iVOD / 159103

Field Value
IVOD_ID 159103
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159103
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T10:50:31+08:00
結束時間 2025-03-13T11:03:36+08:00
影片長度 00:13:05
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770fb7a6eea21e44788ae83d902c8d6dd6c2ff1cdb1affc83ff4d197f29790cd35605ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 10:50:31 - 11:03:36
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 4.68846875
transcript.pyannote[0].end 10.49346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 15.87659375
transcript.pyannote[1].end 16.58534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.06221875
transcript.pyannote[2].end 16.43346875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 17.05784375
transcript.pyannote[3].end 20.02784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.10846875
transcript.pyannote[4].end 18.30659375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.02784375
transcript.pyannote[5].end 20.12909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 20.12909375
transcript.pyannote[6].end 20.33159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 20.33159375
transcript.pyannote[7].end 20.39909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.39909375
transcript.pyannote[8].end 20.41596875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 20.41596875
transcript.pyannote[9].end 20.44971875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 21.10784375
transcript.pyannote[10].end 21.86721875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 21.93471875
transcript.pyannote[11].end 32.12721875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 27.06471875
transcript.pyannote[12].end 27.28409375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 32.83596875
transcript.pyannote[13].end 37.15596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 37.51034375
transcript.pyannote[14].end 39.41721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 39.92346875
transcript.pyannote[15].end 47.46659375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 49.91346875
transcript.pyannote[16].end 49.93034375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 49.93034375
transcript.pyannote[17].end 52.93409375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 53.42346875
transcript.pyannote[18].end 57.94596875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 58.19909375
transcript.pyannote[19].end 58.60409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 58.60409375
transcript.pyannote[20].end 61.82721875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 61.96221875
transcript.pyannote[21].end 64.93221875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 65.32034375
transcript.pyannote[22].end 67.12596875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 68.02034375
transcript.pyannote[23].end 74.19659375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 72.15471875
transcript.pyannote[24].end 72.91409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 74.95596875
transcript.pyannote[25].end 82.29659375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 82.56659375
transcript.pyannote[26].end 102.66471875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 82.66784375
transcript.pyannote[27].end 83.10659375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 102.02346875
transcript.pyannote[28].end 107.84534375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 106.79909375
transcript.pyannote[29].end 107.32221875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 107.84534375
transcript.pyannote[30].end 108.19971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 108.19971875
transcript.pyannote[31].end 130.03596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 112.43534375
transcript.pyannote[32].end 113.34659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 120.78846875
transcript.pyannote[33].end 120.80534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 120.80534375
transcript.pyannote[34].end 121.21034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 121.21034375
transcript.pyannote[35].end 121.22721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 123.20159375
transcript.pyannote[36].end 123.97784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 123.97784375
transcript.pyannote[37].end 123.99471875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 126.47534375
transcript.pyannote[38].end 126.81284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 130.37346875
transcript.pyannote[39].end 131.28471875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 131.87534375
transcript.pyannote[40].end 131.90909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 131.90909375
transcript.pyannote[41].end 132.04409375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 132.04409375
transcript.pyannote[42].end 133.10721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 132.19596875
transcript.pyannote[43].end 132.93846875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 133.10721875
transcript.pyannote[44].end 133.91721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 133.32659375
transcript.pyannote[45].end 138.84471875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 134.17034375
transcript.pyannote[46].end 134.49096875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 137.49471875
transcript.pyannote[47].end 139.63784375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 139.57034375
transcript.pyannote[48].end 143.33346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 141.49409375
transcript.pyannote[49].end 143.99159375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 143.75534375
transcript.pyannote[50].end 148.63221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 148.63221875
transcript.pyannote[51].end 148.96971875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 148.96971875
transcript.pyannote[52].end 152.68221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 153.18846875
transcript.pyannote[53].end 156.63096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 157.55909375
transcript.pyannote[54].end 161.74409375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 162.60471875
transcript.pyannote[55].end 167.09346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 166.26659375
transcript.pyannote[56].end 172.81409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 172.37534375
transcript.pyannote[57].end 177.50534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 176.35784375
transcript.pyannote[58].end 181.97721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 182.16284375
transcript.pyannote[59].end 184.99784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 185.50409375
transcript.pyannote[60].end 187.12409375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 187.12409375
transcript.pyannote[61].end 187.14096875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 187.14096875
transcript.pyannote[62].end 187.15784375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 187.15784375
transcript.pyannote[63].end 191.49471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 189.89159375
transcript.pyannote[64].end 191.47784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 191.49471875
transcript.pyannote[65].end 191.52846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 191.52846875
transcript.pyannote[66].end 191.57909375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 191.57909375
transcript.pyannote[67].end 191.62971875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 191.62971875
transcript.pyannote[68].end 191.64659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 191.64659375
transcript.pyannote[69].end 191.89971875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 191.89971875
transcript.pyannote[70].end 191.95034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 191.95034375
transcript.pyannote[71].end 191.96721875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 191.96721875
transcript.pyannote[72].end 192.03471875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 192.03471875
transcript.pyannote[73].end 192.96284375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 192.96284375
transcript.pyannote[74].end 204.04971875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 194.24534375
transcript.pyannote[75].end 195.52784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 204.55596875
transcript.pyannote[76].end 204.64034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 204.77534375
transcript.pyannote[77].end 212.92596875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 208.57221875
transcript.pyannote[78].end 209.93909375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 212.75721875
transcript.pyannote[79].end 223.30409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 222.29159375
transcript.pyannote[80].end 222.69659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 222.78096875
transcript.pyannote[81].end 225.10971875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 225.10971875
transcript.pyannote[82].end 225.12659375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 225.12659375
transcript.pyannote[83].end 225.14346875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 225.14346875
transcript.pyannote[84].end 225.17721875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 225.34596875
transcript.pyannote[85].end 230.08784375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 230.49284375
transcript.pyannote[86].end 230.50971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 230.50971875
transcript.pyannote[87].end 231.23534375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 231.23534375
transcript.pyannote[88].end 231.48846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 231.77534375
transcript.pyannote[89].end 238.23846875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 238.00221875
transcript.pyannote[90].end 238.40721875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 238.40721875
transcript.pyannote[91].end 238.42409375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 238.42409375
transcript.pyannote[92].end 239.40284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 239.40284375
transcript.pyannote[93].end 239.60534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 239.60534375
transcript.pyannote[94].end 242.33909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 243.25034375
transcript.pyannote[95].end 250.60784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 250.60784375
transcript.pyannote[96].end 250.62471875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 252.17721875
transcript.pyannote[97].end 264.37784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 264.56346875
transcript.pyannote[98].end 270.58784375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 270.08159375
transcript.pyannote[99].end 271.95471875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 271.39784375
transcript.pyannote[100].end 273.33846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 272.47784375
transcript.pyannote[101].end 274.55346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 275.83596875
transcript.pyannote[102].end 276.24096875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 276.44346875
transcript.pyannote[103].end 279.59909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 280.22346875
transcript.pyannote[104].end 280.96596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 281.67471875
transcript.pyannote[105].end 282.48471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 282.85596875
transcript.pyannote[106].end 284.71221875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 284.88096875
transcript.pyannote[107].end 285.31971875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 286.21409375
transcript.pyannote[108].end 287.17596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 288.34034375
transcript.pyannote[109].end 311.74596875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 312.26909375
transcript.pyannote[110].end 313.58534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 313.82159375
transcript.pyannote[111].end 315.64409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 314.41221875
transcript.pyannote[112].end 320.99346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 320.99346875
transcript.pyannote[113].end 322.52909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 321.83721875
transcript.pyannote[114].end 324.73971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 324.79034375
transcript.pyannote[115].end 325.80284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 325.80284375
transcript.pyannote[116].end 326.05596875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 326.05596875
transcript.pyannote[117].end 327.42284375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 326.20784375
transcript.pyannote[118].end 326.35971875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 326.35971875
transcript.pyannote[119].end 327.23721875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 327.42284375
transcript.pyannote[120].end 347.77409375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 328.46909375
transcript.pyannote[121].end 334.24034375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 349.37721875
transcript.pyannote[122].end 350.15346875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 350.47409375
transcript.pyannote[123].end 351.40221875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 351.84096875
transcript.pyannote[124].end 359.16471875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 359.36721875
transcript.pyannote[125].end 371.95596875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 364.42971875
transcript.pyannote[126].end 365.91471875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 366.38721875
transcript.pyannote[127].end 368.10846875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 373.64346875
transcript.pyannote[128].end 379.85346875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 376.96784375
transcript.pyannote[129].end 378.30096875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 380.34284375
transcript.pyannote[130].end 383.66721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 383.97096875
transcript.pyannote[131].end 385.08471875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 386.19846875
transcript.pyannote[132].end 388.64534375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 389.13471875
transcript.pyannote[133].end 389.91096875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 390.07971875
transcript.pyannote[134].end 392.03721875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 392.50971875
transcript.pyannote[135].end 398.98971875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 399.66471875
transcript.pyannote[136].end 408.38909375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 407.00534375
transcript.pyannote[137].end 407.44409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 408.23721875
transcript.pyannote[138].end 414.00846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 414.43034375
transcript.pyannote[139].end 416.99534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 417.36659375
transcript.pyannote[140].end 418.81784375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 419.39159375
transcript.pyannote[141].end 421.11284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 421.23096875
transcript.pyannote[142].end 425.71971875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 426.07409375
transcript.pyannote[143].end 439.72596875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 440.13096875
transcript.pyannote[144].end 450.03659375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 450.28971875
transcript.pyannote[145].end 451.80846875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 452.29784375
transcript.pyannote[146].end 455.20034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 455.99346875
transcript.pyannote[147].end 457.02284375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 457.69784375
transcript.pyannote[148].end 472.36221875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 468.43034375
transcript.pyannote[149].end 468.98721875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 472.36221875
transcript.pyannote[150].end 484.00596875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 483.21284375
transcript.pyannote[151].end 487.46534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 486.35159375
transcript.pyannote[152].end 497.26971875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 488.96721875
transcript.pyannote[153].end 489.30471875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 492.42659375
transcript.pyannote[154].end 492.49409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 492.56159375
transcript.pyannote[155].end 492.57846875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 492.69659375
transcript.pyannote[156].end 492.93284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 497.48909375
transcript.pyannote[157].end 499.69971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 499.88534375
transcript.pyannote[158].end 501.65721875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 501.99471875
transcript.pyannote[159].end 514.80284375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 515.30909375
transcript.pyannote[160].end 536.92596875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 534.29346875
transcript.pyannote[161].end 535.33971875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 536.45346875
transcript.pyannote[162].end 538.78221875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 538.71471875
transcript.pyannote[163].end 538.76534375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 538.78221875
transcript.pyannote[164].end 546.59534375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 538.84971875
transcript.pyannote[165].end 538.93409375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 539.03534375
transcript.pyannote[166].end 540.21659375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 546.59534375
transcript.pyannote[167].end 549.53159375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 549.68346875
transcript.pyannote[168].end 551.97846875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 552.23159375
transcript.pyannote[169].end 553.81784375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 555.94409375
transcript.pyannote[170].end 558.88034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 559.67346875
transcript.pyannote[171].end 560.46659375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 560.78721875
transcript.pyannote[172].end 562.18784375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 562.28909375
transcript.pyannote[173].end 571.45221875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 564.06096875
transcript.pyannote[174].end 565.29284375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 568.07721875
transcript.pyannote[175].end 571.09784375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 571.45221875
transcript.pyannote[176].end 574.35471875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 571.73909375
transcript.pyannote[177].end 576.97034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 575.28284375
transcript.pyannote[178].end 575.82284375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 576.44721875
transcript.pyannote[179].end 581.18909375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 582.26909375
transcript.pyannote[180].end 584.15909375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 584.53034375
transcript.pyannote[181].end 587.21346875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 586.45409375
transcript.pyannote[182].end 590.13284375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 590.40284375
transcript.pyannote[183].end 590.53784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 591.12846875
transcript.pyannote[184].end 592.61346875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 593.11971875
transcript.pyannote[185].end 593.89596875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 594.16596875
transcript.pyannote[186].end 595.41471875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 594.90846875
transcript.pyannote[187].end 595.60034375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 595.49909375
transcript.pyannote[188].end 599.88659375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 599.88659375
transcript.pyannote[189].end 602.50221875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 600.52784375
transcript.pyannote[190].end 601.03409375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 601.23659375
transcript.pyannote[191].end 603.00846875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 603.00846875
transcript.pyannote[192].end 603.02534375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 603.02534375
transcript.pyannote[193].end 603.32909375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 603.32909375
transcript.pyannote[194].end 607.98659375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 603.46409375
transcript.pyannote[195].end 605.26971875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 607.98659375
transcript.pyannote[196].end 608.15534375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 608.15534375
transcript.pyannote[197].end 608.22284375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 608.22284375
transcript.pyannote[198].end 613.09971875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 613.38659375
transcript.pyannote[199].end 615.22596875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 616.17096875
transcript.pyannote[200].end 617.06534375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 617.06534375
transcript.pyannote[201].end 619.49534375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 618.02721875
transcript.pyannote[202].end 618.38159375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 618.48284375
transcript.pyannote[203].end 620.50784375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 620.50784375
transcript.pyannote[204].end 622.27971875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 620.52471875
transcript.pyannote[205].end 620.55846875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 623.96721875
transcript.pyannote[206].end 624.84471875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 625.30034375
transcript.pyannote[207].end 625.85721875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 625.97534375
transcript.pyannote[208].end 627.03846875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 628.91159375
transcript.pyannote[209].end 630.00846875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 630.17721875
transcript.pyannote[210].end 633.40034375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 632.11784375
transcript.pyannote[211].end 639.52596875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 638.24346875
transcript.pyannote[212].end 641.36534375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 639.71159375
transcript.pyannote[213].end 646.29284375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 647.64284375
transcript.pyannote[214].end 648.36846875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 649.00971875
transcript.pyannote[215].end 649.38096875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 650.02221875
transcript.pyannote[216].end 653.41409375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 653.54909375
transcript.pyannote[217].end 654.19034375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 654.32534375
transcript.pyannote[218].end 654.42659375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 654.42659375
transcript.pyannote[219].end 654.57846875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 654.83159375
transcript.pyannote[220].end 656.04659375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 656.56971875
transcript.pyannote[221].end 660.09659375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 661.64909375
transcript.pyannote[222].end 662.79659375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 662.03721875
transcript.pyannote[223].end 662.25659375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 663.26909375
transcript.pyannote[224].end 663.55596875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 663.55596875
transcript.pyannote[225].end 663.57284375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 664.06221875
transcript.pyannote[226].end 664.07909375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 664.07909375
transcript.pyannote[227].end 664.14659375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 664.14659375
transcript.pyannote[228].end 669.34409375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 664.87221875
transcript.pyannote[229].end 665.78346875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 667.11659375
transcript.pyannote[230].end 667.80846875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 669.58034375
transcript.pyannote[231].end 676.22909375
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 676.98846875
transcript.pyannote[232].end 691.04534375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 680.58284375
transcript.pyannote[233].end 681.34221875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 691.04534375
transcript.pyannote[234].end 695.73659375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 696.59721875
transcript.pyannote[235].end 699.85409375
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 697.44096875
transcript.pyannote[236].end 704.30909375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 705.11909375
transcript.pyannote[237].end 706.60409375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 707.48159375
transcript.pyannote[238].end 713.18534375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 712.32471875
transcript.pyannote[239].end 715.75034375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 714.07971875
transcript.pyannote[240].end 723.37784375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 723.66471875
transcript.pyannote[241].end 733.75596875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 733.75596875
transcript.pyannote[242].end 745.19721875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 734.04284375
transcript.pyannote[243].end 734.44784375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 736.43909375
transcript.pyannote[244].end 737.55284375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 739.52721875
transcript.pyannote[245].end 739.76346875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 740.74221875
transcript.pyannote[246].end 741.02909375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 741.06284375
transcript.pyannote[247].end 741.16409375
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 743.52659375
transcript.pyannote[248].end 743.88096875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 745.19721875
transcript.pyannote[249].end 747.12096875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 746.37846875
transcript.pyannote[250].end 746.76659375
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 747.12096875
transcript.pyannote[251].end 753.24659375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 747.74534375
transcript.pyannote[252].end 748.82534375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 753.51659375
transcript.pyannote[253].end 754.36034375
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 755.76096875
transcript.pyannote[254].end 756.23346875
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 757.17846875
transcript.pyannote[255].end 759.81096875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 759.42284375
transcript.pyannote[256].end 760.33409375
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 760.33409375
transcript.pyannote[257].end 771.43784375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 760.38471875
transcript.pyannote[258].end 760.45221875
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 762.49409375
transcript.pyannote[259].end 762.66284375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 763.67534375
transcript.pyannote[260].end 764.28284375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 766.49346875
transcript.pyannote[261].end 768.61971875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 769.27784375
transcript.pyannote[262].end 769.88534375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 770.30721875
transcript.pyannote[263].end 772.77096875
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 772.77096875
transcript.pyannote[264].end 773.91846875
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 774.25596875
transcript.pyannote[265].end 777.29346875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 777.71534375
transcript.pyannote[266].end 782.44034375
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 778.66034375
transcript.pyannote[267].end 778.76159375
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 778.76159375
transcript.pyannote[268].end 778.93034375
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 778.93034375
transcript.pyannote[269].end 780.38159375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 781.63034375
transcript.pyannote[270].end 784.06034375
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 783.57096875
transcript.pyannote[271].end 784.49909375
transcript.whisperx[0].start 5.087
transcript.whisperx[0].end 31.857
transcript.whisperx[0].text 主席 二位委員出列習慣了 主席請楊總裁我想現在全國的所有一些做貿易一些企業界大家都很關心就是新台幣兌美元匯率的走向那我想請教一下
transcript.whisperx[1].start 32.984
transcript.whisperx[1].end 47.325
transcript.whisperx[1].text 現在美國總統川普上任了以後那台幣未來的走向究竟是要穩定的曲扁還是要穩定的要升值
transcript.whisperx[2].start 50.49
transcript.whisperx[2].end 73.752
transcript.whisperx[2].text 我跟委員報告事實上我都一直在講就是說匯率還是由市場來決定的中央銀行在外匯市場他沒辦法就是說因為他供需所以他要貶的時候中央銀行不能就說強迫他要升中央銀行所能夠做的
transcript.whisperx[3].start 75.014
transcript.whisperx[3].end 90.64
transcript.whisperx[3].text 他要升的時候你也要升只是中央銀行能夠做的就是說讓他的波動度呢不要太大就是這樣子而已所以才會就是說中央銀行主扁喔對有可能就是說我們主扁為什麼我們要讓他的波動度減緩我們是主升喔也可能我們主升為什麼我們要讓這個新台幣的升幅呢要能夠他的波動度不要太大就是這樣子而已
transcript.whisperx[4].start 103.345
transcript.whisperx[4].end 129.439
transcript.whisperx[4].text 那既然從你剛剛所說的供需的需求來看的話美國總統川普他是美國優先嘛是不是那我們也可以看到台積電他現在準備要投資多少一千億的美元在美國是不是增加啦增加嘛那表示說他有一千億會匯到美國去所以他需要美元的需求就會比較強
transcript.whisperx[5].start 130.407
transcript.whisperx[5].end 156.12
transcript.whisperx[5].text 那也不一定不然他要投資美國他就說四年嘛這個是四年他就說四年所以四年每年要投多少深造大概也是八九千億一千億如果說除以四就要一年兩百五十億那兩百五十億我跟委員報告事實上呢台積電他在賺美金他非常會賺
transcript.whisperx[6].start 157.728
transcript.whisperx[6].end 184.816
transcript.whisperx[6].text 所以呢也就是說他事實上他不必要在外匯市場去買美金他自己賺的美金他就足夠他到那邊去總裁你的意思是說他以後台積電全世界賺的錢如果賺美金的部分他就不會回台灣不因為我跟委員報告請問他在美國的投資的資本支出他的金流是怎麼樣他的金流就是他的美金賺得啊
transcript.whisperx[7].start 185.543
transcript.whisperx[7].end 190.867
transcript.whisperx[7].text 他賺的直接就投美國所以你這樣講就是錢不會進來台灣啊?錢不會進來台灣啊?不過我跟那個250億就台積電來講250億不算什麼
transcript.whisperx[8].start 204.912
transcript.whisperx[8].end 226.625
transcript.whisperx[8].text 可是對台灣的一些企業講,不要說是美金啦你光是台幣一億兩億,對中小企業影響都很大對,但是台積電它是比較特殊啦因為台積電,台積電它所賺的美金,我比那個比那些的那個什麼,一些的那個那台積電每一年賺多少美金?據我了解呢,我據我了解
transcript.whisperx[9].start 230.543
transcript.whisperx[9].end 250.411
transcript.whisperx[9].text 好,請說台積電在2024年,去年是900億美金左右今年預估會到1000億美金以上是,所以那我請教你他現在台積電,等一下局長你等一下因為你這個途徑可能比較知道他賺了錢,他錢不用匯回台灣嗎?就在當地直接投資掉是不是?
transcript.whisperx[10].start 252.716
transcript.whisperx[10].end 278.663
transcript.whisperx[10].text 根據我們了解啦那他上次的投資他有在美國發債有部分的資金會從會在美國的子公司會發美元的債券那另外一個部分就是每年的營收的成長那當然每年的營收就是剛剛跟委員報告的一年像去年是900億今年預估會到1000億900億是台幣還是美金美金美金美金啦好謝謝總裁那這個數字你就可以知道他是相當龐大的齁台積電
transcript.whisperx[11].start 281.701
transcript.whisperx[11].end 286.974
transcript.whisperx[11].text 跑掉了以後對台灣經濟的影響有多大
transcript.whisperx[12].start 289.013
transcript.whisperx[12].end 305.277
transcript.whisperx[12].text 台積電對第一個我是覺得啦如果說就一個台積電不過講到這裡的時候我才跟委員報告基本上我們的主管機關也一直在強調基本上80%的業務還是集中在台灣
transcript.whisperx[13].start 312.318
transcript.whisperx[13].end 333.798
transcript.whisperx[13].text 那個是比較低階的啊沒有沒有因為台積電慢慢的高階的通通會移到美國去啊你不信的話你聽那個美國總統川普講的話他是老實的啊甚至還講到地緣關係發生變化的時候我不是說沒有你怕啦
transcript.whisperx[14].start 334.418
transcript.whisperx[14].end 347.434
transcript.whisperx[14].text 但是呢 我覺得就是說我們的主管機關一直在強調台積電的A5的重心還是在台灣這是第一個第二個呢 我們它的一個主要的研發中心還是在台灣
transcript.whisperx[15].start 350.641
transcript.whisperx[15].end 362.726
transcript.whisperx[15].text 總裁請問他所有的技術跟人才過去美國以後以後美國的員工大概有多少人他要成立一個研發中心在那邊為什麼美國總統川普他會說這些都是被偷走的
transcript.whisperx[16].start 374.578
transcript.whisperx[16].end 377.76
transcript.whisperx[16].text 不是 他只是說我個人覺得啦川普總統他這麼說呢是他的一個話術
transcript.whisperx[17].start 386.363
transcript.whisperx[17].end 413.474
transcript.whisperx[17].text 它是一個話術它是一個策略那基本上我都總覺得事實上我們台灣的這個半導體我們的直通訊這個是美國它最需要的所以美國在這一方面所以它就半導體這個部分它就盯著台灣因為我們在這個強項從以上的數據其實只是冰山的一角你有沒有算過
transcript.whisperx[18].start 415.455
transcript.whisperx[18].end 438.876
transcript.whisperx[18].text 台積電過去以後它周邊的相關的周邊的這些上下游大概有幾家會過去?不過我總覺得就是說當你在做國際化的時候你的選擇當然我在這方面我不是專家我只是說我個人的直覺
transcript.whisperx[19].start 441.358
transcript.whisperx[19].end 454.947
transcript.whisperx[19].text 因為從國際貿易的一個觀點來看的話他那邊去接近市場接近他的客戶我總覺得這個也是很好第二個你要想想看事實上我們台灣第一個我們的土地
transcript.whisperx[20].start 456.018
transcript.whisperx[20].end 479.281
transcript.whisperx[20].text 也不夠啊美國他的苦地大所以就是說他的資源台積電到美國去投資的時候他也可以利用到美國的資源當然美國的資源有些地方是成本會比較高總裁剛本席請教的是說台積電過去了以後周邊的上下游的企業
transcript.whisperx[21].start 480.482
transcript.whisperx[21].end 501.483
transcript.whisperx[21].text 還有一些資本都已經過去慢慢過去這個也不一定請問這個也不一定為什麼呢已經就有一定的因為過去有一些做無成事的通通過去了還有上下游周邊的很多都會過去有沒有算過這些如果說一起過去的話它對台灣的影響會有多大
transcript.whisperx[22].start 503.044
transcript.whisperx[22].end 518.881
transcript.whisperx[22].text 我想企業是很會算的啦而且我總覺得他們是很靈活的據我了解呢現在就是說要到美國去的那些呢大部分都是在墨西哥啦墨西哥呢他就說在美國他也有產生墨西哥他是比較龐大
transcript.whisperx[23].start 519.642
transcript.whisperx[23].end 531.146
transcript.whisperx[23].text 那現在就是說因為他要對墨西哥扣稅所以他也就是說我們台商在墨西哥那邊他就想就是說那如果說在這樣情況之下在關稅的情況之下他可能把他的一個作業線要挪到美國去所以你的意思是說都沒關係就對了不是這樣子
transcript.whisperx[24].start 542.51
transcript.whisperx[24].end 553.783
transcript.whisperx[24].text 企業它的一個國際化我總覺得這一條路還是要走的我們一看到台積電一去美國的時候就發現 你有沒有發現一個事情台積電股票漲還跌一千兩百多塊馬上跌破一千塊
transcript.whisperx[25].start 559.773
transcript.whisperx[25].end 574.125
transcript.whisperx[25].text 市場告訴了總裁什麼總裁告訴你什麼大家的害怕完全就展現出來了這還有一個影響請問台積電是台灣的護國神山你知道它的市值有多少
transcript.whisperx[26].start 582.575
transcript.whisperx[26].end 584.739
transcript.whisperx[26].text 他的柿子我現在有三條所以他沒長一點
transcript.whisperx[27].start 591.435
transcript.whisperx[27].end 614.791
transcript.whisperx[27].text 對台股的影響有多大?他是八點嘛所以你看台灣現在股市已經連番下跌這幾天跌很多不過我們的股我跟委員報告我們的兩萬多到目前為止兩萬多還好啦那總裁台積電跑掉了以後你覺得台股兩萬點是不是常態?
transcript.whisperx[28].start 616.512
transcript.whisperx[28].end 626.479
transcript.whisperx[28].text 這個我不敢預測因為我不是股市專家台積電跑掉了以後台股有沒有機會上看三萬點
transcript.whisperx[29].start 629.276
transcript.whisperx[29].end 648.078
transcript.whisperx[29].text 這個我不曉得,我不是股市的專家這只是一個代表對他的經濟未來的期待跟一個感覺就好像黃金國際的首飾一樣本席在七年前
transcript.whisperx[30].start 650.066
transcript.whisperx[30].end 667.26
transcript.whisperx[30].text 六年前 五年前 三年前 還有去年多次建議央行總裁要不要考慮買進黃金總裁的回答是我建議的時候是每盎司1270塊的時候現在黃金每盎司多少錢
transcript.whisperx[31].start 677.268
transcript.whisperx[31].end 698.538
transcript.whisperx[31].text 我剛 我在去年的那個總裁三千塊我也有跟委員報告啦我也佩服委員啦但是呢 我也說但是中央銀行的考量是又跟一般的不大一樣這個不考量那個虛擬貨幣你現在態度支不支持虛擬貨幣比特幣 川普總統所講的五大虛擬貨幣他要作為什麼 戰略儲備
transcript.whisperx[32].start 705.271
transcript.whisperx[32].end 734.611
transcript.whisperx[32].text 現在你是不是也要跟進到目前為止我們是不會啦不過我們會密切關注啦你現在支不支持台灣做虛擬貨幣因為那個什麼叫戰略儲備的這個名詞這個東西虛擬的比特幣還有其他的虛擬貨幣是不是能夠當作戰略儲備這個我到目前為止我還是稍微有一點Question
transcript.whisperx[33].start 735.231
transcript.whisperx[33].end 755.978
transcript.whisperx[33].text 希望你多考量啊但是你不要違背川普啊你不要忤逆川普啊全世界的潮流在改變的時候我們還要顧不知風嗎我建議你虛擬貨幣比特幣的時候是一枚六千塊美金現在多少了多少
transcript.whisperx[34].start 757.256
transcript.whisperx[34].end 773.221
transcript.whisperx[34].text 之前漲到10萬塊美金一枚我只是提醒央行世界在變的時候我們一定要顧不知風嗎世界在改變的時候我們沒有一點檢討或思考的空間嗎謝謝委員新台幣的數字貨幣什麼時候要推出我們還在往前我們這個會期還在等待謝謝
gazette.lineno 733
gazette.blocks[0][0] 羅委員明才:(10時50分)主席、各位委員、出列席官員,大家好。主席,請楊總裁。
gazette.blocks[1][0] 主席:楊總裁請。
gazette.blocks[2][0] 楊總裁金龍:羅委員早。
gazette.blocks[3][0] 羅委員明才:楊總裁,早安。我想現在全國所有做貿易的企業界大家都很關心新臺幣兌美元匯率的走向,我想請教一下,現在美國總統川普上任了以後,臺幣未來的走向究竟是要穩定的趨貶還是要穩定的升值?
gazette.blocks[4][0] 楊總裁金龍:我跟委員報告,事實上我一直在講的就是匯率還是由市場來決定,中央銀行在外匯市場沒辦法……就是說,因為這牽涉到供需嘛,所以它要貶的時候,中央銀行也不能強迫它要升,中央銀行所能夠做的,它要升的時候也……只是讓它的波動度不要太大,就這樣子而已。
gazette.blocks[5][0] 羅委員明才:是,既然……
gazette.blocks[6][0] 楊總裁金龍:所以也才會有人說中央銀行阻貶,對,我們有可能阻貶,為什麼?我們要讓他的波動度減緩。但也可能我們會阻升,為什麼?我們要讓新臺幣升幅的波動度不要太大,就是這樣子而已。
gazette.blocks[7][0] 羅委員明才:謝謝。從你剛剛所說供需的需求來看,美國總統川普是美國優先,是不是?
gazette.blocks[8][0] 楊總裁金龍:是,沒錯。
gazette.blocks[9][0] 羅委員明才:我們也可以看到現在台積電準備要投資多少?一千億美元在美國,是不是?
gazette.blocks[10][0] 楊總裁金龍:增加。
gazette.blocks[11][0] 羅委員明才:表示有一千億會匯到美國去,所以美元的需求就會比較強?
gazette.blocks[12][0] 楊總裁金龍:那也不一定。
gazette.blocks[13][0] 羅委員明才:不然他投資美國要用什麼投?
gazette.blocks[14][0] 楊總裁金龍:他是說四年,要用四年……
gazette.blocks[15][0] 羅委員明才:四年的話每一年要投多少?
gazette.blocks[16][0] 楊總裁金龍:那是由他來申請……
gazette.blocks[17][0] 羅委員明才:三兆臺幣,每年大概是八、九千億……
gazette.blocks[18][0] 楊總裁金龍:對,一千億美元除以四,一年就要兩百五十億。我跟委員報告,事實上台積電非常會賺美金,所以他不需要到外匯市場去買美金,他自己賺的美金就足夠讓他到那邊去……
gazette.blocks[19][0] 羅委員明才:總裁,你的意思是以後台積電在全世界賺的錢,譬如賺的美金就不匯回臺灣了嗎?
gazette.blocks[20][0] 楊總裁金龍:我跟委員報告……
gazette.blocks[21][0] 羅委員明才:請問他在美國投資的資本支出與金流是怎麼樣?
gazette.blocks[22][0] 楊總裁金龍:金流就是他賺的美金。
gazette.blocks[23][0] 羅委員明才:他賺的直接就投美國?
gazette.blocks[24][0] 楊總裁金龍:對,他賺的就投美國……
gazette.blocks[25][0] 羅委員明才:照你講的,錢不會進來臺灣?
gazette.blocks[26][0] 楊總裁金龍:不、不,就台積電來講,每年兩百五十億不算什麼!
gazette.blocks[27][0] 羅委員明才:可是對臺灣的一些企業來講,不要說美金,光臺幣一億、兩億對中小企業影響都很大!
gazette.blocks[28][0] 楊總裁金龍:對、對,但台積電就是比較特殊!因為台積電一家所賺的美金比那些……
gazette.blocks[29][0] 羅委員明才:總裁,台積電每年賺多少美金?
gazette.blocks[30][0] 楊總裁金龍:據我了解……好,請外匯局長說明。
gazette.blocks[31][0] 羅委員明才:請說。
gazette.blocks[32][0] 蔡局長烱民:台積電在去年(2024年)是賺九百億左右,今年預估會到一千億以上的營收。
gazette.blocks[33][0] 羅委員明才:局長,等一下,我想你可能比較知道途徑。台積電賺的錢不用匯回臺灣嗎?就在直接在當地投資掉,是不是?
gazette.blocks[34][0] 蔡局長烱民:根據我們了解,上次的投資台積電有在美國發債,即有部分的資金由在美國的子公司發美元債券,另外一部分就是每年的營收成長。當然,每年的營收就是剛剛跟委員報告的,像去年是九百億,今年預估會到一千……
gazette.blocks[35][0] 羅委員明才:九百億是臺幣還是美金?
gazette.blocks[36][0] 蔡局長烱民:美金。
gazette.blocks[37][0] 羅委員明才:謝謝。總裁,從數字就可以知道是相當龐大的,台積電跑掉了以後,對臺灣經濟的影響會有多大?
gazette.blocks[38][0] 楊總裁金龍:台積電對……我覺得就台積電……講到這裡,我要跟委員報告,我們的主管機關經濟部也一直在強調,基本上80%的業務還是集中在臺灣……
gazette.blocks[39][0] 羅委員明才:那是比較低階的。
gazette.blocks[40][0] 楊總裁金龍:沒有、沒有,因為台積電……
gazette.blocks[41][0] 羅委員明才:高階的會慢慢的、通通移到美國去,不信的話你去聽美國總統川普講的話,他老神在在!
gazette.blocks[42][0] 楊總裁金龍:我對產業……
gazette.blocks[43][0] 羅委員明才:甚至還講到地緣關係發生變化時……
gazette.blocks[44][0] 楊總裁金龍:我不是說我很瞭解……
gazette.blocks[45][0] 羅委員明才:他根本沒有在怕的!
gazette.blocks[46][0] 楊總裁金龍:但是我們的主管機關一直在強調,台積電的業務重心還是在臺灣,這是第一個。第二個,其主要研發中心還是在臺灣,還是在臺灣。
gazette.blocks[47][0] 羅委員明才:總裁我請問你,所有的技術跟人才過去美國,以後美國的員工大概有多少人?
gazette.blocks[48][0] 楊總裁金龍:這個我不曉得。
gazette.blocks[49][0] 羅委員明才:他要在那邊成立一個研發中心……
gazette.blocks[50][0] 楊總裁金龍:不,據我了解,他的研發中心是對產業線……
gazette.blocks[51][0] 羅委員明才:為什麼美國總統川普會說這些都是被偷走的?
gazette.blocks[52][0] 楊總裁金龍:不是,他只是說……
gazette.blocks[53][0] 羅委員明才:是臺灣偷走的?
gazette.blocks[54][0] 楊總裁金龍:我個人覺得川普總統這麼說是他的話術,是一個策略,事實上臺灣的半導體、我們的資通訊是美國最需要的,所以美國就半導體這部分盯著臺灣,因為這方面是我們的強項!
gazette.blocks[55][0] 羅委員明才:以上的數據其實只是冰山一角!你有沒有算過台積電過去以後,周邊相關上下游大概有幾家會過去?
gazette.blocks[56][0] 楊總裁金龍:我總覺得當你在做國際化的時候,你的選擇……當然,這方面我不是專家,我只是說我個人的直覺。因為從國際貿易的觀點來看,他去那邊接近市場、接近他的客戶,我總覺得這個很好。第二個,你要想想看,臺灣的土地不夠,而美國土地大……
gazette.blocks[57][0] 羅委員明才:總裁……
gazette.blocks[58][0] 楊總裁金龍:所以台積電到美國投資的時候,可以利用到美國的資源。當然,美國的資源有些地方成本會比較高。
gazette.blocks[59][0] 羅委員明才:總裁,剛剛本席請教的是,台積電過去以後,周邊的上下游企業及一些資本都已經慢慢過去……
gazette.blocks[60][0] 楊總裁金龍:這個也不一定,為什麼?因為……
gazette.blocks[61][0] 羅委員明才:就已經有一定的,因為一些做無塵室的通通過去了,還有上下游周邊的很多都會過去。這些如果一起過去的話,有沒有算過對臺灣的影響會有多大?
gazette.blocks[62][0] 楊總裁金龍:我想企業是很會算的,我總覺得他們是很靈活的。據我了解,現在說要到美國去的那些,大部分都是在墨西哥,他們在美國也有產線,只是墨西哥比較龐大。現在因為美國要對墨西哥扣稅,所以我們在墨西哥的臺商就想說,在這樣情況之下,尤其在關稅的情況之下,就可能把作業線挪到美國去。
gazette.blocks[63][0] 羅委員明才:總裁,你的意思是沒關係就對了?
gazette.blocks[64][0] 楊總裁金龍:也不是這樣子!
gazette.blocks[65][0] 羅委員明才:也不是?
gazette.blocks[66][0] 楊總裁金龍:不過企業國際化這條路還是要走的。
gazette.blocks[67][0] 羅委員明才:我們看到台積電一去美國就發現……你有沒有發現一件事?台積電股票漲還是跌?從一千兩百多塊馬上跌破1,000元,市場告訴了總裁什麼?
gazette.blocks[68][0] 楊總裁金龍:對啦……
gazette.blocks[69][0] 羅委員明才:總裁,告訴你什麼?
gazette.blocks[70][0] 楊總裁金龍:委員這樣子講……
gazette.blocks[71][0] 羅委員明才:大家的害怕完全展現出來了。這還有一個影響。
gazette.blocks[72][0] 楊總裁金龍:對,某種程度,不過我還是……
gazette.blocks[73][0] 羅委員明才:請問,台積電是臺灣的護國神山,你知道它的市值有多少?
gazette.blocks[74][0] 楊總裁金龍:它的市值,我現在……
gazette.blocks[75][0] 羅委員明才:33兆,所以它每漲1點,對臺股的影響有多大?
gazette.blocks[76][0] 楊總裁金龍:8點嘛。
gazette.blocks[77][0] 羅委員明才:8點嘛,對不對?
gazette.blocks[78][0] 楊總裁金龍:對。
gazette.blocks[79][0] 羅委員明才:所以你看,臺灣現在股市已經連番下跌,這幾天跌很多,大概從兩萬多。接著,要請教一個……
gazette.blocks[80][0] 楊總裁金龍:不過,我跟委員報告,我們的兩萬多,到目前為止,兩萬多還好。
gazette.blocks[81][0] 羅委員明才:好。總裁,那台積電跑掉了以後,你覺得臺股2萬點是不是常態?
gazette.blocks[82][0] 楊總裁金龍:這個我不敢預測,因為我不是股市專家。
gazette.blocks[83][0] 羅委員明才:台積電跑掉了以後,臺股有沒有機會上看3萬點?
gazette.blocks[84][0] 楊總裁金龍:這個我不曉得,我不是股市的專家,所以我沒有辦法來預測。
gazette.blocks[85][0] 羅委員明才:沒有,這只是一個代表對經濟未來的期待跟感覺,就好像黃金國際的走勢一樣,本席在7年前、6年前、5年前、3年前,還有去年,多次建議央行總裁要不要考慮買進黃金,總裁的回答是……
gazette.blocks[86][0] 楊總裁金龍:對,上一次……
gazette.blocks[87][0] 羅委員明才:都沒買啊!我建議的時候是每盎斯1,270元的時候,現在黃金每盎斯多少錢?總裁,是3,000元。
gazette.blocks[88][0] 楊總裁金龍:我去年在委員會的時候,也有跟委員報告,我也佩服委員,但是我也說,中央銀行的考量是跟一般的不太一樣。
gazette.blocks[89][0] 羅委員明才:這個不考量。
gazette.blocks[89][1] 虛擬貨幣,你現在態度支不支持?像比特幣。川普總統所講的,五大虛擬貨幣他要作為戰略儲備,現在你是不是也要跟進?
gazette.blocks[90][0] 楊總裁金龍:到目前為止,我們是不會啦,不過我們會密切關注……
gazette.blocks[91][0] 羅委員明才:你現在支不支持臺灣做虛擬貨幣?
gazette.blocks[92][0] 楊總裁金龍:關於戰略儲備這個東西,比特幣和其他的虛擬貨幣,是不是能夠當作戰略儲備,到目前為止,我還是稍微有一點question。
gazette.blocks[93][0] 羅委員明才:總裁,希望你多考量,但是你不要違背川普,你不要忤逆川普啊。全世界的潮流在改變的時候,我們還要故步自封嗎?
gazette.blocks[94][0] 楊總裁金龍:是啦,是啦……
gazette.blocks[95][0] 羅委員明才:我建議你,虛擬貨幣比特幣那時候是一枚6,000塊美金,現在多少了?多少?之前漲到10萬塊美金一枚。
gazette.blocks[96][0] 楊總裁金龍:是,是,是。
gazette.blocks[97][0] 羅委員明才:我只是提醒央行,世界在變的時候,我們一定要故步自封嗎?世界在改變的時候,我們沒有一點檢討或思考的空間嗎?對不對?
gazette.blocks[98][0] 楊總裁金龍:好。謝謝,謝謝委員。謝謝。
gazette.blocks[99][0] 羅委員明才:新臺幣的數字貨幣什麼時候會推出?
gazette.blocks[100][0] 楊總裁金龍:我們還在往前走。
gazette.blocks[101][0] 羅委員明才:我們這個會期還在等待。謝謝。
gazette.blocks[102][0] 楊總裁金龍:謝謝。
gazette.blocks[103][0] 主席:謝謝羅委員的質詢。
gazette.blocks[103][1] 羅委員每次報明牌,央行總裁不聽,大家可以聽,大家可以聽就賺了。
gazette.blocks[103][2] 我們休息10分鐘。
gazette.blocks[103][3] 休息(11時3分)
gazette.blocks[103][4] 繼續開會(11時13分)
gazette.blocks[104][0] 主席:向委員會報告,我們繼續開會。下一位質詢請黃珊珊委員質詢,請。
gazette.agenda.page_end 226
gazette.agenda.meet_id 委員會-11-3-20-2
gazette.agenda.speakers[0] 賴士葆
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 顏寬恒
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 李彥秀
gazette.agenda.speakers[7] 鍾佳濱
gazette.agenda.speakers[8] 羅明才
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 林思銘
gazette.agenda.speakers[11] 李坤城
gazette.agenda.speakers[12] 王世堅
gazette.agenda.speakers[13] 陳玉珍
gazette.agenda.speakers[14] 王鴻薇
gazette.agenda.speakers[15] 邱志偉
gazette.agenda.speakers[16] 陳冠廷
gazette.agenda.speakers[17] 李柏毅
gazette.agenda.page_start 169
gazette.agenda.meetingDate[0] 2025-03-13
gazette.agenda.gazette_id 1142701
gazette.agenda.agenda_lcidc_ids[0] 1142701_00005
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質 詢
gazette.agenda.agenda_id 1142701_00004