13
transcript.pyannote[607].start 4928.18909375
transcript.pyannote[607].end 4928.29034375
transcript.pyannote[608].speaker SPEAKER_02
transcript.pyannote[608].start 4928.29034375
transcript.pyannote[608].end 4935.91784375
transcript.pyannote[609].speaker SPEAKER_13
transcript.pyannote[609].start 4930.24784375
transcript.pyannote[609].end 4930.56846875
transcript.pyannote[610].speaker SPEAKER_13
transcript.pyannote[610].start 4930.93971875
transcript.pyannote[610].end 4931.02409375
transcript.pyannote[611].speaker SPEAKER_02
transcript.pyannote[611].start 4935.96846875
transcript.pyannote[611].end 4939.88346875
transcript.pyannote[612].speaker SPEAKER_02
transcript.pyannote[612].start 4940.06909375
transcript.pyannote[612].end 4942.34721875
transcript.pyannote[613].speaker SPEAKER_11
transcript.pyannote[613].start 4942.61721875
transcript.pyannote[613].end 4942.63409375
transcript.pyannote[614].speaker SPEAKER_13
transcript.pyannote[614].start 4942.63409375
transcript.pyannote[614].end 4943.07284375
transcript.pyannote[615].speaker SPEAKER_13
transcript.pyannote[615].start 4944.11909375
transcript.pyannote[615].end 4945.06409375
transcript.pyannote[616].speaker SPEAKER_13
transcript.pyannote[616].start 4945.31721875
transcript.pyannote[616].end 4953.70409375
transcript.pyannote[617].speaker SPEAKER_02
transcript.pyannote[617].start 4945.35096875
transcript.pyannote[617].end 4946.70096875
transcript.pyannote[618].speaker SPEAKER_13
transcript.pyannote[618].start 4954.27784375
transcript.pyannote[618].end 4956.72471875
transcript.pyannote[619].speaker SPEAKER_13
transcript.pyannote[619].start 4957.14659375
transcript.pyannote[619].end 4959.00284375
transcript.pyannote[620].speaker SPEAKER_13
transcript.pyannote[620].start 4959.32346875
transcript.pyannote[620].end 4965.44909375
transcript.pyannote[621].speaker SPEAKER_02
transcript.pyannote[621].start 4964.57159375
transcript.pyannote[621].end 4971.89534375
transcript.pyannote[622].speaker SPEAKER_22
transcript.pyannote[622].start 4970.59596875
transcript.pyannote[622].end 4970.64659375
transcript.pyannote[623].speaker SPEAKER_13
transcript.pyannote[623].start 4970.64659375
transcript.pyannote[623].end 4970.96721875
transcript.pyannote[624].speaker SPEAKER_02
transcript.pyannote[624].start 4972.68846875
transcript.pyannote[624].end 4976.13096875
transcript.pyannote[625].speaker SPEAKER_02
transcript.pyannote[625].start 4976.75534375
transcript.pyannote[625].end 4992.73596875
transcript.pyannote[626].speaker SPEAKER_00
transcript.pyannote[626].start 4981.91909375
transcript.pyannote[626].end 4982.50971875
transcript.pyannote[627].speaker SPEAKER_00
transcript.pyannote[627].start 4983.91034375
transcript.pyannote[627].end 4984.02846875
transcript.pyannote[628].speaker SPEAKER_22
transcript.pyannote[628].start 4984.02846875
transcript.pyannote[628].end 4984.34909375
transcript.pyannote[629].speaker SPEAKER_00
transcript.pyannote[629].start 4984.34909375
transcript.pyannote[629].end 4984.36596875
transcript.pyannote[630].speaker SPEAKER_22
transcript.pyannote[630].start 4987.58909375
transcript.pyannote[630].end 4987.60596875
transcript.pyannote[631].speaker SPEAKER_06
transcript.pyannote[631].start 4987.60596875
transcript.pyannote[631].end 4988.11221875
transcript.pyannote[632].speaker SPEAKER_06
transcript.pyannote[632].start 4990.47471875
transcript.pyannote[632].end 4990.86284375
transcript.pyannote[633].speaker SPEAKER_06
transcript.pyannote[633].start 4992.02721875
transcript.pyannote[633].end 4992.70221875
transcript.pyannote[634].speaker SPEAKER_06
transcript.pyannote[634].start 4993.84971875
transcript.pyannote[634].end 4997.73096875
transcript.pyannote[635].speaker SPEAKER_10
transcript.pyannote[635].start 5003.13096875
transcript.pyannote[635].end 5004.64971875
transcript.pyannote[636].speaker SPEAKER_10
transcript.pyannote[636].start 5004.90284375
transcript.pyannote[636].end 5006.15159375
transcript.pyannote[637].speaker SPEAKER_10
transcript.pyannote[637].start 5008.86846875
transcript.pyannote[637].end 5044.74471875
transcript.pyannote[638].speaker SPEAKER_22
transcript.pyannote[638].start 5044.74471875
transcript.pyannote[638].end 5044.82909375
transcript.pyannote[639].speaker SPEAKER_10
transcript.pyannote[639].start 5044.82909375
transcript.pyannote[639].end 5094.99846875
transcript.pyannote[640].speaker SPEAKER_10
transcript.pyannote[640].start 5095.33596875
transcript.pyannote[640].end 5098.42409375
transcript.pyannote[641].speaker SPEAKER_10
transcript.pyannote[641].start 5098.62659375
transcript.pyannote[641].end 5103.89159375
transcript.pyannote[642].speaker SPEAKER_10
transcript.pyannote[642].start 5104.12784375
transcript.pyannote[642].end 5139.86909375
transcript.pyannote[643].speaker SPEAKER_13
transcript.pyannote[643].start 5140.91534375
transcript.pyannote[643].end 5143.51409375
transcript.pyannote[644].speaker SPEAKER_13
transcript.pyannote[644].start 5145.06659375
transcript.pyannote[644].end 5150.21346875
transcript.pyannote[645].speaker SPEAKER_13
transcript.pyannote[645].start 5150.70284375
transcript.pyannote[645].end 5152.06971875
transcript.pyannote[646].speaker SPEAKER_22
transcript.pyannote[646].start 5152.50846875
transcript.pyannote[646].end 5152.86284375
transcript.pyannote[647].speaker SPEAKER_13
transcript.pyannote[647].start 5152.96409375
transcript.pyannote[647].end 5188.35096875
transcript.pyannote[648].speaker SPEAKER_22
transcript.pyannote[648].start 5156.84534375
transcript.pyannote[648].end 5157.19971875
transcript.pyannote[649].speaker SPEAKER_10
transcript.pyannote[649].start 5187.03471875
transcript.pyannote[649].end 5189.95409375
transcript.pyannote[650].speaker SPEAKER_10
transcript.pyannote[650].start 5190.25784375
transcript.pyannote[650].end 5191.59096875
transcript.pyannote[651].speaker SPEAKER_13
transcript.pyannote[651].start 5190.32534375
transcript.pyannote[651].end 5190.78096875
transcript.pyannote[652].speaker SPEAKER_13
transcript.pyannote[652].start 5191.59096875
transcript.pyannote[652].end 5192.48534375
transcript.pyannote[653].speaker SPEAKER_13
transcript.pyannote[653].start 5192.94096875
transcript.pyannote[653].end 5197.29471875
transcript.pyannote[654].speaker SPEAKER_10
transcript.pyannote[654].start 5193.75096875
transcript.pyannote[654].end 5196.45096875
transcript.pyannote[655].speaker SPEAKER_13
transcript.pyannote[655].start 5197.46346875
transcript.pyannote[655].end 5200.61909375
transcript.pyannote[656].speaker SPEAKER_13
transcript.pyannote[656].start 5200.85534375
transcript.pyannote[656].end 5209.24221875
transcript.pyannote[657].speaker SPEAKER_10
transcript.pyannote[657].start 5208.16221875
transcript.pyannote[657].end 5270.02596875
transcript.pyannote[658].speaker SPEAKER_22
transcript.pyannote[658].start 5234.52096875
transcript.pyannote[658].end 5235.24659375
transcript.pyannote[659].speaker SPEAKER_00
transcript.pyannote[659].start 5235.24659375
transcript.pyannote[659].end 5235.26346875
transcript.pyannote[660].speaker SPEAKER_00
transcript.pyannote[660].start 5237.45721875
transcript.pyannote[660].end 5237.47409375
transcript.pyannote[661].speaker SPEAKER_22
transcript.pyannote[661].start 5237.47409375
transcript.pyannote[661].end 5237.96346875
transcript.pyannote[662].speaker SPEAKER_00
transcript.pyannote[662].start 5237.96346875
transcript.pyannote[662].end 5238.03096875
transcript.pyannote[663].speaker SPEAKER_00
transcript.pyannote[663].start 5244.69659375
transcript.pyannote[663].end 5245.01721875
transcript.pyannote[664].speaker SPEAKER_11
transcript.pyannote[664].start 5266.63409375
transcript.pyannote[664].end 5266.83659375
transcript.pyannote[665].speaker SPEAKER_13
transcript.pyannote[665].start 5270.02596875
transcript.pyannote[665].end 5270.39721875
transcript.pyannote[666].speaker SPEAKER_10
transcript.pyannote[666].start 5271.46034375
transcript.pyannote[666].end 5271.47721875
transcript.pyannote[667].speaker SPEAKER_13
transcript.pyannote[667].start 5271.47721875
transcript.pyannote[667].end 5273.82284375
transcript.pyannote[668].speaker SPEAKER_13
transcript.pyannote[668].start 5274.41346875
transcript.pyannote[668].end 5277.77159375
transcript.pyannote[669].speaker SPEAKER_14
transcript.pyannote[669].start 5277.77159375
transcript.pyannote[669].end 5278.09221875
transcript.pyannote[670].speaker SPEAKER_13
transcript.pyannote[670].start 5278.09221875
transcript.pyannote[670].end 5278.10909375
transcript.pyannote[671].speaker SPEAKER_10
transcript.pyannote[671].start 5278.10909375
transcript.pyannote[671].end 5282.24346875
transcript.pyannote[672].speaker SPEAKER_10
transcript.pyannote[672].start 5282.31096875
transcript.pyannote[672].end 5287.76159375
transcript.pyannote[673].speaker SPEAKER_20
transcript.pyannote[673].start 5288.03159375
transcript.pyannote[673].end 5328.51471875
transcript.pyannote[674].speaker SPEAKER_10
transcript.pyannote[674].start 5327.90721875
transcript.pyannote[674].end 5333.50971875
transcript.pyannote[675].speaker SPEAKER_20
transcript.pyannote[675].start 5333.57721875
transcript.pyannote[675].end 5356.13909375
transcript.pyannote[676].speaker SPEAKER_10
transcript.pyannote[676].start 5338.82534375
transcript.pyannote[676].end 5339.23034375
transcript.pyannote[677].speaker SPEAKER_22
transcript.pyannote[677].start 5344.32659375
transcript.pyannote[677].end 5344.93409375
transcript.pyannote[678].speaker SPEAKER_22
transcript.pyannote[678].start 5349.33846875
transcript.pyannote[678].end 5349.43971875
transcript.pyannote[679].speaker SPEAKER_10
transcript.pyannote[679].start 5349.43971875
transcript.pyannote[679].end 5349.84471875
transcript.pyannote[680].speaker SPEAKER_10
transcript.pyannote[680].start 5356.13909375
transcript.pyannote[680].end 5358.73784375
transcript.pyannote[681].speaker SPEAKER_10
transcript.pyannote[681].start 5359.32846875
transcript.pyannote[681].end 5390.39534375
transcript.pyannote[682].speaker SPEAKER_19
transcript.pyannote[682].start 5362.06221875
transcript.pyannote[682].end 5362.09596875
transcript.pyannote[683].speaker SPEAKER_22
transcript.pyannote[683].start 5362.09596875
transcript.pyannote[683].end 5362.34909375
transcript.pyannote[684].speaker SPEAKER_19
transcript.pyannote[684].start 5362.34909375
transcript.pyannote[684].end 5362.45034375
transcript.pyannote[685].speaker SPEAKER_22
transcript.pyannote[685].start 5362.45034375
transcript.pyannote[685].end 5362.60221875
transcript.pyannote[686].speaker SPEAKER_00
transcript.pyannote[686].start 5378.09346875
transcript.pyannote[686].end 5378.12721875
transcript.pyannote[687].speaker SPEAKER_22
transcript.pyannote[687].start 5378.12721875
transcript.pyannote[687].end 5378.29596875
transcript.pyannote[688].speaker SPEAKER_00
transcript.pyannote[688].start 5378.29596875
transcript.pyannote[688].end 5378.36346875
transcript.pyannote[689].speaker SPEAKER_00
transcript.pyannote[689].start 5382.34596875
transcript.pyannote[689].end 5382.85221875
transcript.pyannote[690].speaker SPEAKER_10
transcript.pyannote[690].start 5390.85096875
transcript.pyannote[690].end 5391.30659375
transcript.pyannote[691].speaker SPEAKER_10
transcript.pyannote[691].start 5391.55971875
transcript.pyannote[691].end 5427.90846875
transcript.pyannote[692].speaker SPEAKER_00
transcript.pyannote[692].start 5404.87409375
transcript.pyannote[692].end 5405.48159375
transcript.pyannote[693].speaker SPEAKER_10
transcript.pyannote[693].start 5428.06034375
transcript.pyannote[693].end 5450.23409375
transcript.pyannote[694].speaker SPEAKER_00
transcript.pyannote[694].start 5430.13596875
transcript.pyannote[694].end 5430.59159375
transcript.pyannote[695].speaker SPEAKER_22
transcript.pyannote[695].start 5439.36659375
transcript.pyannote[695].end 5439.80534375
transcript.pyannote[696].speaker SPEAKER_13
transcript.pyannote[696].start 5449.62659375
transcript.pyannote[696].end 5451.33096875
transcript.pyannote[697].speaker SPEAKER_13
transcript.pyannote[697].start 5451.38159375
transcript.pyannote[697].end 5460.59534375
transcript.pyannote[698].speaker SPEAKER_13
transcript.pyannote[698].start 5461.18596875
transcript.pyannote[698].end 5465.03346875
transcript.pyannote[699].speaker SPEAKER_13
transcript.pyannote[699].start 5465.23596875
transcript.pyannote[699].end 5468.18909375
transcript.pyannote[700].speaker SPEAKER_13
transcript.pyannote[700].start 5468.35784375
transcript.pyannote[700].end 5470.11284375
transcript.pyannote[701].speaker SPEAKER_22
transcript.pyannote[701].start 5470.29846875
transcript.pyannote[701].end 5470.55159375
transcript.pyannote[702].speaker SPEAKER_13
transcript.pyannote[702].start 5470.55159375
transcript.pyannote[702].end 5481.53721875
transcript.pyannote[703].speaker SPEAKER_13
transcript.pyannote[703].start 5481.58784375
transcript.pyannote[703].end 5487.03846875
transcript.pyannote[704].speaker SPEAKER_13
transcript.pyannote[704].start 5487.22409375
transcript.pyannote[704].end 5499.64409375
transcript.pyannote[705].speaker SPEAKER_22
transcript.pyannote[705].start 5493.99096875
transcript.pyannote[705].end 5494.51409375
transcript.pyannote[706].speaker SPEAKER_22
transcript.pyannote[706].start 5499.54284375
transcript.pyannote[706].end 5499.59346875
transcript.pyannote[707].speaker SPEAKER_22
transcript.pyannote[707].start 5499.64409375
transcript.pyannote[707].end 5499.86346875
transcript.pyannote[708].speaker SPEAKER_13
transcript.pyannote[708].start 5499.86346875
transcript.pyannote[708].end 5509.14471875
transcript.pyannote[709].speaker SPEAKER_10
transcript.pyannote[709].start 5509.14471875
transcript.pyannote[709].end 5545.44284375
transcript.pyannote[710].speaker SPEAKER_12
transcript.pyannote[710].start 5544.46409375
transcript.pyannote[710].end 5544.81846875
transcript.pyannote[711].speaker SPEAKER_10
transcript.pyannote[711].start 5545.81409375
transcript.pyannote[711].end 5563.83659375
transcript.pyannote[712].speaker SPEAKER_22
transcript.pyannote[712].start 5546.28659375
transcript.pyannote[712].end 5546.30346875
transcript.pyannote[713].speaker SPEAKER_12
transcript.pyannote[713].start 5546.30346875
transcript.pyannote[713].end 5546.32034375
transcript.pyannote[714].speaker SPEAKER_22
transcript.pyannote[714].start 5546.32034375
transcript.pyannote[714].end 5546.62409375
transcript.pyannote[715].speaker SPEAKER_12
transcript.pyannote[715].start 5546.62409375
transcript.pyannote[715].end 5546.65784375
transcript.pyannote[716].speaker SPEAKER_13
transcript.pyannote[716].start 5563.83659375
transcript.pyannote[716].end 5590.58346875
transcript.pyannote[717].speaker SPEAKER_10
transcript.pyannote[717].start 5568.10596875
transcript.pyannote[717].end 5568.32534375
transcript.pyannote[718].speaker SPEAKER_13
transcript.pyannote[718].start 5590.98846875
transcript.pyannote[718].end 5605.78784375
transcript.pyannote[719].speaker SPEAKER_10
transcript.pyannote[719].start 5605.78784375
transcript.pyannote[719].end 5651.65409375
transcript.pyannote[720].speaker SPEAKER_13
transcript.pyannote[720].start 5606.34471875
transcript.pyannote[720].end 5606.46284375
transcript.pyannote[721].speaker SPEAKER_22
transcript.pyannote[721].start 5617.41471875
transcript.pyannote[721].end 5619.20346875
transcript.pyannote[722].speaker SPEAKER_15
transcript.pyannote[722].start 5631.43784375
transcript.pyannote[722].end 5632.48409375
transcript.pyannote[723].speaker SPEAKER_10
transcript.pyannote[723].start 5651.89034375
transcript.pyannote[723].end 5659.63596875
transcript.pyannote[724].speaker SPEAKER_06
transcript.pyannote[724].start 5654.77596875
transcript.pyannote[724].end 5656.00784375
transcript.pyannote[725].speaker SPEAKER_06
transcript.pyannote[725].start 5656.71659375
transcript.pyannote[725].end 5657.22284375
transcript.pyannote[726].speaker SPEAKER_06
transcript.pyannote[726].start 5657.89784375
transcript.pyannote[726].end 5659.19721875
transcript.pyannote[727].speaker SPEAKER_06
transcript.pyannote[727].start 5660.20971875
transcript.pyannote[727].end 5665.50846875
transcript.pyannote[728].speaker SPEAKER_06
transcript.pyannote[728].start 5672.15721875
transcript.pyannote[728].end 5675.29596875
transcript.pyannote[729].speaker SPEAKER_06
transcript.pyannote[729].start 5678.83971875
transcript.pyannote[729].end 5678.85659375
transcript.pyannote[730].speaker SPEAKER_09
transcript.pyannote[730].start 5678.85659375
transcript.pyannote[730].end 5679.54846875
transcript.pyannote[731].speaker SPEAKER_09
transcript.pyannote[731].start 5680.08846875
transcript.pyannote[731].end 5688.55971875
transcript.pyannote[732].speaker SPEAKER_09
transcript.pyannote[732].start 5689.31909375
transcript.pyannote[732].end 5691.27659375
transcript.pyannote[733].speaker SPEAKER_09
transcript.pyannote[733].start 5691.41159375
transcript.pyannote[733].end 5691.42846875
transcript.pyannote[734].speaker SPEAKER_13
transcript.pyannote[734].start 5691.42846875
transcript.pyannote[734].end 5701.31721875
transcript.pyannote[735].speaker SPEAKER_09
transcript.pyannote[735].start 5701.90784375
transcript.pyannote[735].end 5711.03721875
transcript.pyannote[736].speaker SPEAKER_13
transcript.pyannote[736].start 5706.80159375
transcript.pyannote[736].end 5706.85221875
transcript.pyannote[737].speaker SPEAKER_13
transcript.pyannote[737].start 5706.91971875
transcript.pyannote[737].end 5706.98721875
transcript.pyannote[738].speaker SPEAKER_13
transcript.pyannote[738].start 5708.32034375
transcript.pyannote[738].end 5708.82659375
transcript.pyannote[739].speaker SPEAKER_13
transcript.pyannote[739].start 5711.03721875
transcript.pyannote[739].end 5713.80471875
transcript.pyannote[740].speaker SPEAKER_09
transcript.pyannote[740].start 5711.44221875
transcript.pyannote[740].end 5713.82159375
transcript.pyannote[741].speaker SPEAKER_13
transcript.pyannote[741].start 5713.82159375
transcript.pyannote[741].end 5718.46221875
transcript.pyannote[742].speaker SPEAKER_09
transcript.pyannote[742].start 5715.22221875
transcript.pyannote[742].end 5715.89721875
transcript.pyannote[743].speaker SPEAKER_09
transcript.pyannote[743].start 5716.77471875
transcript.pyannote[743].end 5717.82096875
transcript.pyannote[744].speaker SPEAKER_09
transcript.pyannote[744].start 5718.46221875
transcript.pyannote[744].end 5736.28221875
transcript.pyannote[745].speaker SPEAKER_13
transcript.pyannote[745].start 5718.47909375
transcript.pyannote[745].end 5719.28909375
transcript.pyannote[746].speaker SPEAKER_09
transcript.pyannote[746].start 5736.70409375
transcript.pyannote[746].end 5738.32409375
transcript.pyannote[747].speaker SPEAKER_09
transcript.pyannote[747].start 5738.61096875
transcript.pyannote[747].end 5744.83784375
transcript.pyannote[748].speaker SPEAKER_09
transcript.pyannote[748].start 5745.00659375
transcript.pyannote[748].end 5745.02346875
transcript.pyannote[749].speaker SPEAKER_09
transcript.pyannote[749].start 5745.05721875
transcript.pyannote[749].end 5751.55409375
transcript.pyannote[750].speaker SPEAKER_09
transcript.pyannote[750].start 5751.90846875
transcript.pyannote[750].end 5766.97784375
transcript.pyannote[751].speaker SPEAKER_13
transcript.pyannote[751].start 5767.83846875
transcript.pyannote[751].end 5787.53159375
transcript.pyannote[752].speaker SPEAKER_09
transcript.pyannote[752].start 5786.55284375
transcript.pyannote[752].end 5796.34034375
transcript.pyannote[753].speaker SPEAKER_13
transcript.pyannote[753].start 5797.23471875
transcript.pyannote[753].end 5809.92471875
transcript.pyannote[754].speaker SPEAKER_13
transcript.pyannote[754].start 5810.66721875
transcript.pyannote[754].end 5811.00471875
transcript.pyannote[755].speaker SPEAKER_13
transcript.pyannote[755].start 5811.20721875
transcript.pyannote[755].end 5816.43846875
transcript.pyannote[756].speaker SPEAKER_09
transcript.pyannote[756].start 5815.37534375
transcript.pyannote[756].end 5823.62721875
transcript.pyannote[757].speaker SPEAKER_09
transcript.pyannote[757].start 5824.15034375
transcript.pyannote[757].end 5826.29346875
transcript.pyannote[758].speaker SPEAKER_13
transcript.pyannote[758].start 5824.26846875
transcript.pyannote[758].end 5824.79159375
transcript.pyannote[759].speaker SPEAKER_13
transcript.pyannote[759].start 5826.95159375
transcript.pyannote[759].end 5829.51659375
transcript.pyannote[760].speaker SPEAKER_13
transcript.pyannote[760].start 5830.02284375
transcript.pyannote[760].end 5830.05659375
transcript.pyannote[761].speaker SPEAKER_09
transcript.pyannote[761].start 5830.05659375
transcript.pyannote[761].end 5830.07346875
transcript.pyannote[762].speaker SPEAKER_13
transcript.pyannote[762].start 5830.07346875
transcript.pyannote[762].end 5831.05221875
transcript.pyannote[763].speaker SPEAKER_09
transcript.pyannote[763].start 5831.55846875
transcript.pyannote[763].end 5851.53846875
transcript.pyannote[764].speaker SPEAKER_22
transcript.pyannote[764].start 5832.28409375
transcript.pyannote[764].end 5832.43596875
transcript.pyannote[765].speaker SPEAKER_15
transcript.pyannote[765].start 5832.43596875
transcript.pyannote[765].end 5832.65534375
transcript.pyannote[766].speaker SPEAKER_22
transcript.pyannote[766].start 5832.65534375
transcript.pyannote[766].end 5832.92534375
transcript.pyannote[767].speaker SPEAKER_09
transcript.pyannote[767].start 5851.87596875
transcript.pyannote[767].end 5866.97909375
transcript.pyannote[768].speaker SPEAKER_09
transcript.pyannote[768].start 5867.26596875
transcript.pyannote[768].end 5869.79721875
transcript.pyannote[769].speaker SPEAKER_09
transcript.pyannote[769].start 5869.94909375
transcript.pyannote[769].end 5873.25659375
transcript.pyannote[770].speaker SPEAKER_09
transcript.pyannote[770].start 5873.62784375
transcript.pyannote[770].end 5878.89284375
transcript.pyannote[771].speaker SPEAKER_13
transcript.pyannote[771].start 5875.92284375
transcript.pyannote[771].end 5876.51346875
transcript.pyannote[772].speaker SPEAKER_13
transcript.pyannote[772].start 5879.06159375
transcript.pyannote[772].end 5885.20409375
transcript.pyannote[773].speaker SPEAKER_09
transcript.pyannote[773].start 5884.30971875
transcript.pyannote[773].end 5893.35471875
transcript.pyannote[774].speaker SPEAKER_13
transcript.pyannote[774].start 5885.96346875
transcript.pyannote[774].end 5888.46096875
transcript.pyannote[775].speaker SPEAKER_09
transcript.pyannote[775].start 5893.42221875
transcript.pyannote[775].end 5909.50409375
transcript.pyannote[776].speaker SPEAKER_09
transcript.pyannote[776].start 5909.57159375
transcript.pyannote[776].end 5920.94534375
transcript.pyannote[777].speaker SPEAKER_22
transcript.pyannote[777].start 5921.16471875
transcript.pyannote[777].end 5921.50221875
transcript.pyannote[778].speaker SPEAKER_09
transcript.pyannote[778].start 5921.50221875
transcript.pyannote[778].end 5922.14346875
transcript.pyannote[779].speaker SPEAKER_09
transcript.pyannote[779].start 5922.85221875
transcript.pyannote[779].end 5928.08346875
transcript.pyannote[780].speaker SPEAKER_22
transcript.pyannote[780].start 5924.50596875
transcript.pyannote[780].end 5924.97846875
transcript.pyannote[781].speaker SPEAKER_22
transcript.pyannote[781].start 5928.08346875
transcript.pyannote[781].end 5928.31971875
transcript.pyannote[782].speaker SPEAKER_09
transcript.pyannote[782].start 5928.31971875
transcript.pyannote[782].end 5942.52846875
transcript.pyannote[783].speaker SPEAKER_22
transcript.pyannote[783].start 5928.35346875
transcript.pyannote[783].end 5928.37034375
transcript.pyannote[784].speaker SPEAKER_11
transcript.pyannote[784].start 5928.37034375
transcript.pyannote[784].end 5928.38721875
transcript.pyannote[785].speaker SPEAKER_09
transcript.pyannote[785].start 5942.76471875
transcript.pyannote[785].end 5949.70034375
transcript.pyannote[786].speaker SPEAKER_09
transcript.pyannote[786].start 5951.13471875
transcript.pyannote[786].end 5952.77159375
transcript.pyannote[787].speaker SPEAKER_13
transcript.pyannote[787].start 5952.77159375
transcript.pyannote[787].end 5952.87284375
transcript.pyannote[788].speaker SPEAKER_09
transcript.pyannote[788].start 5952.87284375
transcript.pyannote[788].end 5952.97409375
transcript.pyannote[789].speaker SPEAKER_13
transcript.pyannote[789].start 5952.97409375
transcript.pyannote[789].end 5953.73346875
transcript.pyannote[790].speaker SPEAKER_13
transcript.pyannote[790].start 5958.37409375
transcript.pyannote[790].end 5965.59659375
transcript.pyannote[791].speaker SPEAKER_13
transcript.pyannote[791].start 5966.10284375
transcript.pyannote[791].end 5968.12784375
transcript.pyannote[792].speaker SPEAKER_13
transcript.pyannote[792].start 5968.22909375
transcript.pyannote[792].end 5979.61971875
transcript.pyannote[793].speaker SPEAKER_13
transcript.pyannote[793].start 5979.97409375
transcript.pyannote[793].end 5980.83471875
transcript.pyannote[794].speaker SPEAKER_09
transcript.pyannote[794].start 5980.73346875
transcript.pyannote[794].end 5986.99409375
transcript.pyannote[795].speaker SPEAKER_13
transcript.pyannote[795].start 5988.31034375
transcript.pyannote[795].end 5993.23784375
transcript.pyannote[796].speaker SPEAKER_13
transcript.pyannote[796].start 5993.27159375
transcript.pyannote[796].end 5993.44034375
transcript.pyannote[797].speaker SPEAKER_13
transcript.pyannote[797].start 5993.55846875
transcript.pyannote[797].end 5996.07284375
transcript.pyannote[798].speaker SPEAKER_13
transcript.pyannote[798].start 5996.64659375
transcript.pyannote[798].end 6000.22409375
transcript.pyannote[799].speaker SPEAKER_13
transcript.pyannote[799].start 6000.52784375
transcript.pyannote[799].end 6003.53159375
transcript.pyannote[800].speaker SPEAKER_13
transcript.pyannote[800].start 6004.00409375
transcript.pyannote[800].end 6004.47659375
transcript.pyannote[801].speaker SPEAKER_09
transcript.pyannote[801].start 6004.47659375
transcript.pyannote[801].end 6004.72971875
transcript.pyannote[802].speaker SPEAKER_13
transcript.pyannote[802].start 6004.72971875
transcript.pyannote[802].end 6004.96596875
transcript.pyannote[803].speaker SPEAKER_09
transcript.pyannote[803].start 6004.96596875
transcript.pyannote[803].end 6010.31534375
transcript.pyannote[804].speaker SPEAKER_09
transcript.pyannote[804].start 6010.68659375
transcript.pyannote[804].end 6015.34409375
transcript.pyannote[805].speaker SPEAKER_09
transcript.pyannote[805].start 6015.95159375
transcript.pyannote[805].end 6037.39971875
transcript.pyannote[806].speaker SPEAKER_00
transcript.pyannote[806].start 6019.79909375
transcript.pyannote[806].end 6020.92971875
transcript.pyannote[807].speaker SPEAKER_00
transcript.pyannote[807].start 6021.85784375
transcript.pyannote[807].end 6022.34721875
transcript.pyannote[808].speaker SPEAKER_00
transcript.pyannote[808].start 6026.26221875
transcript.pyannote[808].end 6026.88659375
transcript.pyannote[809].speaker SPEAKER_00
transcript.pyannote[809].start 6028.32096875
transcript.pyannote[809].end 6028.37159375
transcript.pyannote[810].speaker SPEAKER_22
transcript.pyannote[810].start 6028.37159375
transcript.pyannote[810].end 6028.82721875
transcript.pyannote[811].speaker SPEAKER_22
transcript.pyannote[811].start 6034.95284375
transcript.pyannote[811].end 6035.44221875
transcript.pyannote[812].speaker SPEAKER_22
transcript.pyannote[812].start 6037.33221875
transcript.pyannote[812].end 6037.66971875
transcript.pyannote[813].speaker SPEAKER_09
transcript.pyannote[813].start 6037.66971875
transcript.pyannote[813].end 6041.63534375
transcript.pyannote[814].speaker SPEAKER_09
transcript.pyannote[814].start 6041.95596875
transcript.pyannote[814].end 6057.07596875
transcript.pyannote[815].speaker SPEAKER_22
transcript.pyannote[815].start 6042.32721875
transcript.pyannote[815].end 6043.00221875
transcript.pyannote[816].speaker SPEAKER_00
transcript.pyannote[816].start 6043.00221875
transcript.pyannote[816].end 6043.01909375
transcript.pyannote[817].speaker SPEAKER_00
transcript.pyannote[817].start 6046.05659375
transcript.pyannote[817].end 6046.17471875
transcript.pyannote[818].speaker SPEAKER_22
transcript.pyannote[818].start 6047.20409375
transcript.pyannote[818].end 6048.46971875
transcript.pyannote[819].speaker SPEAKER_22
transcript.pyannote[819].start 6052.84034375
transcript.pyannote[819].end 6053.46471875
transcript.pyannote[820].speaker SPEAKER_22
transcript.pyannote[820].start 6054.67971875
transcript.pyannote[820].end 6055.28721875
transcript.pyannote[821].speaker SPEAKER_22
transcript.pyannote[821].start 6056.45159375
transcript.pyannote[821].end 6057.26159375
transcript.pyannote[822].speaker SPEAKER_09
transcript.pyannote[822].start 6057.34596875
transcript.pyannote[822].end 6069.10784375
transcript.pyannote[823].speaker SPEAKER_09
transcript.pyannote[823].start 6069.81659375
transcript.pyannote[823].end 6089.81346875
transcript.pyannote[824].speaker SPEAKER_09
transcript.pyannote[824].start 6090.26909375
transcript.pyannote[824].end 6096.74909375
transcript.pyannote[825].speaker SPEAKER_09
transcript.pyannote[825].start 6097.20471875
transcript.pyannote[825].end 6097.25534375
transcript.pyannote[826].speaker SPEAKER_13
transcript.pyannote[826].start 6097.25534375
transcript.pyannote[826].end 6097.50846875
transcript.pyannote[827].speaker SPEAKER_09
transcript.pyannote[827].start 6097.50846875
transcript.pyannote[827].end 6097.52534375
transcript.pyannote[828].speaker SPEAKER_13
transcript.pyannote[828].start 6097.52534375
transcript.pyannote[828].end 6097.54221875
transcript.pyannote[829].speaker SPEAKER_09
transcript.pyannote[829].start 6097.54221875
transcript.pyannote[829].end 6097.71096875
transcript.pyannote[830].speaker SPEAKER_09
transcript.pyannote[830].start 6097.91346875
transcript.pyannote[830].end 6101.50784375
transcript.pyannote[831].speaker SPEAKER_13
transcript.pyannote[831].start 6098.30159375
transcript.pyannote[831].end 6103.66784375
transcript.pyannote[832].speaker SPEAKER_13
transcript.pyannote[832].start 6103.95471875
transcript.pyannote[832].end 6107.21159375
transcript.pyannote[833].speaker SPEAKER_09
transcript.pyannote[833].start 6107.58284375
transcript.pyannote[833].end 6109.16909375
transcript.pyannote[834].speaker SPEAKER_13
transcript.pyannote[834].start 6108.10596875
transcript.pyannote[834].end 6110.02971875
transcript.pyannote[835].speaker SPEAKER_09
transcript.pyannote[835].start 6110.02971875
transcript.pyannote[835].end 6113.86034375
transcript.pyannote[836].speaker SPEAKER_13
transcript.pyannote[836].start 6112.52721875
transcript.pyannote[836].end 6113.80971875
transcript.pyannote[837].speaker SPEAKER_13
transcript.pyannote[837].start 6113.86034375
transcript.pyannote[837].end 6113.96159375
transcript.pyannote[838].speaker SPEAKER_13
transcript.pyannote[838].start 6114.02909375
transcript.pyannote[838].end 6118.26471875
transcript.pyannote[839].speaker SPEAKER_09
transcript.pyannote[839].start 6116.54346875
transcript.pyannote[839].end 6118.63596875
transcript.pyannote[840].speaker SPEAKER_13
transcript.pyannote[840].start 6119.04096875
transcript.pyannote[840].end 6130.85346875
transcript.pyannote[841].speaker SPEAKER_09
transcript.pyannote[841].start 6126.76971875
transcript.pyannote[841].end 6127.27596875
transcript.pyannote[842].speaker SPEAKER_09
transcript.pyannote[842].start 6128.91284375
transcript.pyannote[842].end 6129.45284375
transcript.pyannote[843].speaker SPEAKER_13
transcript.pyannote[843].start 6131.10659375
transcript.pyannote[843].end 6132.05159375
transcript.pyannote[844].speaker SPEAKER_09
transcript.pyannote[844].start 6131.24159375
transcript.pyannote[844].end 6131.51159375
transcript.pyannote[845].speaker SPEAKER_09
transcript.pyannote[845].start 6132.05159375
transcript.pyannote[845].end 6132.08534375
transcript.pyannote[846].speaker SPEAKER_13
transcript.pyannote[846].start 6132.08534375
transcript.pyannote[846].end 6132.38909375
transcript.pyannote[847].speaker SPEAKER_09
transcript.pyannote[847].start 6132.38909375
transcript.pyannote[847].end 6132.55784375
transcript.pyannote[848].speaker SPEAKER_13
transcript.pyannote[848].start 6132.55784375
transcript.pyannote[848].end 6132.81096875
transcript.pyannote[849].speaker SPEAKER_09
transcript.pyannote[849].start 6132.81096875
transcript.pyannote[849].end 6134.73471875
transcript.pyannote[850].speaker SPEAKER_13
transcript.pyannote[850].start 6134.97096875
transcript.pyannote[850].end 6135.19034375
transcript.pyannote[851].speaker SPEAKER_13
transcript.pyannote[851].start 6135.32534375
transcript.pyannote[851].end 6135.66284375
transcript.pyannote[852].speaker SPEAKER_09
transcript.pyannote[852].start 6135.66284375
transcript.pyannote[852].end 6135.76409375
transcript.pyannote[853].speaker SPEAKER_13
transcript.pyannote[853].start 6135.76409375
transcript.pyannote[853].end 6137.01284375
transcript.pyannote[854].speaker SPEAKER_19
transcript.pyannote[854].start 6137.26596875
transcript.pyannote[854].end 6144.67409375
transcript.pyannote[855].speaker SPEAKER_19
transcript.pyannote[855].start 6144.91034375
transcript.pyannote[855].end 6149.53409375
transcript.pyannote[856].speaker SPEAKER_19
transcript.pyannote[856].start 6149.85471875
transcript.pyannote[856].end 6152.55471875
transcript.pyannote[857].speaker SPEAKER_19
transcript.pyannote[857].start 6152.99346875
transcript.pyannote[857].end 6153.51659375
transcript.pyannote[858].speaker SPEAKER_09
transcript.pyannote[858].start 6153.71909375
transcript.pyannote[858].end 6155.79471875
transcript.pyannote[859].speaker SPEAKER_09
transcript.pyannote[859].start 6155.96346875
transcript.pyannote[859].end 6158.98409375
transcript.pyannote[860].speaker SPEAKER_09
transcript.pyannote[860].start 6159.22034375
transcript.pyannote[860].end 6163.96221875
transcript.pyannote[861].speaker SPEAKER_13
transcript.pyannote[861].start 6162.42659375
transcript.pyannote[861].end 6170.15534375
transcript.pyannote[862].speaker SPEAKER_09
transcript.pyannote[862].start 6166.00409375
transcript.pyannote[862].end 6166.40909375
transcript.pyannote[863].speaker SPEAKER_09
transcript.pyannote[863].start 6168.38346875
transcript.pyannote[863].end 6168.65346875
transcript.pyannote[864].speaker SPEAKER_09
transcript.pyannote[864].start 6170.15534375
transcript.pyannote[864].end 6170.30721875
transcript.pyannote[865].speaker SPEAKER_13
transcript.pyannote[865].start 6170.30721875
transcript.pyannote[865].end 6170.50971875
transcript.pyannote[866].speaker SPEAKER_09
transcript.pyannote[866].start 6170.50971875
transcript.pyannote[866].end 6170.61096875
transcript.pyannote[867].speaker SPEAKER_13
transcript.pyannote[867].start 6170.61096875
transcript.pyannote[867].end 6170.74596875
transcript.pyannote[868].speaker SPEAKER_09
transcript.pyannote[868].start 6170.74596875
transcript.pyannote[868].end 6170.83034375
transcript.pyannote[869].speaker SPEAKER_13
transcript.pyannote[869].start 6170.83034375
transcript.pyannote[869].end 6170.91471875
transcript.pyannote[870].speaker SPEAKER_09
transcript.pyannote[870].start 6170.91471875
transcript.pyannote[870].end 6176.98971875
transcript.pyannote[871].speaker SPEAKER_13
transcript.pyannote[871].start 6171.82596875
transcript.pyannote[871].end 6172.33221875
transcript.pyannote[872].speaker SPEAKER_13
transcript.pyannote[872].start 6174.08721875
transcript.pyannote[872].end 6175.09971875
transcript.pyannote[873].speaker SPEAKER_09
transcript.pyannote[873].start 6177.47909375
transcript.pyannote[873].end 6231.02346875
transcript.pyannote[874].speaker SPEAKER_09
transcript.pyannote[874].start 6231.09096875
transcript.pyannote[874].end 6233.90909375
transcript.pyannote[875].speaker SPEAKER_09
transcript.pyannote[875].start 6234.38159375
transcript.pyannote[875].end 6258.93471875
transcript.pyannote[876].speaker SPEAKER_08
transcript.pyannote[876].start 6249.53534375
transcript.pyannote[876].end 6249.97409375
transcript.pyannote[877].speaker SPEAKER_22
transcript.pyannote[877].start 6249.97409375
transcript.pyannote[877].end 6250.04159375
transcript.pyannote[878].speaker SPEAKER_13
transcript.pyannote[878].start 6253.93971875
transcript.pyannote[878].end 6254.96909375
transcript.pyannote[879].speaker SPEAKER_13
transcript.pyannote[879].start 6258.93471875
transcript.pyannote[879].end 6258.98534375
transcript.pyannote[880].speaker SPEAKER_09
transcript.pyannote[880].start 6258.98534375
transcript.pyannote[880].end 6259.03596875
transcript.pyannote[881].speaker SPEAKER_13
transcript.pyannote[881].start 6259.03596875
transcript.pyannote[881].end 6259.13721875
transcript.pyannote[882].speaker SPEAKER_09
transcript.pyannote[882].start 6259.13721875
transcript.pyannote[882].end 6259.23846875
transcript.pyannote[883].speaker SPEAKER_13
transcript.pyannote[883].start 6259.23846875
transcript.pyannote[883].end 6259.32284375
transcript.pyannote[884].speaker SPEAKER_09
transcript.pyannote[884].start 6259.32284375
transcript.pyannote[884].end 6260.03159375
transcript.pyannote[885].speaker SPEAKER_13
transcript.pyannote[885].start 6260.03159375
transcript.pyannote[885].end 6260.20034375
transcript.pyannote[886].speaker SPEAKER_09
transcript.pyannote[886].start 6260.20034375
transcript.pyannote[886].end 6260.65596875
transcript.pyannote[887].speaker SPEAKER_13
transcript.pyannote[887].start 6260.65596875
transcript.pyannote[887].end 6290.37284375
transcript.pyannote[888].speaker SPEAKER_00
transcript.pyannote[888].start 6278.07096875
transcript.pyannote[888].end 6278.56034375
transcript.pyannote[889].speaker SPEAKER_09
transcript.pyannote[889].start 6290.37284375
transcript.pyannote[889].end 6302.70846875
transcript.pyannote[890].speaker SPEAKER_10
transcript.pyannote[890].start 6298.38846875
transcript.pyannote[890].end 6300.04221875
transcript.pyannote[891].speaker SPEAKER_10
transcript.pyannote[891].start 6301.67909375
transcript.pyannote[891].end 6302.15159375
transcript.pyannote[892].speaker SPEAKER_10
transcript.pyannote[892].start 6304.44659375
transcript.pyannote[892].end 6307.07909375
transcript.pyannote[893].speaker SPEAKER_10
transcript.pyannote[893].start 6307.48409375
transcript.pyannote[893].end 6314.85846875
transcript.pyannote[894].speaker SPEAKER_24
transcript.pyannote[894].start 6328.24034375
transcript.pyannote[894].end 6329.18534375
transcript.pyannote[895].speaker SPEAKER_24
transcript.pyannote[895].start 6329.47221875
transcript.pyannote[895].end 6331.68284375
transcript.pyannote[896].speaker SPEAKER_13
transcript.pyannote[896].start 6335.20971875
transcript.pyannote[896].end 6335.22659375
transcript.pyannote[897].speaker SPEAKER_24
transcript.pyannote[897].start 6335.22659375
transcript.pyannote[897].end 6335.26034375
transcript.pyannote[898].speaker SPEAKER_13
transcript.pyannote[898].start 6335.26034375
transcript.pyannote[898].end 6335.46284375
transcript.pyannote[899].speaker SPEAKER_24
transcript.pyannote[899].start 6335.46284375
transcript.pyannote[899].end 6335.95221875
transcript.pyannote[900].speaker SPEAKER_24
transcript.pyannote[900].start 6336.84659375
transcript.pyannote[900].end 6340.01909375
transcript.pyannote[901].speaker SPEAKER_22
transcript.pyannote[901].start 6338.58471875
transcript.pyannote[901].end 6339.20909375
transcript.pyannote[902].speaker SPEAKER_22
transcript.pyannote[902].start 6340.01909375
transcript.pyannote[902].end 6340.59284375
transcript.pyannote[903].speaker SPEAKER_24
transcript.pyannote[903].start 6340.55909375
transcript.pyannote[903].end 6357.75471875
transcript.pyannote[904].speaker SPEAKER_24
transcript.pyannote[904].start 6358.29471875
transcript.pyannote[904].end 6364.28534375
transcript.pyannote[905].speaker SPEAKER_13
transcript.pyannote[905].start 6364.28534375
transcript.pyannote[905].end 6366.49596875
transcript.pyannote[906].speaker SPEAKER_24
transcript.pyannote[906].start 6366.49596875
transcript.pyannote[906].end 6388.75409375
transcript.pyannote[907].speaker SPEAKER_24
transcript.pyannote[907].start 6389.32784375
transcript.pyannote[907].end 6418.28534375
transcript.pyannote[908].speaker SPEAKER_24
transcript.pyannote[908].start 6418.67346875
transcript.pyannote[908].end 6419.17971875
transcript.pyannote[909].speaker SPEAKER_24
transcript.pyannote[909].start 6419.39909375
transcript.pyannote[909].end 6465.18096875
transcript.pyannote[910].speaker SPEAKER_13
transcript.pyannote[910].start 6465.77159375
transcript.pyannote[910].end 6470.83409375
transcript.pyannote[911].speaker SPEAKER_13
transcript.pyannote[911].start 6470.95221875
transcript.pyannote[911].end 6484.21596875
transcript.pyannote[912].speaker SPEAKER_13
transcript.pyannote[912].start 6484.28346875
transcript.pyannote[912].end 6486.66284375
transcript.pyannote[913].speaker SPEAKER_13
transcript.pyannote[913].start 6486.78096875
transcript.pyannote[913].end 6491.94471875
transcript.pyannote[914].speaker SPEAKER_13
transcript.pyannote[914].start 6492.41721875
transcript.pyannote[914].end 6506.00159375
transcript.pyannote[915].speaker SPEAKER_13
transcript.pyannote[915].start 6506.08596875
transcript.pyannote[915].end 6509.19096875
transcript.pyannote[916].speaker SPEAKER_13
transcript.pyannote[916].start 6509.24159375
transcript.pyannote[916].end 6520.19346875
transcript.pyannote[917].speaker SPEAKER_24
transcript.pyannote[917].start 6519.40034375
transcript.pyannote[917].end 6587.45721875
transcript.pyannote[918].speaker SPEAKER_12
transcript.pyannote[918].start 6578.96909375
transcript.pyannote[918].end 6579.40784375
transcript.pyannote[919].speaker SPEAKER_24
transcript.pyannote[919].start 6588.23346875
transcript.pyannote[919].end 6604.21409375
transcript.pyannote[920].speaker SPEAKER_24
transcript.pyannote[920].start 6604.29846875
transcript.pyannote[920].end 6608.56784375
transcript.pyannote[921].speaker SPEAKER_24
transcript.pyannote[921].start 6608.98971875
transcript.pyannote[921].end 6637.62659375
transcript.pyannote[922].speaker SPEAKER_24
transcript.pyannote[922].start 6637.86284375
transcript.pyannote[922].end 6643.44846875
transcript.pyannote[923].speaker SPEAKER_24
transcript.pyannote[923].start 6643.56659375
transcript.pyannote[923].end 6646.90784375
transcript.pyannote[924].speaker SPEAKER_13
transcript.pyannote[924].start 6647.78534375
transcript.pyannote[924].end 6654.06284375
transcript.pyannote[925].speaker SPEAKER_13
transcript.pyannote[925].start 6654.36659375
transcript.pyannote[925].end 6656.39159375
transcript.pyannote[926].speaker SPEAKER_11
transcript.pyannote[926].start 6656.39159375
transcript.pyannote[926].end 6656.52659375
transcript.pyannote[927].speaker SPEAKER_13
transcript.pyannote[927].start 6656.52659375
transcript.pyannote[927].end 6660.07034375
transcript.pyannote[928].speaker SPEAKER_13
transcript.pyannote[928].start 6660.47534375
transcript.pyannote[928].end 6663.49596875
transcript.pyannote[929].speaker SPEAKER_13
transcript.pyannote[929].start 6663.88409375
transcript.pyannote[929].end 6669.26721875
transcript.pyannote[930].speaker SPEAKER_13
transcript.pyannote[930].start 6669.46971875
transcript.pyannote[930].end 6671.08971875
transcript.pyannote[931].speaker SPEAKER_13
transcript.pyannote[931].start 6671.44409375
transcript.pyannote[931].end 6691.10346875
transcript.pyannote[932].speaker SPEAKER_13
transcript.pyannote[932].start 6691.28909375
transcript.pyannote[932].end 6693.87096875
transcript.pyannote[933].speaker SPEAKER_13
transcript.pyannote[933].start 6694.17471875
transcript.pyannote[933].end 6711.60659375
transcript.pyannote[934].speaker SPEAKER_24
transcript.pyannote[934].start 6709.05846875
transcript.pyannote[934].end 6722.64284375
transcript.pyannote[935].speaker SPEAKER_24
transcript.pyannote[935].start 6723.01409375
transcript.pyannote[935].end 6734.37096875
transcript.pyannote[936].speaker SPEAKER_24
transcript.pyannote[936].start 6734.55659375
transcript.pyannote[936].end 6747.51659375
transcript.pyannote[937].speaker SPEAKER_13
transcript.pyannote[937].start 6748.56284375
transcript.pyannote[937].end 6749.77784375
transcript.pyannote[938].speaker SPEAKER_24
transcript.pyannote[938].start 6749.98034375
transcript.pyannote[938].end 6752.95034375
transcript.pyannote[939].speaker SPEAKER_13
transcript.pyannote[939].start 6752.76471875
transcript.pyannote[939].end 6753.20346875
transcript.pyannote[940].speaker SPEAKER_24
transcript.pyannote[940].start 6753.18659375
transcript.pyannote[940].end 6771.42846875
transcript.pyannote[941].speaker SPEAKER_22
transcript.pyannote[941].start 6753.20346875
transcript.pyannote[941].end 6753.22034375
transcript.pyannote[942].speaker SPEAKER_24
transcript.pyannote[942].start 6771.78284375
transcript.pyannote[942].end 6772.67721875
transcript.pyannote[943].speaker SPEAKER_24
transcript.pyannote[943].start 6773.13284375
transcript.pyannote[943].end 6780.92909375
transcript.pyannote[944].speaker SPEAKER_24
transcript.pyannote[944].start 6780.96284375
transcript.pyannote[944].end 6782.58284375
transcript.pyannote[945].speaker SPEAKER_24
transcript.pyannote[945].start 6782.76846875
transcript.pyannote[945].end 6787.84784375
transcript.pyannote[946].speaker SPEAKER_13
transcript.pyannote[946].start 6788.35409375
transcript.pyannote[946].end 6791.83034375
transcript.pyannote[947].speaker SPEAKER_24
transcript.pyannote[947].start 6792.69096875
transcript.pyannote[947].end 6793.28159375
transcript.pyannote[948].speaker SPEAKER_24
transcript.pyannote[948].start 6793.56846875
transcript.pyannote[948].end 6795.74534375
transcript.pyannote[949].speaker SPEAKER_24
transcript.pyannote[949].start 6796.80846875
transcript.pyannote[949].end 6804.09846875
transcript.pyannote[950].speaker SPEAKER_13
transcript.pyannote[950].start 6803.05221875
transcript.pyannote[950].end 6818.08784375
transcript.pyannote[951].speaker SPEAKER_24
transcript.pyannote[951].start 6816.41721875
transcript.pyannote[951].end 6816.72096875
transcript.pyannote[952].speaker SPEAKER_24
transcript.pyannote[952].start 6816.99096875
transcript.pyannote[952].end 6883.90034375
transcript.pyannote[953].speaker SPEAKER_13
transcript.pyannote[953].start 6823.67346875
transcript.pyannote[953].end 6824.17971875
transcript.pyannote[954].speaker SPEAKER_00
transcript.pyannote[954].start 6824.17971875
transcript.pyannote[954].end 6824.28096875
transcript.pyannote[955].speaker SPEAKER_00
transcript.pyannote[955].start 6827.48721875
transcript.pyannote[955].end 6827.50409375
transcript.pyannote[956].speaker SPEAKER_22
transcript.pyannote[956].start 6827.50409375
transcript.pyannote[956].end 6827.90909375
transcript.pyannote[957].speaker SPEAKER_22
transcript.pyannote[957].start 6829.66409375
transcript.pyannote[957].end 6830.01846875
transcript.pyannote[958].speaker SPEAKER_13
transcript.pyannote[958].start 6884.76096875
transcript.pyannote[958].end 6899.35784375
transcript.pyannote[959].speaker SPEAKER_13
transcript.pyannote[959].start 6899.57721875
transcript.pyannote[959].end 6918.39284375
transcript.pyannote[960].speaker SPEAKER_24
transcript.pyannote[960].start 6918.39284375
transcript.pyannote[960].end 6962.08221875
transcript.pyannote[961].speaker SPEAKER_24
transcript.pyannote[961].start 6962.14971875
transcript.pyannote[961].end 6975.04221875
transcript.pyannote[962].speaker SPEAKER_13
transcript.pyannote[962].start 6971.26221875
transcript.pyannote[962].end 6971.59971875
transcript.pyannote[963].speaker SPEAKER_13
transcript.pyannote[963].start 6972.96659375
transcript.pyannote[963].end 6976.27409375
transcript.pyannote[964].speaker SPEAKER_24
transcript.pyannote[964].start 6976.07159375
transcript.pyannote[964].end 6983.56409375
transcript.pyannote[965].speaker SPEAKER_13
transcript.pyannote[965].start 6983.56409375
transcript.pyannote[965].end 6988.23846875
transcript.pyannote[966].speaker SPEAKER_24
transcript.pyannote[966].start 6986.75346875
transcript.pyannote[966].end 7003.47659375
transcript.pyannote[967].speaker SPEAKER_13
transcript.pyannote[967].start 6995.78159375
transcript.pyannote[967].end 6995.83221875
transcript.pyannote[968].speaker SPEAKER_22
transcript.pyannote[968].start 6995.83221875
transcript.pyannote[968].end 6996.23721875
transcript.pyannote[969].speaker SPEAKER_10
transcript.pyannote[969].start 7003.47659375
transcript.pyannote[969].end 7003.83096875
transcript.pyannote[970].speaker SPEAKER_22
transcript.pyannote[970].start 7003.83096875
transcript.pyannote[970].end 7003.84784375
transcript.pyannote[971].speaker SPEAKER_24
transcript.pyannote[971].start 7003.96596875
transcript.pyannote[971].end 7004.67471875
transcript.pyannote[972].speaker SPEAKER_10
transcript.pyannote[972].start 7005.72096875
transcript.pyannote[972].end 7007.64471875
transcript.pyannote[973].speaker SPEAKER_10
transcript.pyannote[973].start 7008.06659375
transcript.pyannote[973].end 7010.26034375
transcript.pyannote[974].speaker SPEAKER_08
transcript.pyannote[974].start 7020.11534375
transcript.pyannote[974].end 7024.48596875
transcript.pyannote[975].speaker SPEAKER_28
transcript.pyannote[975].start 7023.22034375
transcript.pyannote[975].end 7024.43534375
transcript.pyannote[976].speaker SPEAKER_08
transcript.pyannote[976].start 7028.26596875
transcript.pyannote[976].end 7028.53596875
transcript.pyannote[977].speaker SPEAKER_08
transcript.pyannote[977].start 7028.83971875
transcript.pyannote[977].end 7030.79721875
transcript.pyannote[978].speaker SPEAKER_08
transcript.pyannote[978].start 7030.96596875
transcript.pyannote[978].end 7045.83284375
transcript.pyannote[979].speaker SPEAKER_08
transcript.pyannote[979].start 7046.06909375
transcript.pyannote[979].end 7051.13159375
transcript.pyannote[980].speaker SPEAKER_08
transcript.pyannote[980].start 7051.50284375
transcript.pyannote[980].end 7051.70534375
transcript.pyannote[981].speaker SPEAKER_08
transcript.pyannote[981].start 7052.14409375
transcript.pyannote[981].end 7071.85409375
transcript.pyannote[982].speaker SPEAKER_08
transcript.pyannote[982].start 7072.30971875
transcript.pyannote[982].end 7072.76534375
transcript.pyannote[983].speaker SPEAKER_08
transcript.pyannote[983].start 7073.05221875
transcript.pyannote[983].end 7078.48596875
transcript.pyannote[984].speaker SPEAKER_08
transcript.pyannote[984].start 7078.50284375
transcript.pyannote[984].end 7078.60409375
transcript.pyannote[985].speaker SPEAKER_08
transcript.pyannote[985].start 7078.63784375
transcript.pyannote[985].end 7086.26534375
transcript.pyannote[986].speaker SPEAKER_08
transcript.pyannote[986].start 7086.90659375
transcript.pyannote[986].end 7092.79596875
transcript.pyannote[987].speaker SPEAKER_08
transcript.pyannote[987].start 7094.06159375
transcript.pyannote[987].end 7098.21284375
transcript.pyannote[988].speaker SPEAKER_08
transcript.pyannote[988].start 7098.46596875
transcript.pyannote[988].end 7100.84534375
transcript.pyannote[989].speaker SPEAKER_08
transcript.pyannote[989].start 7101.26721875
transcript.pyannote[989].end 7108.40534375
transcript.pyannote[990].speaker SPEAKER_08
transcript.pyannote[990].start 7108.96221875
transcript.pyannote[990].end 7113.50159375
transcript.pyannote[991].speaker SPEAKER_08
transcript.pyannote[991].start 7113.68721875
transcript.pyannote[991].end 7131.99659375
transcript.pyannote[992].speaker SPEAKER_08
transcript.pyannote[992].start 7132.40159375
transcript.pyannote[992].end 7138.13909375
transcript.pyannote[993].speaker SPEAKER_08
transcript.pyannote[993].start 7138.66221875
transcript.pyannote[993].end 7148.58471875
transcript.pyannote[994].speaker SPEAKER_08
transcript.pyannote[994].start 7150.33971875
transcript.pyannote[994].end 7179.11159375
transcript.pyannote[995].speaker SPEAKER_08
transcript.pyannote[995].start 7179.82034375
transcript.pyannote[995].end 7182.72284375
transcript.pyannote[996].speaker SPEAKER_08
transcript.pyannote[996].start 7183.53284375
transcript.pyannote[996].end 7183.93784375
transcript.pyannote[997].speaker SPEAKER_08
transcript.pyannote[997].start 7184.19096875
transcript.pyannote[997].end 7184.56221875
transcript.pyannote[998].speaker SPEAKER_08
transcript.pyannote[998].start 7186.46909375
transcript.pyannote[998].end 7193.89409375
transcript.pyannote[999].speaker SPEAKER_08
transcript.pyannote[999].start 7193.97846875
transcript.pyannote[999].end 7194.01221875
transcript.pyannote[1000].speaker SPEAKER_08
transcript.pyannote[1000].start 7194.07971875
transcript.pyannote[1000].end 7213.82346875
transcript.pyannote[1001].speaker SPEAKER_08
transcript.pyannote[1001].start 7214.41409375
transcript.pyannote[1001].end 7215.91596875
transcript.pyannote[1002].speaker SPEAKER_08
transcript.pyannote[1002].start 7216.89471875
transcript.pyannote[1002].end 7218.34596875
transcript.pyannote[1003].speaker SPEAKER_08
transcript.pyannote[1003].start 7218.80159375
transcript.pyannote[1003].end 7219.20659375
transcript.pyannote[1004].speaker SPEAKER_08
transcript.pyannote[1004].start 7219.81409375
transcript.pyannote[1004].end 7220.74221875
transcript.pyannote[1005].speaker SPEAKER_08
transcript.pyannote[1005].start 7221.14721875
transcript.pyannote[1005].end 7226.81721875
transcript.pyannote[1006].speaker SPEAKER_08
transcript.pyannote[1006].start 7227.52596875
transcript.pyannote[1006].end 7241.46471875
transcript.pyannote[1007].speaker SPEAKER_08
transcript.pyannote[1007].start 7241.81909375
transcript.pyannote[1007].end 7259.67284375
transcript.pyannote[1008].speaker SPEAKER_08
transcript.pyannote[1008].start 7260.16221875
transcript.pyannote[1008].end 7260.65159375
transcript.pyannote[1009].speaker SPEAKER_08
transcript.pyannote[1009].start 7260.92159375
transcript.pyannote[1009].end 7262.98034375
transcript.pyannote[1010].speaker SPEAKER_08
transcript.pyannote[1010].start 7263.77346875
transcript.pyannote[1010].end 7269.46034375
transcript.pyannote[1011].speaker SPEAKER_08
transcript.pyannote[1011].start 7270.10159375
transcript.pyannote[1011].end 7270.38846875
transcript.pyannote[1012].speaker SPEAKER_08
transcript.pyannote[1012].start 7270.81034375
transcript.pyannote[1012].end 7283.23034375
transcript.pyannote[1013].speaker SPEAKER_08
transcript.pyannote[1013].start 7283.87159375
transcript.pyannote[1013].end 7286.20034375
transcript.pyannote[1014].speaker SPEAKER_08
transcript.pyannote[1014].start 7287.33096875
transcript.pyannote[1014].end 7290.70596875
transcript.pyannote[1015].speaker SPEAKER_08
transcript.pyannote[1015].start 7291.46534375
transcript.pyannote[1015].end 7294.58721875
transcript.pyannote[1016].speaker SPEAKER_08
transcript.pyannote[1016].start 7295.16096875
transcript.pyannote[1016].end 7296.44346875
transcript.pyannote[1017].speaker SPEAKER_08
transcript.pyannote[1017].start 7296.91596875
transcript.pyannote[1017].end 7310.29784375
transcript.pyannote[1018].speaker SPEAKER_08
transcript.pyannote[1018].start 7310.83784375
transcript.pyannote[1018].end 7313.62221875
transcript.pyannote[1019].speaker SPEAKER_08
transcript.pyannote[1019].start 7314.12846875
transcript.pyannote[1019].end 7322.68409375
transcript.pyannote[1020].speaker SPEAKER_08
transcript.pyannote[1020].start 7323.17346875
transcript.pyannote[1020].end 7343.91284375
transcript.pyannote[1021].speaker SPEAKER_08
transcript.pyannote[1021].start 7344.23346875
transcript.pyannote[1021].end 7356.80534375
transcript.pyannote[1022].speaker SPEAKER_08
transcript.pyannote[1022].start 7357.12596875
transcript.pyannote[1022].end 7385.79659375
transcript.pyannote[1023].speaker SPEAKER_08
transcript.pyannote[1023].start 7386.03284375
transcript.pyannote[1023].end 7401.81096875
transcript.pyannote[1024].speaker SPEAKER_08
transcript.pyannote[1024].start 7402.82346875
transcript.pyannote[1024].end 7414.34909375
transcript.pyannote[1025].speaker SPEAKER_08
transcript.pyannote[1025].start 7414.83846875
transcript.pyannote[1025].end 7422.43221875
transcript.pyannote[1026].speaker SPEAKER_08
transcript.pyannote[1026].start 7423.63034375
transcript.pyannote[1026].end 7427.00534375
transcript.pyannote[1027].speaker SPEAKER_08
transcript.pyannote[1027].start 7428.38909375
transcript.pyannote[1027].end 7430.76846875
transcript.pyannote[1028].speaker SPEAKER_08
transcript.pyannote[1028].start 7431.59534375
transcript.pyannote[1028].end 7432.70909375
transcript.pyannote[1029].speaker SPEAKER_08
transcript.pyannote[1029].start 7433.14784375
transcript.pyannote[1029].end 7438.71659375
transcript.pyannote[1030].speaker SPEAKER_08
transcript.pyannote[1030].start 7439.07096875
transcript.pyannote[1030].end 7442.15909375
transcript.pyannote[1031].speaker SPEAKER_08
transcript.pyannote[1031].start 7442.29409375
transcript.pyannote[1031].end 7443.52596875
transcript.pyannote[1032].speaker SPEAKER_08
transcript.pyannote[1032].start 7444.01534375
transcript.pyannote[1032].end 7444.45409375
transcript.pyannote[1033].speaker SPEAKER_08
transcript.pyannote[1033].start 7444.85909375
transcript.pyannote[1033].end 7446.63096875
transcript.pyannote[1034].speaker SPEAKER_08
transcript.pyannote[1034].start 7446.90096875
transcript.pyannote[1034].end 7447.89659375
transcript.pyannote[1035].speaker SPEAKER_08
transcript.pyannote[1035].start 7448.48721875
transcript.pyannote[1035].end 7449.39846875
transcript.pyannote[1036].speaker SPEAKER_08
transcript.pyannote[1036].start 7449.93846875
transcript.pyannote[1036].end 7458.49409375
transcript.pyannote[1037].speaker SPEAKER_08
transcript.pyannote[1037].start 7459.06784375
transcript.pyannote[1037].end 7462.17284375
transcript.pyannote[1038].speaker SPEAKER_08
transcript.pyannote[1038].start 7462.47659375
transcript.pyannote[1038].end 7470.34034375
transcript.pyannote[1039].speaker SPEAKER_08
transcript.pyannote[1039].start 7470.93096875
transcript.pyannote[1039].end 7487.83971875
transcript.pyannote[1040].speaker SPEAKER_08
transcript.pyannote[1040].start 7489.76346875
transcript.pyannote[1040].end 7491.77159375
transcript.pyannote[1041].speaker SPEAKER_08
transcript.pyannote[1041].start 7492.75034375
transcript.pyannote[1041].end 7496.34471875
transcript.pyannote[1042].speaker SPEAKER_08
transcript.pyannote[1042].start 7497.96471875
transcript.pyannote[1042].end 7500.91784375
transcript.pyannote[1043].speaker SPEAKER_13
transcript.pyannote[1043].start 7501.60971875
transcript.pyannote[1043].end 7504.96784375
transcript.pyannote[1044].speaker SPEAKER_08
transcript.pyannote[1044].start 7504.96784375
transcript.pyannote[1044].end 7505.55846875
transcript.pyannote[1045].speaker SPEAKER_13
transcript.pyannote[1045].start 7505.55846875
transcript.pyannote[1045].end 7505.59221875
transcript.pyannote[1046].speaker SPEAKER_08
transcript.pyannote[1046].start 7505.59221875
transcript.pyannote[1046].end 7505.62596875
transcript.pyannote[1047].speaker SPEAKER_13
transcript.pyannote[1047].start 7505.62596875
transcript.pyannote[1047].end 7505.91284375
transcript.pyannote[1048].speaker SPEAKER_08
transcript.pyannote[1048].start 7505.91284375
transcript.pyannote[1048].end 7505.96346875
transcript.pyannote[1049].speaker SPEAKER_08
transcript.pyannote[1049].start 7508.14034375
transcript.pyannote[1049].end 7510.03034375
transcript.pyannote[1050].speaker SPEAKER_13
transcript.pyannote[1050].start 7510.03034375
transcript.pyannote[1050].end 7510.35096875
transcript.pyannote[1051].speaker SPEAKER_08
transcript.pyannote[1051].start 7510.35096875
transcript.pyannote[1051].end 7510.36784375
transcript.pyannote[1052].speaker SPEAKER_19
transcript.pyannote[1052].start 7510.94159375
transcript.pyannote[1052].end 7511.97096875
transcript.pyannote[1053].speaker SPEAKER_11
transcript.pyannote[1053].start 7511.97096875
transcript.pyannote[1053].end 7514.55284375
transcript.pyannote[1054].speaker SPEAKER_08
transcript.pyannote[1054].start 7512.71346875
transcript.pyannote[1054].end 7512.74721875
transcript.pyannote[1055].speaker SPEAKER_19
transcript.pyannote[1055].start 7512.74721875
transcript.pyannote[1055].end 7512.76409375
transcript.pyannote[1056].speaker SPEAKER_08
transcript.pyannote[1056].start 7512.76409375
transcript.pyannote[1056].end 7512.78096875
transcript.pyannote[1057].speaker SPEAKER_19
transcript.pyannote[1057].start 7512.78096875
transcript.pyannote[1057].end 7512.79784375
transcript.pyannote[1058].speaker SPEAKER_13
transcript.pyannote[1058].start 7512.79784375
transcript.pyannote[1058].end 7514.31659375
transcript.pyannote[1059].speaker SPEAKER_13
transcript.pyannote[1059].start 7514.55284375
transcript.pyannote[1059].end 7520.88096875
transcript.pyannote[1060].speaker SPEAKER_13
transcript.pyannote[1060].start 7521.37034375
transcript.pyannote[1060].end 7536.40596875
transcript.pyannote[1061].speaker SPEAKER_08
transcript.pyannote[1061].start 7534.65096875
transcript.pyannote[1061].end 7534.68471875
transcript.pyannote[1062].speaker SPEAKER_16
transcript.pyannote[1062].start 7534.68471875
transcript.pyannote[1062].end 7534.97159375
transcript.pyannote[1063].speaker SPEAKER_08
transcript.pyannote[1063].start 7534.97159375
transcript.pyannote[1063].end 7536.45659375
transcript.pyannote[1064].speaker SPEAKER_13
transcript.pyannote[1064].start 7536.45659375
transcript.pyannote[1064].end 7536.96284375
transcript.pyannote[1065].speaker SPEAKER_08
transcript.pyannote[1065].start 7536.96284375
transcript.pyannote[1065].end 7549.72034375
transcript.pyannote[1066].speaker SPEAKER_16
transcript.pyannote[1066].start 7538.58284375
transcript.pyannote[1066].end 7538.86971875
transcript.pyannote[1067].speaker SPEAKER_13
transcript.pyannote[1067].start 7538.86971875
transcript.pyannote[1067].end 7538.88659375
transcript.pyannote[1068].speaker SPEAKER_13
transcript.pyannote[1068].start 7548.30284375
transcript.pyannote[1068].end 7553.21346875
transcript.pyannote[1069].speaker SPEAKER_08
transcript.pyannote[1069].start 7551.40784375
transcript.pyannote[1069].end 7564.57034375
transcript.pyannote[1070].speaker SPEAKER_08
transcript.pyannote[1070].start 7564.99221875
transcript.pyannote[1070].end 7575.70784375
transcript.pyannote[1071].speaker SPEAKER_08
transcript.pyannote[1071].start 7576.07909375
transcript.pyannote[1071].end 7577.12534375
transcript.pyannote[1072].speaker SPEAKER_08
transcript.pyannote[1072].start 7577.96909375
transcript.pyannote[1072].end 7580.58471875
transcript.pyannote[1073].speaker SPEAKER_08
transcript.pyannote[1073].start 7580.75346875
transcript.pyannote[1073].end 7581.68159375
transcript.pyannote[1074].speaker SPEAKER_08
transcript.pyannote[1074].start 7582.03596875
transcript.pyannote[1074].end 7582.74471875
transcript.pyannote[1075].speaker SPEAKER_08
transcript.pyannote[1075].start 7584.31409375
transcript.pyannote[1075].end 7620.37596875
transcript.pyannote[1076].speaker SPEAKER_08
transcript.pyannote[1076].start 7621.54034375
transcript.pyannote[1076].end 7622.31659375
transcript.pyannote[1077].speaker SPEAKER_13
transcript.pyannote[1077].start 7622.31659375
transcript.pyannote[1077].end 7622.92409375
transcript.pyannote[1078].speaker SPEAKER_08
transcript.pyannote[1078].start 7622.92409375
transcript.pyannote[1078].end 7623.93659375
transcript.pyannote[1079].speaker SPEAKER_13
transcript.pyannote[1079].start 7623.93659375
transcript.pyannote[1079].end 7623.97034375
transcript.pyannote[1080].speaker SPEAKER_08
transcript.pyannote[1080].start 7623.97034375
transcript.pyannote[1080].end 7624.03784375
transcript.pyannote[1081].speaker SPEAKER_13
transcript.pyannote[1081].start 7624.03784375
transcript.pyannote[1081].end 7625.20221875
transcript.pyannote[1082].speaker SPEAKER_13
transcript.pyannote[1082].start 7625.86034375
transcript.pyannote[1082].end 7639.96784375
transcript.pyannote[1083].speaker SPEAKER_08
transcript.pyannote[1083].start 7639.61346875
transcript.pyannote[1083].end 7639.63034375
transcript.pyannote[1084].speaker SPEAKER_22
transcript.pyannote[1084].start 7639.63034375
transcript.pyannote[1084].end 7640.17034375
transcript.pyannote[1085].speaker SPEAKER_08
transcript.pyannote[1085].start 7639.96784375
transcript.pyannote[1085].end 7639.98471875
transcript.pyannote[1086].speaker SPEAKER_08
transcript.pyannote[1086].start 7640.11971875
transcript.pyannote[1086].end 7640.13659375
transcript.pyannote[1087].speaker SPEAKER_13
transcript.pyannote[1087].start 7640.13659375
transcript.pyannote[1087].end 7640.72721875
transcript.pyannote[1088].speaker SPEAKER_08
transcript.pyannote[1088].start 7640.17034375
transcript.pyannote[1088].end 7640.22096875
transcript.pyannote[1089].speaker SPEAKER_08
transcript.pyannote[1089].start 7640.72721875
transcript.pyannote[1089].end 7640.76096875
transcript.pyannote[1090].speaker SPEAKER_13
transcript.pyannote[1090].start 7641.14909375
transcript.pyannote[1090].end 7641.97596875
transcript.pyannote[1091].speaker SPEAKER_08
transcript.pyannote[1091].start 7641.97596875
transcript.pyannote[1091].end 7662.63096875
transcript.pyannote[1092].speaker SPEAKER_22
transcript.pyannote[1092].start 7644.65909375
transcript.pyannote[1092].end 7644.92909375
transcript.pyannote[1093].speaker SPEAKER_08
transcript.pyannote[1093].start 7663.54221875
transcript.pyannote[1093].end 7663.55909375
transcript.pyannote[1094].speaker SPEAKER_13
transcript.pyannote[1094].start 7663.55909375
transcript.pyannote[1094].end 7672.31721875
transcript.pyannote[1095].speaker SPEAKER_08
transcript.pyannote[1095].start 7663.66034375
transcript.pyannote[1095].end 7665.02721875
transcript.pyannote[1096].speaker SPEAKER_13
transcript.pyannote[1096].start 7672.65471875
transcript.pyannote[1096].end 7674.96659375
transcript.pyannote[1097].speaker SPEAKER_08
transcript.pyannote[1097].start 7674.96659375
transcript.pyannote[1097].end 7681.58159375
transcript.pyannote[1098].speaker SPEAKER_13
transcript.pyannote[1098].start 7677.19409375
transcript.pyannote[1098].end 7677.22784375
transcript.pyannote[1099].speaker SPEAKER_28
transcript.pyannote[1099].start 7677.22784375
transcript.pyannote[1099].end 7677.54846875
transcript.pyannote[1100].speaker SPEAKER_13
transcript.pyannote[1100].start 7677.54846875
transcript.pyannote[1100].end 7677.58221875
transcript.pyannote[1101].speaker SPEAKER_00
transcript.pyannote[1101].start 7679.77596875
transcript.pyannote[1101].end 7679.96159375
transcript.pyannote[1102].speaker SPEAKER_08
transcript.pyannote[1102].start 7682.50971875
transcript.pyannote[1102].end 7684.12971875
transcript.pyannote[1103].speaker SPEAKER_08
transcript.pyannote[1103].start 7684.41659375
transcript.pyannote[1103].end 7687.75784375
transcript.pyannote[1104].speaker SPEAKER_08
transcript.pyannote[1104].start 7687.87596875
transcript.pyannote[1104].end 7707.18096875
transcript.pyannote[1105].speaker SPEAKER_16
transcript.pyannote[1105].start 7690.12034375
transcript.pyannote[1105].end 7690.13721875
transcript.pyannote[1106].speaker SPEAKER_16
transcript.pyannote[1106].start 7690.15409375
transcript.pyannote[1106].end 7690.99784375
transcript.pyannote[1107].speaker SPEAKER_18
transcript.pyannote[1107].start 7690.99784375
transcript.pyannote[1107].end 7691.01471875
transcript.pyannote[1108].speaker SPEAKER_16
transcript.pyannote[1108].start 7691.01471875
transcript.pyannote[1108].end 7691.03159375
transcript.pyannote[1109].speaker SPEAKER_16
transcript.pyannote[1109].start 7692.97221875
transcript.pyannote[1109].end 7693.02284375
transcript.pyannote[1110].speaker SPEAKER_18
transcript.pyannote[1110].start 7693.02284375
transcript.pyannote[1110].end 7693.10721875
transcript.pyannote[1111].speaker SPEAKER_16
transcript.pyannote[1111].start 7693.10721875
transcript.pyannote[1111].end 7693.96784375
transcript.pyannote[1112].speaker SPEAKER_18
transcript.pyannote[1112].start 7693.96784375
transcript.pyannote[1112].end 7694.23784375
transcript.pyannote[1113].speaker SPEAKER_18
transcript.pyannote[1113].start 7694.60909375
transcript.pyannote[1113].end 7694.67659375
transcript.pyannote[1114].speaker SPEAKER_22
transcript.pyannote[1114].start 7694.67659375
transcript.pyannote[1114].end 7694.98034375
transcript.pyannote[1115].speaker SPEAKER_18
transcript.pyannote[1115].start 7694.98034375
transcript.pyannote[1115].end 7695.01409375
transcript.pyannote[1116].speaker SPEAKER_13
transcript.pyannote[1116].start 7705.67909375
transcript.pyannote[1116].end 7707.94034375
transcript.pyannote[1117].speaker SPEAKER_08
transcript.pyannote[1117].start 7707.61971875
transcript.pyannote[1117].end 7710.70784375
transcript.pyannote[1118].speaker SPEAKER_10
transcript.pyannote[1118].start 7709.27346875
transcript.pyannote[1118].end 7709.29034375
transcript.pyannote[1119].speaker SPEAKER_13
transcript.pyannote[1119].start 7709.29034375
transcript.pyannote[1119].end 7710.03284375
transcript.pyannote[1120].speaker SPEAKER_10
transcript.pyannote[1120].start 7710.03284375
transcript.pyannote[1120].end 7712.73284375
transcript.pyannote[1121].speaker SPEAKER_11
transcript.pyannote[1121].start 7710.70784375
transcript.pyannote[1121].end 7713.03659375
transcript.pyannote[1122].speaker SPEAKER_10
transcript.pyannote[1122].start 7713.86346875
transcript.pyannote[1122].end 7716.98534375
transcript.pyannote[1123].speaker SPEAKER_10
transcript.pyannote[1123].start 8344.70159375
transcript.pyannote[1123].end 8348.92034375
transcript.pyannote[1124].speaker SPEAKER_31
transcript.pyannote[1124].start 8361.57659375
transcript.pyannote[1124].end 8365.76159375
transcript.pyannote[1125].speaker SPEAKER_10
transcript.pyannote[1125].start 8365.25534375
transcript.pyannote[1125].end 8366.14971875
transcript.pyannote[1126].speaker SPEAKER_11
transcript.pyannote[1126].start 8370.23346875
transcript.pyannote[1126].end 8370.72284375
transcript.pyannote[1127].speaker SPEAKER_31
transcript.pyannote[1127].start 8370.89159375
transcript.pyannote[1127].end 8370.94221875
transcript.pyannote[1128].speaker SPEAKER_32
transcript.pyannote[1128].start 8370.94221875
transcript.pyannote[1128].end 8371.34721875
transcript.pyannote[1129].speaker SPEAKER_32
transcript.pyannote[1129].start 8371.54971875
transcript.pyannote[1129].end 8373.38909375
transcript.pyannote[1130].speaker SPEAKER_11
transcript.pyannote[1130].start 8372.25846875
transcript.pyannote[1130].end 8373.87846875
transcript.pyannote[1131].speaker SPEAKER_32
transcript.pyannote[1131].start 8373.81096875
transcript.pyannote[1131].end 8373.82784375
transcript.pyannote[1132].speaker SPEAKER_32
transcript.pyannote[1132].start 8373.84471875
transcript.pyannote[1132].end 8393.04846875
transcript.pyannote[1133].speaker SPEAKER_11
transcript.pyannote[1133].start 8375.61659375
transcript.pyannote[1133].end 8376.13971875
transcript.pyannote[1134].speaker SPEAKER_22
transcript.pyannote[1134].start 8383.00784375
transcript.pyannote[1134].end 8383.39596875
transcript.pyannote[1135].speaker SPEAKER_32
transcript.pyannote[1135].start 8393.13284375
transcript.pyannote[1135].end 8424.95909375
transcript.pyannote[1136].speaker SPEAKER_22
transcript.pyannote[1136].start 8396.03534375
transcript.pyannote[1136].end 8396.49096875
transcript.pyannote[1137].speaker SPEAKER_32
transcript.pyannote[1137].start 8425.53284375
transcript.pyannote[1137].end 8439.16784375
transcript.pyannote[1138].speaker SPEAKER_13
transcript.pyannote[1138].start 8439.45471875
transcript.pyannote[1138].end 8439.58971875
transcript.pyannote[1139].speaker SPEAKER_11
transcript.pyannote[1139].start 8439.58971875
transcript.pyannote[1139].end 8439.80909375
transcript.pyannote[1140].speaker SPEAKER_13
transcript.pyannote[1140].start 8439.80909375
transcript.pyannote[1140].end 8456.75159375
transcript.pyannote[1141].speaker SPEAKER_13
transcript.pyannote[1141].start 8457.10596875
transcript.pyannote[1141].end 8459.29971875
transcript.pyannote[1142].speaker SPEAKER_32
transcript.pyannote[1142].start 8459.29971875
transcript.pyannote[1142].end 8459.31659375
transcript.pyannote[1143].speaker SPEAKER_32
transcript.pyannote[1143].start 8459.60346875
transcript.pyannote[1143].end 8459.87346875
transcript.pyannote[1144].speaker SPEAKER_32
transcript.pyannote[1144].start 8460.27846875
transcript.pyannote[1144].end 8550.62721875
transcript.pyannote[1145].speaker SPEAKER_00
transcript.pyannote[1145].start 8469.28971875
transcript.pyannote[1145].end 8470.04909375
transcript.pyannote[1146].speaker SPEAKER_00
transcript.pyannote[1146].start 8470.20096875
transcript.pyannote[1146].end 8470.90971875
transcript.pyannote[1147].speaker SPEAKER_00
transcript.pyannote[1147].start 8471.11221875
transcript.pyannote[1147].end 8471.17971875
transcript.pyannote[1148].speaker SPEAKER_22
transcript.pyannote[1148].start 8471.17971875
transcript.pyannote[1148].end 8471.36534375
transcript.pyannote[1149].speaker SPEAKER_32
transcript.pyannote[1149].start 8551.42034375
transcript.pyannote[1149].end 8590.90784375
transcript.pyannote[1150].speaker SPEAKER_00
transcript.pyannote[1150].start 8552.55096875
transcript.pyannote[1150].end 8553.34409375
transcript.pyannote[1151].speaker SPEAKER_13
transcript.pyannote[1151].start 8591.68409375
transcript.pyannote[1151].end 8600.96534375
transcript.pyannote[1152].speaker SPEAKER_13
transcript.pyannote[1152].start 8601.52221875
transcript.pyannote[1152].end 8635.17096875
transcript.pyannote[1153].speaker SPEAKER_22
transcript.pyannote[1153].start 8628.58971875
transcript.pyannote[1153].end 8628.75846875
transcript.pyannote[1154].speaker SPEAKER_13
transcript.pyannote[1154].start 8635.76159375
transcript.pyannote[1154].end 8638.15784375
transcript.pyannote[1155].speaker SPEAKER_13
transcript.pyannote[1155].start 8638.88346875
transcript.pyannote[1155].end 8647.52346875
transcript.pyannote[1156].speaker SPEAKER_13
transcript.pyannote[1156].start 8647.55721875
transcript.pyannote[1156].end 8647.57409375
transcript.pyannote[1157].speaker SPEAKER_22
transcript.pyannote[1157].start 8647.57409375
transcript.pyannote[1157].end 8647.59096875
transcript.pyannote[1158].speaker SPEAKER_22
transcript.pyannote[1158].start 8647.60784375
transcript.pyannote[1158].end 8647.96221875
transcript.pyannote[1159].speaker SPEAKER_13
transcript.pyannote[1159].start 8647.74284375
transcript.pyannote[1159].end 8673.46034375
transcript.pyannote[1160].speaker SPEAKER_32
transcript.pyannote[1160].start 8672.32971875
transcript.pyannote[1160].end 8702.68784375
transcript.pyannote[1161].speaker SPEAKER_13
transcript.pyannote[1161].start 8676.00846875
transcript.pyannote[1161].end 8676.46409375
transcript.pyannote[1162].speaker SPEAKER_13
transcript.pyannote[1162].start 8677.94909375
transcript.pyannote[1162].end 8678.53971875
transcript.pyannote[1163].speaker SPEAKER_13
transcript.pyannote[1163].start 8679.33284375
transcript.pyannote[1163].end 8680.41284375
transcript.pyannote[1164].speaker SPEAKER_22
transcript.pyannote[1164].start 8693.52471875
transcript.pyannote[1164].end 8693.94659375
transcript.pyannote[1165].speaker SPEAKER_00
transcript.pyannote[1165].start 8695.85346875
transcript.pyannote[1165].end 8695.87034375
transcript.pyannote[1166].speaker SPEAKER_22
transcript.pyannote[1166].start 8695.87034375
transcript.pyannote[1166].end 8696.64659375
transcript.pyannote[1167].speaker SPEAKER_22
transcript.pyannote[1167].start 8697.89534375
transcript.pyannote[1167].end 8698.36784375
transcript.pyannote[1168].speaker SPEAKER_22
transcript.pyannote[1168].start 8700.62909375
transcript.pyannote[1168].end 8701.57409375
transcript.pyannote[1169].speaker SPEAKER_22
transcript.pyannote[1169].start 8702.51909375
transcript.pyannote[1169].end 8702.85659375
transcript.pyannote[1170].speaker SPEAKER_32
transcript.pyannote[1170].start 8702.80596875
transcript.pyannote[1170].end 8726.14409375
transcript.pyannote[1171].speaker SPEAKER_22
transcript.pyannote[1171].start 8704.27409375
transcript.pyannote[1171].end 8704.93221875
transcript.pyannote[1172].speaker SPEAKER_22
transcript.pyannote[1172].start 8705.32034375
transcript.pyannote[1172].end 8705.80971875
transcript.pyannote[1173].speaker SPEAKER_32
transcript.pyannote[1173].start 8726.58284375
transcript.pyannote[1173].end 8744.38596875
transcript.pyannote[1174].speaker SPEAKER_22
transcript.pyannote[1174].start 8740.48784375
transcript.pyannote[1174].end 8741.41596875
transcript.pyannote[1175].speaker SPEAKER_22
transcript.pyannote[1175].start 8743.06971875
transcript.pyannote[1175].end 8744.85846875
transcript.pyannote[1176].speaker SPEAKER_32
transcript.pyannote[1176].start 8744.85846875
transcript.pyannote[1176].end 8765.07471875
transcript.pyannote[1177].speaker SPEAKER_22
transcript.pyannote[1177].start 8744.99346875
transcript.pyannote[1177].end 8745.88784375
transcript.pyannote[1178].speaker SPEAKER_32
transcript.pyannote[1178].start 8765.66534375
transcript.pyannote[1178].end 8778.89534375
transcript.pyannote[1179].speaker SPEAKER_32
transcript.pyannote[1179].start 8779.62096875
transcript.pyannote[1179].end 8794.25159375
transcript.pyannote[1180].speaker SPEAKER_32
transcript.pyannote[1180].start 8795.56784375
transcript.pyannote[1180].end 8796.76596875
transcript.pyannote[1181].speaker SPEAKER_32
transcript.pyannote[1181].start 8797.47471875
transcript.pyannote[1181].end 8798.20034375
transcript.pyannote[1182].speaker SPEAKER_32
transcript.pyannote[1182].start 8798.99346875
transcript.pyannote[1182].end 8799.83721875
transcript.pyannote[1183].speaker SPEAKER_32
transcript.pyannote[1183].start 8800.52909375
transcript.pyannote[1183].end 8811.86909375
transcript.pyannote[1184].speaker SPEAKER_05
transcript.pyannote[1184].start 8802.68909375
transcript.pyannote[1184].end 8802.75659375
transcript.pyannote[1185].speaker SPEAKER_32
transcript.pyannote[1185].start 8812.40909375
transcript.pyannote[1185].end 8822.77034375
transcript.pyannote[1186].speaker SPEAKER_32
transcript.pyannote[1186].start 8823.52971875
transcript.pyannote[1186].end 8844.42096875
transcript.pyannote[1187].speaker SPEAKER_32
transcript.pyannote[1187].start 8845.11284375
transcript.pyannote[1187].end 8847.30659375
transcript.pyannote[1188].speaker SPEAKER_32
transcript.pyannote[1188].start 8847.84659375
transcript.pyannote[1188].end 8848.99409375
transcript.pyannote[1189].speaker SPEAKER_32
transcript.pyannote[1189].start 8849.41596875
transcript.pyannote[1189].end 8862.27471875
transcript.pyannote[1190].speaker SPEAKER_11
transcript.pyannote[1190].start 8862.35909375
transcript.pyannote[1190].end 8863.13534375
transcript.pyannote[1191].speaker SPEAKER_32
transcript.pyannote[1191].start 8863.13534375
transcript.pyannote[1191].end 8865.88596875
transcript.pyannote[1192].speaker SPEAKER_32
transcript.pyannote[1192].start 8865.91971875
transcript.pyannote[1192].end 8869.26096875
transcript.pyannote[1193].speaker SPEAKER_32
transcript.pyannote[1193].start 8869.95284375
transcript.pyannote[1193].end 8881.09034375
transcript.pyannote[1194].speaker SPEAKER_22
transcript.pyannote[1194].start 8876.26409375
transcript.pyannote[1194].end 8876.68596875
transcript.pyannote[1195].speaker SPEAKER_11
transcript.pyannote[1195].start 8876.68596875
transcript.pyannote[1195].end 8876.73659375
transcript.pyannote[1196].speaker SPEAKER_22
transcript.pyannote[1196].start 8877.69846875
transcript.pyannote[1196].end 8877.73221875
transcript.pyannote[1197].speaker SPEAKER_11
transcript.pyannote[1197].start 8877.73221875
transcript.pyannote[1197].end 8879.35221875
transcript.pyannote[1198].speaker SPEAKER_11
transcript.pyannote[1198].start 8879.82471875
transcript.pyannote[1198].end 8880.16221875
transcript.pyannote[1199].speaker SPEAKER_11
transcript.pyannote[1199].start 8880.21284375
transcript.pyannote[1199].end 8880.24659375
transcript.pyannote[1200].speaker SPEAKER_32
transcript.pyannote[1200].start 8881.71471875
transcript.pyannote[1200].end 8890.05096875
transcript.pyannote[1201].speaker SPEAKER_13
transcript.pyannote[1201].start 8885.30909375
transcript.pyannote[1201].end 8886.86159375
transcript.pyannote[1202].speaker SPEAKER_13
transcript.pyannote[1202].start 8889.76409375
transcript.pyannote[1202].end 8891.13096875
transcript.pyannote[1203].speaker SPEAKER_32
transcript.pyannote[1203].start 8891.13096875
transcript.pyannote[1203].end 8895.60284375
transcript.pyannote[1204].speaker SPEAKER_13
transcript.pyannote[1204].start 8891.60346875
transcript.pyannote[1204].end 8892.76784375
transcript.pyannote[1205].speaker SPEAKER_10
transcript.pyannote[1205].start 8892.76784375
transcript.pyannote[1205].end 8893.35846875
transcript.pyannote[1206].speaker SPEAKER_13
transcript.pyannote[1206].start 8893.35846875
transcript.pyannote[1206].end 8893.40909375
transcript.pyannote[1207].speaker SPEAKER_10
transcript.pyannote[1207].start 8893.40909375
transcript.pyannote[1207].end 8895.95721875
transcript.pyannote[1208].speaker SPEAKER_10
transcript.pyannote[1208].start 8897.12159375
transcript.pyannote[1208].end 8902.11659375
transcript.pyannote[1209].speaker SPEAKER_29
transcript.pyannote[1209].start 8919.36284375
transcript.pyannote[1209].end 8921.99534375
transcript.pyannote[1210].speaker SPEAKER_10
transcript.pyannote[1210].start 8922.13034375
transcript.pyannote[1210].end 8922.90659375
transcript.pyannote[1211].speaker SPEAKER_13
transcript.pyannote[1211].start 8926.06221875
transcript.pyannote[1211].end 8926.60221875
transcript.pyannote[1212].speaker SPEAKER_29
transcript.pyannote[1212].start 8926.60221875
transcript.pyannote[1212].end 8928.01971875
transcript.pyannote[1213].speaker SPEAKER_13
transcript.pyannote[1213].start 8928.27284375
transcript.pyannote[1213].end 8929.09971875
transcript.pyannote[1214].speaker SPEAKER_29
transcript.pyannote[1214].start 8930.44971875
transcript.pyannote[1214].end 8933.68971875
transcript.pyannote[1215].speaker SPEAKER_29
transcript.pyannote[1215].start 8934.76971875
transcript.pyannote[1215].end 8935.54596875
transcript.pyannote[1216].speaker SPEAKER_29
transcript.pyannote[1216].start 8937.06471875
transcript.pyannote[1216].end 8944.62471875
transcript.pyannote[1217].speaker SPEAKER_29
transcript.pyannote[1217].start 8945.26596875
transcript.pyannote[1217].end 8949.14721875
transcript.pyannote[1218].speaker SPEAKER_29
transcript.pyannote[1218].start 8949.67034375
transcript.pyannote[1218].end 8956.11659375
transcript.pyannote[1219].speaker SPEAKER_29
transcript.pyannote[1219].start 8956.69034375
transcript.pyannote[1219].end 8958.25971875
transcript.pyannote[1220].speaker SPEAKER_29
transcript.pyannote[1220].start 8959.08659375
transcript.pyannote[1220].end 8961.24659375
transcript.pyannote[1221].speaker SPEAKER_29
transcript.pyannote[1221].start 8962.15784375
transcript.pyannote[1221].end 8965.11096875
transcript.pyannote[1222].speaker SPEAKER_29
transcript.pyannote[1222].start 8965.56659375
transcript.pyannote[1222].end 8968.23284375
transcript.pyannote[1223].speaker SPEAKER_29
transcript.pyannote[1223].start 8968.77284375
transcript.pyannote[1223].end 8971.81034375
transcript.pyannote[1224].speaker SPEAKER_29
transcript.pyannote[1224].start 8972.28284375
transcript.pyannote[1224].end 8973.81846875
transcript.pyannote[1225].speaker SPEAKER_11
transcript.pyannote[1225].start 8974.67909375
transcript.pyannote[1225].end 8975.15159375
transcript.pyannote[1226].speaker SPEAKER_29
transcript.pyannote[1226].start 8975.32034375
transcript.pyannote[1226].end 8975.69159375
transcript.pyannote[1227].speaker SPEAKER_11
transcript.pyannote[1227].start 8975.69159375
transcript.pyannote[1227].end 8975.89409375
transcript.pyannote[1228].speaker SPEAKER_29
transcript.pyannote[1228].start 8976.60284375
transcript.pyannote[1228].end 8978.56034375
transcript.pyannote[1229].speaker SPEAKER_11
transcript.pyannote[1229].start 8976.94034375
transcript.pyannote[1229].end 8977.39596875
transcript.pyannote[1230].speaker SPEAKER_11
transcript.pyannote[1230].start 8978.74596875
transcript.pyannote[1230].end 8979.84284375
transcript.pyannote[1231].speaker SPEAKER_29
transcript.pyannote[1231].start 8979.89346875
transcript.pyannote[1231].end 8986.77846875
transcript.pyannote[1232].speaker SPEAKER_11
transcript.pyannote[1232].start 8981.44596875
transcript.pyannote[1232].end 8985.32721875
transcript.pyannote[1233].speaker SPEAKER_22
transcript.pyannote[1233].start 8985.32721875
transcript.pyannote[1233].end 8985.37784375
transcript.pyannote[1234].speaker SPEAKER_11
transcript.pyannote[1234].start 8986.13721875
transcript.pyannote[1234].end 8986.17096875
transcript.pyannote[1235].speaker SPEAKER_22
transcript.pyannote[1235].start 8986.17096875
transcript.pyannote[1235].end 8986.93034375
transcript.pyannote[1236].speaker SPEAKER_29
transcript.pyannote[1236].start 8986.93034375
transcript.pyannote[1236].end 8987.41971875
transcript.pyannote[1237].speaker SPEAKER_29
transcript.pyannote[1237].start 8987.89221875
transcript.pyannote[1237].end 8989.22534375
transcript.pyannote[1238].speaker SPEAKER_29
transcript.pyannote[1238].start 8989.98471875
transcript.pyannote[1238].end 8991.31784375
transcript.pyannote[1239].speaker SPEAKER_29
transcript.pyannote[1239].start 8992.04346875
transcript.pyannote[1239].end 8997.86534375
transcript.pyannote[1240].speaker SPEAKER_29
transcript.pyannote[1240].start 8998.06784375
transcript.pyannote[1240].end 9000.05909375
transcript.pyannote[1241].speaker SPEAKER_22
transcript.pyannote[1241].start 9000.02534375
transcript.pyannote[1241].end 9000.93659375
transcript.pyannote[1242].speaker SPEAKER_29
transcript.pyannote[1242].start 9000.59909375
transcript.pyannote[1242].end 9005.15534375
transcript.pyannote[1243].speaker SPEAKER_13
transcript.pyannote[1243].start 9003.99096875
transcript.pyannote[1243].end 9004.22721875
transcript.pyannote[1244].speaker SPEAKER_22
transcript.pyannote[1244].start 9004.22721875
transcript.pyannote[1244].end 9004.26096875
transcript.pyannote[1245].speaker SPEAKER_13
transcript.pyannote[1245].start 9004.26096875
transcript.pyannote[1245].end 9006.99471875
transcript.pyannote[1246].speaker SPEAKER_13
transcript.pyannote[1246].start 9007.43346875
transcript.pyannote[1246].end 9016.74846875
transcript.pyannote[1247].speaker SPEAKER_29
transcript.pyannote[1247].start 9016.74846875
transcript.pyannote[1247].end 9020.24159375
transcript.pyannote[1248].speaker SPEAKER_13
transcript.pyannote[1248].start 9017.50784375
transcript.pyannote[1248].end 9020.03909375
transcript.pyannote[1249].speaker SPEAKER_11
transcript.pyannote[1249].start 9020.03909375
transcript.pyannote[1249].end 9020.22471875
transcript.pyannote[1250].speaker SPEAKER_11
transcript.pyannote[1250].start 9020.24159375
transcript.pyannote[1250].end 9020.37659375
transcript.pyannote[1251].speaker SPEAKER_29
transcript.pyannote[1251].start 9020.37659375
transcript.pyannote[1251].end 9030.60284375
transcript.pyannote[1252].speaker SPEAKER_11
transcript.pyannote[1252].start 9025.20284375
transcript.pyannote[1252].end 9026.95784375
transcript.pyannote[1253].speaker SPEAKER_11
transcript.pyannote[1253].start 9027.27846875
transcript.pyannote[1253].end 9027.59909375
transcript.pyannote[1254].speaker SPEAKER_11
transcript.pyannote[1254].start 9028.52721875
transcript.pyannote[1254].end 9028.99971875
transcript.pyannote[1255].speaker SPEAKER_11
transcript.pyannote[1255].start 9030.24846875
transcript.pyannote[1255].end 9031.22721875
transcript.pyannote[1256].speaker SPEAKER_29
transcript.pyannote[1256].start 9030.82221875
transcript.pyannote[1256].end 9035.12534375
transcript.pyannote[1257].speaker SPEAKER_29
transcript.pyannote[1257].start 9035.66534375
transcript.pyannote[1257].end 9036.84659375
transcript.pyannote[1258].speaker SPEAKER_29
transcript.pyannote[1258].start 9037.74096875
transcript.pyannote[1258].end 9049.75596875
transcript.pyannote[1259].speaker SPEAKER_11
transcript.pyannote[1259].start 9046.29659375
transcript.pyannote[1259].end 9046.93784375
transcript.pyannote[1260].speaker SPEAKER_11
transcript.pyannote[1260].start 9048.64221875
transcript.pyannote[1260].end 9048.91221875
transcript.pyannote[1261].speaker SPEAKER_11
transcript.pyannote[1261].start 9049.63784375
transcript.pyannote[1261].end 9049.92471875
transcript.pyannote[1262].speaker SPEAKER_29
transcript.pyannote[1262].start 9050.92034375
transcript.pyannote[1262].end 9051.29159375
transcript.pyannote[1263].speaker SPEAKER_29
transcript.pyannote[1263].start 9051.78096875
transcript.pyannote[1263].end 9054.02534375
transcript.pyannote[1264].speaker SPEAKER_29
transcript.pyannote[1264].start 9054.81846875
transcript.pyannote[1264].end 9056.37096875
transcript.pyannote[1265].speaker SPEAKER_29
transcript.pyannote[1265].start 9056.89409375
transcript.pyannote[1265].end 9059.47596875
transcript.pyannote[1266].speaker SPEAKER_22
transcript.pyannote[1266].start 9059.47596875
transcript.pyannote[1266].end 9059.94846875
transcript.pyannote[1267].speaker SPEAKER_29
transcript.pyannote[1267].start 9059.94846875
transcript.pyannote[1267].end 9073.04346875
transcript.pyannote[1268].speaker SPEAKER_29
transcript.pyannote[1268].start 9074.02221875
transcript.pyannote[1268].end 9078.98346875
transcript.pyannote[1269].speaker SPEAKER_29
transcript.pyannote[1269].start 9079.45596875
transcript.pyannote[1269].end 9080.95784375
transcript.pyannote[1270].speaker SPEAKER_29
transcript.pyannote[1270].start 9081.75096875
transcript.pyannote[1270].end 9083.69159375
transcript.pyannote[1271].speaker SPEAKER_22
transcript.pyannote[1271].start 9083.86034375
transcript.pyannote[1271].end 9084.23159375
transcript.pyannote[1272].speaker SPEAKER_29
transcript.pyannote[1272].start 9084.73784375
transcript.pyannote[1272].end 9087.30284375
transcript.pyannote[1273].speaker SPEAKER_29
transcript.pyannote[1273].start 9087.67409375
transcript.pyannote[1273].end 9099.21659375
transcript.pyannote[1274].speaker SPEAKER_29
transcript.pyannote[1274].start 9099.36846875
transcript.pyannote[1274].end 9100.46534375
transcript.pyannote[1275].speaker SPEAKER_29
transcript.pyannote[1275].start 9101.24159375
transcript.pyannote[1275].end 9102.69284375
transcript.pyannote[1276].speaker SPEAKER_29
transcript.pyannote[1276].start 9104.07659375
transcript.pyannote[1276].end 9107.85659375
transcript.pyannote[1277].speaker SPEAKER_29
transcript.pyannote[1277].start 9108.37971875
transcript.pyannote[1277].end 9110.97846875
transcript.pyannote[1278].speaker SPEAKER_29
transcript.pyannote[1278].start 9112.53096875
transcript.pyannote[1278].end 9113.62784375
transcript.pyannote[1279].speaker SPEAKER_29
transcript.pyannote[1279].start 9114.08346875
transcript.pyannote[1279].end 9116.44596875
transcript.pyannote[1280].speaker SPEAKER_29
transcript.pyannote[1280].start 9117.08721875
transcript.pyannote[1280].end 9119.78721875
transcript.pyannote[1281].speaker SPEAKER_29
transcript.pyannote[1281].start 9122.80784375
transcript.pyannote[1281].end 9124.73159375
transcript.pyannote[1282].speaker SPEAKER_29
transcript.pyannote[1282].start 9125.15346875
transcript.pyannote[1282].end 9126.77346875
transcript.pyannote[1283].speaker SPEAKER_29
transcript.pyannote[1283].start 9127.58346875
transcript.pyannote[1283].end 9130.73909375
transcript.pyannote[1284].speaker SPEAKER_29
transcript.pyannote[1284].start 9131.58284375
transcript.pyannote[1284].end 9137.25284375
transcript.pyannote[1285].speaker SPEAKER_29
transcript.pyannote[1285].start 9138.34971875
transcript.pyannote[1285].end 9141.53909375
transcript.pyannote[1286].speaker SPEAKER_13
transcript.pyannote[1286].start 9141.47159375
transcript.pyannote[1286].end 9141.48846875
transcript.pyannote[1287].speaker SPEAKER_13
transcript.pyannote[1287].start 9141.53909375
transcript.pyannote[1287].end 9142.68659375
transcript.pyannote[1288].speaker SPEAKER_29
transcript.pyannote[1288].start 9143.42909375
transcript.pyannote[1288].end 9145.03221875
transcript.pyannote[1289].speaker SPEAKER_29
transcript.pyannote[1289].start 9145.16721875
transcript.pyannote[1289].end 9147.64784375
transcript.pyannote[1290].speaker SPEAKER_29
transcript.pyannote[1290].start 9148.47471875
transcript.pyannote[1290].end 9150.87096875
transcript.pyannote[1291].speaker SPEAKER_29
transcript.pyannote[1291].start 9151.42784375
transcript.pyannote[1291].end 9154.54971875
transcript.pyannote[1292].speaker SPEAKER_22
transcript.pyannote[1292].start 9151.63034375
transcript.pyannote[1292].end 9152.38971875
transcript.pyannote[1293].speaker SPEAKER_22
transcript.pyannote[1293].start 9154.63409375
transcript.pyannote[1293].end 9155.07284375
transcript.pyannote[1294].speaker SPEAKER_29
transcript.pyannote[1294].start 9155.02221875
transcript.pyannote[1294].end 9157.14846875
transcript.pyannote[1295].speaker SPEAKER_29
transcript.pyannote[1295].start 9158.38034375
transcript.pyannote[1295].end 9163.67909375
transcript.pyannote[1296].speaker SPEAKER_29
transcript.pyannote[1296].start 9164.59034375
transcript.pyannote[1296].end 9169.72034375
transcript.pyannote[1297].speaker SPEAKER_29
transcript.pyannote[1297].start 9170.74971875
transcript.pyannote[1297].end 9175.37346875
transcript.pyannote[1298].speaker SPEAKER_29
transcript.pyannote[1298].start 9175.96409375
transcript.pyannote[1298].end 9177.02721875
transcript.pyannote[1299].speaker SPEAKER_29
transcript.pyannote[1299].start 9177.49971875
transcript.pyannote[1299].end 9178.56284375
transcript.pyannote[1300].speaker SPEAKER_29
transcript.pyannote[1300].start 9178.98471875
transcript.pyannote[1300].end 9180.18284375
transcript.pyannote[1301].speaker SPEAKER_29
transcript.pyannote[1301].start 9180.70596875
transcript.pyannote[1301].end 9182.47784375
transcript.pyannote[1302].speaker SPEAKER_29
transcript.pyannote[1302].start 9183.42284375
transcript.pyannote[1302].end 9185.32971875
transcript.pyannote[1303].speaker SPEAKER_29
transcript.pyannote[1303].start 9185.86971875
transcript.pyannote[1303].end 9186.27471875
transcript.pyannote[1304].speaker SPEAKER_22
transcript.pyannote[1304].start 9185.93721875
transcript.pyannote[1304].end 9186.37596875
transcript.pyannote[1305].speaker SPEAKER_29
transcript.pyannote[1305].start 9186.69659375
transcript.pyannote[1305].end 9187.40534375
transcript.pyannote[1306].speaker SPEAKER_29
transcript.pyannote[1306].start 9188.46846875
transcript.pyannote[1306].end 9190.88159375
transcript.pyannote[1307].speaker SPEAKER_22
transcript.pyannote[1307].start 9189.76784375
transcript.pyannote[1307].end 9193.02471875
transcript.pyannote[1308].speaker SPEAKER_22
transcript.pyannote[1308].start 9193.09221875
transcript.pyannote[1308].end 9193.22721875
transcript.pyannote[1309].speaker SPEAKER_29
transcript.pyannote[1309].start 9193.22721875
transcript.pyannote[1309].end 9195.69096875
transcript.pyannote[1310].speaker SPEAKER_22
transcript.pyannote[1310].start 9193.24409375
transcript.pyannote[1310].end 9193.42971875
transcript.pyannote[1311].speaker SPEAKER_29
transcript.pyannote[1311].start 9196.41659375
transcript.pyannote[1311].end 9197.07471875
transcript.pyannote[1312].speaker SPEAKER_29
transcript.pyannote[1312].start 9198.86346875
transcript.pyannote[1312].end 9199.62284375
transcript.pyannote[1313].speaker SPEAKER_29
transcript.pyannote[1313].start 9199.67346875
transcript.pyannote[1313].end 9201.93471875
transcript.pyannote[1314].speaker SPEAKER_29
transcript.pyannote[1314].start 9202.99784375
transcript.pyannote[1314].end 9205.49534375
transcript.pyannote[1315].speaker SPEAKER_29
transcript.pyannote[1315].start 9205.63034375
transcript.pyannote[1315].end 9206.59221875
transcript.pyannote[1316].speaker SPEAKER_29
transcript.pyannote[1316].start 9207.94221875
transcript.pyannote[1316].end 9209.49471875
transcript.pyannote[1317].speaker SPEAKER_29
transcript.pyannote[1317].start 9210.60846875
transcript.pyannote[1317].end 9210.92909375
transcript.pyannote[1318].speaker SPEAKER_29
transcript.pyannote[1318].start 9211.72221875
transcript.pyannote[1318].end 9214.11846875
transcript.pyannote[1319].speaker SPEAKER_29
transcript.pyannote[1319].start 9214.64159375
transcript.pyannote[1319].end 9217.32471875
transcript.pyannote[1320].speaker SPEAKER_29
transcript.pyannote[1320].start 9217.74659375
transcript.pyannote[1320].end 9222.72471875
transcript.pyannote[1321].speaker SPEAKER_29
transcript.pyannote[1321].start 9224.17596875
transcript.pyannote[1321].end 9225.25596875
transcript.pyannote[1322].speaker SPEAKER_29
transcript.pyannote[1322].start 9226.28534375
transcript.pyannote[1322].end 9229.12034375
transcript.pyannote[1323].speaker SPEAKER_29
transcript.pyannote[1323].start 9230.25096875
transcript.pyannote[1323].end 9231.07784375
transcript.pyannote[1324].speaker SPEAKER_29
transcript.pyannote[1324].start 9231.98909375
transcript.pyannote[1324].end 9233.35596875
transcript.pyannote[1325].speaker SPEAKER_29
transcript.pyannote[1325].start 9234.80721875
transcript.pyannote[1325].end 9235.76909375
transcript.pyannote[1326].speaker SPEAKER_29
transcript.pyannote[1326].start 9236.25846875
transcript.pyannote[1326].end 9237.54096875
transcript.pyannote[1327].speaker SPEAKER_29
transcript.pyannote[1327].start 9239.16096875
transcript.pyannote[1327].end 9239.61659375
transcript.pyannote[1328].speaker SPEAKER_29
transcript.pyannote[1328].start 9240.39284375
transcript.pyannote[1328].end 9242.51909375
transcript.pyannote[1329].speaker SPEAKER_29
transcript.pyannote[1329].start 9243.70034375
transcript.pyannote[1329].end 9244.91534375
transcript.pyannote[1330].speaker SPEAKER_29
transcript.pyannote[1330].start 9245.16846875
transcript.pyannote[1330].end 9247.63221875
transcript.pyannote[1331].speaker SPEAKER_22
transcript.pyannote[1331].start 9247.39596875
transcript.pyannote[1331].end 9247.83471875
transcript.pyannote[1332].speaker SPEAKER_29
transcript.pyannote[1332].start 9248.17221875
transcript.pyannote[1332].end 9250.87221875
transcript.pyannote[1333].speaker SPEAKER_29
transcript.pyannote[1333].start 9251.83409375
transcript.pyannote[1333].end 9256.45784375
transcript.pyannote[1334].speaker SPEAKER_29
transcript.pyannote[1334].start 9256.99784375
transcript.pyannote[1334].end 9257.87534375
transcript.pyannote[1335].speaker SPEAKER_29
transcript.pyannote[1335].start 9258.46596875
transcript.pyannote[1335].end 9259.68096875
transcript.pyannote[1336].speaker SPEAKER_29
transcript.pyannote[1336].start 9260.11971875
transcript.pyannote[1336].end 9265.63784375
transcript.pyannote[1337].speaker SPEAKER_22
transcript.pyannote[1337].start 9265.90784375
transcript.pyannote[1337].end 9266.21159375
transcript.pyannote[1338].speaker SPEAKER_29
transcript.pyannote[1338].start 9266.09346875
transcript.pyannote[1338].end 9267.67971875
transcript.pyannote[1339].speaker SPEAKER_29
transcript.pyannote[1339].start 9270.29534375
transcript.pyannote[1339].end 9270.75096875
transcript.pyannote[1340].speaker SPEAKER_29
transcript.pyannote[1340].start 9271.30784375
transcript.pyannote[1340].end 9272.10096875
transcript.pyannote[1341].speaker SPEAKER_29
transcript.pyannote[1341].start 9272.55659375
transcript.pyannote[1341].end 9273.51846875
transcript.pyannote[1342].speaker SPEAKER_29
transcript.pyannote[1342].start 9273.75471875
transcript.pyannote[1342].end 9275.83034375
transcript.pyannote[1343].speaker SPEAKER_29
transcript.pyannote[1343].start 9276.58971875
transcript.pyannote[1343].end 9277.43346875
transcript.pyannote[1344].speaker SPEAKER_29
transcript.pyannote[1344].start 9277.83846875
transcript.pyannote[1344].end 9279.71159375
transcript.pyannote[1345].speaker SPEAKER_29
transcript.pyannote[1345].start 9279.93096875
transcript.pyannote[1345].end 9281.43284375
transcript.pyannote[1346].speaker SPEAKER_29
transcript.pyannote[1346].start 9281.83784375
transcript.pyannote[1346].end 9287.55846875
transcript.pyannote[1347].speaker SPEAKER_29
transcript.pyannote[1347].start 9287.82846875
transcript.pyannote[1347].end 9289.51596875
transcript.pyannote[1348].speaker SPEAKER_29
transcript.pyannote[1348].start 9289.90409375
transcript.pyannote[1348].end 9290.34284375
transcript.pyannote[1349].speaker SPEAKER_13
transcript.pyannote[1349].start 9291.20346875
transcript.pyannote[1349].end 9294.62909375
transcript.pyannote[1350].speaker SPEAKER_29
transcript.pyannote[1350].start 9293.31284375
transcript.pyannote[1350].end 9293.56596875
transcript.pyannote[1351].speaker SPEAKER_29
transcript.pyannote[1351].start 9294.62909375
transcript.pyannote[1351].end 9296.09721875
transcript.pyannote[1352].speaker SPEAKER_29
transcript.pyannote[1352].start 9297.29534375
transcript.pyannote[1352].end 9297.95346875
transcript.pyannote[1353].speaker SPEAKER_13
transcript.pyannote[1353].start 9297.36284375
transcript.pyannote[1353].end 9297.91971875
transcript.pyannote[1354].speaker SPEAKER_13
transcript.pyannote[1354].start 9297.95346875
transcript.pyannote[1354].end 9300.94034375
transcript.pyannote[1355].speaker SPEAKER_29
transcript.pyannote[1355].start 9299.40471875
transcript.pyannote[1355].end 9303.21846875
transcript.pyannote[1356].speaker SPEAKER_13
transcript.pyannote[1356].start 9302.45909375
transcript.pyannote[1356].end 9303.13409375
transcript.pyannote[1357].speaker SPEAKER_13
transcript.pyannote[1357].start 9303.91034375
transcript.pyannote[1357].end 9305.54721875
transcript.pyannote[1358].speaker SPEAKER_29
transcript.pyannote[1358].start 9305.98596875
transcript.pyannote[1358].end 9308.51721875
transcript.pyannote[1359].speaker SPEAKER_13
transcript.pyannote[1359].start 9306.10409375
transcript.pyannote[1359].end 9308.07846875
transcript.pyannote[1360].speaker SPEAKER_13
transcript.pyannote[1360].start 9308.87159375
transcript.pyannote[1360].end 9313.27596875
transcript.pyannote[1361].speaker SPEAKER_29
transcript.pyannote[1361].start 9310.66034375
transcript.pyannote[1361].end 9311.87534375
transcript.pyannote[1362].speaker SPEAKER_29
transcript.pyannote[1362].start 9313.27596875
transcript.pyannote[1362].end 9317.27534375
transcript.pyannote[1363].speaker SPEAKER_13
transcript.pyannote[1363].start 9313.30971875
transcript.pyannote[1363].end 9314.71034375
transcript.pyannote[1364].speaker SPEAKER_13
transcript.pyannote[1364].start 9316.09409375
transcript.pyannote[1364].end 9321.27471875
transcript.pyannote[1365].speaker SPEAKER_29
transcript.pyannote[1365].start 9321.24096875
transcript.pyannote[1365].end 9321.52784375
transcript.pyannote[1366].speaker SPEAKER_13
transcript.pyannote[1366].start 9321.52784375
transcript.pyannote[1366].end 9323.08034375
transcript.pyannote[1367].speaker SPEAKER_29
transcript.pyannote[1367].start 9321.54471875
transcript.pyannote[1367].end 9321.56159375
transcript.pyannote[1368].speaker SPEAKER_13
transcript.pyannote[1368].start 9323.40096875
transcript.pyannote[1368].end 9327.04596875
transcript.pyannote[1369].speaker SPEAKER_29
transcript.pyannote[1369].start 9325.99971875
transcript.pyannote[1369].end 9331.82159375
transcript.pyannote[1370].speaker SPEAKER_13
transcript.pyannote[1370].start 9330.79221875
transcript.pyannote[1370].end 9331.51784375
transcript.pyannote[1371].speaker SPEAKER_11
transcript.pyannote[1371].start 9331.51784375
transcript.pyannote[1371].end 9331.66971875
transcript.pyannote[1372].speaker SPEAKER_29
transcript.pyannote[1372].start 9332.07471875
transcript.pyannote[1372].end 9338.92596875
transcript.pyannote[1373].speaker SPEAKER_13
transcript.pyannote[1373].start 9332.09159375
transcript.pyannote[1373].end 9333.96471875
transcript.pyannote[1374].speaker SPEAKER_11
transcript.pyannote[1374].start 9333.96471875
transcript.pyannote[1374].end 9334.03221875
transcript.pyannote[1375].speaker SPEAKER_13
transcript.pyannote[1375].start 9334.03221875
transcript.pyannote[1375].end 9334.97721875
transcript.pyannote[1376].speaker SPEAKER_11
transcript.pyannote[1376].start 9334.97721875
transcript.pyannote[1376].end 9335.02784375
transcript.pyannote[1377].speaker SPEAKER_10
transcript.pyannote[1377].start 9335.02784375
transcript.pyannote[1377].end 9337.82909375
transcript.pyannote[1378].speaker SPEAKER_10
transcript.pyannote[1378].start 9340.17471875
transcript.pyannote[1378].end 9344.56221875
transcript.pyannote[1379].speaker SPEAKER_05
transcript.pyannote[1379].start 9350.48534375
transcript.pyannote[1379].end 9355.48034375
transcript.pyannote[1380].speaker SPEAKER_05
transcript.pyannote[1380].start 9358.31534375
transcript.pyannote[1380].end 9374.71784375
transcript.pyannote[1381].speaker SPEAKER_00
transcript.pyannote[1381].start 9361.06596875
transcript.pyannote[1381].end 9361.13346875
transcript.pyannote[1382].speaker SPEAKER_10
transcript.pyannote[1382].start 9361.13346875
transcript.pyannote[1382].end 9361.94346875
transcript.pyannote[1383].speaker SPEAKER_10
transcript.pyannote[1383].start 9362.65221875
transcript.pyannote[1383].end 9363.04034375
transcript.pyannote[1384].speaker SPEAKER_05
transcript.pyannote[1384].start 9375.46034375
transcript.pyannote[1384].end 9401.49846875
transcript.pyannote[1385].speaker SPEAKER_05
transcript.pyannote[1385].start 9401.56596875
transcript.pyannote[1385].end 9404.51909375
transcript.pyannote[1386].speaker SPEAKER_05
transcript.pyannote[1386].start 9405.05909375
transcript.pyannote[1386].end 9407.01659375
transcript.pyannote[1387].speaker SPEAKER_05
transcript.pyannote[1387].start 9407.79284375
transcript.pyannote[1387].end 9413.68221875
transcript.pyannote[1388].speaker SPEAKER_13
transcript.pyannote[1388].start 9413.96909375
transcript.pyannote[1388].end 9437.96534375
transcript.pyannote[1389].speaker SPEAKER_05
transcript.pyannote[1389].start 9435.75471875
transcript.pyannote[1389].end 9437.93159375
transcript.pyannote[1390].speaker SPEAKER_05
transcript.pyannote[1390].start 9437.96534375
transcript.pyannote[1390].end 9442.50471875
transcript.pyannote[1391].speaker SPEAKER_05
transcript.pyannote[1391].start 9442.90971875
transcript.pyannote[1391].end 9521.10846875
transcript.pyannote[1392].speaker SPEAKER_22
transcript.pyannote[1392].start 9473.52096875
transcript.pyannote[1392].end 9473.85846875
transcript.pyannote[1393].speaker SPEAKER_13
transcript.pyannote[1393].start 9507.89534375
transcript.pyannote[1393].end 9508.85721875
transcript.pyannote[1394].speaker SPEAKER_05
transcript.pyannote[1394].start 9521.58096875
transcript.pyannote[1394].end 9522.54284375
transcript.pyannote[1395].speaker SPEAKER_05
transcript.pyannote[1395].start 9522.93096875
transcript.pyannote[1395].end 9525.61409375
transcript.pyannote[1396].speaker SPEAKER_05
transcript.pyannote[1396].start 9526.40721875
transcript.pyannote[1396].end 9533.52846875
transcript.pyannote[1397].speaker SPEAKER_05
transcript.pyannote[1397].start 9534.08534375
transcript.pyannote[1397].end 9549.12096875
transcript.pyannote[1398].speaker SPEAKER_05
transcript.pyannote[1398].start 9550.15034375
transcript.pyannote[1398].end 9550.92659375
transcript.pyannote[1399].speaker SPEAKER_05
transcript.pyannote[1399].start 9551.39909375
transcript.pyannote[1399].end 9553.03596875
transcript.pyannote[1400].speaker SPEAKER_05
transcript.pyannote[1400].start 9553.47471875
transcript.pyannote[1400].end 9562.08096875
transcript.pyannote[1401].speaker SPEAKER_00
transcript.pyannote[1401].start 9557.86221875
transcript.pyannote[1401].end 9558.26721875
transcript.pyannote[1402].speaker SPEAKER_05
transcript.pyannote[1402].start 9562.13159375
transcript.pyannote[1402].end 9577.52159375
transcript.pyannote[1403].speaker SPEAKER_05
transcript.pyannote[1403].start 9578.53409375
transcript.pyannote[1403].end 9604.57221875
transcript.pyannote[1404].speaker SPEAKER_05
transcript.pyannote[1404].start 9604.85909375
transcript.pyannote[1404].end 9617.92034375
transcript.pyannote[1405].speaker SPEAKER_05
transcript.pyannote[1405].start 9618.52784375
transcript.pyannote[1405].end 9622.88159375
transcript.pyannote[1406].speaker SPEAKER_22
transcript.pyannote[1406].start 9624.38346875
transcript.pyannote[1406].end 9624.45096875
transcript.pyannote[1407].speaker SPEAKER_05
transcript.pyannote[1407].start 9624.45096875
transcript.pyannote[1407].end 9624.51846875
transcript.pyannote[1408].speaker SPEAKER_22
transcript.pyannote[1408].start 9624.51846875
transcript.pyannote[1408].end 9624.61971875
transcript.pyannote[1409].speaker SPEAKER_05
transcript.pyannote[1409].start 9624.73784375
transcript.pyannote[1409].end 9641.29221875
transcript.pyannote[1410].speaker SPEAKER_22
transcript.pyannote[1410].start 9627.01596875
transcript.pyannote[1410].end 9627.52221875
transcript.pyannote[1411].speaker SPEAKER_05
transcript.pyannote[1411].start 9641.73096875
transcript.pyannote[1411].end 9652.14284375
transcript.pyannote[1412].speaker SPEAKER_05
transcript.pyannote[1412].start 9652.90221875
transcript.pyannote[1412].end 9660.22596875
transcript.pyannote[1413].speaker SPEAKER_09
transcript.pyannote[1413].start 9660.41159375
transcript.pyannote[1413].end 9660.61409375
transcript.pyannote[1414].speaker SPEAKER_05
transcript.pyannote[1414].start 9661.22159375
transcript.pyannote[1414].end 9663.49971875
transcript.pyannote[1415].speaker SPEAKER_05
transcript.pyannote[1415].start 9664.61346875
transcript.pyannote[1415].end 9672.49409375
transcript.pyannote[1416].speaker SPEAKER_05
transcript.pyannote[1416].start 9672.89909375
transcript.pyannote[1416].end 9704.43846875
transcript.pyannote[1417].speaker SPEAKER_05
transcript.pyannote[1417].start 9705.31596875
transcript.pyannote[1417].end 9712.03221875
transcript.pyannote[1418].speaker SPEAKER_05
transcript.pyannote[1418].start 9713.06159375
transcript.pyannote[1418].end 9714.42846875
transcript.pyannote[1419].speaker SPEAKER_05
transcript.pyannote[1419].start 9714.86721875
transcript.pyannote[1419].end 9716.09909375
transcript.pyannote[1420].speaker SPEAKER_05
transcript.pyannote[1420].start 9716.20034375
transcript.pyannote[1420].end 9725.80221875
transcript.pyannote[1421].speaker SPEAKER_05
transcript.pyannote[1421].start 9726.42659375
transcript.pyannote[1421].end 9728.85659375
transcript.pyannote[1422].speaker SPEAKER_05
transcript.pyannote[1422].start 9731.28659375
transcript.pyannote[1422].end 9737.31096875
transcript.pyannote[1423].speaker SPEAKER_05
transcript.pyannote[1423].start 9737.37846875
transcript.pyannote[1423].end 9740.21346875
transcript.pyannote[1424].speaker SPEAKER_13
transcript.pyannote[1424].start 9740.46659375
transcript.pyannote[1424].end 9741.51284375
transcript.pyannote[1425].speaker SPEAKER_13
transcript.pyannote[1425].start 9741.61409375
transcript.pyannote[1425].end 9743.92596875
transcript.pyannote[1426].speaker SPEAKER_13
transcript.pyannote[1426].start 9744.04409375
transcript.pyannote[1426].end 9746.50784375
transcript.pyannote[1427].speaker SPEAKER_05
transcript.pyannote[1427].start 9744.09471875
transcript.pyannote[1427].end 9746.92971875
transcript.pyannote[1428].speaker SPEAKER_05
transcript.pyannote[1428].start 9747.38534375
transcript.pyannote[1428].end 9762.25221875
transcript.pyannote[1429].speaker SPEAKER_22
transcript.pyannote[1429].start 9754.89471875
transcript.pyannote[1429].end 9755.18159375
transcript.pyannote[1430].speaker SPEAKER_22
transcript.pyannote[1430].start 9755.23221875
transcript.pyannote[1430].end 9755.24909375
transcript.pyannote[1431].speaker SPEAKER_22
transcript.pyannote[1431].start 9755.28284375
transcript.pyannote[1431].end 9755.33346875
transcript.pyannote[1432].speaker SPEAKER_10
transcript.pyannote[1432].start 9761.86409375
transcript.pyannote[1432].end 9761.88096875
transcript.pyannote[1433].speaker SPEAKER_22
transcript.pyannote[1433].start 9761.88096875
transcript.pyannote[1433].end 9761.89784375
transcript.pyannote[1434].speaker SPEAKER_10
transcript.pyannote[1434].start 9761.89784375
transcript.pyannote[1434].end 9761.94846875
transcript.pyannote[1435].speaker SPEAKER_22
transcript.pyannote[1435].start 9761.94846875
transcript.pyannote[1435].end 9762.03284375
transcript.pyannote[1436].speaker SPEAKER_05
transcript.pyannote[1436].start 9762.43784375
transcript.pyannote[1436].end 9768.63096875
transcript.pyannote[1437].speaker SPEAKER_10
transcript.pyannote[1437].start 9766.30221875
transcript.pyannote[1437].end 9768.64784375
transcript.pyannote[1438].speaker SPEAKER_10
transcript.pyannote[1438].start 9769.59284375
transcript.pyannote[1438].end 9774.06471875
transcript.pyannote[1439].speaker SPEAKER_10
transcript.pyannote[1439].start 9782.23221875
transcript.pyannote[1439].end 9783.78471875
transcript.pyannote[1440].speaker SPEAKER_10
transcript.pyannote[1440].start 9783.93659375
transcript.pyannote[1440].end 9784.91534375
transcript.pyannote[1441].speaker SPEAKER_18
transcript.pyannote[1441].start 9787.93596875
transcript.pyannote[1441].end 9796.03596875
transcript.pyannote[1442].speaker SPEAKER_06
transcript.pyannote[1442].start 9794.34846875
transcript.pyannote[1442].end 9794.63534375
transcript.pyannote[1443].speaker SPEAKER_00
transcript.pyannote[1443].start 9794.63534375
transcript.pyannote[1443].end 9794.70284375
transcript.pyannote[1444].speaker SPEAKER_06
transcript.pyannote[1444].start 9795.41159375
transcript.pyannote[1444].end 9795.68159375
transcript.pyannote[1445].speaker SPEAKER_18
transcript.pyannote[1445].start 9796.55909375
transcript.pyannote[1445].end 9798.68534375
transcript.pyannote[1446].speaker SPEAKER_18
transcript.pyannote[1446].start 9799.73159375
transcript.pyannote[1446].end 9804.43971875
transcript.pyannote[1447].speaker SPEAKER_06
transcript.pyannote[1447].start 9801.73971875
transcript.pyannote[1447].end 9801.97596875
transcript.pyannote[1448].speaker SPEAKER_18
transcript.pyannote[1448].start 9805.11471875
transcript.pyannote[1448].end 9833.95409375
transcript.pyannote[1449].speaker SPEAKER_00
transcript.pyannote[1449].start 9809.02971875
transcript.pyannote[1449].end 9809.04659375
transcript.pyannote[1450].speaker SPEAKER_13
transcript.pyannote[1450].start 9809.04659375
transcript.pyannote[1450].end 9809.83971875
transcript.pyannote[1451].speaker SPEAKER_22
transcript.pyannote[1451].start 9809.83971875
transcript.pyannote[1451].end 9809.85659375
transcript.pyannote[1452].speaker SPEAKER_18
transcript.pyannote[1452].start 9834.47721875
transcript.pyannote[1452].end 9835.13534375
transcript.pyannote[1453].speaker SPEAKER_18
transcript.pyannote[1453].start 9835.37159375
transcript.pyannote[1453].end 9844.50096875
transcript.pyannote[1454].speaker SPEAKER_13
transcript.pyannote[1454].start 9845.51346875
transcript.pyannote[1454].end 9848.19659375
transcript.pyannote[1455].speaker SPEAKER_18
transcript.pyannote[1455].start 9847.60596875
transcript.pyannote[1455].end 9848.14596875
transcript.pyannote[1456].speaker SPEAKER_18
transcript.pyannote[1456].start 9848.19659375
transcript.pyannote[1456].end 9848.61846875
transcript.pyannote[1457].speaker SPEAKER_13
transcript.pyannote[1457].start 9848.61846875
transcript.pyannote[1457].end 9850.22159375
transcript.pyannote[1458].speaker SPEAKER_18
transcript.pyannote[1458].start 9848.73659375
transcript.pyannote[1458].end 9848.97284375
transcript.pyannote[1459].speaker SPEAKER_18
transcript.pyannote[1459].start 9851.40284375
transcript.pyannote[1459].end 9851.92596875
transcript.pyannote[1460].speaker SPEAKER_13
transcript.pyannote[1460].start 9851.92596875
transcript.pyannote[1460].end 9851.94284375
transcript.pyannote[1461].speaker SPEAKER_13
transcript.pyannote[1461].start 9852.12846875
transcript.pyannote[1461].end 9856.76909375
transcript.pyannote[1462].speaker SPEAKER_18
transcript.pyannote[1462].start 9854.81159375
transcript.pyannote[1462].end 9858.81096875
transcript.pyannote[1463].speaker SPEAKER_13
transcript.pyannote[1463].start 9858.87846875
transcript.pyannote[1463].end 9858.89534375
transcript.pyannote[1464].speaker SPEAKER_18
transcript.pyannote[1464].start 9858.89534375
transcript.pyannote[1464].end 9858.91221875
transcript.pyannote[1465].speaker SPEAKER_13
transcript.pyannote[1465].start 9858.91221875
transcript.pyannote[1465].end 9859.21596875
transcript.pyannote[1466].speaker SPEAKER_05
transcript.pyannote[1466].start 9859.21596875
transcript.pyannote[1466].end 9859.24971875
transcript.pyannote[1467].speaker SPEAKER_18
transcript.pyannote[1467].start 9859.24971875
transcript.pyannote[1467].end 9868.68284375
transcript.pyannote[1468].speaker SPEAKER_18
transcript.pyannote[1468].start 9869.27346875
transcript.pyannote[1468].end 9869.99909375
transcript.pyannote[1469].speaker SPEAKER_18
transcript.pyannote[1469].start 9870.20159375
transcript.pyannote[1469].end 9873.03659375
transcript.pyannote[1470].speaker SPEAKER_18
transcript.pyannote[1470].start 9873.10409375
transcript.pyannote[1470].end 9873.91409375
transcript.pyannote[1471].speaker SPEAKER_18
transcript.pyannote[1471].start 9874.72409375
transcript.pyannote[1471].end 9880.07346875
transcript.pyannote[1472].speaker SPEAKER_18
transcript.pyannote[1472].start 9880.42784375
transcript.pyannote[1472].end 9884.44409375
transcript.pyannote[1473].speaker SPEAKER_18
transcript.pyannote[1473].start 9884.61284375
transcript.pyannote[1473].end 9885.65909375
transcript.pyannote[1474].speaker SPEAKER_18
transcript.pyannote[1474].start 9886.21596875
transcript.pyannote[1474].end 9887.41409375
transcript.pyannote[1475].speaker SPEAKER_18
transcript.pyannote[1475].start 9888.08909375
transcript.pyannote[1475].end 9890.08034375
transcript.pyannote[1476].speaker SPEAKER_13
transcript.pyannote[1476].start 9891.00846875
transcript.pyannote[1476].end 9894.34971875
transcript.pyannote[1477].speaker SPEAKER_18
transcript.pyannote[1477].start 9893.62409375
transcript.pyannote[1477].end 9894.36659375
transcript.pyannote[1478].speaker SPEAKER_13
transcript.pyannote[1478].start 9894.36659375
transcript.pyannote[1478].end 9895.31159375
transcript.pyannote[1479].speaker SPEAKER_18
transcript.pyannote[1479].start 9895.31159375
transcript.pyannote[1479].end 9895.32846875
transcript.pyannote[1480].speaker SPEAKER_18
transcript.pyannote[1480].start 9895.59846875
transcript.pyannote[1480].end 9903.20909375
transcript.pyannote[1481].speaker SPEAKER_18
transcript.pyannote[1481].start 9903.31034375
transcript.pyannote[1481].end 9908.94659375
transcript.pyannote[1482].speaker SPEAKER_18
transcript.pyannote[1482].start 9909.45284375
transcript.pyannote[1482].end 9931.55909375
transcript.pyannote[1483].speaker SPEAKER_18
transcript.pyannote[1483].start 9932.06534375
transcript.pyannote[1483].end 9934.02284375
transcript.pyannote[1484].speaker SPEAKER_18
transcript.pyannote[1484].start 9934.41096875
transcript.pyannote[1484].end 9940.43534375
transcript.pyannote[1485].speaker SPEAKER_18
transcript.pyannote[1485].start 9940.89096875
transcript.pyannote[1485].end 9943.55721875
transcript.pyannote[1486].speaker SPEAKER_18
transcript.pyannote[1486].start 9944.21534375
transcript.pyannote[1486].end 9946.81409375
transcript.pyannote[1487].speaker SPEAKER_18
transcript.pyannote[1487].start 9947.08409375
transcript.pyannote[1487].end 9962.94659375
transcript.pyannote[1488].speaker SPEAKER_18
transcript.pyannote[1488].start 9963.52034375
transcript.pyannote[1488].end 9965.91659375
transcript.pyannote[1489].speaker SPEAKER_18
transcript.pyannote[1489].start 9966.28784375
transcript.pyannote[1489].end 9980.51346875
transcript.pyannote[1490].speaker SPEAKER_18
transcript.pyannote[1490].start 9980.96909375
transcript.pyannote[1490].end 9981.81284375
transcript.pyannote[1491].speaker SPEAKER_18
transcript.pyannote[1491].start 9981.93096875
transcript.pyannote[1491].end 9987.07784375
transcript.pyannote[1492].speaker SPEAKER_13
transcript.pyannote[1492].start 9987.58409375
transcript.pyannote[1492].end 9997.28721875
transcript.pyannote[1493].speaker SPEAKER_18
transcript.pyannote[1493].start 9994.70534375
transcript.pyannote[1493].end 9997.37159375
transcript.pyannote[1494].speaker SPEAKER_13
transcript.pyannote[1494].start 9997.37159375
transcript.pyannote[1494].end 9997.96221875
transcript.pyannote[1495].speaker SPEAKER_18
transcript.pyannote[1495].start 9997.38846875
transcript.pyannote[1495].end 10014.60096875
transcript.pyannote[1496].speaker SPEAKER_18
transcript.pyannote[1496].start 10015.07346875
transcript.pyannote[1496].end 10018.48221875
transcript.pyannote[1497].speaker SPEAKER_13
transcript.pyannote[1497].start 10015.17471875
transcript.pyannote[1497].end 10015.52909375
transcript.pyannote[1498].speaker SPEAKER_13
transcript.pyannote[1498].start 10016.55846875
transcript.pyannote[1498].end 10016.98034375
transcript.pyannote[1499].speaker SPEAKER_18
transcript.pyannote[1499].start 10018.92096875
transcript.pyannote[1499].end 10018.93784375
transcript.pyannote[1500].speaker SPEAKER_13
transcript.pyannote[1500].start 10018.93784375
transcript.pyannote[1500].end 10030.83471875
transcript.pyannote[1501].speaker SPEAKER_18
transcript.pyannote[1501].start 10029.07971875
transcript.pyannote[1501].end 10041.29721875
transcript.pyannote[1502].speaker SPEAKER_13
transcript.pyannote[1502].start 10031.45909375
transcript.pyannote[1502].end 10032.33659375
transcript.pyannote[1503].speaker SPEAKER_13
transcript.pyannote[1503].start 10035.66096875
transcript.pyannote[1503].end 10036.04909375
transcript.pyannote[1504].speaker SPEAKER_18
transcript.pyannote[1504].start 10041.43221875
transcript.pyannote[1504].end 10044.43596875
transcript.pyannote[1505].speaker SPEAKER_18
transcript.pyannote[1505].start 10044.53721875
transcript.pyannote[1505].end 10066.12034375
transcript.pyannote[1506].speaker SPEAKER_00
transcript.pyannote[1506].start 10047.40596875
transcript.pyannote[1506].end 10047.49034375
transcript.pyannote[1507].speaker SPEAKER_14
transcript.pyannote[1507].start 10047.49034375
transcript.pyannote[1507].end 10048.67159375
transcript.pyannote[1508].speaker SPEAKER_00
transcript.pyannote[1508].start 10048.67159375
transcript.pyannote[1508].end 10049.38034375
transcript.pyannote[1509].speaker SPEAKER_13
transcript.pyannote[1509].start 10060.61909375
transcript.pyannote[1509].end 10063.38659375
transcript.pyannote[1510].speaker SPEAKER_18
transcript.pyannote[1510].start 10066.23846875
transcript.pyannote[1510].end 10078.23659375
transcript.pyannote[1511].speaker SPEAKER_22
transcript.pyannote[1511].start 10076.46471875
transcript.pyannote[1511].end 10076.85284375
transcript.pyannote[1512].speaker SPEAKER_13
transcript.pyannote[1512].start 10078.23659375
transcript.pyannote[1512].end 10078.27034375
transcript.pyannote[1513].speaker SPEAKER_18
transcript.pyannote[1513].start 10078.27034375
transcript.pyannote[1513].end 10078.28721875
transcript.pyannote[1514].speaker SPEAKER_13
transcript.pyannote[1514].start 10078.28721875
transcript.pyannote[1514].end 10078.89471875
transcript.pyannote[1515].speaker SPEAKER_18
transcript.pyannote[1515].start 10078.89471875
transcript.pyannote[1515].end 10078.96221875
transcript.pyannote[1516].speaker SPEAKER_13
transcript.pyannote[1516].start 10078.96221875
transcript.pyannote[1516].end 10082.38784375
transcript.pyannote[1517].speaker SPEAKER_13
transcript.pyannote[1517].start 10083.02909375
transcript.pyannote[1517].end 10093.89659375
transcript.pyannote[1518].speaker SPEAKER_18
transcript.pyannote[1518].start 10092.63096875
transcript.pyannote[1518].end 10106.46846875
transcript.pyannote[1519].speaker SPEAKER_13
transcript.pyannote[1519].start 10094.90909375
transcript.pyannote[1519].end 10095.16221875
transcript.pyannote[1520].speaker SPEAKER_11
transcript.pyannote[1520].start 10101.92909375
transcript.pyannote[1520].end 10103.39721875
transcript.pyannote[1521].speaker SPEAKER_18
transcript.pyannote[1521].start 10106.50221875
transcript.pyannote[1521].end 10115.24346875
transcript.pyannote[1522].speaker SPEAKER_13
transcript.pyannote[1522].start 10113.82596875
transcript.pyannote[1522].end 10113.94409375
transcript.pyannote[1523].speaker SPEAKER_13
transcript.pyannote[1523].start 10114.06221875
transcript.pyannote[1523].end 10115.12534375
transcript.pyannote[1524].speaker SPEAKER_18
transcript.pyannote[1524].start 10116.23909375
transcript.pyannote[1524].end 10126.38096875
transcript.pyannote[1525].speaker SPEAKER_11
transcript.pyannote[1525].start 10120.99784375
transcript.pyannote[1525].end 10121.03159375
transcript.pyannote[1526].speaker SPEAKER_10
transcript.pyannote[1526].start 10121.03159375
transcript.pyannote[1526].end 10121.40284375
transcript.pyannote[1527].speaker SPEAKER_11
transcript.pyannote[1527].start 10121.40284375
transcript.pyannote[1527].end 10121.45346875
transcript.pyannote[1528].speaker SPEAKER_10
transcript.pyannote[1528].start 10126.98846875
transcript.pyannote[1528].end 10138.02471875
transcript.pyannote[1529].speaker SPEAKER_26
transcript.pyannote[1529].start 10145.51721875
transcript.pyannote[1529].end 10145.82096875
transcript.pyannote[1530].speaker SPEAKER_26
transcript.pyannote[1530].start 10146.39471875
transcript.pyannote[1530].end 10148.35221875
transcript.pyannote[1531].speaker SPEAKER_26
transcript.pyannote[1531].start 10148.74034375
transcript.pyannote[1531].end 10149.36471875
transcript.pyannote[1532].speaker SPEAKER_10
transcript.pyannote[1532].start 10150.03971875
transcript.pyannote[1532].end 10150.90034375
transcript.pyannote[1533].speaker SPEAKER_10
transcript.pyannote[1533].start 10154.10659375
transcript.pyannote[1533].end 10154.66346875
transcript.pyannote[1534].speaker SPEAKER_13
transcript.pyannote[1534].start 10154.66346875
transcript.pyannote[1534].end 10154.68034375
transcript.pyannote[1535].speaker SPEAKER_26
transcript.pyannote[1535].start 10155.03471875
transcript.pyannote[1535].end 10157.65034375
transcript.pyannote[1536].speaker SPEAKER_10
transcript.pyannote[1536].start 10156.53659375
transcript.pyannote[1536].end 10156.84034375
transcript.pyannote[1537].speaker SPEAKER_10
transcript.pyannote[1537].start 10157.58284375
transcript.pyannote[1537].end 10157.59971875
transcript.pyannote[1538].speaker SPEAKER_13
transcript.pyannote[1538].start 10157.59971875
transcript.pyannote[1538].end 10157.97096875
transcript.pyannote[1539].speaker SPEAKER_02
transcript.pyannote[1539].start 10157.97096875
transcript.pyannote[1539].end 10158.00471875
transcript.pyannote[1540].speaker SPEAKER_26
transcript.pyannote[1540].start 10158.00471875
transcript.pyannote[1540].end 10164.24846875
transcript.pyannote[1541].speaker SPEAKER_22
transcript.pyannote[1541].start 10164.21471875
transcript.pyannote[1541].end 10164.80534375
transcript.pyannote[1542].speaker SPEAKER_26
transcript.pyannote[1542].start 10164.26534375
transcript.pyannote[1542].end 10164.28221875
transcript.pyannote[1543].speaker SPEAKER_26
transcript.pyannote[1543].start 10164.40034375
transcript.pyannote[1543].end 10222.45034375
transcript.pyannote[1544].speaker SPEAKER_22
transcript.pyannote[1544].start 10170.96471875
transcript.pyannote[1544].end 10171.97721875
transcript.pyannote[1545].speaker SPEAKER_02
transcript.pyannote[1545].start 10171.97721875
transcript.pyannote[1545].end 10172.46659375
transcript.pyannote[1546].speaker SPEAKER_22
transcript.pyannote[1546].start 10172.46659375
transcript.pyannote[1546].end 10172.50034375
transcript.pyannote[1547].speaker SPEAKER_22
transcript.pyannote[1547].start 10223.10846875
transcript.pyannote[1547].end 10223.12534375
transcript.pyannote[1548].speaker SPEAKER_13
transcript.pyannote[1548].start 10223.12534375
transcript.pyannote[1548].end 10223.90159375
transcript.pyannote[1549].speaker SPEAKER_26
transcript.pyannote[1549].start 10223.90159375
transcript.pyannote[1549].end 10229.99346875
transcript.pyannote[1550].speaker SPEAKER_26
transcript.pyannote[1550].start 10230.68534375
transcript.pyannote[1550].end 10258.41096875
transcript.pyannote[1551].speaker SPEAKER_26
transcript.pyannote[1551].start 10258.68096875
transcript.pyannote[1551].end 10273.90221875
transcript.pyannote[1552].speaker SPEAKER_26
transcript.pyannote[1552].start 10274.54346875
transcript.pyannote[1552].end 10277.02409375
transcript.pyannote[1553].speaker SPEAKER_26
transcript.pyannote[1553].start 10277.41221875
transcript.pyannote[1553].end 10281.61409375
transcript.pyannote[1554].speaker SPEAKER_13
transcript.pyannote[1554].start 10283.04846875
transcript.pyannote[1554].end 10283.58846875
transcript.pyannote[1555].speaker SPEAKER_13
transcript.pyannote[1555].start 10284.28034375
transcript.pyannote[1555].end 10285.49534375
transcript.pyannote[1556].speaker SPEAKER_13
transcript.pyannote[1556].start 10286.10284375
transcript.pyannote[1556].end 10287.16596875
transcript.pyannote[1557].speaker SPEAKER_01
transcript.pyannote[1557].start 10286.11971875
transcript.pyannote[1557].end 10287.11534375
transcript.pyannote[1558].speaker SPEAKER_13
transcript.pyannote[1558].start 10287.68909375
transcript.pyannote[1558].end 10288.04346875
transcript.pyannote[1559].speaker SPEAKER_13
transcript.pyannote[1559].start 10288.48221875
transcript.pyannote[1559].end 10289.47784375
transcript.pyannote[1560].speaker SPEAKER_01
transcript.pyannote[1560].start 10289.74784375
transcript.pyannote[1560].end 10300.63221875
transcript.pyannote[1561].speaker SPEAKER_22
transcript.pyannote[1561].start 10300.63221875
transcript.pyannote[1561].end 10301.05409375
transcript.pyannote[1562].speaker SPEAKER_01
transcript.pyannote[1562].start 10301.50971875
transcript.pyannote[1562].end 10304.83409375
transcript.pyannote[1563].speaker SPEAKER_22
transcript.pyannote[1563].start 10304.83409375
transcript.pyannote[1563].end 10305.32346875
transcript.pyannote[1564].speaker SPEAKER_01
transcript.pyannote[1564].start 10305.25596875
transcript.pyannote[1564].end 10305.96471875
transcript.pyannote[1565].speaker SPEAKER_26
transcript.pyannote[1565].start 10305.96471875
transcript.pyannote[1565].end 10353.61971875
transcript.pyannote[1566].speaker SPEAKER_22
transcript.pyannote[1566].start 10309.86284375
transcript.pyannote[1566].end 10310.23409375
transcript.pyannote[1567].speaker SPEAKER_22
transcript.pyannote[1567].start 10311.07784375
transcript.pyannote[1567].end 10311.38159375
transcript.pyannote[1568].speaker SPEAKER_26
transcript.pyannote[1568].start 10354.12596875
transcript.pyannote[1568].end 10385.26034375
transcript.pyannote[1569].speaker SPEAKER_22
transcript.pyannote[1569].start 10383.72471875
transcript.pyannote[1569].end 10384.14659375
transcript.pyannote[1570].speaker SPEAKER_22
transcript.pyannote[1570].start 10385.31096875
transcript.pyannote[1570].end 10385.42909375
transcript.pyannote[1571].speaker SPEAKER_26
transcript.pyannote[1571].start 10385.69909375
transcript.pyannote[1571].end 10386.17159375
transcript.pyannote[1572].speaker SPEAKER_26
transcript.pyannote[1572].start 10386.67784375
transcript.pyannote[1572].end 10439.32784375
transcript.pyannote[1573].speaker SPEAKER_26
transcript.pyannote[1573].start 10439.91846875
transcript.pyannote[1573].end 10443.19221875
transcript.pyannote[1574].speaker SPEAKER_13
transcript.pyannote[1574].start 10444.42409375
transcript.pyannote[1574].end 10447.69784375
transcript.pyannote[1575].speaker SPEAKER_26
transcript.pyannote[1575].start 10447.69784375
transcript.pyannote[1575].end 10448.30534375
transcript.pyannote[1576].speaker SPEAKER_13
transcript.pyannote[1576].start 10448.30534375
transcript.pyannote[1576].end 10451.30909375
transcript.pyannote[1577].speaker SPEAKER_26
transcript.pyannote[1577].start 10451.30909375
transcript.pyannote[1577].end 10451.78159375
transcript.pyannote[1578].speaker SPEAKER_13
transcript.pyannote[1578].start 10451.78159375
transcript.pyannote[1578].end 10453.08096875
transcript.pyannote[1579].speaker SPEAKER_26
transcript.pyannote[1579].start 10453.19909375
transcript.pyannote[1579].end 10455.24096875
transcript.pyannote[1580].speaker SPEAKER_13
transcript.pyannote[1580].start 10453.43534375
transcript.pyannote[1580].end 10456.48971875
transcript.pyannote[1581].speaker SPEAKER_26
transcript.pyannote[1581].start 10456.37159375
transcript.pyannote[1581].end 10513.15596875
transcript.pyannote[1582].speaker SPEAKER_13
transcript.pyannote[1582].start 10458.93659375
transcript.pyannote[1582].end 10459.29096875
transcript.pyannote[1583].speaker SPEAKER_25
transcript.pyannote[1583].start 10468.45409375
transcript.pyannote[1583].end 10468.90971875
transcript.pyannote[1584].speaker SPEAKER_26
transcript.pyannote[1584].start 10513.69596875
transcript.pyannote[1584].end 10519.23096875
transcript.pyannote[1585].speaker SPEAKER_26
transcript.pyannote[1585].start 10519.48409375
transcript.pyannote[1585].end 10526.16659375
transcript.pyannote[1586].speaker SPEAKER_00
transcript.pyannote[1586].start 10521.98159375
transcript.pyannote[1586].end 10522.03221875
transcript.pyannote[1587].speaker SPEAKER_22
transcript.pyannote[1587].start 10522.03221875
transcript.pyannote[1587].end 10522.48784375
transcript.pyannote[1588].speaker SPEAKER_00
transcript.pyannote[1588].start 10522.48784375
transcript.pyannote[1588].end 10522.50471875
transcript.pyannote[1589].speaker SPEAKER_26
transcript.pyannote[1589].start 10526.48721875
transcript.pyannote[1589].end 10531.80284375
transcript.pyannote[1590].speaker SPEAKER_11
transcript.pyannote[1590].start 10532.03909375
transcript.pyannote[1590].end 10532.41034375
transcript.pyannote[1591].speaker SPEAKER_22
transcript.pyannote[1591].start 10532.41034375
transcript.pyannote[1591].end 10532.61284375
transcript.pyannote[1592].speaker SPEAKER_26
transcript.pyannote[1592].start 10532.61284375
transcript.pyannote[1592].end 10533.11909375
transcript.pyannote[1593].speaker SPEAKER_11
transcript.pyannote[1593].start 10532.73096875
transcript.pyannote[1593].end 10532.74784375
transcript.pyannote[1594].speaker SPEAKER_22
transcript.pyannote[1594].start 10532.74784375
transcript.pyannote[1594].end 10532.93346875
transcript.pyannote[1595].speaker SPEAKER_11
transcript.pyannote[1595].start 10532.93346875
transcript.pyannote[1595].end 10532.95034375
transcript.pyannote[1596].speaker SPEAKER_22
transcript.pyannote[1596].start 10532.95034375
transcript.pyannote[1596].end 10533.05159375
transcript.pyannote[1597].speaker SPEAKER_11
transcript.pyannote[1597].start 10533.11909375
transcript.pyannote[1597].end 10533.13596875
transcript.pyannote[1598].speaker SPEAKER_26
transcript.pyannote[1598].start 10533.13596875
transcript.pyannote[1598].end 10540.08846875
transcript.pyannote[1599].speaker SPEAKER_11
transcript.pyannote[1599].start 10533.15284375
transcript.pyannote[1599].end 10533.20346875
transcript.pyannote[1600].speaker SPEAKER_10
transcript.pyannote[1600].start 10538.09721875
transcript.pyannote[1600].end 10538.38409375
transcript.pyannote[1601].speaker SPEAKER_22
transcript.pyannote[1601].start 10538.38409375
transcript.pyannote[1601].end 10538.41784375
transcript.pyannote[1602].speaker SPEAKER_10
transcript.pyannote[1602].start 10538.41784375
transcript.pyannote[1602].end 10538.48534375
transcript.pyannote[1603].speaker SPEAKER_22
transcript.pyannote[1603].start 10538.48534375
transcript.pyannote[1603].end 10538.50221875
transcript.pyannote[1604].speaker SPEAKER_10
transcript.pyannote[1604].start 10538.50221875
transcript.pyannote[1604].end 10540.25721875
transcript.pyannote[1605].speaker SPEAKER_10
transcript.pyannote[1605].start 10541.01659375
transcript.pyannote[1605].end 10545.21846875
transcript.pyannote[1606].speaker SPEAKER_07
transcript.pyannote[1606].start 10555.73159375
transcript.pyannote[1606].end 10557.94221875
transcript.pyannote[1607].speaker SPEAKER_10
transcript.pyannote[1607].start 10557.94221875
transcript.pyannote[1607].end 10558.95471875
transcript.pyannote[1608].speaker SPEAKER_07
transcript.pyannote[1608].start 10562.36346875
transcript.pyannote[1608].end 10563.03846875
transcript.pyannote[1609].speaker SPEAKER_07
transcript.pyannote[1609].start 10563.47721875
transcript.pyannote[1609].end 10615.78971875
transcript.pyannote[1610].speaker SPEAKER_07
transcript.pyannote[1610].start 10616.81909375
transcript.pyannote[1610].end 10619.97471875
transcript.pyannote[1611].speaker SPEAKER_13
transcript.pyannote[1611].start 10619.97471875
transcript.pyannote[1611].end 10620.00846875
transcript.pyannote[1612].speaker SPEAKER_07
transcript.pyannote[1612].start 10620.00846875
transcript.pyannote[1612].end 10654.46721875
transcript.pyannote[1613].speaker SPEAKER_13
transcript.pyannote[1613].start 10620.73409375
transcript.pyannote[1613].end 10621.98284375
transcript.pyannote[1614].speaker SPEAKER_13
transcript.pyannote[1614].start 10624.93596875
transcript.pyannote[1614].end 10625.57721875
transcript.pyannote[1615].speaker SPEAKER_22
transcript.pyannote[1615].start 10632.95159375
transcript.pyannote[1615].end 10633.08659375
transcript.pyannote[1616].speaker SPEAKER_04
transcript.pyannote[1616].start 10635.65159375
transcript.pyannote[1616].end 10635.73596875
transcript.pyannote[1617].speaker SPEAKER_22
transcript.pyannote[1617].start 10635.73596875
transcript.pyannote[1617].end 10635.88784375
transcript.pyannote[1618].speaker SPEAKER_04
transcript.pyannote[1618].start 10635.88784375
transcript.pyannote[1618].end 10636.19159375
transcript.pyannote[1619].speaker SPEAKER_13
transcript.pyannote[1619].start 10636.19159375
transcript.pyannote[1619].end 10636.29284375
transcript.pyannote[1620].speaker SPEAKER_13
transcript.pyannote[1620].start 10636.63034375
transcript.pyannote[1620].end 10636.81596875
transcript.pyannote[1621].speaker SPEAKER_22
transcript.pyannote[1621].start 10638.68909375
transcript.pyannote[1621].end 10638.72284375
transcript.pyannote[1622].speaker SPEAKER_13
transcript.pyannote[1622].start 10638.72284375
transcript.pyannote[1622].end 10639.71846875
transcript.pyannote[1623].speaker SPEAKER_22
transcript.pyannote[1623].start 10639.71846875
transcript.pyannote[1623].end 10639.73534375
transcript.pyannote[1624].speaker SPEAKER_13
transcript.pyannote[1624].start 10643.27909375
transcript.pyannote[1624].end 10644.74721875
transcript.pyannote[1625].speaker SPEAKER_13
transcript.pyannote[1625].start 10644.94971875
transcript.pyannote[1625].end 10646.26596875
transcript.pyannote[1626].speaker SPEAKER_13
transcript.pyannote[1626].start 10652.91471875
transcript.pyannote[1626].end 10657.06596875
transcript.pyannote[1627].speaker SPEAKER_07
transcript.pyannote[1627].start 10655.63159375
transcript.pyannote[1627].end 10678.44659375
transcript.pyannote[1628].speaker SPEAKER_08
transcript.pyannote[1628].start 10665.06471875
transcript.pyannote[1628].end 10666.22909375
transcript.pyannote[1629].speaker SPEAKER_13
transcript.pyannote[1629].start 10676.69159375
transcript.pyannote[1629].end 10679.96534375
transcript.pyannote[1630].speaker SPEAKER_07
transcript.pyannote[1630].start 10680.13409375
transcript.pyannote[1630].end 10690.41096875
transcript.pyannote[1631].speaker SPEAKER_13
transcript.pyannote[1631].start 10690.25909375
transcript.pyannote[1631].end 10712.68596875
transcript.pyannote[1632].speaker SPEAKER_07
transcript.pyannote[1632].start 10712.14596875
transcript.pyannote[1632].end 10809.43034375
transcript.pyannote[1633].speaker SPEAKER_13
transcript.pyannote[1633].start 10712.87159375
transcript.pyannote[1633].end 10715.82471875
transcript.pyannote[1634].speaker SPEAKER_13
transcript.pyannote[1634].start 10717.09034375
transcript.pyannote[1634].end 10717.51221875
transcript.pyannote[1635].speaker SPEAKER_13
transcript.pyannote[1635].start 10723.31721875
transcript.pyannote[1635].end 10726.32096875
transcript.pyannote[1636].speaker SPEAKER_00
transcript.pyannote[1636].start 10730.62409375
transcript.pyannote[1636].end 10730.65784375
transcript.pyannote[1637].speaker SPEAKER_13
transcript.pyannote[1637].start 10730.65784375
transcript.pyannote[1637].end 10730.97846875
transcript.pyannote[1638].speaker SPEAKER_00
transcript.pyannote[1638].start 10730.97846875
transcript.pyannote[1638].end 10731.41721875
transcript.pyannote[1639].speaker SPEAKER_00
transcript.pyannote[1639].start 10732.78409375
transcript.pyannote[1639].end 10733.59409375
transcript.pyannote[1640].speaker SPEAKER_17
transcript.pyannote[1640].start 10733.59409375
transcript.pyannote[1640].end 10733.74596875
transcript.pyannote[1641].speaker SPEAKER_00
transcript.pyannote[1641].start 10733.74596875
transcript.pyannote[1641].end 10733.93159375
transcript.pyannote[1642].speaker SPEAKER_17
transcript.pyannote[1642].start 10733.93159375
transcript.pyannote[1642].end 10734.06659375
transcript.pyannote[1643].speaker SPEAKER_00
transcript.pyannote[1643].start 10734.06659375
transcript.pyannote[1643].end 10734.15096875
transcript.pyannote[1644].speaker SPEAKER_17
transcript.pyannote[1644].start 10736.98596875
transcript.pyannote[1644].end 10737.23909375
transcript.pyannote[1645].speaker SPEAKER_05
transcript.pyannote[1645].start 10737.23909375
transcript.pyannote[1645].end 10737.25596875
transcript.pyannote[1646].speaker SPEAKER_00
transcript.pyannote[1646].start 10737.25596875
transcript.pyannote[1646].end 10737.27284375
transcript.pyannote[1647].speaker SPEAKER_16
transcript.pyannote[1647].start 10775.00534375
transcript.pyannote[1647].end 10775.03909375
transcript.pyannote[1648].speaker SPEAKER_22
transcript.pyannote[1648].start 10775.03909375
transcript.pyannote[1648].end 10775.34284375
transcript.pyannote[1649].speaker SPEAKER_11
transcript.pyannote[1649].start 10775.34284375
transcript.pyannote[1649].end 10775.39346875
transcript.pyannote[1650].speaker SPEAKER_16
transcript.pyannote[1650].start 10775.39346875
transcript.pyannote[1650].end 10775.42721875
transcript.pyannote[1651].speaker SPEAKER_22
transcript.pyannote[1651].start 10777.11471875
transcript.pyannote[1651].end 10777.62096875
transcript.pyannote[1652].speaker SPEAKER_13
transcript.pyannote[1652].start 10809.43034375
transcript.pyannote[1652].end 10809.46409375
transcript.pyannote[1653].speaker SPEAKER_13
transcript.pyannote[1653].start 10810.00409375
transcript.pyannote[1653].end 10820.28096875
transcript.pyannote[1654].speaker SPEAKER_13
transcript.pyannote[1654].start 10820.51721875
transcript.pyannote[1654].end 10827.18284375
transcript.pyannote[1655].speaker SPEAKER_07
transcript.pyannote[1655].start 10825.22534375
transcript.pyannote[1655].end 10839.77159375
transcript.pyannote[1656].speaker SPEAKER_13
transcript.pyannote[1656].start 10830.99659375
transcript.pyannote[1656].end 10831.35096875
transcript.pyannote[1657].speaker SPEAKER_22
transcript.pyannote[1657].start 10833.91596875
transcript.pyannote[1657].end 10834.03409375
transcript.pyannote[1658].speaker SPEAKER_13
transcript.pyannote[1658].start 10834.03409375
transcript.pyannote[1658].end 10834.35471875
transcript.pyannote[1659].speaker SPEAKER_22
transcript.pyannote[1659].start 10834.35471875
transcript.pyannote[1659].end 10834.40534375
transcript.pyannote[1660].speaker SPEAKER_13
transcript.pyannote[1660].start 10836.16034375
transcript.pyannote[1660].end 10836.51471875
transcript.pyannote[1661].speaker SPEAKER_13
transcript.pyannote[1661].start 10837.57784375
transcript.pyannote[1661].end 10846.35284375
transcript.pyannote[1662].speaker SPEAKER_07
transcript.pyannote[1662].start 10845.34034375
transcript.pyannote[1662].end 10846.36971875
transcript.pyannote[1663].speaker SPEAKER_13
transcript.pyannote[1663].start 10846.36971875
transcript.pyannote[1663].end 10847.33159375
transcript.pyannote[1664].speaker SPEAKER_07
transcript.pyannote[1664].start 10846.72409375
transcript.pyannote[1664].end 10896.64034375
transcript.pyannote[1665].speaker SPEAKER_13
transcript.pyannote[1665].start 10849.72784375
transcript.pyannote[1665].end 10850.35221875
transcript.pyannote[1666].speaker SPEAKER_00
transcript.pyannote[1666].start 10850.35221875
transcript.pyannote[1666].end 10850.36909375
transcript.pyannote[1667].speaker SPEAKER_00
transcript.pyannote[1667].start 10854.58784375
transcript.pyannote[1667].end 10854.95909375
transcript.pyannote[1668].speaker SPEAKER_00
transcript.pyannote[1668].start 10855.81971875
transcript.pyannote[1668].end 10856.20784375
transcript.pyannote[1669].speaker SPEAKER_00
transcript.pyannote[1669].start 10856.76471875
transcript.pyannote[1669].end 10858.30034375
transcript.pyannote[1670].speaker SPEAKER_16
transcript.pyannote[1670].start 10862.36721875
transcript.pyannote[1670].end 10862.99159375
transcript.pyannote[1671].speaker SPEAKER_00
transcript.pyannote[1671].start 10868.54346875
transcript.pyannote[1671].end 10869.04971875
transcript.pyannote[1672].speaker SPEAKER_00
transcript.pyannote[1672].start 10872.34034375
transcript.pyannote[1672].end 10873.36971875
transcript.pyannote[1673].speaker SPEAKER_11
transcript.pyannote[1673].start 10877.82471875
transcript.pyannote[1673].end 10877.84159375
transcript.pyannote[1674].speaker SPEAKER_22
transcript.pyannote[1674].start 10877.84159375
transcript.pyannote[1674].end 10878.07784375
transcript.pyannote[1675].speaker SPEAKER_11
transcript.pyannote[1675].start 10878.07784375
transcript.pyannote[1675].end 10878.11159375
transcript.pyannote[1676].speaker SPEAKER_10
transcript.pyannote[1676].start 10892.35409375
transcript.pyannote[1676].end 10893.48471875
transcript.pyannote[1677].speaker SPEAKER_10
transcript.pyannote[1677].start 10894.93596875
transcript.pyannote[1677].end 10895.34096875
transcript.pyannote[1678].speaker SPEAKER_10
transcript.pyannote[1678].start 10896.64034375
transcript.pyannote[1678].end 10898.41221875
transcript.pyannote[1679].speaker SPEAKER_10
transcript.pyannote[1679].start 10899.32346875
transcript.pyannote[1679].end 10903.22159375
transcript.pyannote[1680].speaker SPEAKER_04
transcript.pyannote[1680].start 10912.24971875
transcript.pyannote[1680].end 10915.60784375
transcript.pyannote[1681].speaker SPEAKER_04
transcript.pyannote[1681].start 10918.62846875
transcript.pyannote[1681].end 10925.58096875
transcript.pyannote[1682].speaker SPEAKER_00
transcript.pyannote[1682].start 10920.11346875
transcript.pyannote[1682].end 10920.13034375
transcript.pyannote[1683].speaker SPEAKER_22
transcript.pyannote[1683].start 10920.13034375
transcript.pyannote[1683].end 10920.56909375
transcript.pyannote[1684].speaker SPEAKER_04
transcript.pyannote[1684].start 10925.74971875
transcript.pyannote[1684].end 10928.06159375
transcript.pyannote[1685].speaker SPEAKER_04
transcript.pyannote[1685].start 10928.11221875
transcript.pyannote[1685].end 10936.90409375
transcript.pyannote[1686].speaker SPEAKER_22
transcript.pyannote[1686].start 10936.90409375
transcript.pyannote[1686].end 10937.29221875
transcript.pyannote[1687].speaker SPEAKER_04
transcript.pyannote[1687].start 10937.19096875
transcript.pyannote[1687].end 10938.97971875
transcript.pyannote[1688].speaker SPEAKER_04
transcript.pyannote[1688].start 10939.28346875
transcript.pyannote[1688].end 10941.37596875
transcript.pyannote[1689].speaker SPEAKER_04
transcript.pyannote[1689].start 10942.59096875
transcript.pyannote[1689].end 10944.02534375
transcript.pyannote[1690].speaker SPEAKER_04
transcript.pyannote[1690].start 10944.56534375
transcript.pyannote[1690].end 10945.15596875
transcript.pyannote[1691].speaker SPEAKER_04
transcript.pyannote[1691].start 10945.76346875
transcript.pyannote[1691].end 10945.88159375
transcript.pyannote[1692].speaker SPEAKER_11
transcript.pyannote[1692].start 10945.88159375
transcript.pyannote[1692].end 10945.94909375
transcript.pyannote[1693].speaker SPEAKER_04
transcript.pyannote[1693].start 10945.94909375
transcript.pyannote[1693].end 10945.96596875
transcript.pyannote[1694].speaker SPEAKER_11
transcript.pyannote[1694].start 10945.96596875
transcript.pyannote[1694].end 10946.03346875
transcript.pyannote[1695].speaker SPEAKER_04
transcript.pyannote[1695].start 10946.03346875
transcript.pyannote[1695].end 10946.26971875
transcript.pyannote[1696].speaker SPEAKER_04
transcript.pyannote[1696].start 10946.32034375
transcript.pyannote[1696].end 10946.99534375
transcript.pyannote[1697].speaker SPEAKER_04
transcript.pyannote[1697].start 10947.51846875
transcript.pyannote[1697].end 10950.91034375
transcript.pyannote[1698].speaker SPEAKER_04
transcript.pyannote[1698].start 10951.70346875
transcript.pyannote[1698].end 10955.93909375
transcript.pyannote[1699].speaker SPEAKER_04
transcript.pyannote[1699].start 10956.73221875
transcript.pyannote[1699].end 10957.47471875
transcript.pyannote[1700].speaker SPEAKER_04
transcript.pyannote[1700].start 10957.64346875
transcript.pyannote[1700].end 10959.61784375
transcript.pyannote[1701].speaker SPEAKER_04
transcript.pyannote[1701].start 10960.19159375
transcript.pyannote[1701].end 10960.90034375
transcript.pyannote[1702].speaker SPEAKER_04
transcript.pyannote[1702].start 10962.19971875
transcript.pyannote[1702].end 10963.60034375
transcript.pyannote[1703].speaker SPEAKER_04
transcript.pyannote[1703].start 10964.66346875
transcript.pyannote[1703].end 10965.25409375
transcript.pyannote[1704].speaker SPEAKER_04
transcript.pyannote[1704].start 10965.67596875
transcript.pyannote[1704].end 10967.29596875
transcript.pyannote[1705].speaker SPEAKER_04
transcript.pyannote[1705].start 10967.39721875
transcript.pyannote[1705].end 10971.86909375
transcript.pyannote[1706].speaker SPEAKER_04
transcript.pyannote[1706].start 10972.13909375
transcript.pyannote[1706].end 10973.38784375
transcript.pyannote[1707].speaker SPEAKER_04
transcript.pyannote[1707].start 10973.77596875
transcript.pyannote[1707].end 10976.83034375
transcript.pyannote[1708].speaker SPEAKER_22
transcript.pyannote[1708].start 10977.85971875
transcript.pyannote[1708].end 10978.12971875
transcript.pyannote[1709].speaker SPEAKER_04
transcript.pyannote[1709].start 10978.63596875
transcript.pyannote[1709].end 10979.09159375
transcript.pyannote[1710].speaker SPEAKER_04
transcript.pyannote[1710].start 10979.39534375
transcript.pyannote[1710].end 10983.88409375
transcript.pyannote[1711].speaker SPEAKER_04
transcript.pyannote[1711].start 10984.37346875
transcript.pyannote[1711].end 10985.03159375
transcript.pyannote[1712].speaker SPEAKER_04
transcript.pyannote[1712].start 10985.72346875
transcript.pyannote[1712].end 10992.03471875
transcript.pyannote[1713].speaker SPEAKER_22
transcript.pyannote[1713].start 10987.71471875
transcript.pyannote[1713].end 10987.91721875
transcript.pyannote[1714].speaker SPEAKER_04
transcript.pyannote[1714].start 10992.06846875
transcript.pyannote[1714].end 10995.00471875
transcript.pyannote[1715].speaker SPEAKER_13
transcript.pyannote[1715].start 10995.00471875
transcript.pyannote[1715].end 10995.02159375
transcript.pyannote[1716].speaker SPEAKER_04
transcript.pyannote[1716].start 10996.37159375
transcript.pyannote[1716].end 10996.38846875
transcript.pyannote[1717].speaker SPEAKER_13
transcript.pyannote[1717].start 10996.38846875
transcript.pyannote[1717].end 11001.11346875
transcript.pyannote[1718].speaker SPEAKER_13
transcript.pyannote[1718].start 11001.28221875
transcript.pyannote[1718].end 11003.08784375
transcript.pyannote[1719].speaker SPEAKER_13
transcript.pyannote[1719].start 11003.23971875
transcript.pyannote[1719].end 11006.15909375
transcript.pyannote[1720].speaker SPEAKER_13
transcript.pyannote[1720].start 11006.88471875
transcript.pyannote[1720].end 11013.82034375
transcript.pyannote[1721].speaker SPEAKER_13
transcript.pyannote[1721].start 11014.07346875
transcript.pyannote[1721].end 11020.09784375
transcript.pyannote[1722].speaker SPEAKER_13
transcript.pyannote[1722].start 11020.13159375
transcript.pyannote[1722].end 11024.83971875
transcript.pyannote[1723].speaker SPEAKER_13
transcript.pyannote[1723].start 11025.10971875
transcript.pyannote[1723].end 11029.76721875
transcript.pyannote[1724].speaker SPEAKER_13
transcript.pyannote[1724].start 11029.88534375
transcript.pyannote[1724].end 11035.63971875
transcript.pyannote[1725].speaker SPEAKER_13
transcript.pyannote[1725].start 11035.77471875
transcript.pyannote[1725].end 11036.02784375
transcript.pyannote[1726].speaker SPEAKER_04
transcript.pyannote[1726].start 11036.02784375
transcript.pyannote[1726].end 11036.19659375
transcript.pyannote[1727].speaker SPEAKER_13
transcript.pyannote[1727].start 11036.19659375
transcript.pyannote[1727].end 11036.34846875
transcript.pyannote[1728].speaker SPEAKER_04
transcript.pyannote[1728].start 11036.34846875
transcript.pyannote[1728].end 11051.92409375
transcript.pyannote[1729].speaker SPEAKER_13
transcript.pyannote[1729].start 11036.80409375
transcript.pyannote[1729].end 11037.12471875
transcript.pyannote[1730].speaker SPEAKER_04
transcript.pyannote[1730].start 11052.09284375
transcript.pyannote[1730].end 11053.15596875
transcript.pyannote[1731].speaker SPEAKER_04
transcript.pyannote[1731].start 11053.78034375
transcript.pyannote[1731].end 11055.26534375
transcript.pyannote[1732].speaker SPEAKER_04
transcript.pyannote[1732].start 11056.07534375
transcript.pyannote[1732].end 11061.28971875
transcript.pyannote[1733].speaker SPEAKER_04
transcript.pyannote[1733].start 11061.55971875
transcript.pyannote[1733].end 11064.17534375
transcript.pyannote[1734].speaker SPEAKER_04
transcript.pyannote[1734].start 11065.01909375
transcript.pyannote[1734].end 11065.96409375
transcript.pyannote[1735].speaker SPEAKER_13
transcript.pyannote[1735].start 11065.96409375
transcript.pyannote[1735].end 11066.28471875
transcript.pyannote[1736].speaker SPEAKER_13
transcript.pyannote[1736].start 11067.34784375
transcript.pyannote[1736].end 11077.18596875
transcript.pyannote[1737].speaker SPEAKER_04
transcript.pyannote[1737].start 11077.18596875
transcript.pyannote[1737].end 11077.20284375
transcript.pyannote[1738].speaker SPEAKER_13
transcript.pyannote[1738].start 11077.20284375
transcript.pyannote[1738].end 11077.21971875
transcript.pyannote[1739].speaker SPEAKER_13
transcript.pyannote[1739].start 11077.67534375
transcript.pyannote[1739].end 11077.69221875
transcript.pyannote[1740].speaker SPEAKER_04
transcript.pyannote[1740].start 11077.69221875
transcript.pyannote[1740].end 11092.12034375
transcript.pyannote[1741].speaker SPEAKER_13
transcript.pyannote[1741].start 11077.72596875
transcript.pyannote[1741].end 11078.60346875
transcript.pyannote[1742].speaker SPEAKER_13
transcript.pyannote[1742].start 11084.74596875
transcript.pyannote[1742].end 11085.97784375
transcript.pyannote[1743].speaker SPEAKER_00
transcript.pyannote[1743].start 11085.97784375
transcript.pyannote[1743].end 11086.19721875
transcript.pyannote[1744].speaker SPEAKER_04
transcript.pyannote[1744].start 11092.18784375
transcript.pyannote[1744].end 11103.44346875
transcript.pyannote[1745].speaker SPEAKER_04
transcript.pyannote[1745].start 11103.86534375
transcript.pyannote[1745].end 11106.43034375
transcript.pyannote[1746].speaker SPEAKER_04
transcript.pyannote[1746].start 11106.76784375
transcript.pyannote[1746].end 11108.84346875
transcript.pyannote[1747].speaker SPEAKER_04
transcript.pyannote[1747].start 11109.21471875
transcript.pyannote[1747].end 11110.37909375
transcript.pyannote[1748].speaker SPEAKER_04
transcript.pyannote[1748].start 11110.81784375
transcript.pyannote[1748].end 11113.56846875
transcript.pyannote[1749].speaker SPEAKER_04
transcript.pyannote[1749].start 11113.70346875
transcript.pyannote[1749].end 11131.33784375
transcript.pyannote[1750].speaker SPEAKER_04
transcript.pyannote[1750].start 11132.70471875
transcript.pyannote[1750].end 11132.72159375
transcript.pyannote[1751].speaker SPEAKER_13
transcript.pyannote[1751].start 11132.72159375
transcript.pyannote[1751].end 11138.94846875
transcript.pyannote[1752].speaker SPEAKER_13
transcript.pyannote[1752].start 11139.45471875
transcript.pyannote[1752].end 11140.50096875
transcript.pyannote[1753].speaker SPEAKER_13
transcript.pyannote[1753].start 11140.66971875
transcript.pyannote[1753].end 11141.12534375
transcript.pyannote[1754].speaker SPEAKER_13
transcript.pyannote[1754].start 11141.54721875
transcript.pyannote[1754].end 11143.79159375
transcript.pyannote[1755].speaker SPEAKER_13
transcript.pyannote[1755].start 11144.24721875
transcript.pyannote[1755].end 11147.16659375
transcript.pyannote[1756].speaker SPEAKER_13
transcript.pyannote[1756].start 11147.25096875
transcript.pyannote[1756].end 11155.63784375
transcript.pyannote[1757].speaker SPEAKER_04
transcript.pyannote[1757].start 11147.92596875
transcript.pyannote[1757].end 11152.14471875
transcript.pyannote[1758].speaker SPEAKER_04
transcript.pyannote[1758].start 11155.63784375
transcript.pyannote[1758].end 11156.54909375
transcript.pyannote[1759].speaker SPEAKER_13
transcript.pyannote[1759].start 11155.65471875
transcript.pyannote[1759].end 11156.59971875
transcript.pyannote[1760].speaker SPEAKER_04
transcript.pyannote[1760].start 11156.59971875
transcript.pyannote[1760].end 11176.86659375
transcript.pyannote[1761].speaker SPEAKER_13
transcript.pyannote[1761].start 11156.75159375
transcript.pyannote[1761].end 11156.78534375
transcript.pyannote[1762].speaker SPEAKER_13
transcript.pyannote[1762].start 11156.83596875
transcript.pyannote[1762].end 11157.96659375
transcript.pyannote[1763].speaker SPEAKER_13
transcript.pyannote[1763].start 11165.25659375
transcript.pyannote[1763].end 11166.97784375
transcript.pyannote[1764].speaker SPEAKER_22
transcript.pyannote[1764].start 11175.09471875
transcript.pyannote[1764].end 11175.75284375
transcript.pyannote[1765].speaker SPEAKER_04
transcript.pyannote[1765].start 11176.95096875
transcript.pyannote[1765].end 11177.00159375
transcript.pyannote[1766].speaker SPEAKER_22
transcript.pyannote[1766].start 11177.00159375
transcript.pyannote[1766].end 11177.42346875
transcript.pyannote[1767].speaker SPEAKER_04
transcript.pyannote[1767].start 11177.42346875
transcript.pyannote[1767].end 11186.46846875
transcript.pyannote[1768].speaker SPEAKER_22
transcript.pyannote[1768].start 11178.84096875
transcript.pyannote[1768].end 11179.76909375
transcript.pyannote[1769].speaker SPEAKER_22
transcript.pyannote[1769].start 11180.19096875
transcript.pyannote[1769].end 11180.35971875
transcript.pyannote[1770].speaker SPEAKER_22
transcript.pyannote[1770].start 11180.47784375
transcript.pyannote[1770].end 11180.57909375
transcript.pyannote[1771].speaker SPEAKER_22
transcript.pyannote[1771].start 11186.63721875
transcript.pyannote[1771].end 11187.39659375
transcript.pyannote[1772].speaker SPEAKER_04
transcript.pyannote[1772].start 11187.21096875
transcript.pyannote[1772].end 11197.03221875
transcript.pyannote[1773].speaker SPEAKER_04
transcript.pyannote[1773].start 11197.26846875
transcript.pyannote[1773].end 11199.76596875
transcript.pyannote[1774].speaker SPEAKER_04
transcript.pyannote[1774].start 11199.93471875
transcript.pyannote[1774].end 11201.40284375
transcript.pyannote[1775].speaker SPEAKER_22
transcript.pyannote[1775].start 11201.40284375
transcript.pyannote[1775].end 11201.89221875
transcript.pyannote[1776].speaker SPEAKER_04
transcript.pyannote[1776].start 11202.33096875
transcript.pyannote[1776].end 11203.71471875
transcript.pyannote[1777].speaker SPEAKER_04
transcript.pyannote[1777].start 11203.95096875
transcript.pyannote[1777].end 11212.45596875
transcript.pyannote[1778].speaker SPEAKER_13
transcript.pyannote[1778].start 11208.33846875
transcript.pyannote[1778].end 11208.60846875
transcript.pyannote[1779].speaker SPEAKER_04
transcript.pyannote[1779].start 11213.24909375
transcript.pyannote[1779].end 11233.36409375
transcript.pyannote[1780].speaker SPEAKER_04
transcript.pyannote[1780].start 11234.79846875
transcript.pyannote[1780].end 11235.37221875
transcript.pyannote[1781].speaker SPEAKER_04
transcript.pyannote[1781].start 11236.01346875
transcript.pyannote[1781].end 11239.91159375
transcript.pyannote[1782].speaker SPEAKER_22
transcript.pyannote[1782].start 11236.03034375
transcript.pyannote[1782].end 11237.17784375
transcript.pyannote[1783].speaker SPEAKER_22
transcript.pyannote[1783].start 11238.61221875
transcript.pyannote[1783].end 11240.06346875
transcript.pyannote[1784].speaker SPEAKER_04
transcript.pyannote[1784].start 11240.01284375
transcript.pyannote[1784].end 11243.10096875
transcript.pyannote[1785].speaker SPEAKER_04
transcript.pyannote[1785].start 11243.82659375
transcript.pyannote[1785].end 11247.28596875
transcript.pyannote[1786].speaker SPEAKER_04
transcript.pyannote[1786].start 11248.50096875
transcript.pyannote[1786].end 11251.75784375
transcript.pyannote[1787].speaker SPEAKER_22
transcript.pyannote[1787].start 11248.58534375
transcript.pyannote[1787].end 11248.95659375
transcript.pyannote[1788].speaker SPEAKER_04
transcript.pyannote[1788].start 11252.28096875
transcript.pyannote[1788].end 11253.61409375
transcript.pyannote[1789].speaker SPEAKER_04
transcript.pyannote[1789].start 11255.28471875
transcript.pyannote[1789].end 11262.94596875
transcript.pyannote[1790].speaker SPEAKER_04
transcript.pyannote[1790].start 11263.46909375
transcript.pyannote[1790].end 11270.79284375
transcript.pyannote[1791].speaker SPEAKER_04
transcript.pyannote[1791].start 11270.91096875
transcript.pyannote[1791].end 11278.65659375
transcript.pyannote[1792].speaker SPEAKER_04
transcript.pyannote[1792].start 11279.39909375
transcript.pyannote[1792].end 11284.98471875
transcript.pyannote[1793].speaker SPEAKER_00
transcript.pyannote[1793].start 11279.58471875
transcript.pyannote[1793].end 11279.61846875
transcript.pyannote[1794].speaker SPEAKER_00
transcript.pyannote[1794].start 11279.63534375
transcript.pyannote[1794].end 11279.71971875
transcript.pyannote[1795].speaker SPEAKER_04
transcript.pyannote[1795].start 11285.92971875
transcript.pyannote[1795].end 11292.42659375
transcript.pyannote[1796].speaker SPEAKER_04
transcript.pyannote[1796].start 11292.78096875
transcript.pyannote[1796].end 11293.67534375
transcript.pyannote[1797].speaker SPEAKER_04
transcript.pyannote[1797].start 11294.13096875
transcript.pyannote[1797].end 11298.28221875
transcript.pyannote[1798].speaker SPEAKER_04
transcript.pyannote[1798].start 11299.75034375
transcript.pyannote[1798].end 11301.06659375
transcript.pyannote[1799].speaker SPEAKER_04
transcript.pyannote[1799].start 11301.25221875
transcript.pyannote[1799].end 11309.53784375
transcript.pyannote[1800].speaker SPEAKER_04
transcript.pyannote[1800].start 11310.21284375
transcript.pyannote[1800].end 11311.25909375
transcript.pyannote[1801].speaker SPEAKER_04
transcript.pyannote[1801].start 11311.59659375
transcript.pyannote[1801].end 11316.94596875
transcript.pyannote[1802].speaker SPEAKER_10
transcript.pyannote[1802].start 11316.94596875
transcript.pyannote[1802].end 11316.96284375
transcript.pyannote[1803].speaker SPEAKER_10
transcript.pyannote[1803].start 11318.19471875
transcript.pyannote[1803].end 11320.54034375
transcript.pyannote[1804].speaker SPEAKER_10
transcript.pyannote[1804].start 11320.67534375
transcript.pyannote[1804].end 11322.51471875
transcript.pyannote[1805].speaker SPEAKER_10
transcript.pyannote[1805].start 11323.20659375
transcript.pyannote[1805].end 11324.23596875
transcript.pyannote[1806].speaker SPEAKER_10
transcript.pyannote[1806].start 11324.97846875
transcript.pyannote[1806].end 11325.77159375
transcript.pyannote[1807].speaker SPEAKER_09
transcript.pyannote[1807].start 11325.77159375
transcript.pyannote[1807].end 11325.78846875
transcript.pyannote[1808].speaker SPEAKER_10
transcript.pyannote[1808].start 11325.78846875
transcript.pyannote[1808].end 11325.80534375
transcript.pyannote[1809].speaker SPEAKER_09
transcript.pyannote[1809].start 11326.36221875
transcript.pyannote[1809].end 11370.25409375
transcript.pyannote[1810].speaker SPEAKER_09
transcript.pyannote[1810].start 11370.60846875
transcript.pyannote[1810].end 11373.03846875
transcript.pyannote[1811].speaker SPEAKER_10
transcript.pyannote[1811].start 11373.03846875
transcript.pyannote[1811].end 11373.29159375
transcript.pyannote[1812].speaker SPEAKER_19
transcript.pyannote[1812].start 11373.37596875
transcript.pyannote[1812].end 11395.70159375
transcript.pyannote[1813].speaker SPEAKER_19
transcript.pyannote[1813].start 11396.35971875
transcript.pyannote[1813].end 11396.61284375
transcript.pyannote[1814].speaker SPEAKER_19
transcript.pyannote[1814].start 11396.74784375
transcript.pyannote[1814].end 11398.77284375
transcript.pyannote[1815].speaker SPEAKER_10
transcript.pyannote[1815].start 11398.77284375
transcript.pyannote[1815].end 11401.03409375
transcript.pyannote[1816].speaker SPEAKER_10
transcript.pyannote[1816].start 11401.59096875
transcript.pyannote[1816].end 11405.50596875
transcript.pyannote[1817].speaker SPEAKER_19
transcript.pyannote[1817].start 11405.50596875
transcript.pyannote[1817].end 11406.23159375
transcript.pyannote[1818].speaker SPEAKER_10
transcript.pyannote[1818].start 11406.23159375
transcript.pyannote[1818].end 11411.74971875
transcript.pyannote[1819].speaker SPEAKER_19
transcript.pyannote[1819].start 11406.24846875
transcript.pyannote[1819].end 11406.26534375
transcript.pyannote[1820].speaker SPEAKER_27
transcript.pyannote[1820].start 11420.84534375
transcript.pyannote[1820].end 11422.56659375
transcript.pyannote[1821].speaker SPEAKER_10
transcript.pyannote[1821].start 11422.63409375
transcript.pyannote[1821].end 11423.41034375
transcript.pyannote[1822].speaker SPEAKER_10
transcript.pyannote[1822].start 11426.85284375
transcript.pyannote[1822].end 11426.97096875
transcript.pyannote[1823].speaker SPEAKER_11
transcript.pyannote[1823].start 11426.97096875
transcript.pyannote[1823].end 11427.30846875
transcript.pyannote[1824].speaker SPEAKER_27
transcript.pyannote[1824].start 11427.30846875
transcript.pyannote[1824].end 11441.39909375
transcript.pyannote[1825].speaker SPEAKER_27
transcript.pyannote[1825].start 11442.42846875
transcript.pyannote[1825].end 11450.35971875
transcript.pyannote[1826].speaker SPEAKER_27
transcript.pyannote[1826].start 11451.50721875
transcript.pyannote[1826].end 11452.95846875
transcript.pyannote[1827].speaker SPEAKER_13
transcript.pyannote[1827].start 11454.61221875
transcript.pyannote[1827].end 11456.19846875
transcript.pyannote[1828].speaker SPEAKER_27
transcript.pyannote[1828].start 11455.99596875
transcript.pyannote[1828].end 11457.90284375
transcript.pyannote[1829].speaker SPEAKER_27
transcript.pyannote[1829].start 11458.42596875
transcript.pyannote[1829].end 11460.04596875
transcript.pyannote[1830].speaker SPEAKER_27
transcript.pyannote[1830].start 11460.58596875
transcript.pyannote[1830].end 11483.35034375
transcript.pyannote[1831].speaker SPEAKER_27
transcript.pyannote[1831].start 11483.40096875
transcript.pyannote[1831].end 11486.03346875
transcript.pyannote[1832].speaker SPEAKER_27
transcript.pyannote[1832].start 11486.33721875
transcript.pyannote[1832].end 11489.20596875
transcript.pyannote[1833].speaker SPEAKER_27
transcript.pyannote[1833].start 11489.77971875
transcript.pyannote[1833].end 11492.71596875
transcript.pyannote[1834].speaker SPEAKER_22
transcript.pyannote[1834].start 11492.71596875
transcript.pyannote[1834].end 11493.20534375
transcript.pyannote[1835].speaker SPEAKER_27
transcript.pyannote[1835].start 11493.35721875
transcript.pyannote[1835].end 11496.90096875
transcript.pyannote[1836].speaker SPEAKER_27
transcript.pyannote[1836].start 11498.06534375
transcript.pyannote[1836].end 11499.14534375
transcript.pyannote[1837].speaker SPEAKER_27
transcript.pyannote[1837].start 11499.56721875
transcript.pyannote[1837].end 11500.41096875
transcript.pyannote[1838].speaker SPEAKER_27
transcript.pyannote[1838].start 11500.93409375
transcript.pyannote[1838].end 11503.48221875
transcript.pyannote[1839].speaker SPEAKER_27
transcript.pyannote[1839].start 11504.69721875
transcript.pyannote[1839].end 11508.64596875
transcript.pyannote[1840].speaker SPEAKER_27
transcript.pyannote[1840].start 11509.43909375
transcript.pyannote[1840].end 11510.48534375
transcript.pyannote[1841].speaker SPEAKER_27
transcript.pyannote[1841].start 11510.67096875
transcript.pyannote[1841].end 11514.13034375
transcript.pyannote[1842].speaker SPEAKER_27
transcript.pyannote[1842].start 11514.28221875
transcript.pyannote[1842].end 11516.15534375
transcript.pyannote[1843].speaker SPEAKER_11
transcript.pyannote[1843].start 11518.09596875
transcript.pyannote[1843].end 11518.12971875
transcript.pyannote[1844].speaker SPEAKER_13
transcript.pyannote[1844].start 11518.12971875
transcript.pyannote[1844].end 11519.56409375
transcript.pyannote[1845].speaker SPEAKER_27
transcript.pyannote[1845].start 11519.83409375
transcript.pyannote[1845].end 11522.46659375
transcript.pyannote[1846].speaker SPEAKER_13
transcript.pyannote[1846].start 11520.84659375
transcript.pyannote[1846].end 11522.53409375
transcript.pyannote[1847].speaker SPEAKER_13
transcript.pyannote[1847].start 11522.88846875
transcript.pyannote[1847].end 11529.41909375
transcript.pyannote[1848].speaker SPEAKER_27
transcript.pyannote[1848].start 11529.99284375
transcript.pyannote[1848].end 11530.43159375
transcript.pyannote[1849].speaker SPEAKER_27
transcript.pyannote[1849].start 11530.58346875
transcript.pyannote[1849].end 11535.62909375
transcript.pyannote[1850].speaker SPEAKER_27
transcript.pyannote[1850].start 11537.01284375
transcript.pyannote[1850].end 11537.41784375
transcript.pyannote[1851].speaker SPEAKER_13
transcript.pyannote[1851].start 11537.41784375
transcript.pyannote[1851].end 11537.78909375
transcript.pyannote[1852].speaker SPEAKER_13
transcript.pyannote[1852].start 11538.83534375
transcript.pyannote[1852].end 11543.10471875
transcript.pyannote[1853].speaker SPEAKER_27
transcript.pyannote[1853].start 11541.99096875
transcript.pyannote[1853].end 11543.62784375
transcript.pyannote[1854].speaker SPEAKER_27
transcript.pyannote[1854].start 11543.84721875
transcript.pyannote[1854].end 11545.66971875
transcript.pyannote[1855].speaker SPEAKER_27
transcript.pyannote[1855].start 11546.69909375
transcript.pyannote[1855].end 11548.87596875
transcript.pyannote[1856].speaker SPEAKER_27
transcript.pyannote[1856].start 11548.97721875
transcript.pyannote[1856].end 11549.04471875
transcript.pyannote[1857].speaker SPEAKER_27
transcript.pyannote[1857].start 11549.06159375
transcript.pyannote[1857].end 11549.85471875
transcript.pyannote[1858].speaker SPEAKER_27
transcript.pyannote[1858].start 11550.07409375
transcript.pyannote[1858].end 11551.44096875
transcript.pyannote[1859].speaker SPEAKER_27
transcript.pyannote[1859].start 11551.49159375
transcript.pyannote[1859].end 11554.68096875
transcript.pyannote[1860].speaker SPEAKER_27
transcript.pyannote[1860].start 11555.10284375
transcript.pyannote[1860].end 11558.15721875
transcript.pyannote[1861].speaker SPEAKER_27
transcript.pyannote[1861].start 11559.35534375
transcript.pyannote[1861].end 11560.57034375
transcript.pyannote[1862].speaker SPEAKER_27
transcript.pyannote[1862].start 11561.38034375
transcript.pyannote[1862].end 11562.67971875
transcript.pyannote[1863].speaker SPEAKER_27
transcript.pyannote[1863].start 11562.86534375
transcript.pyannote[1863].end 11563.52346875
transcript.pyannote[1864].speaker SPEAKER_27
transcript.pyannote[1864].start 11564.33346875
transcript.pyannote[1864].end 11564.94096875
transcript.pyannote[1865].speaker SPEAKER_27
transcript.pyannote[1865].start 11565.80159375
transcript.pyannote[1865].end 11566.59471875
transcript.pyannote[1866].speaker SPEAKER_27
transcript.pyannote[1866].start 11567.37096875
transcript.pyannote[1866].end 11568.38346875
transcript.pyannote[1867].speaker SPEAKER_27
transcript.pyannote[1867].start 11569.31159375
transcript.pyannote[1867].end 11570.08784375
transcript.pyannote[1868].speaker SPEAKER_27
transcript.pyannote[1868].start 11570.12159375
transcript.pyannote[1868].end 11570.83034375
transcript.pyannote[1869].speaker SPEAKER_27
transcript.pyannote[1869].start 11571.28596875
transcript.pyannote[1869].end 11572.34909375
transcript.pyannote[1870].speaker SPEAKER_27
transcript.pyannote[1870].start 11573.00721875
transcript.pyannote[1870].end 11590.16909375
transcript.pyannote[1871].speaker SPEAKER_27
transcript.pyannote[1871].start 11590.70909375
transcript.pyannote[1871].end 11593.08846875
transcript.pyannote[1872].speaker SPEAKER_27
transcript.pyannote[1872].start 11593.54409375
transcript.pyannote[1872].end 11594.74221875
transcript.pyannote[1873].speaker SPEAKER_27
transcript.pyannote[1873].start 11594.97846875
transcript.pyannote[1873].end 11595.87284375
transcript.pyannote[1874].speaker SPEAKER_27
transcript.pyannote[1874].start 11596.59846875
transcript.pyannote[1874].end 11598.10034375
transcript.pyannote[1875].speaker SPEAKER_27
transcript.pyannote[1875].start 11598.38721875
transcript.pyannote[1875].end 11598.84284375
transcript.pyannote[1876].speaker SPEAKER_13
transcript.pyannote[1876].start 11601.55971875
transcript.pyannote[1876].end 11603.46659375
transcript.pyannote[1877].speaker SPEAKER_27
transcript.pyannote[1877].start 11603.65221875
transcript.pyannote[1877].end 11604.46221875
transcript.pyannote[1878].speaker SPEAKER_27
transcript.pyannote[1878].start 11604.68159375
transcript.pyannote[1878].end 11605.89659375
transcript.pyannote[1879].speaker SPEAKER_27
transcript.pyannote[1879].start 11606.35221875
transcript.pyannote[1879].end 11635.41096875
transcript.pyannote[1880].speaker SPEAKER_13
transcript.pyannote[1880].start 11636.06909375
transcript.pyannote[1880].end 11643.89909375
transcript.pyannote[1881].speaker SPEAKER_13
transcript.pyannote[1881].start 11644.00034375
transcript.pyannote[1881].end 11644.25346875
transcript.pyannote[1882].speaker SPEAKER_27
transcript.pyannote[1882].start 11644.25346875
transcript.pyannote[1882].end 11644.37159375
transcript.pyannote[1883].speaker SPEAKER_13
transcript.pyannote[1883].start 11644.37159375
transcript.pyannote[1883].end 11647.45971875
transcript.pyannote[1884].speaker SPEAKER_27
transcript.pyannote[1884].start 11645.48534375
transcript.pyannote[1884].end 11646.05909375
transcript.pyannote[1885].speaker SPEAKER_27
transcript.pyannote[1885].start 11646.93659375
transcript.pyannote[1885].end 11653.50096875
transcript.pyannote[1886].speaker SPEAKER_13
transcript.pyannote[1886].start 11647.56096875
transcript.pyannote[1886].end 11649.51846875
transcript.pyannote[1887].speaker SPEAKER_27
transcript.pyannote[1887].start 11653.78784375
transcript.pyannote[1887].end 11662.27596875
transcript.pyannote[1888].speaker SPEAKER_13
transcript.pyannote[1888].start 11656.77471875
transcript.pyannote[1888].end 11656.97721875
transcript.pyannote[1889].speaker SPEAKER_27
transcript.pyannote[1889].start 11663.20409375
transcript.pyannote[1889].end 11666.27534375
transcript.pyannote[1890].speaker SPEAKER_27
transcript.pyannote[1890].start 11666.71409375
transcript.pyannote[1890].end 11667.79409375
transcript.pyannote[1891].speaker SPEAKER_11
transcript.pyannote[1891].start 11666.74784375
transcript.pyannote[1891].end 11666.98409375
transcript.pyannote[1892].speaker SPEAKER_11
transcript.pyannote[1892].start 11667.99659375
transcript.pyannote[1892].end 11668.36784375
transcript.pyannote[1893].speaker SPEAKER_27
transcript.pyannote[1893].start 11668.36784375
transcript.pyannote[1893].end 11670.84846875
transcript.pyannote[1894].speaker SPEAKER_27
transcript.pyannote[1894].start 11671.15221875
transcript.pyannote[1894].end 11674.96596875
transcript.pyannote[1895].speaker SPEAKER_22
transcript.pyannote[1895].start 11675.10096875
transcript.pyannote[1895].end 11675.11784375
transcript.pyannote[1896].speaker SPEAKER_11
transcript.pyannote[1896].start 11675.11784375
transcript.pyannote[1896].end 11675.13471875
transcript.pyannote[1897].speaker SPEAKER_22
transcript.pyannote[1897].start 11675.13471875
transcript.pyannote[1897].end 11675.60721875
transcript.pyannote[1898].speaker SPEAKER_27
transcript.pyannote[1898].start 11675.60721875
transcript.pyannote[1898].end 11678.52659375
transcript.pyannote[1899].speaker SPEAKER_27
transcript.pyannote[1899].start 11679.43784375
transcript.pyannote[1899].end 11681.00721875
transcript.pyannote[1900].speaker SPEAKER_27
transcript.pyannote[1900].start 11681.26034375
transcript.pyannote[1900].end 11685.20909375
transcript.pyannote[1901].speaker SPEAKER_27
transcript.pyannote[1901].start 11685.51284375
transcript.pyannote[1901].end 11686.99784375
transcript.pyannote[1902].speaker SPEAKER_27
transcript.pyannote[1902].start 11688.16221875
transcript.pyannote[1902].end 11689.84971875
transcript.pyannote[1903].speaker SPEAKER_27
transcript.pyannote[1903].start 11690.08596875
transcript.pyannote[1903].end 11691.82409375
transcript.pyannote[1904].speaker SPEAKER_27
transcript.pyannote[1904].start 11694.45659375
transcript.pyannote[1904].end 11695.18221875
transcript.pyannote[1905].speaker SPEAKER_13
transcript.pyannote[1905].start 11696.27909375
transcript.pyannote[1905].end 11703.70409375
transcript.pyannote[1906].speaker SPEAKER_27
transcript.pyannote[1906].start 11703.51846875
transcript.pyannote[1906].end 11720.47784375
transcript.pyannote[1907].speaker SPEAKER_13
transcript.pyannote[1907].start 11704.19346875
transcript.pyannote[1907].end 11704.91909375
transcript.pyannote[1908].speaker SPEAKER_13
transcript.pyannote[1908].start 11705.35784375
transcript.pyannote[1908].end 11706.79221875
transcript.pyannote[1909].speaker SPEAKER_11
transcript.pyannote[1909].start 11706.79221875
transcript.pyannote[1909].end 11706.82596875
transcript.pyannote[1910].speaker SPEAKER_13
transcript.pyannote[1910].start 11706.82596875
transcript.pyannote[1910].end 11706.84284375
transcript.pyannote[1911].speaker SPEAKER_13
transcript.pyannote[1911].start 11707.80471875
transcript.pyannote[1911].end 11709.10409375
transcript.pyannote[1912].speaker SPEAKER_13
transcript.pyannote[1912].start 11710.08284375
transcript.pyannote[1912].end 11710.45409375
transcript.pyannote[1913].speaker SPEAKER_27
transcript.pyannote[1913].start 11720.57909375
transcript.pyannote[1913].end 11726.01284375
transcript.pyannote[1914].speaker SPEAKER_13
transcript.pyannote[1914].start 11725.81034375
transcript.pyannote[1914].end 11726.51909375
transcript.pyannote[1915].speaker SPEAKER_27
transcript.pyannote[1915].start 11726.51909375
transcript.pyannote[1915].end 11735.04096875
transcript.pyannote[1916].speaker SPEAKER_13
transcript.pyannote[1916].start 11726.73846875
transcript.pyannote[1916].end 11727.43034375
transcript.pyannote[1917].speaker SPEAKER_13
transcript.pyannote[1917].start 11732.56034375
transcript.pyannote[1917].end 11733.62346875
transcript.pyannote[1918].speaker SPEAKER_13
transcript.pyannote[1918].start 11734.68659375
transcript.pyannote[1918].end 11735.53034375
transcript.pyannote[1919].speaker SPEAKER_27
transcript.pyannote[1919].start 11735.46284375
transcript.pyannote[1919].end 11736.59346875
transcript.pyannote[1920].speaker SPEAKER_13
transcript.pyannote[1920].start 11736.59346875
transcript.pyannote[1920].end 11739.12471875
transcript.pyannote[1921].speaker SPEAKER_27
transcript.pyannote[1921].start 11736.64409375
transcript.pyannote[1921].end 11737.65659375
transcript.pyannote[1922].speaker SPEAKER_13
transcript.pyannote[1922].start 11739.14159375
transcript.pyannote[1922].end 11739.15846875
transcript.pyannote[1923].speaker SPEAKER_27
transcript.pyannote[1923].start 11739.15846875
transcript.pyannote[1923].end 11741.11596875
transcript.pyannote[1924].speaker SPEAKER_13
transcript.pyannote[1924].start 11739.59721875
transcript.pyannote[1924].end 11741.55471875
transcript.pyannote[1925].speaker SPEAKER_27
transcript.pyannote[1925].start 11741.55471875
transcript.pyannote[1925].end 11746.39784375
transcript.pyannote[1926].speaker SPEAKER_27
transcript.pyannote[1926].start 11746.54971875
transcript.pyannote[1926].end 11747.73096875
transcript.pyannote[1927].speaker SPEAKER_13
transcript.pyannote[1927].start 11748.74346875
transcript.pyannote[1927].end 11754.14346875
transcript.pyannote[1928].speaker SPEAKER_27
transcript.pyannote[1928].start 11754.32909375
transcript.pyannote[1928].end 11760.18471875
transcript.pyannote[1929].speaker SPEAKER_13
transcript.pyannote[1929].start 11756.03346875
transcript.pyannote[1929].end 11756.57346875
transcript.pyannote[1930].speaker SPEAKER_13
transcript.pyannote[1930].start 11761.04534375
transcript.pyannote[1930].end 11764.75784375
transcript.pyannote[1931].speaker SPEAKER_27
transcript.pyannote[1931].start 11762.95221875
transcript.pyannote[1931].end 11768.84159375
transcript.pyannote[1932].speaker SPEAKER_13
transcript.pyannote[1932].start 11765.65221875
transcript.pyannote[1932].end 11768.04846875
transcript.pyannote[1933].speaker SPEAKER_13
transcript.pyannote[1933].start 11770.24221875
transcript.pyannote[1933].end 11772.14909375
transcript.pyannote[1934].speaker SPEAKER_27
transcript.pyannote[1934].start 11772.53721875
transcript.pyannote[1934].end 11780.82284375
transcript.pyannote[1935].speaker SPEAKER_13
transcript.pyannote[1935].start 11773.16159375
transcript.pyannote[1935].end 11773.97159375
transcript.pyannote[1936].speaker SPEAKER_13
transcript.pyannote[1936].start 11774.89971875
transcript.pyannote[1936].end 11776.03034375
transcript.pyannote[1937].speaker SPEAKER_13
transcript.pyannote[1937].start 11778.35909375
transcript.pyannote[1937].end 11778.59534375
transcript.pyannote[1938].speaker SPEAKER_13
transcript.pyannote[1938].start 11779.15221875
transcript.pyannote[1938].end 11779.48971875
transcript.pyannote[1939].speaker SPEAKER_13
transcript.pyannote[1939].start 11780.11409375
transcript.pyannote[1939].end 11780.56971875
transcript.pyannote[1940].speaker SPEAKER_13
transcript.pyannote[1940].start 11780.82284375
transcript.pyannote[1940].end 11790.32346875
transcript.pyannote[1941].speaker SPEAKER_27
transcript.pyannote[1941].start 11780.92409375
transcript.pyannote[1941].end 11781.56534375
transcript.pyannote[1942].speaker SPEAKER_27
transcript.pyannote[1942].start 11782.49346875
transcript.pyannote[1942].end 11782.86471875
transcript.pyannote[1943].speaker SPEAKER_27
transcript.pyannote[1943].start 11789.32784375
transcript.pyannote[1943].end 11793.47909375
transcript.pyannote[1944].speaker SPEAKER_13
transcript.pyannote[1944].start 11790.86346875
transcript.pyannote[1944].end 11791.36971875
transcript.pyannote[1945].speaker SPEAKER_27
transcript.pyannote[1945].start 11793.95159375
transcript.pyannote[1945].end 11796.04409375
transcript.pyannote[1946].speaker SPEAKER_13
transcript.pyannote[1946].start 11795.01471875
transcript.pyannote[1946].end 11797.07346875
transcript.pyannote[1947].speaker SPEAKER_27
transcript.pyannote[1947].start 11796.41534375
transcript.pyannote[1947].end 11803.08096875
transcript.pyannote[1948].speaker SPEAKER_13
transcript.pyannote[1948].start 11797.25909375
transcript.pyannote[1948].end 11797.49534375
transcript.pyannote[1949].speaker SPEAKER_27
transcript.pyannote[1949].start 11803.95846875
transcript.pyannote[1949].end 11806.91159375
transcript.pyannote[1950].speaker SPEAKER_13
transcript.pyannote[1950].start 11806.97909375
transcript.pyannote[1950].end 11810.62409375
transcript.pyannote[1951].speaker SPEAKER_27
transcript.pyannote[1951].start 11810.38784375
transcript.pyannote[1951].end 11812.54784375
transcript.pyannote[1952].speaker SPEAKER_13
transcript.pyannote[1952].start 11811.06284375
transcript.pyannote[1952].end 11811.21471875
transcript.pyannote[1953].speaker SPEAKER_13
transcript.pyannote[1953].start 11813.79659375
transcript.pyannote[1953].end 11816.24346875
transcript.pyannote[1954].speaker SPEAKER_27
transcript.pyannote[1954].start 11816.24346875
transcript.pyannote[1954].end 11825.65971875
transcript.pyannote[1955].speaker SPEAKER_13
transcript.pyannote[1955].start 11818.25159375
transcript.pyannote[1955].end 11818.52159375
transcript.pyannote[1956].speaker SPEAKER_27
transcript.pyannote[1956].start 11826.41909375
transcript.pyannote[1956].end 11840.59409375
transcript.pyannote[1957].speaker SPEAKER_13
transcript.pyannote[1957].start 11832.24096875
transcript.pyannote[1957].end 11832.27471875
transcript.pyannote[1958].speaker SPEAKER_22
transcript.pyannote[1958].start 11832.27471875
transcript.pyannote[1958].end 11832.30846875
transcript.pyannote[1959].speaker SPEAKER_13
transcript.pyannote[1959].start 11832.30846875
transcript.pyannote[1959].end 11832.69659375
transcript.pyannote[1960].speaker SPEAKER_11
transcript.pyannote[1960].start 11832.69659375
transcript.pyannote[1960].end 11832.71346875
transcript.pyannote[1961].speaker SPEAKER_27
transcript.pyannote[1961].start 11841.10034375
transcript.pyannote[1961].end 11847.25971875
transcript.pyannote[1962].speaker SPEAKER_22
transcript.pyannote[1962].start 11847.12471875
transcript.pyannote[1962].end 11847.63096875
transcript.pyannote[1963].speaker SPEAKER_27
transcript.pyannote[1963].start 11847.54659375
transcript.pyannote[1963].end 11866.32846875
transcript.pyannote[1964].speaker SPEAKER_27
transcript.pyannote[1964].start 11866.75034375
transcript.pyannote[1964].end 11872.20096875
transcript.pyannote[1965].speaker SPEAKER_27
transcript.pyannote[1965].start 11872.60596875
transcript.pyannote[1965].end 11873.26409375
transcript.pyannote[1966].speaker SPEAKER_27
transcript.pyannote[1966].start 11873.50034375
transcript.pyannote[1966].end 11881.51596875
transcript.pyannote[1967].speaker SPEAKER_27
transcript.pyannote[1967].start 11882.17409375
transcript.pyannote[1967].end 11894.96534375
transcript.pyannote[1968].speaker SPEAKER_00
transcript.pyannote[1968].start 11893.76721875
transcript.pyannote[1968].end 11893.80096875
transcript.pyannote[1969].speaker SPEAKER_22
transcript.pyannote[1969].start 11893.80096875
transcript.pyannote[1969].end 11894.94846875
transcript.pyannote[1970].speaker SPEAKER_22
transcript.pyannote[1970].start 11894.96534375
transcript.pyannote[1970].end 11895.08346875
transcript.pyannote[1971].speaker SPEAKER_27
transcript.pyannote[1971].start 11894.99909375
transcript.pyannote[1971].end 11904.55034375
transcript.pyannote[1972].speaker SPEAKER_27
transcript.pyannote[1972].start 11905.15784375
transcript.pyannote[1972].end 11909.56221875
transcript.pyannote[1973].speaker SPEAKER_27
transcript.pyannote[1973].start 11910.18659375
transcript.pyannote[1973].end 11911.60409375
transcript.pyannote[1974].speaker SPEAKER_27
transcript.pyannote[1974].start 11912.12721875
transcript.pyannote[1974].end 11913.30846875
transcript.pyannote[1975].speaker SPEAKER_13
transcript.pyannote[1975].start 11912.26221875
transcript.pyannote[1975].end 11912.71784375
transcript.pyannote[1976].speaker SPEAKER_13
transcript.pyannote[1976].start 11913.79784375
transcript.pyannote[1976].end 11917.66221875
transcript.pyannote[1977].speaker SPEAKER_27
transcript.pyannote[1977].start 11918.47221875
transcript.pyannote[1977].end 11922.89346875
transcript.pyannote[1978].speaker SPEAKER_27
transcript.pyannote[1978].start 11923.29846875
transcript.pyannote[1978].end 11927.16284375
transcript.pyannote[1979].speaker SPEAKER_27
transcript.pyannote[1979].start 11928.20909375
transcript.pyannote[1979].end 11933.27159375
transcript.pyannote[1980].speaker SPEAKER_27
transcript.pyannote[1980].start 11933.37284375
transcript.pyannote[1980].end 11941.97909375
transcript.pyannote[1981].speaker SPEAKER_27
transcript.pyannote[1981].start 11942.36721875
transcript.pyannote[1981].end 11942.94096875
transcript.pyannote[1982].speaker SPEAKER_27
transcript.pyannote[1982].start 11943.39659375
transcript.pyannote[1982].end 11947.39596875
transcript.pyannote[1983].speaker SPEAKER_13
transcript.pyannote[1983].start 11947.76721875
transcript.pyannote[1983].end 11962.31346875
transcript.pyannote[1984].speaker SPEAKER_27
transcript.pyannote[1984].start 11959.73159375
transcript.pyannote[1984].end 11963.98409375
transcript.pyannote[1985].speaker SPEAKER_27
transcript.pyannote[1985].start 11964.57471875
transcript.pyannote[1985].end 11973.99096875
transcript.pyannote[1986].speaker SPEAKER_22
transcript.pyannote[1986].start 11974.15971875
transcript.pyannote[1986].end 11974.37909375
transcript.pyannote[1987].speaker SPEAKER_27
transcript.pyannote[1987].start 11974.37909375
transcript.pyannote[1987].end 11989.56659375
transcript.pyannote[1988].speaker SPEAKER_22
transcript.pyannote[1988].start 11974.41284375
transcript.pyannote[1988].end 11974.46346875
transcript.pyannote[1989].speaker SPEAKER_22
transcript.pyannote[1989].start 11974.48034375
transcript.pyannote[1989].end 11975.10471875
transcript.pyannote[1990].speaker SPEAKER_22
transcript.pyannote[1990].start 11975.50971875
transcript.pyannote[1990].end 11975.96534375
transcript.pyannote[1991].speaker SPEAKER_27
transcript.pyannote[1991].start 11989.78596875
transcript.pyannote[1991].end 11990.24159375
transcript.pyannote[1992].speaker SPEAKER_27
transcript.pyannote[1992].start 11990.51159375
transcript.pyannote[1992].end 11998.61159375
transcript.pyannote[1993].speaker SPEAKER_27
transcript.pyannote[1993].start 11998.94909375
transcript.pyannote[1993].end 12004.90596875
transcript.pyannote[1994].speaker SPEAKER_27
transcript.pyannote[1994].start 12005.27721875
transcript.pyannote[1994].end 12006.88034375
transcript.pyannote[1995].speaker SPEAKER_27
transcript.pyannote[1995].start 12007.57221875
transcript.pyannote[1995].end 12008.02784375
transcript.pyannote[1996].speaker SPEAKER_27
transcript.pyannote[1996].start 12008.29784375
transcript.pyannote[1996].end 12013.41096875
transcript.pyannote[1997].speaker SPEAKER_10
transcript.pyannote[1997].start 12009.22596875
transcript.pyannote[1997].end 12013.32659375
transcript.pyannote[1998].speaker SPEAKER_10
transcript.pyannote[1998].start 12013.96784375
transcript.pyannote[1998].end 12018.20346875
transcript.pyannote[1999].speaker SPEAKER_27
transcript.pyannote[1999].start 12014.94659375
transcript.pyannote[1999].end 12015.62159375
transcript.pyannote[2000].speaker SPEAKER_27
transcript.pyannote[2000].start 12016.49909375
transcript.pyannote[2000].end 12019.60409375
transcript.pyannote[2001].speaker SPEAKER_27
transcript.pyannote[2001].start 12020.16096875
transcript.pyannote[2001].end 12029.50971875
transcript.pyannote[2002].speaker SPEAKER_10
transcript.pyannote[2002].start 12030.55596875
transcript.pyannote[2002].end 12033.82971875
transcript.pyannote[2003].speaker SPEAKER_27
transcript.pyannote[2003].start 12031.14659375
transcript.pyannote[2003].end 12037.86284375
transcript.pyannote[2004].speaker SPEAKER_27
transcript.pyannote[2004].start 12038.03159375
transcript.pyannote[2004].end 12040.12409375
transcript.pyannote[2005].speaker SPEAKER_10
transcript.pyannote[2005].start 12039.83721875
transcript.pyannote[2005].end 12045.45659375
transcript.pyannote[2006].speaker SPEAKER_27
transcript.pyannote[2006].start 12040.83284375
transcript.pyannote[2006].end 12047.86971875
transcript.pyannote[2007].speaker SPEAKER_10
transcript.pyannote[2007].start 12046.89096875
transcript.pyannote[2007].end 12050.36721875
transcript.pyannote[2008].speaker SPEAKER_27
transcript.pyannote[2008].start 12050.18159375
transcript.pyannote[2008].end 12051.85221875
transcript.pyannote[2009].speaker SPEAKER_10
transcript.pyannote[2009].start 12050.41784375
transcript.pyannote[2009].end 12050.45159375
transcript.pyannote[2010].speaker SPEAKER_27
transcript.pyannote[2010].start 12054.87284375
transcript.pyannote[2010].end 12057.15096875
transcript.pyannote[2011].speaker SPEAKER_10
transcript.pyannote[2011].start 12055.02471875
transcript.pyannote[2011].end 12055.39596875
transcript.pyannote[2012].speaker SPEAKER_10
transcript.pyannote[2012].start 12057.65721875
transcript.pyannote[2012].end 12061.31909375
transcript.pyannote[2013].speaker SPEAKER_10
transcript.pyannote[2013].start 12061.96034375
transcript.pyannote[2013].end 12062.39909375
transcript.pyannote[2014].speaker SPEAKER_10
transcript.pyannote[2014].start 12063.24284375
transcript.pyannote[2014].end 12065.92596875
transcript.pyannote[2015].speaker SPEAKER_21
transcript.pyannote[2015].start 12076.57409375
transcript.pyannote[2015].end 12078.59909375
transcript.pyannote[2016].speaker SPEAKER_21
transcript.pyannote[2016].start 12078.83534375
transcript.pyannote[2016].end 12078.97034375
transcript.pyannote[2017].speaker SPEAKER_10
transcript.pyannote[2017].start 12078.97034375
transcript.pyannote[2017].end 12079.54409375
transcript.pyannote[2018].speaker SPEAKER_10
transcript.pyannote[2018].start 12082.22721875
transcript.pyannote[2018].end 12083.02034375
transcript.pyannote[2019].speaker SPEAKER_21
transcript.pyannote[2019].start 12083.02034375
transcript.pyannote[2019].end 12083.10471875
transcript.pyannote[2020].speaker SPEAKER_11
transcript.pyannote[2020].start 12083.10471875
transcript.pyannote[2020].end 12083.12159375
transcript.pyannote[2021].speaker SPEAKER_10
transcript.pyannote[2021].start 12083.12159375
transcript.pyannote[2021].end 12083.13846875
transcript.pyannote[2022].speaker SPEAKER_21
transcript.pyannote[2022].start 12083.13846875
transcript.pyannote[2022].end 12083.18909375
transcript.pyannote[2023].speaker SPEAKER_21
transcript.pyannote[2023].start 12083.34096875
transcript.pyannote[2023].end 12093.98909375
transcript.pyannote[2024].speaker SPEAKER_11
transcript.pyannote[2024].start 12084.96096875
transcript.pyannote[2024].end 12085.33221875
transcript.pyannote[2025].speaker SPEAKER_21
transcript.pyannote[2025].start 12095.37284375
transcript.pyannote[2025].end 12114.37409375
transcript.pyannote[2026].speaker SPEAKER_13
transcript.pyannote[2026].start 12115.75784375
transcript.pyannote[2026].end 12118.81221875
transcript.pyannote[2027].speaker SPEAKER_13
transcript.pyannote[2027].start 12119.21721875
transcript.pyannote[2027].end 12122.33909375
transcript.pyannote[2028].speaker SPEAKER_21
transcript.pyannote[2028].start 12121.93409375
transcript.pyannote[2028].end 12123.82409375
transcript.pyannote[2029].speaker SPEAKER_13
transcript.pyannote[2029].start 12122.72721875
transcript.pyannote[2029].end 12123.94221875
transcript.pyannote[2030].speaker SPEAKER_21
transcript.pyannote[2030].start 12123.92534375
transcript.pyannote[2030].end 12165.74159375
transcript.pyannote[2031].speaker SPEAKER_13
transcript.pyannote[2031].start 12167.53034375
transcript.pyannote[2031].end 12167.98596875
transcript.pyannote[2032].speaker SPEAKER_13
transcript.pyannote[2032].start 12169.01534375
transcript.pyannote[2032].end 12170.23034375
transcript.pyannote[2033].speaker SPEAKER_13
transcript.pyannote[2033].start 12170.73659375
transcript.pyannote[2033].end 12173.65596875
transcript.pyannote[2034].speaker SPEAKER_19
transcript.pyannote[2034].start 12173.25096875
transcript.pyannote[2034].end 12173.68971875
transcript.pyannote[2035].speaker SPEAKER_13
transcript.pyannote[2035].start 12173.67284375
transcript.pyannote[2035].end 12174.19596875
transcript.pyannote[2036].speaker SPEAKER_19
transcript.pyannote[2036].start 12174.19596875
transcript.pyannote[2036].end 12181.45221875
transcript.pyannote[2037].speaker SPEAKER_19
transcript.pyannote[2037].start 12181.72221875
transcript.pyannote[2037].end 12187.51034375
transcript.pyannote[2038].speaker SPEAKER_19
transcript.pyannote[2038].start 12187.99971875
transcript.pyannote[2038].end 12190.96971875
transcript.pyannote[2039].speaker SPEAKER_21
transcript.pyannote[2039].start 12190.96971875
transcript.pyannote[2039].end 12198.20909375
transcript.pyannote[2040].speaker SPEAKER_19
transcript.pyannote[2040].start 12194.19284375
transcript.pyannote[2040].end 12194.41221875
transcript.pyannote[2041].speaker SPEAKER_19
transcript.pyannote[2041].start 12198.78284375
transcript.pyannote[2041].end 12201.95534375
transcript.pyannote[2042].speaker SPEAKER_19
transcript.pyannote[2042].start 12202.81596875
transcript.pyannote[2042].end 12207.30471875
transcript.pyannote[2043].speaker SPEAKER_21
transcript.pyannote[2043].start 12207.30471875
transcript.pyannote[2043].end 12207.55784375
transcript.pyannote[2044].speaker SPEAKER_19
transcript.pyannote[2044].start 12207.55784375
transcript.pyannote[2044].end 12207.96284375
transcript.pyannote[2045].speaker SPEAKER_21
transcript.pyannote[2045].start 12207.96284375
transcript.pyannote[2045].end 12216.88971875
transcript.pyannote[2046].speaker SPEAKER_21
transcript.pyannote[2046].start 12217.37909375
transcript.pyannote[2046].end 12227.60534375
transcript.pyannote[2047].speaker SPEAKER_21
transcript.pyannote[2047].start 12228.06096875
transcript.pyannote[2047].end 12230.91284375
transcript.pyannote[2048].speaker SPEAKER_21
transcript.pyannote[2048].start 12231.31784375
transcript.pyannote[2048].end 12236.17784375
transcript.pyannote[2049].speaker SPEAKER_21
transcript.pyannote[2049].start 12237.07221875
transcript.pyannote[2049].end 12237.47721875
transcript.pyannote[2050].speaker SPEAKER_21
transcript.pyannote[2050].start 12238.00034375
transcript.pyannote[2050].end 12242.33721875
transcript.pyannote[2051].speaker SPEAKER_13
transcript.pyannote[2051].start 12243.41721875
transcript.pyannote[2051].end 12244.41284375
transcript.pyannote[2052].speaker SPEAKER_13
transcript.pyannote[2052].start 12246.26909375
transcript.pyannote[2052].end 12250.23471875
transcript.pyannote[2053].speaker SPEAKER_13
transcript.pyannote[2053].start 12250.33596875
transcript.pyannote[2053].end 12251.97284375
transcript.pyannote[2054].speaker SPEAKER_13
transcript.pyannote[2054].start 12252.27659375
transcript.pyannote[2054].end 12262.14846875
transcript.pyannote[2055].speaker SPEAKER_21
transcript.pyannote[2055].start 12262.31721875
transcript.pyannote[2055].end 12268.44284375
transcript.pyannote[2056].speaker SPEAKER_13
transcript.pyannote[2056].start 12268.25721875
transcript.pyannote[2056].end 12273.25221875
transcript.pyannote[2057].speaker SPEAKER_21
transcript.pyannote[2057].start 12271.56471875
transcript.pyannote[2057].end 12280.03596875
transcript.pyannote[2058].speaker SPEAKER_21
transcript.pyannote[2058].start 12280.25534375
transcript.pyannote[2058].end 12286.24596875
transcript.pyannote[2059].speaker SPEAKER_22
transcript.pyannote[2059].start 12286.24596875
transcript.pyannote[2059].end 12286.78596875
transcript.pyannote[2060].speaker SPEAKER_21
transcript.pyannote[2060].start 12286.68471875
transcript.pyannote[2060].end 12293.83971875
transcript.pyannote[2061].speaker SPEAKER_22
transcript.pyannote[2061].start 12293.28284375
transcript.pyannote[2061].end 12293.63721875
transcript.pyannote[2062].speaker SPEAKER_21
transcript.pyannote[2062].start 12294.98721875
transcript.pyannote[2062].end 12295.32471875
transcript.pyannote[2063].speaker SPEAKER_21
transcript.pyannote[2063].start 12295.72971875
transcript.pyannote[2063].end 12297.73784375
transcript.pyannote[2064].speaker SPEAKER_21
transcript.pyannote[2064].start 12298.19346875
transcript.pyannote[2064].end 12301.88909375
transcript.pyannote[2065].speaker SPEAKER_21
transcript.pyannote[2065].start 12302.71596875
transcript.pyannote[2065].end 12303.32346875
transcript.pyannote[2066].speaker SPEAKER_21
transcript.pyannote[2066].start 12303.71159375
transcript.pyannote[2066].end 12312.25034375
transcript.pyannote[2067].speaker SPEAKER_21
transcript.pyannote[2067].start 12312.92534375
transcript.pyannote[2067].end 12316.51971875
transcript.pyannote[2068].speaker SPEAKER_21
transcript.pyannote[2068].start 12317.73471875
transcript.pyannote[2068].end 12324.63659375
transcript.pyannote[2069].speaker SPEAKER_21
transcript.pyannote[2069].start 12326.83034375
transcript.pyannote[2069].end 12329.17596875
transcript.pyannote[2070].speaker SPEAKER_21
transcript.pyannote[2070].start 12329.42909375
transcript.pyannote[2070].end 12332.04471875
transcript.pyannote[2071].speaker SPEAKER_21
transcript.pyannote[2071].start 12332.33159375
transcript.pyannote[2071].end 12371.73471875
transcript.pyannote[2072].speaker SPEAKER_21
transcript.pyannote[2072].start 12372.64596875
transcript.pyannote[2072].end 12383.22659375
transcript.pyannote[2073].speaker SPEAKER_21
transcript.pyannote[2073].start 12383.59784375
transcript.pyannote[2073].end 12383.95221875
transcript.pyannote[2074].speaker SPEAKER_21
transcript.pyannote[2074].start 12384.52596875
transcript.pyannote[2074].end 12389.72346875
transcript.pyannote[2075].speaker SPEAKER_21
transcript.pyannote[2075].start 12390.02721875
transcript.pyannote[2075].end 12399.83159375
transcript.pyannote[2076].speaker SPEAKER_21
transcript.pyannote[2076].start 12400.50659375
transcript.pyannote[2076].end 12404.40471875
transcript.pyannote[2077].speaker SPEAKER_13
transcript.pyannote[2077].start 12405.21471875
transcript.pyannote[2077].end 12407.91471875
transcript.pyannote[2078].speaker SPEAKER_13
transcript.pyannote[2078].start 12407.94846875
transcript.pyannote[2078].end 12412.52159375
transcript.pyannote[2079].speaker SPEAKER_13
transcript.pyannote[2079].start 12413.28096875
transcript.pyannote[2079].end 12414.19221875
transcript.pyannote[2080].speaker SPEAKER_13
transcript.pyannote[2080].start 12414.44534375
transcript.pyannote[2080].end 12420.43596875
transcript.pyannote[2081].speaker SPEAKER_21
transcript.pyannote[2081].start 12420.89159375
transcript.pyannote[2081].end 12422.47784375
transcript.pyannote[2082].speaker SPEAKER_21
transcript.pyannote[2082].start 12423.74346875
transcript.pyannote[2082].end 12436.34909375
transcript.pyannote[2083].speaker SPEAKER_21
transcript.pyannote[2083].start 12436.78784375
transcript.pyannote[2083].end 12457.15596875
transcript.pyannote[2084].speaker SPEAKER_22
transcript.pyannote[2084].start 12450.05159375
transcript.pyannote[2084].end 12450.30471875
transcript.pyannote[2085].speaker SPEAKER_21
transcript.pyannote[2085].start 12457.69596875
transcript.pyannote[2085].end 12459.68721875
transcript.pyannote[2086].speaker SPEAKER_21
transcript.pyannote[2086].start 12459.88971875
transcript.pyannote[2086].end 12461.10471875
transcript.pyannote[2087].speaker SPEAKER_21
transcript.pyannote[2087].start 12461.66159375
transcript.pyannote[2087].end 12467.44971875
transcript.pyannote[2088].speaker SPEAKER_21
transcript.pyannote[2088].start 12467.87159375
transcript.pyannote[2088].end 12471.28034375
transcript.pyannote[2089].speaker SPEAKER_21
transcript.pyannote[2089].start 12471.46596875
transcript.pyannote[2089].end 12474.08159375
transcript.pyannote[2090].speaker SPEAKER_13
transcript.pyannote[2090].start 12474.72284375
transcript.pyannote[2090].end 12475.65096875
transcript.pyannote[2091].speaker SPEAKER_13
transcript.pyannote[2091].start 12476.17409375
transcript.pyannote[2091].end 12501.46971875
transcript.pyannote[2092].speaker SPEAKER_13
transcript.pyannote[2092].start 12501.58784375
transcript.pyannote[2092].end 12504.43971875
transcript.pyannote[2093].speaker SPEAKER_13
transcript.pyannote[2093].start 12504.76034375
transcript.pyannote[2093].end 12511.49346875
transcript.pyannote[2094].speaker SPEAKER_13
transcript.pyannote[2094].start 12511.81409375
transcript.pyannote[2094].end 12519.59346875
transcript.pyannote[2095].speaker SPEAKER_21
transcript.pyannote[2095].start 12519.20534375
transcript.pyannote[2095].end 12524.16659375
transcript.pyannote[2096].speaker SPEAKER_13
transcript.pyannote[2096].start 12521.09534375
transcript.pyannote[2096].end 12521.56784375
transcript.pyannote[2097].speaker SPEAKER_21
transcript.pyannote[2097].start 12524.63909375
transcript.pyannote[2097].end 12526.19159375
transcript.pyannote[2098].speaker SPEAKER_13
transcript.pyannote[2098].start 12524.75721875
transcript.pyannote[2098].end 12535.27034375
transcript.pyannote[2099].speaker SPEAKER_21
transcript.pyannote[2099].start 12533.68409375
transcript.pyannote[2099].end 12544.07909375
transcript.pyannote[2100].speaker SPEAKER_21
transcript.pyannote[2100].start 12544.65284375
transcript.pyannote[2100].end 12562.23659375
transcript.pyannote[2101].speaker SPEAKER_13
transcript.pyannote[2101].start 12563.02971875
transcript.pyannote[2101].end 12566.18534375
transcript.pyannote[2102].speaker SPEAKER_21
transcript.pyannote[2102].start 12567.34971875
transcript.pyannote[2102].end 12572.47971875
transcript.pyannote[2103].speaker SPEAKER_13
transcript.pyannote[2103].start 12571.70346875
transcript.pyannote[2103].end 12574.43721875
transcript.pyannote[2104].speaker SPEAKER_21
transcript.pyannote[2104].start 12573.35721875
transcript.pyannote[2104].end 12573.98159375
transcript.pyannote[2105].speaker SPEAKER_21
transcript.pyannote[2105].start 12574.33596875
transcript.pyannote[2105].end 12587.16096875
transcript.pyannote[2106].speaker SPEAKER_13
transcript.pyannote[2106].start 12577.64346875
transcript.pyannote[2106].end 12578.41971875
transcript.pyannote[2107].speaker SPEAKER_11
transcript.pyannote[2107].start 12578.41971875
transcript.pyannote[2107].end 12578.48721875
transcript.pyannote[2108].speaker SPEAKER_13
transcript.pyannote[2108].start 12578.70659375
transcript.pyannote[2108].end 12579.33096875
transcript.pyannote[2109].speaker SPEAKER_11
transcript.pyannote[2109].start 12579.33096875
transcript.pyannote[2109].end 12579.38159375
transcript.pyannote[2110].speaker SPEAKER_13
transcript.pyannote[2110].start 12587.16096875
transcript.pyannote[2110].end 12589.28721875
transcript.pyannote[2111].speaker SPEAKER_21
transcript.pyannote[2111].start 12589.65846875
transcript.pyannote[2111].end 12592.94909375
transcript.pyannote[2112].speaker SPEAKER_13
transcript.pyannote[2112].start 12593.11784375
transcript.pyannote[2112].end 12599.86784375
transcript.pyannote[2113].speaker SPEAKER_21
transcript.pyannote[2113].start 12600.17159375
transcript.pyannote[2113].end 12602.46659375
transcript.pyannote[2114].speaker SPEAKER_13
transcript.pyannote[2114].start 12600.20534375
transcript.pyannote[2114].end 12600.44159375
transcript.pyannote[2115].speaker SPEAKER_13
transcript.pyannote[2115].start 12602.38221875
transcript.pyannote[2115].end 12611.96721875
transcript.pyannote[2116].speaker SPEAKER_21
transcript.pyannote[2116].start 12611.22471875
transcript.pyannote[2116].end 12627.69471875
transcript.pyannote[2117].speaker SPEAKER_22
transcript.pyannote[2117].start 12611.96721875
transcript.pyannote[2117].end 12612.22034375
transcript.pyannote[2118].speaker SPEAKER_13
transcript.pyannote[2118].start 12612.22034375
transcript.pyannote[2118].end 12613.19909375
transcript.pyannote[2119].speaker SPEAKER_21
transcript.pyannote[2119].start 12628.06596875
transcript.pyannote[2119].end 12635.44034375
transcript.pyannote[2120].speaker SPEAKER_13
transcript.pyannote[2120].start 12632.94284375
transcript.pyannote[2120].end 12633.92159375
transcript.pyannote[2121].speaker SPEAKER_13
transcript.pyannote[2121].start 12634.59659375
transcript.pyannote[2121].end 12642.44346875
transcript.pyannote[2122].speaker SPEAKER_21
transcript.pyannote[2122].start 12642.44346875
transcript.pyannote[2122].end 12642.57846875
transcript.pyannote[2123].speaker SPEAKER_13
transcript.pyannote[2123].start 12642.57846875
transcript.pyannote[2123].end 12644.53596875
transcript.pyannote[2124].speaker SPEAKER_21
transcript.pyannote[2124].start 12642.59534375
transcript.pyannote[2124].end 12648.23159375
transcript.pyannote[2125].speaker SPEAKER_13
transcript.pyannote[2125].start 12647.33721875
transcript.pyannote[2125].end 12651.45471875
transcript.pyannote[2126].speaker SPEAKER_21
transcript.pyannote[2126].start 12652.09596875
transcript.pyannote[2126].end 12655.55534375
transcript.pyannote[2127].speaker SPEAKER_21
transcript.pyannote[2127].start 12655.89284375
transcript.pyannote[2127].end 12661.47846875
transcript.pyannote[2128].speaker SPEAKER_13
transcript.pyannote[2128].start 12662.25471875
transcript.pyannote[2128].end 12666.40596875
transcript.pyannote[2129].speaker SPEAKER_21
transcript.pyannote[2129].start 12663.52034375
transcript.pyannote[2129].end 12664.31346875
transcript.pyannote[2130].speaker SPEAKER_21
transcript.pyannote[2130].start 12666.40596875
transcript.pyannote[2130].end 12668.27909375
transcript.pyannote[2131].speaker SPEAKER_21
transcript.pyannote[2131].start 12668.46471875
transcript.pyannote[2131].end 12669.00471875
transcript.pyannote[2132].speaker SPEAKER_13
transcript.pyannote[2132].start 12668.51534375
transcript.pyannote[2132].end 12675.72096875
transcript.pyannote[2133].speaker SPEAKER_21
transcript.pyannote[2133].start 12674.42159375
transcript.pyannote[2133].end 12677.89784375
transcript.pyannote[2134].speaker SPEAKER_13
transcript.pyannote[2134].start 12676.22721875
transcript.pyannote[2134].end 12677.84721875
transcript.pyannote[2135].speaker SPEAKER_22
transcript.pyannote[2135].start 12677.84721875
transcript.pyannote[2135].end 12680.59784375
transcript.pyannote[2136].speaker SPEAKER_21
transcript.pyannote[2136].start 12678.30284375
transcript.pyannote[2136].end 12680.61471875
transcript.pyannote[2137].speaker SPEAKER_22
transcript.pyannote[2137].start 12680.61471875
transcript.pyannote[2137].end 12680.64846875
transcript.pyannote[2138].speaker SPEAKER_21
transcript.pyannote[2138].start 12681.30659375
transcript.pyannote[2138].end 12688.25909375
transcript.pyannote[2139].speaker SPEAKER_21
transcript.pyannote[2139].start 12688.41096875
transcript.pyannote[2139].end 12691.19534375
transcript.pyannote[2140].speaker SPEAKER_13
transcript.pyannote[2140].start 12691.71846875
transcript.pyannote[2140].end 12691.97159375
transcript.pyannote[2141].speaker SPEAKER_10
transcript.pyannote[2141].start 12691.97159375
transcript.pyannote[2141].end 12693.06846875
transcript.pyannote[2142].speaker SPEAKER_21
transcript.pyannote[2142].start 12692.78159375
transcript.pyannote[2142].end 12693.33846875
transcript.pyannote[2143].speaker SPEAKER_13
transcript.pyannote[2143].start 12693.06846875
transcript.pyannote[2143].end 12693.08534375
transcript.pyannote[2144].speaker SPEAKER_10
transcript.pyannote[2144].start 12695.59971875
transcript.pyannote[2144].end 12699.73409375
transcript.pyannote[2145].speaker SPEAKER_00
transcript.pyannote[2145].start 12705.82596875
transcript.pyannote[2145].end 12707.26034375
transcript.pyannote[2146].speaker SPEAKER_10
transcript.pyannote[2146].start 12707.27721875
transcript.pyannote[2146].end 12708.17159375
transcript.pyannote[2147].speaker SPEAKER_10
transcript.pyannote[2147].start 12711.47909375
transcript.pyannote[2147].end 12712.42409375
transcript.pyannote[2148].speaker SPEAKER_00
transcript.pyannote[2148].start 12711.85034375
transcript.pyannote[2148].end 12721.09784375
transcript.pyannote[2149].speaker SPEAKER_10
transcript.pyannote[2149].start 12712.59284375
transcript.pyannote[2149].end 12713.82471875
transcript.pyannote[2150].speaker SPEAKER_13
transcript.pyannote[2150].start 12713.82471875
transcript.pyannote[2150].end 12713.87534375
transcript.pyannote[2151].speaker SPEAKER_13
transcript.pyannote[2151].start 12721.09784375
transcript.pyannote[2151].end 12721.60409375
transcript.pyannote[2152].speaker SPEAKER_00
transcript.pyannote[2152].start 12721.60409375
transcript.pyannote[2152].end 12723.25784375
transcript.pyannote[2153].speaker SPEAKER_13
transcript.pyannote[2153].start 12721.63784375
transcript.pyannote[2153].end 12721.78971875
transcript.pyannote[2154].speaker SPEAKER_13
transcript.pyannote[2154].start 12722.39721875
transcript.pyannote[2154].end 12725.14784375
transcript.pyannote[2155].speaker SPEAKER_00
transcript.pyannote[2155].start 12724.30409375
transcript.pyannote[2155].end 12738.66471875
transcript.pyannote[2156].speaker SPEAKER_13
transcript.pyannote[2156].start 12725.83971875
transcript.pyannote[2156].end 12727.05471875
transcript.pyannote[2157].speaker SPEAKER_13
transcript.pyannote[2157].start 12729.26534375
transcript.pyannote[2157].end 12729.78846875
transcript.pyannote[2158].speaker SPEAKER_13
transcript.pyannote[2158].start 12730.12596875
transcript.pyannote[2158].end 12730.61534375
transcript.pyannote[2159].speaker SPEAKER_00
transcript.pyannote[2159].start 12739.01909375
transcript.pyannote[2159].end 12743.03534375
transcript.pyannote[2160].speaker SPEAKER_00
transcript.pyannote[2160].start 12743.42346875
transcript.pyannote[2160].end 12745.73534375
transcript.pyannote[2161].speaker SPEAKER_00
transcript.pyannote[2161].start 12746.17409375
transcript.pyannote[2161].end 12746.93346875
transcript.pyannote[2162].speaker SPEAKER_00
transcript.pyannote[2162].start 12747.33846875
transcript.pyannote[2162].end 12747.70971875
transcript.pyannote[2163].speaker SPEAKER_00
transcript.pyannote[2163].start 12748.26659375
transcript.pyannote[2163].end 12750.46034375
transcript.pyannote[2164].speaker SPEAKER_00
transcript.pyannote[2164].start 12751.16909375
transcript.pyannote[2164].end 12761.56409375
transcript.pyannote[2165].speaker SPEAKER_00
transcript.pyannote[2165].start 12762.13784375
transcript.pyannote[2165].end 12765.02346875
transcript.pyannote[2166].speaker SPEAKER_22
transcript.pyannote[2166].start 12765.02346875
transcript.pyannote[2166].end 12765.46221875
transcript.pyannote[2167].speaker SPEAKER_00
transcript.pyannote[2167].start 12765.32721875
transcript.pyannote[2167].end 12767.18346875
transcript.pyannote[2168].speaker SPEAKER_22
transcript.pyannote[2168].start 12767.11596875
transcript.pyannote[2168].end 12767.53784375
transcript.pyannote[2169].speaker SPEAKER_00
transcript.pyannote[2169].start 12767.36909375
transcript.pyannote[2169].end 12771.52034375
transcript.pyannote[2170].speaker SPEAKER_00
transcript.pyannote[2170].start 12771.89159375
transcript.pyannote[2170].end 12772.85346875
transcript.pyannote[2171].speaker SPEAKER_00
transcript.pyannote[2171].start 12773.32596875
transcript.pyannote[2171].end 12773.79846875
transcript.pyannote[2172].speaker SPEAKER_00
transcript.pyannote[2172].start 12774.20346875
transcript.pyannote[2172].end 12775.70534375
transcript.pyannote[2173].speaker SPEAKER_00
transcript.pyannote[2173].start 12775.75596875
transcript.pyannote[2173].end 12784.58159375
transcript.pyannote[2174].speaker SPEAKER_22
transcript.pyannote[2174].start 12783.09659375
transcript.pyannote[2174].end 12783.48471875
transcript.pyannote[2175].speaker SPEAKER_01
transcript.pyannote[2175].start 12783.48471875
transcript.pyannote[2175].end 12783.55221875
transcript.pyannote[2176].speaker SPEAKER_00
transcript.pyannote[2176].start 12785.15534375
transcript.pyannote[2176].end 12785.93159375
transcript.pyannote[2177].speaker SPEAKER_00
transcript.pyannote[2177].start 12786.30284375
transcript.pyannote[2177].end 12788.36159375
transcript.pyannote[2178].speaker SPEAKER_00
transcript.pyannote[2178].start 12789.15471875
transcript.pyannote[2178].end 12808.71284375
transcript.pyannote[2179].speaker SPEAKER_11
transcript.pyannote[2179].start 12808.71284375
transcript.pyannote[2179].end 12809.13471875
transcript.pyannote[2180].speaker SPEAKER_00
transcript.pyannote[2180].start 12809.35409375
transcript.pyannote[2180].end 12819.61409375
transcript.pyannote[2181].speaker SPEAKER_11
transcript.pyannote[2181].start 12819.61409375
transcript.pyannote[2181].end 12820.17096875
transcript.pyannote[2182].speaker SPEAKER_00
transcript.pyannote[2182].start 12820.44096875
transcript.pyannote[2182].end 12825.52034375
transcript.pyannote[2183].speaker SPEAKER_00
transcript.pyannote[2183].start 12825.87471875
transcript.pyannote[2183].end 12848.60534375
transcript.pyannote[2184].speaker SPEAKER_00
transcript.pyannote[2184].start 12848.95971875
transcript.pyannote[2184].end 12851.59221875
transcript.pyannote[2185].speaker SPEAKER_00
transcript.pyannote[2185].start 12852.01409375
transcript.pyannote[2185].end 12856.85721875
transcript.pyannote[2186].speaker SPEAKER_00
transcript.pyannote[2186].start 12857.31284375
transcript.pyannote[2186].end 12860.11409375
transcript.pyannote[2187].speaker SPEAKER_00
transcript.pyannote[2187].start 12860.48534375
transcript.pyannote[2187].end 12866.99909375
transcript.pyannote[2188].speaker SPEAKER_00
transcript.pyannote[2188].start 12867.52221875
transcript.pyannote[2188].end 12867.87659375
transcript.pyannote[2189].speaker SPEAKER_00
transcript.pyannote[2189].start 12868.29846875
transcript.pyannote[2189].end 12870.96471875
transcript.pyannote[2190].speaker SPEAKER_00
transcript.pyannote[2190].start 12871.99409375
transcript.pyannote[2190].end 12874.99784375
transcript.pyannote[2191].speaker SPEAKER_00
transcript.pyannote[2191].start 12875.48721875
transcript.pyannote[2191].end 12877.15784375
transcript.pyannote[2192].speaker SPEAKER_22
transcript.pyannote[2192].start 12877.46159375
transcript.pyannote[2192].end 12877.76534375
transcript.pyannote[2193].speaker SPEAKER_00
transcript.pyannote[2193].start 12877.93409375
transcript.pyannote[2193].end 12880.46534375
transcript.pyannote[2194].speaker SPEAKER_00
transcript.pyannote[2194].start 12880.83659375
transcript.pyannote[2194].end 12882.54096875
transcript.pyannote[2195].speaker SPEAKER_00
transcript.pyannote[2195].start 12882.77721875
transcript.pyannote[2195].end 12884.73471875
transcript.pyannote[2196].speaker SPEAKER_00
transcript.pyannote[2196].start 12884.85284375
transcript.pyannote[2196].end 12890.87721875
transcript.pyannote[2197].speaker SPEAKER_00
transcript.pyannote[2197].start 12891.16409375
transcript.pyannote[2197].end 12893.54346875
transcript.pyannote[2198].speaker SPEAKER_00
transcript.pyannote[2198].start 12894.04971875
transcript.pyannote[2198].end 12901.96409375
transcript.pyannote[2199].speaker SPEAKER_00
transcript.pyannote[2199].start 12902.47034375
transcript.pyannote[2199].end 12905.08596875
transcript.pyannote[2200].speaker SPEAKER_00
transcript.pyannote[2200].start 12905.47409375
transcript.pyannote[2200].end 12912.32534375
transcript.pyannote[2201].speaker SPEAKER_00
transcript.pyannote[2201].start 12912.93284375
transcript.pyannote[2201].end 12918.06284375
transcript.pyannote[2202].speaker SPEAKER_00
transcript.pyannote[2202].start 12918.56909375
transcript.pyannote[2202].end 12925.74096875
transcript.pyannote[2203].speaker SPEAKER_00
transcript.pyannote[2203].start 12925.99409375
transcript.pyannote[2203].end 12931.83284375
transcript.pyannote[2204].speaker SPEAKER_00
transcript.pyannote[2204].start 12932.22096875
transcript.pyannote[2204].end 12967.10159375
transcript.pyannote[2205].speaker SPEAKER_00
transcript.pyannote[2205].start 12967.77659375
transcript.pyannote[2205].end 13013.89596875
transcript.pyannote[2206].speaker SPEAKER_00
transcript.pyannote[2206].start 13014.97596875
transcript.pyannote[2206].end 13056.96096875
transcript.pyannote[2207].speaker SPEAKER_00
transcript.pyannote[2207].start 13057.31534375
transcript.pyannote[2207].end 13059.27284375
transcript.pyannote[2208].speaker SPEAKER_00
transcript.pyannote[2208].start 13060.04909375
transcript.pyannote[2208].end 13064.50409375
transcript.pyannote[2209].speaker SPEAKER_00
transcript.pyannote[2209].start 13065.09471875
transcript.pyannote[2209].end 13159.20659375
transcript.pyannote[2210].speaker SPEAKER_01
transcript.pyannote[2210].start 13100.17784375
transcript.pyannote[2210].end 13101.17346875
transcript.pyannote[2211].speaker SPEAKER_00
transcript.pyannote[2211].start 13159.81409375
transcript.pyannote[2211].end 13163.29034375
transcript.pyannote[2212].speaker SPEAKER_00
transcript.pyannote[2212].start 13163.62784375
transcript.pyannote[2212].end 13169.85471875
transcript.pyannote[2213].speaker SPEAKER_10
transcript.pyannote[2213].start 13170.39471875
transcript.pyannote[2213].end 13172.21721875
transcript.pyannote[2214].speaker SPEAKER_10
transcript.pyannote[2214].start 13173.01034375
transcript.pyannote[2214].end 13180.45221875
transcript.pyannote[2215].speaker SPEAKER_28
transcript.pyannote[2215].start 13186.89846875
transcript.pyannote[2215].end 13190.49284375
transcript.pyannote[2216].speaker SPEAKER_28
transcript.pyannote[2216].start 13193.66534375
transcript.pyannote[2216].end 13200.80346875
transcript.pyannote[2217].speaker SPEAKER_00
transcript.pyannote[2217].start 13195.03221875
transcript.pyannote[2217].end 13196.01096875
transcript.pyannote[2218].speaker SPEAKER_00
transcript.pyannote[2218].start 13196.83784375
transcript.pyannote[2218].end 13197.02346875
transcript.pyannote[2219].speaker SPEAKER_22
transcript.pyannote[2219].start 13197.02346875
transcript.pyannote[2219].end 13197.41159375
transcript.pyannote[2220].speaker SPEAKER_00
transcript.pyannote[2220].start 13197.41159375
transcript.pyannote[2220].end 13197.52971875
transcript.pyannote[2221].speaker SPEAKER_28
transcript.pyannote[2221].start 13201.09034375
transcript.pyannote[2221].end 13207.40159375
transcript.pyannote[2222].speaker SPEAKER_28
transcript.pyannote[2222].start 13207.82346875
transcript.pyannote[2222].end 13221.99846875
transcript.pyannote[2223].speaker SPEAKER_28
transcript.pyannote[2223].start 13222.31909375
transcript.pyannote[2223].end 13229.62596875
transcript.pyannote[2224].speaker SPEAKER_28
transcript.pyannote[2224].start 13230.19971875
transcript.pyannote[2224].end 13240.71284375
transcript.pyannote[2225].speaker SPEAKER_28
transcript.pyannote[2225].start 13240.86471875
transcript.pyannote[2225].end 13241.53971875
transcript.pyannote[2226].speaker SPEAKER_13
transcript.pyannote[2226].start 13242.70409375
transcript.pyannote[2226].end 13250.75346875
transcript.pyannote[2227].speaker SPEAKER_28
transcript.pyannote[2227].start 13245.08346875
transcript.pyannote[2227].end 13245.64034375
transcript.pyannote[2228].speaker SPEAKER_28
transcript.pyannote[2228].start 13253.43659375
transcript.pyannote[2228].end 13254.41534375
transcript.pyannote[2229].speaker SPEAKER_13
transcript.pyannote[2229].start 13253.79096875
transcript.pyannote[2229].end 13255.69784375
transcript.pyannote[2230].speaker SPEAKER_28
transcript.pyannote[2230].start 13255.15784375
transcript.pyannote[2230].end 13261.73909375
transcript.pyannote[2231].speaker SPEAKER_13
transcript.pyannote[2231].start 13256.96346875
transcript.pyannote[2231].end 13258.90409375
transcript.pyannote[2232].speaker SPEAKER_13
transcript.pyannote[2232].start 13259.08971875
transcript.pyannote[2232].end 13260.42284375
transcript.pyannote[2233].speaker SPEAKER_13
transcript.pyannote[2233].start 13260.77721875
transcript.pyannote[2233].end 13273.04534375
transcript.pyannote[2234].speaker SPEAKER_28
transcript.pyannote[2234].start 13271.03721875
transcript.pyannote[2234].end 13272.37034375
transcript.pyannote[2235].speaker SPEAKER_28
transcript.pyannote[2235].start 13272.69096875
transcript.pyannote[2235].end 13274.26034375
transcript.pyannote[2236].speaker SPEAKER_28
transcript.pyannote[2236].start 13275.05346875
transcript.pyannote[2236].end 13278.63096875
transcript.pyannote[2237].speaker SPEAKER_28
transcript.pyannote[2237].start 13278.90096875
transcript.pyannote[2237].end 13281.80346875
transcript.pyannote[2238].speaker SPEAKER_28
transcript.pyannote[2238].start 13282.47846875
transcript.pyannote[2238].end 13283.33909375
transcript.pyannote[2239].speaker SPEAKER_28
transcript.pyannote[2239].start 13284.46971875
transcript.pyannote[2239].end 13285.63409375
transcript.pyannote[2240].speaker SPEAKER_28
transcript.pyannote[2240].start 13286.44409375
transcript.pyannote[2240].end 13287.49034375
transcript.pyannote[2241].speaker SPEAKER_28
transcript.pyannote[2241].start 13288.41846875
transcript.pyannote[2241].end 13291.99596875
transcript.pyannote[2242].speaker SPEAKER_28
transcript.pyannote[2242].start 13292.65409375
transcript.pyannote[2242].end 13296.58596875
transcript.pyannote[2243].speaker SPEAKER_22
transcript.pyannote[2243].start 13294.05471875
transcript.pyannote[2243].end 13294.59471875
transcript.pyannote[2244].speaker SPEAKER_28
transcript.pyannote[2244].start 13297.31159375
transcript.pyannote[2244].end 13298.35784375
transcript.pyannote[2245].speaker SPEAKER_28
transcript.pyannote[2245].start 13298.74596875
transcript.pyannote[2245].end 13299.77534375
transcript.pyannote[2246].speaker SPEAKER_28
transcript.pyannote[2246].start 13300.01159375
transcript.pyannote[2246].end 13301.27721875
transcript.pyannote[2247].speaker SPEAKER_28
transcript.pyannote[2247].start 13301.42909375
transcript.pyannote[2247].end 13312.09409375
transcript.pyannote[2248].speaker SPEAKER_13
transcript.pyannote[2248].start 13304.19659375
transcript.pyannote[2248].end 13304.31471875
transcript.pyannote[2249].speaker SPEAKER_04
transcript.pyannote[2249].start 13304.31471875
transcript.pyannote[2249].end 13305.20909375
transcript.pyannote[2250].speaker SPEAKER_28
transcript.pyannote[2250].start 13312.43159375
transcript.pyannote[2250].end 13313.54534375
transcript.pyannote[2251].speaker SPEAKER_28
transcript.pyannote[2251].start 13314.10221875
transcript.pyannote[2251].end 13317.07221875
transcript.pyannote[2252].speaker SPEAKER_28
transcript.pyannote[2252].start 13317.39284375
transcript.pyannote[2252].end 13319.75534375
transcript.pyannote[2253].speaker SPEAKER_28
transcript.pyannote[2253].start 13320.56534375
transcript.pyannote[2253].end 13324.36221875
transcript.pyannote[2254].speaker SPEAKER_04
transcript.pyannote[2254].start 13320.61596875
transcript.pyannote[2254].end 13321.30784375
transcript.pyannote[2255].speaker SPEAKER_28
transcript.pyannote[2255].start 13324.85159375
transcript.pyannote[2255].end 13325.17221875
transcript.pyannote[2256].speaker SPEAKER_13
transcript.pyannote[2256].start 13325.94846875
transcript.pyannote[2256].end 13336.17471875
transcript.pyannote[2257].speaker SPEAKER_13
transcript.pyannote[2257].start 13336.52909375
transcript.pyannote[2257].end 13343.24534375
transcript.pyannote[2258].speaker SPEAKER_13
transcript.pyannote[2258].start 13343.75159375
transcript.pyannote[2258].end 13351.19346875
transcript.pyannote[2259].speaker SPEAKER_13
transcript.pyannote[2259].start 13352.02034375
transcript.pyannote[2259].end 13354.55159375
transcript.pyannote[2260].speaker SPEAKER_13
transcript.pyannote[2260].start 13354.73721875
transcript.pyannote[2260].end 13357.45409375
transcript.pyannote[2261].speaker SPEAKER_28
transcript.pyannote[2261].start 13356.30659375
transcript.pyannote[2261].end 13364.84534375
transcript.pyannote[2262].speaker SPEAKER_13
transcript.pyannote[2262].start 13358.61846875
transcript.pyannote[2262].end 13358.87159375
transcript.pyannote[2263].speaker SPEAKER_13
transcript.pyannote[2263].start 13361.99346875
transcript.pyannote[2263].end 13364.74409375
transcript.pyannote[2264].speaker SPEAKER_28
transcript.pyannote[2264].start 13365.72284375
transcript.pyannote[2264].end 13367.83221875
transcript.pyannote[2265].speaker SPEAKER_13
transcript.pyannote[2265].start 13366.39784375
transcript.pyannote[2265].end 13369.55346875
transcript.pyannote[2266].speaker SPEAKER_28
transcript.pyannote[2266].start 13368.23721875
transcript.pyannote[2266].end 13372.43909375
transcript.pyannote[2267].speaker SPEAKER_28
transcript.pyannote[2267].start 13373.04659375
transcript.pyannote[2267].end 13373.77221875
transcript.pyannote[2268].speaker SPEAKER_28
transcript.pyannote[2268].start 13375.29096875
transcript.pyannote[2268].end 13376.70846875
transcript.pyannote[2269].speaker SPEAKER_28
transcript.pyannote[2269].start 13376.96159375
transcript.pyannote[2269].end 13378.02471875
transcript.pyannote[2270].speaker SPEAKER_28
transcript.pyannote[2270].start 13378.36221875
transcript.pyannote[2270].end 13390.59659375
transcript.pyannote[2271].speaker SPEAKER_28
transcript.pyannote[2271].start 13391.15346875
transcript.pyannote[2271].end 13393.90409375
transcript.pyannote[2272].speaker SPEAKER_03
transcript.pyannote[2272].start 13391.91284375
transcript.pyannote[2272].end 13392.43596875
transcript.pyannote[2273].speaker SPEAKER_28
transcript.pyannote[2273].start 13394.37659375
transcript.pyannote[2273].end 13394.47784375
transcript.pyannote[2274].speaker SPEAKER_28
transcript.pyannote[2274].start 13394.93346875
transcript.pyannote[2274].end 13395.52409375
transcript.pyannote[2275].speaker SPEAKER_28
transcript.pyannote[2275].start 13396.33409375
transcript.pyannote[2275].end 13400.02971875
transcript.pyannote[2276].speaker SPEAKER_28
transcript.pyannote[2276].start 13400.26596875
transcript.pyannote[2276].end 13404.51846875
transcript.pyannote[2277].speaker SPEAKER_28
transcript.pyannote[2277].start 13405.02471875
transcript.pyannote[2277].end 13414.50846875
transcript.pyannote[2278].speaker SPEAKER_00
transcript.pyannote[2278].start 13407.79221875
transcript.pyannote[2278].end 13408.68659375
transcript.pyannote[2279].speaker SPEAKER_00
transcript.pyannote[2279].start 13411.85909375
transcript.pyannote[2279].end 13412.63534375
transcript.pyannote[2280].speaker SPEAKER_28
transcript.pyannote[2280].start 13415.01471875
transcript.pyannote[2280].end 13415.62221875
transcript.pyannote[2281].speaker SPEAKER_28
transcript.pyannote[2281].start 13416.53346875
transcript.pyannote[2281].end 13417.83284375
transcript.pyannote[2282].speaker SPEAKER_28
transcript.pyannote[2282].start 13419.18284375
transcript.pyannote[2282].end 13420.00971875
transcript.pyannote[2283].speaker SPEAKER_28
transcript.pyannote[2283].start 13420.90409375
transcript.pyannote[2283].end 13424.02596875
transcript.pyannote[2284].speaker SPEAKER_28
transcript.pyannote[2284].start 13424.90346875
transcript.pyannote[2284].end 13427.31659375
transcript.pyannote[2285].speaker SPEAKER_28
transcript.pyannote[2285].start 13427.89034375
transcript.pyannote[2285].end 13432.83471875
transcript.pyannote[2286].speaker SPEAKER_28
transcript.pyannote[2286].start 13433.79659375
transcript.pyannote[2286].end 13436.85096875
transcript.pyannote[2287].speaker SPEAKER_28
transcript.pyannote[2287].start 13437.30659375
transcript.pyannote[2287].end 13439.02784375
transcript.pyannote[2288].speaker SPEAKER_28
transcript.pyannote[2288].start 13439.28096875
transcript.pyannote[2288].end 13440.17534375
transcript.pyannote[2289].speaker SPEAKER_28
transcript.pyannote[2289].start 13440.63096875
transcript.pyannote[2289].end 13443.02721875
transcript.pyannote[2290].speaker SPEAKER_28
transcript.pyannote[2290].start 13443.24659375
transcript.pyannote[2290].end 13444.05659375
transcript.pyannote[2291].speaker SPEAKER_28
transcript.pyannote[2291].start 13444.34346875
transcript.pyannote[2291].end 13448.24159375
transcript.pyannote[2292].speaker SPEAKER_28
transcript.pyannote[2292].start 13448.64659375
transcript.pyannote[2292].end 13449.82784375
transcript.pyannote[2293].speaker SPEAKER_28
transcript.pyannote[2293].start 13450.41846875
transcript.pyannote[2293].end 13451.81909375
transcript.pyannote[2294].speaker SPEAKER_28
transcript.pyannote[2294].start 13451.98784375
transcript.pyannote[2294].end 13455.95346875
transcript.pyannote[2295].speaker SPEAKER_28
transcript.pyannote[2295].start 13456.37534375
transcript.pyannote[2295].end 13461.08346875
transcript.pyannote[2296].speaker SPEAKER_28
transcript.pyannote[2296].start 13461.69096875
transcript.pyannote[2296].end 13464.32346875
transcript.pyannote[2297].speaker SPEAKER_28
transcript.pyannote[2297].start 13464.39096875
transcript.pyannote[2297].end 13466.33159375
transcript.pyannote[2298].speaker SPEAKER_28
transcript.pyannote[2298].start 13466.65221875
transcript.pyannote[2298].end 13478.29596875
transcript.pyannote[2299].speaker SPEAKER_28
transcript.pyannote[2299].start 13478.59971875
transcript.pyannote[2299].end 13479.27471875
transcript.pyannote[2300].speaker SPEAKER_28
transcript.pyannote[2300].start 13480.77659375
transcript.pyannote[2300].end 13480.96221875
transcript.pyannote[2301].speaker SPEAKER_13
transcript.pyannote[2301].start 13480.96221875
transcript.pyannote[2301].end 13482.88596875
transcript.pyannote[2302].speaker SPEAKER_28
transcript.pyannote[2302].start 13482.88596875
transcript.pyannote[2302].end 13482.90284375
transcript.pyannote[2303].speaker SPEAKER_13
transcript.pyannote[2303].start 13483.29096875
transcript.pyannote[2303].end 13493.23034375
transcript.pyannote[2304].speaker SPEAKER_28
transcript.pyannote[2304].start 13491.59346875
transcript.pyannote[2304].end 13494.02346875
transcript.pyannote[2305].speaker SPEAKER_13
transcript.pyannote[2305].start 13494.02346875
transcript.pyannote[2305].end 13494.24284375
transcript.pyannote[2306].speaker SPEAKER_13
transcript.pyannote[2306].start 13494.37784375
transcript.pyannote[2306].end 13506.07221875
transcript.pyannote[2307].speaker SPEAKER_28
transcript.pyannote[2307].start 13503.65909375
transcript.pyannote[2307].end 13511.64096875
transcript.pyannote[2308].speaker SPEAKER_13
transcript.pyannote[2308].start 13506.62909375
transcript.pyannote[2308].end 13507.21971875
transcript.pyannote[2309].speaker SPEAKER_13
transcript.pyannote[2309].start 13507.86096875
transcript.pyannote[2309].end 13508.89034375
transcript.pyannote[2310].speaker SPEAKER_22
transcript.pyannote[2310].start 13508.89034375
transcript.pyannote[2310].end 13509.10971875
transcript.pyannote[2311].speaker SPEAKER_13
transcript.pyannote[2311].start 13509.10971875
transcript.pyannote[2311].end 13510.03784375
transcript.pyannote[2312].speaker SPEAKER_22
transcript.pyannote[2312].start 13510.03784375
transcript.pyannote[2312].end 13510.45971875
transcript.pyannote[2313].speaker SPEAKER_28
transcript.pyannote[2313].start 13512.38346875
transcript.pyannote[2313].end 13513.37909375
transcript.pyannote[2314].speaker SPEAKER_28
transcript.pyannote[2314].start 13514.40846875
transcript.pyannote[2314].end 13515.97784375
transcript.pyannote[2315].speaker SPEAKER_22
transcript.pyannote[2315].start 13515.96096875
transcript.pyannote[2315].end 13516.48409375
transcript.pyannote[2316].speaker SPEAKER_28
transcript.pyannote[2316].start 13516.33221875
transcript.pyannote[2316].end 13518.05346875
transcript.pyannote[2317].speaker SPEAKER_28
transcript.pyannote[2317].start 13518.55971875
transcript.pyannote[2317].end 13523.53784375
transcript.pyannote[2318].speaker SPEAKER_28
transcript.pyannote[2318].start 13523.85846875
transcript.pyannote[2318].end 13525.19159375
transcript.pyannote[2319].speaker SPEAKER_28
transcript.pyannote[2319].start 13525.39409375
transcript.pyannote[2319].end 13526.42346875
transcript.pyannote[2320].speaker SPEAKER_28
transcript.pyannote[2320].start 13526.67659375
transcript.pyannote[2320].end 13527.01409375
transcript.pyannote[2321].speaker SPEAKER_28
transcript.pyannote[2321].start 13527.70596875
transcript.pyannote[2321].end 13536.95346875
transcript.pyannote[2322].speaker SPEAKER_13
transcript.pyannote[2322].start 13531.33409375
transcript.pyannote[2322].end 13531.67159375
transcript.pyannote[2323].speaker SPEAKER_28
transcript.pyannote[2323].start 13537.52721875
transcript.pyannote[2323].end 13543.48409375
transcript.pyannote[2324].speaker SPEAKER_07
transcript.pyannote[2324].start 13541.76284375
transcript.pyannote[2324].end 13543.39971875
transcript.pyannote[2325].speaker SPEAKER_07
transcript.pyannote[2325].start 13543.48409375
transcript.pyannote[2325].end 13543.50096875
transcript.pyannote[2326].speaker SPEAKER_28
transcript.pyannote[2326].start 13544.56409375
transcript.pyannote[2326].end 13545.82971875
transcript.pyannote[2327].speaker SPEAKER_28
transcript.pyannote[2327].start 13546.52159375
transcript.pyannote[2327].end 13548.69846875
transcript.pyannote[2328].speaker SPEAKER_28
transcript.pyannote[2328].start 13549.27221875
transcript.pyannote[2328].end 13550.13284375
transcript.pyannote[2329].speaker SPEAKER_28
transcript.pyannote[2329].start 13550.80784375
transcript.pyannote[2329].end 13552.69784375
transcript.pyannote[2330].speaker SPEAKER_28
transcript.pyannote[2330].start 13553.35596875
transcript.pyannote[2330].end 13557.13596875
transcript.pyannote[2331].speaker SPEAKER_28
transcript.pyannote[2331].start 13558.04721875
transcript.pyannote[2331].end 13559.73471875
transcript.pyannote[2332].speaker SPEAKER_28
transcript.pyannote[2332].start 13560.49409375
transcript.pyannote[2332].end 13562.43471875
transcript.pyannote[2333].speaker SPEAKER_28
transcript.pyannote[2333].start 13563.14346875
transcript.pyannote[2333].end 13565.57346875
transcript.pyannote[2334].speaker SPEAKER_22
transcript.pyannote[2334].start 13565.65784375
transcript.pyannote[2334].end 13565.96159375
transcript.pyannote[2335].speaker SPEAKER_28
transcript.pyannote[2335].start 13566.29909375
transcript.pyannote[2335].end 13567.39596875
transcript.pyannote[2336].speaker SPEAKER_28
transcript.pyannote[2336].start 13567.61534375
transcript.pyannote[2336].end 13568.71221875
transcript.pyannote[2337].speaker SPEAKER_28
transcript.pyannote[2337].start 13569.84284375
transcript.pyannote[2337].end 13570.63596875
transcript.pyannote[2338].speaker SPEAKER_28
transcript.pyannote[2338].start 13571.00721875
transcript.pyannote[2338].end 13572.12096875
transcript.pyannote[2339].speaker SPEAKER_05
transcript.pyannote[2339].start 13572.23909375
transcript.pyannote[2339].end 13572.25596875
transcript.pyannote[2340].speaker SPEAKER_22
transcript.pyannote[2340].start 13572.25596875
transcript.pyannote[2340].end 13572.50909375
transcript.pyannote[2341].speaker SPEAKER_05
transcript.pyannote[2341].start 13572.50909375
transcript.pyannote[2341].end 13572.55971875
transcript.pyannote[2342].speaker SPEAKER_28
transcript.pyannote[2342].start 13572.67784375
transcript.pyannote[2342].end 13575.58034375
transcript.pyannote[2343].speaker SPEAKER_28
transcript.pyannote[2343].start 13575.79971875
transcript.pyannote[2343].end 13579.15784375
transcript.pyannote[2344].speaker SPEAKER_28
transcript.pyannote[2344].start 13579.93409375
transcript.pyannote[2344].end 13580.84534375
transcript.pyannote[2345].speaker SPEAKER_28
transcript.pyannote[2345].start 13581.72284375
transcript.pyannote[2345].end 13583.15721875
transcript.pyannote[2346].speaker SPEAKER_28
transcript.pyannote[2346].start 13583.46096875
transcript.pyannote[2346].end 13584.30471875
transcript.pyannote[2347].speaker SPEAKER_28
transcript.pyannote[2347].start 13585.84034375
transcript.pyannote[2347].end 13587.64596875
transcript.pyannote[2348].speaker SPEAKER_28
transcript.pyannote[2348].start 13588.89471875
transcript.pyannote[2348].end 13590.58221875
transcript.pyannote[2349].speaker SPEAKER_28
transcript.pyannote[2349].start 13591.32471875
transcript.pyannote[2349].end 13592.74221875
transcript.pyannote[2350].speaker SPEAKER_28
transcript.pyannote[2350].start 13593.07971875
transcript.pyannote[2350].end 13593.88971875
transcript.pyannote[2351].speaker SPEAKER_28
transcript.pyannote[2351].start 13594.80096875
transcript.pyannote[2351].end 13599.03659375
transcript.pyannote[2352].speaker SPEAKER_28
transcript.pyannote[2352].start 13599.54284375
transcript.pyannote[2352].end 13603.27221875
transcript.pyannote[2353].speaker SPEAKER_28
transcript.pyannote[2353].start 13604.89221875
transcript.pyannote[2353].end 13608.01409375
transcript.pyannote[2354].speaker SPEAKER_28
transcript.pyannote[2354].start 13608.72284375
transcript.pyannote[2354].end 13611.15284375
transcript.pyannote[2355].speaker SPEAKER_28
transcript.pyannote[2355].start 13611.47346875
transcript.pyannote[2355].end 13613.44784375
transcript.pyannote[2356].speaker SPEAKER_28
transcript.pyannote[2356].start 13614.24096875
transcript.pyannote[2356].end 13618.20659375
transcript.pyannote[2357].speaker SPEAKER_28
transcript.pyannote[2357].start 13619.89409375
transcript.pyannote[2357].end 13622.25659375
transcript.pyannote[2358].speaker SPEAKER_28
transcript.pyannote[2358].start 13622.35784375
transcript.pyannote[2358].end 13622.71221875
transcript.pyannote[2359].speaker SPEAKER_28
transcript.pyannote[2359].start 13622.98221875
transcript.pyannote[2359].end 13623.91034375
transcript.pyannote[2360].speaker SPEAKER_28
transcript.pyannote[2360].start 13624.24784375
transcript.pyannote[2360].end 13625.85096875
transcript.pyannote[2361].speaker SPEAKER_28
transcript.pyannote[2361].start 13626.47534375
transcript.pyannote[2361].end 13627.36971875
transcript.pyannote[2362].speaker SPEAKER_28
transcript.pyannote[2362].start 13628.11221875
transcript.pyannote[2362].end 13628.65221875
transcript.pyannote[2363].speaker SPEAKER_28
transcript.pyannote[2363].start 13629.79971875
transcript.pyannote[2363].end 13630.98096875
transcript.pyannote[2364].speaker SPEAKER_28
transcript.pyannote[2364].start 13631.50409375
transcript.pyannote[2364].end 13632.26346875
transcript.pyannote[2365].speaker SPEAKER_28
transcript.pyannote[2365].start 13632.63471875
transcript.pyannote[2365].end 13648.88534375
transcript.pyannote[2366].speaker SPEAKER_28
transcript.pyannote[2366].start 13649.61096875
transcript.pyannote[2366].end 13652.71596875
transcript.pyannote[2367].speaker SPEAKER_28
transcript.pyannote[2367].start 13652.78346875
transcript.pyannote[2367].end 13655.87159375
transcript.pyannote[2368].speaker SPEAKER_14
transcript.pyannote[2368].start 13655.02784375
transcript.pyannote[2368].end 13655.97284375
transcript.pyannote[2369].speaker SPEAKER_14
transcript.pyannote[2369].start 13656.15846875
transcript.pyannote[2369].end 13656.86721875
transcript.pyannote[2370].speaker SPEAKER_28
transcript.pyannote[2370].start 13656.34409375
transcript.pyannote[2370].end 13670.26596875
transcript.pyannote[2371].speaker SPEAKER_14
transcript.pyannote[2371].start 13658.13284375
transcript.pyannote[2371].end 13658.97659375
transcript.pyannote[2372].speaker SPEAKER_11
transcript.pyannote[2372].start 13667.41409375
transcript.pyannote[2372].end 13670.58659375
transcript.pyannote[2373].speaker SPEAKER_28
transcript.pyannote[2373].start 13670.58659375
transcript.pyannote[2373].end 13671.29534375
transcript.pyannote[2374].speaker SPEAKER_28
transcript.pyannote[2374].start 13671.78471875
transcript.pyannote[2374].end 13678.39971875
transcript.pyannote[2375].speaker SPEAKER_28
transcript.pyannote[2375].start 13678.43346875
transcript.pyannote[2375].end 13679.68221875
transcript.pyannote[2376].speaker SPEAKER_28
transcript.pyannote[2376].start 13680.18846875
transcript.pyannote[2376].end 13684.45784375
transcript.pyannote[2377].speaker SPEAKER_28
transcript.pyannote[2377].start 13685.03159375
transcript.pyannote[2377].end 13686.48284375
transcript.pyannote[2378].speaker SPEAKER_28
transcript.pyannote[2378].start 13686.97221875
transcript.pyannote[2378].end 13689.11534375
transcript.pyannote[2379].speaker SPEAKER_28
transcript.pyannote[2379].start 13689.72284375
transcript.pyannote[2379].end 13691.73096875
transcript.pyannote[2380].speaker SPEAKER_28
transcript.pyannote[2380].start 13692.37221875
transcript.pyannote[2380].end 13692.96284375
transcript.pyannote[2381].speaker SPEAKER_28
transcript.pyannote[2381].start 13693.30034375
transcript.pyannote[2381].end 13694.12721875
transcript.pyannote[2382].speaker SPEAKER_28
transcript.pyannote[2382].start 13694.75159375
transcript.pyannote[2382].end 13696.35471875
transcript.pyannote[2383].speaker SPEAKER_22
transcript.pyannote[2383].start 13696.35471875
transcript.pyannote[2383].end 13696.62471875
transcript.pyannote[2384].speaker SPEAKER_28
transcript.pyannote[2384].start 13696.62471875
transcript.pyannote[2384].end 13697.72159375
transcript.pyannote[2385].speaker SPEAKER_28
transcript.pyannote[2385].start 13698.27846875
transcript.pyannote[2385].end 13699.94909375
transcript.pyannote[2386].speaker SPEAKER_28
transcript.pyannote[2386].start 13700.77596875
transcript.pyannote[2386].end 13707.99846875
transcript.pyannote[2387].speaker SPEAKER_28
transcript.pyannote[2387].start 13708.43721875
transcript.pyannote[2387].end 13713.65159375
transcript.pyannote[2388].speaker SPEAKER_28
transcript.pyannote[2388].start 13714.14096875
transcript.pyannote[2388].end 13717.61721875
transcript.pyannote[2389].speaker SPEAKER_28
transcript.pyannote[2389].start 13718.71409375
transcript.pyannote[2389].end 13719.69284375
transcript.pyannote[2390].speaker SPEAKER_28
transcript.pyannote[2390].start 13720.24971875
transcript.pyannote[2390].end 13723.08471875
transcript.pyannote[2391].speaker SPEAKER_28
transcript.pyannote[2391].start 13723.27034375
transcript.pyannote[2391].end 13723.94534375
transcript.pyannote[2392].speaker SPEAKER_28
transcript.pyannote[2392].start 13725.41346875
transcript.pyannote[2392].end 13725.93659375
transcript.pyannote[2393].speaker SPEAKER_28
transcript.pyannote[2393].start 13726.79721875
transcript.pyannote[2393].end 13727.82659375
transcript.pyannote[2394].speaker SPEAKER_28
transcript.pyannote[2394].start 13728.48471875
transcript.pyannote[2394].end 13729.41284375
transcript.pyannote[2395].speaker SPEAKER_28
transcript.pyannote[2395].start 13730.54346875
transcript.pyannote[2395].end 13731.11721875
transcript.pyannote[2396].speaker SPEAKER_28
transcript.pyannote[2396].start 13731.62346875
transcript.pyannote[2396].end 13731.92721875
transcript.pyannote[2397].speaker SPEAKER_28
transcript.pyannote[2397].start 13732.45034375
transcript.pyannote[2397].end 13734.30659375
transcript.pyannote[2398].speaker SPEAKER_28
transcript.pyannote[2398].start 13734.77909375
transcript.pyannote[2398].end 13736.26409375
transcript.pyannote[2399].speaker SPEAKER_28
transcript.pyannote[2399].start 13736.97284375
transcript.pyannote[2399].end 13742.08596875
transcript.pyannote[2400].speaker SPEAKER_28
transcript.pyannote[2400].start 13742.32221875
transcript.pyannote[2400].end 13742.96346875
transcript.pyannote[2401].speaker SPEAKER_11
transcript.pyannote[2401].start 13742.96346875
transcript.pyannote[2401].end 13743.26721875
transcript.pyannote[2402].speaker SPEAKER_28
transcript.pyannote[2402].start 13743.58784375
transcript.pyannote[2402].end 13748.21159375
transcript.pyannote[2403].speaker SPEAKER_28
transcript.pyannote[2403].start 13748.34659375
transcript.pyannote[2403].end 13750.47284375
transcript.pyannote[2404].speaker SPEAKER_28
transcript.pyannote[2404].start 13750.77659375
transcript.pyannote[2404].end 13752.80159375
transcript.pyannote[2405].speaker SPEAKER_28
transcript.pyannote[2405].start 13753.39221875
transcript.pyannote[2405].end 13756.59846875
transcript.pyannote[2406].speaker SPEAKER_28
transcript.pyannote[2406].start 13757.22284375
transcript.pyannote[2406].end 13762.30221875
transcript.pyannote[2407].speaker SPEAKER_28
transcript.pyannote[2407].start 13763.39909375
transcript.pyannote[2407].end 13763.85471875
transcript.pyannote[2408].speaker SPEAKER_28
transcript.pyannote[2408].start 13764.96846875
transcript.pyannote[2408].end 13766.09909375
transcript.pyannote[2409].speaker SPEAKER_28
transcript.pyannote[2409].start 13767.12846875
transcript.pyannote[2409].end 13769.60909375
transcript.pyannote[2410].speaker SPEAKER_28
transcript.pyannote[2410].start 13769.91284375
transcript.pyannote[2410].end 13778.80596875
transcript.pyannote[2411].speaker SPEAKER_10
transcript.pyannote[2411].start 13778.01284375
transcript.pyannote[2411].end 13778.60346875
transcript.pyannote[2412].speaker SPEAKER_10
transcript.pyannote[2412].start 13778.80596875
transcript.pyannote[2412].end 13788.91409375
transcript.pyannote[2413].speaker SPEAKER_16
transcript.pyannote[2413].start 13795.73159375
transcript.pyannote[2413].end 13799.44409375
transcript.pyannote[2414].speaker SPEAKER_16
transcript.pyannote[2414].start 13802.83596875
transcript.pyannote[2414].end 13843.87596875
transcript.pyannote[2415].speaker SPEAKER_16
transcript.pyannote[2415].start 13844.12909375
transcript.pyannote[2415].end 13856.29596875
transcript.pyannote[2416].speaker SPEAKER_16
transcript.pyannote[2416].start 13856.65034375
transcript.pyannote[2416].end 13869.27284375
transcript.pyannote[2417].speaker SPEAKER_16
transcript.pyannote[2417].start 13869.96471875
transcript.pyannote[2417].end 13884.12284375
transcript.pyannote[2418].speaker SPEAKER_05
transcript.pyannote[2418].start 13882.28346875
transcript.pyannote[2418].end 13882.60409375
transcript.pyannote[2419].speaker SPEAKER_16
transcript.pyannote[2419].start 13884.37596875
transcript.pyannote[2419].end 13956.92159375
transcript.pyannote[2420].speaker SPEAKER_13
transcript.pyannote[2420].start 13957.78221875
transcript.pyannote[2420].end 13957.79909375
transcript.pyannote[2421].speaker SPEAKER_16
transcript.pyannote[2421].start 13957.79909375
transcript.pyannote[2421].end 13957.81596875
transcript.pyannote[2422].speaker SPEAKER_13
transcript.pyannote[2422].start 13957.81596875
transcript.pyannote[2422].end 13958.03534375
transcript.pyannote[2423].speaker SPEAKER_16
transcript.pyannote[2423].start 13958.03534375
transcript.pyannote[2423].end 13994.67096875
transcript.pyannote[2424].speaker SPEAKER_16
transcript.pyannote[2424].start 13995.43034375
transcript.pyannote[2424].end 14060.14596875
transcript.pyannote[2425].speaker SPEAKER_13
transcript.pyannote[2425].start 14060.78721875
transcript.pyannote[2425].end 14084.29409375
transcript.pyannote[2426].speaker SPEAKER_16
transcript.pyannote[2426].start 14067.21659375
transcript.pyannote[2426].end 14068.04346875
transcript.pyannote[2427].speaker SPEAKER_16
transcript.pyannote[2427].start 14079.99096875
transcript.pyannote[2427].end 14080.32846875
transcript.pyannote[2428].speaker SPEAKER_16
transcript.pyannote[2428].start 14083.31534375
transcript.pyannote[2428].end 14084.64846875
transcript.pyannote[2429].speaker SPEAKER_13
transcript.pyannote[2429].start 14084.64846875
transcript.pyannote[2429].end 14084.96909375
transcript.pyannote[2430].speaker SPEAKER_16
transcript.pyannote[2430].start 14084.96909375
transcript.pyannote[2430].end 14085.22221875
transcript.pyannote[2431].speaker SPEAKER_13
transcript.pyannote[2431].start 14085.22221875
transcript.pyannote[2431].end 14085.32346875
transcript.pyannote[2432].speaker SPEAKER_16
transcript.pyannote[2432].start 14085.32346875
transcript.pyannote[2432].end 14085.37409375
transcript.pyannote[2433].speaker SPEAKER_13
transcript.pyannote[2433].start 14085.37409375
transcript.pyannote[2433].end 14085.59346875
transcript.pyannote[2434].speaker SPEAKER_16
transcript.pyannote[2434].start 14085.59346875
transcript.pyannote[2434].end 14122.68471875
transcript.pyannote[2435].speaker SPEAKER_13
transcript.pyannote[2435].start 14086.52159375
transcript.pyannote[2435].end 14088.31034375
transcript.pyannote[2436].speaker SPEAKER_13
transcript.pyannote[2436].start 14089.77846875
transcript.pyannote[2436].end 14089.86284375
transcript.pyannote[2437].speaker SPEAKER_13
transcript.pyannote[2437].start 14092.49534375
transcript.pyannote[2437].end 14093.87909375
transcript.pyannote[2438].speaker SPEAKER_00
transcript.pyannote[2438].start 14093.87909375
transcript.pyannote[2438].end 14093.89596875
transcript.pyannote[2439].speaker SPEAKER_03
transcript.pyannote[2439].start 14095.34721875
transcript.pyannote[2439].end 14095.36409375
transcript.pyannote[2440].speaker SPEAKER_13
transcript.pyannote[2440].start 14095.36409375
transcript.pyannote[2440].end 14096.35971875
transcript.pyannote[2441].speaker SPEAKER_13
transcript.pyannote[2441].start 14097.60846875
transcript.pyannote[2441].end 14097.89534375
transcript.pyannote[2442].speaker SPEAKER_10
transcript.pyannote[2442].start 14120.28846875
transcript.pyannote[2442].end 14120.32221875
transcript.pyannote[2443].speaker SPEAKER_22
transcript.pyannote[2443].start 14120.32221875
transcript.pyannote[2443].end 14120.60909375
transcript.pyannote[2444].speaker SPEAKER_10
transcript.pyannote[2444].start 14120.60909375
transcript.pyannote[2444].end 14122.00971875
transcript.pyannote[2445].speaker SPEAKER_16
transcript.pyannote[2445].start 14123.00534375
transcript.pyannote[2445].end 14123.03909375
transcript.pyannote[2446].speaker SPEAKER_10
transcript.pyannote[2446].start 14123.03909375
transcript.pyannote[2446].end 14130.26159375
transcript.pyannote[2447].speaker SPEAKER_10
transcript.pyannote[2447].start 14130.56534375
transcript.pyannote[2447].end 14134.22721875
transcript.pyannote[2448].speaker SPEAKER_10
transcript.pyannote[2448].start 14134.58159375
transcript.pyannote[2448].end 14138.31096875
transcript.pyannote[2449].speaker SPEAKER_10
transcript.pyannote[2449].start 14138.56409375
transcript.pyannote[2449].end 14142.56346875
transcript.pyannote[2450].speaker SPEAKER_10
transcript.pyannote[2450].start 14142.74909375
transcript.pyannote[2450].end 14147.05221875
transcript.pyannote[2451].speaker SPEAKER_10
transcript.pyannote[2451].start 14147.32221875
transcript.pyannote[2451].end 14149.58346875
transcript.pyannote[2452].speaker SPEAKER_25
transcript.pyannote[2452].start 14155.94534375
transcript.pyannote[2452].end 14157.31221875
transcript.pyannote[2453].speaker SPEAKER_10
transcript.pyannote[2453].start 14157.76784375
transcript.pyannote[2453].end 14158.64534375
transcript.pyannote[2454].speaker SPEAKER_25
transcript.pyannote[2454].start 14159.21909375
transcript.pyannote[2454].end 14160.13034375
transcript.pyannote[2455].speaker SPEAKER_25
transcript.pyannote[2455].start 14160.55221875
transcript.pyannote[2455].end 14161.91909375
transcript.pyannote[2456].speaker SPEAKER_25
transcript.pyannote[2456].start 14162.18909375
transcript.pyannote[2456].end 14162.66159375
transcript.pyannote[2457].speaker SPEAKER_10
transcript.pyannote[2457].start 14162.91471875
transcript.pyannote[2457].end 14164.56846875
transcript.pyannote[2458].speaker SPEAKER_25
transcript.pyannote[2458].start 14163.06659375
transcript.pyannote[2458].end 14163.55596875
transcript.pyannote[2459].speaker SPEAKER_10
transcript.pyannote[2459].start 14167.74096875
transcript.pyannote[2459].end 14168.01096875
transcript.pyannote[2460].speaker SPEAKER_25
transcript.pyannote[2460].start 14169.91784375
transcript.pyannote[2460].end 14170.60971875
transcript.pyannote[2461].speaker SPEAKER_11
transcript.pyannote[2461].start 14171.08221875
transcript.pyannote[2461].end 14171.09909375
transcript.pyannote[2462].speaker SPEAKER_10
transcript.pyannote[2462].start 14171.09909375
transcript.pyannote[2462].end 14171.23409375
transcript.pyannote[2463].speaker SPEAKER_11
transcript.pyannote[2463].start 14171.23409375
transcript.pyannote[2463].end 14171.40284375
transcript.pyannote[2464].speaker SPEAKER_25
transcript.pyannote[2464].start 14171.79096875
transcript.pyannote[2464].end 14175.35159375
transcript.pyannote[2465].speaker SPEAKER_25
transcript.pyannote[2465].start 14175.57096875
transcript.pyannote[2465].end 14176.43159375
transcript.pyannote[2466].speaker SPEAKER_25
transcript.pyannote[2466].start 14176.97159375
transcript.pyannote[2466].end 14184.07596875
transcript.pyannote[2467].speaker SPEAKER_25
transcript.pyannote[2467].start 14184.14346875
transcript.pyannote[2467].end 14256.18284375
transcript.pyannote[2468].speaker SPEAKER_25
transcript.pyannote[2468].start 14256.36846875
transcript.pyannote[2468].end 14257.36409375
transcript.pyannote[2469].speaker SPEAKER_25
transcript.pyannote[2469].start 14257.58346875
transcript.pyannote[2469].end 14260.45221875
transcript.pyannote[2470].speaker SPEAKER_25
transcript.pyannote[2470].start 14260.70534375
transcript.pyannote[2470].end 14274.81284375
transcript.pyannote[2471].speaker SPEAKER_25
transcript.pyannote[2471].start 14275.18409375
transcript.pyannote[2471].end 14276.92221875
transcript.pyannote[2472].speaker SPEAKER_25
transcript.pyannote[2472].start 14277.56346875
transcript.pyannote[2472].end 14278.10346875
transcript.pyannote[2473].speaker SPEAKER_25
transcript.pyannote[2473].start 14278.69409375
transcript.pyannote[2473].end 14288.32971875
transcript.pyannote[2474].speaker SPEAKER_13
transcript.pyannote[2474].start 14289.05534375
transcript.pyannote[2474].end 14294.70846875
transcript.pyannote[2475].speaker SPEAKER_13
transcript.pyannote[2475].start 14295.50159375
transcript.pyannote[2475].end 14296.59846875
transcript.pyannote[2476].speaker SPEAKER_13
transcript.pyannote[2476].start 14296.86846875
transcript.pyannote[2476].end 14324.29034375
transcript.pyannote[2477].speaker SPEAKER_13
transcript.pyannote[2477].start 14324.54346875
transcript.pyannote[2477].end 14326.12971875
transcript.pyannote[2478].speaker SPEAKER_13
transcript.pyannote[2478].start 14326.34909375
transcript.pyannote[2478].end 14337.97596875
transcript.pyannote[2479].speaker SPEAKER_25
transcript.pyannote[2479].start 14338.14471875
transcript.pyannote[2479].end 14348.92784375
transcript.pyannote[2480].speaker SPEAKER_25
transcript.pyannote[2480].start 14349.11346875
transcript.pyannote[2480].end 14371.96221875
transcript.pyannote[2481].speaker SPEAKER_25
transcript.pyannote[2481].start 14372.02971875
transcript.pyannote[2481].end 14415.87096875
transcript.pyannote[2482].speaker SPEAKER_25
transcript.pyannote[2482].start 14416.30971875
transcript.pyannote[2482].end 14441.74034375
transcript.pyannote[2483].speaker SPEAKER_25
transcript.pyannote[2483].start 14442.19596875
transcript.pyannote[2483].end 14459.29034375
transcript.pyannote[2484].speaker SPEAKER_25
transcript.pyannote[2484].start 14460.20159375
transcript.pyannote[2484].end 14460.99471875
transcript.pyannote[2485].speaker SPEAKER_03
transcript.pyannote[2485].start 14463.35721875
transcript.pyannote[2485].end 14466.49596875
transcript.pyannote[2486].speaker SPEAKER_03
transcript.pyannote[2486].start 14466.71534375
transcript.pyannote[2486].end 14476.57034375
transcript.pyannote[2487].speaker SPEAKER_25
transcript.pyannote[2487].start 14476.23284375
transcript.pyannote[2487].end 14482.89846875
transcript.pyannote[2488].speaker SPEAKER_25
transcript.pyannote[2488].start 14483.10096875
transcript.pyannote[2488].end 14483.64096875
transcript.pyannote[2489].speaker SPEAKER_03
transcript.pyannote[2489].start 14483.91096875
transcript.pyannote[2489].end 14492.39909375
transcript.pyannote[2490].speaker SPEAKER_25
transcript.pyannote[2490].start 14489.91846875
transcript.pyannote[2490].end 14502.59159375
transcript.pyannote[2491].speaker SPEAKER_25
transcript.pyannote[2491].start 14502.64221875
transcript.pyannote[2491].end 14505.40971875
transcript.pyannote[2492].speaker SPEAKER_25
transcript.pyannote[2492].start 14505.96659375
transcript.pyannote[2492].end 14558.09346875
transcript.pyannote[2493].speaker SPEAKER_25
transcript.pyannote[2493].start 14558.44784375
transcript.pyannote[2493].end 14562.04221875
transcript.pyannote[2494].speaker SPEAKER_25
transcript.pyannote[2494].start 14562.51471875
transcript.pyannote[2494].end 14601.90096875
transcript.pyannote[2495].speaker SPEAKER_00
transcript.pyannote[2495].start 14592.33284375
transcript.pyannote[2495].end 14592.51846875
transcript.pyannote[2496].speaker SPEAKER_00
transcript.pyannote[2496].start 14593.96971875
transcript.pyannote[2496].end 14594.00346875
transcript.pyannote[2497].speaker SPEAKER_13
transcript.pyannote[2497].start 14594.00346875
transcript.pyannote[2497].end 14594.02034375
transcript.pyannote[2498].speaker SPEAKER_11
transcript.pyannote[2498].start 14594.02034375
transcript.pyannote[2498].end 14594.03721875
transcript.pyannote[2499].speaker SPEAKER_13
transcript.pyannote[2499].start 14594.03721875
transcript.pyannote[2499].end 14594.45909375
transcript.pyannote[2500].speaker SPEAKER_11
transcript.pyannote[2500].start 14594.45909375
transcript.pyannote[2500].end 14594.50971875
transcript.pyannote[2501].speaker SPEAKER_00
transcript.pyannote[2501].start 14594.50971875
transcript.pyannote[2501].end 14594.54346875
transcript.pyannote[2502].speaker SPEAKER_10
transcript.pyannote[2502].start 14600.16284375
transcript.pyannote[2502].end 14602.20471875
transcript.pyannote[2503].speaker SPEAKER_13
transcript.pyannote[2503].start 14602.20471875
transcript.pyannote[2503].end 14602.59284375
transcript.pyannote[2504].speaker SPEAKER_25
transcript.pyannote[2504].start 14602.57596875
transcript.pyannote[2504].end 14603.43659375
transcript.pyannote[2505].speaker SPEAKER_10
transcript.pyannote[2505].start 14602.59284375
transcript.pyannote[2505].end 14603.20034375
transcript.pyannote[2506].speaker SPEAKER_10
transcript.pyannote[2506].start 14604.33096875
transcript.pyannote[2506].end 14610.97971875
transcript.pyannote[2507].speaker SPEAKER_10
transcript.pyannote[2507].start 14611.38471875
transcript.pyannote[2507].end 14615.04659375
transcript.pyannote[2508].speaker SPEAKER_10
transcript.pyannote[2508].start 14615.41784375
transcript.pyannote[2508].end 14619.29909375
transcript.pyannote[2509].speaker SPEAKER_10
transcript.pyannote[2509].start 14619.53534375
transcript.pyannote[2509].end 14621.44221875
transcript.pyannote[2510].speaker SPEAKER_22
transcript.pyannote[2510].start 14627.73659375
transcript.pyannote[2510].end 14628.29346875
transcript.pyannote[2511].speaker SPEAKER_16
transcript.pyannote[2511].start 14630.55471875
transcript.pyannote[2511].end 14634.08159375
transcript.pyannote[2512].speaker SPEAKER_16
transcript.pyannote[2512].start 14637.54096875
transcript.pyannote[2512].end 14675.23971875
transcript.pyannote[2513].speaker SPEAKER_16
transcript.pyannote[2513].start 14675.91471875
transcript.pyannote[2513].end 14678.59784375
transcript.pyannote[2514].speaker SPEAKER_16
transcript.pyannote[2514].start 14678.69909375
transcript.pyannote[2514].end 14696.09721875
transcript.pyannote[2515].speaker SPEAKER_16
transcript.pyannote[2515].start 14696.48534375
transcript.pyannote[2515].end 14727.85596875
transcript.pyannote[2516].speaker SPEAKER_16
transcript.pyannote[2516].start 14728.69971875
transcript.pyannote[2516].end 14731.82159375
transcript.pyannote[2517].speaker SPEAKER_16
transcript.pyannote[2517].start 14732.14221875
transcript.pyannote[2517].end 14813.68221875
transcript.pyannote[2518].speaker SPEAKER_16
transcript.pyannote[2518].start 14814.01971875
transcript.pyannote[2518].end 14829.24096875
transcript.pyannote[2519].speaker SPEAKER_16
transcript.pyannote[2519].start 14830.94534375
transcript.pyannote[2519].end 14857.10159375
transcript.pyannote[2520].speaker SPEAKER_16
transcript.pyannote[2520].start 14857.52346875
transcript.pyannote[2520].end 14857.87784375
transcript.pyannote[2521].speaker SPEAKER_16
transcript.pyannote[2521].start 14858.48534375
transcript.pyannote[2521].end 14862.19784375
transcript.pyannote[2522].speaker SPEAKER_16
transcript.pyannote[2522].start 14862.68721875
transcript.pyannote[2522].end 14876.32221875
transcript.pyannote[2523].speaker SPEAKER_16
transcript.pyannote[2523].start 14876.76096875
transcript.pyannote[2523].end 14889.07971875
transcript.pyannote[2524].speaker SPEAKER_16
transcript.pyannote[2524].start 14889.60284375
transcript.pyannote[2524].end 14890.49721875
transcript.pyannote[2525].speaker SPEAKER_16
transcript.pyannote[2525].start 14891.10471875
transcript.pyannote[2525].end 14903.96346875
transcript.pyannote[2526].speaker SPEAKER_16
transcript.pyannote[2526].start 14904.30096875
transcript.pyannote[2526].end 14916.72096875
transcript.pyannote[2527].speaker SPEAKER_16
transcript.pyannote[2527].start 14917.21034375
transcript.pyannote[2527].end 14917.69971875
transcript.pyannote[2528].speaker SPEAKER_16
transcript.pyannote[2528].start 14918.47596875
transcript.pyannote[2528].end 14920.41659375
transcript.pyannote[2529].speaker SPEAKER_16
transcript.pyannote[2529].start 14920.68659375
transcript.pyannote[2529].end 14923.16721875
transcript.pyannote[2530].speaker SPEAKER_16
transcript.pyannote[2530].start 14924.21346875
transcript.pyannote[2530].end 14925.71534375
transcript.pyannote[2531].speaker SPEAKER_16
transcript.pyannote[2531].start 14925.78284375
transcript.pyannote[2531].end 14929.07346875
transcript.pyannote[2532].speaker SPEAKER_16
transcript.pyannote[2532].start 14929.32659375
transcript.pyannote[2532].end 14941.99971875
transcript.pyannote[2533].speaker SPEAKER_16
transcript.pyannote[2533].start 14942.10096875
transcript.pyannote[2533].end 14944.48034375
transcript.pyannote[2534].speaker SPEAKER_16
transcript.pyannote[2534].start 14945.13846875
transcript.pyannote[2534].end 14945.86409375
transcript.pyannote[2535].speaker SPEAKER_16
transcript.pyannote[2535].start 14946.48846875
transcript.pyannote[2535].end 14964.32534375
transcript.pyannote[2536].speaker SPEAKER_16
transcript.pyannote[2536].start 14964.83159375
transcript.pyannote[2536].end 14976.20534375
transcript.pyannote[2537].speaker SPEAKER_16
transcript.pyannote[2537].start 14976.59346875
transcript.pyannote[2537].end 14981.50409375
transcript.pyannote[2538].speaker SPEAKER_16
transcript.pyannote[2538].start 14981.95971875
transcript.pyannote[2538].end 14985.55409375
transcript.pyannote[2539].speaker SPEAKER_16
transcript.pyannote[2539].start 14985.87471875
transcript.pyannote[2539].end 15007.62659375
transcript.pyannote[2540].speaker SPEAKER_16
transcript.pyannote[2540].start 15007.76159375
transcript.pyannote[2540].end 15012.99284375
transcript.pyannote[2541].speaker SPEAKER_16
transcript.pyannote[2541].start 15013.43159375
transcript.pyannote[2541].end 15014.10659375
transcript.pyannote[2542].speaker SPEAKER_16
transcript.pyannote[2542].start 15014.41034375
transcript.pyannote[2542].end 15015.81096875
transcript.pyannote[2543].speaker SPEAKER_16
transcript.pyannote[2543].start 15016.24971875
transcript.pyannote[2543].end 15044.11034375
transcript.pyannote[2544].speaker SPEAKER_16
transcript.pyannote[2544].start 15044.90346875
transcript.pyannote[2544].end 15096.76034375
transcript.pyannote[2545].speaker SPEAKER_16
transcript.pyannote[2545].start 15097.01346875
transcript.pyannote[2545].end 15122.41034375
transcript.pyannote[2546].speaker SPEAKER_16
transcript.pyannote[2546].start 15123.54096875
transcript.pyannote[2546].end 15151.58721875
transcript.pyannote[2547].speaker SPEAKER_16
transcript.pyannote[2547].start 15151.78971875
transcript.pyannote[2547].end 15189.64034375
transcript.pyannote[2548].speaker SPEAKER_16
transcript.pyannote[2548].start 15190.01159375
transcript.pyannote[2548].end 15207.51096875
transcript.pyannote[2549].speaker SPEAKER_16
transcript.pyannote[2549].start 15207.74721875
transcript.pyannote[2549].end 15245.78346875
transcript.pyannote[2550].speaker SPEAKER_13
transcript.pyannote[2550].start 15244.46721875
transcript.pyannote[2550].end 15265.17284375
transcript.pyannote[2551].speaker SPEAKER_06
transcript.pyannote[2551].start 15253.88346875
transcript.pyannote[2551].end 15254.23784375
transcript.pyannote[2552].speaker SPEAKER_16
transcript.pyannote[2552].start 15259.03034375
transcript.pyannote[2552].end 15260.19471875
transcript.pyannote[2553].speaker SPEAKER_16
transcript.pyannote[2553].start 15262.81034375
transcript.pyannote[2553].end 15266.96159375
transcript.pyannote[2554].speaker SPEAKER_13
transcript.pyannote[2554].start 15265.71284375
transcript.pyannote[2554].end 15269.13846875
transcript.pyannote[2555].speaker SPEAKER_16
transcript.pyannote[2555].start 15268.32846875
transcript.pyannote[2555].end 15271.82159375
transcript.pyannote[2556].speaker SPEAKER_13
transcript.pyannote[2556].start 15269.89784375
transcript.pyannote[2556].end 15270.50534375
transcript.pyannote[2557].speaker SPEAKER_16
transcript.pyannote[2557].start 15271.97346875
transcript.pyannote[2557].end 15275.80409375
transcript.pyannote[2558].speaker SPEAKER_13
transcript.pyannote[2558].start 15273.69471875
transcript.pyannote[2558].end 15283.53284375
transcript.pyannote[2559].speaker SPEAKER_13
transcript.pyannote[2559].start 15283.81971875
transcript.pyannote[2559].end 15287.32971875
transcript.pyannote[2560].speaker SPEAKER_16
transcript.pyannote[2560].start 15283.88721875
transcript.pyannote[2560].end 15284.27534375
transcript.pyannote[2561].speaker SPEAKER_16
transcript.pyannote[2561].start 15287.17784375
transcript.pyannote[2561].end 15308.60909375
transcript.pyannote[2562].speaker SPEAKER_13
transcript.pyannote[2562].start 15288.03846875
transcript.pyannote[2562].end 15292.03784375
transcript.pyannote[2563].speaker SPEAKER_22
transcript.pyannote[2563].start 15292.32471875
transcript.pyannote[2563].end 15292.35846875
transcript.pyannote[2564].speaker SPEAKER_13
transcript.pyannote[2564].start 15292.35846875
transcript.pyannote[2564].end 15292.51034375
transcript.pyannote[2565].speaker SPEAKER_13
transcript.pyannote[2565].start 15307.52909375
transcript.pyannote[2565].end 15313.43534375
transcript.pyannote[2566].speaker SPEAKER_16
transcript.pyannote[2566].start 15312.52409375
transcript.pyannote[2566].end 15312.55784375
transcript.pyannote[2567].speaker SPEAKER_10
transcript.pyannote[2567].start 15312.55784375
transcript.pyannote[2567].end 15313.26659375
transcript.pyannote[2568].speaker SPEAKER_10
transcript.pyannote[2568].start 15314.56596875
transcript.pyannote[2568].end 15318.56534375
transcript.pyannote[2569].speaker SPEAKER_30
transcript.pyannote[2569].start 15330.71534375
transcript.pyannote[2569].end 15332.92596875
transcript.pyannote[2570].speaker SPEAKER_10
transcript.pyannote[2570].start 15332.92596875
transcript.pyannote[2570].end 15333.87096875
transcript.pyannote[2571].speaker SPEAKER_11
transcript.pyannote[2571].start 15339.57471875
transcript.pyannote[2571].end 15340.40159375
transcript.pyannote[2572].speaker SPEAKER_30
transcript.pyannote[2572].start 15340.53659375
transcript.pyannote[2572].end 15341.16096875
transcript.pyannote[2573].speaker SPEAKER_30
transcript.pyannote[2573].start 15341.44784375
transcript.pyannote[2573].end 15342.39284375
transcript.pyannote[2574].speaker SPEAKER_30
transcript.pyannote[2574].start 15343.16909375
transcript.pyannote[2574].end 15343.99596875
transcript.pyannote[2575].speaker SPEAKER_13
transcript.pyannote[2575].start 15343.74284375
transcript.pyannote[2575].end 15343.75971875
transcript.pyannote[2576].speaker SPEAKER_11
transcript.pyannote[2576].start 15343.75971875
transcript.pyannote[2576].end 15343.79346875
transcript.pyannote[2577].speaker SPEAKER_13
transcript.pyannote[2577].start 15343.79346875
transcript.pyannote[2577].end 15344.02971875
transcript.pyannote[2578].speaker SPEAKER_30
transcript.pyannote[2578].start 15344.02971875
transcript.pyannote[2578].end 15344.06346875
transcript.pyannote[2579].speaker SPEAKER_13
transcript.pyannote[2579].start 15344.06346875
transcript.pyannote[2579].end 15344.08034375
transcript.pyannote[2580].speaker SPEAKER_30
transcript.pyannote[2580].start 15344.08034375
transcript.pyannote[2580].end 15344.53596875
transcript.pyannote[2581].speaker SPEAKER_30
transcript.pyannote[2581].start 15344.58659375
transcript.pyannote[2581].end 15344.62034375
transcript.pyannote[2582].speaker SPEAKER_11
transcript.pyannote[2582].start 15344.62034375
transcript.pyannote[2582].end 15344.70471875
transcript.pyannote[2583].speaker SPEAKER_13
transcript.pyannote[2583].start 15344.70471875
transcript.pyannote[2583].end 15346.59471875
transcript.pyannote[2584].speaker SPEAKER_30
transcript.pyannote[2584].start 15345.22784375
transcript.pyannote[2584].end 15345.63284375
transcript.pyannote[2585].speaker SPEAKER_11
transcript.pyannote[2585].start 15346.59471875
transcript.pyannote[2585].end 15346.64534375
transcript.pyannote[2586].speaker SPEAKER_30
transcript.pyannote[2586].start 15346.59471875
transcript.pyannote[2586].end 15346.64534375
transcript.pyannote[2587].speaker SPEAKER_13
transcript.pyannote[2587].start 15346.64534375
transcript.pyannote[2587].end 15346.93221875
transcript.pyannote[2588].speaker SPEAKER_11
transcript.pyannote[2588].start 15346.67909375
transcript.pyannote[2588].end 15347.33721875
transcript.pyannote[2589].speaker SPEAKER_30
transcript.pyannote[2589].start 15346.93221875
transcript.pyannote[2589].end 15350.89784375
transcript.pyannote[2590].speaker SPEAKER_13
transcript.pyannote[2590].start 15347.33721875
transcript.pyannote[2590].end 15347.35409375
transcript.pyannote[2591].speaker SPEAKER_11
transcript.pyannote[2591].start 15347.35409375
transcript.pyannote[2591].end 15348.01221875
transcript.pyannote[2592].speaker SPEAKER_11
transcript.pyannote[2592].start 15348.56909375
transcript.pyannote[2592].end 15349.09221875
transcript.pyannote[2593].speaker SPEAKER_13
transcript.pyannote[2593].start 15349.09221875
transcript.pyannote[2593].end 15349.15971875
transcript.pyannote[2594].speaker SPEAKER_22
transcript.pyannote[2594].start 15349.15971875
transcript.pyannote[2594].end 15349.21034375
transcript.pyannote[2595].speaker SPEAKER_11
transcript.pyannote[2595].start 15351.18471875
transcript.pyannote[2595].end 15351.25221875
transcript.pyannote[2596].speaker SPEAKER_22
transcript.pyannote[2596].start 15351.25221875
transcript.pyannote[2596].end 15352.90596875
transcript.pyannote[2597].speaker SPEAKER_11
transcript.pyannote[2597].start 15352.90596875
transcript.pyannote[2597].end 15352.92284375
transcript.pyannote[2598].speaker SPEAKER_30
transcript.pyannote[2598].start 15353.04096875
transcript.pyannote[2598].end 15357.47909375
transcript.pyannote[2599].speaker SPEAKER_30
transcript.pyannote[2599].start 15357.68159375
transcript.pyannote[2599].end 15360.80346875
transcript.pyannote[2600].speaker SPEAKER_30
transcript.pyannote[2600].start 15360.85409375
transcript.pyannote[2600].end 15360.87096875
transcript.pyannote[2601].speaker SPEAKER_30
transcript.pyannote[2601].start 15361.03971875
transcript.pyannote[2601].end 15363.45284375
transcript.pyannote[2602].speaker SPEAKER_13
transcript.pyannote[2602].start 15364.60034375
transcript.pyannote[2602].end 15366.35534375
transcript.pyannote[2603].speaker SPEAKER_30
transcript.pyannote[2603].start 15366.60846875
transcript.pyannote[2603].end 15367.14846875
transcript.pyannote[2604].speaker SPEAKER_13
transcript.pyannote[2604].start 15366.77721875
transcript.pyannote[2604].end 15367.67159375
transcript.pyannote[2605].speaker SPEAKER_30
transcript.pyannote[2605].start 15367.67159375
transcript.pyannote[2605].end 15372.80159375
transcript.pyannote[2606].speaker SPEAKER_22
transcript.pyannote[2606].start 15370.67534375
transcript.pyannote[2606].end 15370.69221875
transcript.pyannote[2607].speaker SPEAKER_13
transcript.pyannote[2607].start 15370.69221875
transcript.pyannote[2607].end 15370.96221875
transcript.pyannote[2608].speaker SPEAKER_22
transcript.pyannote[2608].start 15370.96221875
transcript.pyannote[2608].end 15372.97034375
transcript.pyannote[2609].speaker SPEAKER_30
transcript.pyannote[2609].start 15373.84784375
transcript.pyannote[2609].end 15407.00721875
transcript.pyannote[2610].speaker SPEAKER_22
transcript.pyannote[2610].start 15375.48471875
transcript.pyannote[2610].end 15376.19346875
transcript.pyannote[2611].speaker SPEAKER_00
transcript.pyannote[2611].start 15390.26721875
transcript.pyannote[2611].end 15390.48659375
transcript.pyannote[2612].speaker SPEAKER_30
transcript.pyannote[2612].start 15407.37846875
transcript.pyannote[2612].end 15407.73284375
transcript.pyannote[2613].speaker SPEAKER_30
transcript.pyannote[2613].start 15407.91846875
transcript.pyannote[2613].end 15409.65659375
transcript.pyannote[2614].speaker SPEAKER_30
transcript.pyannote[2614].start 15409.79159375
transcript.pyannote[2614].end 15411.17534375
transcript.pyannote[2615].speaker SPEAKER_13
transcript.pyannote[2615].start 15412.87971875
transcript.pyannote[2615].end 15424.70909375
transcript.pyannote[2616].speaker SPEAKER_30
transcript.pyannote[2616].start 15414.66846875
transcript.pyannote[2616].end 15415.10721875
transcript.pyannote[2617].speaker SPEAKER_22
transcript.pyannote[2617].start 15415.10721875
transcript.pyannote[2617].end 15415.12409375
transcript.pyannote[2618].speaker SPEAKER_30
transcript.pyannote[2618].start 15418.44846875
transcript.pyannote[2618].end 15418.71846875
transcript.pyannote[2619].speaker SPEAKER_22
transcript.pyannote[2619].start 15419.44409375
transcript.pyannote[2619].end 15419.81534375
transcript.pyannote[2620].speaker SPEAKER_30
transcript.pyannote[2620].start 15424.52346875
transcript.pyannote[2620].end 15424.69221875
transcript.pyannote[2621].speaker SPEAKER_30
transcript.pyannote[2621].start 15424.70909375
transcript.pyannote[2621].end 15432.84284375
transcript.pyannote[2622].speaker SPEAKER_13
transcript.pyannote[2622].start 15425.63721875
transcript.pyannote[2622].end 15425.67096875
transcript.pyannote[2623].speaker SPEAKER_30
transcript.pyannote[2623].start 15433.33221875
transcript.pyannote[2623].end 15435.74534375
transcript.pyannote[2624].speaker SPEAKER_22
transcript.pyannote[2624].start 15435.74534375
transcript.pyannote[2624].end 15436.42034375
transcript.pyannote[2625].speaker SPEAKER_30
transcript.pyannote[2625].start 15436.04909375
transcript.pyannote[2625].end 15439.35659375
transcript.pyannote[2626].speaker SPEAKER_22
transcript.pyannote[2626].start 15437.34846875
transcript.pyannote[2626].end 15437.71971875
transcript.pyannote[2627].speaker SPEAKER_30
transcript.pyannote[2627].start 15440.25096875
transcript.pyannote[2627].end 15441.80346875
transcript.pyannote[2628].speaker SPEAKER_30
transcript.pyannote[2628].start 15442.20846875
transcript.pyannote[2628].end 15443.08596875
transcript.pyannote[2629].speaker SPEAKER_22
transcript.pyannote[2629].start 15442.96784375
transcript.pyannote[2629].end 15443.25471875
transcript.pyannote[2630].speaker SPEAKER_30
transcript.pyannote[2630].start 15443.25471875
transcript.pyannote[2630].end 15451.25346875
transcript.pyannote[2631].speaker SPEAKER_30
transcript.pyannote[2631].start 15451.70909375
transcript.pyannote[2631].end 15453.76784375
transcript.pyannote[2632].speaker SPEAKER_30
transcript.pyannote[2632].start 15454.47659375
transcript.pyannote[2632].end 15454.88159375
transcript.pyannote[2633].speaker SPEAKER_30
transcript.pyannote[2633].start 15454.93221875
transcript.pyannote[2633].end 15462.35721875
transcript.pyannote[2634].speaker SPEAKER_30
transcript.pyannote[2634].start 15462.89721875
transcript.pyannote[2634].end 15464.07846875
transcript.pyannote[2635].speaker SPEAKER_30
transcript.pyannote[2635].start 15464.82096875
transcript.pyannote[2635].end 15466.05284375
transcript.pyannote[2636].speaker SPEAKER_30
transcript.pyannote[2636].start 15466.52534375
transcript.pyannote[2636].end 15467.20034375
transcript.pyannote[2637].speaker SPEAKER_30
transcript.pyannote[2637].start 15467.63909375
transcript.pyannote[2637].end 15468.48284375
transcript.pyannote[2638].speaker SPEAKER_30
transcript.pyannote[2638].start 15468.92159375
transcript.pyannote[2638].end 15471.08159375
transcript.pyannote[2639].speaker SPEAKER_30
transcript.pyannote[2639].start 15471.41909375
transcript.pyannote[2639].end 15488.32784375
transcript.pyannote[2640].speaker SPEAKER_30
transcript.pyannote[2640].start 15488.58096875
transcript.pyannote[2640].end 15496.20846875
transcript.pyannote[2641].speaker SPEAKER_30
transcript.pyannote[2641].start 15496.76534375
transcript.pyannote[2641].end 15497.99721875
transcript.pyannote[2642].speaker SPEAKER_30
transcript.pyannote[2642].start 15498.50346875
transcript.pyannote[2642].end 15503.81909375
transcript.pyannote[2643].speaker SPEAKER_13
transcript.pyannote[2643].start 15504.62909375
transcript.pyannote[2643].end 15526.65096875
transcript.pyannote[2644].speaker SPEAKER_30
transcript.pyannote[2644].start 15526.76909375
transcript.pyannote[2644].end 15539.15534375
transcript.pyannote[2645].speaker SPEAKER_13
transcript.pyannote[2645].start 15527.24159375
transcript.pyannote[2645].end 15528.13596875
transcript.pyannote[2646].speaker SPEAKER_13
transcript.pyannote[2646].start 15530.14409375
transcript.pyannote[2646].end 15530.58284375
transcript.pyannote[2647].speaker SPEAKER_13
transcript.pyannote[2647].start 15531.37596875
transcript.pyannote[2647].end 15531.81471875
transcript.pyannote[2648].speaker SPEAKER_13
transcript.pyannote[2648].start 15532.37159375
transcript.pyannote[2648].end 15532.92846875
transcript.pyannote[2649].speaker SPEAKER_13
transcript.pyannote[2649].start 15536.77596875
transcript.pyannote[2649].end 15539.94846875
transcript.pyannote[2650].speaker SPEAKER_30
transcript.pyannote[2650].start 15539.88096875
transcript.pyannote[2650].end 15548.08221875
transcript.pyannote[2651].speaker SPEAKER_30
transcript.pyannote[2651].start 15548.35221875
transcript.pyannote[2651].end 15551.65971875
transcript.pyannote[2652].speaker SPEAKER_30
transcript.pyannote[2652].start 15551.92971875
transcript.pyannote[2652].end 15562.10534375
transcript.pyannote[2653].speaker SPEAKER_30
transcript.pyannote[2653].start 15562.42596875
transcript.pyannote[2653].end 15564.87284375
transcript.pyannote[2654].speaker SPEAKER_13
transcript.pyannote[2654].start 15563.80971875
transcript.pyannote[2654].end 15564.65346875
transcript.pyannote[2655].speaker SPEAKER_30
transcript.pyannote[2655].start 15565.17659375
transcript.pyannote[2655].end 15567.26909375
transcript.pyannote[2656].speaker SPEAKER_13
transcript.pyannote[2656].start 15566.89784375
transcript.pyannote[2656].end 15568.50096875
transcript.pyannote[2657].speaker SPEAKER_13
transcript.pyannote[2657].start 15568.85534375
transcript.pyannote[2657].end 15573.98534375
transcript.pyannote[2658].speaker SPEAKER_13
transcript.pyannote[2658].start 15574.18784375
transcript.pyannote[2658].end 15576.29721875
transcript.pyannote[2659].speaker SPEAKER_13
transcript.pyannote[2659].start 15576.87096875
transcript.pyannote[2659].end 15589.79721875
transcript.pyannote[2660].speaker SPEAKER_13
transcript.pyannote[2660].start 15589.88159375
transcript.pyannote[2660].end 15593.62784375
transcript.pyannote[2661].speaker SPEAKER_22
transcript.pyannote[2661].start 15589.98284375
transcript.pyannote[2661].end 15590.40471875
transcript.pyannote[2662].speaker SPEAKER_22
transcript.pyannote[2662].start 15593.56034375
transcript.pyannote[2662].end 15593.86409375
transcript.pyannote[2663].speaker SPEAKER_13
transcript.pyannote[2663].start 15593.86409375
transcript.pyannote[2663].end 15596.74971875
transcript.pyannote[2664].speaker SPEAKER_13
transcript.pyannote[2664].start 15597.27284375
transcript.pyannote[2664].end 15608.62971875
transcript.pyannote[2665].speaker SPEAKER_30
transcript.pyannote[2665].start 15603.66846875
transcript.pyannote[2665].end 15604.00596875
transcript.pyannote[2666].speaker SPEAKER_30
transcript.pyannote[2666].start 15607.92096875
transcript.pyannote[2666].end 15613.20284375
transcript.pyannote[2667].speaker SPEAKER_13
transcript.pyannote[2667].start 15610.85721875
transcript.pyannote[2667].end 15615.16034375
transcript.pyannote[2668].speaker SPEAKER_13
transcript.pyannote[2668].start 15615.59909375
transcript.pyannote[2668].end 15620.50971875
transcript.pyannote[2669].speaker SPEAKER_13
transcript.pyannote[2669].start 15621.03284375
transcript.pyannote[2669].end 15626.21346875
transcript.pyannote[2670].speaker SPEAKER_30
transcript.pyannote[2670].start 15626.19659375
transcript.pyannote[2670].end 15626.51721875
transcript.pyannote[2671].speaker SPEAKER_13
transcript.pyannote[2671].start 15626.43284375
transcript.pyannote[2671].end 15629.68971875
transcript.pyannote[2672].speaker SPEAKER_30
transcript.pyannote[2672].start 15629.14971875
transcript.pyannote[2672].end 15645.95721875
transcript.pyannote[2673].speaker SPEAKER_13
transcript.pyannote[2673].start 15634.41471875
transcript.pyannote[2673].end 15636.96284375
transcript.pyannote[2674].speaker SPEAKER_22
transcript.pyannote[2674].start 15636.96284375
transcript.pyannote[2674].end 15638.05971875
transcript.pyannote[2675].speaker SPEAKER_22
transcript.pyannote[2675].start 15643.89846875
transcript.pyannote[2675].end 15646.07534375
transcript.pyannote[2676].speaker SPEAKER_30
transcript.pyannote[2676].start 15646.07534375
transcript.pyannote[2676].end 15650.34471875
transcript.pyannote[2677].speaker SPEAKER_22
transcript.pyannote[2677].start 15646.09221875
transcript.pyannote[2677].end 15646.15971875
transcript.pyannote[2678].speaker SPEAKER_22
transcript.pyannote[2678].start 15648.96096875
transcript.pyannote[2678].end 15649.39971875
transcript.pyannote[2679].speaker SPEAKER_22
transcript.pyannote[2679].start 15650.19284375
transcript.pyannote[2679].end 15650.32784375
transcript.pyannote[2680].speaker SPEAKER_22
transcript.pyannote[2680].start 15650.34471875
transcript.pyannote[2680].end 15650.54721875
transcript.pyannote[2681].speaker SPEAKER_30
transcript.pyannote[2681].start 15650.37846875
transcript.pyannote[2681].end 15653.95596875
transcript.pyannote[2682].speaker SPEAKER_30
transcript.pyannote[2682].start 15654.47909375
transcript.pyannote[2682].end 15685.78221875
transcript.pyannote[2683].speaker SPEAKER_30
transcript.pyannote[2683].start 15686.17034375
transcript.pyannote[2683].end 15701.56034375
transcript.pyannote[2684].speaker SPEAKER_30
transcript.pyannote[2684].start 15701.89784375
transcript.pyannote[2684].end 15702.97784375
transcript.pyannote[2685].speaker SPEAKER_30
transcript.pyannote[2685].start 15703.45034375
transcript.pyannote[2685].end 15726.80534375
transcript.pyannote[2686].speaker SPEAKER_30
transcript.pyannote[2686].start 15727.09221875
transcript.pyannote[2686].end 15763.12034375
transcript.pyannote[2687].speaker SPEAKER_30
transcript.pyannote[2687].start 15763.57596875
transcript.pyannote[2687].end 15764.21721875
transcript.pyannote[2688].speaker SPEAKER_30
transcript.pyannote[2688].start 15764.63909375
transcript.pyannote[2688].end 15765.17909375
transcript.pyannote[2689].speaker SPEAKER_30
transcript.pyannote[2689].start 15765.85409375
transcript.pyannote[2689].end 15799.53659375
transcript.pyannote[2690].speaker SPEAKER_30
transcript.pyannote[2690].start 15800.21159375
transcript.pyannote[2690].end 15801.40971875
transcript.pyannote[2691].speaker SPEAKER_13
transcript.pyannote[2691].start 15801.40971875
transcript.pyannote[2691].end 15802.45596875
transcript.pyannote[2692].speaker SPEAKER_30
transcript.pyannote[2692].start 15801.86534375
transcript.pyannote[2692].end 15802.47284375
transcript.pyannote[2693].speaker SPEAKER_13
transcript.pyannote[2693].start 15802.47284375
transcript.pyannote[2693].end 15805.61159375
transcript.pyannote[2694].speaker SPEAKER_30
transcript.pyannote[2694].start 15803.82284375
transcript.pyannote[2694].end 15807.26534375
transcript.pyannote[2695].speaker SPEAKER_30
transcript.pyannote[2695].start 15807.53534375
transcript.pyannote[2695].end 15808.44659375
transcript.pyannote[2696].speaker SPEAKER_30
transcript.pyannote[2696].start 15809.32409375
transcript.pyannote[2696].end 15809.64471875
transcript.pyannote[2697].speaker SPEAKER_30
transcript.pyannote[2697].start 15810.04971875
transcript.pyannote[2697].end 15811.16346875
transcript.pyannote[2698].speaker SPEAKER_30
transcript.pyannote[2698].start 15812.09159375
transcript.pyannote[2698].end 15815.73659375
transcript.pyannote[2699].speaker SPEAKER_30
transcript.pyannote[2699].start 15816.36096875
transcript.pyannote[2699].end 15816.98534375
transcript.pyannote[2700].speaker SPEAKER_30
transcript.pyannote[2700].start 15817.72784375
transcript.pyannote[2700].end 15821.33909375
transcript.pyannote[2701].speaker SPEAKER_30
transcript.pyannote[2701].start 15821.35596875
transcript.pyannote[2701].end 15823.92096875
transcript.pyannote[2702].speaker SPEAKER_30
transcript.pyannote[2702].start 15824.24159375
transcript.pyannote[2702].end 15826.16534375
transcript.pyannote[2703].speaker SPEAKER_30
transcript.pyannote[2703].start 15826.73909375
transcript.pyannote[2703].end 15839.37846875
transcript.pyannote[2704].speaker SPEAKER_30
transcript.pyannote[2704].start 15839.54721875
transcript.pyannote[2704].end 15839.93534375
transcript.pyannote[2705].speaker SPEAKER_30
transcript.pyannote[2705].start 15840.44159375
transcript.pyannote[2705].end 15847.76534375
transcript.pyannote[2706].speaker SPEAKER_30
transcript.pyannote[2706].start 15848.42346875
transcript.pyannote[2706].end 15855.47721875
transcript.pyannote[2707].speaker SPEAKER_30
transcript.pyannote[2707].start 15856.11846875
transcript.pyannote[2707].end 15857.89034375
transcript.pyannote[2708].speaker SPEAKER_30
transcript.pyannote[2708].start 15858.19409375
transcript.pyannote[2708].end 15858.49784375
transcript.pyannote[2709].speaker SPEAKER_30
transcript.pyannote[2709].start 15858.78471875
transcript.pyannote[2709].end 15859.35846875
transcript.pyannote[2710].speaker SPEAKER_30
transcript.pyannote[2710].start 15859.91534375
transcript.pyannote[2710].end 15860.48909375
transcript.pyannote[2711].speaker SPEAKER_30
transcript.pyannote[2711].start 15860.70846875
transcript.pyannote[2711].end 15861.40034375
transcript.pyannote[2712].speaker SPEAKER_30
transcript.pyannote[2712].start 15861.58596875
transcript.pyannote[2712].end 15863.34096875
transcript.pyannote[2713].speaker SPEAKER_30
transcript.pyannote[2713].start 15864.11721875
transcript.pyannote[2713].end 15865.12971875
transcript.pyannote[2714].speaker SPEAKER_30
transcript.pyannote[2714].start 15865.43346875
transcript.pyannote[2714].end 15867.34034375
transcript.pyannote[2715].speaker SPEAKER_30
transcript.pyannote[2715].start 15867.67784375
transcript.pyannote[2715].end 15868.92659375
transcript.pyannote[2716].speaker SPEAKER_30
transcript.pyannote[2716].start 15869.77034375
transcript.pyannote[2716].end 15874.81596875
transcript.pyannote[2717].speaker SPEAKER_30
transcript.pyannote[2717].start 15875.50784375
transcript.pyannote[2717].end 15876.99284375
transcript.pyannote[2718].speaker SPEAKER_30
transcript.pyannote[2718].start 15877.33034375
transcript.pyannote[2718].end 15878.51159375
transcript.pyannote[2719].speaker SPEAKER_30
transcript.pyannote[2719].start 15878.96721875
transcript.pyannote[2719].end 15879.72659375
transcript.pyannote[2720].speaker SPEAKER_30
transcript.pyannote[2720].start 15881.66721875
transcript.pyannote[2720].end 15882.66284375
transcript.pyannote[2721].speaker SPEAKER_30
transcript.pyannote[2721].start 15883.05096875
transcript.pyannote[2721].end 15883.69221875
transcript.pyannote[2722].speaker SPEAKER_30
transcript.pyannote[2722].start 15884.70471875
transcript.pyannote[2722].end 15886.05471875
transcript.pyannote[2723].speaker SPEAKER_30
transcript.pyannote[2723].start 15886.56096875
transcript.pyannote[2723].end 15888.24846875
transcript.pyannote[2724].speaker SPEAKER_30
transcript.pyannote[2724].start 15889.42971875
transcript.pyannote[2724].end 15890.40846875
transcript.pyannote[2725].speaker SPEAKER_30
transcript.pyannote[2725].start 15890.86409375
transcript.pyannote[2725].end 15891.53909375
transcript.pyannote[2726].speaker SPEAKER_30
transcript.pyannote[2726].start 15891.91034375
transcript.pyannote[2726].end 15894.10409375
transcript.pyannote[2727].speaker SPEAKER_30
transcript.pyannote[2727].start 15895.31909375
transcript.pyannote[2727].end 15895.97721875
transcript.pyannote[2728].speaker SPEAKER_30
transcript.pyannote[2728].start 15896.68596875
transcript.pyannote[2728].end 15899.50409375
transcript.pyannote[2729].speaker SPEAKER_30
transcript.pyannote[2729].start 15899.90909375
transcript.pyannote[2729].end 15901.12409375
transcript.pyannote[2730].speaker SPEAKER_30
transcript.pyannote[2730].start 15901.64721875
transcript.pyannote[2730].end 15903.48659375
transcript.pyannote[2731].speaker SPEAKER_30
transcript.pyannote[2731].start 15904.11096875
transcript.pyannote[2731].end 15906.87846875
transcript.pyannote[2732].speaker SPEAKER_30
transcript.pyannote[2732].start 15907.46909375
transcript.pyannote[2732].end 15909.74721875
transcript.pyannote[2733].speaker SPEAKER_30
transcript.pyannote[2733].start 15910.43909375
transcript.pyannote[2733].end 15914.74221875
transcript.pyannote[2734].speaker SPEAKER_30
transcript.pyannote[2734].start 15915.23159375
transcript.pyannote[2734].end 15916.04159375
transcript.pyannote[2735].speaker SPEAKER_30
transcript.pyannote[2735].start 15917.00346875
transcript.pyannote[2735].end 15917.96534375
transcript.pyannote[2736].speaker SPEAKER_30
transcript.pyannote[2736].start 15918.87659375
transcript.pyannote[2736].end 15919.78784375
transcript.pyannote[2737].speaker SPEAKER_30
transcript.pyannote[2737].start 15920.91846875
transcript.pyannote[2737].end 15923.31471875
transcript.pyannote[2738].speaker SPEAKER_30
transcript.pyannote[2738].start 15923.78721875
transcript.pyannote[2738].end 15927.78659375
transcript.pyannote[2739].speaker SPEAKER_30
transcript.pyannote[2739].start 15928.39409375
transcript.pyannote[2739].end 15930.03096875
transcript.pyannote[2740].speaker SPEAKER_30
transcript.pyannote[2740].start 15931.33034375
transcript.pyannote[2740].end 15932.19096875
transcript.pyannote[2741].speaker SPEAKER_30
transcript.pyannote[2741].start 15932.86596875
transcript.pyannote[2741].end 15933.59159375
transcript.pyannote[2742].speaker SPEAKER_30
transcript.pyannote[2742].start 15934.82346875
transcript.pyannote[2742].end 15935.56596875
transcript.pyannote[2743].speaker SPEAKER_30
transcript.pyannote[2743].start 15936.24096875
transcript.pyannote[2743].end 15936.69659375
transcript.pyannote[2744].speaker SPEAKER_30
transcript.pyannote[2744].start 15936.94971875
transcript.pyannote[2744].end 15938.95784375
transcript.pyannote[2745].speaker SPEAKER_30
transcript.pyannote[2745].start 15939.54846875
transcript.pyannote[2745].end 15940.34159375
transcript.pyannote[2746].speaker SPEAKER_30
transcript.pyannote[2746].start 15941.01659375
transcript.pyannote[2746].end 15942.95721875
transcript.pyannote[2747].speaker SPEAKER_30
transcript.pyannote[2747].start 15943.96971875
transcript.pyannote[2747].end 15947.42909375
transcript.pyannote[2748].speaker SPEAKER_11
transcript.pyannote[2748].start 15947.66534375
transcript.pyannote[2748].end 15948.64409375
transcript.pyannote[2749].speaker SPEAKER_30
transcript.pyannote[2749].start 15948.47534375
transcript.pyannote[2749].end 15952.39034375
transcript.pyannote[2750].speaker SPEAKER_30
transcript.pyannote[2750].start 15953.06534375
transcript.pyannote[2750].end 15956.64284375
transcript.pyannote[2751].speaker SPEAKER_30
transcript.pyannote[2751].start 15957.70596875
transcript.pyannote[2751].end 15958.81971875
transcript.pyannote[2752].speaker SPEAKER_13
transcript.pyannote[2752].start 15959.03909375
transcript.pyannote[2752].end 15965.45159375
transcript.pyannote[2753].speaker SPEAKER_13
transcript.pyannote[2753].start 15965.99159375
transcript.pyannote[2753].end 15969.16409375
transcript.pyannote[2754].speaker SPEAKER_13
transcript.pyannote[2754].start 15969.48471875
transcript.pyannote[2754].end 15970.58159375
transcript.pyannote[2755].speaker SPEAKER_13
transcript.pyannote[2755].start 15971.37471875
transcript.pyannote[2755].end 15973.75409375
transcript.pyannote[2756].speaker SPEAKER_30
transcript.pyannote[2756].start 15972.77534375
transcript.pyannote[2756].end 15974.14221875
transcript.pyannote[2757].speaker SPEAKER_30
transcript.pyannote[2757].start 15974.59784375
transcript.pyannote[2757].end 15976.16721875
transcript.pyannote[2758].speaker SPEAKER_13
transcript.pyannote[2758].start 15976.36971875
transcript.pyannote[2758].end 15979.39034375
transcript.pyannote[2759].speaker SPEAKER_30
transcript.pyannote[2759].start 15979.44096875
transcript.pyannote[2759].end 15979.76159375
transcript.pyannote[2760].speaker SPEAKER_13
transcript.pyannote[2760].start 15979.99784375
transcript.pyannote[2760].end 16009.15784375
transcript.pyannote[2761].speaker SPEAKER_30
transcript.pyannote[2761].start 15982.10721875
transcript.pyannote[2761].end 15982.34346875
transcript.pyannote[2762].speaker SPEAKER_22
transcript.pyannote[2762].start 15982.34346875
transcript.pyannote[2762].end 15982.41096875
transcript.pyannote[2763].speaker SPEAKER_30
transcript.pyannote[2763].start 16007.40284375
transcript.pyannote[2763].end 16007.77409375
transcript.pyannote[2764].speaker SPEAKER_30
transcript.pyannote[2764].start 16009.91721875
transcript.pyannote[2764].end 16019.08034375
transcript.pyannote[2765].speaker SPEAKER_13
transcript.pyannote[2765].start 16015.65471875
transcript.pyannote[2765].end 16016.32971875
transcript.pyannote[2766].speaker SPEAKER_11
transcript.pyannote[2766].start 16016.32971875
transcript.pyannote[2766].end 16016.34659375
transcript.pyannote[2767].speaker SPEAKER_13
transcript.pyannote[2767].start 16019.08034375
transcript.pyannote[2767].end 16019.11409375
transcript.pyannote[2768].speaker SPEAKER_30
transcript.pyannote[2768].start 16019.11409375
transcript.pyannote[2768].end 16019.13096875
transcript.pyannote[2769].speaker SPEAKER_13
transcript.pyannote[2769].start 16019.13096875
transcript.pyannote[2769].end 16022.52284375
transcript.pyannote[2770].speaker SPEAKER_30
transcript.pyannote[2770].start 16019.18159375
transcript.pyannote[2770].end 16021.99971875
transcript.pyannote[2771].speaker SPEAKER_30
transcript.pyannote[2771].start 16022.30346875
transcript.pyannote[2771].end 16022.60721875
transcript.pyannote[2772].speaker SPEAKER_30
transcript.pyannote[2772].start 16022.91096875
transcript.pyannote[2772].end 16023.72096875
transcript.pyannote[2773].speaker SPEAKER_13
transcript.pyannote[2773].start 16022.97846875
transcript.pyannote[2773].end 16024.76721875
transcript.pyannote[2774].speaker SPEAKER_30
transcript.pyannote[2774].start 16024.76721875
transcript.pyannote[2774].end 16030.13346875
transcript.pyannote[2775].speaker SPEAKER_30
transcript.pyannote[2775].start 16030.90971875
transcript.pyannote[2775].end 16059.37784375
transcript.pyannote[2776].speaker SPEAKER_00
transcript.pyannote[2776].start 16041.30471875
transcript.pyannote[2776].end 16041.86159375
transcript.pyannote[2777].speaker SPEAKER_00
transcript.pyannote[2777].start 16043.07659375
transcript.pyannote[2777].end 16044.03846875
transcript.pyannote[2778].speaker SPEAKER_30
transcript.pyannote[2778].start 16059.56346875
transcript.pyannote[2778].end 16061.43659375
transcript.pyannote[2779].speaker SPEAKER_30
transcript.pyannote[2779].start 16061.85846875
transcript.pyannote[2779].end 16062.97221875
transcript.pyannote[2780].speaker SPEAKER_30
transcript.pyannote[2780].start 16063.22534375
transcript.pyannote[2780].end 16067.47784375
transcript.pyannote[2781].speaker SPEAKER_30
transcript.pyannote[2781].start 16068.05159375
transcript.pyannote[2781].end 16106.37471875
transcript.pyannote[2782].speaker SPEAKER_30
transcript.pyannote[2782].start 16106.64471875
transcript.pyannote[2782].end 16115.63909375
transcript.pyannote[2783].speaker SPEAKER_13
transcript.pyannote[2783].start 16113.07409375
transcript.pyannote[2783].end 16118.74409375
transcript.pyannote[2784].speaker SPEAKER_30
transcript.pyannote[2784].start 16116.83721875
transcript.pyannote[2784].end 16117.42784375
transcript.pyannote[2785].speaker SPEAKER_30
transcript.pyannote[2785].start 16118.54159375
transcript.pyannote[2785].end 16134.15096875
transcript.pyannote[2786].speaker SPEAKER_27
transcript.pyannote[2786].start 16133.32409375
transcript.pyannote[2786].end 16133.74596875
transcript.pyannote[2787].speaker SPEAKER_30
transcript.pyannote[2787].start 16134.38721875
transcript.pyannote[2787].end 16135.45034375
transcript.pyannote[2788].speaker SPEAKER_30
transcript.pyannote[2788].start 16135.75409375
transcript.pyannote[2788].end 16137.10409375
transcript.pyannote[2789].speaker SPEAKER_30
transcript.pyannote[2789].start 16137.44159375
transcript.pyannote[2789].end 16141.12034375
transcript.pyannote[2790].speaker SPEAKER_22
transcript.pyannote[2790].start 16137.98159375
transcript.pyannote[2790].end 16138.03221875
transcript.pyannote[2791].speaker SPEAKER_13
transcript.pyannote[2791].start 16138.03221875
transcript.pyannote[2791].end 16139.36534375
transcript.pyannote[2792].speaker SPEAKER_22
transcript.pyannote[2792].start 16141.12034375
transcript.pyannote[2792].end 16141.13721875
transcript.pyannote[2793].speaker SPEAKER_30
transcript.pyannote[2793].start 16141.40721875
transcript.pyannote[2793].end 16141.89659375
transcript.pyannote[2794].speaker SPEAKER_30
transcript.pyannote[2794].start 16143.39846875
transcript.pyannote[2794].end 16144.74846875
transcript.pyannote[2795].speaker SPEAKER_13
transcript.pyannote[2795].start 16144.17471875
transcript.pyannote[2795].end 16151.21159375
transcript.pyannote[2796].speaker SPEAKER_30
transcript.pyannote[2796].start 16149.69284375
transcript.pyannote[2796].end 16153.13534375
transcript.pyannote[2797].speaker SPEAKER_13
transcript.pyannote[2797].start 16151.48159375
transcript.pyannote[2797].end 16152.29159375
transcript.pyannote[2798].speaker SPEAKER_30
transcript.pyannote[2798].start 16153.25346875
transcript.pyannote[2798].end 16166.41596875
transcript.pyannote[2799].speaker SPEAKER_13
transcript.pyannote[2799].start 16155.27846875
transcript.pyannote[2799].end 16155.43034375
transcript.pyannote[2800].speaker SPEAKER_22
transcript.pyannote[2800].start 16155.43034375
transcript.pyannote[2800].end 16155.54846875
transcript.pyannote[2801].speaker SPEAKER_30
transcript.pyannote[2801].start 16167.17534375
transcript.pyannote[2801].end 16170.12846875
transcript.pyannote[2802].speaker SPEAKER_30
transcript.pyannote[2802].start 16170.51659375
transcript.pyannote[2802].end 16170.82034375
transcript.pyannote[2803].speaker SPEAKER_30
transcript.pyannote[2803].start 16171.22534375
transcript.pyannote[2803].end 16172.38971875
transcript.pyannote[2804].speaker SPEAKER_16
transcript.pyannote[2804].start 16174.17846875
transcript.pyannote[2804].end 16174.66784375
transcript.pyannote[2805].speaker SPEAKER_30
transcript.pyannote[2805].start 16174.39784375
transcript.pyannote[2805].end 16179.59534375
transcript.pyannote[2806].speaker SPEAKER_16
transcript.pyannote[2806].start 16174.78596875
transcript.pyannote[2806].end 16174.80284375
transcript.pyannote[2807].speaker SPEAKER_10
transcript.pyannote[2807].start 16174.80284375
transcript.pyannote[2807].end 16175.79846875
transcript.pyannote[2808].speaker SPEAKER_10
transcript.pyannote[2808].start 16176.65909375
transcript.pyannote[2808].end 16179.05534375
transcript.pyannote[2809].speaker SPEAKER_10
transcript.pyannote[2809].start 16179.56159375
transcript.pyannote[2809].end 16182.17721875
transcript.pyannote[2810].speaker SPEAKER_10
transcript.pyannote[2810].start 16183.37534375
transcript.pyannote[2810].end 16184.25284375
transcript.pyannote[2811].speaker SPEAKER_16
transcript.pyannote[2811].start 16193.38221875
transcript.pyannote[2811].end 16205.43096875
transcript.pyannote[2812].speaker SPEAKER_16
transcript.pyannote[2812].start 16205.56596875
transcript.pyannote[2812].end 16208.41784375
transcript.pyannote[2813].speaker SPEAKER_16
transcript.pyannote[2813].start 16208.77221875
transcript.pyannote[2813].end 16209.66659375
transcript.pyannote[2814].speaker SPEAKER_16
transcript.pyannote[2814].start 16210.03784375
transcript.pyannote[2814].end 16213.46346875
transcript.pyannote[2815].speaker SPEAKER_16
transcript.pyannote[2815].start 16213.95284375
transcript.pyannote[2815].end 16221.52971875
transcript.pyannote[2816].speaker SPEAKER_16
transcript.pyannote[2816].start 16222.99784375
transcript.pyannote[2816].end 16223.92596875
transcript.pyannote[2817].speaker SPEAKER_16
transcript.pyannote[2817].start 16224.16221875
transcript.pyannote[2817].end 16244.32784375
transcript.pyannote[2818].speaker SPEAKER_16
transcript.pyannote[2818].start 16244.47971875
transcript.pyannote[2818].end 16244.90159375
transcript.pyannote[2819].speaker SPEAKER_16
transcript.pyannote[2819].start 16245.72846875
transcript.pyannote[2819].end 16247.90534375
transcript.pyannote[2820].speaker SPEAKER_16
transcript.pyannote[2820].start 16250.35221875
transcript.pyannote[2820].end 16270.78784375
transcript.pyannote[2821].speaker SPEAKER_16
transcript.pyannote[2821].start 16270.88909375
transcript.pyannote[2821].end 16276.79534375
transcript.pyannote[2822].speaker SPEAKER_16
transcript.pyannote[2822].start 16277.09909375
transcript.pyannote[2822].end 16279.19159375
transcript.pyannote[2823].speaker SPEAKER_16
transcript.pyannote[2823].start 16279.59659375
transcript.pyannote[2823].end 16280.18721875
transcript.pyannote[2824].speaker SPEAKER_16
transcript.pyannote[2824].start 16280.69346875
transcript.pyannote[2824].end 16289.41784375
transcript.pyannote[2825].speaker SPEAKER_16
transcript.pyannote[2825].start 16289.85659375
transcript.pyannote[2825].end 16294.42971875
transcript.pyannote[2826].speaker SPEAKER_16
transcript.pyannote[2826].start 16294.88534375
transcript.pyannote[2826].end 16299.96471875
transcript.pyannote[2827].speaker SPEAKER_16
transcript.pyannote[2827].start 16300.47096875
transcript.pyannote[2827].end 16300.48784375
transcript.pyannote[2828].speaker SPEAKER_10
transcript.pyannote[2828].start 16300.48784375
transcript.pyannote[2828].end 16309.71846875
transcript.pyannote[2829].speaker SPEAKER_10
transcript.pyannote[2829].start 16310.62971875
transcript.pyannote[2829].end 16330.15409375
transcript.pyannote[2830].speaker SPEAKER_10
transcript.pyannote[2830].start 16330.50846875
transcript.pyannote[2830].end 16330.89659375
transcript.pyannote[2831].speaker SPEAKER_10
transcript.pyannote[2831].start 16330.98096875
transcript.pyannote[2831].end 16363.78596875
transcript.pyannote[2832].speaker SPEAKER_05
transcript.pyannote[2832].start 16367.59971875
transcript.pyannote[2832].end 16367.63346875
transcript.pyannote[2833].speaker SPEAKER_08
transcript.pyannote[2833].start 16367.63346875
transcript.pyannote[2833].end 16368.40971875
transcript.pyannote[2834].speaker SPEAKER_08
transcript.pyannote[2834].start 16368.96659375
transcript.pyannote[2834].end 16370.41784375
transcript.pyannote[2835].speaker SPEAKER_05
transcript.pyannote[2835].start 16370.75534375
transcript.pyannote[2835].end 16373.21909375
transcript.pyannote[2836].speaker SPEAKER_29
transcript.pyannote[2836].start 16374.80534375
transcript.pyannote[2836].end 16381.69034375
transcript.pyannote[2837].speaker SPEAKER_19
transcript.pyannote[2837].start 16381.69034375
transcript.pyannote[2837].end 16381.82534375
transcript.pyannote[2838].speaker SPEAKER_22
transcript.pyannote[2838].start 16381.82534375
transcript.pyannote[2838].end 16381.97721875
transcript.pyannote[2839].speaker SPEAKER_19
transcript.pyannote[2839].start 16381.97721875
transcript.pyannote[2839].end 16382.66909375
transcript.pyannote[2840].speaker SPEAKER_19
transcript.pyannote[2840].start 16385.70659375
transcript.pyannote[2840].end 16385.94284375
transcript.pyannote[2841].speaker SPEAKER_06
transcript.pyannote[2841].start 16391.51159375
transcript.pyannote[2841].end 16393.84034375
transcript.pyannote[2842].speaker SPEAKER_06
transcript.pyannote[2842].start 16394.73471875
transcript.pyannote[2842].end 16396.11846875
transcript.pyannote[2843].speaker SPEAKER_29
transcript.pyannote[2843].start 16396.18596875
transcript.pyannote[2843].end 16399.18971875
transcript.pyannote[2844].speaker SPEAKER_16
transcript.pyannote[2844].start 16399.24034375
transcript.pyannote[2844].end 16401.43409375
transcript.pyannote[2845].speaker SPEAKER_29
transcript.pyannote[2845].start 16401.73784375
transcript.pyannote[2845].end 16401.97409375
transcript.pyannote[2846].speaker SPEAKER_19
transcript.pyannote[2846].start 16401.97409375
transcript.pyannote[2846].end 16402.69971875
transcript.pyannote[2847].speaker SPEAKER_19
transcript.pyannote[2847].start 16403.10471875
transcript.pyannote[2847].end 16405.53471875
transcript.pyannote[2848].speaker SPEAKER_23
transcript.pyannote[2848].start 16405.21409375
transcript.pyannote[2848].end 16409.88846875
transcript.pyannote[2849].speaker SPEAKER_16
transcript.pyannote[2849].start 16409.29784375
transcript.pyannote[2849].end 16409.31471875
transcript.pyannote[2850].speaker SPEAKER_22
transcript.pyannote[2850].start 16409.31471875
transcript.pyannote[2850].end 16409.33159375
transcript.pyannote[2851].speaker SPEAKER_16
transcript.pyannote[2851].start 16409.33159375
transcript.pyannote[2851].end 16410.96846875
transcript.pyannote[2852].speaker SPEAKER_22
transcript.pyannote[2852].start 16410.96846875
transcript.pyannote[2852].end 16415.15346875
transcript.pyannote[2853].speaker SPEAKER_16
transcript.pyannote[2853].start 16413.31409375
transcript.pyannote[2853].end 16413.36471875
transcript.pyannote[2854].speaker SPEAKER_23
transcript.pyannote[2854].start 16413.36471875
transcript.pyannote[2854].end 16413.78659375
transcript.pyannote[2855].speaker SPEAKER_16
transcript.pyannote[2855].start 16413.78659375
transcript.pyannote[2855].end 16413.97221875
transcript.pyannote[2856].speaker SPEAKER_06
transcript.pyannote[2856].start 16413.97221875
transcript.pyannote[2856].end 16414.05659375
transcript.whisperx[0].start 1745.779
transcript.whisperx[0].end 1769.347
transcript.whisperx[0].text 好現在繼續開會本日會議議程為邀請勞動部部長列席報告業務概況並備質詢現在介紹在場委員及列席官員我們陳昭芝委員明月晴委員王振旭委員今天列席的官員是勞動部何沛山部長勞動力發展署蔡孟良署長
transcript.whisperx[1].start 1775.353
transcript.whisperx[1].end 1794.901
transcript.whisperx[1].text 勞工保險局 白麗珍局長勞動基金運用局 蘇玉清局長職業安全衛生署 周子蓮署長勞動及職業安全衛生研究所 李伯昌所長綜合規劃司 王厚誠司長勞動關係司 王厚維司長勞動保險司 陳美女司長勞動福祉退休司 謝倩倩司長
transcript.whisperx[2].start 1804.826
transcript.whisperx[2].end 1819.651
transcript.whisperx[2].text 勞動條件及就業平等司黃惟琛司長勞動法務副惠之司長秘書處丁玉珍處長人事處江碧玲處長政風處邱鴻達處長會計處林美信處長統計處梅嘉源處長資訊處劉淳坤
transcript.whisperx[3].start 1832.639
transcript.whisperx[3].end 1840.545
transcript.whisperx[3].text 處長財團法人職業災害預防及重建中心何俊傑執行長好那接下來請勞動部何部長報告時間5分鐘
transcript.whisperx[4].start 1853.519
transcript.whisperx[4].end 1877.077
transcript.whisperx[4].text 主席、各位委員還有在場的各位女士先生以及我們直播線上的朋友很高興今天有這個機會能接受我們衛華委員會的邀請來向大院來做報告那麼今天是我的首度的備詢我也要在這裡首先我要感謝我的前任許民春部長
transcript.whisperx[5].start 1877.877
transcript.whisperx[5].end 1895.33
transcript.whisperx[5].text 給我留下了一個非常好的基礎那麼在我們在座的各位同仁的努力下他們讓我很安心的上路那麼我接下來要向各位委員報告我未來的這個工作的重點首先呢在我們0403的這個地震的這個造成的傷害是我們所有台灣人民的痛那麼我們為了協助花蓮災區的勞工朋友
transcript.whisperx[6].start 1907.838
transcript.whisperx[6].end 1917.245
transcript.whisperx[6].text 勞動部有提出了包括勞保保費減免跟傷病給付災區就業補助、僱用獎助以及訓練獎勵跟保費補貼這樣的措施協助花蓮地區的勞工朋友度過難關裡面我要特別強調的是關於僱用獎助以及保費補貼這兩樣都是特別的為我們震災的花蓮朋友而提出的
transcript.whisperx[7].start 1932.877
transcript.whisperx[7].end 1934.359
transcript.whisperx[7].text 那麼我們動用的就業安定基金大概4.6億然後給這一個雇用獎助希望能夠協助業者以及這一個勞動者一起度過難關
transcript.whisperx[8].start 1945.069
transcript.whisperx[8].end 1966.922
transcript.whisperx[8].text 那麼再來我想要跟各位委員強調各位關切這個勞保財務改革的問題那剛剛我也已經有回答媒體的提問那總統在520的就職演說有明白的揭示只要政府在勞保絕對不可能倒
transcript.whisperx[9].start 1968.623
transcript.whisperx[9].end 1976.132
transcript.whisperx[9].text 他的內涵就是說政府執政,我們會發展經濟,致力於發展經濟,確保足夠的財政能力,然後對勞保進行挹注跟撥補。
transcript.whisperx[10].start 1984.011
transcript.whisperx[10].end 1997.733
transcript.whisperx[10].text 那麼這個就是所謂我們有很多朋友在關切那這樣要不要修法呢?要不要把撥補入法呢?事實上這就是撥補入法裡面的政府負最終支付責任的實踐
transcript.whisperx[11].start 1999.555
transcript.whisperx[11].end 2004.042
transcript.whisperx[11].text 所以這個其實已經做4年了那麼在這從2020到2024這4年來我們撥補了2670億基金水位來到9941億的創新高
transcript.whisperx[12].start 2014.819
transcript.whisperx[12].end 2020.245
transcript.whisperx[12].text 所以我們所有的勞工朋友真的不要擔心,勞保絕對不會破產,而且勞保現在財務相對穩健所以請各位勞工朋友能夠千萬的放心,總統所承諾的只要政府在,勞保絕對不可能倒
transcript.whisperx[13].start 2036.801
transcript.whisperx[13].end 2044.868
transcript.whisperx[13].text 那麼其實我要跟各位強調我們在第三季會召開最低工資審議委員會因為今年是最低工資法通過的元年我們也會很快的來召開諮詢會議然後會呈報決定最低工資的條幅那麼來報請行政院核定以後實施
transcript.whisperx[14].start 2059.039
transcript.whisperx[14].end 2065.844
transcript.whisperx[14].text 然後呢我們也會落實賴總統的雙就業雙照顧的生養環境友善生養環境的政策那麼這個就是指我們所謂的育嬰留庭或者以及研議未來可能的照顧留庭我們進一步來把它做一個更有效的結合然後可以讓我們的這個雙新家庭還有包括我們想要生養小孩的這個年輕人都可以獲得更有效的照顧
transcript.whisperx[15].start 2090.12
transcript.whisperx[15].end 2100.569
transcript.whisperx[15].text 其實我們為了回應全球永續發展跟國際淨零排放的目標,我們會跟金管會合作,把一系列的勞權指標納入金管會的
transcript.whisperx[16].start 2105.373
transcript.whisperx[16].end 2129.132
transcript.whisperx[16].text 把企業併購對員工權益的保障除了透過跨部會合作也會列入併購審查的項目那麼這個部分我們會來跟金管會來積極的一起討論再次我們面對缺工的問題我們這也會建立這個跨部會的合作機制我要強調缺工不等於低薪我希望能夠先充斥我們國內的這一個本土的婦女
transcript.whisperx[17].start 2134.076
transcript.whisperx[17].end 2159.232
transcript.whisperx[17].text 以及中高齡還有我們青年的這個就業率那麼在這個在這個前提下呢我們會檢討法規鬆綁雇主聘雇移工資格的條件及人數比例也會推動移工留才久用方案把移工轉化為中階技術人力進一步擴大同時規劃修法讓橋外生跟個人工作許可留台工作
transcript.whisperx[18].start 2159.992
transcript.whisperx[18].end 2174.895
transcript.whisperx[18].text 那麼以上呢我還有很多其他的需要報告的地方那麼可以請委員來參考我們的業務的書面報告那麼也很謝謝還有包括我最後給給我一點時間強調我要推動這個勞政友善化措施這個就是我們希望能夠讓行動AI內閣他能夠落實在我們每一個施政項目裡面然後讓我們廣大的勞工朋友有感那麼以上我們會建立
transcript.whisperx[19].start 2188.519
transcript.whisperx[19].end 2198.879
transcript.whisperx[19].text 公共平臺、廣大民意、也擴大民眾的參與。行速行動創新的AI團隊為提升勞工的福祉而努力。以上的報告藉請各位委員指教。謝謝。
transcript.whisperx[20].start 2204.979
transcript.whisperx[20].end 2232.492
transcript.whisperx[20].text 有關本次會議各項書面資料均列入紀錄刊登公報現在開始詢答做以下宣告本會委員詢答時間6加2分鐘列席委員4加1分鐘10點30分截止發言登記委員如有書面質詢請於散會前提出預期不受理暫定10點30分休息10分鐘原則上11點30分處理臨時提案10點30分截止收案
transcript.whisperx[21].start 2232.972
transcript.whisperx[21].end 2236.734
transcript.whisperx[21].text 那現在請登記第一位委員陳昭芝委員發言及有請部長請何部長
transcript.whisperx[22].start 2248.575
transcript.whisperx[22].end 2249.236
transcript.whisperx[22].text 平均值和中位數
transcript.whisperx[23].start 2265.536
transcript.whisperx[23].end 2265.576
transcript.whisperx[23].text 拜訪委員
transcript.whisperx[24].start 2288.514
transcript.whisperx[24].end 2299.873
transcript.whisperx[24].text 那我們就算不算口試委員然後想請教部長您的論文題目想好了嗎?就是您就任這個部長之後您覺得自己最重要的任務是什麼?
transcript.whisperx[25].start 2301.612
transcript.whisperx[25].end 2328.943
transcript.whisperx[25].text 跟委員報告我剛剛我的業務報告有一定程度的呈現了我的這一個施政的項目施政的這個重點那麼對時間不夠讓部長來做充分報告那之前有一個民調有調查那個賴清德總統就是人民期待賴清德政府能夠做的優先做的解決的一些問題其中有三件跟勞動議題是相關的第一個就是解決長期的薪資停滯
transcript.whisperx[26].start 2330.964
transcript.whisperx[26].end 2351.613
transcript.whisperx[26].text 議員.
transcript.whisperx[27].start 2353.332
transcript.whisperx[27].end 2354.293
transcript.whisperx[27].text 強化低薪的部分
transcript.whisperx[28].start 2383.512
transcript.whisperx[28].end 2399.201
transcript.whisperx[28].text 我們希望能夠呼籲企業能夠在這方面落實所以在跟金管會我剛剛有提到您講的那個金管會那部分就是說我們可以會跟金管會合作然後要求上市櫃公司揭露這些薪資的標準跟報酬
transcript.whisperx[29].start 2401.623
transcript.whisperx[29].end 2427.365
transcript.whisperx[29].text 我們本黨可能近期也會提出所謂七月三法就是有獲利的上市公使可能要做這個部分那部長5月初我們剛結束那個臺美貿易協定的這個第二階段的談判那我想您了解其中有關勞動議題的部分很受重視那美國是希望臺灣要能夠禁止輸入有強迫勞動所製造的這個產品那如果在國內發現的話就必須下架那請問勞動部有沒有開始去盤點
transcript.whisperx[30].start 2429.066
transcript.whisperx[30].end 2433.789
transcript.whisperx[30].text 我們進口品當中有哪些是屬於這個所謂強迫勞動產出的產品是委員報告喔勞動部本身有在做跟移民所合作研究計畫正在研究什麼是強迫勞動產品事實上根據我的瞭解喔這個強迫勞動產品的清單應該是可能是必須美方提供啦而不是我方所以這個
transcript.whisperx[31].start 2456.864
transcript.whisperx[31].end 2477.677
transcript.whisperx[31].text 對,所以這個部分未來因為台美這個談判還在持續中事實上他們6月才剛離開那當然等一下我會提到國內部分因為我覺得這個緊張的瞭解不只是說為了幫助這個台美貿易協定的進行另外一方面也讓我們國人能夠有預先準備到底哪一些產品是屬於這個部分我們要準備替代品嘛
transcript.whisperx[32].start 2479.058
transcript.whisperx[32].end 2496.199
transcript.whisperx[32].text 我們也要避免在這個執行所謂強迫勞動產品認定的過程裡面去引發不必要的民怨你知道台灣本身也有強迫勞動的問題因為美國國務院人權報告就指出台灣仲介向移工收取費用
transcript.whisperx[33].start 2497.201
transcript.whisperx[33].end 2499.543
transcript.whisperx[33].text 這就是用強迫勞動的他們的定義強迫勞動那因為美國勞動部的這個同工跟所謂的這個強迫勞動製品名單臺灣的漁獲漁獲的這個部分也被列為強迫勞動所得的這個產品那我知道這個遠洋漁工是屬於農業部來管理的
transcript.whisperx[34].start 2515.103
transcript.whisperx[34].end 2535.639
transcript.whisperx[34].text 但是監察院也提出過報告那行政院也有指示就是說是不是要做跨部會勞動部也要參與這個部分因為這些遠洋漁工他們的權益跟勞基法有相當的這個距離那所以勞動部可能也是責無旁貸啦那對於漁工重借費收取重借費不曉得部長您的想法是什麼
transcript.whisperx[35].start 2536.5
transcript.whisperx[35].end 2550.794
transcript.whisperx[35].text 是我們很努力的在因為這是來源國的問題因為漁工收取仲介費基本上是在我講的是臺灣的仲介收取的部分因為他們據說我們是唯一的一個國家有收取這樣的費用
transcript.whisperx[36].start 2552.116
transcript.whisperx[36].end 2561.005
transcript.whisperx[36].text 我們的定義是你有服務才能收費啦所以那不是那並不是必要而且是他們雙方合意的所以我本本我們是強烈的建議齁是不是應該這個修法禁止仲介
transcript.whisperx[37].start 2569.694
transcript.whisperx[37].end 2594.135
transcript.whisperx[37].text 像移工收取服務費這是美國國務院的建議啦那如果我們繼續這樣做還是可能影響臺美貿易協定的一個繼續的那個進度嘛所以部長至少是不是能夠承諾一下回去研究一下其他國家其他國家哪些會跟臺灣一樣重借會跟移工收取服務費那另外一個就取消如果取消這個服務費會有什麼影響我們可以就取消會有什麼影響那是不是請勞動部可以做個書面報告
transcript.whisperx[38].start 2595.276
transcript.whisperx[38].end 2600.76
transcript.whisperx[38].text 好提供我們好謝謝那部長您接任這個勞動部部長消息傳來當然某一些勞動團體他們有反彈因為他們當時認為就是說所謂的在他們眼中是個惡法勞基法是惡法但他們認為您是幕後推手但是很多人也不知道其實
transcript.whisperx[39].start 2615.071
transcript.whisperx[39].end 2636.153
transcript.whisperx[39].text 您當年曾經積極參加勞工運動帶著工人前往勞委會衝撞然後跟警方發生衝突還因此被判刑您是創下學生參與社會運動第一個被判刑的這個例子雖然最後是緩刑所以我相信勞工仍然是你心中最軟的一塊那也有人說
transcript.whisperx[40].start 2637.494
transcript.whisperx[40].end 2660.788
transcript.whisperx[40].text 就是這個勞工是你血液中的DNA啦那我希望部長就是在您的任期當中能夠努力的推動對勞工權益有幫助的一個法案我覺得您這個表現如果你有好的表現的話那未來就是說這些所謂的質疑它是一個平反的這個機會不曉得部長您對這個部分的想法是怎麼樣
transcript.whisperx[41].start 2662.308
transcript.whisperx[41].end 2669.571
transcript.whisperx[41].text 謝謝委員您很了解我對那就是說因為我確實35年前曾經有這樣子的一個經驗那麼不過因為當時是年輕那麼有這個當時的人道關懷那麼現在我一樣會秉持我的人道關懷對我們勞工朋友做最大的施政努力這一點請您放100個心我覺得對
transcript.whisperx[42].start 2686.716
transcript.whisperx[42].end 2693.681
transcript.whisperx[42].text 那關於那個勞基法二修那一件事情呢事實上我想當時的勞動朋友們可能有些誤解那因為我們在修法的過程裡面其實並沒有修惡我們只是讓他有彈性那事實上這部法律經過修法後但現在已經運作6年了事實上也運作得很好那麼我們的經濟到現在才可以這麼創新高那麼勞工的朋友的薪資跟工時其實都是相對更好
transcript.whisperx[43].start 2716.497
transcript.whisperx[43].end 2717.518
transcript.whisperx[43].text 接下來請林岳晴委員發言
transcript.whisperx[44].start 2751.476
transcript.whisperx[44].end 2754.497
transcript.whisperx[44].text 有請我們的何部長請何部長委員好何部長好恭喜你進入到我們的中央行政部門我自己來自民間團體那也一直在關心兒少那也想先對部長有些期許因為少子化本來就是一個國安問題的
transcript.whisperx[45].start 2777.068
transcript.whisperx[45].end 2806.03
transcript.whisperx[45].text 那過去我們在民間一直在倡導說少子化的對應政策裡邊年輕人碰到高工時低薪高房價那剛剛部長有講說未來還是會持續延續著我們過去的蔡總統的政策裡邊會把那個基本工資再往上調可是但也期許除了薪資以外年輕人要生養小孩很重要的可能還要考慮的會是你的配套措施因為過去一直在講給育兒津貼嗎
transcript.whisperx[46].start 2806.97
transcript.whisperx[46].end 2836.2
transcript.whisperx[46].text 還有很大的部分是在於我剛剛提的像高工時這一塊你剛剛解決低薪格高工時甚至搭配的措施像育嬰價甚至有的國家事實上對產價因為他一次不同而有不同的產價那還有彈性工時跟企圖這都是期待部長未來在你的任內是不是應該讓我們進一步少子化的一些課題事實上透過這些的
transcript.whisperx[47].start 2837.391
transcript.whisperx[47].end 2845.799
transcript.whisperx[47].text 一切相關的制度來讓他真的事實上更能夠有心力來生養小孩今天就要向來問因為移工
transcript.whisperx[48].start 2849.048
transcript.whisperx[48].end 2872.634
transcript.whisperx[48].text 的一些問題就是二月十六號事實上簽了那個台英的MOU那這之後呢就受到了非常多的不同的聲音十一月就去年十一月大家就有人在公共政策平台裏邊提出反對的反對那四月份呢又移工團體呢事實上他不反對可是呢希望能夠執聘
transcript.whisperx[49].start 2874.431
transcript.whisperx[49].end 2880.521
transcript.whisperx[49].text 後來也有僱主團體明確表示說希望我們的看護工可以作為引進的事辦對象
transcript.whisperx[50].start 2884.504
transcript.whisperx[50].end 2911.754
transcript.whisperx[50].text 在台印的那個MOU裡邊總共簽訂的協議面容大13條那其中有兩個事實上就是在簡化勞工的聘僱程序跟推動直接聘僱這兩項可是我們看到職聘從96年開辦一路以來一直往下因為它只剩下收件的功能所以從105年之後下滑到去年只剩下5700件只剩下收件的
transcript.whisperx[51].start 2912.194
transcript.whisperx[51].end 2940.14
transcript.whisperx[51].text 一個功能所在下一頁所以想先問部長就是說這個執聘政策看起來事實上是一個很失敗的政策可是勞動部在台印的MOU裡面還是把它列入所以想問政府是不是有沒有要在這個台英合作上去振興執聘的好方法有沒有想到
transcript.whisperx[52].start 2941.643
transcript.whisperx[52].end 2955.181
transcript.whisperx[52].text 對,是,委員我了解這個我也把這個列為是我上任以後最重要的工作執聘的這個有效率化跟友善化將是我最重要的施政重點之一因為太多的僱主他們想要自己聘
transcript.whisperx[53].start 2959.286
transcript.whisperx[53].end 2977.907
transcript.whisperx[53].text 可是反鎖的文書作業確實讓大家都覺得很無力喔那麼尤其害我們讓應該要推動的移工朋友也可以自己申請喔這都可以減緩不必要的這種移工的這樣子的一個對他的在勞動環境條件上的改善喔那
transcript.whisperx[54].start 2979.128
transcript.whisperx[54].end 3006.297
transcript.whisperx[54].text 我想在這個部分我們你們前陣子有去親身看過職聘中心我們的署長他也有規劃了未來可以線上申辦5天之內就可以拿到件就可以拿到件他有已經有做出這樣子的因為正在使用者的角度上來看的話那你像這樣子的一個要跟這麼多的齁
transcript.whisperx[55].start 3007.808
transcript.whisperx[55].end 3036.142
transcript.whisperx[55].text 中央部會然後呢地方那所涉及單位大家至少就5個而且拼護過程當中要使用要簽的相關的文件大家就41件相較下我們其他的各種的拼護關係都沒有這麼樣的一個繁瑣所以想問部長就是在93年公布這個顧主拼護外國人許可及管理辦法到20年了
transcript.whisperx[56].start 3036.542
transcript.whisperx[56].end 3056.3
transcript.whisperx[56].text 那這些的程序簡化了嗎?是。這就是現在要去努力的目標。那我們就期待。謝謝委員這一個提供。是是是,真的非常重要。為什麼?因為很麻煩呢,大家就是找仲介啦。可是我覺得仲介的費用這看起來事實上是政府的一些收費標準。
transcript.whisperx[57].start 3059.682
transcript.whisperx[57].end 3075.791
transcript.whisperx[57].text 可是到底他們真的只有這些費用嗎?家庭內的僱主抱著手上的一個名額常常受制於我們的仲介提出來的條件像買工費又稱為挑工費
transcript.whisperx[58].start 3076.687
transcript.whisperx[58].end 3076.707
transcript.whisperx[58].text 委員.
transcript.whisperx[59].start 3102.492
transcript.whisperx[59].end 3128.81
transcript.whisperx[59].text 具備足夠的代表性所以本期要求在評鑑委員的邀請上應該要同時兼顧我剛剛講的這挑工費一般的如果沒有碰到的你根本大家也不太知道那現在有很多的相關的民間團體是不是他們有使用的經驗成了一個民間團體的時候他們有相對的很多的資訊因為都是他們自己親身碰到的是不是
transcript.whisperx[60].start 3129.631
transcript.whisperx[60].end 3154.837
transcript.whisperx[60].text 才有辦法有能力把我們不良的那個仲介把它汰換掉我不知道部長是不是同意針對你的平健委員應該要考慮到多元性可以可以這個謝謝委員其實現在已經有邀請可是我認為應該還可以再更強化外部委員的監督讓他們來加入這樣子這個我們會跟署長一起來研究然後我們來盡快來處理這樣子
transcript.whisperx[61].start 3157.177
transcript.whisperx[61].end 3180.626
transcript.whisperx[61].text 對,我不是讓政府一些公佈的收費標準以外還要去增加僱主的負擔我覺得這是政府要去做把關的事實上這是違法的可是當然在查緝上是不是很有利呢這個確實我們必須要來深刻檢討就是希望你們趕快內部針對這個還要評鑑制度也要去做
transcript.whisperx[62].start 3181.912
transcript.whisperx[62].end 3182.553
transcript.whisperx[62].text 委員會主席
transcript.whisperx[63].start 3203.497
transcript.whisperx[63].end 3222.891
transcript.whisperx[63].text 我完全沒有看過這個人而且完全依賴仲介給我的這樣的一個第三方來做這樣的一個撮合所以本期要求勞動部是不是可以架設一個提供給雇主
transcript.whisperx[64].start 3223.391
transcript.whisperx[64].end 3232.26
transcript.whisperx[64].text 一共在求才求職時得以免費使用的公共面試平台而且能夠附同步的翻譯功能
transcript.whisperx[65].start 3232.83
transcript.whisperx[65].end 3258.832
transcript.whisperx[65].text 跟履歷、徵材、資訊相互傳遞功能不管是境外或境外的一個聘僱跟境內的承接都要開放使用那讓有助於兩邊的合作關係因為畢竟他們是要長時間相處的我不知道部長這個訴求你可以可以而且現在正在研究要做了但什麼時間會是在什麼時候
transcript.whisperx[66].start 3259.833
transcript.whisperx[66].end 3269.595
transcript.whisperx[66].text 市長你覺得呢?跟委員報告,確實我們現在已經要提出一個經濟問題,這個部分已經納入我們大概希望因為透過系統的開發或許在下半年我們盡早來對抗
transcript.whisperx[67].start 3271.28
transcript.whisperx[67].end 3296.426
transcript.whisperx[67].text 下半年大概年底有機會嗎還是要這個我們會越快越好因為它涉及到這個系統的開發我們最慢年底前一定可以完成下個會期的時候是不是可以提出初步的一些相關的對應的一些方向這沒有問題這我們會提出好謝謝部長謝謝好謝謝林月琴委員發言接下來請陳金輝委員發言
transcript.whisperx[68].start 3306.795
transcript.whisperx[68].end 3310.399
transcript.whisperx[68].text 主席各位委員各位官員大家早安大家好我也請何部長請何部長
transcript.whisperx[69].start 3315.114
transcript.whisperx[69].end 3337.763
transcript.whisperx[69].text 何部長首先恭喜你也很謝謝昨天你有到我辦公室我們一起交流了很多議題謝謝那昨天非常非常多委員會也有稍微提到一點國會改革啊藐視國會啊也有人問了吃早餐等等這都不是本席要問的本席其實要為您表達是很敬佩因為這是您12年前曾經說過的可以幫我播一下
transcript.whisperx[70].start 3343.858
transcript.whisperx[70].end 3344.939
transcript.whisperx[70].text 所以部長12年前參與一個改造國會終結亂象的研討會
transcript.whisperx[71].start 3364.321
transcript.whisperx[71].end 3379.307
transcript.whisperx[71].text 曾經說過現在國會最大的問題是被壓抑弱化的跟行政院立法局一樣可是我們今天看到的是執政黨不斷想盡方法的阻撓議事進行所以我也很想知道部長您當時因為剛剛
transcript.whisperx[72].start 3380.948
transcript.whisperx[72].end 3399.251
transcript.whisperx[72].text 林月琴委員、陳昭志委員也很關心您是公寓人士出身可是後來可能有一些爭議因此現在很多民團也對您就任有一些不同的看法本席也很想知道說您是不是還令我欽佩支持12年前您對於國會改革的支持呢?
transcript.whisperx[73].start 3402.332
transcript.whisperx[73].end 3425.468
transcript.whisperx[73].text 委員跟您報告12年前那個時候我還是立法院的助理那時候我對就是還在總召的辦公室擔任助理那麼我受邀這個民間的智庫基金會然後來講這個國會改革的議題所以您的意思是說這可能也不是您心中真正的想法是因為當時助理的角色必須如此
transcript.whisperx[74].start 3425.868
transcript.whisperx[74].end 3426.008
transcript.whisperx[74].text 我們看下一張
transcript.whisperx[75].start 3452.597
transcript.whisperx[75].end 3468.165
transcript.whisperx[75].text 昨天有非常多委員會有跟互相官員們交流有關於未來假使有藐視國會罪這件事情我們應該要怎麼樣去定義它但本席絕對不會去質詢比如說吃早餐這樣子的議題不過這是
transcript.whisperx[76].start 3470.166
transcript.whisperx[76].end 3491.369
transcript.whisperx[76].text 之前呢李淑芬委員在第9屆的時候跟您在這個委員會這個場地所進行的爭執當時李淑芬委員說您藐視國會那現在他是11屆的委員所以本席很希望說我們這個委員會在這個會期還有您在上任的時間都還是可以維持平靜我們也是看一下當時的影片
transcript.whisperx[77].start 3500.436
transcript.whisperx[77].end 3505.296
transcript.whisperx[77].text 那個時候我也會是勞工階級哇這個話講得很好那到底他怎麼回事我們看一下
transcript.whisperx[78].start 3507.097
transcript.whisperx[78].end 3523.143
transcript.whisperx[78].text 勞基法修法,民進黨內部很火爆這兩個哪一個先出?這邊知恩其身,不見其人一度還讓宣讀議事的趙偉停下來看看發生什麼事原來吵架的是民進黨
transcript.whisperx[79].start 3534.093
transcript.whisperx[79].end 3557.548
transcript.whisperx[79].text 當天因為主席、官員、委員全部都是同黨所以就不便處理啦否則當時林委員是很堅持您是藐視國會所以我想承諾說請部長承諾我們是不是在這一個上任的期間都可以保持理性面對不要再發生類似這樣第9屆的對嗆事件了
transcript.whisperx[80].start 3558.429
transcript.whisperx[80].end 3567.526
transcript.whisperx[80].text 您放心當然一定是這樣謝謝對因為林淑芬委員還在啊我跟她也非常好啦沒有問題謝謝謝謝好下一張
transcript.whisperx[81].start 3570.812
transcript.whisperx[81].end 3587.432
transcript.whisperx[81].text 這次賴總統在宣誓就職的時候呢很大一個重點是我們全國勞工關心的他說只要政府在勞保絕對不會倒結果呢隔天勞保局經過一次的精算報告指出呢2023年底勞保基金精算負債13兆
transcript.whisperx[82].start 3588.914
transcript.whisperx[82].end 3590.755
transcript.whisperx[82].text 一千五百億元已經是極限了
transcript.whisperx[83].start 3615.231
transcript.whisperx[83].end 3627.665
transcript.whisperx[83].text 再來撥補的方式只是治標不治本這個你也同意嗎昨天我們有交流了一下所以我想請問說民進黨勞保改革喊了8年年金改革也已經砍完了可是攸關千萬勞工的勞保改革我們什麼時候會啟動你在這邊可以給人民一個答案嗎
transcript.whisperx[84].start 3637.515
transcript.whisperx[84].end 3663.749
transcript.whisperx[84].text 跟我演報告,我剛剛在業務報告還有那個媒體回答的時候已經講得很清楚,就是說波普就是改革,我們已經進行改革4年了而且改革到現在基金水位創新高目前老闆財務相對穩健,絕對沒有破產的問題你昨天交流的時候有講到一個狀況,就是只要不要所有的人一起去提領
transcript.whisperx[85].start 3664.489
transcript.whisperx[85].end 3678.117
transcript.whisperx[85].text 是 這就是所謂的潛藏負債的定義啦 我想一般社會大眾不是很了解潛藏負債的意思喔 潛藏負債不是負債 它是可能發生的幾負責任而已我們很難去保證 您也不可能去保證說 不會有全部的人同時去提領的狀況嗎 是吧
transcript.whisperx[86].start 3691.002
transcript.whisperx[86].end 3712.774
transcript.whisperx[86].text 這是實務上真的是不可能這樣發生的,這是真的,你絕對不可能,因為這是我們寶寶寶有一千零五十萬人,不可能一千零五十萬人全部都在同一個時間去領所以我們現在你的意思是說撥補也是改革的一環,但你還會有除了撥補以外的其他改革做法嗎?我們努力來開源啦
transcript.whisperx[87].start 3714.315
transcript.whisperx[87].end 3714.475
transcript.whisperx[87].text 好,我們下一張
transcript.whisperx[88].start 3725.081
transcript.whisperx[88].end 3752.793
transcript.whisperx[88].text 這個小子女話昨天您來交流的時候說很多的業務其實是衛福部的業務但其實啦這邊要告訴您光是13項的主要工作中勞動部就佔了7項包括準公共機制兩歲以上月的津貼彈性工時推廣新型態的職場托育提升雇主辦理托兒措施加強產業聚落提供托兒服務還有促進這個補給入室啊等等的
transcript.whisperx[89].start 3754.093
transcript.whisperx[89].end 3782.104
transcript.whisperx[89].text 我想要請教一下部長因為小子女化這個已經是刻不容緩的問題我明年度我們可能會推出我國小子女化對策計畫2.0勞動部可以有哪些新的多出來的政策紅利嗎因為您在講這些希望民間機構也可以一起參與開辦彈性育兒育兒工時等等的這些真的是要給人家誘因啊你沒有給人家誘因的話誰要做這件事情
transcript.whisperx[90].start 3783.084
transcript.whisperx[90].end 3811.602
transcript.whisperx[90].text 是委員就是目前我們正在事辦御殷留庭彈性化對那麼這個是一個很重要的概念就是未來你可能可以用一用小時去請或是一天去請這樣子而不是一個快狀一定要請那麼久也可以方便他回到職場我們需要能夠把它進一步落實不是只有事辦而已那麼需要倡導更多企業這個是您的主要那其他的你有沒有多出來的政策紅利要再
transcript.whisperx[91].start 3812.563
transcript.whisperx[91].end 3813.023
transcript.whisperx[91].text 下一張下一張
transcript.whisperx[92].start 3831.876
transcript.whisperx[92].end 3857.154
transcript.whisperx[92].text 2012年發生的這個勞動基金弊案經過10年後2022年勞動部發出了官方訊息說追回7157萬元不罰所得但是至今還有陳姓經理人還有前所屬的頭姓3.9億餘人目前尚未追回請問你就任之後對於這個3.9億元我們全國人民的錢就任以後追討的規劃為何呢
transcript.whisperx[93].start 3859.197
transcript.whisperx[93].end 3860.341
transcript.whisperx[93].text 我讓基金局的數據長來答覆
transcript.whisperx[94].start 3861.943
transcript.whisperx[94].end 3889.389
transcript.whisperx[94].text 委員好就有關您剛剛所提到的個案我們已經上訴到最高法院最高法院也有判已經有退回到高等法院再重新來審查目前我們正在高院審查中那我們這個案子其他的部分我們都已經追回了希望這4年的任期我們可以把這3.9億人追回是是是好但是呢我們看一下下一頁行政院有修正了中央廉政委員會設置要點
transcript.whisperx[95].start 3891.229
transcript.whisperx[95].end 3906.649
transcript.whisperx[95].text 好這個是行政院長親自主持的比如經濟部長、內政部長、交通部長、NCC、教育部長幾乎都是構成機關之一為什麼勞動部會被排除在外?經過我們剛剛的弊案不是很應該勞動部也要參加中央廉政委員會的組織架構當中嗎?
transcript.whisperx[96].start 3910.943
transcript.whisperx[96].end 3922.388
transcript.whisperx[96].text 謝謝委員提醒了我我倒真的還不大瞭解我可以容我向行政院瞭解一下狀況再回答您可以在原則上同意我應該您會申請勞動部也一起加入吧好我來研究處理然後跟您報告好嗎好謝謝
transcript.whisperx[97].start 3933.086
transcript.whisperx[97].end 3953.933
transcript.whisperx[97].text 最後我們來講到您是供應人士出身的但是這個後來都有一些勞團認為您是站在資方的立場我也想請教您除了五缺缺地缺電缺水缺工缺財請問勞動部對於企業五缺未來的政策走向最重要的是什麼
transcript.whisperx[98].start 3955.789
transcript.whisperx[98].end 3973.577
transcript.whisperx[98].text 我想比較重要的是我們先開發本土的勞動力尤其我們婦女的勞參率還偏低還有中高齡這個部分我們優先來處理最後一張我們給您一個建議其實剛剛很多委員也已經提到了勞工最在乎的是缺錢
transcript.whisperx[99].start 3975.023
transcript.whisperx[99].end 3983.75
transcript.whisperx[99].text 所以這絕對的低薪普遍化如果繼續下去會習慣成自然根據112年組計總數統計有408萬人月薪是不超過4.3萬元令人無法理解的是
transcript.whisperx[100].start 3992.157
transcript.whisperx[100].end 4020.188
transcript.whisperx[100].text 世界最有錢的排名台灣居然人均所得是230萬元是世界第12名所以勞動部最大的任務也希望可以納入幫我們的貧富差距縮短因為他目前正在持續的擴大中所以除了性別還有低薪的這個窘境我都希望勞動部可不可以針對就業服務法進行大修把一個月內將修法的方向提供給我們參考呢
transcript.whisperx[101].start 4021.888
transcript.whisperx[101].end 4036.152
transcript.whisperx[101].text 委員就業服務法確實應該要來全盤檢視不過要跟您報告就業服務法也是一個大工程容我有時間好好跟您報告好嗎謝謝好我們會未來繼續追這個議題謝謝謝謝陳金輝委員發言接下來請盧憲一委員發言
transcript.whisperx[102].start 4050.684
transcript.whisperx[102].end 4051.305
transcript.whisperx[102].text 勞工 勞工 勞工 勞工
transcript.whisperx[103].start 4076.415
transcript.whisperx[103].end 4104.381
transcript.whisperx[103].text 是請委員開示也是生孩子的生生產的意思也就是費盡千辛萬苦的人叫labor所以你時時刻刻都要想到勞工是費盡千辛萬苦的人當然當然我們先看到第8頁的那個報告裡面齁那兩那個我們的勞動參與率那我們國人是這樣那我們原住民你知道嗎是原住民的男性是參與率是多少你知道嗎
transcript.whisperx[104].start 4106.121
transcript.whisperx[104].end 4134.888
transcript.whisperx[104].text 第8月,原住民是將近70男性那平均的話是將近62、63那邊也就是說都高於國人那我們再看到第6月我剛剛早上仔細看了你的報告了所以大概我看一下還有第5月那我們的失業率是多少你知道嗎現在大概3%上下沒有我們的你看到我就要想到原住民是不好意思
transcript.whisperx[105].start 4138.051
transcript.whisperx[105].end 4147.962
transcript.whisperx[105].text 實質上現在原住民現在的失業率已經降到跟一般國民差不多同等水準了因為災後我們花蓮地震請問你有去過花蓮嗎最近
transcript.whisperx[106].start 4151.145
transcript.whisperx[106].end 4173.807
transcript.whisperx[106].text 對不起我個人因為也沒有這個因為目前的災害地震受災害的情況不太一樣那有些是花蓮市有些秀林鄉秀林鄉比較嚴重那他們很多人主委跟我說他們兩個月過完那個所謂的這邊有寫嘛臨時工作機會大概是提供兩個月必要時可再延長那現在
transcript.whisperx[107].start 4174.997
transcript.whisperx[107].end 4184.749
transcript.whisperx[107].text 那兩個月如果快到了,那你要怎麼來延長它?已經要延到六個月了。對,您放心,您放心。我剛剛在口頭報告一開始就報告了對於震災,海花蓮震災的這個處理,勞動部的這部分措施。
transcript.whisperx[108].start 4195.202
transcript.whisperx[108].end 4222.808
transcript.whisperx[108].text 因為我們常常我當然還是要說我們常常在分類的時候我們是跟弱勢族群在一起可是你在看第17月的報告你會說身心障礙者、原住民、二度就業婦女我們都是放在這邊沒有關係可是你的比如說你協助弱勢失業11萬2243人你只有總數你沒有把它分類我不知道我們原住民的這個在哪裡懂意思嗎所以還是要把我們原住民把它表列化特別標出來還有25頁
transcript.whisperx[109].start 4228.672
transcript.whisperx[109].end 4248.191
transcript.whisperx[109].text 因為我們常常會發生一些牢災比如說墜落的這些事情常常發生在我們原住民身上我特別看了一下你說營造業的監督執行率是10328次今年到4月為止也就是說120天裡面你執行了1萬多次也就是每天110次你如何達成的
transcript.whisperx[110].start 4249.556
transcript.whisperx[110].end 4277.667
transcript.whisperx[110].text 這邊我請署長來回答好嗎?委員法我們各有各地勞動檢查機構根據風險做監督檢查是由各檢查機構來做實時檢查所以是每天幾乎有121次然後可是我們的罰款還是有1億多那可是1億多的這個件數是多少件違法然後它的平均的受罰的沒件數的受罰的金額是多少應該也要知道啊你雖然知道是1億多可是我不知道你罰了誰也不知道你罰了多少人我們後續再給委員進一步的資料這個我們都有謝謝委員
transcript.whisperx[111].start 4277.927
transcript.whisperx[111].end 4277.967
transcript.whisperx[111].text 好,好,謝謝
transcript.whisperx[112].start 4299.514
transcript.whisperx[112].end 4299.654
transcript.whisperx[112].text 下一頁下一頁
transcript.whisperx[113].start 4325.25
transcript.whisperx[113].end 4350.814
transcript.whisperx[113].text 大部分都是在墜落這邊齁就是我們剛剛講的那個職業的災害的那個所謂的盤點或是說監測啊或是去稽查應該都要知道還有不好意思在上岳還有最多跟我講的是說他們去做工作的時候很多僱主都沒有投保所以他們在上班的時候都沒有安全感你要怎麼去杜絕或者去預防這樣的事情
transcript.whisperx[114].start 4353.603
transcript.whisperx[114].end 4374.956
transcript.whisperx[114].text 職災保險現在是一律都可以投喔可是還是很多勞工我們原住民勞工並不知道他有這樣的一個他可以去哪裡去申辦還是怎麼樣好我們來加強這個宣導然後因為事實上職災保險現在到了7就可以投保了只要到ibon他掉下去了然後就去考的時候就顧主沒有幫他保
transcript.whisperx[115].start 4375.376
transcript.whisperx[115].end 4377.14
transcript.whisperx[115].text 而且資災保險是相對便宜,所以這個我們來加強對營造業工地的宣導,好嗎?
transcript.whisperx[116].start 4387.669
transcript.whisperx[116].end 4414.13
transcript.whisperx[116].text 我們目前我們就講移工的部分我們知道要開放一萬五千名那我們怕就是說我們未來會不會擠壓到我們原住民的就業因為我們大部分也從事勞動這些重工業的工作比如說營建或工程你營建這麼多我們的移工的時候會不會相對的就壓縮了我們的工作的權利要怎麼來預防怎麼來跟我們原住民的勞工來解釋
transcript.whisperx[117].start 4415.74
transcript.whisperx[117].end 4428.419
transcript.whisperx[117].text 是跟我們報告我們對原住民勞工的就業保障一定放在最優先所以其實在這個引進移工前我們會確保他招募這個國內的招募到一定比例
transcript.whisperx[118].start 4430.271
transcript.whisperx[118].end 4452.492
transcript.whisperx[118].text 我請署長可你回覆一下好嗎跟委員報告這個我們在開放但是我們跟內政部會在整個程序當中一定會落實對國內的招募的一個部分要優先來試驗對沒有錯可是我還聽到很多老公朋友說外老朋友把我的工作權拿走了所以我想說這個部分你一定要去想辦法杜絕或者說避免可以嗎
transcript.whisperx[119].start 4453.132
transcript.whisperx[119].end 4453.893
transcript.whisperx[119].text 謝謝盧憲一委員的發言接下來請舒清泉委員發言
transcript.whisperx[120].start 4484.935
transcript.whisperx[120].end 4486.585
transcript.whisperx[120].text 謝謝主席我請部長請何部長
transcript.whisperx[121].start 4491.857
transcript.whisperx[121].end 4491.877
transcript.whisperx[121].text 謝謝委員
transcript.whisperx[122].start 4520.005
transcript.whisperx[122].end 4539.593
transcript.whisperx[122].text 新任勞動部長何佩珊,勞團金夫,勞保年金大刀要砍了,有這個事嗎?委員,絕對不會,絕對沒有,我剛剛已經講得很清楚了是你剛剛在報告的時候我在那個辦公室有看喔,你說政府會撥補嗎?是下一頁
transcript.whisperx[123].start 4543.806
transcript.whisperx[123].end 4567.226
transcript.whisperx[123].text 政策是多領、少領、延後退,這就消耗了嘛。搞到多的、扭到少的、扭到少的,這就歐巴桑就要了,踏到你。我們那個機構的清潔勞務公司的經理跟我講說,欸現在這個部長是特寫的,我說我不知道耶,我不知道,查看看。他說這就政策這樣,那踏到他。
transcript.whisperx[124].start 4578.146
transcript.whisperx[124].end 4602.395
transcript.whisperx[124].text 委員這個是年改過去年改的在討論的方案基本上這個是蔡總統講出來的他在演講的時候這樣講的蔡總統沒有講過這樣子的方案這是過去8年蔡總統執政的時候曾經討論過的年改方案不過基本上這是在勞保年改是不適用的
transcript.whisperx[125].start 4603.695
transcript.whisperx[125].end 4614.789
transcript.whisperx[125].text 好,華國只有把退休年齡延長兩年,暴動持續將近兩年,到現在還在亂,你的看法怎麼樣?
transcript.whisperx[126].start 4616.165
transcript.whisperx[126].end 4639.295
transcript.whisperx[126].text 這就是我們要如果要進行所謂的這一種多腳少領、延後退縱這個東西事實上它付出的社會代價跟成本是非常高的而且恐怕我們整體社會都承擔不起因為就是老闆是1050萬人的保險那麼他幾乎已經是等於是國民的基礎年金的角色了
transcript.whisperx[127].start 4639.815
transcript.whisperx[127].end 4656.889
transcript.whisperx[127].text 政府的角色在哪裡啦?你搞這個就是把問題丟給勞工,叫他比較慢才拿的,叫他要比較早的,要有心理準備,然後叫僱主說你要搞比較早的,然後政府的角色是什麼?
transcript.whisperx[128].start 4657.694
transcript.whisperx[128].end 4678.391
transcript.whisperx[128].text 政府公共投資與政策投資要夠嘛這個跟我們醫療是一模一樣的嘛現在醫療搞一個總額預算全部把財務的壓力丟給醫界然後這十幾年來政府很好幹啊他們就沒有壓力啊到年底就是總額預算就是浮動嘛浮動就是一點變成0.8、0.6、0.7都你知道的事情
transcript.whisperx[129].start 4682.703
transcript.whisperx[129].end 4703.519
transcript.whisperx[129].text 現在我們的勞動部不錯,還有博普知道政府的角色在哪裡現在的衛福部就是白爛嘛這樣我看起來這兩個問題是一模一樣就政府你的公共政府你的角色政府你的投入要過多才能穩定這兩個
transcript.whisperx[130].start 4706.056
transcript.whisperx[130].end 4715.627
transcript.whisperx[130].text 醫療是台灣最大的穩定力量醫療的幫全都幫勞工更是我們心中的一塊肉所以我要跟你講下一張
transcript.whisperx[131].start 4717.908
transcript.whisperx[131].end 4737.128
transcript.whisperx[131].text 這個你剛剛有講了嘛,會破產或什麼的。好,我問一個問題。現在他們宣布而已。對,這個合併的過程會走很長的。那這個我比較擔心的,因為我很少再叫外送了。
transcript.whisperx[132].start 4739.819
transcript.whisperx[132].end 4765.055
transcript.whisperx[132].text 我覺得我們做這家人,做吃的人,我這裡要跟他們肯定我去餐廳吃,不管哪一個餐廳吃,我坐下來都很感恩人家要煮飯給我們吃,我就很感恩的好吃壞吃,我從來沒在想的,再來就吃,吃吃的感謝父親欠官欠家的,我坐在這邊,因為煮這吃有夠辛苦好啦,那現在Uber跟Panda如何變成一家?
transcript.whisperx[133].start 4766.246
transcript.whisperx[133].end 4788.641
transcript.whisperx[133].text 那現在不用他自己定然後這個接送員的薪水他的權益由他定他說了算會不會這樣部長有可能啊因為他是第一名跟第二名的合併這知識體大對消費者跟對外送員的權益都是很可能會產生嚴重的傷害所以你的看法是不好嗎
transcript.whisperx[134].start 4789.622
transcript.whisperx[134].end 4807.785
transcript.whisperx[134].text 我們醫界齁兩個國家醫院一個是臺大醫院一個是農民總醫院臺北齁那為什麼以前會扶持兩家醫院都當國家醫院這就競爭嘛具競爭又聯合醫療水準才會提高對齁如果只要醫界派大督大要的老大我想搞的全世界都要想搞齁
transcript.whisperx[135].start 4810.71
transcript.whisperx[135].end 4834.947
transcript.whisperx[135].text 兩家在評比,你看這一次在國外評比榮總的分數竟然贏過台大,雖然贏不多啦台大的院長很不無氣啊不無氣就拚嘛所以這個Uber跟富邦塔要合併我們是省慎喔,要很省慎部長那再來我要問你一個問題喔,這個剛剛你要講這高峰安的事情
transcript.whisperx[136].start 4837.926
transcript.whisperx[136].end 4850.993
transcript.whisperx[136].text 國會助理的事情你在老柯那邊當過主任啊什麼什麼回間回扣什麼亂七八糟你的幹話是什麼這個很重要因為你是勞動部長所以我問你這個問題拍回答
transcript.whisperx[137].start 4858.703
transcript.whisperx[137].end 4870.462
transcript.whisperx[137].text 這一題我沒有很了解耶真的抱歉因為這個也是一個大問題啦好下一張那你就準備好再來說吧謝謝
transcript.whisperx[138].start 4873.393
transcript.whisperx[138].end 4899.468
transcript.whisperx[138].text 那剛剛震災的措施我看你也講的非常多昨天我在屏東縣在小悠球做交通的考察那次長去那部長就親自打電話給交通部長說他陪行政院長在花蓮看災我就給他拍拍手我說去講什麼我不知道但是至少你馬上去所以你這些勞工這邊的措施有什麼亮點
transcript.whisperx[139].start 4901.965
transcript.whisperx[139].end 4922.609
transcript.whisperx[139].text 我剛剛有跟特別在剛剛業務報告有提到訓練補助跟雇用獎勵這個是我們第一次救安基金使用在對企業來補助他能夠不解雇勞工這個是第一次使用當然要花4.6億所以這就是所謂的雇用獎助所以這一點請委員務必要支持這樣子對
transcript.whisperx[140].start 4928.67
transcript.whisperx[140].end 4941.958
transcript.whisperx[140].text 這一點我們一定支持那還有幾十秒問一個現在這個立法院在表決這個事情十幾年前你是同意的那十幾年後好像你是保留還是反對
transcript.whisperx[141].start 4944.319
transcript.whisperx[141].end 4949.561
transcript.whisperx[141].text 美國參眾議員很多都說 這個本來就應該要通過的我們也有注意外面的報導阿你講那一面
transcript.whisperx[142].start 4972.729
transcript.whisperx[142].end 4973.23
transcript.whisperx[142].text 謝謝蘇委員的發言接下來我們請黃秀芳委員發言
transcript.whisperx[143].start 5003.434
transcript.whisperx[143].end 5006.135
transcript.whisperx[143].text 謝謝主席。我們請何部長。請何部長。黃委員好。謝謝。何部長今天算是你第一次到委員會來備詢。當然很多委員針對勞動部的一些業務對你有很大的一個期許。尤其是年改的議題還有缺工這個議題。
transcript.whisperx[144].start 5025.763
transcript.whisperx[144].end 5043.336
transcript.whisperx[144].text 其實勞動部的這個所有的業務都跟所有勞工息息相關而且勞工你們的一舉一動所有的政策其實所有勞工都看在眼裡所以我今天先就叫我們這個何部長有關這個缺工的這個議題
transcript.whisperx[145].start 5046.299
transcript.whisperx[145].end 5065.835
transcript.whisperx[145].text 當然就是現在我們整個社會高齡化少子化這個問題真的是還蠻嚴重的所以我們勞動部在幾年前就有針對這個缺工的這個議題有提出一個流採酒用的這個方案那我看到這個實施了幾年之後我看到有這個流採酒
transcript.whisperx[146].start 5066.235
transcript.whisperx[146].end 5081.82
transcript.whisperx[146].text 全部全臺灣的移工70多萬人有企業或者是看護工有申請留財久用目前是2萬多人從2萬多人其實我又看到一個問題就是留財久用產業工差不多52萬有申請是1.6萬家庭看護工24萬申請是1.7萬
transcript.whisperx[147].start 5095.484
transcript.whisperx[147].end 5119.434
transcript.whisperx[147].text 那你就發現到一個問題就是說我們來自基層很多的這個中小企業他一直在講缺工那有很多這個傳統產業他原本的這個外籍移工他的技術非常純熟之後這個僱主希望他能夠繼續留下來才會有這個移工留才久用這個方案嘛對不對那我看到這個議題這個問題就很嚴重就是說產業
transcript.whisperx[148].start 5123.035
transcript.whisperx[148].end 5123.795
transcript.whisperx[148].text 我覺得有可能是齁
transcript.whisperx[149].start 5145.1
transcript.whisperx[149].end 5171.861
transcript.whisperx[149].text 因為家庭看護工喔他的這個是一對一嘛然後他的這個替代性比較少其實他會留下來大家都把他相當像家人了所以會有更多的家庭看護工會希望留下來他本身希望留下來變台灣人然後他的家庭也希望能夠把他留下來繼續照顧這個應該是比較基本的因素啦第二個可能是這個您講的
transcript.whisperx[150].start 5172.762
transcript.whisperx[150].end 5172.822
transcript.whisperx[150].text 中小企業
transcript.whisperx[151].start 5193.032
transcript.whisperx[151].end 5221.96
transcript.whisperx[151].text 前年到現在而已其實才兩年我覺得宣傳不夠啦要擴大到各工業區去宣傳對然後甚至下到這一個我們委員的各選區的這個基層的尤其是中小企業這個層次去宣傳這樣子我記得你們要開始推動這個移工留財久用的這個方案當時我有跟許部長講就是說要到這個基層不論是工會或者是這個工業區甚至
transcript.whisperx[152].start 5222.5
transcript.whisperx[152].end 5239.019
transcript.whisperx[152].text ⋯⋯
transcript.whisperx[153].start 5239.379
transcript.whisperx[153].end 5265.565
transcript.whisperx[153].text 在反映說這個移工他技術很純熟我們希望把他留下來好避免他離開之後又到另外其他國家或者是回到他自己的母國又自己開一間公司來跟原本臺灣的這家公司來競爭所以我是覺得說如果有這樣的一個方案看到產業移工他申請的人數反而是比家庭移工還少我覺得這應該是有一些問題
transcript.whisperx[154].start 5267.406
transcript.whisperx[154].end 5287.226
transcript.whisperx[154].text 所以你們後面後續要怎麼去處理?現在已經在各地要成立服務中心 對不對我們請署長來講或者是說你們的申請的流程是非常繁瑣非常不容易所以變成說雇主他也不願意去申請
transcript.whisperx[155].start 5288.387
transcript.whisperx[155].end 5311.07
transcript.whisperx[155].text 對,我跟委員報告因為我們現在移工流財久用在產業這個部分我們現在加強推動從幾個面向第一個就是剛剛委員提到我們直接深入到工業區跟一些相關的一些地方的一些產業園區那這一部分我們現在像類似跟廠協會現在在合作我們會加強在整個在地的那第二個就是說整個流程跟窗口我們現在已經成立了移工流財久用中心單一窗口
transcript.whisperx[156].start 5311.57
transcript.whisperx[156].end 5332.458
transcript.whisperx[156].text 也就是一站式服務啦 所有的需求只要透過我們這個中心 我們就全程來協助 那這個目前看起來效果已經慢慢出來 那我們會持續來推動 那整個程序跟流程跟表現的簡化 我們現在都在持續在檢討當中 我們跟相關部位我們未來會照樣這個部分 所以你們有預計就是說要達到什麼樣的目標嗎
transcript.whisperx[157].start 5334.319
transcript.whisperx[157].end 5357.814
transcript.whisperx[157].text 其實本來我們在移工流財久用大概就是說以8年來看我們包含資深移工跟就是這個比較年輕移工我們希望能夠達到14萬個流財那目前其實我們都超標了我們大概以目前一年都將近2萬個也就是我們預期大概未來我們絕對可以達到我們原來的這個目標值我們會加強來努力其實這個政策是因為
transcript.whisperx[158].start 5359.415
transcript.whisperx[158].end 5378.307
transcript.whisperx[158].text 之前很多的中小企業一直在反映所以才會有這個移工留才久用這樣的一個方案那既然有這樣的一個方案我也希望你們針對這些中小企業應該要多加的去宣傳讓這些技術純熟的移工真正的能夠留在台灣因為確實這個對中小企業來講是有一些幫助的
transcript.whisperx[159].start 5382.99
transcript.whisperx[159].end 5409.66
transcript.whisperx[159].text 另外剛剛有很多的委員也很關心就是譬如說我們這個婦女就業或者是中高齡就業的這個議題當然我們希望就是說勞動部針對這一部分確實還有需要再加強就是說婦女她的這個勞參率是偏低的尤其是結婚之後生小孩之後勞參率是偏低的那怎麼樣讓她
transcript.whisperx[160].start 5410.52
transcript.whisperx[160].end 5428.063
transcript.whisperx[160].text
transcript.whisperx[161].start 5428.603
transcript.whisperx[161].end 5449.755
transcript.whisperx[161].text 確實真的還要再加強因為我覺得看了這個一些數據確實是不滿意那在何部長上來之後我相信很多人對你寄予厚望總是新的部長上來有一些新的作為那是不是可以再請部長針對我剛剛講的這個婦女這個就業還有中高齡的這一部分你未來要怎麼加強
transcript.whisperx[162].start 5451.576
transcript.whisperx[162].end 5467.817
transcript.whisperx[162].text 我用我自身的經歷我覺得到我這個年紀大概也差不多就是如果我有生小孩的話現在大概也是應該要之前有在家庭的話大概應該要回歸那事實上因為我覺得婦女大概在中年以後
transcript.whisperx[163].start 5468.377
transcript.whisperx[163].end 5470.019
transcript.whisperx[163].text 我一個就是說我想要推動這個育嬰留庭跟照顧留庭啦
transcript.whisperx[164].start 5487.618
transcript.whisperx[164].end 5504.591
transcript.whisperx[164].text 我們照顧留庭包括大家委員關切的照顧假這些事情我們大家未來再研議另外就是說未來移工是不是可以進入長照體系來做一個補充式的服務然後幫助婦女能夠把更多的照顧責任能夠把它做一點緩解這樣子
transcript.whisperx[165].start 5511.296
transcript.whisperx[165].end 5526.287
transcript.whisperx[165].text 今天確實有很多問題想要問我們希望說部長可以針對缺工的這個議題各產業都有這個缺工的聲音所以你要怎麼樣再去聽到各產業缺工那你們要怎麼去解決
transcript.whisperx[166].start 5527.348
transcript.whisperx[166].end 5545.116
transcript.whisperx[166].text 當然就是說很多人在跟我反映這個傳統產業缺工旅宿業餐飲業缺工好像聽到好像到處都在缺工所以怎麼樣去解決這個議題那我覺得說其實這個也不是勞動部一個人可以去解決應該也要去跨部會很多
transcript.whisperx[167].start 5546.256
transcript.whisperx[167].end 5563.565
transcript.whisperx[167].text 很多可能從有的我們講說很多這個年輕人也許可以從國中甚至高中可以就有建教合作的方式好這個缺工也許可以這樣子慢慢來解決我覺得這個應該也是要一個跨部會的去合作
transcript.whisperx[168].start 5565.086
transcript.whisperx[168].end 5592.298
transcript.whisperx[168].text 我舉個例,像旅宿業缺工喊得很大聲啦那其實是跟交通部我們必須一起解決可是我也要在這裡強調缺工不能等於低薪啦所以我覺得就是說你這個缺工要先從提升本土勞產率、勞動就業開始然後是在不足的情況下我們才去引進移工那麼引進移工的時候我們也要同時重視你的薪水到底是多少
transcript.whisperx[169].start 5593.498
transcript.whisperx[169].end 5618.166
transcript.whisperx[169].text 對,因為這個東西是我們跟交通部現在目前在討論的重點我們希望他能夠把薪水能夠提高一些啦不要一直用低薪,因為你去低薪的話你無論是本土或是移工其實都很難請啦其實前禮拜一的時候國宴那我們在那個餐廳裡面我們就看到很多是這個大學餐飲科的學生
transcript.whisperx[170].start 5619.266
transcript.whisperx[170].end 5645.137
transcript.whisperx[170].text 那他有這個機會來服務其實他也覺得說是很難得的一個經驗那其實我也看到很多比如說高職學生他要升到大學他有的是用這種產學合作的方式那這方面其實也可以減少一些這個增加就業機會然後又可以減少這個缺工的這個問題啦所以我希望說勞動部應該也要主動然後跨部會的來協調
transcript.whisperx[171].start 5646.677
transcript.whisperx[171].end 5647.478
transcript.whisperx[171].text 謝謝主席,是不是請部長?請何部長
transcript.whisperx[172].start 5678.851
transcript.whisperx[172].end 5707.877
transcript.whisperx[172].text 王昭薇好部長好部長先恭喜你喔謝謝這個長期擔任幕僚然後從幕後走向台前喔謝謝站上舞台的滋味如何美光燈聚焦滋味如何這個謝謝委員的疼惜然後對給我很多信心那麼對這個也請委員多多這個照顧支持目前還適應嗎就是說這麼多媒體會開始追著你跑然後站在背心上
transcript.whisperx[173].start 5708.257
transcript.whisperx[173].end 5713.34
transcript.whisperx[173].text 接下來進入到今天的主題我想全國勞工最關注的就是勞保到底會不會破產的議題而這個議題從蔡英文政府8年當時說軍、工、教、勞、義、齊、改結果
transcript.whisperx[174].start 5737.608
transcript.whisperx[174].end 5766.762
transcript.whisperx[174].text 蔡總統已經卸任了但是勞保改革的列車完全沒有啟動那這個部分我們看到賴總統520就職演說他說有政府在這個勞保就不會倒當大家的靠山那這是不是意味著賴清德沒有要走蔡英文的路線在賴清德任內不會啟動勞保的任何年金改革
transcript.whisperx[175].start 5768.058
transcript.whisperx[175].end 5796.103
transcript.whisperx[175].text 委員是這樣子我想施政是延續的那施政過去如果有這個值得檢討的地方那也是必須要面對的我想我也有跟您報告過勞保年改跟這一個軍公教改革是不一樣的問題所以當時蔡總統所說的軍公教勞一起改他其實是在騙軍公教就是其實勞本來就沒有要改還是說他改不了
transcript.whisperx[176].start 5797.29
transcript.whisperx[176].end 5825.732
transcript.whisperx[176].text 其實是嘗試改過的20177年就把勞保年改條例送到立院來可是在立院是完全沒有辦法推動的我們朝野都無法支持所以這我們就是有這樣子失敗的經驗所以也進行了檢討好我只要確認一件事情是不是賴總統任內不會啟動勞保年金改革並沒有這樣的方案說服是唯一的選項
transcript.whisperx[177].start 5826.963
transcript.whisperx[177].end 5854.343
transcript.whisperx[177].text 公務委員報告就是撥補就是改革因為對跟大家的認知差有點有部長我必須糾正你一下撥補不是改革好如果撥補是改革的話我覺得軍公教就用撥補就好了就是撥補是改革然後有政府在其實就不會到如果這個邏輯是通的話我相信軍公教他的這個整個基金的規模比勞保小的更多所以其實我要提醒的是當
transcript.whisperx[178].start 5855.751
transcript.whisperx[178].end 5878.668
transcript.whisperx[178].text 政府就是有責任就是要承擔而面對問題當然你們現在可以提出來說撥補但是我要講一句話撥補叫做治標不治本如果撥補這麼的簡單就像我剛剛講的軍公教根本不用改啊對不對就是有政府在就不會倒啊大家都一致啊當時其實不用啟動任何的改革
transcript.whisperx[179].start 5879.093
transcript.whisperx[179].end 5897.783
transcript.whisperx[179].text 我跟委員報告其實我們現在對軍公家也有進行撥補現在即便是現在但你還是改了對不對你減少了他的你減少了他的這個他的所得的部分所以這個部分我還是要提醒這個我們尊重賴總統就是他不啟動這個勞保年金改革但是撥補他就是一個治療的方案你如果看到這一個圖你就可以知道當時間走在拉長的時候
transcript.whisperx[180].start 5909.73
transcript.whisperx[180].end 5912.732
transcript.whisperx[180].text 撥補真的可以讓勞保基金不倒嗎?
transcript.whisperx[181].start 5912.732
transcript.whisperx[181].end 5920.698
transcript.whisperx[181].text 這個就只是一個短暫的治標。這個是我要告訴部長的。接下來另外一個就是有關於勞工工時的問題。這個部長你應該知道,這個勞工工時在你們今天的報告裡面也有提到。
transcript.whisperx[182].start 5928.564
transcript.whisperx[182].end 5949.189
transcript.whisperx[182].text 每月工時你們提到現在是162.2換算起來年大概就是我們現在看到這個數字我們勞工全年的正常工時1923.6排名全球第6那這個不是一個好的排名我們比臨近的日本、韓國其實還要多部長你知道嗎當然越高吧日本的話它是日韓的部分工時
transcript.whisperx[183].start 5958.495
transcript.whisperx[183].end 5959.836
transcript.whisperx[183].text 所以部長我請教你你認為臺灣的勞工有過勞的問題嗎公使有菜廠的問題嗎
transcript.whisperx[184].start 5988.88
transcript.whisperx[184].end 6003.298
transcript.whisperx[184].text 這個部分當然我想勞工的感受我可以體會就是說這種疲倦在職場上的這樣子的一個感受那我想我們都必須要去面對勞工這種心理感受
transcript.whisperx[185].start 6004.779
transcript.whisperx[185].end 6023.167
transcript.whisperx[185].text 你覺得只是心理感受但是每個月的加班工時這邊是96小時就是年加班工時96小時這樣不高嗎全球排名第6不高嗎所以這個部分我希望這個部長你還是要注意是勞動部部長所以你的角色
transcript.whisperx[186].start 6024.088
transcript.whisperx[186].end 6041.126
transcript.whisperx[186].text 應該是要跟勞工站在一起的跟過去你是行政院秘書長必須幫行政院幫院長就是在做一些政策的辯護我覺得角色上是不一樣的因為勞工部對你是有期待的以前許民村部長都會說我是勞工的大家長
transcript.whisperx[187].start 6042.387
transcript.whisperx[187].end 6068.938
transcript.whisperx[187].text 你要不要講一遍你是勞工的大家長當然你是當然當然對那勞工的大家長我就希望你把勞工的權益一定是永遠擺在優先而不是企業當然我想這個角色要非常清楚好不好是是是另外一個既然是勞工的權益最近有一個最關注的是外送平台這個Uber Eats跟那個Foodpanda整個要整併那所以未來台灣就只有一家外送
transcript.whisperx[188].start 6069.858
transcript.whisperx[188].end 6072.32
transcript.whisperx[188].text 那獨大的時候其實他衍生的問題這個獨大某種程度就是壟斷那當獨大又壟斷的時候請問這一些外送人員的權益應該要怎麼樣去照顧我這邊提出三個問題
transcript.whisperx[189].start 6085.908
transcript.whisperx[189].end 6105.942
transcript.whisperx[189].text 第一個就是說平台合併變成單一平台之後外送員的溢價能力即使他們有公會在相對上來講這個是不是會更弱勢會不會會喔會當然會那這個部分我們勞動部也會想到所以必須勞動部做他們的後盾是支撐他們一起跟職場談判是
transcript.whisperx[190].start 6108.746
transcript.whisperx[190].end 6120.214
transcript.whisperx[190].text 我們會來這樣處理除了是口頭的支撐之外在法令上面不是口頭喔我們是實質作為比如說講具體一點好不好像我們5月29號已經要進行他們雙邊的對話的討論我們資方也會參與是你們召開的對對是我們召開的資方也答應參與了好那主要的內容要談及什麼具體的事項來那個市長要報告
transcript.whisperx[191].start 6137.307
transcript.whisperx[191].end 6153.335
transcript.whisperx[191].text 跟委員報告我們談了好幾個題目但是第一個題目就是賓購後在衛生員工很關心的相關缺因的問題那我們也把他們的訴求提供給兩家主要的業者特別是Uber那也希望他當天能夠提出比較明確的一些說法
transcript.whisperx[192].start 6153.795
transcript.whisperx[192].end 6176.674
transcript.whisperx[192].text 那如果這個外送員的訴求其實平台並不接受請問勞動部有任何的其他的方法跟工具我們正在想辦法這是委員您點到重點確實這平台是相當強勢的因為他們都是跨國企業跨國企業也要適用台灣的法律如果我們有一部中央的法律
transcript.whisperx[193].start 6178.956
transcript.whisperx[193].end 6200.811
transcript.whisperx[193].text 來規範來要求我覺得這個才會是強而有力的後盾目前的情況是地方政府去訂定自治條例但坦白講我覺得那個要求其實是很有限但今天如果是由中央政府機關針對這個部分如何去保障外送員的相關權益事項包括他們的訴求一些關鍵的
transcript.whisperx[194].start 6202.332
transcript.whisperx[194].end 6230.358
transcript.whisperx[194].text 讓他入法讓他有法令依據管他是多大的外商平台來到台灣你就得適用台灣的法令來到台灣你就必須把台灣的外送員他們的權益視為是你營運裡面最重要的部分不准有剝削而且不准他去任意的去抬高價格這個不只是外送員的權益他將來他如果任意轟台我們每一個人可能都遭殃
transcript.whisperx[195].start 6231.218
transcript.whisperx[195].end 6251.512
transcript.whisperx[195].text 沒人可能都有點外送的這個經驗愛他怎麼抬高就抬高因為你今天要點外送只剩這一家這個問題我希望勞動部其實是要去好好關切的而過去我們中央並沒有立法現在有委員的版本已經開始進來了我覺得這個部分我們必須展現台灣我們的公權力
transcript.whisperx[196].start 6254.354
transcript.whisperx[196].end 6274.192
transcript.whisperx[196].text 讓這一些外商你要來這邊賺錢沒有關係但請遵守台灣的法令這個部分勞動部可以去研議嗎?是當然這個委員我知道這邊外商平台的專法已經都在委員會裡面了對這東西這部分我們會審慎來研議討論對那其次我們會強化各部會的合作包括對公平會這個併購的過程
transcript.whisperx[197].start 6276.133
transcript.whisperx[197].end 6276.153
transcript.whisperx[197].text 好,謝謝
transcript.whisperx[198].start 6304.885
transcript.whisperx[198].end 6312.068
transcript.whisperx[198].text 謝謝王育明委員發言接下來在這邊先做以下宣告等一下在林淑芬委員質詢結束休息10分鐘現在請圖全級委員發言好謝謝主席那請我們何部長
transcript.whisperx[199].start 6335.476
transcript.whisperx[199].end 6364.038
transcript.whisperx[199].text 委員好好 何部長恭喜你來兼任我們的勞動部長謝謝那我想請問一下我們何部長那針對過去8年我們蔡政府他有針對我們基本工資這8年來他有不斷的調漲那我想請問一下尤其這近5年的調漲那我們基本工資調漲的目的是什麼那我想請問一下何部長你覺得這基本工資調漲的目的是什麼
transcript.whisperx[200].start 6364.458
transcript.whisperx[200].end 6387.411
transcript.whisperx[200].text 當然是為了保障勞工的權益對那是不是也有一部分他是不是也希望能夠帶動我們勞工整體的薪資當然他會有定貌的效果會有對指標作用對那我們也看一下那因為我們基本工資年年上漲可是據我們看到我們這5年來我們的實質的薪資
transcript.whisperx[201].start 6389.412
transcript.whisperx[201].end 6415.312
transcript.whisperx[201].text 沒有成長停滯不前甚至有些還是倒退的你看我們這個近5年從108年到112年我們這5年基本工資的調漲但是這近5年我們實質經常性薪資尤其從110年到112年他是倒退路的也就是說這3年我們物價的上漲通貨的膨脹大於薪資的調漲
transcript.whisperx[202].start 6418.735
transcript.whisperx[202].end 6436.229
transcript.whisperx[202].text 那針對這一部分我們之前我們的許明春部長他有講他說基本薪資的調漲就是希望能夠帶動我們基本上我們邊際勞工的收入但是有很多的勞工朋友有跟我們講這個基本工資的調漲其實都沒有漲到他們他說因為這基本工資調漲都是
transcript.whisperx[203].start 6441.733
transcript.whisperx[203].end 6441.793
transcript.whisperx[203].text 委員會主席
transcript.whisperx[204].start 6466.336
transcript.whisperx[204].end 6483.991
transcript.whisperx[204].text 公務員報告這有兩點第一點就是說確實漲基本工資未必能漲到基本工資以上的那一群人這是事實那麼那個部分我們要動用其他的政策工具我們現在有進行中小企業加薪抵稅的條例的修法
transcript.whisperx[205].start 6484.491
transcript.whisperx[205].end 6502.996
transcript.whisperx[205].text 把那個抵稅的門檻放高放寬這樣子啟動的門檻也放寬這樣相信可以帶動企業願意再替那個基本工資以上的員工加薪這是第一點第二點就是說這有通膨的因素啦所謂的實質經常性薪資這個通膨的因素是因為它是跨部會的問題啦
transcript.whisperx[206].start 6504.136
transcript.whisperx[206].end 6519.294
transcript.whisperx[206].text 那當然主要還有包括新台幣可能有貶值的問題等等各方面對還有包括國際的因素等等這部分勞動部會比較沒有辦法用單一部會來解決可是我會想辦法來向行政院反映好嗎
transcript.whisperx[207].start 6520.075
transcript.whisperx[207].end 6542.877
transcript.whisperx[207].text 因為今天會提出這部分就是有很多的勞工朋友他說其實這個最低基本工資怎麼調帳尤其我們蔡政府這8年來的調帳他說其實他們是毫無感受因為都是調最低的他們不要說8年這10年來10幾年來他們都沒有調到薪水所以我們從這個實質薪資我們就看得到因為他們沒有調帳
transcript.whisperx[208].start 6544.378
transcript.whisperx[208].end 6566.209
transcript.whisperx[208].text 所以這個通貨的膨脹造成他實質的薪資不但沒有提升反而是後退所以我們看到這8年來好像蔡政府好像對於這基本工資一直調漲好像薪水一直在調但是都是調最低的反而這大部分的沒有領基本工資的他們都沒有調漲所以這個每年每年的物價上漲通貨膨脹
transcript.whisperx[209].start 6567.97
transcript.whisperx[209].end 6586.101
transcript.whisperx[209].text 就變成說看得到實質薪資是倒退的所以這部分會提出也希望何部長能夠重視這十幾年來他們很多人薪水都沒有調漲的問題希望何部長能夠以勞動部的大家長立場來幫我們來了解希望有機會能夠幫他們研議怎麼去解決這個問題
transcript.whisperx[210].start 6588.268
transcript.whisperx[210].end 6607.644
transcript.whisperx[210].text 好那針對第二項那我也知道我們何部長是野百合世代社會運動公運農運出身所以我相信說對於工會這些組織的部分我認為何部長應該也都是非常關心那我想請問一下我們跳下一頁那針對我們
transcript.whisperx[211].start 6609.085
transcript.whisperx[211].end 6622.983
transcript.whisperx[211].text 公會的組織門檻有很多的勞工跟我們來反映因為台灣是以中小企業為主有98%的企業他僱用的人數不到30人所以算起來有343萬
transcript.whisperx[212].start 6625.386
transcript.whisperx[212].end 6646.416
transcript.whisperx[212].text 這受雇的勞工並沒有機會來組織這個工會甚至連我們中央銀行他都贊成降低門檻連我們立法院的法治局也認為30人的門檻對於我們中小企業組織工會的權利是受限制的不知道針對我們何部長針對這一部分你的看法是怎麼樣
transcript.whisperx[213].start 6648.768
transcript.whisperx[213].end 6668.503
transcript.whisperx[213].text 跟委員報告其實許部長他的這個談話是反映台灣社會的現實我們的中小企業真的占了台灣的產業的98%是非常龐大的一個部門到底工會的門檻下修有沒有幫助勞工的團結權其實這是一個問號
transcript.whisperx[214].start 6671.705
transcript.whisperx[214].end 6700.985
transcript.whisperx[214].text 這真的是我們必須很仔細的去分析到底有沒有用因為事實上他並不見得真正能夠提升勞工的團結權那因為事實上在30人以下的單位他本身在團結上面他會有一定程度的難度因為他跟資方之間就是一個家庭的關係類家庭的關係所以你說叫他去跟資方之間用這種公會抗爭的方式事實上也做不到所以事實上
transcript.whisperx[215].start 6701.745
transcript.whisperx[215].end 6721.828
transcript.whisperx[215].text 所謂下修30人以下是不是多數勞工的中小企業內部勞工的想法這我們說真的要去確認因為針對這一部分我們之前詢問過我們許部長當然他說這個降低工會門檻容易影響企業的營運但是我們一直還是不斷接受到很多中小企業很多勞工他說認為
transcript.whisperx[216].start 6723.029
transcript.whisperx[216].end 6723.109
transcript.whisperx[216].text 我們會來研究討論
transcript.whisperx[217].start 6750.014
transcript.whisperx[217].end 6772.455
transcript.whisperx[217].text 好這一部分也請我們何部長來重視一下那還有我們最近尤其我們去年民洋大火之後有造成我們市民消防人員的殉職其實這幾年來陸陸續續都有很多很年輕很優秀的消防員因為救火保護我們人民生命財產而讓他自己
transcript.whisperx[218].start 6773.175
transcript.whisperx[218].end 6794.686
transcript.whisperx[218].text 的生命受到損失而罹難那針對我們消防員組織工會的這一部分我請問一下我們何部長請問你對消防員組織工會的這個態度你是否支持我認為這個消防員還是要回歸公務人員協會法可是他們一直認為說這個
transcript.whisperx[219].start 6796.852
transcript.whisperx[219].end 6820.507
transcript.whisperx[219].text 考試院的公務人員協會法這個門檻過高而且對於他們的協商權他們感覺都是被架空的委員跟您報告我們已經請考試院趕快把這個公務人員協會法關於協商的部分做一些放寬這個是比較實際的處理有效解決消防員的那種問題那如果要用公務人員協會法我們希望
transcript.whisperx[220].start 6821.728
transcript.whisperx[220].end 6844.165
transcript.whisperx[220].text 這個門檻的部分要去做個調整還有他們所重視的協商權不應該被架空如果真的沒有辦法改善我們倒認為他組織工會的方式可以比照教師那大家一直都很擔心會有勞資爭議處理的問題我們可以像教師組工會一樣明定就是他們也禁止罷工我認為就應該可以解決這個問題
transcript.whisperx[221].start 6845.946
transcript.whisperx[221].end 6865.195
transcript.whisperx[221].text 當然這部分我們今天來講就是因為何部長新上來我們都把一些我們地方民眾的聲音勞工的聲音也希望能夠反映給我們部長知道還有我們從111年的時候我們有正式來統計也希望何部長來重視這個問題我們這個逃逸外勞逃逸外勞的部分已經超過8萬多人了已經超過8萬人那針對這部分而且
transcript.whisperx[222].start 6874.98
transcript.whisperx[222].end 6883.674
transcript.whisperx[222].text 這個比例我們看起來是年年增加不知道我們勞動部有沒有什麼方法那何部長針對這部分你有沒有自己的看法跟解決方法
transcript.whisperx[223].start 6884.793
transcript.whisperx[223].end 6905.339
transcript.whisperx[223].text 因為移工的失聯原因真的是很多啦 有勞動條件的問題啦 這個有一般缺工的問題這樣 可是就是說第一個我們可能要強化那個尤其是家庭看護工這一塊啦 他的薪資啦 有可以再提升的空間啦 然後讓他減少他逃跑的誘因啦
transcript.whisperx[224].start 6906.4
transcript.whisperx[224].end 6928.381
transcript.whisperx[224].text 這個是我們目前也許可以努力的方向那其次是強化那個職聘的服務讓他能夠可以依自己的意願這樣子來進行各種的這樣子的所以我一直希望勞動部針對這一部分一定要來重視因為這個逃逸外勞不但沒有減少還一直在增加所以我們擔心這以後衍生一些治安的問題
transcript.whisperx[225].start 6929.142
transcript.whisperx[225].end 6942.197
transcript.whisperx[225].text 而且現在我們覺得臺灣缺工已經非常的嚴重像我們內政部移民署他在112年有推這個自首的專案讓一些逃逸的外勞怎麼樣子去解決他們的問題讓他們去自首
transcript.whisperx[226].start 6944.019
transcript.whisperx[226].end 6958.438
transcript.whisperx[226].text 那我想說這個台灣這個缺工問題也都非常嚴重也有人建議說因為他是自首專案移工他自首之後他就不能再返台來工作那我們想說是不是也勞動部跟內政部是不是有一個機會來研議是不是針對這個自首專案
transcript.whisperx[227].start 6961.903
transcript.whisperx[227].end 6977.108
transcript.whisperx[227].text ﹚議員
transcript.whisperx[228].start 6977.788
transcript.whisperx[228].end 6987.995
transcript.whisperx[228].text 這個一方面解決逃逸外遙的問題也一方面希望能夠解決我們臺灣缺工嚴重的問題我來跟移民署來討論好嗎對希望這個部長針對這幾個議題先上任我們後面有無限揮灑的空間我們也對何部長有很大的期待希望以上幾個問題部長能夠為我們這些勞工朋友消防員能夠爭取他們合法的權益謝謝好謝謝
transcript.whisperx[229].start 7005.905
transcript.whisperx[229].end 7007.326
transcript.whisperx[229].text 委員.接下來請林淑芬委員發言。
transcript.whisperx[230].start 7028.937
transcript.whisperx[230].end 7043.662
transcript.whisperx[230].text 林委員好部長這個保障企業併購勞工權益這個是我們賴總統的勞工政見之一他之前選舉的時候在去年出席工會舉辦的勞動政見發表會主動有談到了企業併購的問題賴總統說
transcript.whisperx[231].start 7052.266
transcript.whisperx[231].end 7071.46
transcript.whisperx[231].text 新的時代已經來臨,未來國內勢必有企業會與國際競爭,可能跟國內甚至跟國際企業合併,但是他反對惡意併購他說如果合併後,勞權無法比之前更好,至少不能比原本更差
transcript.whisperx[232].start 7073.402
transcript.whisperx[232].end 7077.867
transcript.whisperx[232].text 大家本來都很高度期待這個說法 這個政見我們要講這個是因為你知道依據這個資誠2023年企業併購白皮書他們去統計了2022年的總計的企業併購有117件
transcript.whisperx[233].start 7094.11
transcript.whisperx[233].end 7111.61
transcript.whisperx[233].text 其中61%是外資來台併購23%是國內併購然後前十大的併購案件中只有一件是金融併購那為什麼我們特別要指出金融併購這個問題是等一下再來談
transcript.whisperx[234].start 7114.392
transcript.whisperx[234].end 7137.778
transcript.whisperx[234].text 那你們今天的業務報告其實你們也有談到說要落實賴總統的政見的規劃你們沒有提出修法的規劃而是在既有的併購的時候而在既有的商定流用的原則之下提出了行政指導要供勞工或工會作為協商參考
transcript.whisperx[235].start 7138.678
transcript.whisperx[235].end 7148.095
transcript.whisperx[235].text 那因為這樣子的話其實是背離了我之前說本來賴總統這樣說的時候大家社會還有勞工團體都相當高度的期待
transcript.whisperx[236].start 7150.373
transcript.whisperx[236].end 7178.938
transcript.whisperx[236].text 但你今天的業務報告蠻令人失望的那為什麼這個呢因為現在的企業併購法涉及到勞工權益的部分就在企業併購法的15到17條那企業併購法裡面只規定金融併購金融機構的併購要改組或轉讓的時候員工享有的權利要用勞基法去辦理
transcript.whisperx[237].start 7179.858
transcript.whisperx[237].end 7181.263
transcript.whisperx[237].text 那所以在這樣子會變成說 抱歉
transcript.whisperx[238].start 7186.516
transcript.whisperx[238].end 7212.037
transcript.whisperx[238].text 金融機構他讓你回到勞基法第20條去檢視勞工的權益保障那金融機構以外的呢我們一般的企業併購勞工的權益如果回到企業併購法裡面其實幾乎是沒有保障的那金融機構的併購是多一層大概回到受勞基法第20條的保障所以在這個裡面
transcript.whisperx[239].start 7216.946
transcript.whisperx[239].end 7241.104
transcript.whisperx[239].text 我剛剛一開始就講了企業併購裡面前十大裡面只有一件是金融併購受到勞基法保障的前十大只有一件那其他都要回到這個企業併購法但企業併購法或是勞基法第20條其實對當事人保障都非常非常的少
transcript.whisperx[240].start 7242.549
transcript.whisperx[240].end 7258.814
transcript.whisperx[240].text 所以呢,都是採...大家企業併購的時候大家會談說勞動條件可是勞動條件幾乎都沒有什麼保障啊就勞動契約都可以重來但唯一的就是商定流用到底我能不能確保企業併購的時候我的工作還繼續保有不論是企業併購法
transcript.whisperx[241].start 7263.82
transcript.whisperx[241].end 7285.827
transcript.whisperx[241].text 或是勞基法其實也都說你們兩照雙方自行去商定流用所以商定流用原則幾乎就是台灣的原則可是這個不符合賴總統說的賴總統說病過後的權益如果沒有比以前好至少不能比原本差
transcript.whisperx[242].start 7287.349
transcript.whisperx[242].end 7294.175
transcript.whisperx[242].text 那顯然要做什麼?第一個要確定要有工作啊第二個勞動權益至少也不能改啊那為什麼講這個呢?你知道在歐盟啊2001年啊20幾年前他們的2001、231G指令還有德國的民法的613A條他們不是用商定流用欸
transcript.whisperx[243].start 7314.193
transcript.whisperx[243].end 7318.801
transcript.whisperx[243].text 他們處理企業併購不是用商定流用原則而是秉持著買賣不破雇佣原則
transcript.whisperx[244].start 7323.217
transcript.whisperx[244].end 7336.166
transcript.whisperx[244].text 他規定勞工的勞動契約關係在企業跟事業單位之全部或一部分轉讓給在轉讓的時候自動隨同這個契約要自動隨同移轉給受讓人保護勞工免於單純因企業轉讓而喪失工作而且不只如此還要給勞工資訊權、諮商權
transcript.whisperx[245].start 7353.699
transcript.whisperx[245].end 7355.286
transcript.whisperx[245].text 還要給勞工工人異議權
transcript.whisperx[246].start 7357.31
transcript.whisperx[246].end 7377.502
transcript.whisperx[246].text 所以在這個裡面在企業併購的時候勞工有資訊權資訊權在歐盟或是德國的民法的條文裡面都講到讓與人即受讓人應通知轉讓所涉及的勞工及其代表下列的事項轉讓或預期的轉讓日轉讓的原因轉讓對勞工所產生的法律、經濟跟社會上的影響
transcript.whisperx[247].start 7386.187
transcript.whisperx[247].end 7391.974
transcript.whisperx[247].text 然後預期對勞工所採取的措施所以這樣的資訊權還有諮商權還有意義權去到確保在企業併購裡面的最弱勢的人就是勞工
transcript.whisperx[248].start 7403.451
transcript.whisperx[248].end 7418.565
transcript.whisperx[248].text 這個勞工工作還到照他們的買賣不破的僱傭的這個精神裡面這個條文裡面第一個一定確保還有工作不但確保還有工作勞動條件都一併要轉讓勞動契約都要一併轉讓所以我們在期待的是說
transcript.whisperx[249].start 7428.427
transcript.whisperx[249].end 7443.262
transcript.whisperx[249].text 我們目前這種商定留用還不一定有工作那有工作的勞動條件勞動契約也會被改變你留了工作保留了我給你薪資減少降低年資不採集等等
transcript.whisperx[250].start 7448.627
transcript.whisperx[250].end 7470.007
transcript.whisperx[250].text 所以他當然是非常的有利於雇主去基於重新整合人力資源經營效率的目的但是呢你要想想看這樣子受衝擊的就是勞工勞工失去就業然後在這個裡面大量的解雇或者是解雇
transcript.whisperx[251].start 7471.028
transcript.whisperx[251].end 7495.613
transcript.whisperx[251].text 所以在歐盟的這個指令裡面他本來程序當中的勞動契約或勞動關係所產生的權利義務都要一併轉讓我們跟人家差太多了勞工他不會因為你企業併購而失去了你的工作安全益部長我們真的是你看一年這樣子企業併購多少件我剛剛講的
transcript.whisperx[252].start 7497.998
transcript.whisperx[252].end 7505.706
transcript.whisperx[252].text 一百多件那這樣的受衝擊的勞工有多少人對這我必須要再來瞭解是署長你知道嗎一年喔每年都有喔是
transcript.whisperx[253].start 7512.899
transcript.whisperx[253].end 7539.796
transcript.whisperx[253].text 你們沒有統計數字不過委員這個您講的很對因為我們企業併購其實在台灣才剛剛比較大可能比較多啦才現在這幾年才開始比較多所以那個其實包括企業是不是惡意併購那本身的這些問題的法律釐清都還要再進一步去處理然後您講的我們不管惡意併購或善意併購或是協商好併購我們通通不管
transcript.whisperx[254].start 7540.356
transcript.whisperx[254].end 7545.781
transcript.whisperx[254].text 我們就是不能接受商定流用原則我們想要的是買賣不破雇佣我會往這個方向來研議處理勞基法第20條它裡面就是僅限於事業單位的改組轉讓它只談到說我保障年資水桶移轉年資可是我都沒工作我直接fire你就好了我幹嘛留住你的年資呢那勞動條件它都可以隨時改的年資
transcript.whisperx[255].start 7568.86
transcript.whisperx[255].end 7568.88
transcript.whisperx[255].text 委員會議
transcript.whisperx[256].start 7585.204
transcript.whisperx[256].end 7606.201
transcript.whisperx[256].text 這個勞基法20條只規定新僱主應繼續予以承認年資以外其餘不保證原有的勞動條件也沒有類似大量解僱的時候的強制協商我們的強制協商是只有大量解僱才有換言之除非涉及到大量解僱的人數的門檻沒有任何協商的機制那併購的時候
transcript.whisperx[257].start 7608.723
transcript.whisperx[257].end 7616.689
transcript.whisperx[257].text 只要前30天通知主管機關也不用資訊公開更沒有工會的協商的權利更不要講資訊權那部長你現在說你要訂一個行政指導
transcript.whisperx[258].start 7622.825
transcript.whisperx[258].end 7638.471
transcript.whisperx[258].text 現在大家都知道沒有任何法律效力不能說沒有法律效力就是說我們會衝進我們的行政的能力來對這個企業的併購行為做一些跨部會的這種指引跟討論因為事實上
transcript.whisperx[259].start 7641.592
transcript.whisperx[259].end 7662.318
transcript.whisperx[259].text 賴總統說你沒有比之前更好至少不能比原本差那所謂的不能比原本差大概有兩個狀況嘛第一個當然就是說工作要一定有第二個你的勞動契約你的年資你的勞動條件要維持原狀就是這兩個而已那你現在的指導原則是沒有法律效力的
transcript.whisperx[260].start 7663.581
transcript.whisperx[260].end 7680.956
transcript.whisperx[260].text 你有沒有修法計畫修法的計畫也是要跟跨部會討論的也不是勞動部一個部會可以決定那你會提出嗎我們來努力好嗎買賣不破雇傭我們來努力看看然後請委員支持你的努力是什麼時候我們可以看到你至少有提出去討論
transcript.whisperx[261].start 7682.557
transcript.whisperx[261].end 7689.627
transcript.whisperx[261].text 你提出去討論,我們就可以看到你有努力。好的,我們會來討論。提到部會裡面去討論。是是是。再跟您報告。好,我們就等著看囉。抱歉,我再講。
transcript.whisperx[262].start 7697.759
transcript.whisperx[262].end 7698.64
transcript.whisperx[262].text 謝謝林淑芬委員 現在休息10分鐘
transcript.whisperx[263].start 8344.721
transcript.whisperx[263].end 8364.501
transcript.whisperx[263].text 好現在繼續開會請王振旭委員發言謝謝主席有請部長請何部長
transcript.whisperx[264].start 8370.253
transcript.whisperx[264].end 8398.189
transcript.whisperx[264].text 委員好部長好是謝謝委員謝謝而且真的是任重道遠謝謝因為關心這麼廣大的勞工朋友如何能夠持續提升他們的工作環境是同時能夠讓他們更願意來幫助社會提升整體的安全的同時也讓國家的經濟競爭力能夠得以持續的維持是非常的要麻煩部長
transcript.whisperx[265].start 8398.989
transcript.whisperx[265].end 8420.335
transcript.whisperx[265].text 那其實在賴總統的就職演說裡面就告訴我們說我們希望來持續的提升整體優質的勞動環境包括我們要創造更好的薪資環境同時只要政府在 勞保絕對不會倒同時要改善這個
transcript.whisperx[266].start 8422.316
transcript.whisperx[266].end 8425.899
transcript.whisperx[266].text 請問部長您準備好的嗎?您準備了幾支箭來改善這些問題?
transcript.whisperx[267].start 8440.65
transcript.whisperx[267].end 8456.138
transcript.whisperx[267].text 謝謝委員 其實這都是總統他在就職演說最重要的宣示 那我們在剛剛的業務報告裡面其實也已經有所呈現 那麼就是說我們大概盡我們潔淨所能 然後來進行總統的指示
transcript.whisperx[268].start 8461.04
transcript.whisperx[268].end 8477.085
transcript.whisperx[268].text 我們期待在很快的時間裡面能夠在一白天裡面就看到相關的政策可以逐步的來開展來落實其實本席也非常關心有關於工時的問題因為我們知道其實勞工朋友們
transcript.whisperx[269].start 8478.045
transcript.whisperx[269].end 8504.765
transcript.whisperx[269].text 對於他的工作環境還有在一天裡面或者是一週裡面真的工時的問題如何能夠有機會去優化他改善他那依據貴部就是勞動部在2022年國際勞動統計的資料裡面告訴我們說我國的受僱者平均每天每年的工時還是高居OECD國家的第6名這個意思就是說我們的勞動朋友們
transcript.whisperx[270].start 8507.187
transcript.whisperx[270].end 8521.476
transcript.whisperx[270].text 每一個年度的工作時間相較之下還算是相對的付出時間非常的多那我國從2015年到2022年當中年度的總工時其實已經進步了就是減少96個小時不過相較於韓國這段時間的總工時其實他們減少更多他們減少154個小時
transcript.whisperx[271].start 8530.442
transcript.whisperx[271].end 8550.151
transcript.whisperx[271].text 所以這個降服真的是還有一些進步的空間就是說過去我們減少96個小時我們覺得是進步很多可是香港韓國之下似乎還是可以有更多的進步的空間那我們目前不知道部長知不知道我們那個勞工所訂的這個國定假日一年會有幾天
transcript.whisperx[272].start 8552.412
transcript.whisperx[272].end 8567.077
transcript.whisperx[272].text 因為日本有16天南韓有15天我們是12天當然我們有時候會把它做一些彈性的調整變成一個連續休假讓勞工朋友在這個過程裡面可以安排更好的一些活動的部分
transcript.whisperx[273].start 8568.777
transcript.whisperx[273].end 8590.603
transcript.whisperx[273].text 請問部長是否支持能夠讓總工時能夠持續的來做一些調整讓他有機會在OECD國家的這個排行裡面可以有更好一些改善的同時那能夠這個國定的假日的安排不知道部長這邊有沒有未來在希望有可以有哪一方面的這些處理的模式
transcript.whisperx[274].start 8591.998
transcript.whisperx[274].end 8617.949
transcript.whisperx[274].text 跟委員報告其實週休二日他就有助於縮短工時所以我們才會看到從2016年我們一例一休落實以後其實我們年總工時都已經下降了當然可是如果要跟其他國際比較的話我們必須要看那個內涵因為日本跟韓國部分工時的勞工太多
transcript.whisperx[275].start 8618.669
transcript.whisperx[275].end 8646.611
transcript.whisperx[275].text 他們韓國16%日本25%新加坡10%我們才3%而已部分工時就是做part-time的啦對那事實上如果就我們的全時工時其實是占多數比較於日韓新加坡這個東西其實還蠻重要就是說那勞工的幸福感跟安全感其實全時勞工一定比部分工時勞工好
transcript.whisperx[276].start 8648.312
transcript.whisperx[276].end 8669.152
transcript.whisperx[276].text 這是很重要的喔你只要去看日本韓國你去看那種街頭流浪還有包括那下流老人的問題啊等等他那個整個社會的那一個整個因為部分公使他包括貧窮化其實是相當比例是相當相當高的對所以如果就我們可能不能單從公使本身去看這個問題這要從內涵去看這樣子我比較建議這樣
transcript.whisperx[277].start 8673.476
transcript.whisperx[277].end 8701.767
transcript.whisperx[277].text 是,所以未來麻煩部長在公佈這些資料的同時也可以做一些強調加說明或讓我們的這個國人可以同時感受到我們在強調希望讓這個勞動朋友的工時有效的或者是得到適當的這個處理的同時也能夠去把內涵同時讓國人都能夠了解也讓我們這些勞動朋友也知道原來這個比較不是只看數字而已還要看相對的狀況
transcript.whisperx[278].start 8702.907
transcript.whisperx[278].end 8724.883
transcript.whisperx[278].text 好那謝謝部長這部分就麻煩部長繼續來協助那有關於促進中高齡就業的部分其實本市一直很關心中高齡的這個就業那這個過程必須要兼顧這個勞資的對等還有世代的正義因為我們知道人口結構的改變的同時真的我們希望能夠讓這些中高齡者有機會在
transcript.whisperx[279].start 8726.644
transcript.whisperx[279].end 8744.228
transcript.whisperx[279].text 不管是對社會的付出也好或充還職場也好都有它更彈性的一個作業的方式那我們在前幾個禮拜已經完成了相關的一些延後退休的一些修法那委員會已經通過了委員提案了
transcript.whisperx[280].start 8744.788
transcript.whisperx[280].end 8747.11
transcript.whisperx[280].text 對於勞資協商或者是這些舊制新制的部分都已經有初步的規劃也入法了
transcript.whisperx[281].start 8763.959
transcript.whisperx[281].end 8778.386
transcript.whisperx[281].text 那針對於那個時候許部長也也知道說要要求資方提供更高的不管是健康檢查或者是身心情況的這些因應持續就業帶來的是需要有一些配套的部分那也麻煩許部長
transcript.whisperx[282].start 8780.286
transcript.whisperx[282].end 8792.751
transcript.whisperx[282].text 在這個當初的能夠有相關的配套的同時我們也希望何部長能夠多關注一下未來在做相關的這些處理的時候能夠持續的來關注這一部分
transcript.whisperx[283].start 8795.612
transcript.whisperx[283].end 8822.445
transcript.whisperx[283].text 有關於這個中高齡勞動率的相對比較低我們還是希望有機會來多了解尤其我們看這個2022年主要國家勞動率的參與率的部分我們看到的就是到了54歲好像還沒有那麼不好可是一旦過了55歲以後就非常明顯的遠低於南韓跟日本
transcript.whisperx[284].start 8823.785
transcript.whisperx[284].end 8844.111
transcript.whisperx[284].text 這一部分我們很期待就是勞動部這一邊能不能夠有更多對這個數據的掌握跟理解為什麼這樣的落差會明顯的有這麼大的變化因為其實在108年所公布的中高齡者及高齡者就業促進法裡面
transcript.whisperx[285].start 8845.171
transcript.whisperx[285].end 8868.745
transcript.whisperx[285].text 就已經在第6條我們往下看就可以看到往下看的第6條事實上就需要政府根據這部法律要針對於相關的調查跟研究要定期的公布那這部分我們有上去瞭解似乎還有待希望能夠
transcript.whisperx[286].start 8869.906
transcript.whisperx[286].end 8896.22
transcript.whisperx[286].text 謝謝謝謝謝謝
transcript.whisperx[287].start 8897.196
transcript.whisperx[287].end 8922.589
transcript.whisperx[287].text 好謝謝王振旭委員發言接下來請鄭天才委員發言主席各位委員有請部長請何部長
transcript.whisperx[288].start 8926.087
transcript.whisperx[288].end 8933.133
transcript.whisperx[288].text 委員好部長恭喜你謝謝好我們看這個今天勞動部的報告這個
transcript.whisperx[289].start 8937.448
transcript.whisperx[289].end 8954.794
transcript.whisperx[289].text 因為04、03正災﹖提供災期民眾臨時工作機會提供2000個工作機會但是到5月20日用人單位提出需求以全數核定只有527名527名裡面上工的只有356人
transcript.whisperx[290].start 8962.236
transcript.whisperx[290].end 8991.061
transcript.whisperx[290].text 就以花蓮這麼大的震災然後你的報告裡面前面也提到這個很多有兩個飯店大飯店他提出這個顧獎那個名稱叫什麼顧獎措施前面解雇那個大量解雇你的報告裡面提到大量解雇所以這樣的人數就必須要去了解
transcript.whisperx[291].start 8992.079
transcript.whisperx[291].end 9013.38
transcript.whisperx[291].text 提出臨時工的一個機會臨時工結果只有356人所以這個到底原因是什麼所以這個部分是不是那個事後去瞭解我就跟委員解釋這有時候都靠花蓮縣政府提供所以我們可能要用我們自己分屬的力量
transcript.whisperx[292].start 9014.1
transcript.whisperx[292].end 9036.314
transcript.whisperx[292].text 下去自己瞭解這樣子。兩個單位都在,其實都有合作。這個勞動部在花蓮也都有相關的機構。都有都有。所以這個部分我們要瞭解原因。並不是說這個宣傳不足,可能不是。我們最起碼看
transcript.whisperx[293].start 9037.776
transcript.whisperx[293].end 9052.895
transcript.whisperx[293].text 他已經提出需求527啊,實際上工只有356,他覺得說不符合他的需求還怎麼樣,所以這個部分是了解原因,好不好?好,這個回到這個老問題
transcript.whisperx[294].start 9054.898
transcript.whisperx[294].end 9070.847
transcript.whisperx[294].text 原住民勞工這個無一定僱主的非常多這個是105年的資料當時沒有勞保沒有納入勞保的擴除軍工教農3萬2000多勞工為加入勞保我們看這個111年剛才是3萬多現在是已經4萬553了
transcript.whisperx[295].start 9084.795
transcript.whisperx[295].end 9098.238
transcript.whisperx[295].text 原住民沒有參加勞保的,擴除中工教農,所以沒有勞保的40,553人,這是111年。112年,原住民就業者參加勞保的狀況,原住民無勞保之勞工,
transcript.whisperx[296].start 9112.638
transcript.whisperx[296].end 9135.831
transcript.whisperx[296].text 又增加到五萬兩千零二人一直在成長根據原住民族基本法第26條第二項政府對原住民參加社會保險無力負擔者得以補助法令明定
transcript.whisperx[297].start 9139.668
transcript.whisperx[297].end 9155.639
transcript.whisperx[297].text 為了要解決這些本席之前在就質詢然後非常謝謝已經退休的施法基師長後來他從勞保級級長退休106年4月13號他開了第一次的會議針對
transcript.whisperx[298].start 9164.922
transcript.whisperx[298].end 9174.846
transcript.whisperx[298].text 補助原住民勞工參加勞工保險費的可行性然後106年5月11號他真的是很積極聯繫開一個月就開了106年5月11號再開邀請相關的部會來開這個就可行性後來
transcript.whisperx[299].start 9193.671
transcript.whisperx[299].end 9216.897
transcript.whisperx[299].text 106年7月10日又召開。會議結論綜合相關的這些資料之後包括相關的這些數據以及需求特別在會議結論第二點有關勞保費補助經費部分由勞動部配合編列預算之應並協調主計單位納入108年度的預算辦理
transcript.whisperx[300].start 9224.426
transcript.whisperx[300].end 9242.248
transcript.whisperx[300].text 非常明確但是很遺憾的很可惜的沒有促成沒有完成到現在所以這個部分呢是要去解決的部長這個你從過去在立法院
transcript.whisperx[301].start 9243.752
transcript.whisperx[301].end 9266.763
transcript.whisperx[301].text 到行政院我們也認識很多年了所以這個部分是不是能夠重新檢討就是這麼多人而且一直是一個問題尤其是常常過去前任部長會提到說反正已經有職災了那是發生災害的時候那是發生職災的時候
transcript.whisperx[302].start 9271.357
transcript.whisperx[302].end 9288.673
transcript.whisperx[302].text 這個沒辦法用變成用頂多用最最低的最低的勞保的那個去計算跟實際上又不一樣所以事實上當然很多都需要去去探討的部分是不是重新啟動這個之前已經開過的會議可以嗎
transcript.whisperx[303].start 9291.417
transcript.whisperx[303].end 9305.073
transcript.whisperx[303].text 委員,我們來努力好嗎?我們來努力看看。這個沒有多少錢啊。其實,委員喔,這個也不是錢我補助,我們可以怎麼樣去協助。主要是原民會要發動啦。其實是,對。
transcript.whisperx[304].start 9309.317
transcript.whisperx[304].end 9329.111
transcript.whisperx[304].text 當然當然當然當然我會來找原民會一起討論不過我也因為牽涉到那個原住民勞工的勞動跟僱傭型態啦這樣子有沒有幫助原住民就業沒有勞保跟無勞保到底我們就要針對解決他實際上是勞工
transcript.whisperx[305].start 9332.293
transcript.whisperx[305].end 9344.676
transcript.whisperx[305].text 我來找移民會研究我來找移民會瞭解是是是是是是好好好謝謝好謝謝鄭天才委員發言接下來請何新淳委員發言謝謝主席黃昭偉我們是不是請何佩珊部長請何部長
transcript.whisperx[306].start 9358.339
transcript.whisperx[306].end 9370.453
transcript.whisperx[306].text 委員好部長先恭喜啦但是也是期許啦因為還有很多的挑戰在我們的面前那第一個就是最近紛紛擾擾的有關這個兩大外送平臺Obereats and Foodpanda這個
transcript.whisperx[307].start 9375.512
transcript.whisperx[307].end 9400.08
transcript.whisperx[307].text 合併了之後會變成是一個獨佔市場的一個局面那我等一下也要去經濟委員會問一下公平會但是呢今天在我們胃環就是要就叫我們何部長在勞動權益上這些外送平台的外送人員我知道呢從過去的許部長到現在我們已經喝咖啡然後開了一些座談會議開了好幾次好像五次還六次對不對對那
transcript.whisperx[308].start 9402.261
transcript.whisperx[308].end 9421.129
transcript.whisperx[308].text 開會開到現在呢,何部長就交給你那您對這些外送人員的權益我們勞動部要如何的來堅守立場保障勞工的權益是,委員現在發生的一個新的形式就是他們提出合併那麼其實他們提出合併的過程必須政府機關審查
transcript.whisperx[309].start 9422.609
transcript.whisperx[309].end 9430.621
transcript.whisperx[309].text 那剛好借這個機會啦我們可以向公平會強烈的表示意見要求公平會在這個合併的審查過程必須會勞動部那麼我也會自己帶頭我們來關切這件事情這樣子一定要的是是是
transcript.whisperx[310].start 9438.431
transcript.whisperx[310].end 9455.688
transcript.whisperx[310].text 現在正在經濟委員會我看到公平會主委他的態度推脫了那呢也沒有堅定的一個立場而且呢都推給呢目前的真的收件要求兩大平台來補件那未來的都推給這個審議委員會那我認為我們作為這個政府機關的第一個公權力要拿出來第二個呢
transcript.whisperx[311].start 9461.754
transcript.whisperx[311].end 9468.08
transcript.whisperx[311].text 對於各方的一個利益權益意見我們都要做一個強烈的主張主張什麼第一個維護勞權外送人員的勞動權益跟他的安全第二個我們對於這個兩大平台的合併之後的一個市場變成獨佔
transcript.whisperx[312].start 9480.871
transcript.whisperx[312].end 9491.843
transcript.whisperx[312].text 這樣子一個經濟模式對於消費者的權益對於餐飲業、小吃店、小店家的一個權益我覺得這個都是政府該跨部會去做的事情絕對不是說那是審議委員會的事所以部長要硬起來
transcript.whisperx[313].start 9496.488
transcript.whisperx[313].end 9525.118
transcript.whisperx[313].text 要主張要主動去要求公平會在審議的過程裡面我們勞動部對於外送平台的一個外送人員的一個權益一定要保障一定要發出聲音拜託部長第二個我發現了一個對你的期許就是我們法規的運用要確保勞工的最佳利益這樣子部長你應該認同吧當然我最近發現一個這個不是個案2月29號出生的勞工他衰嗎
transcript.whisperx[314].start 9526.448
transcript.whisperx[314].end 9542.252
transcript.whisperx[314].text 部長你可能看到這句話你會覺得很納悶為什麼跟勞動部有關係來接下來我們現在所有2月29日出生的勞工他的權益受損這一件事情我從基層的承辦人員問到你們的課長問到你們的組長問到你們的市長問到你們的這個局長沒有人敢
transcript.whisperx[315].start 9550.202
transcript.whisperx[315].end 9573.698
transcript.whisperx[315].text 做決定而且他們也承認我告訴你這個邏輯在哪裡好不好我們台中市這個是個案但是你可以去談通案這個是你要政策來判定案2月29日4年才過一次生日結果當他借齡滿的時候要申請勞保的一個退休的時候連他的退休金都要被吃虧都要吃虧為什麼你知道嗎有兩個模式一個呢我呢
transcript.whisperx[316].start 9579.021
transcript.whisperx[316].end 9603.563
transcript.whisperx[316].text 這個個案他的年紀已經42年多了那呢他申請提早退休所以他滿60歲按照規定滿60歲他都可以申請提早退休結果呢因為他是2月29號出生也就是在這個個案裡面他明明已經屆年滿60歲了但是呢你們勞保局不給他提出申請你說呢要3月1號才能申請
transcript.whisperx[317].start 9604.944
transcript.whisperx[317].end 9622.686
transcript.whisperx[317].text 部長你有講說3月1號申請有什麼不對有為什麼因為呢如果在你們認定裡面他只能3月1號提出申請很抱歉他的申請的退休金少了一個基數他3月提出申請4月才能領所以呢他少領了一個月
transcript.whisperx[318].start 9624.807
transcript.whisperx[318].end 9651.656
transcript.whisperx[318].text 在你們現在的勞保制度裡面是這樣子那不是只有在提早申請退休的這個2月29日出生的勞工才這樣子喔是包括介林滿65歲我要申請退休的2月29日出生的勞工也一樣也一樣你們呢讓滿65歲以上可以申請退休的勞工他2月29日出生你說對不起喔我呢還是讓你3月1日才能夠申請
transcript.whisperx[319].start 9652.936
transcript.whisperx[319].end 9659.84
transcript.whisperx[319].text 那3月1號申請他影響他又是什麼也是一樣他的退休金的權益他掃領了他掃領了是那我們
transcript.whisperx[320].start 9664.673
transcript.whisperx[320].end 9682.815
transcript.whisperx[320].text 明明行政程序法裡面所有政府的施政所有制度法規都應該從人民的權益要從優從利從寬來認定為什麼我們在勞保的這個退休的勤領的年齡的認定上我們要這麼的嚴苛這第一點第二點你們的承辦
transcript.whisperx[321].start 9683.416
transcript.whisperx[321].end 9709.381
transcript.whisperx[321].text 告訴我我們是依據民法來推斷那我就要說你們引用的是民法的第121條是對你們有利對政府機關有利最便宜形式的推斷方式你為什麼不從民法第124條裡面他對於年齡的認定年齡至出生之日期算這一條124條是對勞工對人民有利的你們為什麼不採用為什麼不採記為什麼不認定
transcript.whisperx[322].start 9713.12
transcript.whisperx[322].end 9728.037
transcript.whisperx[322].text 而是從對行政單位最便宜行事的民法121條而且還不是你們自己勞動部的一個行政命令的解釋而且是用其他部會其他部制度的一個解釋行政命令來
transcript.whisperx[323].start 9731.331
transcript.whisperx[323].end 9731.531
transcript.whisperx[323].text 拜託部長
transcript.whisperx[324].start 9747.447
transcript.whisperx[324].end 9748.047
transcript.whisperx[324].text 接下來請黃珊珊委員發言
transcript.whisperx[325].start 9782.476
transcript.whisperx[325].end 9804.306
transcript.whisperx[325].text 謝謝主席,我請部長。請何部長。部長早。我想今天大家都很關心那個外送平台的問題。是。我想問一下部長,你認為外送員是不是勞工?他當然是勞工。他當然是勞工。對。但是他是非典型的勞工,對吧?
transcript.whisperx[326].start 9805.154
transcript.whisperx[326].end 9831.07
transcript.whisperx[326].text 可以這麼說 對非典型的勞工現在會越來越多而且我們但是我們一直都只有一套法律叫做勞動基準法所以常常會有假、承攬、真、雇傭的事實那同樣的外送員不用朝九晚五打卡但是他們是被APP24小時監控著甚至顧客的評價比一般的雇傭更嚴格也就是說
transcript.whisperx[327].start 9831.957
transcript.whisperx[327].end 9832.217
transcript.whisperx[327].text ﹚老公
transcript.whisperx[328].start 9852.771
transcript.whisperx[328].end 9872.396
transcript.whisperx[328].text 委員會有加入職業工會嗎?他會加入我們的職災保護嗎?他們就沒有無固定雇主的意思嗎?也就是他用工會的方式我現在的問題是其實在這麼多年尤其現在已經將近14萬個外送員他們各自不同的權利義務都是用契約關係但是
transcript.whisperx[329].start 9874.758
transcript.whisperx[329].end 9889.425
transcript.whisperx[329].text 在因為我們來自臺北市我們臺北市很早就訂了外送員管理資質條例那全省各縣市全國各縣市也都有訂各自的相關的條例部長我只想問你為什麼中央不肯訂專法
transcript.whisperx[330].start 9891.272
transcript.whisperx[330].end 9908.493
transcript.whisperx[330].text 不是說應該不是不肯定專法為什麼一直沒有定專法專法在上一個上一屆的臺灣民眾黨賴香林委員很早就提了因為他也是臺北市的勞動局長對專法裡面其實非常重要他有幾個面向第一個要有傷害保險
transcript.whisperx[331].start 9909.694
transcript.whisperx[331].end 9931.428
transcript.whisperx[331].text 顧主要用不管是顧主平台業者要出傷害保險的錢第二個要有職災的通報第三個要有教育的訓練最重要的是要揭露所有跟勞動有關的條件包括他們的抽成他們的酬金不可以片面的變動這些在地方政府相關的自治條裡面都規定了
transcript.whisperx[332].start 9932.309
transcript.whisperx[332].end 9943.427
transcript.whisperx[332].text 這些東西並不困難中央定專法也不困難因為你既然不能用勞動基準法規範外送員成立一個專法可能是唯一的方法
transcript.whisperx[333].start 9944.266
transcript.whisperx[333].end 9962.638
transcript.whisperx[333].text 我要說的是如果我們全部都在糾結在我們只能有一套勞動基準法我們是沒有辦法面對未來多元新興的社會形態更何況將來的工作永遠都有所謂的非典現在的人不上班在家工作不打卡
transcript.whisperx[334].start 9963.559
transcript.whisperx[334].end 9986.752
transcript.whisperx[334].text 不進辦公室他一樣是僱傭以後很多類型的工作都會碰到這樣的狀況所以外送員我希望他會成為臺灣第一個認知他是勞工也給他相對保障給他一個專法更何況各地方政府都已經訂了專法這個專法只是要求更公開更透明更有保障部長你同意嗎
transcript.whisperx[335].start 9987.792
transcript.whisperx[335].end 10014.271
transcript.whisperx[335].text 我當然這個非常同意委員這個用一個必須要一個法律的形式來保護外送員但是這個我覺得之前所有的人在這些所謂的公開的相關的平台上面公共政策網路參與平台上面爭取然後我們的行政院回覆是因為涉及不同部門主管者要審慎研議一審慎研議又過了四年
transcript.whisperx[336].start 10015.151
transcript.whisperx[336].end 10040.702
transcript.whisperx[336].text 所以我希望新的部長有新的想法是我來努力可是重點就是說要對外送員這個有幫助啦主要是他們彼此之間的共識甚至都還沒有辦法完全離聚所以為什麼地方政府已經離了表示我們只規定最基本平台業者的責任而不是外送員個人的意見我們給他最基本的保障就比照勞動基準法一樣
transcript.whisperx[337].start 10042.702
transcript.whisperx[337].end 10058.749
transcript.whisperx[337].text 給他傷害保險吧給他職災通報吧給他教育訓練吧給他平台揭露資訊公開透明吧最重要的是他的薪酬不可以片面變更或降低而不經過相關的程序對吧
transcript.whisperx[338].start 10059.709
transcript.whisperx[338].end 10081.143
transcript.whisperx[338].text 對當然委員其實前三頁都有從勞基法的角度我們去面對不要只是糾結在我們只有一部勞動基準法而是我們將來非典工作有各種不同的面向全世界都在面對新的狀態我跟委員解釋齁您這個關係我非常肯定是這樣
transcript.whisperx[339].start 10083.084
transcript.whisperx[339].end 10110.915
transcript.whisperx[339].text 主要是外送員要跟平台談判要有助於他們跟平台談判那麼這個專法到底有沒有幫助這個是真的是他們之間彼此至少目前為止在這個六大都的六都的城市裡面至少外送員不用擔心自己出狀況的時候沒有人求助現在就是變成他們沒有談判能力所以只好靠地方政府去幫忙如果中央政府願意伸出援手他們不會沒有談判能力
transcript.whisperx[340].start 10111.215
transcript.whisperx[340].end 10137.32
transcript.whisperx[340].text 所以我們現在一定要盡全力來幫助他們談判是好不好部長我想捍衛勞工權益跟促進勞資和諧是勞動部最基本的責任所以捍衛勞工權益也是我們對新部長的期許好謝謝好謝謝黃珊珊委員的發言在這邊做以下宣告等一下在陳亭飛委員質詢結束處理臨時提案一案現在請牛許廷委員發言
transcript.whisperx[341].start 10145.538
transcript.whisperx[341].end 10148.905
transcript.whisperx[341].text 好謝謝主席喔這個何部長有請請何部長
transcript.whisperx[342].start 10155.061
transcript.whisperx[342].end 10174.968
transcript.whisperx[342].text 部長早安辛苦了今天第一天來備詢這個我們也做了一些功課您過去年輕的時候其實有在勞工運動裡面應該算是有一定的歷練那這個本席這個第一次的質詢跟您討論一下勞工的一些政策希望您不忘初衷可以幫我們的勞工朋友一起來講話我們就直接單刀直入主題
transcript.whisperx[343].start 10175.928
transcript.whisperx[343].end 10190.663
transcript.whisperx[343].text 第一個是這個今天這個剛剛的新聞今年的第一號颱風即將生成那麼每一次颱風假要不要放假其實都是一個蠻大大家都很多尤其是我們基層的勞工其實都非常期待可以多放一天颱風假
transcript.whisperx[344].start 10191.664
transcript.whisperx[344].end 10213.124
transcript.whisperx[344].text 大家都說台灣的這個過勞狀況其實很嚴重那目前大部分的人都把颱風架有些當成小確幸有些當成喘口氣的這樣的一個機會但北京關心颱風架背後一個政策的一個細節要跟部長來做一下討論齁這個照理來講我們會放颱風架不應該是因為小確幸啦其實是應該是注重勞工的安全嘛
transcript.whisperx[345].start 10213.404
transcript.whisperx[345].end 10230.196
transcript.whisperx[345].text
transcript.whisperx[346].start 10230.965
transcript.whisperx[346].end 10242.598
transcript.whisperx[346].text 難道現行的這樣子的一個按照這個表格你可以看到勞動部現在的規定這個除了成立的方式由政府來宣布之外其實真正的關鍵是發不發工資按照現行的條件來計算勞動部鼓勵這個企業即便放了颱風架還是要給這個勞工應有的工資但是
transcript.whisperx[347].start 10250.507
transcript.whisperx[347].end 10273.479
transcript.whisperx[347].text 只能做到建議跟建議加發所謂的建議就是說如果颱風假這個勞工沒有出勤那就是希望你這個做做工的發個薪水如果颱風假勞工依然出勤就做做工的多發一點但是只是建議性質那我想問一下以目前勞動部的瞭解全台灣這麼多的企業從大財團到中小企業到微型企業
transcript.whisperx[348].start 10274.64
transcript.whisperx[348].end 10299.513
transcript.whisperx[348].text 真的有按照勞動部的建議去發工資或者是加發工資的企業有哪些?大型企業有喔。各位舉幾個例子。在我們那個跟工商團體他們在討論的時候,那他們有提到說比較大型的企業他們會不扣薪,他們會去替員工來體諒這個事情。
transcript.whisperx[349].start 10302.284
transcript.whisperx[349].end 10328.675
transcript.whisperx[349].text 事業單位名稱就比較不方便去講沒關係我現在今天我們只是做政策討論好不好因為這個我們認真的在思考要不要讓他乾脆入法就既然要保障勞工應該讓他到位這個請勞動部先做一下思考好不好因為我理解啦比如說經濟部的角度對不對我發展經濟是墊高的成本但是政府施政就是這樣嘛我希望部長可以守住勞動部的本位嘛就是我站在勞工立場我當然要這樣子強烈的主張有機會往前進的時候從建議變成應該
transcript.whisperx[350].start 10330.836
transcript.whisperx[350].end 10352.746
transcript.whisperx[350].text 我們應該要做嘗試來做溝通那今天的第一步我希望你先做統整剛剛有講有些大型現在只有最大型的相對優渥的企業有條件可以發這個東西可是台灣其實我想部長應該非常了解啦中小企業為主微型企業其實是最多的那這件事有沒有機會做突破那怎麼來做突破給一點小建議比如說建議加大工資我剛剛為什麼要問舉例
transcript.whisperx[351].start 10354.207
transcript.whisperx[351].end 10377.14
transcript.whisperx[351].text 至少我要從鼓勵願意配合勞動部政策方向的企業我總該標舉一下、獎勵一下吧。對不對?迎賀揚善從揚善開始然後逐步往前推本期是接受用一步一步的方式讓勞權進步的但是至少要看到進步的方向跟進步的成果所以第一個我們希望未來這個颱風降因為我們也講了這個是為了安全的考量
transcript.whisperx[352].start 10377.7
transcript.whisperx[352].end 10389.566
transcript.whisperx[352].text 這不純然只是單純說他今天沒有上班沒有對價這個問題希望勞動部針對這件事情有一個檢討跟推動的方向好不好這第一個第二個這個剛剛有蠻多人今天在質詢的時候跟您討論這個有關薪資的問題那麼其實主計總署的統計其實我們的實質薪資啊實質薪資開始出現負成長的一個狀況當然你可以講說因為是通貨膨脹或怎麼樣
transcript.whisperx[353].start 10401.092
transcript.whisperx[353].end 10415.65
transcript.whisperx[353].text 但是其實大家要生活要面對的當然就是用實質薪資來做計算才是貼近真實狀況的一個狀況的一個比較貼近一個真實的一個狀況那麼5月17雖然大家都關注立法院的這個衝突但是其實勞工團體在5月17有召開記者會的
transcript.whisperx[354].start 10417.752
transcript.whisperx[354].end 10442.679
transcript.whisperx[354].text 他們有提出了一部分的訴求我們今天在這個質詢的過程中跟部長來做個政策對話其實蠻重要的就是大家希望說這個加班費的費率可以做有效的調漲現在講平日的加班費就是延長工作時間1.33再延長之後就1.66如果在一例休息日加班就是2.33跟2.66有沒有機會再往上調?這個部長有沒有接到這樣的訴求?保安部有沒有這樣的規劃?
transcript.whisperx[355].start 10444.748
transcript.whisperx[355].end 10467.364
transcript.whisperx[355].text 委員,這很好,牽涉到勞基法的修法啦。對,對。就勞基法的修法,就修一法動全身。這是大工程。我同意嘛。是,對,我們要顯現言義好不好。好,我們先做政策對話好不好。但是我希望可以,我想很多的勞工團體也希望看到部長的態度啦。勞動部有沒有打算往這個方向來推動,再給勞工朋友多一點的溫暖。
transcript.whisperx[356].start 10468.024
transcript.whisperx[356].end 10485.439
transcript.whisperx[356].text 好不好這部長第一個是加班費費率的提升問題我們希望知道勞動部的態度第二個是加班補修的比例問題啊您可以看到這個表格寫得非常清楚平時加班費1比1.33休息日加班是1比2.33但是加班換補修啊當然就是1比1嘛
transcript.whisperx[357].start 10485.999
transcript.whisperx[357].end 10505.771
transcript.whisperx[357].text 那1比1的時候其實很多實務上這個在做勞資雙方在談判的時候勞方處於弱勢所以就各種實務的操作軟硬兼施就要求變成說加班換補修啊那我本來拿加班費我可以拿1.33拿1.66可是我補修的時候被迫1比1啊那其實是不對的嘛
transcript.whisperx[358].start 10506.109
transcript.whisperx[358].end 10531.519
transcript.whisperx[358].text 既然他是要超時出勤應該連補休也應該比照1.33或1.66對不對比如說這個連續加班3天換4天補休這樣子比較合理嘛要跟加班費的比例要一次嘛這個同樣牽涉到勞基法的修正對不對部長所以這件事情加班費率的提升跟補休比例的這個正義希望勞動部做個政策研討提出具體的方向可以嗎
transcript.whisperx[359].start 10532.099
transcript.whisperx[359].end 10545.142
transcript.whisperx[359].text 好今天時間有限那適用期的部分我們用書面的方式也請勞動部提供修法意見好不好好部長辛苦了謝謝謝謝牛許廷委員的發言接下來請麥玉珍委員發言謝謝主席有請部長請何部長
transcript.whisperx[360].start 10563.544
transcript.whisperx[360].end 10576.637
transcript.whisperx[360].text 部長好,想要請教部長一下南向政策產學合作推動很久了就是針對就是國際專班主要就是栽培南向政策產業還有我們
transcript.whisperx[361].start 10579.18
transcript.whisperx[361].end 10603.261
transcript.whisperx[361].text 國人的人力嚴重的缺工所以呢目前我們國家的缺工就是因為希望更多的就是產學合作的學生過來但是勞工就業環境不紮以及低薪的問題讓我們本國的勞工就是有很多相關的工作沒辦法去做請教一下說我們要招攬外
transcript.whisperx[362].start 10603.982
transcript.whisperx[362].end 10615.394
transcript.whisperx[362].text 提升了期望就是填補這些缺口但是呢有助於我國就業的環境優化嗎這樣的部長你同意嗎
transcript.whisperx[363].start 10617.243
transcript.whisperx[363].end 10637.962
transcript.whisperx[363].text 跟委員報告這是教育部跟僑委會啦是但是說因為希望就是用這樣子的合作嘛對但是就是因為產業需求人口的就是市場的需缺很多所以但是我們要如何去做一個連結所以說我們不能說因為這個是僑委會的當然當然當然但是呢因為我們也希望就是產學合作嘛
transcript.whisperx[364].start 10643.807
transcript.whisperx[364].end 10668.233
transcript.whisperx[364].text 對,所以要怎麼樣做一個連結避免就是我們的外僑生就變剝削所以這個部分﹖對啊,也要防止這個部分是啊,所以我們就是針對外僑生我們大量的就是去東南亞就進來我們臺灣的我們越南是最多嘛所以說希望這個部分我們要如何
transcript.whisperx[365].start 10669.173
transcript.whisperx[365].end 10692.18
transcript.whisperx[365].text 要優化就業也要有優質也要有說讓大家就是不被剝削大家才有願意留下來是當然當然對所以說我們是有怎麼樣去做這樣子的一個合作機制跟僑委會我們部長這邊有沒有什麼想法我當然我想他這個
transcript.whisperx[366].start 10694.241
transcript.whisperx[366].end 10713.977
transcript.whisperx[366].text 我覺得我可以來提醒他們就是我們這些跨部會在平台會議的時候我們來提醒他們要注意這一個學校在引進的時候跟企業的合作端的時候是不是有不當剝削的情況發生這些可能要做一些就業保障就是要提醒因為共同合作
transcript.whisperx[367].start 10717.079
transcript.whisperx[367].end 10742.22
transcript.whisperx[367].text 提醒是你的部署,其他人提醒也是,對的,我要怎麼樣是達成共同合作,這個才真正的是保障外國人在臺灣,就是就學跟就業,這個部分就是希望部長你協助。還有針對就是僑生,僑生在臺灣畢業,照現在的規定企業想要
transcript.whisperx[368].start 10743.041
transcript.whisperx[368].end 10750.763
transcript.whisperx[368].text 聘用我們僑生必須達到就是收支基本額新台幣500萬以上還有營業額到1000萬以上進入口的時機總值也要美金100萬以上還有一些或代理用金達到美金40萬以上的門檻
transcript.whisperx[369].start 10768.308
transcript.whisperx[369].end 10784.697
transcript.whisperx[369].text 才能請我們的僑生留下來工作這個造成很多的老闆的困擾因為我們台中很多中小企業他們覺得說我們台灣有這樣的南上政策希望就是更多的人進來我們要留產
transcript.whisperx[370].start 10785.757
transcript.whisperx[370].end 10808.789
transcript.whisperx[370].text 但是門檻太高,大家就是留不住,這樣子的話變成我們大家去用臺灣人民的納稅錢來去補助外朝生來這邊讀書但是都是幫別人來去栽培人才,但是沒辦法留住人才這個門檻是不是說我們的部長這邊可以放寬
transcript.whisperx[371].start 10810.87
transcript.whisperx[371].end 10824.456
transcript.whisperx[371].text 這個我們有在考慮,我們有在研討,研究中。而且我們未來還規劃,我在業務報告有講,就是推動個人工作許可給我們的僑外生個人工作許可,讓他就留在台灣了這樣子。
transcript.whisperx[372].start 10825.316
transcript.whisperx[372].end 10826.437
transcript.whisperx[372].text 我們來跟這個僑委會一起討論,然後我會來push這件事好嗎?
transcript.whisperx[373].start 10845.592
transcript.whisperx[373].end 10850.956
transcript.whisperx[373].text 拜託我們部長因為事實上每一個人來這邊就是要來這邊讀書想要留才也是很多企業他們很缺工也缺人才但是我們門檻要太高了大家又沒辦法留才
transcript.whisperx[374].start 10862.483
transcript.whisperx[374].end 10878.183
transcript.whisperx[374].text
transcript.whisperx[375].start 10878.263
transcript.whisperx[375].end 10893.247
transcript.whisperx[375].text 所以希望我們勞動部這邊好好就是怎麼樣讓放寬讓我們企業可以找到人才不會把企業就往外流往外變成我們台灣就沒有企業了大家就沒有工作了這個部分就是我們部長好好去協助謝謝,謝謝部長謝謝麥玉珍委員接下來請陳亭飛委員發言
transcript.whisperx[376].start 10912.287
transcript.whisperx[376].end 10915.309
transcript.whisperx[376].text 謝謝主席,我們請部長,請何部長部長我想在這個4月22號的時候經濟委員會有特地安排部長到我們台南經濟部長跟台南的產業園區還有工業區去做座談然後當時候其實與會的所有傳產
transcript.whisperx[377].start 10942.622
transcript.whisperx[377].end 10963.465
transcript.whisperx[377].text 他們重點就是一個缺工缺工然後再加班的時數的問題我想這個都是他們現在其實非常急需當他們想去拿更多訂單的時候沒有人他們完全動不了
transcript.whisperx[378].start 10964.721
transcript.whisperx[378].end 10975.612
transcript.whisperx[378].text 他說他每一次有辦法去跟人家談到訂單的時候他必須要再返回來去思考一下我有沒有辦法能力否則違約很慘欸
transcript.whisperx[379].start 10978.715
transcript.whisperx[379].end 10994.984
transcript.whisperx[379].text 對所以這個部分是我們到底現在政府應該怎麼去幫忙我們的產業界去處理的我們的部長新官上任有沒有好的方向有沒有好的主張我們該怎麼去做這個委員報告這一個也是總統520就職員說有特別要我們促進幫忙產業協助解決缺工的問題
transcript.whisperx[380].start 11006.963
transcript.whisperx[380].end 11031.154
transcript.whisperx[380].text 那其實就是剛剛我回答那個蔓玉珍委員的時候就是說我們那個橋外生評選其實這個我們在考我們已經在研究要放寬了就是包括他的門檻打開配額的門檻打開然後那個雇主的資格也放寬所以甚至未來進一步規劃個人工作許可就讓他留下來所以這個這一塊的補充會是一個蠻大的一個蠻大的一塊
transcript.whisperx[381].start 11035.876
transcript.whisperx[381].end 11063.887
transcript.whisperx[381].text 那目前部長你有沒有曾經去估算過現在產業界跟經濟部好好的實際盤點需要的人才他的缺工數到底現在是多少現在奇怪的是失業的有可是缺工的也有那到底這當中怎麼把這樣的一個所謂的一個賣取的部分做到最佳
transcript.whisperx[382].start 11065.246
transcript.whisperx[382].end 11091.744
transcript.whisperx[382].text 這到底我們要怎麼做?對,我們這最主要確實是要跨部會解決啦就是我們跟經濟部本來現在已經有平台在對接啦對,那只是說這個沒合上我那一天問了國發會,國發會說我們有一個所謂的人才的一個平台各部會在這裡面,就是重點產業及重大投資跨部會人力供需合作平台,然後
transcript.whisperx[383].start 11092.364
transcript.whisperx[383].end 11113.132
transcript.whisperx[383].text 都會定期開會那我就說你的定期開會就是勞動部、經濟部跟教育部那這三個部門請問教育部如何提供人才勞動部如何提供我們的勞工然後我們的經濟部如何所謂的我的需求
transcript.whisperx[384].start 11114.392
transcript.whisperx[384].end 11128.738
transcript.whisperx[384].text 這三方怎麼做一個比較好的溝通如果說我們從過去到現在開了十幾次會我問了國發會主委他說副主委他說開了十幾次會我說那十幾次會請問你們延商到什麼
transcript.whisperx[385].start 11133.025
transcript.whisperx[385].end 11156.335
transcript.whisperx[385].text 其實委員有一步一步的在解決裝難你看像去年就開了製造業、農業還有營造業的已經放了大概3萬多人進來了那現在就是我要突破的是說我們在這一塊這是移工嘛你說的是移工對啊你說的是移工重點就是說我們也不能都只用移工來解決缺工
transcript.whisperx[386].start 11156.795
transcript.whisperx[386].end 11175.302
transcript.whisperx[386].text 我們這個平台是我們教育部的人才培育到底怎麼跟產業做一個最好的一些狀況對就是說我們除了剛剛說的橋外生、移工第三我們國內的人才還有我們的勞工
transcript.whisperx[387].start 11177.743
transcript.whisperx[387].end 11200.973
transcript.whisperx[387].text 這是不同的喔這是不同的領域喔我們為什麼在這個平台當中要定期去開會是我們要不斷的盤整我們要不斷盤整也就是盤整的部分是我們到底經濟部我們有沒有請他盤整過經濟部你到底缺多少工經濟部你到底缺多少人才這個數字有沒有出來
transcript.whisperx[388].start 11202.786
transcript.whisperx[388].end 11227.463
transcript.whisperx[388].text 這數字有沒有出來就是說經濟部你有沒有盤整這些產業界你缺了多少人才你到底缺了多少的勞工白領跟藍領到底缺了多少當我們沒有這些數字的時候我們怎麼去把所謂的橋外生把這個移工把國內的人才然後能夠在這個平台當中坦開心胸
transcript.whisperx[389].start 11228.243
transcript.whisperx[389].end 11253.024
transcript.whisperx[389].text 要求勞動部、要求經濟部、要求教育部、要求所有各個部門所以我一個建議我覺得我們先要盤整我們要盤整各個產業界的需求你沒有盤整現在其實我們變成說大家都在搶工
transcript.whisperx[390].start 11255.356
transcript.whisperx[390].end 11284.753
transcript.whisperx[390].text 尤其當我們半導體需要人才的時候會有一個磁吸把所有傳產都磁吸到他身上所以到底傳產缺多少工我們半導體缺多少工我們的高科技產業缺多少工我們是不是可以在這個平台當中在第一優先尤其未來我們的賴總統說要AI要發展AI那AI我們有多少人才會不會又再發生磁吸
transcript.whisperx[391].start 11286.024
transcript.whisperx[391].end 11297.926
transcript.whisperx[391].text 所以我們拜託部長就是現在520之後大家都信任了部會首長我們要怎麼在這個平台把這樣的問題很具體的提出來
transcript.whisperx[392].start 11299.807
transcript.whisperx[392].end 11315.403
transcript.whisperx[392].text 我覺得還是重要的我們先盤整我們的缺工我們的白領藍領所缺的人才到底有多少才來做所謂的需求的整合這樣才會有方向謝謝
transcript.whisperx[393].start 11318.904
transcript.whisperx[393].end 11338.484
transcript.whisperx[393].text 謝謝陳廷飛委員的發言現在處理臨時提案總共有一案請宣讀考量勞動部會同人事行政總副及工程會在合作加強針對各機關宣導之時程及成效設定上予以更進一步明確方可將修改政府機關構運用勞務承攬參考原則
transcript.whisperx[394].start 11340.846
transcript.whisperx[394].end 11369.833
transcript.whisperx[394].text 所欲保障公部門承攬勞工勞動權益之用意在真正落實於114年度公務特種基金及所屬營業事業預算之勞務採購預算編列規劃當中原此特決議因素於一個月內辦理完畢針對各機關之有效宣導作業事後並向立法院社會福利及衛生環境委員會提交書面報告提案人委員陳金輝、盧先一、蘇清泉宣讀完畢
transcript.whisperx[395].start 11372.054
transcript.whisperx[395].end 11395.351
transcript.whisperx[395].text 請問行政單位有沒有意見是主席我們在勞動部來表達一個意見謝謝陳委員等的提案我們這裡可不可以有一個簡單幾個文字幫我們增加一下就是倒數第二行部分決議因素與期限一個月內邀請人事行政總署及工程會嚴厲完成針對各機關之有效宣導作業
transcript.whisperx[396].start 11396.82
transcript.whisperx[396].end 11411.65
transcript.whisperx[396].text 那也跟委員辦公室也溝通過了好,那請問委員,在場委員OK啦,好,那就照文字修正通過那臨時提案全部處理完畢接下來請洪孟楷委員發言來,主席謝謝,麻煩請何部長請何部長
transcript.whisperx[397].start 11426.874
transcript.whisperx[397].end 11452.837
transcript.whisperx[397].text 委員好 何部長第一天來立法院備詢但之前你是用其他的身份不過我想以勞動部長身份第一天我必須要說剛剛看了你接受幾個委員的備詢我覺得你還沒有準備好實在話講為什麼陳廷飛委員、民進黨委員剛剛問的那個問題各產業缺工的人數哪一個部會有整理了
transcript.whisperx[398].start 11457.095
transcript.whisperx[398].end 11478.893
transcript.whisperx[398].text 國發會整理了可以問一下國發會Google一下就Google得到國發會就有講經濟部各產業缺工現況國發會每三年會做一次報告就有把重點的產業做出來缺工狀況昨天本席在經濟委員會諮詢國發會副主委的時候也有問到相關的問題
transcript.whisperx[399].start 11480.074
transcript.whisperx[399].end 11508.152
transcript.whisperx[399].text IC產業或是AI產業現在缺工的狀況差不多兩萬五千人各其他行業也有其他的缺工人才所以這個部分可以跨部會了解當然勞動部重要的工作在於是很多委員都有問到年金改革今天我剛看到一個標題寫說撥補就是改革這是現在我們新任部長所講的
transcript.whisperx[400].start 11510.826
transcript.whisperx[400].end 11537.243
transcript.whisperx[400].text 所以意思是您宣告有可能在您任內不會推動年金改革是這樣嗎這句話撥補就是改革撥補就是改革所以不會有其他的工作我們這四年來不是四年就是未來就是說我們會持續推動撥補的改革持續推動撥補的改革就撥多撥少但不會做其他的部分是不是
transcript.whisperx[401].start 11538.991
transcript.whisperx[401].end 11566.239
transcript.whisperx[401].text 我們會有開源的一些做法啦2024年2月29日前任部長許明春他上專訪的時候講勞保缺口不能只靠撥補解決問題還是要改革結果新任部長第一天到立法院講說缺口就是撥補解決問題
transcript.whisperx[402].start 11569.366
transcript.whisperx[402].end 11598.485
transcript.whisperx[402].text 沒有其他方式了不會要改革了所以我就不禁好奇啊之前一直傳說勞動部長有可能許民春會持續留任但到最後最後一刻變成您是不是因為他講了這句話跟現在新任總統的方向不一致所以就換一個可以貫徹新任總統意志的人所以新任總統的方向就是勞保缺口就是靠撥補就是不用做其他改革是這樣嗎
transcript.whisperx[403].start 11601.701
transcript.whisperx[403].end 11622.691
transcript.whisperx[403].text 對啊,這就是我現在的做法好,非常好,留下記錄但是我們也要看到是說您真的認為說現在的這個年金相關的制度都沒有任何需要再調整或是討論改變的地方嗎?賴清德總統之前在選總統的時候有講過當然他講的有一些話很好聽啦有政府,勞保不會倒
transcript.whisperx[404].start 11623.331
transcript.whisperx[404].end 11635.206
transcript.whisperx[404].text 有政府給大家靠但是他也有提過說要社會共識來尋求解決問題的方式那其中我們有提到是說這個提波率6%的部分到目前為止也都沒有調整
transcript.whisperx[405].start 11636.742
transcript.whisperx[405].end 11661.861
transcript.whisperx[405].text 這是另外一個部分的問題這是勞退勞退條例的部分能不能再提高要修法是這要修進行修法我們會來研議處理會有研議處理是不是所以您認為怎麼樣的一個方向是大家覺得合理有可行的因為今天也在做任何政策對話所以我也要瞭解您新任部長的一個想法你覺得之前大家也都有提過
transcript.whisperx[406].start 11663.763
transcript.whisperx[406].end 11691.379
transcript.whisperx[406].text 勞團也呼籲提高僱主的提撥率那現在6%之前的講法說6%是最低標準啦你們可以用勞資雙方來去協商你們也可以提高提撥率啊但我們現在有沒有掌握本時間想請教另外一個統計掌握的問題有沒有掌握我們目前全國的企業裡面哪一些企業他的提撥率高於6%有多少比例的企業是現在提撥率高於6%的
transcript.whisperx[407].start 11694.502
transcript.whisperx[407].end 11694.987
transcript.whisperx[407].text 多少比例?
transcript.whisperx[408].start 11697.148
transcript.whisperx[408].end 11725.704
transcript.whisperx[408].text 現在的提撥率其實只要是企業的部分其實應該都有提撥吧企業都有啊是嗎6%是最低標準嗎是我們法令規定嘛而且是一定要說一定要嘛但我們之前一直提過勞團一直呼籲說要提高那你們一直強調是說6%只是最低標準你們協商就可以提高那本席現在問題就是那到底有哪個企業是透過協商之後提高提撥率的
transcript.whisperx[409].start 11726.745
transcript.whisperx[409].end 11730.327
transcript.whisperx[409].text 部長,您心目中的目標覺得應該要提高到多少才算是您心中的目標?
transcript.whisperx[410].start 11748.783
transcript.whisperx[410].end 11759.79
transcript.whisperx[410].text 委員這個部分我們還必須跟這個勞資雙方我們要來協商啦所以你覺得現在6%是要提高的但是你目前要提高到多少你還沒有一個定見
transcript.whisperx[411].start 11761.107
transcript.whisperx[411].end 11779.465
transcript.whisperx[411].text 不是沒有訂建是我們還必須討論還是不方便把部長的底牌先出來讓我私下跟您報告好了不要私下我們現在私下很怕都是密會協商我們大家都希望公開透明是是是那部長
transcript.whisperx[412].start 11780.987
transcript.whisperx[412].end 11801.667
transcript.whisperx[412].text 而且我要跟委員報告喔 這個也要考慮整個景氣變動的因素啦就是說我們可能要這個讓 過去蔡英文政府的時候不是講說臺灣景氣史上最好股市兩萬多點 是啊那這樣的話依您講到景氣如果以現在政府大內宣的狀況我覺得
transcript.whisperx[413].start 11803.933
transcript.whisperx[413].end 11809.619
transcript.whisperx[413].text 當然現在我們是準備很積極來推這件事情積極會多久內會有我們盡量不要多用文青式的語言來立法院我想他就不是我們是公開討論政策您能夠推動能夠負責
transcript.whisperx[414].start 11826.445
transcript.whisperx[414].end 11852.463
transcript.whisperx[414].text 不要預期在野黨給你掌聲但是我相信在野黨一定理性的監督當然不會惡意的來阻撓但是既然講出來我們時間點就要做那另外因為時間到但我最後一分鐘本期從第10屆就一直在推動外送平台跟外送員的保障專訪是第10屆的時候我就有送出相關的草案第11屆我現在也已經送出來
transcript.whisperx[415].start 11853.237
transcript.whisperx[415].end 11871.889
transcript.whisperx[415].text 那剛剛有委員提到就是因為現在兩大平台業者龍頭也要做合併購那在不管併購與否有沒有成案可是對於外送員14萬名的外送員勞工的保障餐廳業者的保障以及消費者權益的保障都應該要有一個專法
transcript.whisperx[416].start 11873.57
transcript.whisperx[416].end 11897.14
transcript.whisperx[416].text 那對於各縣市現在也都有訂立安全指引但不管指引再怎麼訂立就是比不上正式立法的約束力我先肯定一下前任部長他至少在我講的時候說一個禮拜內要把過去跟外送平台還有相關開會的記錄上網一個禮拜內確實做到了本席也看到了但是還是不夠在於是
transcript.whisperx[417].start 11897.64
transcript.whisperx[417].end 11926.878
transcript.whisperx[417].text 不能每一次跟外送平台的溝通都要靠部長或是都要靠我們官員約他們來喝咖啡而是應該要真的確立有一個最基本的一個保障跟專法想請教部長您的態度當然能不能支持這是我們要去這個努力的方向努力的方向所以部長是支持如果說我們能夠有一個專法外送平台專法因為現在大家也覺得是說外送員不是
transcript.whisperx[418].start 11928.24
transcript.whisperx[418].end 11947.208
transcript.whisperx[418].text 我們之前所提的這個勞基法保障的勞工他算比較非典型勞工非典型勞工我們就應該要有彈性的保障所以我們才強調是說有外送員及外送平台的相關專法能夠保障外送員、保障餐廳、保障消費者權益
transcript.whisperx[419].start 11948.107
transcript.whisperx[419].end 11963.476
transcript.whisperx[419].text 對,不過我還是要強調一點我們推動專法目的是要幫協助外送委員可以跟強勢的平台談判要對這個有幫助啦那外送委員他們彼此之間是不是有共識這個要考慮你總不可能另一個專法
transcript.whisperx[420].start 11964.642
transcript.whisperx[420].end 11982.083
transcript.whisperx[420].text 本席其實我說實在話我覺得說不是說讓誰哪一方有強勢而是保障最基本大家的合理的權益這兩者不一樣我沒有說一定是站在如果說哪一天外送員的力量大到是說平台受不了
transcript.whisperx[421].start 11982.603
transcript.whisperx[421].end 12006.676
transcript.whisperx[421].text 我也覺得應該要有平衡但重點在於是什麼重點在於是現在很明顯的就是平台的權益大兩個龍頭他們的議價空間他們的制定規則的能力已經大過很多那如果說未來併購之後變成一家龍頭我剛剛也詢問過我們公平會主委公平會主委就是說世界各國到目前為止還沒有哪一家獨大的外送平台
transcript.whisperx[422].start 12007.642
transcript.whisperx[422].end 12029.275
transcript.whisperx[422].text 那你如果說去找其他產業的話就變成是寡占市場、壟斷市場所以部長專法的部分你的態度說會努力本席已經提出來了我相信有其他委員版本我們正式排審的時候我要看到勞動部保障勞工的決心可以嗎?
transcript.whisperx[423].start 12031.83
transcript.whisperx[423].end 12048.158
transcript.whisperx[423].text 最後要回答一下說那個好你沒有錄到音這樣子不行來按個麥克風講一下好真的啦沒有啦我要結束了我要結束了我知道就是最後那個部長說好但是因為你剛剛沒有麥克風這個好都不能留下記錄部長我們加油好不好
transcript.whisperx[424].start 12057.708
transcript.whisperx[424].end 12065.294
transcript.whisperx[424].text 好,因為時間的關係後面還有很多委員要發言好接下來請廖偉祥委員發言主席好,有請我們何部長
transcript.whisperx[425].start 12083.475
transcript.whisperx[425].end 12093.409
transcript.whisperx[425].text 你好部長好,恭喜你喔那我也要這個剛好我今天準備的題目也順著剛剛洪偉仁的來繼續喔那部長我們看一下我們的簡報喔
transcript.whisperx[426].start 12095.564
transcript.whisperx[426].end 12114.014
transcript.whisperx[426].text 這是網路上一名外送員公布他在上一年的冬天霸王級寒流來的時候外出跑外送的收入截圖那我想要請教部長你知道這個收入是怎麼算出來的嗎?左邊這邊你知道這個收入怎麼算出來的嗎?
transcript.whisperx[427].start 12115.962
transcript.whisperx[427].end 12141.827
transcript.whisperx[427].text 這是他們的營業資料吧對 這個應該是他們的演算法計算出來的吧演算法計算出來嘛 對不對好那他這裡大概是從12月21號週四喔跑到12月23號456大概三天的時間喔好您剛剛說演算法算出來的好沒關係這是由於這樣的機制很複雜又不透明憑良心講我也不知道怎麼算出來的所以演算法算出來的確是一個說法喔
transcript.whisperx[428].start 12142.327
transcript.whisperx[428].end 12158.784
transcript.whisperx[428].text 所以部長不能確定內容也很合理那這也是外送員目前面臨的困境之一那依照他該篇文章的所敘述說大概該名外送員大概每天會跑到12個小時總收入是8895元那總單數是132單那平均算起來每單是67元那部長你覺得這樣算多嗎?
transcript.whisperx[429].start 12171.033
transcript.whisperx[429].end 12187.221
transcript.whisperx[429].text 我可以請署長回答一下因為他們的計算就是以送單的是兩家業者不太一樣有的是用像熊貓他就用里程數還有包括他接單費但是uber確實是依據他不同的時段有一個特別的費用
transcript.whisperx[430].start 12188.081
transcript.whisperx[430].end 12201.068
transcript.whisperx[430].text 那他們每個地方都有沒關係我先問你的問題比較簡單我知道他們有一些不同的計算方式那他每單這裡看到每單是67元你們覺得多還是少以熊夢來講他們起跳是40塊
transcript.whisperx[431].start 12204.385
transcript.whisperx[431].end 12230.304
transcript.whisperx[431].text 但是就不知道他每一單的距離跟他的遠近那我告訴你每一單67人還是因為這個霸王級的寒流喔點外送的人暴增然後這個外送員的人數又偏少的情況之下他也算是一年中很少數的高峰所以67人每一單算是少數的高峰喔如果換成一般的時間外送員收入會更少喔更何況還沒有包含這個外送員的油資
transcript.whisperx[432].start 12231.986
transcript.whisperx[432].end 12242.24
transcript.whisperx[432].text 設備攤提、罰單、不慎損毀餐點或是沒收到小費等等對不對好那我想要請問部長你覺得每單外送費用多少錢才比較合理啊
transcript.whisperx[433].start 12246.326
transcript.whisperx[433].end 12262.018
transcript.whisperx[433].text 委員這個齁其實就是他們大概是爭議的核心啦因為他們就是平台他們有他們的掌握的資料所以他們用他們的演算法算出他們自認為合理的數字可是對方上演的感受來講他們覺得這樣不合理
transcript.whisperx[434].start 12262.358
transcript.whisperx[434].end 12279.709
transcript.whisperx[434].text 好沒關係部長我覺得你講話有點繞來繞去的我剛剛問說這一單你覺得一單大概要多少錢你覺得比較合理好那我告訴你部長很明顯目前依照外送員工會的自行估計應該是要參考基本薪資的情況之下
transcript.whisperx[435].start 12280.729
transcript.whisperx[435].end 12299.775
transcript.whisperx[435].text 每單不應低於61元因為他大概一個小時跑三單而且我說的是這個還算是比較巔峰的時期那如果他少一點的時候一個小時可能沒有這麼多單對不對是吧其實我覺得61元都算低了算起來你乘以三單的話183塊對不對
transcript.whisperx[436].start 12302.782
transcript.whisperx[436].end 12324.37
transcript.whisperx[436].text 是不是?所以算是很低喔?所以在現行情況之下而且這180幾塊是不含我剛剛講的他所有的設備攤提油脂等等的狀況但目前的現行情況之下以後外送費可能會越來越低你也認同嗎?因為你有點頭你覺得有可能會越來越低有可能好謝謝部長那原因下一張我來說明一下
transcript.whisperx[437].start 12327
transcript.whisperx[437].end 12349.375
transcript.whisperx[437].text 欸抱歉你再上一張好了我再順便講一下這個你可以看到國外的幾個地區喔這個外送員最低報酬的規定包含這個西雅圖他有說不得低於最低薪資那德國的部分還有扣除勞務成本後這個機車耗損不得低於基本薪資還有使用專法並準用最低薪資這個基本薪資這加拿大喔還有這個紐約州最低時薪2023年的時候5.4美元然後2024年上調至18美元喔
transcript.whisperx[438].start 12357.32
transcript.whisperx[438].end 12370.292
transcript.whisperx[438].text 還有聯合國國際勞工組織報告外送員因為需要自付設備保險稅務因此至少應該為基本薪資的1.5倍這我給你參考一下這個國際上各個地方下一頁
transcript.whisperx[439].start 12372.694
transcript.whisperx[439].end 12399.564
transcript.whisperx[439].text 基本上剛剛講到為什麼未來可能會越來越低因為兩大外送平台有可能要合併他現在是購這個他等於是已經併購了可是現在在公平會嘛對不對那不管他未來合不合併啦但即便喔如果未來有可能合併或不合併的情況之下其實現行雙方實質上能夠透過商業的這個整合做出準聯合行為外送員就會更沒有溢價能力了
transcript.whisperx[440].start 12400.544
transcript.whisperx[440].end 12422.27
transcript.whisperx[440].text 那外送費可能會調得更低那這部分部長打算怎麼因應是就是因為有這個合併的衝擊他都會對消費者跟這一個外送人的權益產生影響所以我們已經要求公平會他在合併的過程一定要會我們勞動部的意見那麼我會親自帶領然後來反映意見是好謝謝部長所以我要講喔
transcript.whisperx[441].start 12423.789
transcript.whisperx[441].end 12447.864
transcript.whisperx[441].text 我就想到你會這樣講但是你沒有說不要說未來有沒有合併的情況你現在要介入阿其實以Uber為例喔去年就已經差點發生平台片面將外送費改為0元的誇張情形未來市場如果獨佔後情況也只有更嚴重那就即便現在還沒有獨佔都已經有這樣的狀況他們是不是也應該要被保障喔這些外送員
transcript.whisperx[442].start 12448.97
transcript.whisperx[442].end 12471.63
transcript.whisperx[442].text 所以無論部長你覺得應該要怎麼因應目前這個中央都沒有統一的專法只能夠靠地方的自治條例來約束可以說是各吹各的調而且其實這個情況還更有可能發生在臺北和新北跨區外送卻受到不同的自治的規則約束的狀況部長覺得這樣合理嗎?
transcript.whisperx[443].start 12476.302
transcript.whisperx[443].end 12503.8
transcript.whisperx[443].text 這確實在各縣市的這樣子的一個狀況我們要有效來統合然後把這一個中央跨部會也不是只有縣市的問題其實還有我們中央跨部會的整合要處理所以這個外送專法能不能規範到我們整個中央相關的主管機關都一致的用這個專法來處理這個也是我們要考慮的因素因為平台的問題就出在它沒有一個主管機關
transcript.whisperx[444].start 12504.861
transcript.whisperx[444].end 12506.623
transcript.whisperx[444].text 所以你說讓這個專法有效,所以代表你會支持要訂定這個專法對不對?
transcript.whisperx[445].start 12524.916
transcript.whisperx[445].end 12541.989
transcript.whisperx[445].text 我覺得我們可以來討論好不好委員 我支持你們關懷外送員的權益的這樣子的努力啦 這個是非常值得肯定的請部長可不可以明白的宣誓立場 然後也告訴我國進15萬的外送員 你知不支持透過訂專法讓全國統一
transcript.whisperx[446].start 12544.671
transcript.whisperx[446].end 12545.592
transcript.whisperx[446].text 這些內容都是我們要努力的方向
transcript.whisperx[447].start 12567.406
transcript.whisperx[447].end 12592.46
transcript.whisperx[447].text 哇你這個部長你這樣子沒有回答問題啊你還是要講你支不支持訂定專法我們支持這樣的討論方向沒有細節你覺得怎麼做更好這個是可以未來一條一條來討論的可是你必須表明的立場你要跟這個所有人講你要表明立場你支不支持我們所有這個推動外送員專法這個部分我們支持這樣的討論方向啊支持討論方向還是支持推動外送員專法
transcript.whisperx[448].start 12593.16
transcript.whisperx[448].end 12617.397
transcript.whisperx[448].text 就是我認為推動外送人專法要能夠有效整合啦 這個這是前提 這還有 這有前提啦那你所謂的整合是哪幾個部分的整合?對 因為一個專法有時候只有一個主管機關啦 你能不能 就是我勞動部管的能不能規範到公平會跟交通部那邊 這是一個大問題所以我們要來討論 如果你有 可以明白宣示你的立場 這件事情就可以往上行 可以跨部會的整合
transcript.whisperx[449].start 12617.937
transcript.whisperx[449].end 12640.176
transcript.whisperx[449].text 因為你這邊我特別勞動部就是外送員專法嘛我剛剛也把所有數據算出來很清楚喔這個外送員現在面臨的狀況是什麼所以也希望部長可以理解還是真的可以理解到他們現在的情況是很需要我們中央可以統一的專法來幫他們其實委員我們跟他們非常密切的保持聯絡5月29號甚至還要推動他們勞資雙方談判呢
transcript.whisperx[450].start 12643.119
transcript.whisperx[450].end 12661
transcript.whisperx[450].text 另外一個問題,我是想要問yes or no,你要不要支持推動外送員專法?我說我支持這樣的討論方向,那我們一起來努力好嗎?哇,部長你不能用這句話一直打太極啊。部長拜託你講一下,那我可不可以定調你並沒有支持要推動外送員專法?
transcript.whisperx[451].start 12662.281
transcript.whisperx[451].end 12663.802
transcript.whisperx[451].text 我們可以再來討論怎麼創造多引好不好?
transcript.whisperx[452].start 12696.219
transcript.whisperx[452].end 12699.483
transcript.whisperx[452].text 謝謝謝謝廖偉祥發言接下來請吳春成委員發言有請何部長請何部長
transcript.whisperx[453].start 12711.553
transcript.whisperx[453].end 12713.635
transcript.whisperx[453].text 整個剛才在提到的下一個缺工的問題只是冰山之一角
transcript.whisperx[454].start 12739.616
transcript.whisperx[454].end 12761.288
transcript.whisperx[454].text 其實深層的是臺灣的人口結構的問題高齡化、少子化但是政府並沒有完善的配套措施所以現在有點爛攤子是勞動部在收爛攤子現在政府對於這個高齡化只有福利
transcript.whisperx[455].start 12762.428
transcript.whisperx[455].end 12787.543
transcript.whisperx[455].text 所以幾乎的費用都到衛福部去了到衛福部80%其他部門就是只要遇到高齡就視而不見與我無關但是我在看整個面對未來這可能會成為人口一半的高齡社會倒三角形勞動部反而是要負擔主責
transcript.whisperx[456].start 12789.204
transcript.whisperx[456].end 12789.224
transcript.whisperx[456].text 是﹖
transcript.whisperx[457].start 12809.48
transcript.whisperx[457].end 12831.765
transcript.whisperx[457].text 有對於這個人口未來要勞動部要扮演的角色你不是配合者你可能要變成主導者要把這個棒子搶回來這個是大家都在擔心的事情撫養比我們現在這個高齡者就是當分子嘛被撫養的然後工作的人口當分母嘛
transcript.whisperx[458].start 12832.225
transcript.whisperx[458].end 12856.667
transcript.whisperx[458].text 因為少子化,所以分母就越來越小。因為高齡化,所以分子就越來越大。目前是4比1,4個撫養一個。到2040年會變成2比1,兩個撫養一個。到2057年會1比1。接下來分子就會大於分母。這叫崩潰的時代。那年輕人都被壓垮了,都沒未來了啦。
transcript.whisperx[459].start 12858.062
transcript.whisperx[459].end 12876.3
transcript.whisperx[459].text 那怎麼解決我現在沒有看到我沒有看到政府針對這樣的大家學者都知道這個是大家都知道的事情我沒有看到有什麼解決那我在提倘的壯時代其實為這個而來怎麼解決就是把分子拉下來當分母把分子壯起來
transcript.whisperx[460].start 12878.481
transcript.whisperx[460].end 12892.612
transcript.whisperx[460].text 因為他繼續成為一個生產者 成為一個勞動者 然後消費者 有活躍的第三人生 因為現在人都很長壽 我們現在搞了臥床八年 人家北歐國家目標是兩週
transcript.whisperx[461].start 12894.173
transcript.whisperx[461].end 12917.484
transcript.whisperx[461].text 也就是說以未來的老人只有兩週當老人其他的時間都叫撞世代啦繼續可以勞動可以生產可以消費那這樣子的分母就很強壯起來這撞台灣嘛台灣才會強壯起來嘛而且世代會共融所以要解決這個問題我們現在最大的問題都是引法思維
transcript.whisperx[462].start 12918.644
transcript.whisperx[462].end 12933.531
transcript.whisperx[462].text 政府這幾年各部門當中包括行政院對高齡什麼科技弄了都把只要你過了60歲以後就沒有政策只剩下一個政策叫長照政策養生養病養老但是這些人會有30年未來
transcript.whisperx[463].start 12936.693
transcript.whisperx[463].end 12965.652
transcript.whisperx[463].text 在沙漠裡面所以我們要把它翻轉成為壯世代那有時間我再跟部長再找時間那壯世代呢我在這個立法院也成立了壯世代政策產業發展促進會那非常深大的有63個立委加入跨黨派的是這個議題是不分黨派的我們都要一起支持所以也請勞動部你們如果要推動這個政策我們可以很多的各部會都來支持你
transcript.whisperx[464].start 12968.153
transcript.whisperx[464].end 12994.821
transcript.whisperx[464].text 然後勞動部目前有推了這項55plus壯士代的就業促進措施還有5050壯士代的就業網絡合作計畫那我看到這個各地的分署都在積極來推動這兩件事情但是除了這兩件事情可能要再更深化一點所以那個巡迴部長很可愛他說他要做壯士代代言人
transcript.whisperx[465].start 12995.981
transcript.whisperx[465].end 12996.061
transcript.whisperx[465].text 接下來﹖
transcript.whisperx[466].start 13015.069
transcript.whisperx[466].end 13030.369
transcript.whisperx[466].text 那另外一個勞基法的修訂那我也跟那個王振旭委員我們聯合修訂了這個勞基法54條讓65歲以後不是強制退休而是可以透過勞資的協議當中得延長值
transcript.whisperx[467].start 13034.494
transcript.whisperx[467].end 13054.81
transcript.whisperx[467].text 希望部長支持而且勞基法對於退休的規定現在實在是太沒人性了也不敢太早退休然後退休也不行退休以後要回來也很困難導致於這些人龐大的人力我們平均退休60歲60歲現在有600萬人卡在這裡卡在耗損的整個國力
transcript.whisperx[468].start 13060.115
transcript.whisperx[468].end 13061.56
transcript.whisperx[468].text 這個要靠勞基法、靠勞動部來釋放這些勞動力
transcript.whisperx[469].start 13065.148
transcript.whisperx[469].end 13093.365
transcript.whisperx[469].text 好那精進所以不是只有剛才那兩頁那個是究極目前的缺工問題當然更深化的就是要請部長繼續的在勞動部來雇主留用65歲要有獎勵措施要有誘因那同時對勞工也要有誘因要有鼓勵各種的措施要提出來然後這一個
transcript.whisperx[470].start 13094.566
transcript.whisperx[470].end 13113.76
transcript.whisperx[470].text 對於現在缺工的行業當中要積極的來引導這個中高齡的就業協助的各種的措施﹖包括宣傳各種的企業的講座各種的方面那第三個要排除重返職場的困境那事實上這個
transcript.whisperx[471].start 13115.922
transcript.whisperx[471].end 13131.833
transcript.whisperx[471].text 包括個人、很多的這種培訓、個人的生涯的規劃很多人到了50歲以後就抱著代退了代退的、耗損的心力所以像這一方面的
transcript.whisperx[472].start 13132.894
transcript.whisperx[472].end 13156.424
transcript.whisperx[472].text 讓我們的勞動力能夠多方面的開發啦可以多方面的開發那最重要的還是勞基法還有中高齡的這個就業促進法那這個最好能夠改名字叫做壯士代就業促進法既然那個因為中高齡是45歲就叫中高齡這個真的有點太離譜啦出國念書回來都40歲然後45歲就開始輔導代退
transcript.whisperx[473].start 13159.915
transcript.whisperx[473].end 13164.678
transcript.whisperx[473].text 謝謝吳春成委員發言在這邊做一下宣告我們中午不休息直到質詢結束再散會現在請楊瓊英委員發言
transcript.whisperx[474].start 13187.365
transcript.whisperx[474].end 13189.273
transcript.whisperx[474].text 謝謝主席 每席想邀請何部長
transcript.whisperx[475].start 13193.683
transcript.whisperx[475].end 13221.012
transcript.whisperx[475].text 委員好部長先恭喜你上任上任我最關心的就是我們勞保的基金我們看到2023年勞保基金大概負債13.4兆多比上一年度12.3兆多那是增加了將近7300億換句話說每一個人平均他的背的負債大概是56萬
transcript.whisperx[476].start 13222.432
transcript.whisperx[476].end 13247.946
transcript.whisperx[476].text 那在這種情況之下我沒有看到往前推2020年金算負債是11.5兆那到目前為止因為每一任的部長都會說這個年金會要改革那您新官三任你針對這個議題你要怎麼樣做請教說明委員我剛剛大概已經都有回覆請說明是就是我們會持續進行撥補撥補就是改革
transcript.whisperx[477].start 13253.479
transcript.whisperx[477].end 13255.179
transcript.whisperx[477].text 請你針對議題你現在是勞動部的部長你不是政治的宣傳者
transcript.whisperx[478].start 13282.587
transcript.whisperx[478].end 13285.399
transcript.whisperx[478].text 怎麼說呢?你越撥撥啊!
transcript.whisperx[479].start 13286.516
transcript.whisperx[479].end 13312.989
transcript.whisperx[479].text 你負債越多欸所以你應該要以你勞動部部長的身份去討論我要怎麼樣讓我的勞工能夠安心我的基金能夠增加除了撥補之外還有什麼方法你要宣傳以前沒有以前沒有反而負債沒那麼多你現在負債越來越多你就你現在為什麼要換部長
transcript.whisperx[480].start 13314.17
transcript.whisperx[480].end 13343.015
transcript.whisperx[480].text 就是因為前任的在執行的當中結果論的答案是不佳的所以你應該針對這個議題啊你怎麼來政治宣傳呢對嗎前座說明我跟委員報告我們波普這4年來勞保的基金水位已經創新高了現在是9941億過去而且是還包括了投資收益所以我們其實要進行開源的努力
transcript.whisperx[481].start 13343.815
transcript.whisperx[481].end 13345.416
transcript.whisperx[481].text 這是全國的共識嘛!你不能從勞工的身上去撥皮嘛!
transcript.whisperx[482].start 13366.111
transcript.whisperx[482].end 13366.732
transcript.whisperx[482].text 我們現在用撥部的改革來處理
transcript.whisperx[483].start 13395.016
transcript.whisperx[483].end 13397.698
transcript.whisperx[483].text 接下來本席要請教
transcript.whisperx[484].start 13419.206
transcript.whisperx[484].end 13419.226
transcript.whisperx[484].text 委員會長
transcript.whisperx[485].start 13433.854
transcript.whisperx[485].end 13460.569
transcript.whisperx[485].text 我本期做了一個統計數字會講話平均值我們是只有提高兩趴可是我們的通膨絕對不止這兩趴所以我號稱我們的地心是持續在下降持續在嚴肅的議題所以針對這個部分本期要請教因為我如果以三月份全體受僱的員工的這個部分平均是4.6
transcript.whisperx[486].start 13461.81
transcript.whisperx[486].end 13461.91
transcript.whisperx[486].text 請出說明。
transcript.whisperx[487].start 13481.497
transcript.whisperx[487].end 13493.647
transcript.whisperx[487].text 當然委員 這個所謂這個加薪追不上通膨 這確實是存在的 這個我是很佩服您有觀察到這樣子的現象當然啦 這個通膨的問題是跨部會要去解決的啦 這我會來持續跟行政院反映 因為這牽涉到央行的政策 牽涉到我們整個跨部會的問題
transcript.whisperx[488].start 13506.718
transcript.whisperx[488].end 13513.155
transcript.whisperx[488].text 我也支持你要去跟上聯繫這也是我一直建議這個政府你不要
transcript.whisperx[489].start 13514.434
transcript.whisperx[489].end 13514.734
transcript.whisperx[489].text 第三個議題
transcript.whisperx[490].start 13544.602
transcript.whisperx[490].end 13566.747
transcript.whisperx[490].text 大家都非常關心兩個外送平台要合併今天在我們經濟委員會我們的公交會公平會的這個主委他說了他認定因為目前這兩家平台是佔全國平台最多的他也認為這個是獨佔
transcript.whisperx[491].start 13570.258
transcript.whisperx[491].end 13584.268
transcript.whisperx[491].text 會成立,獨佔會成立那因為這兩家是最大嘛商業我們要讚許他但是問題是他如果兩家併起來的時候他現在送送給公民會那公民會會不會同意有四大項第一個我們整個經濟體系
transcript.whisperx[492].start 13588.953
transcript.whisperx[492].end 13603.14
transcript.whisperx[492].text 第二個會不會達到聯合行為的一個壟斷那現在兩家是最大而且公平會認為他是獨立最大那兩個都是獨立最大兩個加起來當然是巨數啊那所以這個聯合行為哇這個精髓就到了所以這個也是在他們事項在審查的項目之一這是剛剛我們在這個經濟委員會所討論接下來就你的問題了
transcript.whisperx[493].start 13619.943
transcript.whisperx[493].end 13648.019
transcript.whisperx[493].text 公平會的主委他說他會找你因為勞動部我要為我們外送平台外送員要請命外送員要怎麼辦所以這個剛剛我們在經濟委員會我問了公平會公平會主委也說外送平台的這個外送員他們的權益也會納在他們是否同意合併的條件之一我把這個備份告訴你
transcript.whisperx[494].start 13649.7
transcript.whisperx[494].end 13671.075
transcript.whisperx[494].text 所以你必須要站在我們勞工的這個立場他會找你這個是也就是跨部會去討論所以到時候我建請我們部長你一定要堅持在我們勞工的這個立場權力的立場好不好這一點是非常非常的重要所以
transcript.whisperx[495].start 13671.895
transcript.whisperx[495].end 13699.684
transcript.whisperx[495].text 我今天這三項的議題來跟你做討論我們發覺到現在少子化而且勞工這個老闆找不到工我們現在是缺工缺工你應該知道這個原因吧這個社會面向是缺工但是不要搞到無人可用的境界現在是缺工如果持續惡化下去
transcript.whisperx[496].start 13700.796
transcript.whisperx[496].end 13723.846
transcript.whisperx[496].text 不要走到無人可用的這個境界所以中高年齡的勞工對我們來講是我們的寶貝啊這些沒有功勞又苦啦中高年齡的勞工是我們的寶貝我們要怎麼樣穩住他們我們要怎麼樣鼓勵我們的新娘我們的青年勞工他願意要加入這個陣容鞏固我們的中高年齡這個基本法
transcript.whisperx[497].start 13730.592
transcript.whisperx[497].end 13756.359
transcript.whisperx[497].text 的勞工鼓勵我們的青年勞工能夠加入這個社會才不會變成無緣可用的勞工市場啊對不對部長你頻頻的點頭也因為時間的關係我第三個功課我還是要您做功課你把剛才本席第三個議題中高年齡要怎麼穩固它怎麼鼓勵我們青年
transcript.whisperx[498].start 13757.259
transcript.whisperx[498].end 13765.676
transcript.whisperx[498].text 那麼你也想寫書面資料給本席這三個議題我要你的書面資料結論到時候公平會
transcript.whisperx[499].start 13767.605
transcript.whisperx[499].end 13788.131
transcript.whisperx[499].text 這個主委找你的時候你務必一定要站在我們外送平台的外送員的一個權益一定要鞏固住好不好好謝謝委員支持好謝謝楊瓊英委員那也請勞動部、楊委員所需要的資料會後再提供那接下來請陳培宇委員發言
transcript.whisperx[500].start 13795.759
transcript.whisperx[500].end 13819.117
transcript.whisperx[500].text 好謝謝主席那有請勞動部長謝謝 請何部長部長無案第一次跟您在質詢台上討論非常的開心那我想要跟部長就直接切入其實我們一直在跟勞動部討論的就是友善的家庭政策如何讓勞工在這個情況下跟部長分享在2023年去年的
transcript.whisperx[501].start 13819.917
transcript.whisperx[501].end 13848.832
transcript.whisperx[501].text 親子天下幾乎是台灣最重要的關於親子議題討論的民間公司的雜誌提到當大家接受問卷調查的時候表示什麼時候你會願意出來工作或是選擇工作的時候友善家庭對您的重要度所謂友善家庭指的是企業的相關勞動措施或是政府的相關勞動補助政策對於勞動的員工非常重要大家認為友善家庭非常重要將近七成
transcript.whisperx[502].start 13849.352
transcript.whisperx[502].end 13868.685
transcript.whisperx[502].text 那所謂的友善家庭到底是什麼意思呢?雜誌上面說了一彈性工時65%企業設置零拖幼兒園47%第三個43%是居家上班確實我們看到來下一頁在勞動部今天的業務報告裡面我們很開心看到部長你有寫到
transcript.whisperx[503].start 13870.727
transcript.whisperx[503].end 13888.708
transcript.whisperx[503].text 將協助勞僱雙方透過居家工作、彈性上下班還有協議調整工時的方式合理安排對勞工有利的最適工時這是在您的業務報告裡面我們非常認同但是我們我想我們彼此都知道另外一個很殘酷的現實臺灣中小企業居多
transcript.whisperx[504].start 13889.349
transcript.whisperx[504].end 13909.184
transcript.whisperx[504].text 那中小企業如何去協助政府或是背負大家的期待那我想要跟部長分享我們目前在第一線看到的狀況目前的五六月其實在所有新聞裡面都有看到長病毒是高峰而一旦班上有長病毒的孩子就要停班停課我想這個部長你是清楚的而且有時候如果你是生了兩個小孩
transcript.whisperx[505].start 13910.185
transcript.whisperx[505].end 13926.18
transcript.whisperx[505].text 或者是A這個小孩剛剛停完7天就過幾天班上又來一個小孩然後於是這樣就一直往後延一直往後延我想這個情況大家都非常清楚所以在目前勞動部相關的所有政策裡面目前或是性供法裡面都只有寫到3歲
transcript.whisperx[506].start 13927.381
transcript.whisperx[506].end 13956.736
transcript.whisperx[506].text 但是我們知道其實小孩在幼兒園階段一直到上小學前甚至其實看到更多的爸媽在告訴我們上小學後6歲到12歲也是很需要非常多所謂臨時的這種工時的調整啦或是居家上班啦或是彈性的工作狀況部長我們當然我剛說在業務報告裡面我們看到勞動部指導這件事情要往這裡走可是往6歲這件事情你覺得我們有沒有可能在未來的工作時日當中我們一起來努力推動這件事情
transcript.whisperx[507].start 13957.756
transcript.whisperx[507].end 13978.626
transcript.whisperx[507].text ⋯⋯⋯
transcript.whisperx[508].start 13978.706
transcript.whisperx[508].end 13984.17
transcript.whisperx[508].text 在前部長這個許民村部長的時候我們就也一直跟部長講這件事情甚至我們拜託許部長跟國營事業討論國營事業先試辦試辦的好處是可以收集企業的相關意見
transcript.whisperx[509].start 13995.792
transcript.whisperx[509].end 14006.275
transcript.whisperx[509].text 當時我們看到目前我們看到勞動部給我們的回覆是說桃機財政部金管會評估可以配合事辦那後續要拜託部長這邊幫我們持續追蹤他們事辦後的狀況因為我再次強調他們的事辦絕對可以給予很多企業作為參考也可以給勞動部作為後續政策調整的參考看到部長點頭謝謝但是我們看到資料裡面呢台糖中油
transcript.whisperx[510].start 14022.419
transcript.whisperx[510].end 14042.095
transcript.whisperx[510].text 臺電臺水回復說如果延長到6歲會增加輪班人力調度增加同仁的負擔會影響業務推動和為民服務的品質我要再次強調就算是國營企業我們當然也認同他們是有困難的這是非常殘酷的現實但是有沒有機會他們也可以再次
transcript.whisperx[511].start 14042.415
transcript.whisperx[511].end 14060.299
transcript.whisperx[511].text
transcript.whisperx[512].start 14060.834
transcript.whisperx[512].end 14067.82
transcript.whisperx[512].text 我會來跟這一些企業的實施狀況我親自來做一個檢視好嗎跟我們的這個業務單位同仁我們的處長其實他們大概推這個計畫示範已經有一段時間那麼我們當然如何讓企業能夠更願意
transcript.whisperx[513].start 14080.61
transcript.whisperx[513].end 14095.501
transcript.whisperx[513].text 對,這有時候報德勸說啦或各方面的跨部會或跨部會的努力啦那我們之所以說從國營企業就是也許從部長您的角度去跟他們溝通會更為容易然後也可以讓他們的聲音如實的表達給勞動部
transcript.whisperx[514].start 14097.322
transcript.whisperx[514].end 14097.462
transcript.whisperx[514].text 謝謝部長謝謝主席謝謝
transcript.whisperx[515].start 14123.187
transcript.whisperx[515].end 14148.786
transcript.whisperx[515].text 好謝謝陳培宇委員發言接下來請羅志強委員羅志強委員羅志強委員不在接下來請謝依鳳委員謝依鳳委員謝依鳳委員不在接下來請翁曉琳委員翁曉琳委員翁曉琳委員不在接下來請賴士寶委員賴士寶委員賴士寶委員不在接下來請蔡易瑜委員蔡易瑜委員蔡易瑜委員不在接下來請林國成委員發言
transcript.whisperx[516].start 14156.081
transcript.whisperx[516].end 14170.313
transcript.whisperx[516].text 主席請部長請何部長還有另外老保及白局長來有沒有來有有有請白立正局長好部長是
transcript.whisperx[517].start 14171.84
transcript.whisperx[517].end 14196.111
transcript.whisperx[517].text 真的看到你早上在打刑到現在其實立法院一直在藐視國會我看起來一點這個法一點用都沒有為什麼大家立法委員尊重部長部長尊重立法委員基本上都是在談你所以根本藐視國會的問題就沒有不存在的所以我們蠻期待啦我們蠻期待這個真的
transcript.whisperx[518].start 14199.392
transcript.whisperx[518].end 14220.673
transcript.whisperx[518].text 部長跟立法委員彼此之間針對問題要相敬如賓我想沒有任何可以吵的因為部長也為老百姓做事立法委員也是為老百姓在做事所以我第一個還是要恭喜何部長因為我們大家知道你過去
transcript.whisperx[519].start 14223.036
transcript.whisperx[519].end 14241.457
transcript.whisperx[519].text 確確實實你也是在整個勞工多少有參與當然看到你發布我們很高興一個恭喜另外一個就不忍心你跳入火坑來為勞工做事這兩者之間
transcript.whisperx[520].start 14242.458
transcript.whisperx[520].end 14269.788
transcript.whisperx[520].text 我在想都是為勞工都是為勞工所以首先恭喜也有一點不忍但是最後還是要共同為勞工做事謝謝委員我今天要談有兩個問題第一個問題我要請教部長新人有新政那當然過去不管是陳菊也好不管是喜民村也好確確實實對勞工基於第一個尊重跟照顧
transcript.whisperx[521].start 14270.888
transcript.whisperx[521].end 14288.124
transcript.whisperx[521].text 好他照顧那我也要聽聽我們何部長對這個新職你最想推動跟最想做的事能不能用我的時間讓你跟全國的勞工說明你未來最重要要推動的什麼事
transcript.whisperx[522].start 14289.233
transcript.whisperx[522].end 14315.433
transcript.whisperx[522].text 當然委員我其實早上也在業務報告有呈現當然對我來講真的很有榮幸有這個機會然後來為全國廣大的勞工朋友來盡一份心力那這也是我當年從事勞工運動的初衷到現在一如往昔不會變的那跟我委員的討論其實一直有提到我們這個所謂的勞保年改的問題
transcript.whisperx[523].start 14316.394
transcript.whisperx[523].end 14337.076
transcript.whisperx[523].text 那麼我也期待說透過我的努力我能讓全國的勞工朋友放心勞保絕對不會倒,勞保絕對不會破產目前的勞保是相對穩健的那麼這個我是各位委員我想我們都有討論過然後也是我想是全國的勞工朋友最大的期待啦
transcript.whisperx[524].start 14338.257
transcript.whisperx[524].end 14353.982
transcript.whisperx[524].text 其實勞工真的要的不多啦以現在制度來講真的勞工還是體系政府但是我們勞工啊就是一點點保障他就心滿意足以現在的情況來講勞工基本上
transcript.whisperx[525].start 14357.603
transcript.whisperx[525].end 14382.561
transcript.whisperx[525].text 是求個安穩不希望重大的改變這一點我提供給我們何部長做一個政治判斷的一個參考那我現在要來談任何一個政策他要做成決定的時候要把前因後果要很了解這樣才不會誤判才不會誤判所以當然前一段時間一直在講
transcript.whisperx[526].start 14384.403
transcript.whisperx[526].end 14389.586
transcript.whisperx[526].text 這個勞工非常每天工作按時繳錢到最後一天到晚報章雜誌就說勞保什麼時候要倒啊我記得好像十幾年前就要倒到現在還是沒有倒那這個是什麼
transcript.whisperx[527].start 14400.855
transcript.whisperx[527].end 14415.616
transcript.whisperx[527].text 委員聳聽對勞工一點保障都沒有這一點我是覺得那我要請教我要請教到底真正虧損的部分是在臺灣省政府臺民地區的勞保局
transcript.whisperx[528].start 14416.4
transcript.whisperx[528].end 14437.435
transcript.whisperx[528].text 那交給中央政府的時候在84年4月1號健保開始開辦把醫療撥給健保局的時候部長我要提供一個自信根本84年以後勞保是不虧損的希望你回去白警長你們去把這個原因找出來
transcript.whisperx[529].start 14437.995
transcript.whisperx[529].end 14460.792
transcript.whisperx[529].text 真正虧損的地方是臺灣省政府匯率5.5一張保單可以住院可以保障這裡是真正虧損最多那這裡當然因為部長不曉得我要問問白局長到底臺灣省政府交給中央政府的時候你們那個時候有沒有盤點有沒有精算
transcript.whisperx[530].start 14463.496
transcript.whisperx[530].end 14483.448
transcript.whisperx[530].text 委員好 跟委員這邊來做報告 在85年的6月的時候 那時候勞保局改制的時候 當時的勞保基金餘額是1700多億 那當時的確有精算 那因為費率像委員精算 我不是說你們精算 是臺灣省政府交給中央的時候 有沒有精算 有沒有
transcript.whisperx[531].start 14484.268
transcript.whisperx[531].end 14505.193
transcript.whisperx[531].text 跟委員做報告,當時因為勞保財務裡面有針對勞保局的整個資產跟基金都有做報告你也最後再接的啦我坦白跟你講根本沒有精算虧損多少錢你們完全不知道所以那個時候的執政當然現在國民黨也要負責任啦
transcript.whisperx[532].start 14506.193
transcript.whisperx[532].end 14527.473
transcript.whisperx[532].text 你們現在當了政府以後你們當然要概括承受所以這一點當然責任都不能推但是我可以告訴你一個問題根本沒有精算虧多少錢都不知道所以到84年健保播出去以後你們那個時候的虧損的黑洞是非常大的
transcript.whisperx[533].start 14527.913
transcript.whisperx[533].end 14556.776
transcript.whisperx[533].text 所以你們要把這個前因後果把它講清楚所以這個部分我想各黨執政過的都一定要負責任也不能說完全民進黨你現在你是執政黨你要來概括承受但是怎麼樣去交接怎麼樣去做決策勞工的權利是不能去損害的所以這點我要給何部長一個鼓勵也要把真相告訴你把這個查得清清楚楚黑洞
transcript.whisperx[534].start 14557.376
transcript.whisperx[534].end 14581.061
transcript.whisperx[534].text 我坦白講我這個人講話憑良心也不是民進黨造成啦是日月累積勞保照顧勞工而造成可是要把問題找出來不能讓勞工覺得說我每天繳會啊你們又要叫我繳多要領少那過去是領少那個繳少領多所以造成這個問題把它分析出來
transcript.whisperx[535].start 14581.981
transcript.whisperx[535].end 14602.307
transcript.whisperx[535].text 這樣才不會挫折對勞工我有乖乖的繳錢但是你們就不乖乖的給付這一點我希望何部長一定要跟院長講這些事實的真相所以這點我要代替勞工拜託我們何部長這個部分真相一定要把它理清楚好不好好謝謝林國成委員發言接下來請鍾嘉斌委員鍾嘉斌委員鍾嘉斌委員不在
transcript.whisperx[536].start 14611.417
transcript.whisperx[536].end 14620.743
transcript.whisperx[536].text 接下來請林黛樺委員、林黛樺委員、林黛樺委員不在。接下來請鄭振淺委員、鄭振淺委員、鄭振淺委員不在。接下來請陳瑩委員發言。好,謝謝趙委員。我們麻煩請何部長。請何部長。
transcript.whisperx[537].start 14637.577
transcript.whisperx[537].end 14656.246
transcript.whisperx[537].text 委員好部長好首先就很高興就是也要誇你一下有這個勇氣跟擔當來擔任勞動部部長這個重責大任這個職位那勞動政策呢他攸關全體國民的這個生活水準與健康安全也是我們國家經濟發展與這個國際競爭力
transcript.whisperx[538].start 14659.648
transcript.whisperx[538].end 14660.508
transcript.whisperx[538].text 首先我有八個字要送給部長
transcript.whisperx[539].start 14675.953
transcript.whisperx[539].end 14695.832
transcript.whisperx[539].text 偏聽則廢、兼聽則明所以在過去部長有擔任柯總召的辦公室主任以及八年行政院副秘書長的職務我也見證了這些歲月相信部長對於整個溝通協調很難有人可以能出其用
transcript.whisperx[540].start 14697.253
transcript.whisperx[540].end 14700.915
transcript.whisperx[540].text 現在您擔任部長必須要做政策跟決定還有辯護可是問題的專業跟複雜往往都是牽一髮而動全身所以除了文官的意見建議部長未來也可以多聽事業單位跟工會的團體的意見再加上專家學者的意見再去思考問題應該要如何解決
transcript.whisperx[541].start 14721.943
transcript.whisperx[541].end 14739.813
transcript.whisperx[541].text 那特別是涉及到這個勞動條件還有這個職安位的這個檢查的部分那我要舉一個例子就是在過去我曾經提醒就是說這個勞動條件是否具有這個限期改善的空間我們看一下簡報
transcript.whisperx[542].start 14741.094
transcript.whisperx[542].end 14761.825
transcript.whisperx[542].text 這個部分在這個勞動檢查法25條裡面法有明定確實有改善的空間那我也特別請教過當過你們政務次長的法學教授他也認為是可以的而且這個勞基法第一條本法未規定者適用其他法律之規定也沒有說不可以
transcript.whisperx[543].start 14762.705
transcript.whisperx[543].end 14786.554
transcript.whisperx[543].text 那以前在地方執行的時候也都是有空間的但是自從你們的現任主密也就是過去的這個執安署的這個劉傳明前署長他搞了一個牢條大軍之後就變成抓到就要罰尤其是在這個一例一休的修法期間曾經有事業單位計算勞工薪資因為差了這個1.33元沒有辦法這個
transcript.whisperx[544].start 14790.956
transcript.whisperx[544].end 14813.325
transcript.whisperx[544].text 就是除禁那沒有四捨五入差了幾塊錢就要被罰兩萬甚至還有官員沾沾自喜的來跟我們說我的記錄是這個差0.6元我也是跟他罰兩萬塊錢而且更可惡的在罰完之後並不代表勞工就可以領到他們應有的權益因為
transcript.whisperx[545].start 14814.125
transcript.whisperx[545].end 14829.087
transcript.whisperx[545].text 你們就只管收這個罰款那雇主呢沒有支付給這個勞工加班費的部分你們實際上沒有真的很關心啊部長這件事情你是不是願意去了解看看看我講的到底是不是真的
transcript.whisperx[546].start 14830.984
transcript.whisperx[546].end 14857.636
transcript.whisperx[546].text 那我再舉一個例子喔就是職業災害勞工受傷之後呢面對雇主不聞不問那請問職安署呢你們能夠實質幫助到勞工什麼因為我這裡就這幾天我接到的最近接到的一個案例這是來自新竹的一位阿美族的這個原住民喔他是板磨工那他在工作的時候呢他眼睛受傷到現在視力還沒有恢復那
transcript.whisperx[547].start 14858.556
transcript.whisperx[547].end 14875.489
transcript.whisperx[547].text 最近事情這個職災發生之後僱主是沒有通報的那竟然是這個職災勞工的親友自己去通報職災然後呢就被勞檢了嘛僱主被勞檢
transcript.whisperx[548].start 14876.85
transcript.whisperx[548].end 14903.651
transcript.whisperx[548].text 指安署也是跳過勞檢法25條的改善期直接一共罰了僱主19萬然後就告訴我們這件事情已經結案了還沒完喔並且是請這個職災勞工自己去申請職災調查報告那如果僱主仍然不補償呢那就請這個職災勞工自己上法院去提告
transcript.whisperx[549].start 14904.512
transcript.whisperx[549].end 14921.838
transcript.whisperx[549].text 因為僱主已經被你們職安署給罰了所以僱主認為說我本來要付給勞工的員領工資還有醫療補償等等就不再給付了部長你們職安署原來是在跟這些職債勞工搶錢
transcript.whisperx[550].start 14924.384
transcript.whisperx[550].end 14942.599
transcript.whisperx[550].text 這很奇怪欸就完全我覺得是很不像話的一件事情喔因為我也很好奇周署長你上任已經邁入第8年了齁那這將近8年來到底這些你為了這些就是說權益受損的這些勞工齁你們實質上幫他們討回了什麼
transcript.whisperx[551].start 14946.686
transcript.whisperx[551].end 14963.877
transcript.whisperx[551].text 為什麼不根據這個調查報告的結果主動給予必要的協助?如果職災調查報告只是為了行政上的結案或者是為了要做裁罰的需要而不是為了職災勞工權益的保障這樣的報告到底有什麼意義?
transcript.whisperx[552].start 14965.258
transcript.whisperx[552].end 14973.623
transcript.whisperx[552].text 那你們這個調查報告全部都是封在職安署的這個藏金格裡面喔那負責職災己負的這個勞保局你們看不到嘛那還有這個負責這個照顧職災勞工的法人他們也看不到
transcript.whisperx[553].start 14982.007
transcript.whisperx[553].end 14998.109
transcript.whisperx[553].text 因為你們的系統是停留在恐龍時代那如果要看這個我覺得就是說調查報告起碼要跟這兩個單位要連線啊省得說你公文往返因為要發文才能調查報告嘛
transcript.whisperx[554].start 14999.631
transcript.whisperx[554].end 15011.896
transcript.whisperx[554].text 甚至說他們這兩個單位甚至我們辦公室能不能拿到調查報告我們都還要看那個州署長的臉色欸那如果給了是不是叫施捨那不給他就講說是個資啊你們都可以這樣講嘛所以部長你知道嗎在這個
transcript.whisperx[555].start 15017.179
transcript.whisperx[555].end 15043.474
transcript.whisperx[555].text 職業安全衛生法裡面的規範都是僱主責任那僱主他必須要提供這個安全衛生的環境還有這個教育訓練那提供安全的設備還有機具跟個人防護的設備那勞工有這個遵守的義務嘛那如果勞工沒有遵守僱主他也就是必須要做這個要這個安全衛生的管理那怎麼可以說發生職貸之後呢就可以不聞不問
transcript.whisperx[556].start 15045.035
transcript.whisperx[556].end 15073.414
transcript.whisperx[556].text 職安署呢就是檢查完之後結果職安署完成了調查報告也跟著不聞不問了那連這個檢查報告也都不能提供所以只藏在他們自己職安署裡面部長這些都是會產生民怨的所以我今天特別再點出來您新上任真的這個問題很普遍常常在發生你真的可以好好去了解一下那我今天跟部長談的呢都是過去我在質詢的時候有提過有遇到的問題
transcript.whisperx[557].start 15074.515
transcript.whisperx[557].end 15090.868
transcript.whisperx[557].text 因為本期是原住民選出的立法委員原住民的勞工實際就業的人數其實是超過26萬人我們總共大概有50多萬人我們實際就有26萬人但是實際加入勞保的人數大概只有18萬人左右
transcript.whisperx[558].start 15091.508
transcript.whisperx[558].end 15118.966
transcript.whisperx[558].text 那而且這個原住民勞工具有這個三高一低的現象就是職災高、高職災然後非典型的就業也高然後失業率也高唯一低的就是我們的薪資那這些資料可以從這個原住民就業調查報告還有以及你們的這個職災統計的數據就可以知道那為了解決這些問題我提供我的提案就是是不是可以用這個救安基金的這個補助聘用原住民的雇主
transcript.whisperx[559].start 15119.566
transcript.whisperx[559].end 15126.808
transcript.whisperx[559].text 我剛剛講的這些錢不是直接進到雇主的口袋這些錢是最後最後都會全部進入勞工的口袋的幾副
transcript.whisperx[560].start 15140.752
transcript.whisperx[560].end 15157.927
transcript.whisperx[560].text 我覺得這個觀念大家要弄清楚包括這些審議委員大家要弄清楚這些錢最後都是要進入我們原住民勞工的口袋的脊腹勞保局有精算過那費用大概要3億那而且造成這個效益包括
transcript.whisperx[561].start 15158.447
transcript.whisperx[561].end 15187.014
transcript.whisperx[561].text 老保投保人數的增加保費收入也增加那這些人呢他變成了正式的勞工所以呢非典就業的比例他就降低了那因為成為正式的員工所以他的薪資的資料他就更完整了所得稅的預期也會增加所以呢這個可以說是這個編輯效益更好的結果那但是呢因為有些人故意去提公平性的問題齁而不支持
transcript.whisperx[562].start 15187.774
transcript.whisperx[562].end 15202.441
transcript.whisperx[562].text 那我要請教囉在這邊,因為救安基金他不就是要促進這個國民就業嗎?那我們對於這個高齡啊、婦女啊、那育嬰留職停薪、職災預防、青少年不是都有利用救安基金來穩定就業嗎?
transcript.whisperx[563].start 15204.122
transcript.whisperx[563].end 15231.721
transcript.whisperx[563].text 那這些族群我剛剛點到這些族群的共通點就是他們都是弱勢而原住民的勞工就是在最底層最基層的這些勞動力也更是弱勢中的弱勢他們就很難被協助到嘛所以希望部長可以好好再重新這個思考這個問題請原住民的勞工就是讓原住民我們勞工這個三高一低的這個三高的問題可以因此得到解決
transcript.whisperx[564].start 15232.621
transcript.whisperx[564].end 15253.297
transcript.whisperx[564].text 最後期許就是說部長可以成為勞工最有感的勞動部長謝謝委員我剛剛講那麼多部長簡短回應一下好不好委員你提的那個治安署的問題我回去會馬上要求這個資料是應該要內部至少要能夠互相串接的
transcript.whisperx[565].start 15254.558
transcript.whisperx[565].end 15283.237
transcript.whisperx[565].text 對,然後內部因為治安署跟植栽中心其實那都是一個大家都在做同樣的事情那應該至少資料互相分享對,以後就不要在那邊發文然後還要看你們說同不同意這樣這我回去我們會內部檢討好嗎對,那提案的部分我剛剛講的最重要的概念是這個錢最後都是要進對,然後那個勞保的主要是救援基金能不能符合去補助原民勞保費用這確實因為有些人說要救保法
transcript.whisperx[566].start 15284.458
transcript.whisperx[566].end 15312.62
transcript.whisperx[566].text 救保法本身也有它的限制啦因為我覺得在前面齁那個救安基金因為部長你剛上任我們還沒有實質跟辦公室齁來實質討論這個問題那我覺得有些資訊可能你前面得到的資訊也未必是完整或者是正確的那我想這個過程當中還有一些我們需要再溝通的部分沒有關係就是救安基金的這個部分我們再來內部來討論看看好嗎好謝謝
transcript.whisperx[567].start 15314.602
transcript.whisperx[567].end 15316.864
transcript.whisperx[567].text 好,謝謝陳銀委員接下來請劉建國委員發言好,謝謝主席,有請何部長請何部長
transcript.whisperx[568].start 15339.865
transcript.whisperx[568].end 15350.711
transcript.whisperx[568].text 委員好部長好先跟你恭喜你有信心你有信心我就有信心這句話我不曉得怎麼答覆你
transcript.whisperx[569].start 15353.137
transcript.whisperx[569].end 15371.325
transcript.whisperx[569].text 我的信心是你絕對會做得比許前部長更久因為他是在勞動部創下這個在任最久的部長所以我有信心那你有沒有信心?要看質量啦不要說要看我有信心你就有信心我有信心啦謝謝謝謝謝謝委員支持
transcript.whisperx[570].start 15373.906
transcript.whisperx[570].end 15397.555
transcript.whisperx[570].text 我想不是做廠還是要做為勞工更多這個良善的勞動環境提高他們更好的這樣的一個權利我想這是應該部長來最主要的一個目標所以就沒有蜜月期了既然沒有蜜月期我就直接有一些要來做無縫接軌來承接許前部長的慰禁
transcript.whisperx[571].start 15398.516
transcript.whisperx[571].end 15406.725
transcript.whisperx[571].text 相關的一些事情像這我特別來在這個委員會質詢許前部長就是提到台灣的8.5萬的失聯勞工那這個議題許部長可以交接嗎
transcript.whisperx[572].start 15412.932
transcript.whisperx[572].end 15438.49
transcript.whisperx[572].text 其實這是一個長久的問題其實在行政院也有跟他有一起討論過其實應該是行政院要我們整個跨部會要來統合處理這個問題這樣子所以其實他一定是先是到跨部會那之前你又貴為是秘書長所以這個事情應該要落職長八點多萬應該不值了一直在攀升這會有國安的問題所以連國安都要來了
transcript.whisperx[573].start 15442.273
transcript.whisperx[573].end 15443.835
transcript.whisperx[573].text 我簡單舉一個例子還有很多很多
transcript.whisperx[574].start 15458.129
transcript.whisperx[574].end 15485.647
transcript.whisperx[574].text 然後我們針對這8.5萬的失聯移工全部是仰賴移民署的五百多位的這些專精隊的辛苦的同仁這根本實在不符合比例原則然後在2月﹐今年的2月16台灣及印度要來用已經用了視訊來簽署這個勞務合作然後未來就是台灣的移工引進這項業務部長也應該要承接起來嘛
transcript.whisperx[575].start 15486.247
transcript.whisperx[575].end 15503.449
transcript.whisperx[575].text 我們這邊一直要去提到就是說當我們已經有超過8.5萬的這個10年的移工然後現在在印度的印度移工那破口會不會更大然後相對的國安相對的問題會不會要接受更大更嚴峻的挑戰
transcript.whisperx[576].start 15505.047
transcript.whisperx[576].end 15524.96
transcript.whisperx[576].text 對,這一定要列入考慮啦,因為台印的MOU其實現在還要立院審查事實上還沒有往下談呢因為委員因為我們必須經過立院的審查之後我們才能往下走然後才會觸及要多少人然後那個安全機制要怎麼把關等等這些的我們一定會把它列入這個談判的這個
transcript.whisperx[577].start 15526.821
transcript.whisperx[577].end 15545.195
transcript.whisperx[577].text OK,但是我還是建議的齁,就是一定的比例引進外勞非常重要啦,一定的比例,現在這個你一定要去做一個通訪,要控管啦,對,那不,勞動部在4月26日有特別發布一個新聞稿,那表示要修修復活法嘛
transcript.whisperx[578].start 15545.675
transcript.whisperx[578].end 15571.731
transcript.whisperx[578].text 要加重僱用非法移工的僱主所以我在這邊要特別要求部長針對這次修法徹底去盤點相關的這樣的一個機制不要再讓私人的移工持續擴大不只如此也不能只有在仰賴500多位的移民署的專勤隊的人員所以這個就新部長要接受新挑戰對,其實跟委員報告我們的外勞管理從早年的20幾萬人到現在快100萬人了
transcript.whisperx[579].start 15574.672
transcript.whisperx[579].end 15595.963
transcript.whisperx[579].text 對,那麼我們的勞動力發展署其實也面臨同樣的困境就是它用很少的人然後來管這麼龐大的移工然後而這又不是只有勞動力發展署一個單位能夠承擔的問題因為它已經是一個小社會了對,它有它的方方面面的那個問題所以
transcript.whisperx[580].start 15597.364
transcript.whisperx[580].end 15614.348
transcript.whisperx[580].text 就業服務法說真的他必須全盤檢視而且可能還要大調整這樣子這個我覺得是我上任以後也是非常重要的一個努力的工作所以這個事情就要成為部長剛上任的重中之重的議題是是是有有有對我已經請發言署開始來處理了對我們已經開始往這個方向來看怎麼樣
transcript.whisperx[581].start 15621.11
transcript.whisperx[581].end 15649.62
transcript.whisperx[581].text 能夠是不是機關的調整上面有政治報告跟移民署的整合對等等各方面我們也必須跟行政院報告這樣因為我們去年很多的很多相關的機關都都升級起來而且有過大力上的補充嘛對不對那勞動部如果到現在要面對這個事情然後只有專靠移民署還有我們文化署在做處理的話絕對緩不濟急真的是捉襟見蟲好所以就邀請部長把這個事情列為重中之重來因應嘛
transcript.whisperx[582].start 15650.6
transcript.whisperx[582].end 15674.441
transcript.whisperx[582].text 另外一件事情就是說我們知道去年發生這個卡凱案然後也特別在這個地方去凸顯社工師的嚴重缺工問題嘛衛生部在去年統計全國22個縣市社工需求將近4200人但是監控人數差不多3700左右監控率不到9成啦尤其新北市的需求量最高監控率只有7成1
transcript.whisperx[583].start 15675.322
transcript.whisperx[583].end 15702.784
transcript.whisperx[583].text 那未來5年台灣的社工需要是4185人左右然後現在每年願意投入社工師的能力是685結果5年之後他還是還是不足啦甚至於不到9成了喔這個可以精算一下那因為目前的人力不足所以讓社工師陷入到山高高風險、高案量、高壓力和山缺、缺乏督導合作資源在這種惡劣的工作環境中勞動部有公告
transcript.whisperx[584].start 15703.504
transcript.whisperx[584].end 15723.985
transcript.whisperx[584].text 跟我們勞動部有關係的就是外國人從事就業服務法第46條第1項第1款至第6款工作資格及審查標準的修正草案昨天在經濟委會3個委員才聯席就外國專業人才的攬柴9流的這計畫我特別跟國會副主委當昨天是副主委來備詢
transcript.whisperx[585].start 15727.208
transcript.whisperx[585].end 15736.261
transcript.whisperx[585].text 我跟他講說我們很多地方必須要去做修正我們看到相關的這樣的一個機制我們這個目標是沒辦法達成那國會主委現在去當秘書長我想這個事情他必須要統籌但是站在勞動部這個地方
transcript.whisperx[586].start 15743.732
transcript.whisperx[586].end 15761.813
transcript.whisperx[586].text 我們在這個條文將施工師納入這個條文這個修正的標準審查標準跟這個工作資格我已經把施工師納入進去然後也在這個本月的2月就已經公告14天了所以已經過了預告期部長應該有掌握嘛OK
transcript.whisperx[587].start 15764.756
transcript.whisperx[587].end 15793.752
transcript.whisperx[587].text 但是國內的社會團體也都非常歡迎有外籍的社工師加入尤其臺灣就學的喬外生他有過去在臺灣讀完相關的社工學系然後也取得社工師資格卻一直到目前為止無法在臺灣的社工領域裡面去就業這是很矛盾也非常可惜一件事情既然現在有這樣突破我就請部長可能要加緊腳步了盡速的完成這個辦法的修正以及公告
transcript.whisperx[588].start 15794.412
transcript.whisperx[588].end 15807.807
transcript.whisperx[588].text 那更多的有呼籲這個資格的僑外生還有外籍人士可以投入到臺灣社公司的行列所以我特別要求部長好沒問題我們一個月內一定做得到好謝謝好謝謝那再請部長看這個看這兩張表這部長還不曉得齁
transcript.whisperx[589].start 15812.211
transcript.whisperx[589].end 15838.289
transcript.whisperx[589].text 司法院不足人數2已進入人數11法庭人數13宜蘭我看我都講中央單位嘛這個全部都是公家單位然後有國家環境研究院不足人數1已進入人數3新竹某個國民小學不足人數1已進入人數4還有我們的少年家事法庭還有這個差到最多的國軍高雄總醫院護生民眾診療服務處
transcript.whisperx[590].start 15840.53
transcript.whisperx[590].end 15868.782
transcript.whisperx[590].text 已見到的是...對不起確實都是一啦二左右那右邊是民間的公司中鋼中鋼往往都排在第一名不足19中頂18還有這個關寶科技12新宇航空10還有偽創資通訊偽創是不是那個AI那一家上市那一家對不對現在通常叫AI嘛他這個不AI了
transcript.whisperx[591].start 15869.822
transcript.whisperx[591].end 15893.717
transcript.whisperx[591].text 不足9還不足9齊機還有高通半導體應該在這邊總共有多少總共有1391家上市上歸一大堆部長你知道我提供這個資料是什麼嗎就是身障勞工未禁用足額的單位
transcript.whisperx[592].start 15895.356
transcript.whisperx[592].end 15915.521
transcript.whisperx[592].text 公佈門一到二月就多達13個單位就左邊這個資料然後在民間的企業就高達1391家我這個後會議點總共35頁然後實際上我已經讓主委這些主委的職缺到目前為止將近2000人
transcript.whisperx[593].start 15917.301
transcript.whisperx[593].end 15930.049
transcript.whisperx[593].text 將近2000人這就很奇怪了莊綱也排第一好像永久他都排第一然後相關的這些上市櫃的公司股票一直漲身上朋友一直不補這沒道理啊我們當然有
transcript.whisperx[594].start 15934.847
transcript.whisperx[594].end 15956.465
transcript.whisperx[594].text 有華哲嘛,但是因為股票漲了,公司賺錢了,會看這個樣子,所以繳錢就免聘了嗎?這真的沒有道理啊,我等一下會把資本資料給部長做參考。你看將近還有2000個這些身障的職缺,這講不過去啦,然後中鋼為什麼一直排第一名?
transcript.whisperx[595].start 15957.848
transcript.whisperx[595].end 15958.629
transcript.whisperx[595].text 總管股票沒有漲嗎?接肉應該是有囉我記得接肉應該是有喔
transcript.whisperx[596].start 15976.271
transcript.whisperx[596].end 16004.179
transcript.whisperx[596].text 他可能沒有揭露在那個永續報告書裡面吧對他沒有列為永續報告書項目啦我們現在就是要求我們現在就是準備把一系列勞權的事項跟金管會協商要求他列入那個勞權就是那個SDGS的那一個報告裡面這樣子這樣就可以造成他們一點社會壓力啦因為其實台灣的上市跟企業長久以來也沒有被很要求的社會企業責任啦對所以這個確實是
transcript.whisperx[597].start 16005.979
transcript.whisperx[597].end 16029.848
transcript.whisperx[597].text 必須要檢討的那也是要跨部會處理我們跨傳署有對外表示說有持續在改善中但是部長可以看厚厚這一疊一千三百多兩千個名額然後我希望部長就新冠散熱三八火如果在你的上任沒多久
transcript.whisperx[598].start 16030.948
transcript.whisperx[598].end 16058.959
transcript.whisperx[598].text 的時間裡面可以讓這些民間還有我們公立單位趕快把這些身障的聯絡把它補足我想這是一個對於台灣社會非常很有交代這件事情然後也是鼓勵身障朋友讓他們有一個這樣的一個工作的機會不只如此其實每次在問這個事情的時候大致上都會講因為某一個公司某一個公立單位就講說就退休了
transcript.whisperx[599].start 16059.779
transcript.whisperx[599].end 16075.153
transcript.whisperx[599].text 退休之後就沒有人來補啊很奇怪啊為什麼都不是退休之前準備要退休之前就開始來做這些動作所以這個交代不過去的齁那另外有些單位你像中鋼他一定會講說我這個單位根本齁就沒有辦法齁
transcript.whisperx[600].start 16076.654
transcript.whisperx[600].end 16087.661
transcript.whisperx[600].text 讓這些身障的朋友來到這個工作環境裡面這個是推託支持我想盡用你看在之前有個企業他想用盡用這個視障按摩師為正式員工然後專門開一個按摩部門
transcript.whisperx[601].start 16091.684
transcript.whisperx[601].end 16114.719
transcript.whisperx[601].text 替工作壓力緊張的員工來按摩紓壓營造良好的職場環境這是一個案例啦不只這個案例應該有很多案例我相信勞動部如果說求一下就可以把相關的這個有良也就是說對願意來照顧這些生產朋友然後也願意符合我們相關的規定的好的企業我覺得我們應該去獎勵嘛對對對我們要表揚願意用的企業也要表揚他們
transcript.whisperx[602].start 16119.662
transcript.whisperx[602].end 16137.731
transcript.whisperx[602].text 讓他們這樣的作為可以散發出去讓各行各業知道人家為什麼可以這樣做你們為什麼做不到為什麼到現在還沒有辦法禁用到主額就交代不過去嗎我相信要用更好的方式來做處理好不好部長 這個是不是一個月內來規劃啦絕對可以來做啦 對不對如果短時間內
transcript.whisperx[603].start 16143.754
transcript.whisperx[603].end 16169.762
transcript.whisperx[603].text 現在就有在表揚金展獎我們邀請委員來一起好嗎不是不是不是你沒有邀請我我是覺得我是覺得不只是表揚應該是對這些到現在不足19人18人13人10人很多對這些單位應該要要怎麼樣來做一個加強的督導加強的要求對2000個員額
transcript.whisperx[604].start 16174.209
transcript.whisperx[604].end 16179.418
transcript.whisperx[604].text 好不好,請部長這一個月可以規劃啦,完成,好謝謝主席,謝謝部長,謝謝好,謝謝劉建國委員的發言陳映委員
transcript.whisperx[605].start 16193.65
transcript.whisperx[605].end 16221.269
transcript.whisperx[605].text 主席是這樣子我在這邊要具體建議跟要求啦因為像我們在質詢有時候像剛剛我正在講一個很重要的概念很認真在解釋的時候結果那個保險司的司長一直在在那個部長的耳朵旁邊一直講講講講很久那我講什麼我不知道部長到底是聽到我的還是聽到你的我只知道我講完之後部長回了一句結果是錯誤的答案
transcript.whisperx[606].start 16223.049
transcript.whisperx[606].end 16246.874
transcript.whisperx[606].text 你這樣沒有讓部長你自己沒有注意聽我的質詢然後你也干擾部長沒有讓他聽我的質詢然後你就沒有辦法理解我們這邊的這個概念基礎是怎麼樣結果還給這個部長錯誤的訊息為什麼這個救安基金就不能用於保費過去也有一些案例啊那難道是因為族群的關係嗎
transcript.whisperx[607].start 16250.387
transcript.whisperx[607].end 16272.52
transcript.whisperx[607].text 我想我現在沒有要部長回答那我也歡迎部長就是我們後續再找時間再來討論這個問題但是我還是要提醒各位你沒有給部長打pass沒有關係但是委員在講的時候你要給答案你要不要遞紙條還是你要不要簡短講重點
transcript.whisperx[608].start 16273.3
transcript.whisperx[608].end 16299.203
transcript.whisperx[608].text 哪有佔據全部的時間都沒有在聽委員的質詢你這樣是干擾部長在聽欸而且根據國民黨現在提出這個國民黨民眾黨提出的版本我們國會質詢行使法第25條47條48條是很有可能會通過的那你這樣不等於也是藐視國會嗎是要被罰款還是要到最後有可能還被抓去關我是在這裡鄭重的提醒謝謝
transcript.whisperx[609].start 16300.484
transcript.whisperx[609].end 16309.05
transcript.whisperx[609].text 好謝謝陳英委員那我在這邊是請未來如果部長在上面備詢的話那所有的那個
transcript.whisperx[610].start 16310.697
transcript.whisperx[610].end 16335.09
transcript.whisperx[610].text 我們所有的同仁就是在旁邊協助那一方面也請這個在旁邊協助的同仁不要干擾到那個委員的這個發言、質詢因為有時候你在旁邊發言的話其實部長他可能也分心了沒辦法聽到委員到底在問什麼問題那這一點再請勞動部這邊再注意一下好不好
transcript.whisperx[611].start 16335.9
transcript.whisperx[611].end 16363.345
transcript.whisperx[611].text 好,那今天本日會議巡打全部結束委員楊耀、邱振鈞、牛許廷、李燕秀、羅志強、翁曉林所提書面質詢列入記錄刊登公報現在做以下決定報告及巡打完畢委員質詢未及答覆或請補充資料者請相關機關於兩週內以書面答覆委員另要求期限者從期鎖定本日會議到此結束現在散會
transcript.whisperx[612].start 16368.386
transcript.whisperx[612].end 16369.387
transcript.whisperx[612].text 獲得獲得獲得獲得
transcript.whisperx[613].start 16392.047
transcript.whisperx[613].end 16393.469
transcript.whisperx[613].text 我真的不看都不行去洗個手吧