IVOD_ID |
159390 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159390 |
日期 |
2025-03-19 |
會議資料.會議代碼 |
委員會-11-3-26-3 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-19T12:11:34+08:00 |
結束時間 |
2025-03-19T12:22:48+08:00 |
影片長度 |
00:11:14 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8d8da86eec6b25b8de53c4176bd27e7f39fe1519e09d1f6fdee5d615e4ae620b21b00f39ec1a9b485ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
楊曜 |
委員發言時間 |
12:11:34 - 12:22:48 |
會議時間 |
2025-03-19T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議(事由:一、邀請勞動部部長列席報告業務概況,並備質詢。
二、處理113年度中央政府總預算附屬單位預算決議有關勞動部預算凍結報告案19案。【報告事項】【如經復議則不予處理】
三、繼續審查114年度中央政府總預算案附屬單位預算關於勞動部主管部分。
【3月17日、19日及20日三天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
9.97034375 |
transcript.pyannote[0].end |
12.51846875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
12.97409375 |
transcript.pyannote[1].end |
13.85159375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
23.06534375 |
transcript.pyannote[2].end |
30.64221875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
30.89534375 |
transcript.pyannote[3].end |
35.19846875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
35.63721875 |
transcript.pyannote[4].end |
44.61471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
45.34034375 |
transcript.pyannote[5].end |
51.66846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
52.46159375 |
transcript.pyannote[6].end |
55.34721875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
55.76909375 |
transcript.pyannote[7].end |
57.42284375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
57.96284375 |
transcript.pyannote[8].end |
59.34659375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
60.29159375 |
transcript.pyannote[9].end |
67.71659375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
67.93596875 |
transcript.pyannote[10].end |
68.94846875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
69.84284375 |
transcript.pyannote[11].end |
70.28159375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
70.88909375 |
transcript.pyannote[12].end |
71.29409375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
72.50909375 |
transcript.pyannote[13].end |
79.73159375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
80.22096875 |
transcript.pyannote[14].end |
80.23784375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
80.23784375 |
transcript.pyannote[15].end |
80.40659375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
80.40659375 |
transcript.pyannote[16].end |
80.47409375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
80.47409375 |
transcript.pyannote[17].end |
80.50784375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
80.50784375 |
transcript.pyannote[18].end |
80.55846875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
80.55846875 |
transcript.pyannote[19].end |
82.04346875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
82.73534375 |
transcript.pyannote[20].end |
85.87409375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
87.24096875 |
transcript.pyannote[21].end |
87.47721875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
88.18596875 |
transcript.pyannote[22].end |
89.73846875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
90.14346875 |
transcript.pyannote[23].end |
94.46346875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
91.07159375 |
transcript.pyannote[24].end |
95.15534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
95.79659375 |
transcript.pyannote[25].end |
97.50096875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
97.66971875 |
transcript.pyannote[26].end |
99.71159375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
100.90971875 |
transcript.pyannote[27].end |
104.92596875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
106.39409375 |
transcript.pyannote[28].end |
106.63034375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
111.10221875 |
transcript.pyannote[29].end |
112.65471875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
112.72221875 |
transcript.pyannote[30].end |
113.73471875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
114.40971875 |
transcript.pyannote[31].end |
115.05096875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
116.92409375 |
transcript.pyannote[32].end |
117.49784375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
118.22346875 |
transcript.pyannote[33].end |
128.98971875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
129.29346875 |
transcript.pyannote[34].end |
143.48534375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
143.83971875 |
transcript.pyannote[35].end |
145.91534375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
146.43846875 |
transcript.pyannote[36].end |
153.07034375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
153.94784375 |
transcript.pyannote[37].end |
162.68909375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
163.00971875 |
transcript.pyannote[38].end |
166.06409375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
166.53659375 |
transcript.pyannote[39].end |
177.26909375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
177.47159375 |
transcript.pyannote[40].end |
187.25909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
184.66034375 |
transcript.pyannote[41].end |
185.08221875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
186.29721875 |
transcript.pyannote[42].end |
199.07159375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
199.39221875 |
transcript.pyannote[43].end |
204.48846875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
199.94909375 |
transcript.pyannote[44].end |
201.07971875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
204.89346875 |
transcript.pyannote[45].end |
224.80596875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
224.90721875 |
transcript.pyannote[46].end |
227.28659375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
228.53534375 |
transcript.pyannote[47].end |
231.53909375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
232.28159375 |
transcript.pyannote[48].end |
235.75784375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
235.75784375 |
transcript.pyannote[49].end |
254.92784375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
255.51846875 |
transcript.pyannote[50].end |
265.03596875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
266.03159375 |
transcript.pyannote[51].end |
266.33534375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
266.33534375 |
transcript.pyannote[52].end |
266.36909375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
267.29721875 |
transcript.pyannote[53].end |
268.10721875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
268.90034375 |
transcript.pyannote[54].end |
275.68409375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
276.08909375 |
transcript.pyannote[55].end |
279.43034375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
279.59909375 |
transcript.pyannote[56].end |
283.05846875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
284.12159375 |
transcript.pyannote[57].end |
291.59721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
292.93034375 |
transcript.pyannote[58].end |
293.92596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
294.58409375 |
transcript.pyannote[59].end |
297.31784375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
297.84096875 |
transcript.pyannote[60].end |
298.75221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
299.74784375 |
transcript.pyannote[61].end |
304.75971875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
305.28284375 |
transcript.pyannote[62].end |
306.26159375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
307.20659375 |
transcript.pyannote[63].end |
308.74221875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
309.56909375 |
transcript.pyannote[64].end |
310.14284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
310.91909375 |
transcript.pyannote[65].end |
313.23096875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
313.75409375 |
transcript.pyannote[66].end |
316.08284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
317.23034375 |
transcript.pyannote[67].end |
321.90471875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
322.20846875 |
transcript.pyannote[68].end |
325.26284375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
325.65096875 |
transcript.pyannote[69].end |
327.91221875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
329.11034375 |
transcript.pyannote[70].end |
338.61096875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
339.04971875 |
transcript.pyannote[71].end |
344.51721875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
344.90534375 |
transcript.pyannote[72].end |
348.02721875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
348.97221875 |
transcript.pyannote[73].end |
353.24159375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
353.71409375 |
transcript.pyannote[74].end |
354.06846875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
354.27096875 |
transcript.pyannote[75].end |
357.42659375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
358.10159375 |
transcript.pyannote[76].end |
359.04659375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
360.54846875 |
transcript.pyannote[77].end |
382.36784375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
383.34659375 |
transcript.pyannote[78].end |
389.84346875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
390.51846875 |
transcript.pyannote[79].end |
407.07284375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
408.72659375 |
transcript.pyannote[80].end |
409.21596875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
410.09346875 |
transcript.pyannote[81].end |
410.63346875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
411.00471875 |
transcript.pyannote[82].end |
411.32534375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
411.57846875 |
transcript.pyannote[83].end |
412.62471875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
413.08034375 |
transcript.pyannote[84].end |
413.73846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
414.21096875 |
transcript.pyannote[85].end |
414.86909375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
415.78034375 |
transcript.pyannote[86].end |
416.94471875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
417.53534375 |
transcript.pyannote[87].end |
418.21034375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
418.76721875 |
transcript.pyannote[88].end |
419.32409375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
420.06659375 |
transcript.pyannote[89].end |
421.48409375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
422.22659375 |
transcript.pyannote[90].end |
426.34409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
426.34409375 |
transcript.pyannote[91].end |
426.66471875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
429.56721875 |
transcript.pyannote[92].end |
433.33034375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
433.95471875 |
transcript.pyannote[93].end |
437.31284375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
438.07221875 |
transcript.pyannote[94].end |
438.61221875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
439.11846875 |
transcript.pyannote[95].end |
449.07471875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
449.53034375 |
transcript.pyannote[96].end |
450.89721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
451.89284375 |
transcript.pyannote[97].end |
456.11159375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
456.48284375 |
transcript.pyannote[98].end |
464.58284375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
465.49409375 |
transcript.pyannote[99].end |
466.65846875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
467.43471875 |
transcript.pyannote[100].end |
468.56534375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
469.15596875 |
transcript.pyannote[101].end |
469.51034375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
469.64534375 |
transcript.pyannote[102].end |
470.84346875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
472.27784375 |
transcript.pyannote[103].end |
473.89784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
474.10034375 |
transcript.pyannote[104].end |
475.36596875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
476.88471875 |
transcript.pyannote[105].end |
479.80409375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
480.61409375 |
transcript.pyannote[106].end |
481.50846875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
482.13284375 |
transcript.pyannote[107].end |
484.02284375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
485.01846875 |
transcript.pyannote[108].end |
487.54971875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
488.07284375 |
transcript.pyannote[109].end |
493.15221875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
493.87784375 |
transcript.pyannote[110].end |
497.57346875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
497.75909375 |
transcript.pyannote[111].end |
498.45096875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
499.34534375 |
transcript.pyannote[112].end |
499.90221875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
500.34096875 |
transcript.pyannote[113].end |
502.21409375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
502.46721875 |
transcript.pyannote[114].end |
504.72846875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
505.26846875 |
transcript.pyannote[115].end |
505.90971875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
506.29784375 |
transcript.pyannote[116].end |
508.54221875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
508.64346875 |
transcript.pyannote[117].end |
510.46596875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
510.90471875 |
transcript.pyannote[118].end |
511.32659375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
511.88346875 |
transcript.pyannote[119].end |
512.99721875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
515.79846875 |
transcript.pyannote[120].end |
516.47346875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
517.24971875 |
transcript.pyannote[121].end |
517.84034375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
519.30846875 |
transcript.pyannote[122].end |
522.22784375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
523.20659375 |
transcript.pyannote[123].end |
530.71596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
529.85534375 |
transcript.pyannote[124].end |
530.37846875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
530.96909375 |
transcript.pyannote[125].end |
537.21284375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
537.21284375 |
transcript.pyannote[126].end |
537.22971875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
537.22971875 |
transcript.pyannote[127].end |
537.92159375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
537.46596875 |
transcript.pyannote[128].end |
538.02284375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
538.02284375 |
transcript.pyannote[129].end |
538.03971875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
538.03971875 |
transcript.pyannote[130].end |
538.24221875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
538.24221875 |
transcript.pyannote[131].end |
544.46909375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
542.88284375 |
transcript.pyannote[132].end |
555.79221875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
556.21409375 |
transcript.pyannote[133].end |
556.75409375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
557.49659375 |
transcript.pyannote[134].end |
562.22159375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
562.60971875 |
transcript.pyannote[135].end |
563.68971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
564.21284375 |
transcript.pyannote[136].end |
564.88784375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
565.95096875 |
transcript.pyannote[137].end |
567.85784375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
568.65096875 |
transcript.pyannote[138].end |
570.22034375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
570.42284375 |
transcript.pyannote[139].end |
571.26659375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
572.46471875 |
transcript.pyannote[140].end |
577.30784375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
577.79721875 |
transcript.pyannote[141].end |
593.10284375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
593.00159375 |
transcript.pyannote[142].end |
595.02659375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
595.66784375 |
transcript.pyannote[143].end |
595.78596875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
597.11909375 |
transcript.pyannote[144].end |
599.07659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
599.32971875 |
transcript.pyannote[145].end |
599.75159375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
600.20721875 |
transcript.pyannote[146].end |
601.01721875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
601.54034375 |
transcript.pyannote[147].end |
602.18159375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
602.73846875 |
transcript.pyannote[148].end |
604.93221875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
606.41721875 |
transcript.pyannote[149].end |
608.02034375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
608.66159375 |
transcript.pyannote[150].end |
609.85971875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
610.58534375 |
transcript.pyannote[151].end |
612.52596875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
612.82971875 |
transcript.pyannote[152].end |
613.70721875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
614.82096875 |
transcript.pyannote[153].end |
615.63096875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
615.85034375 |
transcript.pyannote[154].end |
617.45346875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
617.99346875 |
transcript.pyannote[155].end |
621.68909375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
623.59596875 |
transcript.pyannote[156].end |
627.19034375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
628.69221875 |
transcript.pyannote[157].end |
628.77659375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
628.77659375 |
transcript.pyannote[158].end |
631.13909375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
628.81034375 |
transcript.pyannote[159].end |
629.92409375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
633.18096875 |
transcript.pyannote[160].end |
636.37034375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
636.38721875 |
transcript.pyannote[161].end |
636.42096875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
636.42096875 |
transcript.pyannote[162].end |
645.61784375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
646.03971875 |
transcript.pyannote[163].end |
670.79534375 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
669.46221875 |
transcript.pyannote[164].end |
670.01909375 |
transcript.whisperx[0].start |
10.355 |
transcript.whisperx[0].end |
28.94 |
transcript.whisperx[0].text |
謝謝主席 主席請一下黃部長來有請部長部長好部長我還是要先就年度預算 |
transcript.whisperx[1].start |
31.198 |
transcript.whisperx[1].end |
59.065 |
transcript.whisperx[1].text |
讓你做個說明,也跟廣泰的勞工朋友講講看到底這一次立法院的預算會造成勞動部在推動各項勞工政策會有什麼自然難行,好不好?你們現在估出來的被刪減跟凍結的預算金額大概多少? |
transcript.whisperx[2].start |
60.319 |
transcript.whisperx[2].end |
89.199 |
transcript.whisperx[2].text |
我們大概總共就公務算的部分大概被總共大概被刪減了大概大概八千萬吧八千萬對那那對 衛韓通案刪減是八千萬這不含通商的部分就個案就個案刪的部分是大概八千萬對統三是三趴沒有統三是業務費是統三三十趴對統動三十趴吧對 |
transcript.whisperx[3].start |
91.265 |
transcript.whisperx[3].end |
99.387 |
transcript.whisperx[3].text |
但是就是不含統棟或統山的部分總共是38000萬38000萬那那三個這些預算會導致哪一些跟勞工權益 凍結是18億那可能會影響的勞工相關權益是什麼 |
transcript.whisperx[4].start |
118.694 |
transcript.whisperx[4].end |
144.724 |
transcript.whisperx[4].text |
我們現在看到幾個部分第一個部分是其實因為一般行政的費用其實都被做了刪除所以其實整個部內的運作因為一般行政的費用包括刪除包括凍結都有所以如果沒有辦法快速的解凍的話其實已經會影響到部內的整體的行政的運作包括水電等等等的都在下半年可能都會受到影響這是第一個第二個其實 |
transcript.whisperx[5].start |
146.505 |
transcript.whisperx[5].end |
151.419 |
transcript.whisperx[5].text |
包括我們剛才講到像我們剛才就業平等的這個相關的業務因為被刪了800動了 |
transcript.whisperx[6].start |
154.228 |
transcript.whisperx[6].end |
176.601 |
transcript.whisperx[6].text |
將近2000所以剛剛像講到像產檢價賠產檢價的相關的這些補助其實都會受到影響那也包括我們其實對於一些地方政府的就業中心就業服務佔據點其實我們透過業務費的方式做一些會做一些薪資上面的補助那這部分也因為 |
transcript.whisperx[7].start |
178.482 |
transcript.whisperx[7].end |
197.696 |
transcript.whisperx[7].text |
業務費被刪跟動所以這些救福人員的薪資的發放也會受到影響這都影響到一般勞動的權益你們現在在地方除了勞動部自己的就業服務站以外你們還有對各縣市政府跟鄉鎮市都有提供補助就業的 |
transcript.whisperx[8].start |
199.477 |
transcript.whisperx[8].end |
226.857 |
transcript.whisperx[8].text |
就人員的薪資補助這部分也會被影響我想勞動部這邊也沒有什麼可以因應的唯一的方式就是盡可能的向委員做溝通希望該解凍的可以盡早解凍會不會影響到基金的撥補 |
transcript.whisperx[9].start |
228.581 |
transcript.whisperx[9].end |
254.19 |
transcript.whisperx[9].text |
因為我們已經連續好幾年老保基金有做政府有做撥補嗎基金的撥補的部分比較是針對就是說財化法在去年12月通過後如果這個新的財化法要實施的話因為中央會被這個有3700多億那這個經費會移到地方去所以可能會有這些非法訂 |
transcript.whisperx[10].start |
255.59 |
transcript.whisperx[10].end |
282.797 |
transcript.whisperx[10].text |
推法令義務的支出在未來的預算編列上面就會受到影響那撥補當然就是其中的可能會受到影響的項目好所以不然我先說我在去年其實我有提過老保條例的修正案我當初是把撥補直接入法 |
transcript.whisperx[11].start |
284.755 |
transcript.whisperx[11].end |
308.104 |
transcript.whisperx[11].text |
就是基金的來源政府的撥補算是法定的收入來源可是後來因為行政部門有意見所以這個案我就把它撤掉了我現在重新問一次假如再提版本把政府撥補 |
transcript.whisperx[12].start |
309.856 |
transcript.whisperx[12].end |
324.792 |
transcript.whisperx[12].text |
當作當作勞保基金的收入收入的來源入法啦就是把它明定在法律部長是贊成的還是反對的這部分我們尊重委員的提案然後我們願意跟委員來做討論因為我覺得 |
transcript.whisperx[13].start |
329.161 |
transcript.whisperx[13].end |
358.784 |
transcript.whisperx[13].text |
老闆每年這樣子在政府透過這麼龐大的金額在撥補都已經搖搖欲墜了假如說在因為財化法的修正會受到撥補金額會受到影響因為他法定支出跟非法定支出還是有差別的當然啦假如說是法定支出也可以 |
transcript.whisperx[14].start |
360.975 |
transcript.whisperx[14].end |
380.615 |
transcript.whisperx[14].text |
後來由地方來因為錢到地方了嘛可能中央還是有一些中央原本負責的事項必須要由地方來負責這個才合理啦這個後續應該財化法假如現在富裕案也已經 |
transcript.whisperx[15].start |
383.393 |
transcript.whisperx[15].end |
408.97 |
transcript.whisperx[15].text |
被否決了後續假如說法律確定了以後錢跟權責總是必須要一致嘛不太可能說把錢給地方然後事情還是由中央來做所以就是說假如再重新提案 |
transcript.whisperx[16].start |
411.69 |
transcript.whisperx[16].end |
425.756 |
transcript.whisperx[16].text |
政府撥補當作當作勞保基金的法定收入部長應該是肯定的我們覺得我剛才說尊重委員提案然後我們願意來跟委員這邊來討論部長我再問就是這個禮拜 |
transcript.whisperx[17].start |
434.831 |
transcript.whisperx[17].end |
450.238 |
transcript.whisperx[17].text |
內政委員會也已經在討論國定假日那我覺得這個的起由大概都是因為勞工這七天假引發出來的 |
transcript.whisperx[18].start |
452.34 |
transcript.whisperx[18].end |
478.707 |
transcript.whisperx[18].text |
那台灣的工時其實相對於日本韓國大概也都比較高啦時間的關係所以我簡單講就是說假如因為勞基法有規定特休假假如我們是透過提高特休假來增加勞工的 |
transcript.whisperx[19].start |
480.677 |
transcript.whisperx[19].end |
496.024 |
transcript.whisperx[19].text |
的休假日而不是全國統一因為特休假有幾個好處就是第一勞工可以提高第一可以降低工時第二勞工可以自己選擇什麼時候要休 |
transcript.whisperx[20].start |
499.4 |
transcript.whisperx[20].end |
512.691 |
transcript.whisperx[20].text |
第三因為不是一致性的修所以對企業的運作比較小對於經濟的阻礙也比較小這個部長這麼贊成 |
transcript.whisperx[21].start |
519.352 |
transcript.whisperx[21].end |
537.57 |
transcript.whisperx[21].text |
以我們當然贊成我們當然不是從勞動部的角度我們當然會在這個降低工時的角度來去思考這種可能的狀況那針對當然特休的特休假的議題是會有一些討論那我們願意來聽大家的聲音但是因為確實特休假要 |
transcript.whisperx[22].start |
540.473 |
transcript.whisperx[22].end |
566.535 |
transcript.whisperx[22].text |
要調整的話這涉及到要修法啦所以這個我的意思就是說假如說現在我們在討論國定假日最主要的起源是來自是來自砍勞工原本的那這七天假才有那麼多委員提出國定假日的修法版本那是不是是不是從勞基法來修 |
transcript.whisperx[23].start |
568.7 |
transcript.whisperx[23].end |
593.258 |
transcript.whisperx[23].text |
提高特休假的天數這個對於整體國家的衝擊比較小這個會是社會討論的我們聽到各方討論的想法之一那我說因為這一波大家在討論國定假日的議題其實從勞動部的角度當然我們也覺得我們願意來正向的來參與這個事情的討論沒有我現在 |
transcript.whisperx[24].start |
597.369 |
transcript.whisperx[24].end |
618.881 |
transcript.whisperx[24].text |
不然我這樣子問就是說你覺得直接用國定假日還給勞工這7天假的方式比較好還是我們單純7歐勞基法然後來提高特休假一樣想辦法把這7天補回去 |
transcript.whisperx[25].start |
624.31 |
transcript.whisperx[25].end |
629.659 |
transcript.whisperx[25].text |
這兩個途徑部長比較支持哪一個我都不會為難你啦 |
transcript.whisperx[26].start |
633.206 |
transcript.whisperx[26].end |
660.734 |
transcript.whisperx[26].text |
我認為這些做法當然大家現在討論我們都在聽大家的聲音好啦那我還是必須要做個結論啦我覺得從特休假來做處理會是對國家社會經濟衝擊最小然後同時又可以讓勞工自己選擇他要的假日然後企業也不會因為放假所以停擺 |
transcript.whisperx[27].start |
661.574 |
transcript.whisperx[27].end |
670.509 |
transcript.whisperx[27].text |
所以我覺得我還是主張修勞基法提供給部長當作參考謝謝主席 謝謝部長 |