iVOD / 159054

Field Value
IVOD_ID 159054
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159054
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T09:38:56+08:00
結束時間 2025-03-13T09:48:07+08:00
影片長度 00:09:11
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f4a897b9cad4dd675e83d902c8d6dd6c2bbf0a69acbcd9c1ca1c492a21a7eb66e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 09:38:56 - 09:48:07
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.06471875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.12784375
transcript.pyannote[1].end 3.42284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 9.48096875
transcript.pyannote[2].end 10.81409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 11.15159375
transcript.pyannote[3].end 12.55221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.04159375
transcript.pyannote[4].end 13.61534375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 13.85159375
transcript.pyannote[5].end 22.42409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.20534375
transcript.pyannote[6].end 18.59346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 22.62659375
transcript.pyannote[7].end 29.71409375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 23.85846875
transcript.pyannote[8].end 24.14534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 26.59221875
transcript.pyannote[9].end 26.77784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 30.23721875
transcript.pyannote[10].end 36.16034375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 36.54846875
transcript.pyannote[11].end 41.96534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 42.08346875
transcript.pyannote[12].end 45.05346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 45.40784375
transcript.pyannote[13].end 53.23784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 48.12471875
transcript.pyannote[14].end 48.19221875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 53.62596875
transcript.pyannote[15].end 54.58784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 54.87471875
transcript.pyannote[16].end 58.53659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 58.67159375
transcript.pyannote[17].end 60.66284375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 60.66284375
transcript.pyannote[18].end 61.15221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 60.94971875
transcript.pyannote[19].end 64.74659375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 65.05034375
transcript.pyannote[20].end 67.49721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 67.96971875
transcript.pyannote[21].end 68.74596875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 69.30284375
transcript.pyannote[22].end 70.58534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 70.78784375
transcript.pyannote[23].end 75.05721875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 75.09096875
transcript.pyannote[24].end 75.85034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 75.54659375
transcript.pyannote[25].end 75.81659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 75.85034375
transcript.pyannote[26].end 75.88409375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 76.15409375
transcript.pyannote[27].end 79.17471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 79.37721875
transcript.pyannote[28].end 79.41096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 79.41096875
transcript.pyannote[29].end 88.43909375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 79.54596875
transcript.pyannote[30].end 79.79909375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 88.94534375
transcript.pyannote[31].end 89.53596875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 90.41346875
transcript.pyannote[32].end 91.17284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 91.64534375
transcript.pyannote[33].end 103.25534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 96.74159375
transcript.pyannote[34].end 96.96096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 103.84596875
transcript.pyannote[35].end 108.53721875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 107.60909375
transcript.pyannote[36].end 108.08159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 109.26284375
transcript.pyannote[37].end 112.21596875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 112.30034375
transcript.pyannote[38].end 130.23846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 130.23846875
transcript.pyannote[39].end 152.05784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 135.26721875
transcript.pyannote[40].end 136.27971875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 137.76471875
transcript.pyannote[41].end 139.87409375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 142.48971875
transcript.pyannote[42].end 144.56534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 148.31159375
transcript.pyannote[43].end 149.37471875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 152.05784375
transcript.pyannote[44].end 152.07471875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 152.07471875
transcript.pyannote[45].end 152.09159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 152.09159375
transcript.pyannote[46].end 152.24346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 152.24346875
transcript.pyannote[47].end 159.11159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 159.38159375
transcript.pyannote[48].end 161.62596875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 161.91284375
transcript.pyannote[49].end 174.50159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 165.82784375
transcript.pyannote[50].end 166.24971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 170.06346875
transcript.pyannote[51].end 170.53596875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 174.45096875
transcript.pyannote[52].end 174.73784375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 174.73784375
transcript.pyannote[53].end 196.08471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 178.09596875
transcript.pyannote[54].end 178.55159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 180.13784375
transcript.pyannote[55].end 180.55971875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 183.09096875
transcript.pyannote[56].end 183.59721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 188.54159375
transcript.pyannote[57].end 188.71034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 189.11534375
transcript.pyannote[58].end 189.21659375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 196.08471875
transcript.pyannote[59].end 196.45596875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 196.45596875
transcript.pyannote[60].end 197.48534375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 197.92409375
transcript.pyannote[61].end 212.58846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 202.76721875
transcript.pyannote[62].end 203.34096875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 212.58846875
transcript.pyannote[63].end 213.16221875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 213.11159375
transcript.pyannote[64].end 220.26659375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 220.57034375
transcript.pyannote[65].end 228.19784375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 227.92784375
transcript.pyannote[66].end 227.99534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 228.55221875
transcript.pyannote[67].end 233.37846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 233.91846875
transcript.pyannote[68].end 235.38659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 235.82534375
transcript.pyannote[69].end 245.35971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 245.46096875
transcript.pyannote[70].end 261.35721875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 261.94784375
transcript.pyannote[71].end 263.09534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 263.48346875
transcript.pyannote[72].end 264.02346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 264.02346875
transcript.pyannote[73].end 264.12471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 264.12471875
transcript.pyannote[74].end 264.37784375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 264.37784375
transcript.pyannote[75].end 269.99721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 270.58784375
transcript.pyannote[76].end 276.15659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 277.18596875
transcript.pyannote[77].end 281.86034375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 282.06284375
transcript.pyannote[78].end 285.70784375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 285.82596875
transcript.pyannote[79].end 286.87221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 286.87221875
transcript.pyannote[80].end 287.20971875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 287.19284375
transcript.pyannote[81].end 299.79846875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 300.27096875
transcript.pyannote[82].end 303.13971875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 303.17346875
transcript.pyannote[83].end 307.67909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 303.39284375
transcript.pyannote[84].end 303.54471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 307.93221875
transcript.pyannote[85].end 316.53846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 316.84221875
transcript.pyannote[86].end 321.39846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 321.82034375
transcript.pyannote[87].end 329.51534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 329.78534375
transcript.pyannote[88].end 330.94971875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 331.20284375
transcript.pyannote[89].end 334.32471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 334.49346875
transcript.pyannote[90].end 336.36659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 336.83909375
transcript.pyannote[91].end 338.44221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 338.86409375
transcript.pyannote[92].end 339.62346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 340.23096875
transcript.pyannote[93].end 341.78346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 342.69471875
transcript.pyannote[94].end 345.73221875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 345.96846875
transcript.pyannote[95].end 346.25534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 346.64346875
transcript.pyannote[96].end 356.76846875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 347.25096875
transcript.pyannote[97].end 347.65596875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 348.68534375
transcript.pyannote[98].end 348.90471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 357.05534375
transcript.pyannote[99].end 357.35909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 357.34221875
transcript.pyannote[100].end 374.80784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 375.34784375
transcript.pyannote[101].end 396.54284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 396.67784375
transcript.pyannote[102].end 403.96784375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 404.37284375
transcript.pyannote[103].end 412.10159375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 412.40534375
transcript.pyannote[104].end 422.07471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 422.81721875
transcript.pyannote[105].end 433.76909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 433.76909375
transcript.pyannote[106].end 437.49846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 437.49846875
transcript.pyannote[107].end 449.58096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 441.04221875
transcript.pyannote[108].end 441.32909375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 450.45846875
transcript.pyannote[109].end 451.01534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 451.09971875
transcript.pyannote[110].end 456.49971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 456.85409375
transcript.pyannote[111].end 465.59534375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 465.83159375
transcript.pyannote[112].end 466.92846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 467.72159375
transcript.pyannote[113].end 472.61534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 468.68346875
transcript.pyannote[114].end 468.90284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 472.80096875
transcript.pyannote[115].end 482.57159375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 484.07346875
transcript.pyannote[116].end 485.81159375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 485.42346875
transcript.pyannote[117].end 486.43596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 486.65534375
transcript.pyannote[118].end 487.73534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 487.46534375
transcript.pyannote[119].end 488.84909375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 488.29221875
transcript.pyannote[120].end 489.82784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 489.86159375
transcript.pyannote[121].end 494.50221875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 494.50221875
transcript.pyannote[122].end 494.58659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 494.58659375
transcript.pyannote[123].end 496.03784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 496.51034375
transcript.pyannote[124].end 503.42909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 502.55159375
transcript.pyannote[125].end 508.42409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 505.77471875
transcript.pyannote[126].end 506.97284375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 508.42409375
transcript.pyannote[127].end 508.74471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 508.72784375
transcript.pyannote[128].end 509.89221875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 509.36909375
transcript.pyannote[129].end 516.59159375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 516.18659375
transcript.pyannote[130].end 517.41846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 516.91221875
transcript.pyannote[131].end 524.28659375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 524.43846875
transcript.pyannote[132].end 531.37409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 531.82971875
transcript.pyannote[133].end 534.63096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 534.90096875
transcript.pyannote[134].end 538.98471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 539.18721875
transcript.pyannote[135].end 540.67221875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 541.04346875
transcript.pyannote[136].end 542.69721875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 542.57909375
transcript.pyannote[137].end 542.93346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 542.93346875
transcript.pyannote[138].end 545.73471875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 544.95846875
transcript.pyannote[139].end 549.31221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 545.85284375
transcript.pyannote[140].end 547.67534375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 549.97034375
transcript.pyannote[141].end 550.96596875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 550.96596875
transcript.pyannote[142].end 551.97846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 551.97846875
transcript.pyannote[143].end 552.06284375
transcript.whisperx[0].start 0.089
transcript.whisperx[0].end 1.335
transcript.whisperx[0].text 有請我們陽總裁陽總裁請
transcript.whisperx[1].start 14.022
transcript.whisperx[1].end 27.907
transcript.whisperx[1].text 首先本席想請教總裁就是近日全球最關心的議題就是在上週台積電宣布加碼投資美國一千億美金台幣3.3兆以上讓全世界產業界競爭也成為
transcript.whisperx[2].start 30.966
transcript.whisperx[2].end 47.207
transcript.whisperx[2].text 這個政經啊然後也成為全美國政壇的焦點尤其在國會演說川普這個也大力讚揚台積電強調說沒有給錢台積電就來投資他意圖展現他自己比拜登更具有經濟實力更高明
transcript.whisperx[3].start 48.688
transcript.whisperx[3].end 66.557
transcript.whisperx[3].text 這顯示出台積電的決策不僅僅是經濟行為也牽涉到國際政治還有經濟競爭對台灣而言最大的擔憂是我們的護國神山出走所帶來的風險台大的副教授邱浩傑指出
transcript.whisperx[4].start 69.338
transcript.whisperx[4].end 88.173
transcript.whisperx[4].text 避險機制的高成本投資可能會掏空台灣的晶圓代工訂單更可能會快速消耗台灣的外匯存底那我要這邊要請教楊總裁台積電的巨額海外投資是否會導致大量美元資金的流出影響我國外匯存底會不會
transcript.whisperx[5].start 93.735
transcript.whisperx[5].end 108.199
transcript.whisperx[5].text 我們的局處也有針對這個問題我們也有討論過不過我們一直認為在短期之內應該是不至於短期之內我們會慢慢的來觀察它的一個情況因為第一個
transcript.whisperx[6].start 109.335
transcript.whisperx[6].end 135.135
transcript.whisperx[6].text 我們你想想看就是說台積電他的他到那邊去投資他所要的美元那事實上呢台積電他賺的美元是很多的他不必要就是說是在市場這邊買美元然後到那邊去投資不必要不是不是當然就是說我們台灣最具競爭力跟影響力的
transcript.whisperx[7].start 136.096
transcript.whisperx[7].end 165.305
transcript.whisperx[7].text 就是以半導體產業為核心的高科技產業在全球供應鏈重組還有地緣政治的這樣子的一個變動台灣企業面臨前所未有的外部壓力還有內部的一個挑戰所以說台積電宣布投資一千億美金那只是台灣高科技產業赴美投資的第一槍尤其在川普的執政下恐怕不只這個台積電還有更多的龍頭企業在台灣的龍頭企業不管是半導體電子AI
transcript.whisperx[8].start 166.765
transcript.whisperx[8].end 192.757
transcript.whisperx[8].text 這些都受到了這些壓力或者是誘因整個產業鏈將資金跟技術輸出到美國所以未來不管是錢人才全部都往美國走那不僅是台積電其他的科技龍頭這樣子的情況台灣是否會面臨產業跟資金的雙重外移的風險所以說對於剛剛你也提到經常這樣外匯政策
transcript.whisperx[9].start 193.697
transcript.whisperx[9].end 219.923
transcript.whisperx[9].text 他一定會有一個很巨大的變動所以我尤其川普上台之後他一定會推動更多的保護主義美國優先所以關稅大戰供應鏈重組吸引外資這些東西對於我們全球經濟帶來極大的變化所以未來的貨幣政策走向還有美國對台科技的政策資本外流跟外匯存底
transcript.whisperx[10].start 221.184
transcript.whisperx[10].end 233.196
transcript.whisperx[10].text 國際貿易格局的一個變化那央行作為維持金融穩定跟貨幣政策決策的一個關鍵機構我想要提醒楊總裁就是說除了密切關注還有提前因應我們還能做什麼
transcript.whisperx[11].start 234.496
transcript.whisperx[11].end 261.226
transcript.whisperx[11].text 我想基本上剛剛所講的那些是風險你所說的風險而且我總覺得那是一個算是比較比較就是說是稍微比較極端一點的一個情況基本上我一直覺得就是說台灣的一個產業它不會就是說一窩蜂整個就在很短的時間就掏空出去了
transcript.whisperx[12].start 262.025
transcript.whisperx[12].end 275.891
transcript.whisperx[12].text 不會不是對你剛剛提到這個那像我們台積電要去投資一千億美金也沒有事先跟政府報告然後也沒有做一個完整的一個很好的準備啊我們大家也是
transcript.whisperx[13].start 277.236
transcript.whisperx[13].end 299.47
transcript.whisperx[13].text 也是在很短的時間才知道說要做這樣子具有的投資所以未來難保其他的龍頭企業迫於這種形勢誘因等等不得不去啊這個就是我們擔心的嘛那我再請教總裁就是說升降息的部分啦因為美國經濟惡化通膨的沒有降溫的趨勢那美國也在這個時間向所有的貿易夥伴
transcript.whisperx[14].start 302.453
transcript.whisperx[14].end 314.789
transcript.whisperx[14].text 發動這種關稅大戰包括加拿大墨西哥那這些25%的這種關稅另外對中國也加徵10%的關稅加徵就是在原來基礎上又在加徵那這些舉動讓他們
transcript.whisperx[15].start 317.472
transcript.whisperx[15].end 341.208
transcript.whisperx[15].text 讓專家也自己在擔心說可能推動美國國內物價的一個推升那也會引發停滯性通膨的這樣的狀況那面臨這個成長經濟成長趨勢跟通膨持續的一個升溫的雙重挑戰在這種情況我們央行總裁有沒有評估過
transcript.whisperx[16].start 342.714
transcript.whisperx[16].end 357.542
transcript.whisperx[16].text 可能對我國的經濟貨幣政策造成哪些影響對我們也有評估過啦基本上呢我總覺得以目前的一個情況因為現在說實在第一個就是說他的情況還不是非常明朗第二個
transcript.whisperx[17].start 358.322
transcript.whisperx[17].end 374.558
transcript.whisperx[17].text 他對墨西哥對加拿大他的一個扣關稅那基本上我們跟墨西哥跟加拿大我們對他的出口基本上是佔我們的GDP佔我們的出口還有佔我們的GDP不大
transcript.whisperx[18].start 375.659
transcript.whisperx[18].end 403.752
transcript.whisperx[18].text 那但是呢對中國的一個他都要扣20%的那個這個對我們的影響會比較大一點為什麼因為我們對中國大陸的一個出口呢是現在是目前是31多啦31點幾但是呢他是從40幾42一直調降到31那中國大陸呢到美國去的一個出口呢也慢慢的在調整所以呢基本上呢
transcript.whisperx[19].start 404.912
transcript.whisperx[19].end 421.721
transcript.whisperx[19].text 他對中國大陸的關稅對我們的影響也是慢慢地在下降當中那我記得我們第一次川普1.0的時候對中國大陸的一個扣關稅事實上得利的是台灣
transcript.whisperx[20].start 422.882
transcript.whisperx[20].end 447.267
transcript.whisperx[20].text 我們台灣反而沒有受到影響那為什麼因為那個時候是台商回台投資第二個呢我們對美國的出口反而更加增加好 總裁我們的貨幣政策沒有跟美國對 那貨幣政策方面呢我再想就是說第一個就是說以通膨來看的話對美國的通膨的影響會比較大對我們台灣的通膨比較少
transcript.whisperx[21].start 452.489
transcript.whisperx[21].end 465.226
transcript.whisperx[21].text 我之前在質詢你的時候你有提到說CPI年增率要在1.5%以下才會降息是你之前有提過我們看到
transcript.whisperx[22].start 467.942
transcript.whisperx[22].end 479.786
transcript.whisperx[22].text 資料就是說主計處的公布的資料1月份的CPI零增率2.66對擴除這個蔬果跟能源之後核心CPI上漲2.26對所以等於是說
transcript.whisperx[23].start 484.09
transcript.whisperx[23].end 502.157
transcript.whisperx[23].text 不會有降息的情況對不對是總裁是這樣子嘛對不對對應該是啦那去年FED降息的時候我們反而升了半碼所以說央行這邊的態度就是說一定要在CPI年增率在1.5以下才會降息是不是這樣子
transcript.whisperx[24].start 503.738
transcript.whisperx[24].end 530.811
transcript.whisperx[24].text 大體上應該也是可以說這一點是不變的應該也是這樣子我想我能夠理解說央行在制定貨幣政策還有考量這些必須要多重的考量那我是期望說央行能夠審慎的評估靈活的應對因為對於台灣未來經濟發展還有這個整個國家的一個對於美國中國這樣子的一個貿易大戰或者是這種
transcript.whisperx[25].start 532.372
transcript.whisperx[25].end 546.679
transcript.whisperx[25].text 一些政策對於台灣的影響會造成我們的這些企業還有我們這些產業是一個很巨大的變動是好不好會 會 黃安會謝謝總裁會好 謝謝 謝謝委員好 謝謝 謝謝我們嚴委員