IVOD_ID |
159140 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159140 |
日期 |
2025-03-13 |
會議資料.會議代碼 |
委員會-11-3-23-2 |
會議資料.會議代碼:str |
第11屆第3會期交通委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
23 |
會議資料.委員會代碼:str[0] |
交通委員會 |
會議資料.標題 |
第11屆第3會期交通委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-13T11:30:22+08:00 |
結束時間 |
2025-03-13T11:40:28+08:00 |
影片長度 |
00:10:06 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f7b52c23e977d4bf5b0efe61acdb48b4e86f8ffab8834d983268cb4a8a8bd5f905ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱若華 |
委員發言時間 |
11:30:22 - 11:40:28 |
會議時間 |
2025-03-13T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期交通委員會第2次全體委員會議(事由:邀請數位發展部部長黃彥男列席報告業務概況,並備質詢。
【如本院改為加開院會,則本次會議取消,不另行通知。】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.85784375 |
transcript.pyannote[0].end |
3.38909375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
3.62534375 |
transcript.pyannote[1].end |
4.38471875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
10.12221875 |
transcript.pyannote[2].end |
10.76346875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
10.88159375 |
transcript.pyannote[3].end |
22.71096875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
22.82909375 |
transcript.pyannote[4].end |
39.70409375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
39.80534375 |
transcript.pyannote[5].end |
48.05721875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
48.98534375 |
transcript.pyannote[6].end |
63.75096875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
64.37534375 |
transcript.pyannote[7].end |
65.50596875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
65.50596875 |
transcript.pyannote[8].end |
65.55659375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
65.55659375 |
transcript.pyannote[9].end |
65.82659375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
65.60721875 |
transcript.pyannote[10].end |
68.32409375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
68.89784375 |
transcript.pyannote[11].end |
82.04346875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
81.65534375 |
transcript.pyannote[12].end |
84.69284375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
85.73909375 |
transcript.pyannote[13].end |
87.84846875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
88.37159375 |
transcript.pyannote[14].end |
93.26534375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
93.78846875 |
transcript.pyannote[15].end |
98.04096875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
98.04096875 |
transcript.pyannote[16].end |
129.02346875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
129.20909375 |
transcript.pyannote[17].end |
131.26784375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
131.63909375 |
transcript.pyannote[18].end |
138.62534375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
138.99659375 |
transcript.pyannote[19].end |
145.03784375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
145.03784375 |
transcript.pyannote[20].end |
146.69159375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
147.07971875 |
transcript.pyannote[21].end |
164.51159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
164.08971875 |
transcript.pyannote[22].end |
164.52846875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
164.52846875 |
transcript.pyannote[23].end |
164.59596875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
164.59596875 |
transcript.pyannote[24].end |
164.61284375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
164.61284375 |
transcript.pyannote[25].end |
165.01784375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
165.01784375 |
transcript.pyannote[26].end |
165.03471875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
165.03471875 |
transcript.pyannote[27].end |
165.05159375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
165.05159375 |
transcript.pyannote[28].end |
167.11034375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
166.26659375 |
transcript.pyannote[29].end |
166.46909375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
167.11034375 |
transcript.pyannote[30].end |
167.86971875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
167.14409375 |
transcript.pyannote[31].end |
167.71784375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
167.86971875 |
transcript.pyannote[32].end |
168.05534375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
168.05534375 |
transcript.pyannote[33].end |
168.10596875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
168.29159375 |
transcript.pyannote[34].end |
168.56159375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
169.10159375 |
transcript.pyannote[35].end |
169.13534375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
169.13534375 |
transcript.pyannote[36].end |
172.76346875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
170.77221875 |
transcript.pyannote[37].end |
171.31221875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
172.93221875 |
transcript.pyannote[38].end |
197.06346875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
196.59096875 |
transcript.pyannote[39].end |
207.00284375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
207.39096875 |
transcript.pyannote[40].end |
222.74721875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
208.69034375 |
transcript.pyannote[41].end |
209.65221875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
210.19221875 |
transcript.pyannote[42].end |
210.41159375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
223.86096875 |
transcript.pyannote[43].end |
224.02971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
224.02971875 |
transcript.pyannote[44].end |
224.40096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
224.94096875 |
transcript.pyannote[45].end |
240.97221875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
240.97221875 |
transcript.pyannote[46].end |
242.94659375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
243.28409375 |
transcript.pyannote[47].end |
243.57096875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
243.57096875 |
transcript.pyannote[48].end |
243.58784375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
243.58784375 |
transcript.pyannote[49].end |
245.49471875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
243.63846875 |
transcript.pyannote[50].end |
259.48409375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
259.77096875 |
transcript.pyannote[51].end |
267.88784375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
267.65159375 |
transcript.pyannote[52].end |
294.80346875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
275.02596875 |
transcript.pyannote[53].end |
275.76846875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
277.03409375 |
transcript.pyannote[54].end |
278.01284375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
281.43846875 |
transcript.pyannote[55].end |
281.60721875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
294.97221875 |
transcript.pyannote[56].end |
301.24971875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
295.12409375 |
transcript.pyannote[57].end |
295.78221875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
300.15284375 |
transcript.pyannote[58].end |
318.49596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
318.76596875 |
transcript.pyannote[59].end |
334.13909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
334.30784375 |
transcript.pyannote[60].end |
337.05846875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
335.79284375 |
transcript.pyannote[61].end |
337.00784375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
337.05846875 |
transcript.pyannote[62].end |
337.73346875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
337.73346875 |
transcript.pyannote[63].end |
338.79659375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
338.79659375 |
transcript.pyannote[64].end |
339.03284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
339.03284375 |
transcript.pyannote[65].end |
340.83846875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
341.58096875 |
transcript.pyannote[66].end |
344.43284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
345.17534375 |
transcript.pyannote[67].end |
346.01909375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
346.01909375 |
transcript.pyannote[68].end |
351.41909375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
346.03596875 |
transcript.pyannote[69].end |
346.72784375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
351.99284375 |
transcript.pyannote[70].end |
354.69284375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
355.38471875 |
transcript.pyannote[71].end |
358.70909375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
358.82721875 |
transcript.pyannote[72].end |
365.42534375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
365.49284375 |
transcript.pyannote[73].end |
366.03284375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
366.64034375 |
transcript.pyannote[74].end |
369.00284375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
369.17159375 |
transcript.pyannote[75].end |
371.38221875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
370.99409375 |
transcript.pyannote[76].end |
383.43096875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
380.88284375 |
transcript.pyannote[77].end |
381.32159375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
381.72659375 |
transcript.pyannote[78].end |
383.38034375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
383.43096875 |
transcript.pyannote[79].end |
384.03846875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
384.03846875 |
transcript.pyannote[80].end |
395.20971875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
384.17346875 |
transcript.pyannote[81].end |
385.92846875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
386.62034375 |
transcript.pyannote[82].end |
387.31221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
394.45034375 |
transcript.pyannote[83].end |
412.60784375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
397.28534375 |
transcript.pyannote[84].end |
397.75784375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
397.97721875 |
transcript.pyannote[85].end |
398.85471875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
412.23659375 |
transcript.pyannote[86].end |
424.42034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
417.26534375 |
transcript.pyannote[87].end |
417.63659375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
424.79159375 |
transcript.pyannote[88].end |
426.41159375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
426.91784375 |
transcript.pyannote[89].end |
427.45784375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
428.13284375 |
transcript.pyannote[90].end |
428.77409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
428.77409375 |
transcript.pyannote[91].end |
429.06096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
429.24659375 |
transcript.pyannote[92].end |
436.03034375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
436.03034375 |
transcript.pyannote[93].end |
446.23971875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
446.50971875 |
transcript.pyannote[94].end |
477.96471875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
477.96471875 |
transcript.pyannote[95].end |
478.03221875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
478.03221875 |
transcript.pyannote[96].end |
478.85909375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
478.85909375 |
transcript.pyannote[97].end |
478.90971875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
478.90971875 |
transcript.pyannote[98].end |
478.96034375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
478.96034375 |
transcript.pyannote[99].end |
479.41596875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
479.41596875 |
transcript.pyannote[100].end |
479.63534375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
479.63534375 |
transcript.pyannote[101].end |
480.31034375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
480.76596875 |
transcript.pyannote[102].end |
481.28909375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
481.28909375 |
transcript.pyannote[103].end |
481.71096875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
481.71096875 |
transcript.pyannote[104].end |
481.76159375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
481.76159375 |
transcript.pyannote[105].end |
481.96409375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
481.96409375 |
transcript.pyannote[106].end |
482.03159375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
482.03159375 |
transcript.pyannote[107].end |
488.96721875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
487.73534375 |
transcript.pyannote[108].end |
488.14034375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
488.24159375 |
transcript.pyannote[109].end |
491.93721875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
492.44346875 |
transcript.pyannote[110].end |
497.33721875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
497.50596875 |
transcript.pyannote[111].end |
504.18846875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
504.88034375 |
transcript.pyannote[112].end |
509.68971875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
510.29721875 |
transcript.pyannote[113].end |
515.76471875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
516.06846875 |
transcript.pyannote[114].end |
519.39284375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
519.93284375 |
transcript.pyannote[115].end |
527.10471875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
527.25659375 |
transcript.pyannote[116].end |
530.02409375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
530.02409375 |
transcript.pyannote[117].end |
537.97221875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
537.97221875 |
transcript.pyannote[118].end |
542.96721875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
540.25034375 |
transcript.pyannote[119].end |
541.87034375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
543.45659375 |
transcript.pyannote[120].end |
543.47346875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
543.47346875 |
transcript.pyannote[121].end |
548.38409375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
544.06409375 |
transcript.pyannote[122].end |
544.57034375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
544.94159375 |
transcript.pyannote[123].end |
547.38846875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
548.77221875 |
transcript.pyannote[124].end |
549.56534375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
549.56534375 |
transcript.pyannote[125].end |
549.61596875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
549.61596875 |
transcript.pyannote[126].end |
549.81846875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
549.81846875 |
transcript.pyannote[127].end |
549.91971875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
550.72971875 |
transcript.pyannote[128].end |
554.20596875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
554.50971875 |
transcript.pyannote[129].end |
558.77909375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
559.08284375 |
transcript.pyannote[130].end |
561.91784375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
562.25534375 |
transcript.pyannote[131].end |
567.09846875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
567.80721875 |
transcript.pyannote[132].end |
574.79346875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
571.53659375 |
transcript.pyannote[133].end |
571.70534375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
573.44346875 |
transcript.pyannote[134].end |
586.47096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
586.94346875 |
transcript.pyannote[135].end |
587.97284375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
587.97284375 |
transcript.pyannote[136].end |
594.48659375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
594.77346875 |
transcript.pyannote[137].end |
595.78596875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
596.30909375 |
transcript.pyannote[138].end |
597.30471875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
597.33846875 |
transcript.pyannote[139].end |
602.04659375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
602.38409375 |
transcript.pyannote[140].end |
602.65409375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
602.92409375 |
transcript.pyannote[141].end |
603.27846875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
603.27846875 |
transcript.pyannote[142].end |
603.78471875 |
transcript.whisperx[0].start |
1.251 |
transcript.whisperx[0].end |
26.37 |
transcript.whisperx[0].text |
謝謝主席 主席請速發部黃部長請部長委員好部長好 部長本席去年在省速發部 速產署還有治安署的預算的時候有針對政府機關使用深層式AI諮詢過部長 部長不知道您還記不記得那當時本席有要求治安署針對公務機關公部門 |
transcript.whisperx[1].start |
27.811 |
transcript.whisperx[1].end |
48.592 |
transcript.whisperx[1].text |
像是國防部、外交部等相關單位,就是我們討論是否要禁用CHAT、GPT,還有演繹相關的規範,當時有進行過討論。那隨著科技日新月幼,深層次AI不斷的創新,那就近期的AI發展就叫不漲。那中國的Deep-seek, |
transcript.whisperx[2].start |
49.032 |
transcript.whisperx[2].end |
67.49 |
transcript.whisperx[2].text |
在今年1月正式上架iOS跟安卓兩大平台然後在今年的1月27在美國地區的蘋果App Store下載的檔上超越ChatGBT那有關DeepSync的崛起部長應該有密切的掌握相關訊息吧我們很清楚而且我們內部有做測試 |
transcript.whisperx[3].start |
68.951 |
transcript.whisperx[3].end |
84.134 |
transcript.whisperx[3].text |
就是說有對這個Deep-seek的功能包括它安全性都有做一些評估啦這個委員這邊講的Deep-seek超越CHAT GPT我個人是不同意因為事實上在很多我說的超越CHAT GPT是它的下載量 |
transcript.whisperx[4].start |
85.745 |
transcript.whisperx[4].end |
111.88 |
transcript.whisperx[4].text |
下載量對但是這個以功能面來講跟安全性來講其實這個GDPT還是比較完整是這是部長您的看法吧就是我們評測之後的結果評測之後的結果那卓院長也在2月3號宣布公務機關全面機用Deep-Seek AI的服務確保國家的直通安全那行政院的政務委員吳承文也建議學術研究用途也應該在下載之後來斷網 |
transcript.whisperx[5].start |
113.121 |
transcript.whisperx[5].end |
138.233 |
transcript.whisperx[5].text |
使用比較安全那部長您在24號的時候表示Deep Sea Check有資安的風險所以從資安角度公部門要來禁用那這邊要就教部長一個問題本期在上次質詢的時候有舉出南韓的三星集團還有美國的蘋果還有亞馬遜等國際知名企業他們的內部都是禁止員工使用Check GPT因為有各自外洩的疑慮 |
transcript.whisperx[6].start |
139.033 |
transcript.whisperx[6].end |
167.86 |
transcript.whisperx[6].text |
我國政府目前只有禁用Deep-seek那對於CHAT GPT部長您的態度跟看法呢我們這個是我想都一樣就是說這些深圳市這個LLM都可能會你如果在上面做一些訓練或做一些這些查詢都有可能在這過程中資料會被被這個大圓模型來使用那當然就有可能會有資料外所以這個問題是LLM目前發展到什麼階段LLM現在最近發展非常快 |
transcript.whisperx[7].start |
169.204 |
transcript.whisperx[7].end |
195.761 |
transcript.whisperx[7].text |
是到什麼部長您繼續他現在已經像OpenAI已經到了就是他已經最近有一些新的版本像像那個就是O1就是他有一些4.5就是GPT以前4.0現在到4.5然後衍生了很多的相關的功能所以他是越來越powerful然後那當然他的資料也非常的多那原則上公家機關使用GPT不管怎麼樣都要小心因為在這過程中 |
transcript.whisperx[8].start |
196.201 |
transcript.whisperx[8].end |
222.372 |
transcript.whisperx[8].text |
尤其是雲端版是確實要小心因為目前印度政府例如財政部是禁止使用ChatGPT美國的國防部在內部也是禁止使用ChatGPT那包含法國他的政府機構也是禁用ChatGPT那德國呢他們有隱私的考量基於隱私的考量他們德國數據保護監管機構要求OpenAI必須要提供ChatGPT的透明度報告我們台灣有辦法同樣做到嗎 |
transcript.whisperx[9].start |
223.922 |
transcript.whisperx[9].end |
242.617 |
transcript.whisperx[9].text |
那個我們這邊剛才講就是說這個這個切記BT在公部門有些指引裡面當然就有提醒就是說公家的那個機敏治療不能夠去用切記BT來做處理所以這個這個是有一些規範目前是指引嘛可是沒有明確的說禁止使用在公 |
transcript.whisperx[10].start |
246.979 |
transcript.whisperx[10].end |
267.671 |
transcript.whisperx[10].text |
我們禁止使用是用危害國家自通安全產品的這樣的一個規範去禁止使用那因為千斤PT並沒有危害國家自通安全這個剛剛講就機敏製藥外洩是可能但是並不是危害到國家的所謂的自通安全或是國安的危害 |
transcript.whisperx[11].start |
267.691 |
transcript.whisperx[11].end |
296.252 |
transcript.whisperx[11].text |
部長您提到國家的資通安全那蘋果公司它是以防止機密資料的洩漏所以它禁止員工使用ChatGPT跟外部的AI工具那亞馬遜它也是基於資料安全跟隱私保護的考量禁止使用深層式AI那還有Spotify那包括美國的電信巨頭Verizon他們也提過禁止從公司使用ChatGPT以防止客戶的資訊外洩跟國家機密比起來國家機密不是更重要嗎 |
transcript.whisperx[12].start |
296.932 |
transcript.whisperx[12].end |
320.735 |
transcript.whisperx[12].text |
為什麼我們抒發部沒有跟相關部會來進行研議跟討論我們剛才講就是說我們能夠限制禁止使用是要根據法律那目前目前這一個我們Deep-seek的話是利用危害國家自動安全產品的這樣一個規範去限制但是呢CHAT-GPD並沒有我們沒有辦法證明但是我覺得國家自動安全 |
transcript.whisperx[13].start |
321.215 |
transcript.whisperx[13].end |
343.601 |
transcript.whisperx[13].text |
但是呢他有沒有說基民資料就公司的基民資料或什麼資料會外洩是有可能所以我們基本上我們是建議不要使用但是並沒有法規讓我們能夠去限制GPT的使用所以我想這兩個是主要還是要回答法規目前危害我國的自動安全只有中國大陸嗎就是目前來講就是 |
transcript.whisperx[14].start |
345.253 |
transcript.whisperx[14].end |
363.022 |
transcript.whisperx[14].text |
因為Deep-seek是來自中國的AI所以目前禁用Deep-seek難道只有中國會危害台灣的直通安全嗎目前是目前我們的定義是的確是對來自中國的產品我們是有些管制因為為什麼因為因為簡單來講他們 |
transcript.whisperx[15].start |
366.904 |
transcript.whisperx[15].end |
383.215 |
transcript.whisperx[15].text |
不管從各式各樣的安全的攻擊跟安全的那個是部長您提到攻擊在去年11月的時候您也有說過台灣每個每一秒遭受到的攻擊是1.5萬次1萬5千次平均是1萬5千次沒錯吧 |
transcript.whisperx[16].start |
384.356 |
transcript.whisperx[16].end |
410.614 |
transcript.whisperx[16].text |
是其他國家的四倍所以我們不只要抵禦來自中國的資通安全上面我們要考量到的危機那同樣的還有哪一些國家對台灣也發動過攻擊我們是看他攻擊的太陽所以基本上不是看地點因為他們會有跳板所以他們可能會跳到美國的一些電腦再回來攻擊台灣但是我們從太陽裡面的確發現很多攻擊是跟中國的所謂的網軍是有關聯的 |
transcript.whisperx[17].start |
412.395 |
transcript.whisperx[17].end |
427.16 |
transcript.whisperx[17].text |
那其實不只中國包括俄國還有東歐還有北韓都有啊對 但是部長您也有提到說現在很多深層式的AI APP它不只是CHAT GPT那它會連到CHAT GPT後面的引擎 |
transcript.whisperx[18].start |
428.2 |
transcript.whisperx[18].end |
443.464 |
transcript.whisperx[18].text |
沒有錯吧那如果單一禁止的話那Deep-Seek他也沒有辦法保證是否有其他的APP連到Deep-Seek後端的伺服器所以公家機關我們現在是禁止使用Deep-Seek但是呢對民間我們並沒有限制目前是這樣子 |
transcript.whisperx[19].start |
443.744 |
transcript.whisperx[19].end |
461.076 |
transcript.whisperx[19].text |
對民間沒有限制 那我們現在討論的是CHAT GPTCHAT GPT我們一樣就是我們只有我們目前沒有法規去限制CHAT GPT的使用但是我們有建議在基民資料在公部門裡面也盡量不要也不要使用CHAT GPT但是並沒有並沒有像 |
transcript.whisperx[20].start |
462.857 |
transcript.whisperx[20].end |
480.068 |
transcript.whisperx[20].text |
這個我們限制Deep-seek這樣就是因為Deep-seek主要它是回到危害國家自動安全產品這樣的一個規範去做這樣的限制就是說任何的限制不管是任何的不管是將來任何的軟體的限制都要有法可循所以如果沒有那個部長資安它涉及國家的基面還有科技發展其實不只 |
transcript.whisperx[21].start |
480.828 |
transcript.whisperx[21].end |
502.874 |
transcript.whisperx[21].text |
局限在單一個國家那也希望那個很明顯就是就是來自中國的產品確實很多是有製造這個不只是台灣部長您現在提到中國的話那我舉兩個歷史事件在1939年的時候德國還有蘇聯簽訂德蘇互不侵犯條例那1939年波蘭戰敗之後德蘇共同瓜分波蘭那相隔不到兩年德國納粹德國又發動了發動了攻擊那動員了370多萬人入侵蘇聯那另外 |
transcript.whisperx[22].start |
510.336 |
transcript.whisperx[22].end |
529.183 |
transcript.whisperx[22].text |
越南戰爭在1955年到1975年當時中共出兵的17萬人協助北越擊敗南越那造成越南全面的赤化那我們可以由此可知中共跟北越的關係十分密切那後來就因為國際政治的因素1979年中共與越南發生又發生了中越戰爭 |
transcript.whisperx[23].start |
530.003 |
transcript.whisperx[23].end |
549.64 |
transcript.whisperx[23].text |
所以在國際事務上沒有永遠的敵人也沒有永遠的朋友我們目前敵人就是中國就是很明顯就是就是要所以就是因為他來自中國然後部長您就是立馬當機立斷說我們台灣公部門不能使用dipsyncGPT他同樣也有風險存在 |
transcript.whisperx[24].start |
550.925 |
transcript.whisperx[24].end |
566.247 |
transcript.whisperx[24].text |
對它是它我們沒有法規去禁止它因為它不屬於危害國家自動安全產品這樣的一個category所以目前只能建議不要使用但是沒有辦法禁止使用沒有辦法OK好那Google昨天也發布了Gemma 3 |
transcript.whisperx[25].start |
567.864 |
transcript.whisperx[25].end |
586.289 |
transcript.whisperx[25].text |
部長你也知道現在還有一個AI agent叫做MANUS那接下來只要是來自中國的我們都是全面一律禁用嗎我們現在的其實不是我們啦像很多自由民主國家都會對中國的產品有很多的限制我想這個都是一樣的考量因為確實有自然的疑慮因為資料會送到中國去這個大家都知道的事情 |
transcript.whisperx[26].start |
587.029 |
transcript.whisperx[26].end |
603.636 |
transcript.whisperx[26].text |
是那我剛剛也舉例最後我剛剛部長我也舉例了在法國那在德國同樣的對於AI潛在的風險那他們是禁止公部門使用政府機構都是禁止使用check GPT的那希望部長您再回去想一想好謝謝OK |