iVOD / 159145

Field Value
IVOD_ID 159145
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159145
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T12:17:07+08:00
結束時間 2025-03-13T12:23:57+08:00
影片長度 00:06:50
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f1d5cf022c0e04a07e83d902c8d6dd6c286f8ffab8834d983b0f568547c5b28c35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 12:17:07 - 12:23:57
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 6.61221875
transcript.pyannote[0].end 8.72159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 8.97471875
transcript.pyannote[1].end 9.14346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 9.41346875
transcript.pyannote[2].end 10.10534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 15.26909375
transcript.pyannote[3].end 15.94409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.01159375
transcript.pyannote[4].end 16.56846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.20971875
transcript.pyannote[5].end 22.28909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 19.25159375
transcript.pyannote[6].end 20.14596875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 20.92221875
transcript.pyannote[7].end 21.56346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 22.64346875
transcript.pyannote[8].end 25.56284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 25.90034375
transcript.pyannote[9].end 27.11534375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 27.40221875
transcript.pyannote[10].end 29.03909375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 29.19096875
transcript.pyannote[11].end 30.13596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 30.45659375
transcript.pyannote[12].end 31.89096875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 32.27909375
transcript.pyannote[13].end 33.78096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 34.01721875
transcript.pyannote[14].end 35.99159375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 36.44721875
transcript.pyannote[15].end 40.75034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 40.75034375
transcript.pyannote[16].end 41.08784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 41.08784375
transcript.pyannote[17].end 42.18471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 42.57284375
transcript.pyannote[18].end 46.62284375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 45.08721875
transcript.pyannote[19].end 45.34034375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 46.99409375
transcript.pyannote[20].end 47.33159375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 47.04471875
transcript.pyannote[21].end 47.24721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 47.60159375
transcript.pyannote[22].end 49.17096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 47.82096875
transcript.pyannote[23].end 48.02346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 49.72784375
transcript.pyannote[24].end 62.89034375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 62.99159375
transcript.pyannote[25].end 64.99971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 65.59034375
transcript.pyannote[26].end 78.55034375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 78.82034375
transcript.pyannote[27].end 82.09409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 82.09409375
transcript.pyannote[28].end 82.43159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 82.63409375
transcript.pyannote[29].end 88.05096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 88.05096875
transcript.pyannote[30].end 88.06784375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 88.50659375
transcript.pyannote[31].end 88.77659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 89.14784375
transcript.pyannote[32].end 94.19346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 94.07534375
transcript.pyannote[33].end 94.39596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 94.34534375
transcript.pyannote[34].end 95.72909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 95.91471875
transcript.pyannote[35].end 118.49346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 118.83096875
transcript.pyannote[36].end 119.23596875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 119.43846875
transcript.pyannote[37].end 122.71221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 123.20159375
transcript.pyannote[38].end 123.87659375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 124.01159375
transcript.pyannote[39].end 138.59159375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 139.23284375
transcript.pyannote[40].end 140.16096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 140.54909375
transcript.pyannote[41].end 171.43034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 171.43034375
transcript.pyannote[42].end 172.02096875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 172.24034375
transcript.pyannote[43].end 188.98034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 174.02909375
transcript.pyannote[44].end 174.24846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 180.20534375
transcript.pyannote[45].end 180.81284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 181.38659375
transcript.pyannote[46].end 181.69034375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 185.41971875
transcript.pyannote[47].end 185.75721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 188.98034375
transcript.pyannote[48].end 189.36846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 189.11534375
transcript.pyannote[49].end 200.13471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 191.41034375
transcript.pyannote[50].end 191.69721875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 195.52784375
transcript.pyannote[51].end 196.35471875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 199.30784375
transcript.pyannote[52].end 204.60659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 205.29846875
transcript.pyannote[53].end 206.93534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 207.32346875
transcript.pyannote[54].end 214.22534375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 214.86659375
transcript.pyannote[55].end 224.38409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 224.50221875
transcript.pyannote[56].end 237.44534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 237.76596875
transcript.pyannote[57].end 260.26034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 238.35659375
transcript.pyannote[58].end 240.46596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 260.78346875
transcript.pyannote[59].end 277.25346875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 264.12471875
transcript.pyannote[60].end 268.12409375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 269.30534375
transcript.pyannote[61].end 269.92971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 271.26284375
transcript.pyannote[62].end 271.36409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 275.26221875
transcript.pyannote[63].end 284.34096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 282.63659375
transcript.pyannote[64].end 288.61034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 284.76284375
transcript.pyannote[65].end 285.10034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 287.19284375
transcript.pyannote[66].end 287.47971875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 288.79596875
transcript.pyannote[67].end 290.19659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 290.19659375
transcript.pyannote[68].end 304.11846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 290.85471875
transcript.pyannote[69].end 291.00659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 296.22096875
transcript.pyannote[70].end 296.67659375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 297.99284375
transcript.pyannote[71].end 298.53284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 300.18659375
transcript.pyannote[72].end 300.74346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 300.76034375
transcript.pyannote[73].end 300.86159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 304.42221875
transcript.pyannote[74].end 307.57784375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 308.45534375
transcript.pyannote[75].end 321.53346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 322.00596875
transcript.pyannote[76].end 353.42721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 352.92096875
transcript.pyannote[77].end 365.18909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 353.78159375
transcript.pyannote[78].end 353.84909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 358.55721875
transcript.pyannote[79].end 360.97034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 365.81346875
transcript.pyannote[80].end 369.30659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 369.67784375
transcript.pyannote[81].end 375.78659375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 375.66846875
transcript.pyannote[82].end 383.56596875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 381.72659375
transcript.pyannote[83].end 384.74721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 384.78096875
transcript.pyannote[84].end 391.26096875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 386.90721875
transcript.pyannote[85].end 387.78471875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 391.44659375
transcript.pyannote[86].end 398.02784375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 394.18034375
transcript.pyannote[87].end 395.37846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 396.42471875
transcript.pyannote[88].end 403.22534375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 399.52971875
transcript.pyannote[89].end 400.66034375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 401.01471875
transcript.pyannote[90].end 401.70659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 403.22534375
transcript.pyannote[91].end 403.52909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 403.52909375
transcript.pyannote[92].end 410.16096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 408.03471875
transcript.pyannote[93].end 410.24534375
transcript.whisperx[0].start 6.618
transcript.whisperx[0].end 8.382
transcript.whisperx[0].text 好,謝謝,我請央行楊總裁請
transcript.whisperx[1].start 18.184
transcript.whisperx[1].end 46.454
transcript.whisperx[1].text 這個總裁辛苦了那兩條問題請教一下總裁第一就是美國關稅美國關稅當然這個隨時都會變動它的關稅的政策不是那麼穩定那隨著總統他有每天可能有新的想法所以關稅政策當然不管怎麼樣對台灣的出口競爭力跟匯率一定會造成影響那你看南韓南韓就面臨到這個美國的關稅壓力所以都造成它韓元的低迷
transcript.whisperx[2].start 47.834
transcript.whisperx[2].end 73.842
transcript.whisperx[2].text 還有一點點扁在亞洲的貨幣裡面它是相對比較弱勢那你高度依賴出口而且也沒有內需關稅又沒有辦法衝擊又沒有辦法降低那部分整體的這個因為關稅造成的這個整體的國家的GDP就會下降投資就會受到影響
transcript.whisperx[3].start 74.902
transcript.whisperx[3].end 99.509
transcript.whisperx[3].text 從南韓經驗來看如果美國加徵關稅當然我們沒有辦法避免對我們出口跟整體經濟的影響那您覺得最壞的狀況台灣出口競爭力或者台灣的GDP會減少多少到目前為止我們還是在評估當中因為不確定性不過初步的估計我們到目前初步的估計我們是覺得
transcript.whisperx[4].start 101.509
transcript.whisperx[4].end 112.792
transcript.whisperx[4].text 如果說按照我們這個報告也有談到啊就是說如果說他對額外的那四個那個對醫藥品、半導體特別是對我們的半導體因為我們半導體還有鋼鐵、鋁銅、汽車及零組件這個對我們的影響目前我們初步的評估是不會很大
transcript.whisperx[5].start 124.127
transcript.whisperx[5].end 138.375
transcript.whisperx[5].text 那看樣子台積電去美國投資那麼高額然後時尚最大的一個投資額會不會因此就降低美國川普政府對台灣的晶片加收關稅的可能性
transcript.whisperx[6].start 140.636
transcript.whisperx[6].end 152.281
transcript.whisperx[6].text 這個看起來好像後來他就改口了他好像川普好像也滿滿滿溢的樣子就是說他也佩服說台灣在這個領域方面的強項
transcript.whisperx[7].start 156.043
transcript.whisperx[7].end 168.137
transcript.whisperx[7].text 所以川普有些時候我們就都沒有說真正的搞不過我是覺得他也應該算是對於我們的半凹體的產業他也是蠻佩服的
transcript.whisperx[8].start 172.381
transcript.whisperx[8].end 194.309
transcript.whisperx[8].text 半導體有沒有加徵關稅那它整體而言它的關稅一定會比過去的這個前任政府更多嘛品項也更多所以再用我們以出國導向的這個經濟體來看那當然它的關稅政策一定會對台灣造成影響那台灣出國競爭力下降那當然我們的這個貨幣就會受到衝擊
transcript.whisperx[9].start 197.47
transcript.whisperx[9].end 214.118
transcript.whisperx[9].text 會不會持續貶值如果持續貶值的話我跟委員報告就是說川普的我們說川普1.0川普1.0基本上呢事實上呢川普1.0他美中貿易衝突我們台灣是受力的
transcript.whisperx[10].start 214.932
transcript.whisperx[10].end 237.119
transcript.whisperx[10].text 但是呢受益的是受益的是受益的但是呢川普2.0呢他的情況他就要賭那個缺口那缺口呢他就普遍性的那如果說是普遍性的話呢那事實上呢我個人啦當然啦我這個我們還是要study啦如果說普遍性的時候對每一個國家都是這樣子的時候呢那基本上呢
transcript.whisperx[11].start 237.859
transcript.whisperx[11].end 259.971
transcript.whisperx[11].text 每個國家都是這樣子那也不是說只有針對我們台灣那如果說就半導體所以我們在十三頁這邊有講到半導體的這個部分因為我們直接出口到美國的那個直接出口到他那邊去的好像不多佔我們的GDP佔我們的出口的那個也就是說我們的曝險不高
transcript.whisperx[12].start 260.851
transcript.whisperx[12].end 267.897
transcript.whisperx[12].text 相對其他國家對 不高所以目前他所公布的相關的不過我們也不能說他就是這樣子所以這個議題呢應該要密切的注意我是擔心啊 這關稅一旦這個
transcript.whisperx[13].start 279.945
transcript.whisperx[13].end 307.315
transcript.whisperx[13].text 開徵會影響到我們出口競爭力出口競爭力是我的經濟的命脈我就是說出口的競爭力因為它是整個是全部它都關稅嘛它是普遍性的嘛是 謝謝那第二個問題想討論這個匯率啊那台積電到美國投資金額那麼大那資本當然一定外流那相關的這個產業鏈也都會過去啊這種情況這個央行有沒有穩定匯率的政策我事實上呢
transcript.whisperx[14].start 309.5
transcript.whisperx[14].end 320.928
transcript.whisperx[14].text 台積電到那邊去投資一千億要增加一千億增加一千億事實上我們的外局就有去跟他們的財務處討論這個問題事實上他們說他們營收今年他們估計都有差不多一千億一千億美元不是台幣
transcript.whisperx[15].start 331.635
transcript.whisperx[15].end 354.671
transcript.whisperx[15].text 然後你看看他一千億要投資那邊的話他是分四年這是第一個分四年一年是250億第二個他也可以在那邊籌資所以就他來講的話事實上也不會說是因為他要到我那邊投資所以他必須要在這邊買匯然後再出去影響到我們的YC我再用30秒我的問題是說你產業鏈過去當然在那邊生產當然也會有
transcript.whisperx[16].start 359.774
transcript.whisperx[16].end 375.428
transcript.whisperx[16].text 那獲利會不會怎麼樣有政策的引導可以在這個回流台灣那當然就是說第一個他獲利然後呢就會回台灣這個也有可能這個也有可能
transcript.whisperx[17].start 375.708
transcript.whisperx[17].end 390.664
transcript.whisperx[17].text 但是有沒有政策上的引導或者誘因讓他們整體獲利不會再繼續在投資你把獲利的這個這個他們的投資策略我不曉得所以說我不曉得我也只是能夠從報紙上看到就是說他要增加一千億的投資
transcript.whisperx[18].start 391.805
transcript.whisperx[18].end 397.369
transcript.whisperx[18].text 這個我們只能夠這樣知道而已至於就是說這些細節的我相信這個樣行的決策能夠兼顧規律也能夠兼顧台灣出口競爭力把這個關稅的衝擊降到最低我對您是深具信心