iVOD / 159382

Field Value
IVOD_ID 159382
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159382
日期 2025-03-19
會議資料.會議代碼 委員會-11-3-26-3
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-03-19T11:48:36+08:00
結束時間 2025-03-19T12:05:24+08:00
影片長度 00:16:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8d8da86eec6b25b858b91ae456b4c0df39fe1519e09d1f6fdee5d615e4ae620bb057e84e5f10c5cb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 11:48:36 - 12:05:24
會議時間 2025-03-19T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第3次全體委員會議(事由:一、邀請勞動部部長列席報告業務概況,並備質詢。 二、處理113年度中央政府總預算附屬單位預算決議有關勞動部預算凍結報告案19案。【報告事項】【如經復議則不予處理】 三、繼續審查114年度中央政府總預算案附屬單位預算關於勞動部主管部分。 【3月17日、19日及20日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.24596875
transcript.pyannote[0].end 2.61284375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.98846875
transcript.pyannote[1].end 2.03909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 2.61284375
transcript.pyannote[2].end 3.13596875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 3.13596875
transcript.pyannote[3].end 3.40596875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 4.43534375
transcript.pyannote[4].end 4.51971875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 5.88659375
transcript.pyannote[5].end 7.03409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 7.75971875
transcript.pyannote[6].end 11.43846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 19.99409375
transcript.pyannote[7].end 20.70284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 25.24221875
transcript.pyannote[8].end 26.17034375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 27.11534375
transcript.pyannote[9].end 28.63409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 28.97159375
transcript.pyannote[10].end 30.42284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 31.36784375
transcript.pyannote[11].end 31.73909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 32.31284375
transcript.pyannote[12].end 35.28284375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 35.82284375
transcript.pyannote[13].end 36.24471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 36.39659375
transcript.pyannote[14].end 37.18971875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 37.20659375
transcript.pyannote[15].end 38.28659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 38.74221875
transcript.pyannote[16].end 39.46784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 40.34534375
transcript.pyannote[17].end 41.99909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 43.01159375
transcript.pyannote[18].end 60.03846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 43.97346875
transcript.pyannote[19].end 45.07034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 46.94346875
transcript.pyannote[20].end 47.66909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 48.12471875
transcript.pyannote[21].end 48.19221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 59.61659375
transcript.pyannote[22].end 59.75159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 60.03846875
transcript.pyannote[23].end 60.19034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 60.81471875
transcript.pyannote[24].end 61.97909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 62.16471875
transcript.pyannote[25].end 65.32034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 65.94471875
transcript.pyannote[26].end 69.13409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 69.47159375
transcript.pyannote[27].end 70.50096875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 71.39534375
transcript.pyannote[28].end 74.60159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 75.56346875
transcript.pyannote[29].end 77.77409375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 78.26346875
transcript.pyannote[30].end 79.39409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 79.91721875
transcript.pyannote[31].end 80.94659375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 80.62596875
transcript.pyannote[32].end 82.39784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 82.76909375
transcript.pyannote[33].end 84.50721875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 85.46909375
transcript.pyannote[34].end 86.61659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 87.03846875
transcript.pyannote[35].end 90.04221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 90.61596875
transcript.pyannote[36].end 93.26534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 93.51846875
transcript.pyannote[37].end 97.97346875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 98.86784375
transcript.pyannote[38].end 99.59346875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 99.98159375
transcript.pyannote[39].end 106.59659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 107.15346875
transcript.pyannote[40].end 108.46971875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 109.00971875
transcript.pyannote[41].end 110.84909375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 111.91221875
transcript.pyannote[42].end 114.86534375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 116.33346875
transcript.pyannote[43].end 118.29096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 120.14721875
transcript.pyannote[44].end 122.12159375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 123.50534375
transcript.pyannote[45].end 125.05784375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 125.74971875
transcript.pyannote[46].end 126.66096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 127.18409375
transcript.pyannote[47].end 127.96034375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 128.50034375
transcript.pyannote[48].end 130.03596875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 130.64346875
transcript.pyannote[49].end 130.89659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 131.31846875
transcript.pyannote[50].end 133.03971875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 133.71471875
transcript.pyannote[51].end 138.11909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 135.70596875
transcript.pyannote[52].end 135.97596875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 135.97596875
transcript.pyannote[53].end 136.06034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 136.06034375
transcript.pyannote[54].end 136.51596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 138.77721875
transcript.pyannote[55].end 142.59096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 143.26596875
transcript.pyannote[56].end 145.62846875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 146.50596875
transcript.pyannote[57].end 151.46721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 151.70346875
transcript.pyannote[58].end 153.25596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 153.54284375
transcript.pyannote[59].end 154.42034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 154.57221875
transcript.pyannote[60].end 155.63534375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 156.41159375
transcript.pyannote[61].end 158.82471875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 158.99346875
transcript.pyannote[62].end 161.37284375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 162.21659375
transcript.pyannote[63].end 164.73096875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 165.06846875
transcript.pyannote[64].end 167.66721875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 167.76846875
transcript.pyannote[65].end 174.45096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 174.51846875
transcript.pyannote[66].end 176.52659375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 177.03284375
transcript.pyannote[67].end 178.19721875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 178.68659375
transcript.pyannote[68].end 180.13784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 180.52596875
transcript.pyannote[69].end 181.60596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 181.99409375
transcript.pyannote[70].end 185.25096875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 185.85846875
transcript.pyannote[71].end 187.41096875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 187.93409375
transcript.pyannote[72].end 190.92096875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 191.81534375
transcript.pyannote[73].end 194.32971875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 194.54909375
transcript.pyannote[74].end 195.32534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 196.10159375
transcript.pyannote[75].end 197.33346875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 197.85659375
transcript.pyannote[76].end 198.85221875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 199.42596875
transcript.pyannote[77].end 200.72534375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 200.99534375
transcript.pyannote[78].end 203.10471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 203.50971875
transcript.pyannote[79].end 207.42471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 207.88034375
transcript.pyannote[80].end 208.85909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 209.24721875
transcript.pyannote[81].end 211.15409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 212.20034375
transcript.pyannote[82].end 212.97659375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 213.43221875
transcript.pyannote[83].end 214.36034375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 214.54596875
transcript.pyannote[84].end 215.42346875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 215.77784375
transcript.pyannote[85].end 216.55409375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 217.83659375
transcript.pyannote[86].end 218.76471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 219.40596875
transcript.pyannote[87].end 220.60409375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 220.85721875
transcript.pyannote[88].end 222.00471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 222.34221875
transcript.pyannote[89].end 223.15221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 224.13096875
transcript.pyannote[90].end 225.51471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 226.66221875
transcript.pyannote[91].end 227.65784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 228.45096875
transcript.pyannote[92].end 229.02471875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 229.07534375
transcript.pyannote[93].end 231.38721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 231.75846875
transcript.pyannote[94].end 233.36159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 233.98596875
transcript.pyannote[95].end 235.79159375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 236.36534375
transcript.pyannote[96].end 237.81659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 238.40721875
transcript.pyannote[97].end 241.41096875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 241.66409375
transcript.pyannote[98].end 242.71034375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 242.96346875
transcript.pyannote[99].end 243.60471875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 243.92534375
transcript.pyannote[100].end 246.86159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 247.30034375
transcript.pyannote[101].end 248.61659375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 249.03846875
transcript.pyannote[102].end 249.79784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 250.23659375
transcript.pyannote[103].end 251.14784375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 251.56971875
transcript.pyannote[104].end 253.29096875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 254.08409375
transcript.pyannote[105].end 255.88971875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 256.26096875
transcript.pyannote[106].end 257.05409375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 257.57721875
transcript.pyannote[107].end 258.31971875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 259.99034375
transcript.pyannote[108].end 261.28971875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 261.45846875
transcript.pyannote[109].end 262.09971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 262.36971875
transcript.pyannote[110].end 263.75346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 263.92221875
transcript.pyannote[111].end 264.81659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 268.57971875
transcript.pyannote[112].end 270.82409375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 271.09409375
transcript.pyannote[113].end 272.64659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 274.21596875
transcript.pyannote[114].end 275.75159375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 276.07221875
transcript.pyannote[115].end 277.21971875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 277.32096875
transcript.pyannote[116].end 278.73846875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 279.97034375
transcript.pyannote[117].end 281.21909375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 281.26971875
transcript.pyannote[118].end 282.38346875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 283.09221875
transcript.pyannote[119].end 286.78784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 287.10846875
transcript.pyannote[120].end 288.07034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 288.47534375
transcript.pyannote[121].end 289.45409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 289.63971875
transcript.pyannote[122].end 292.62659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 292.94721875
transcript.pyannote[123].end 295.93409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 296.77784375
transcript.pyannote[124].end 299.79846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 301.62096875
transcript.pyannote[125].end 302.59971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 303.56159375
transcript.pyannote[126].end 304.40534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 306.58221875
transcript.pyannote[127].end 308.57346875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 309.88971875
transcript.pyannote[128].end 310.68284375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 311.00346875
transcript.pyannote[129].end 311.71221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 312.43784375
transcript.pyannote[130].end 313.56846875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 314.19284375
transcript.pyannote[131].end 315.10409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 315.30659375
transcript.pyannote[132].end 316.31909375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 317.83784375
transcript.pyannote[133].end 319.35659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 321.38159375
transcript.pyannote[134].end 322.56284375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 324.04784375
transcript.pyannote[135].end 324.82409375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 325.53284375
transcript.pyannote[136].end 326.27534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 327.35534375
transcript.pyannote[137].end 328.97534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 329.46471875
transcript.pyannote[138].end 330.67971875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 331.10159375
transcript.pyannote[139].end 332.43471875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 332.73846875
transcript.pyannote[140].end 333.21096875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 334.56096875
transcript.pyannote[141].end 335.10096875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 336.67034375
transcript.pyannote[142].end 337.66596875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 338.94846875
transcript.pyannote[143].end 339.79221875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 341.05784375
transcript.pyannote[144].end 341.46284375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 342.23909375
transcript.pyannote[145].end 342.98159375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 343.33596875
transcript.pyannote[146].end 343.99409375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 344.39909375
transcript.pyannote[147].end 345.24284375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 346.39034375
transcript.pyannote[148].end 348.07784375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 348.87096875
transcript.pyannote[149].end 349.39409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 351.89159375
transcript.pyannote[150].end 354.74346875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 355.14846875
transcript.pyannote[151].end 356.49846875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 357.27471875
transcript.pyannote[152].end 358.74284375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 360.56534375
transcript.pyannote[153].end 361.20659375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 361.69596875
transcript.pyannote[154].end 363.16409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 363.53534375
transcript.pyannote[155].end 364.31159375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 365.05409375
transcript.pyannote[156].end 365.91471875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 366.50534375
transcript.pyannote[157].end 367.73721875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 368.88471875
transcript.pyannote[158].end 369.96471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 370.62284375
transcript.pyannote[159].end 371.70284375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 372.02346875
transcript.pyannote[160].end 372.95159375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 373.08659375
transcript.pyannote[161].end 373.99784375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 374.13284375
transcript.pyannote[162].end 375.58409375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 380.52846875
transcript.pyannote[163].end 383.22846875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 383.22846875
transcript.pyannote[164].end 383.53221875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 383.88659375
transcript.pyannote[165].end 384.71346875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 385.54034375
transcript.pyannote[166].end 388.32471875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 388.51034375
transcript.pyannote[167].end 409.36784375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 409.68846875
transcript.pyannote[168].end 423.86346875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 424.77471875
transcript.pyannote[169].end 428.47034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 428.72346875
transcript.pyannote[170].end 431.32221875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 431.67659375
transcript.pyannote[171].end 438.12284375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 438.83159375
transcript.pyannote[172].end 445.76721875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 446.39159375
transcript.pyannote[173].end 452.44971875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 452.68596875
transcript.pyannote[174].end 461.84909375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 463.26659375
transcript.pyannote[175].end 481.76159375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 482.11596875
transcript.pyannote[176].end 483.48284375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 483.73596875
transcript.pyannote[177].end 486.79034375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 487.16159375
transcript.pyannote[178].end 488.59596875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 488.86596875
transcript.pyannote[179].end 489.84471875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 491.02596875
transcript.pyannote[180].end 491.78534375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 493.01721875
transcript.pyannote[181].end 495.98721875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 496.32471875
transcript.pyannote[182].end 498.68721875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 499.15971875
transcript.pyannote[183].end 501.96096875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 502.28159375
transcript.pyannote[184].end 503.69909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 504.01971875
transcript.pyannote[185].end 505.74096875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 506.28096875
transcript.pyannote[186].end 507.41159375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 507.79971875
transcript.pyannote[187].end 508.62659375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 509.06534375
transcript.pyannote[188].end 509.45346875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 509.84159375
transcript.pyannote[189].end 524.48909375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 524.89409375
transcript.pyannote[190].end 526.17659375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 526.59846875
transcript.pyannote[191].end 535.15409375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 535.39034375
transcript.pyannote[192].end 537.34784375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 537.55034375
transcript.pyannote[193].end 538.98471875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 539.74409375
transcript.pyannote[194].end 540.04784375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 540.08159375
transcript.pyannote[195].end 542.76471875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 543.50721875
transcript.pyannote[196].end 546.49409375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 546.74721875
transcript.pyannote[197].end 547.28721875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 547.40534375
transcript.pyannote[198].end 557.29409375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 557.91846875
transcript.pyannote[199].end 561.47909375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 562.10346875
transcript.pyannote[200].end 569.74784375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 570.45659375
transcript.pyannote[201].end 577.03784375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 577.34159375
transcript.pyannote[202].end 578.55659375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 580.12596875
transcript.pyannote[203].end 580.73346875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 581.17221875
transcript.pyannote[204].end 581.79659375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 582.65721875
transcript.pyannote[205].end 583.78784375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 584.05784375
transcript.pyannote[206].end 586.30221875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 586.69034375
transcript.pyannote[207].end 592.91721875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 593.35596875
transcript.pyannote[208].end 596.54534375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 596.89971875
transcript.pyannote[209].end 599.36346875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 599.34659375
transcript.pyannote[210].end 599.92034375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 599.75159375
transcript.pyannote[211].end 601.30409375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 601.30409375
transcript.pyannote[212].end 601.99596875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 601.35471875
transcript.pyannote[213].end 602.92409375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 603.58221875
transcript.pyannote[214].end 606.92346875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 607.61534375
transcript.pyannote[215].end 668.33159375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 668.55096875
transcript.pyannote[216].end 669.98534375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 670.72784375
transcript.pyannote[217].end 693.01971875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 693.64409375
transcript.pyannote[218].end 694.90971875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 695.24721875
transcript.pyannote[219].end 696.51284375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 697.33971875
transcript.pyannote[220].end 698.23409375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 698.90909375
transcript.pyannote[221].end 700.81596875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 700.95096875
transcript.pyannote[222].end 702.33471875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 703.04346875
transcript.pyannote[223].end 707.71784375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 707.71784375
transcript.pyannote[224].end 715.59846875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 707.90346875
transcript.pyannote[225].end 708.66284375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 709.65846875
transcript.pyannote[226].end 710.53596875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 716.54346875
transcript.pyannote[227].end 717.25221875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 717.69096875
transcript.pyannote[228].end 720.34034375
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 720.81284375
transcript.pyannote[229].end 727.17471875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 728.20409375
transcript.pyannote[230].end 733.97534375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 730.90409375
transcript.pyannote[231].end 732.20346875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 733.40159375
transcript.pyannote[232].end 733.70534375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 733.72221875
transcript.pyannote[233].end 733.75596875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 733.97534375
transcript.pyannote[234].end 735.40971875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 735.40971875
transcript.pyannote[235].end 735.42659375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 735.42659375
transcript.pyannote[236].end 735.61221875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 735.61221875
transcript.pyannote[237].end 735.66284375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 735.66284375
transcript.pyannote[238].end 735.73034375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 736.03409375
transcript.pyannote[239].end 737.99159375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 738.61596875
transcript.pyannote[240].end 753.58409375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 754.54596875
transcript.pyannote[241].end 767.35409375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 768.13034375
transcript.pyannote[242].end 773.85096875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 772.73721875
transcript.pyannote[243].end 778.60971875
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 778.72784375
transcript.pyannote[244].end 792.88596875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 793.35846875
transcript.pyannote[245].end 801.79596875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 801.79596875
transcript.pyannote[246].end 806.04846875
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 801.86346875
transcript.pyannote[247].end 801.88034375
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 806.36909375
transcript.pyannote[248].end 809.69346875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 809.87909375
transcript.pyannote[249].end 827.00721875
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 827.37846875
transcript.pyannote[250].end 834.07784375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 834.07784375
transcript.pyannote[251].end 840.03471875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 834.11159375
transcript.pyannote[252].end 834.75284375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 840.42284375
transcript.pyannote[253].end 844.35471875
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 840.43971875
transcript.pyannote[254].end 841.03034375
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 843.24096875
transcript.pyannote[255].end 896.97096875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 884.58471875
transcript.pyannote[256].end 884.65221875
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 884.80409375
transcript.pyannote[257].end 884.90534375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 897.17346875
transcript.pyannote[258].end 902.87721875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 902.87721875
transcript.pyannote[259].end 903.11346875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 903.11346875
transcript.pyannote[260].end 906.89346875
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 908.39534375
transcript.pyannote[261].end 909.91409375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 911.29784375
transcript.pyannote[262].end 912.34409375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 913.50846875
transcript.pyannote[263].end 915.55034375
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 914.75721875
transcript.pyannote[264].end 926.92409375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 927.73409375
transcript.pyannote[265].end 929.64096875
transcript.pyannote[266].speaker SPEAKER_00
transcript.pyannote[266].start 929.91096875
transcript.pyannote[266].end 939.20909375
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 939.63096875
transcript.pyannote[267].end 945.26721875
transcript.pyannote[268].speaker SPEAKER_00
transcript.pyannote[268].start 945.33471875
transcript.pyannote[268].end 947.91659375
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 948.40596875
transcript.pyannote[269].end 949.01346875
transcript.pyannote[270].speaker SPEAKER_00
transcript.pyannote[270].start 949.14846875
transcript.pyannote[270].end 950.24534375
transcript.pyannote[271].speaker SPEAKER_00
transcript.pyannote[271].start 950.49846875
transcript.pyannote[271].end 957.48471875
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 957.73784375
transcript.pyannote[272].end 959.88096875
transcript.pyannote[273].speaker SPEAKER_00
transcript.pyannote[273].start 960.23534375
transcript.pyannote[273].end 962.32784375
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 962.66534375
transcript.pyannote[274].end 963.20534375
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 964.03221875
transcript.pyannote[275].end 967.08659375
transcript.pyannote[276].speaker SPEAKER_01
transcript.pyannote[276].start 967.45784375
transcript.pyannote[276].end 982.24034375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 982.24034375
transcript.pyannote[277].end 1005.35909375
transcript.pyannote[278].speaker SPEAKER_01
transcript.pyannote[278].start 984.14721875
transcript.pyannote[278].end 984.38346875
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 992.85471875
transcript.pyannote[279].end 993.36096875
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 1001.24159375
transcript.pyannote[280].end 1001.91659375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 1005.66284375
transcript.pyannote[281].end 1008.61596875
transcript.whisperx[0].start 20.013
transcript.whisperx[0].end 30.3
transcript.whisperx[0].text 好 謝謝主席現在還不到12點 已經在發送便當了
transcript.whisperx[1].start 32.416
transcript.whisperx[1].end 41.552
transcript.whisperx[1].text 是不是部長因為從委員當部長瘦了瘦很多然後還是部長要靠藥
transcript.whisperx[2].start 43.072
transcript.whisperx[2].end 69.933
transcript.whisperx[2].text 因為剛剛有蘇青委員特別講的因為蘇醫師是蘇青也是醫師嘛所以我是覺得今天部長創造很多的關鍵字延節瘦了 靠藥然後行政院是胖子行政院是胖子所以行政院的預算特別多所以要瘦身把行政院比喻成胖子這有沒有歧視問題
transcript.whisperx[3].start 71.428
transcript.whisperx[3].end 99.174
transcript.whisperx[3].text 那胖子就一定不健康嗎瘦身之後就一定會健康嗎我沒有看到部長有積極的回應部長請你上來好不好你是不是因為瘦了精神狀況有問題但這樣的比喻真的比喻有點奇怪嘛你不覺得嗎今天如果說胖子來引誉比喻行政院的這個預算的規模然後
transcript.whisperx[4].start 100.449
transcript.whisperx[4].end 121.798
transcript.whisperx[4].text 這種邏輯是什麼?我實在不太清楚跟立委說明然後如果行政院預算是比較多然後來營育胖子那代表是胖子的脂肪比較多把行政院預算比喻胖子的脂肪然後瘦身之後會比較健康那站在行政院議員的一個部會首長
transcript.whisperx[5].start 126.162
transcript.whisperx[5].end 145.252
transcript.whisperx[5].text 對這事情怎麼沒有做一個積極的回應我覺得這是有問題喔大總統要打造健康台灣我跟各位比喻一下啦健康兩個字這麼簡單嗎健康不需要付出成本嗎
transcript.whisperx[6].start 146.733
transcript.whisperx[6].end 161.278
transcript.whisperx[6].text 事實上你不要顧賺錢啦,你不要顧上班啦,你身體健康要顧好啦,都用嘴說的,這樣就健康了嗎?你可不可以跟各位說,叫那些顧健康的人去顧自己,自己身體要顧到該量工啦?
transcript.whisperx[7].start 162.29
transcript.whisperx[7].end 190.706
transcript.whisperx[7].text 所以健康是要付出成本的嘛對不對是當你勞動部增加預算的時候比往前年度增加預算的時候我有沒有聽到你們講出為什麼你比往前年度增加這些預算那你增加這些預算是要做什麼現在部長到任如果相關預算的增加有相關的正式對勞工有利對勞工是正面的我們被刪了我們被動了我們就應該去捍衛我們就該講得清清楚楚啊
transcript.whisperx[8].start 191.892
transcript.whisperx[8].end 216.372
transcript.whisperx[8].text 怎麼人家以綠行政的預算增加了變胖了他就必須要該瘦身這樣會比較健康怎麼沒有聽到你們去做相關的應該去捍衛去表達你們要執行的這個預算的正當性而且不應該被草率的被刪被凍啊況且說被凍一定可以解凍誰說的算
transcript.whisperx[9].start 218.402
transcript.whisperx[9].end 225.278
transcript.whisperx[9].text 誰說的算然後要你們提出相關的追加減你們不提出那你們的回應是什麼
transcript.whisperx[10].start 226.824
transcript.whisperx[10].end 252.717
transcript.whisperx[10].text 當然透過互議是一個行政的各部會大家一起來不需要分辨別的在各個委員會來做這樣的事情處理但是另外一個反之當你真的有相關的政事你必須要去推動的時候你當然在委員會委員會是委員會主義啊你要去捍衛啊你要講啊你如果國民黨召委願意讓我們快速的排進我當然我這個部會我先來發動啊
transcript.whisperx[11].start 254.107
transcript.whisperx[11].end 264.372
transcript.whisperx[11].text 那蔣同委員你要不要負責?你要不要協助?你要不要處理?你要不要回到你們黨團?確定之後你才在這個委員會講說你們為什麼不送來?但我沒聽到你們幾天回應這個事情啊我沒聽到你們講這個慷慨啊我會覺得我們在地方聽到很多人民百姓看到預算被刪的如此的離譜
transcript.whisperx[12].start 283.117
transcript.whisperx[12].end 298.786
transcript.whisperx[12].text 看到昨天監察院的副院長以前親民黨重要的份子李鴻鈞副座都已經出來講了連監察院都已經動彈不得了甚至很多監察人員都必須從口袋掏錢出來才有辦法應付一般的相關事務啊都要出來講話啊都要遇到啊立法院是一個定制度的地方啊
transcript.whisperx[13].start 309.929
transcript.whisperx[13].end 316.293
transcript.whisperx[13].text 但是一直在破壞制度這國家怎麼會正常立法院不正常 台灣怎麼會正常那我希望官員要正常一點吧官員要如何正常新北市在勞動部勞發署發生了霸凌的時候新北市的勞動局跑來勞發署要勞檢可以嗎可以嗎
transcript.whisperx[14].start 336.721
transcript.whisperx[14].end 349.068
transcript.whisperx[14].text 老幫手怎麼回應老幫手怎麼處理昨天台北市的勞動局跑來立法院勞檢某個委員的辦公室可以嗎當然有霸凌的事件當然有什麼樣奇怪的事件我覺得我樂觀其成但是勞檢完之後
transcript.whisperx[15].start 360.612
transcript.whisperx[15].end 375.326
transcript.whisperx[15].text 他到底要對誰做出相關的這些處分是針對立法院還是針對那個委員因為立法院的錢這個助理的薪資是從立法院撥下去的不然這兩件事情你簡單對我做一個回應好不好好 第一個事情是
transcript.whisperx[16].start 385.598
transcript.whisperx[16].end 400.875
transcript.whisperx[16].text 那個我們沒有辦法接受把行政院預算的增加形容成胖子行政院為什麼他的預算的增加是因為這幾年我們的經濟成長包括稅收的增加也包括我們想要做的事情增加
transcript.whisperx[17].start 401.556
transcript.whisperx[17].end 421.345
transcript.whisperx[17].text 包括剛才在講到的健康台灣或者是想要照顧的人民相關的權益增加我們也覺得現在是有財政餘力來做這件事情才增加並不是只要增加就會形容成胖子就該瘦身沒有這件事情因為現在很多地方政府其實他們的預算也是增加的但並不會因為說你只要預算增加就一定必須被砍這個在剛剛的時候其實我有說
transcript.whisperx[18].start 425.39
transcript.whisperx[18].end 439.219
transcript.whisperx[18].text 這個預算的審查最重要的事情其實是要看科目你的三檢跟監督到底有沒有道理不是只要這個預算增加就必須要看我想這部分沒有辦法接受這是第一點第二點是關於剛剛委員說剛剛委員提到說這個相關的勞檢單位我們剛剛其實有說明
transcript.whisperx[19].start 446.763
transcript.whisperx[19].end 461.368
transcript.whisperx[19].text 我認為其實應該要在兼顧這個我們勞檢要執行的精神跟尊重立法院的這兩個目的之下我們願意來跟立法院討論這些相關的機制包括假設如果要做檢查的機制的話該怎麼進行
transcript.whisperx[20].start 463.308
transcript.whisperx[20].end 489.536
transcript.whisperx[20].text 前面那段剛剛部長也有答覆我也有在主持我有聽到但是我還是覺得力道跟強度部長應該可以再加強這第一點那第二點我特別剛剛會引譽當時的新北市勞動局對勞發署發動這個勞檢然後昨天又有這個台北市的勞工局來對立院的這個國會辦公室來做勞檢基本上我們也在反對但是權責勒權責勒
transcript.whisperx[21].start 493.309
transcript.whisperx[21].end 505.463
transcript.whisperx[21].text 我要強調的是全職就像2016年2016年在立法院就發生讓議事人員不斷電的情況之下有過勞送醫的案例北市勞動局當時就到我們立法院來要做勞遣
transcript.whisperx[22].start 506.328
transcript.whisperx[22].end 525.936
transcript.whisperx[22].text 但是另外一個意思就是說不適合啊不適用勞基華嘛對不對好今天才七天假啦我又有聽到部長的講的一段話畢竟你是行政院的議員所以當然主管機關是在內政部那你朝向可以正向的來做討論嘛這很好我們勞工有職安法
transcript.whisperx[23].start 526.656
transcript.whisperx[23].end 538.579
transcript.whisperx[23].text 那工人員有什麼話2012年發生了一次我們在今年1月21號又發生了一次從凌晨5點24分的畫面各位可以看一下1月20號開會這全部都是工人員我們未還我們未還這一組又是最後的一定要等到5點應該是可能12點就要stand by了可能進早然後等到5點24分他們才可以
transcript.whisperx[24].start 553.752
transcript.whisperx[24].end 578.172
transcript.whisperx[24].text 等個議會時間ending完之後他們才可以離開然後離開完之後這已經足足幾個小時你可以看的齁足足從1月23號的10點開會到1月5點40分休息然後1月21號的1點又馬上開會這個中間沒有包含打卡沒有包含休息沒有包含事後的相關資料的準備事前的資料準備然後又馬上接續開會我覺得我覺得
transcript.whisperx[25].start 582.694
transcript.whisperx[25].end 606.767
transcript.whisperx[25].text 我要請部長,因為我們職安法算是完善,但是公務人員他可能是什麼法律來做規範?就是這個公務人員安全及衛生防護辦法,簡稱安慰法,我們簡稱職安法。安慰辦法。對,但我們是法律嘛,他們是辦法。奇怪,對公務人員怎麼用這樣在處理?部長你有什麼看法?
transcript.whisperx[26].start 608.737
transcript.whisperx[26].end 631.506
transcript.whisperx[26].text 現在確實是大家會有一些討論說公務員要不要適用治安法的問題在這個議題上面我們幾次的也跟考試院這邊去做確認確實現在考試院還是希望是來修訂他們的公務員保障法還有安慰辦法來去做公務員相關權益的保障
transcript.whisperx[27].start 631.946
transcript.whisperx[27].end 655.451
transcript.whisperx[27].text 目前他們還是是希望用他們的這些法制的體系來去保障那就勞動部的角度來說所以也是在這狀況之下但我們現在主要責任法的修訂包括職場霸凌的專章還是真的一般職場的勞工但是這段這幾個月的時間我們也持續的跟考試院這邊在做意見的交換尤其是一些針對辦
transcript.whisperx[28].start 656.291
transcript.whisperx[28].end 669.65
transcript.whisperx[28].text 包括霸凌認定啊包括霸凌相關機制處理我們也跟他們持續在討論之中可是目前他們確實還是認為公務員有一套公務員自己的法規的體系所以他們還是修保障法跟安慰辦法
transcript.whisperx[29].start 670.765
transcript.whisperx[29].end 695.941
transcript.whisperx[29].text 我這邊有一個資料給部長做參考我是期待說就部長以處理七天假的角度看怎麼來協助這個事情保訓院現在在研裏要將安二法提升為法的位階做得到做不到還是一件事情但是他們目前研裏的方向是未來的上級單位每年至少一次對下級進行職業安全衛生檢查我想站在你們的專業你覺得這樣有嚇阻作用嗎要對立法院
transcript.whisperx[30].start 698.899
transcript.whisperx[30].end 726.626
transcript.whisperx[30].text 然後找哪個上級來對這個立法院來做檢查他們可能指的比較不是立法院他們指的應該是政府各個機關或機構啦尤其是有上級機關的機關或機構我現在就比喻立法院開會這種情況在這種樣態的情況之下要怎麼處理說實話這部分當然我們還是要去跟考試院來做來做這部分要跟考試院做討論啦但是確實在立法院裡面其實並不是都是公務員
transcript.whisperx[31].start 728.24
transcript.whisperx[31].end 752.151
transcript.whisperx[31].text 就是立法院裡面其實也有是有些是一般的勞工是沒有錯沒有錯但是多數是公務員是對不對對按比例來講嘛對啊那我說因為現在考試院在修訂公園保障法跟安慰辦法過程其實他們有找我們跟他們持續的討論因為在職安衛的專業上面確實是在我們職安署這邊是有過去比較多這樣子的專業所以我們提供這樣的專業給他們去做參考
transcript.whisperx[32].start 754.931
transcript.whisperx[32].end 769.84
transcript.whisperx[32].text 這個是請部長來協助另外可能要請部長趕快來做相關的因應我們自己的這個勞警員有1033位的編制對不對但到目前為止好像一直空缺100多位就是一至兩成都沒辦法補足
transcript.whisperx[33].start 771.76
transcript.whisperx[33].end 791.912
transcript.whisperx[33].text 這是主要什麼原因?就是我們現在安全衛生背景理工的同仁比較容易離職那在離職部分當然產業科技的發展確實需要比較高科技的人或是有專業的人所以我們一直希望說能夠讓檢查員能夠支持久任留用所以我們部長也特別支持我們目前希望從
transcript.whisperx[34].start 793.433
transcript.whisperx[34].end 809.5
transcript.whisperx[34].text 改善我們的檢查方式用科技的方式來做監督檢查跟我們的同仁久任的部分可以鼓勵從不同面向來做展開啦跟他們生鮮汁及那個植奶的發展受限有沒有關係跟委員報告確實我們這一群大概一千多人所以
transcript.whisperx[35].start 810.68
transcript.whisperx[35].end 824.805
transcript.whisperx[35].text 就是從地方檢察機構檢察員科長到檢察機構的處長到治安署可能組長副署長到組長我們在這個圈子就是這樣子所以民間的科技廠哇我們去當安全管理師管理員就非常機會就非常大但是我還認為說我們這是對
transcript.whisperx[36].start 827.646
transcript.whisperx[36].end 842.727
transcript.whisperx[36].text 對企業有幫助對事業有幫助的一個工作我們是期待說不管是成就上或者說是生意上我們再做更多的有沒有很大的改善空間嘛好比說爭取為正式的能源編制還是怎樣去改善這樣的一個環境
transcript.whisperx[37].start 843.308
transcript.whisperx[37].end 871.533
transcript.whisperx[37].text 跟劉仁說我們其實也有希望盡量來跟人中來爭取高高人人的編制但是現在在我上任之後其實我們也提出一個勞檢人專業能力以及工作支持的提升方案那希望透過更多的智慧化或者是增加大家專業化的方式來支撐勞檢人讓勞檢人就以他的這個工作為榮那之前其實我們也爭取到其實每個月有5000塊或3000塊的這個風險的加急工作的加急那
transcript.whisperx[38].start 872.473
transcript.whisperx[38].end 896.813
transcript.whisperx[38].text 沒有錯 現在勞警員的留任或我們要想辦法留住他們的專業這部分還是有待改善的空間這也是為什麼我們要提出這些勞警員的支持方案因為我到部裡面發現其實勞警員其實要面對很多事業單位的壓力其實這也是他們為什麼其實常常容易想要離職或者想要轉職一個很重要的原因所以我們怎麼樣給他們尊嚴跟包括在專業上面去全力的支持他們這是我們非常重視的事情
transcript.whisperx[39].start 897.216
transcript.whisperx[39].end 911.993
transcript.whisperx[39].text 我要特別提到這個勞檢人員並非是正式的公務人員他在勞檢的場域過程裡面在執行相關的業務有視瓦性的問題
transcript.whisperx[40].start 914.309
transcript.whisperx[40].end 926.319
transcript.whisperx[40].text 好來請署長報告其實我們有大部分的檢討員是高考特考分發那你講的聘用的部分大概是我們勞動條件檢查人大概有325個所以我們聘用條例聘用了但聘用的部分也是經過我們
transcript.whisperx[41].start 928.359
transcript.whisperx[41].end 947.547
transcript.whisperx[41].text 訓練考核跟年度的考機的審核所以他們工作表現我們做比較上位一些了解所以我們當然希望JP的聘用檢查員他有聘用檢查員升到聘用視察的聘用專業的聘用視察我們連那個他升升現在這系列我們考慮到了所以我們現在反而是聘用檢查員的流動率沒有相對的
transcript.whisperx[42].start 948.467
transcript.whisperx[42].end 962.912
transcript.whisperx[42].text 高太多但是專業的部分有能力的人一定會挖走這個其實是我們公務機關不是只有這個演藍園的這個會有這樣的情況其實很多公務機關專業人士很容易被民間挖走這是看起來是這整體面向的問題啦所以
transcript.whisperx[43].start 965.093
transcript.whisperx[43].end 981.839
transcript.whisperx[43].text 但是我要跟委員說當然民間或者是產業都會有這樣人力的需求但我們部裡面還是會全力做的是把勞檢員的待遇包括專業跟支持提升我覺得這還是不管外界的吸力有多大但這部分我們還是會全力來做
transcript.whisperx[44].start 982.399
transcript.whisperx[44].end 1007.147
transcript.whisperx[44].text 所以像任總繼續爭取嘛然後他的升遷然後他的發展我想這個應該還是要請部長跟署長多費一點心思來看怎麼處理好不好是不是可以一個月內給我們一個你們要整體的這樣的改善提升的計畫把這些人可以好好的留住保衛起作用計畫給我們做參考好謝謝好謝謝主席好謝謝下一位我們請陳培宇委員