IVOD_ID |
158973 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/158973 |
日期 |
2025-02-25 |
會議資料.會議代碼 |
院會-11-3-2 |
會議資料.會議代碼:str |
第11屆第3會期第2次會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
2 |
會議資料.種類 |
院會 |
會議資料.標題 |
第11屆第3會期第2次會議 |
影片種類 |
Clip |
開始時間 |
2025-02-25T16:16:44+08:00 |
結束時間 |
2025-02-25T16:32:16+08:00 |
影片長度 |
00:15:32 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/7410aefb2dded67413f4e76418d7aac3b12e281e566aaf68c824756c8542924b256103802437d2e25ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
陳俊宇 |
委員發言時間 |
16:16:44 - 16:32:16 |
會議時間 |
2025-02-25T09:00:00+08:00 |
會議名稱 |
第11屆第3會期第2次會議(事由:行政院院長提出施政方針及施政報告並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
11.25284375 |
transcript.pyannote[0].end |
14.25659375 |
transcript.pyannote[1].speaker |
SPEAKER_03 |
transcript.pyannote[1].start |
14.50971875 |
transcript.pyannote[1].end |
16.09596875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
21.66471875 |
transcript.pyannote[2].end |
22.91346875 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
23.87534375 |
transcript.pyannote[3].end |
24.51659375 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
24.93846875 |
transcript.pyannote[4].end |
25.39409375 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
25.79909375 |
transcript.pyannote[5].end |
27.40221875 |
transcript.pyannote[6].speaker |
SPEAKER_03 |
transcript.pyannote[6].start |
27.70596875 |
transcript.pyannote[6].end |
31.78971875 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
32.04284375 |
transcript.pyannote[7].end |
47.97284375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
48.24284375 |
transcript.pyannote[8].end |
51.87096875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
52.07346875 |
transcript.pyannote[9].end |
55.41471875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
55.70159375 |
transcript.pyannote[10].end |
60.30846875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
60.83159375 |
transcript.pyannote[11].end |
64.15596875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
64.27409375 |
transcript.pyannote[12].end |
68.86409375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
69.35346875 |
transcript.pyannote[13].end |
70.45034375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
70.80471875 |
transcript.pyannote[14].end |
72.72846875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
72.93096875 |
transcript.pyannote[15].end |
75.00659375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
75.27659375 |
transcript.pyannote[16].end |
75.74909375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
76.91346875 |
transcript.pyannote[17].end |
82.97159375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
83.20784375 |
transcript.pyannote[18].end |
84.45659375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
84.87846875 |
transcript.pyannote[19].end |
107.25471875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
107.94659375 |
transcript.pyannote[20].end |
113.04284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
113.41409375 |
transcript.pyannote[21].end |
117.51471875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
117.86909375 |
transcript.pyannote[22].end |
126.64409375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
126.89721875 |
transcript.pyannote[23].end |
132.93846875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
133.42784375 |
transcript.pyannote[24].end |
134.99721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
135.09846875 |
transcript.pyannote[25].end |
143.73846875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
143.85659375 |
transcript.pyannote[26].end |
146.10096875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
146.37096875 |
transcript.pyannote[27].end |
149.94846875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
150.10034375 |
transcript.pyannote[28].end |
150.84284375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
151.07909375 |
transcript.pyannote[29].end |
152.71596875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
153.18846875 |
transcript.pyannote[30].end |
163.07721875 |
transcript.pyannote[31].speaker |
SPEAKER_03 |
transcript.pyannote[31].start |
163.07721875 |
transcript.pyannote[31].end |
163.17846875 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
163.24596875 |
transcript.pyannote[32].end |
163.60034375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
164.07284375 |
transcript.pyannote[33].end |
172.72971875 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
173.01659375 |
transcript.pyannote[34].end |
182.09534375 |
transcript.pyannote[35].speaker |
SPEAKER_03 |
transcript.pyannote[35].start |
182.53409375 |
transcript.pyannote[35].end |
187.90034375 |
transcript.pyannote[36].speaker |
SPEAKER_03 |
transcript.pyannote[36].start |
187.96784375 |
transcript.pyannote[36].end |
192.79409375 |
transcript.pyannote[37].speaker |
SPEAKER_03 |
transcript.pyannote[37].start |
193.50284375 |
transcript.pyannote[37].end |
198.64971875 |
transcript.pyannote[38].speaker |
SPEAKER_03 |
transcript.pyannote[38].start |
199.51034375 |
transcript.pyannote[38].end |
202.63221875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
203.03721875 |
transcript.pyannote[39].end |
204.43784375 |
transcript.pyannote[40].speaker |
SPEAKER_03 |
transcript.pyannote[40].start |
204.70784375 |
transcript.pyannote[40].end |
211.40721875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
211.32284375 |
transcript.pyannote[41].end |
214.73159375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
215.17034375 |
transcript.pyannote[42].end |
215.84534375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
216.16596875 |
transcript.pyannote[43].end |
218.46096875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
218.69721875 |
transcript.pyannote[44].end |
219.76034375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
220.03034375 |
transcript.pyannote[45].end |
226.39221875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
226.94909375 |
transcript.pyannote[46].end |
230.77971875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
231.16784375 |
transcript.pyannote[47].end |
232.06221875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
232.28159375 |
transcript.pyannote[48].end |
245.71409375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
246.37221875 |
transcript.pyannote[49].end |
248.39721875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
248.70096875 |
transcript.pyannote[50].end |
253.93221875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
254.06721875 |
transcript.pyannote[51].end |
256.46346875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
257.18909375 |
transcript.pyannote[52].end |
262.08284375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
258.04971875 |
transcript.pyannote[53].end |
258.38721875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
262.47096875 |
transcript.pyannote[54].end |
265.91346875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
266.30159375 |
transcript.pyannote[55].end |
271.66784375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
272.35971875 |
transcript.pyannote[56].end |
273.67596875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
273.74346875 |
transcript.pyannote[57].end |
276.52784375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
276.98346875 |
transcript.pyannote[58].end |
282.48471875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
282.60284375 |
transcript.pyannote[59].end |
287.59784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
288.20534375 |
transcript.pyannote[60].end |
291.93471875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
292.62659375 |
transcript.pyannote[61].end |
295.69784375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
296.98034375 |
transcript.pyannote[62].end |
298.63409375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
299.00534375 |
transcript.pyannote[63].end |
308.35409375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
308.62409375 |
transcript.pyannote[64].end |
320.14971875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
320.63909375 |
transcript.pyannote[65].end |
321.24659375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
321.51659375 |
transcript.pyannote[66].end |
346.30596875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
346.57596875 |
transcript.pyannote[67].end |
353.54534375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
351.87471875 |
transcript.pyannote[68].end |
352.04346875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
352.39784375 |
transcript.pyannote[69].end |
352.83659375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
353.10659375 |
transcript.pyannote[70].end |
355.24971875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
355.19909375 |
transcript.pyannote[71].end |
355.21596875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
355.24971875 |
transcript.pyannote[72].end |
355.31721875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
355.31721875 |
transcript.pyannote[73].end |
359.43471875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
355.40159375 |
transcript.pyannote[74].end |
355.41846875 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
355.43534375 |
transcript.pyannote[75].end |
355.45221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
359.92409375 |
transcript.pyannote[76].end |
361.42596875 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
360.76784375 |
transcript.pyannote[77].end |
361.03784375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
361.42596875 |
transcript.pyannote[78].end |
376.29284375 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
376.37721875 |
transcript.pyannote[79].end |
377.64284375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
376.41096875 |
transcript.pyannote[80].end |
376.68096875 |
transcript.pyannote[81].speaker |
SPEAKER_03 |
transcript.pyannote[81].start |
378.18284375 |
transcript.pyannote[81].end |
397.33596875 |
transcript.pyannote[82].speaker |
SPEAKER_03 |
transcript.pyannote[82].start |
397.57221875 |
transcript.pyannote[82].end |
403.46159375 |
transcript.pyannote[83].speaker |
SPEAKER_03 |
transcript.pyannote[83].start |
403.96784375 |
transcript.pyannote[83].end |
405.04784375 |
transcript.pyannote[84].speaker |
SPEAKER_03 |
transcript.pyannote[84].start |
405.31784375 |
transcript.pyannote[84].end |
433.56659375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
434.08971875 |
transcript.pyannote[85].end |
441.59909375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
442.08846875 |
transcript.pyannote[86].end |
446.32409375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
446.42534375 |
transcript.pyannote[87].end |
452.51721875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
452.75346875 |
transcript.pyannote[88].end |
456.56721875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
456.75284375 |
transcript.pyannote[89].end |
457.71471875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
458.11971875 |
transcript.pyannote[90].end |
472.91909375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
473.13846875 |
transcript.pyannote[91].end |
475.23096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
475.55159375 |
transcript.pyannote[92].end |
493.06784375 |
transcript.pyannote[93].speaker |
SPEAKER_03 |
transcript.pyannote[93].start |
489.45659375 |
transcript.pyannote[93].end |
489.47346875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
493.57409375 |
transcript.pyannote[94].end |
494.94096875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
495.24471875 |
transcript.pyannote[95].end |
503.17596875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
498.41721875 |
transcript.pyannote[96].end |
498.80534375 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
498.80534375 |
transcript.pyannote[97].end |
498.83909375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
498.83909375 |
transcript.pyannote[98].end |
498.87284375 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
499.00784375 |
transcript.pyannote[99].end |
499.15971875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
499.15971875 |
transcript.pyannote[100].end |
499.31159375 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
499.31159375 |
transcript.pyannote[101].end |
499.32846875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
499.32846875 |
transcript.pyannote[102].end |
499.37909375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
499.85159375 |
transcript.pyannote[103].end |
500.02034375 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
500.02034375 |
transcript.pyannote[104].end |
500.50971875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
500.50971875 |
transcript.pyannote[105].end |
503.14221875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
503.17596875 |
transcript.pyannote[106].end |
503.20971875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
503.20971875 |
transcript.pyannote[107].end |
503.29409375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
503.29409375 |
transcript.pyannote[108].end |
513.80721875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
514.21221875 |
transcript.pyannote[109].end |
515.93346875 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
515.30909375 |
transcript.pyannote[110].end |
515.96721875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
515.96721875 |
transcript.pyannote[111].end |
521.35034375 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
515.98409375 |
transcript.pyannote[112].end |
516.05159375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
516.05159375 |
transcript.pyannote[113].end |
516.06846875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
521.62034375 |
transcript.pyannote[114].end |
527.96534375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
528.47159375 |
transcript.pyannote[115].end |
530.47971875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
530.76659375 |
transcript.pyannote[116].end |
532.60596875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
532.99409375 |
transcript.pyannote[117].end |
558.10409375 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
558.34034375 |
transcript.pyannote[118].end |
569.34284375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
569.61284375 |
transcript.pyannote[119].end |
584.80034375 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
584.80034375 |
transcript.pyannote[120].end |
592.29284375 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
592.63034375 |
transcript.pyannote[121].end |
624.96284375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
624.82784375 |
transcript.pyannote[122].end |
629.31659375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
629.60346875 |
transcript.pyannote[123].end |
630.31221875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
631.02096875 |
transcript.pyannote[124].end |
639.17159375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
639.35721875 |
transcript.pyannote[125].end |
642.05721875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
642.22596875 |
transcript.pyannote[126].end |
648.36846875 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
648.45284375 |
transcript.pyannote[127].end |
677.17409375 |
transcript.pyannote[128].speaker |
SPEAKER_03 |
transcript.pyannote[128].start |
677.29221875 |
transcript.pyannote[128].end |
693.79596875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
694.15034375 |
transcript.pyannote[129].end |
695.46659375 |
transcript.pyannote[130].speaker |
SPEAKER_03 |
transcript.pyannote[130].start |
695.80409375 |
transcript.pyannote[130].end |
699.28034375 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
699.49971875 |
transcript.pyannote[131].end |
700.03971875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
700.79909375 |
transcript.pyannote[132].end |
702.63846875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
702.95909375 |
transcript.pyannote[133].end |
704.00534375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
704.69721875 |
transcript.pyannote[134].end |
712.47659375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
709.40534375 |
transcript.pyannote[135].end |
709.84409375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
712.84784375 |
transcript.pyannote[136].end |
713.82659375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
713.97846875 |
transcript.pyannote[137].end |
715.49721875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
716.00346875 |
transcript.pyannote[138].end |
717.28596875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
717.62346875 |
transcript.pyannote[139].end |
718.24784375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
718.50096875 |
transcript.pyannote[140].end |
723.34409375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
723.78284375 |
transcript.pyannote[141].end |
725.67284375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
725.79096875 |
transcript.pyannote[142].end |
727.66409375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
727.78221875 |
transcript.pyannote[143].end |
729.43596875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
729.48659375 |
transcript.pyannote[144].end |
742.42971875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
743.25659375 |
transcript.pyannote[145].end |
744.21846875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
744.74159375 |
transcript.pyannote[146].end |
745.99034375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
746.47971875 |
transcript.pyannote[147].end |
747.37409375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
747.71159375 |
transcript.pyannote[148].end |
759.33846875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
750.25971875 |
transcript.pyannote[149].end |
750.64784375 |
transcript.pyannote[150].speaker |
SPEAKER_03 |
transcript.pyannote[150].start |
759.57471875 |
transcript.pyannote[150].end |
770.76284375 |
transcript.pyannote[151].speaker |
SPEAKER_03 |
transcript.pyannote[151].start |
770.99909375 |
transcript.pyannote[151].end |
774.30659375 |
transcript.pyannote[152].speaker |
SPEAKER_03 |
transcript.pyannote[152].start |
774.47534375 |
transcript.pyannote[152].end |
774.76221875 |
transcript.pyannote[153].speaker |
SPEAKER_03 |
transcript.pyannote[153].start |
775.47096875 |
transcript.pyannote[153].end |
780.73596875 |
transcript.pyannote[154].speaker |
SPEAKER_03 |
transcript.pyannote[154].start |
780.82034375 |
transcript.pyannote[154].end |
783.19971875 |
transcript.pyannote[155].speaker |
SPEAKER_03 |
transcript.pyannote[155].start |
783.77346875 |
transcript.pyannote[155].end |
783.80721875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
783.80721875 |
transcript.pyannote[156].end |
785.35971875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
785.78159375 |
transcript.pyannote[157].end |
788.44784375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
788.71784375 |
transcript.pyannote[158].end |
791.48534375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
791.89034375 |
transcript.pyannote[159].end |
795.80534375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
796.22721875 |
transcript.pyannote[160].end |
797.23971875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
797.50971875 |
transcript.pyannote[161].end |
798.18471875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
798.25221875 |
transcript.pyannote[162].end |
799.73721875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
800.02409375 |
transcript.pyannote[163].end |
801.76221875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
801.91409375 |
transcript.pyannote[164].end |
804.98534375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
805.28909375 |
transcript.pyannote[165].end |
808.14096875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
808.56284375 |
transcript.pyannote[166].end |
819.49784375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
819.97034375 |
transcript.pyannote[167].end |
822.40034375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
822.67034375 |
transcript.pyannote[168].end |
824.29034375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
824.57721875 |
transcript.pyannote[169].end |
825.70784375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
826.06221875 |
transcript.pyannote[170].end |
827.49659375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
827.91846875 |
transcript.pyannote[171].end |
828.54284375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
829.03221875 |
transcript.pyannote[172].end |
834.24659375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
834.61784375 |
transcript.pyannote[173].end |
838.87034375 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
839.14034375 |
transcript.pyannote[174].end |
841.46909375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
841.70534375 |
transcript.pyannote[175].end |
845.68784375 |
transcript.pyannote[176].speaker |
SPEAKER_04 |
transcript.pyannote[176].start |
846.31221875 |
transcript.pyannote[176].end |
847.89846875 |
transcript.pyannote[177].speaker |
SPEAKER_04 |
transcript.pyannote[177].start |
847.91534375 |
transcript.pyannote[177].end |
877.64909375 |
transcript.pyannote[178].speaker |
SPEAKER_03 |
transcript.pyannote[178].start |
878.20596875 |
transcript.pyannote[178].end |
878.52659375 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
879.06659375 |
transcript.pyannote[179].end |
914.97659375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
915.17909375 |
transcript.pyannote[180].end |
915.48284375 |
transcript.pyannote[181].speaker |
SPEAKER_03 |
transcript.pyannote[181].start |
915.68534375 |
transcript.pyannote[181].end |
915.70221875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
915.70221875 |
transcript.pyannote[182].end |
926.87346875 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
931.44659375 |
transcript.pyannote[183].end |
932.96534375 |
transcript.whisperx[0].start |
11.254 |
transcript.whisperx[0].end |
16.18 |
transcript.whisperx[0].text |
好 謝謝韓院長 我們有請左院長麻煩再請左院長備選好 院長午安政務院好院長 |
transcript.whisperx[1].start |
25.868 |
transcript.whisperx[1].end |
51.423 |
transcript.whisperx[1].text |
我們近來全台灣的病因出現一個問題就是急診室塞車甚至病因因為護理人員的欠款地書就有名稱所以沒辦法開稱來照顧這個病患所以這個問題我們行政院有什麼樣更好的因應的對策可以來改善嗎所以我從春節之後的第一天我們就跟衛婦在針對這個問題 |
transcript.whisperx[2].start |
53.649 |
transcript.whisperx[2].end |
75.462 |
transcript.whisperx[2].text |
多次的聯繫也請衛部能夠緊述的研究一個方法出來那最近這一次就是昨天早上我特別提出說三個問題一個是這個是讓全民不解不了解我們做了什麼努力化解了多少問題要把這個方式告訴大家然後所有的醫院所有的醫院照這個方式來實行能夠降低這種擁塞的現象第二個 |
transcript.whisperx[3].start |
76.94 |
transcript.whisperx[3].end |
93.287 |
transcript.whisperx[3].text |
病患跟家屬當然不安啊所以要醫院盡量安撫病患跟家屬這種不安的情緒當然在這個繁忙的過程當中蠻辛苦的一定要做到這一點讓他情緒能安定下來告訴他要等的時間盡量縮短第三個人力不足 |
transcript.whisperx[4].start |
94.261 |
transcript.whisperx[4].end |
106.998 |
transcript.whisperx[4].text |
護理人員的能力不足不是今天不是一兩天的是長期造成的所以我們跟考試院在之前總統召開院級協商之後我跟周院長也談到了未來考試的制度考用合一我們用 |
transcript.whisperx[5].start |
108.018 |
transcript.whisperx[5].end |
136.472 |
transcript.whisperx[5].text |
知道實際所需狀況的衛福部裡面的同仁跟考試院組成一個考試的平台讓他用這種的方式來讓更多的護校畢業的學生能夠通過合理的考試取得資格增加我們的能力但這個不是短時間可以做到的那目前我們希望增加想辦法多增加醫院裡面協助看護的人力看能不能來協助一部分的比較不需要那麼專業的工作所以三個部分向社會說明 |
transcript.whisperx[6].start |
137.797 |
transcript.whisperx[6].end |
163.08 |
transcript.whisperx[6].text |
讓病人安心以及嘗試增加短期跟中長期的護理人員都是現在在做的那他們現在做的這個方式是說在院內裡面調解把一般病床轉換成急診病床讓急診的患者能夠到病床裡面去另外是院際之間的合流每個院際都把資料公開出來如果能夠就近來轉診分流的話也會造成民眾在使用上不必要那麼麻煩這兩個部分都是現在在做的 |
transcript.whisperx[7].start |
164.14 |
transcript.whisperx[7].end |
191.426 |
transcript.whisperx[7].text |
其實最大的嚴重應該是這個護理人員欠缺的問題我們從這個台灣護士公會的一個統計資料可以看出來就是從去年的12月到今年初我們全台灣有超過700名的護理人員離職這個離職到底是什麼原因我也希望我們行政院包括衛福部可以去研究去詳細去了解到底是什麼原因遞書到這個護理人員要離職 |
transcript.whisperx[8].start |
193.527 |
transcript.whisperx[8].end |
204.998 |
transcript.whisperx[8].text |
可以把優秀的福利人員勞調到,才可以讓我們所有的以後照顧的過程裡面,可以非常順暢包括很多國家,甚至我們界別的中國,也在幫我們找我們的福利人員這到底是什麼原因?市長可以簡單回答嗎?好,謝謝委員的質問我報告一下 |
transcript.whisperx[9].start |
218.838 |
transcript.whisperx[9].end |
242.684 |
transcript.whisperx[9].text |
其實這段時間 中央政府在繞福利的路線可以繼續在醫療中心來照顧所以我們提出了12個策略 一個一個在做其實都有顯著的成果其實在人力來講 今年的一頁跟去年的一頁比較起來我們有增加了3,293個護理師 |
transcript.whisperx[10].start |
246.671 |
transcript.whisperx[10].end |
273.349 |
transcript.whisperx[10].text |
在工作 所以是正確的剛才你說的那個數目 那實在是因為過年過 很多都離職潮但是七月的時候就有畢業的新生就另外一個嘛 所以現在加起來在第九年是正確三千兩百幾個人而且有一千幾個是在便宜另外我們也是很辛苦 特地給你英文的希望就是說負並比我們在醫學中心 |
transcript.whisperx[11].start |
274.005 |
transcript.whisperx[11].end |
290.856 |
transcript.whisperx[11].text |
社區醫院跟社區醫院都在努力之下護病比三班都達到標準的從這一年來也從36%提高到醫學中心提高到59%如果是社區醫院是從26%提高到50%那地區醫院比較高本來就83%提高到94% |
transcript.whisperx[12].start |
299.096 |
transcript.whisperx[12].end |
318.302 |
transcript.whisperx[12].text |
若是說我們福利銀行的職場有進步,銀行我們也有留下來剛才議長也說得很完全,整個架構都說起來,完全用一個關懷心、同理心來處理這件事情我們衛福部一項一項來落實我補充一下,優管我們現在要改革,改革我們分低級、低級,這其實我們都走那個 |
transcript.whisperx[13].start |
324.015 |
transcript.whisperx[13].end |
338.008 |
transcript.whisperx[13].text |
這幾天的開花都向全國的醫事公會、急診醫藥會還有各大醫院的院長都要研究出來的所以我們提出來的方案其實跟急診醫學會提出的方案是很一致的所以我們一定會趕快來努力 |
transcript.whisperx[14].start |
338.442 |
transcript.whisperx[14].end |
358.193 |
transcript.whisperx[14].text |
我們也看到現在目前來講其實在後床大約100的從以前檢討醫院包括高一、齊美、台大現在只剩下長庚林口長庚比較多其他都已經降下到100我們希望能夠馬上來改善今天的下降數是比較明顯的當然還有相當多的數字但是趨勢是這樣子 |
transcript.whisperx[15].start |
360 |
transcript.whisperx[15].end |
374.651 |
transcript.whisperx[15].text |
再加強努力,要協調好,謝謝院長跟部長其實我要關心的是我們宜蘭館的陽明交大輻射醫院因為這個病院現在日期工程,我們一定在去年11月初也有去實測日期工程已經順利斷崗了斷崗之後未來 |
transcript.whisperx[16].start |
378.614 |
transcript.whisperx[16].end |
405.824 |
transcript.whisperx[16].text |
他這個層數增加出來,讓你人員不夠的總統職下你說我們的鴨腿食肆已經完善了所以沒辦法讓病患可以在病院裡面接受治療這讓我們覺得非常不可思議所以我要拜託議長跟我們的部長就是說我們宜蘭館也有很好的婦理專科學校我們包括聖母婦專跟更新婦專非常完善現在少子化在這個地方 |
transcript.whisperx[17].start |
407.232 |
transcript.whisperx[17].end |
429.721 |
transcript.whisperx[17].text |
我們沒有一個比較完善的教育的一貫的作業,遞輸到這些孩子他跟專科畢業後都跑出來到外面去,又求學遞輸到人才流失所以有什麼樣的辦法,也能結合到在地的醫學、學校的保安跟便衣來做結合讓我們未來的福利人員可以留在宜蘭關,來為我們宜蘭關的民眾來服務 |
transcript.whisperx[18].start |
434.602 |
transcript.whisperx[18].end |
461.525 |
transcript.whisperx[18].text |
就像委員報告,在全國性來說,我們當然是改善這個護理職場說實在的,醫事人員健保也會因為健保我們政府也提供增加了很多健保的機會其實應該要加薪到我們醫事人員那以地方來講,好不容易那個地方有護理學院然後又有這麼好的一個醫院,這個醫院是楊交大的輻射醫院 |
transcript.whisperx[19].start |
464.115 |
transcript.whisperx[19].end |
491.162 |
transcript.whisperx[19].text |
他爺爺是多少個教授、醫生、資源其實那個都是...當然那是因為教育部的但是我站在衛福部,我也了解他的水準是可以做到很高的但是他如果欠護理員員,變成他的法律,全都沒辦法發揮這樣也很可惜所以我們可以建議楊教大可以接近這個學院護理學院這兩個學校,可以來交流我們全國的鄉,我也希望畢業生可以讓他們 |
transcript.whisperx[20].start |
493.752 |
transcript.whisperx[20].end |
501.674 |
transcript.whisperx[20].text |
進入追診來學習,進入偏見,出來都可以來這裡服務師傅請鎮部長大概說明一下鎮部長請謝謝,感謝委員的關心,向委員報告的是陽明交代的輔社醫院第二期醫療大樓的工程現在進度是強勁的,這部縮寫的工程進度也都強勁 |
transcript.whisperx[21].start |
523.254 |
transcript.whisperx[21].end |
535.286 |
transcript.whisperx[21].text |
剛才委員的關心就是說,那個人才要怎麼培養在目前我們有一個方式就是說,為了我們藝人地區這裡的福利人員的進修我們可以給他們結合合作的便宜,用公家進修來讓副理事就在地二級的一個在職專班那同時 |
transcript.whisperx[22].start |
547.15 |
transcript.whisperx[22].end |
565.789 |
transcript.whisperx[22].text |
以去年開始到今年我們大概連續這個台北的護理健康大學同樣也都跟委員剛才所關心的這兩所學校所謂的更新跟聖母醫院專科學校的這些護理都有一個合作的一個進修讓他們能夠在地就能夠直接 |
transcript.whisperx[23].start |
566.294 |
transcript.whisperx[23].end |
584.717 |
transcript.whisperx[23].text |
有一個在職進修然後當然包含陽明交大這個部分他們也對提供了許多的這些實習獎助學金跟在職進修的一些機會希望能夠讓在地的這些醫護人員也能夠留在在地服務我想做這樣一個補充說明 |
transcript.whisperx[24].start |
586.376 |
transcript.whisperx[24].end |
614.634 |
transcript.whisperx[24].text |
謝謝謝謝部長我真的希望說我們這個陽明交通大學輻射醫院陽交大他二期工程完成之後不只是硬體設備的完善我們的這個護理人員都能夠齊全的話才能夠實質發揮這個醫療的效能那這個陽明交大陽明交大的這個整個工程完成之後我們更希望說能夠朝向醫學中心的這個等級來努力能夠建構一個更加安全更加符合這個宜蘭 |
transcript.whisperx[25].start |
615.233 |
transcript.whisperx[25].end |
619.7 |
transcript.whisperx[25].text |
民眾健康安全需求的一所醫院這是我們要求的一個 |
transcript.whisperx[26].start |
620.99 |
transcript.whisperx[26].end |
648.193 |
transcript.whisperx[26].text |
最大的目標然後也請我們兩位部長一起協助我們院長是的委員我們去年底去陽明交大看現場工地的時候我記得我有特別詢問到二期的醫療大樓之外植物宿舍我覺得植物宿舍的健全會有利於醫護人員留任所以大家往這個方向去做不僅是醫院其他的企業都能夠有自己的宿舍都能夠留住人才我覺得這是一個很好的典範我們用這個來鼓勵大家 |
transcript.whisperx[27].start |
649.11 |
transcript.whisperx[27].end |
670.468 |
transcript.whisperx[27].text |
好謝謝兩位部長那另外我要針對這個財化法的部分我想就叫我們這個行政院我們預計在這個2月27號這個院會之後我們會對於這個總預算案提出附議那財化法是否會一併的附議這個目前還未知那財化法修正之後將會從中央 |
transcript.whisperx[28].start |
671.248 |
transcript.whisperx[28].end |
699.11 |
transcript.whisperx[28].text |
把我們提早超過15%以上的維生差不多是3753億左右錢隨著這個中央轉移到地方那事權的部分有沒有轉移那對於後續需由中央移轉到地方辦理的相關業務這個考慮我們政府是不是已經完成這個整個盤點那影響最大的這個補助事項中央對地方的部分會是什麼項目 |
transcript.whisperx[29].start |
701.151 |
transcript.whisperx[29].end |
729.203 |
transcript.whisperx[29].text |
財務法新的修法內容有幾項很不是適當的 複合理的地方第一個 它就是它的水平分配會造成未來城鄉差距會更大第二個就是委員剛所說的錢帶過去 事權卻沒有帶走那帶走多少事權在裡面並沒有清楚的說明所以未來我們希望大家能夠很理性的 很冷靜的我們為了國家整體的發展 |
transcript.whisperx[30].start |
729.676 |
transcript.whisperx[30].end |
758.718 |
transcript.whisperx[30].text |
中央有中央的財務財力地方也要有地方的財政但是事權要分得清清楚楚這樣才能夠各施其責各自負責所以我們很期望說財化法我們能夠有更充裕的時間跟地方在談也讓我們算得更精確那算出來之後絕對不是中央集錢又集權而是能夠分給地方的讓地方能夠來承接這個才是我們現在的原則所以我很希望財化法還有機會大家能夠重新來審議 |
transcript.whisperx[31].start |
759.619 |
transcript.whisperx[31].end |
782.831 |
transcript.whisperx[31].text |
好,謝謝院長,我現在擔心的是因為我們宜蘭縣未來這幾年所推行的相關的公共建設都是金額非常大你假設說未來我們中央跟地方的經費分配的比例如果做調整的話會不會影響到宜蘭包括交通建設還是相關建設的推動 |
transcript.whisperx[32].start |
783.84 |
transcript.whisperx[32].end |
808.1 |
transcript.whisperx[32].text |
怎麼分配 部長來討論地方財源主要三個地方一個就是統籌分配稅款直接進地方的稅入另外兩個中央補助的部分一個是一般型補助跟計劃型補助那計劃型補助它裡面很多是跨年度的長期的連續性的預算那地方一般性的補助裡面又有一些是法定的以及針對各個地方不同需求的補助 |
transcript.whisperx[33].start |
808.632 |
transcript.whisperx[33].end |
827.323 |
transcript.whisperx[33].text |
那麼如果中央切掉一大部分的錢那這個地方的計畫性補助跟一般性補助都必須由地方來承接那到底有多少如果這樣算出來的話我認為依照現在中央的這個現在的結構會讓地方感覺到說我拿了一百塊可能我要做的事情會更多 |
transcript.whisperx[34].start |
829.093 |
transcript.whisperx[34].end |
845.306 |
transcript.whisperx[34].text |
如果能夠統籌的話他會節省很多的行政上的作業如果單個縣市來做他必須負擔可能是不同層數的加倍所以如果這樣子來說地方可能會拿到的錢卻要做更多的事情那我們也不希望增加地方的負擔所以我請財政部來合理的計算 |
transcript.whisperx[35].start |
846.66 |
transcript.whisperx[35].end |
870.149 |
transcript.whisperx[35].text |
是 跟委員報告就如同剛剛院長所說我們中央對地方除了中央統籌分配稅款以外還有搭配我們主計總署的一般性補助款那一般性補助款它有幾個用途第一個就是對基本財政收支差短它一定會補助另外對其他重要要辦理的事項也會給予補那另外就是計劃型的補助那計劃型的補助就看各地方政府的計劃以及財政能力給予補助 |
transcript.whisperx[36].start |
870.509 |
transcript.whisperx[36].end |
895.864 |
transcript.whisperx[36].text |
那將來如果你擴大了中央統籌分配稅額而且沒有做市權分配的話當然會影響到這些補助款的一些分配好那因為時間因素那我還是再次拜託我們院長跟我們相關部會的這個首長對於宜蘭縣目前在推動的相關包括交通建設的部分不會因為新的財化法通過之後影響到這個工程的進行 |
transcript.whisperx[37].start |
896.644 |
transcript.whisperx[37].end |
914.697 |
transcript.whisperx[37].text |
那也希望包括我們的鐵路高架還有這個高鐵延伸宜蘭還有台62線那南陽大橋還有葛馬蘭大橋等等這些已經在規劃中的這些重大交通建設都能夠順利的推動那能夠及早的來完工提供給民眾一個便捷的一個交通路網 |
transcript.whisperx[38].start |
915.808 |
transcript.whisperx[38].end |
926.678 |
transcript.whisperx[38].text |
宜蘭不僅是我們北北基宜首都圈黃金狼帶它也會加入我們東部城鄉漫火這樣的一個區域治理計畫我希望會看到宜蘭的未來一定是科技跟 |