IVOD_ID |
158892 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/158892 |
日期 |
2025-01-15 |
會議資料.會議代碼 |
聯席會議-11-2-19,20-1 |
會議資料.會議代碼:str |
第11屆第2會期經濟、財政兩委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
20 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
財政委員會 |
會議資料.標題 |
第11屆第2會期經濟、財政兩委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-01-15T11:02:40+08:00 |
結束時間 |
2025-01-15T11:09:30+08:00 |
影片長度 |
00:06:50 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/427ddbb1724b1d1abd589f18e7b4d8975a45ebd5c2e75318b9af4de1086944f11614a9641f3446d05ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱志偉 |
委員發言時間 |
11:02:40 - 11:09:30 |
會議時間 |
2025-01-15T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期經濟、財政兩委員會第1次聯席會議(事由:審查:
一、行政院函請審議「產業創新條例部分條文修正草案」案。
二、本院委員葛如鈞等16人擬具「產業創新條例第十條之一及第十七條之一條文修正草案」案。
三、本院委員林岱樺等18人擬具「產業創新條例第十條之一及第十七條之一條文修正草案」案。
四、本院委員楊瓊瓔等29人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。
五、本院委員何欣純等23人擬具「產業創新條例第十條之一條文修正草案」案。
六、本院委員邱議瑩等16人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。
七、本院委員蔡其昌等18人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。
八、本院台灣民眾黨黨團擬具「產業創新條例第十條之一條文修正草案」案。
九、本院委員謝衣鳯等16人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。
十、本院委員邱志偉等20人擬具「產業創新條例部分條文修正草案」案。
十一、本院委員鄭正鈐等19人擬具「產業創新條例第十條之一條文修正草案」案。
(第一案及第十一案如未接獲議事處來函,則不予審查)
【1月15日及16日兩天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.41471875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
15.72471875 |
transcript.pyannote[1].end |
20.34846875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
20.65221875 |
transcript.pyannote[2].end |
23.20034375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
26.65971875 |
transcript.pyannote[3].end |
31.18221875 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
27.13221875 |
transcript.pyannote[4].end |
27.84096875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
31.28346875 |
transcript.pyannote[5].end |
31.68846875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
31.78971875 |
transcript.pyannote[6].end |
37.10534375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
37.62846875 |
transcript.pyannote[7].end |
41.23971875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
41.56034375 |
transcript.pyannote[8].end |
44.58096875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
45.12096875 |
transcript.pyannote[9].end |
58.18221875 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
59.05971875 |
transcript.pyannote[10].end |
61.01721875 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
61.08471875 |
transcript.pyannote[11].end |
62.50221875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
62.85659375 |
transcript.pyannote[12].end |
67.00784375 |
transcript.pyannote[13].speaker |
SPEAKER_03 |
transcript.pyannote[13].start |
67.32846875 |
transcript.pyannote[13].end |
67.68284375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
67.88534375 |
transcript.pyannote[14].end |
80.28846875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
79.57971875 |
transcript.pyannote[15].end |
80.65971875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
81.06471875 |
transcript.pyannote[16].end |
101.07846875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
99.72846875 |
transcript.pyannote[17].end |
112.55346875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
105.38159375 |
transcript.pyannote[18].end |
105.76971875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
112.75596875 |
transcript.pyannote[19].end |
121.05846875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
112.82346875 |
transcript.pyannote[20].end |
113.17784375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
121.39596875 |
transcript.pyannote[21].end |
134.28846875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
132.93846875 |
transcript.pyannote[22].end |
141.79784375 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
137.91659375 |
transcript.pyannote[23].end |
138.30471875 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
141.74721875 |
transcript.pyannote[24].end |
149.07096875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
144.86909375 |
transcript.pyannote[25].end |
145.13909375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
148.12596875 |
transcript.pyannote[26].end |
156.07409375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
150.47159375 |
transcript.pyannote[27].end |
152.86784375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
155.44971875 |
transcript.pyannote[28].end |
163.27971875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
157.59284375 |
transcript.pyannote[29].end |
157.94721875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
158.82471875 |
transcript.pyannote[30].end |
159.38159375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
159.49971875 |
transcript.pyannote[31].end |
159.65159375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
161.67659375 |
transcript.pyannote[32].end |
165.27096875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
165.64221875 |
transcript.pyannote[33].end |
168.25784375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
168.78096875 |
transcript.pyannote[34].end |
175.53096875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
173.18534375 |
transcript.pyannote[35].end |
173.20221875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
173.52284375 |
transcript.pyannote[36].end |
173.64096875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
175.58159375 |
transcript.pyannote[37].end |
178.87221875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
179.09159375 |
transcript.pyannote[38].end |
182.87159375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
182.93909375 |
transcript.pyannote[39].end |
187.44471875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
187.69784375 |
transcript.pyannote[40].end |
189.84096875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
190.48221875 |
transcript.pyannote[41].end |
197.26596875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
197.83971875 |
transcript.pyannote[42].end |
201.63659375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
201.63659375 |
transcript.pyannote[43].end |
201.68721875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
201.68721875 |
transcript.pyannote[44].end |
201.72096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
201.72096875 |
transcript.pyannote[45].end |
201.94034375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
201.94034375 |
transcript.pyannote[46].end |
201.95721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
201.95721875 |
transcript.pyannote[47].end |
201.99096875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
201.99096875 |
transcript.pyannote[48].end |
202.02471875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
202.02471875 |
transcript.pyannote[49].end |
202.24409375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
202.24409375 |
transcript.pyannote[50].end |
202.26096875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
202.78409375 |
transcript.pyannote[51].end |
202.81784375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
202.88534375 |
transcript.pyannote[52].end |
206.00721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
203.54346875 |
transcript.pyannote[53].end |
203.83034375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
206.12534375 |
transcript.pyannote[54].end |
213.93846875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
212.52096875 |
transcript.pyannote[55].end |
215.98034375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
216.25034375 |
transcript.pyannote[56].end |
225.91971875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
225.91971875 |
transcript.pyannote[57].end |
225.93659375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
225.93659375 |
transcript.pyannote[58].end |
225.97034375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
226.81409375 |
transcript.pyannote[59].end |
226.96596875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
226.96596875 |
transcript.pyannote[60].end |
227.67471875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
227.67471875 |
transcript.pyannote[61].end |
227.70846875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
227.99534375 |
transcript.pyannote[62].end |
228.01221875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
228.01221875 |
transcript.pyannote[63].end |
232.19721875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
232.56846875 |
transcript.pyannote[64].end |
236.04471875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
236.34846875 |
transcript.pyannote[65].end |
242.42346875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
242.74409375 |
transcript.pyannote[66].end |
245.07284375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
245.54534375 |
transcript.pyannote[67].end |
252.61596875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
253.37534375 |
transcript.pyannote[68].end |
254.13471875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
254.32034375 |
transcript.pyannote[69].end |
254.40471875 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
254.92784375 |
transcript.pyannote[70].end |
269.20409375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
259.58534375 |
transcript.pyannote[71].end |
260.04096875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
265.59284375 |
transcript.pyannote[72].end |
265.67721875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
267.92159375 |
transcript.pyannote[73].end |
280.79721875 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
274.82346875 |
transcript.pyannote[74].end |
274.95846875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
280.91534375 |
transcript.pyannote[75].end |
285.62346875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
280.94909375 |
transcript.pyannote[76].end |
281.38784375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
283.29471875 |
transcript.pyannote[77].end |
288.03659375 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
285.69096875 |
transcript.pyannote[78].end |
285.87659375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
287.51346875 |
transcript.pyannote[79].end |
288.44159375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
288.35721875 |
transcript.pyannote[80].end |
288.37409375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
288.39096875 |
transcript.pyannote[81].end |
292.03596875 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
292.03596875 |
transcript.pyannote[82].end |
292.28909375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
293.30159375 |
transcript.pyannote[83].end |
293.99346875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
295.09034375 |
transcript.pyannote[84].end |
295.71471875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
296.71034375 |
transcript.pyannote[85].end |
298.81971875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
298.87034375 |
transcript.pyannote[86].end |
300.86159375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
301.23284375 |
transcript.pyannote[87].end |
302.76846875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
303.00471875 |
transcript.pyannote[88].end |
307.56096875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
307.79721875 |
transcript.pyannote[89].end |
309.16409375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
309.72096875 |
transcript.pyannote[90].end |
312.74159375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
313.65284375 |
transcript.pyannote[91].end |
314.80034375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
315.18846875 |
transcript.pyannote[92].end |
317.73659375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
318.20909375 |
transcript.pyannote[93].end |
321.88784375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
321.39846875 |
transcript.pyannote[94].end |
325.00971875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
325.75221875 |
transcript.pyannote[95].end |
327.60846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
327.76034375 |
transcript.pyannote[96].end |
329.56596875 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
330.13971875 |
transcript.pyannote[97].end |
333.70034375 |
transcript.pyannote[98].speaker |
SPEAKER_03 |
transcript.pyannote[98].start |
333.75096875 |
transcript.pyannote[98].end |
348.06096875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
348.04409375 |
transcript.pyannote[99].end |
349.14096875 |
transcript.pyannote[100].speaker |
SPEAKER_03 |
transcript.pyannote[100].start |
348.11159375 |
transcript.pyannote[100].end |
348.12846875 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
348.80346875 |
transcript.pyannote[101].end |
350.96346875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
350.03534375 |
transcript.pyannote[102].end |
351.28409375 |
transcript.pyannote[103].speaker |
SPEAKER_03 |
transcript.pyannote[103].start |
351.28409375 |
transcript.pyannote[103].end |
351.31784375 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
351.36846875 |
transcript.pyannote[104].end |
358.35471875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
356.43096875 |
transcript.pyannote[105].end |
360.36284375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
360.95346875 |
transcript.pyannote[106].end |
361.86471875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
362.28659375 |
transcript.pyannote[107].end |
364.88534375 |
transcript.pyannote[108].speaker |
SPEAKER_03 |
transcript.pyannote[108].start |
364.73346875 |
transcript.pyannote[108].end |
364.95284375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
364.95284375 |
transcript.pyannote[109].end |
364.96971875 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
365.37471875 |
transcript.pyannote[110].end |
370.18409375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
370.06596875 |
transcript.pyannote[111].end |
370.40346875 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
370.40346875 |
transcript.pyannote[112].end |
372.96846875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
371.88846875 |
transcript.pyannote[113].end |
374.74034375 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
374.16659375 |
transcript.pyannote[114].end |
393.37034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
390.29909375 |
transcript.pyannote[115].end |
390.70409375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
390.94034375 |
transcript.pyannote[116].end |
390.99096875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
391.19346875 |
transcript.pyannote[117].end |
391.31159375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
391.31159375 |
transcript.pyannote[118].end |
391.32846875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
391.32846875 |
transcript.pyannote[119].end |
391.37909375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
391.37909375 |
transcript.pyannote[120].end |
394.01159375 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
394.23096875 |
transcript.pyannote[121].end |
402.04409375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
402.46596875 |
transcript.pyannote[122].end |
407.19096875 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
406.58346875 |
transcript.pyannote[123].end |
407.49471875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
407.49471875 |
transcript.pyannote[124].end |
407.51159375 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
409.09784375 |
transcript.pyannote[125].end |
409.40159375 |
transcript.whisperx[0].start |
16.235 |
transcript.whisperx[0].end |
22.877 |
transcript.whisperx[0].text |
好謝謝主席有請林次長跟國會高副主委好請林次長高副主委 |
transcript.whisperx[1].start |
28.186 |
transcript.whisperx[1].end |
42.803 |
transcript.whisperx[1].text |
這個保險 保險業有很多的資金它沒有受到相關的規定沒有辦法有效在投入新創產業甚至在國內相關的投資表率比較少大部分都是國外 國外也有很多匯兌損失 |
transcript.whisperx[2].start |
45.226 |
transcript.whisperx[2].end |
58.044 |
transcript.whisperx[2].text |
所以怎麼樣能夠充分運用這個保險的這些資金啊特別導入這個新創事業這部分這個國發會或者是經濟部有沒有具體看法 |
transcript.whisperx[3].start |
60.027 |
transcript.whisperx[3].end |
80.012 |
transcript.whisperx[3].text |
報告委員其實我們保險業要投入到新創大概是從VC或PE那VC這一塊其實我們國發基金我們其實有匡列給不同的部會其實今年增加了兩個百億基金一個是AI一個是特定產業 |
transcript.whisperx[4].start |
81.672 |
transcript.whisperx[4].end |
106.666 |
transcript.whisperx[4].text |
對 特定產業那還有一般性的產業就是我們長期已經匡列給中小企業處還有一些製造業策略性製造業跟策略性服務業這已經有基本上有蠻多年了那意思就是然後還有我們還有綠色成長基金這也是綠色的新創我的問題是說以目前的這個金額來看我們有30兆的保險資金但是只有351頭是國內創投 |
transcript.whisperx[5].start |
108.567 |
transcript.whisperx[5].end |
137.475 |
transcript.whisperx[5].text |
跟國外的水準是差很遠的所以你怎麼用制度性用政策把這些國保險業的資金能夠提高能夠到一千億投資到卓恩創投市場嗎是所以我們其實因為我們因為基本上我們還是要借重VC或PE嘛那VC這一塊我們除了鼓勵保險業因為保險業有很多它自己是我認為它會保守啦對就因為你政策太保守你沒有辦法去開放 |
transcript.whisperx[6].start |
137.975 |
transcript.whisperx[6].end |
163.333 |
transcript.whisperx[6].text |
如果開放他只能去投資國外的這些債券所以我們這次產創條例裡面有增加對於這個VC這一塊我是針對保險業基金所以這部分很可惜因為資金那麼多就沒辦法好好地使用我想委員有提醒我們到時候再來跟經管會看看就是有什麼獎勵的措施這個要用在新創啦第二個問題請教就是說 |
transcript.whisperx[7].start |
165.755 |
transcript.whisperx[7].end |
189.625 |
transcript.whisperx[7].text |
我們這個對新創的這個定義啊那國安會是你用創業天使投資方案是未滿五年那如果按照經濟部中計署這個新創事業的利潤是未滿八年那最後的版本願版是用國安會的版本那請教次長你用五年還是八年比較好你看八年是最多的加速啊 |
transcript.whisperx[8].start |
190.683 |
transcript.whisperx[8].end |
196.907 |
transcript.whisperx[8].text |
5到8年新創的家屬是最多將近快2600家是所有新創族群裡面最大的比例 |
transcript.whisperx[9].start |
198.081 |
transcript.whisperx[9].end |
225.761 |
transcript.whisperx[9].text |
所以五年對他們而言沒有實際的幫助跟委員報告因為我們這是要做投資鼓勵他去做投資新創所以我們是從投資面去看所以我們那時候才會引用那個國發會的五年你自己做技術也有新創事業認定對啊那後面就是新創因為他後面八年一般來講是比較趨於穩定成熟那我們是鼓勵他再投在比較前面所以八年能不能接受 |
transcript.whisperx[10].start |
228.055 |
transcript.whisperx[10].end |
252.498 |
transcript.whisperx[10].text |
你用日本的英國的經驗來看日本是未滿五年 還有未滿十年它有不同的新創標準所以我折衷八年我覺得是可行 可以去思考的業界也這樣期待這個部分我希望如果下午要審查這個法案的時候我們希望能夠用這個版本 折衷版本我想國會應該也可以同意吧 |
transcript.whisperx[11].start |
253.43 |
transcript.whisperx[11].end |
280.256 |
transcript.whisperx[11].text |
那個高副主委因為基本上VC的出廠就會到8年就會出廠所以就變成說5到8年就是就像市長說的說的是比較成熟期的那我們這個立法的本領應該是鼓勵你那時候制定是兩年對不對那個新創產業的環境有很大的變化你的存活率是很低的你那個必須對他們支持的年限要增加 |
transcript.whisperx[12].start |
280.996 |
transcript.whisperx[12].end |
291.549 |
transcript.whisperx[12].text |
所以這次已經調整到五年了啦就是可能 不過立法的本地啦不過兩三年之後 要修法 要變成八年所以一步到位 我覺得比較好第三點來 下一頁這個 |
transcript.whisperx[13].start |
296.755 |
transcript.whisperx[13].end |
324.753 |
transcript.whisperx[13].text |
投資門檻 投資門檻的部分我當然我的修正版本是個人銀行是維持50萬那如果是創投的就是法人的股東的話可以到300萬這部分這個高副主委或者是林市長您的看法怎麼樣這個我們會請那個因為這個我們內部我們跟財政部有在去討論如果是法人的話其實我們現在有很多那是要理事長來回答是不是才是理事長 |
transcript.whisperx[14].start |
325.816 |
transcript.whisperx[14].end |
350.523 |
transcript.whisperx[14].text |
如果增加一個法人到300萬這個可以嗎?報告委員因為法人現在其實他們已經很多優惠了那還有這個投資的所得不用記錄所得課稅然後他如果處分的話還有證券交易所得免稅那因為我們又另外我們現在營利世界所得稅的稅率其實是大概只有20%而且實質有效稅率只有14%所以你們還是覺得所以我們是覺得法人部分 |
transcript.whisperx[15].start |
351.583 |
transcript.whisperx[15].end |
369.534 |
transcript.whisperx[15].text |
對 法院部門似乎不需要再額外給他這個多餘的獎勵因為他事實上已經足夠了另外這個抵檢的上限個人的話如果到800萬對稅會不會有什麼影響因為我們現在已經這次我們修正也把那個300萬提高到500萬了 |
transcript.whisperx[16].start |
370.515 |
transcript.whisperx[16].end |
385.547 |
transcript.whisperx[16].text |
那其實也是有呼應狀況的500萬是重點產業不是說有但是因為畢竟因為大家委員也知道因為真正如果把金額提高真正適用享受到這個租稅優惠的就是所得非常高的人 |
transcript.whisperx[17].start |
386.209 |
transcript.whisperx[17].end |
406.305 |
transcript.whisperx[17].text |
那他的所得 因為我們一般所得稅率最高是10%如果你現在提高 對 就對他來講 節稅的效益太大對稅會不會有影響會有影響啊因為租稅馬上 個人的所得稅負馬上就降低而且降低的幅度是相對比較大的沒關係 其他問題我們下午在主角審查的時候 我們再來討論好 謝謝委員 謝謝好 |