iVOD / 158892

Field Value
IVOD_ID 158892
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158892
日期 2025-01-15
會議資料.會議代碼 聯席會議-11-2-19,20-1
會議資料.會議代碼:str 第11屆第2會期經濟、財政兩委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 19
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第2會期經濟、財政兩委員會第1次聯席會議
影片種類 Clip
開始時間 2025-01-15T11:02:40+08:00
結束時間 2025-01-15T11:09:30+08:00
影片長度 00:06:50
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/427ddbb1724b1d1abd589f18e7b4d8975a45ebd5c2e75318b9af4de1086944f11614a9641f3446d05ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:02:40 - 11:09:30
會議時間 2025-01-15T09:00:00+08:00
會議名稱 立法院第11屆第2會期經濟、財政兩委員會第1次聯席會議(事由:審查: 一、行政院函請審議「產業創新條例部分條文修正草案」案。 二、本院委員葛如鈞等16人擬具「產業創新條例第十條之一及第十七條之一條文修正草案」案。 三、本院委員林岱樺等18人擬具「產業創新條例第十條之一及第十七條之一條文修正草案」案。 四、本院委員楊瓊瓔等29人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。 五、本院委員何欣純等23人擬具「產業創新條例第十條之一條文修正草案」案。 六、本院委員邱議瑩等16人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。 七、本院委員蔡其昌等18人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。 八、本院台灣民眾黨黨團擬具「產業創新條例第十條之一條文修正草案」案。 九、本院委員謝衣鳯等16人擬具「產業創新條例第十條之一及第七十二條條文修正草案」案。 十、本院委員邱志偉等20人擬具「產業創新條例部分條文修正草案」案。 十一、本院委員鄭正鈐等19人擬具「產業創新條例第十條之一條文修正草案」案。 (第一案及第十一案如未接獲議事處來函,則不予審查) 【1月15日及16日兩天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.41471875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 15.72471875
transcript.pyannote[1].end 20.34846875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 20.65221875
transcript.pyannote[2].end 23.20034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.65971875
transcript.pyannote[3].end 31.18221875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 27.13221875
transcript.pyannote[4].end 27.84096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 31.28346875
transcript.pyannote[5].end 31.68846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 31.78971875
transcript.pyannote[6].end 37.10534375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 37.62846875
transcript.pyannote[7].end 41.23971875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 41.56034375
transcript.pyannote[8].end 44.58096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 45.12096875
transcript.pyannote[9].end 58.18221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 59.05971875
transcript.pyannote[10].end 61.01721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 61.08471875
transcript.pyannote[11].end 62.50221875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 62.85659375
transcript.pyannote[12].end 67.00784375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 67.32846875
transcript.pyannote[13].end 67.68284375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 67.88534375
transcript.pyannote[14].end 80.28846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 79.57971875
transcript.pyannote[15].end 80.65971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 81.06471875
transcript.pyannote[16].end 101.07846875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 99.72846875
transcript.pyannote[17].end 112.55346875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 105.38159375
transcript.pyannote[18].end 105.76971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 112.75596875
transcript.pyannote[19].end 121.05846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 112.82346875
transcript.pyannote[20].end 113.17784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 121.39596875
transcript.pyannote[21].end 134.28846875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 132.93846875
transcript.pyannote[22].end 141.79784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 137.91659375
transcript.pyannote[23].end 138.30471875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 141.74721875
transcript.pyannote[24].end 149.07096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 144.86909375
transcript.pyannote[25].end 145.13909375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 148.12596875
transcript.pyannote[26].end 156.07409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 150.47159375
transcript.pyannote[27].end 152.86784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 155.44971875
transcript.pyannote[28].end 163.27971875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 157.59284375
transcript.pyannote[29].end 157.94721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 158.82471875
transcript.pyannote[30].end 159.38159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 159.49971875
transcript.pyannote[31].end 159.65159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 161.67659375
transcript.pyannote[32].end 165.27096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 165.64221875
transcript.pyannote[33].end 168.25784375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 168.78096875
transcript.pyannote[34].end 175.53096875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 173.18534375
transcript.pyannote[35].end 173.20221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 173.52284375
transcript.pyannote[36].end 173.64096875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 175.58159375
transcript.pyannote[37].end 178.87221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 179.09159375
transcript.pyannote[38].end 182.87159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 182.93909375
transcript.pyannote[39].end 187.44471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 187.69784375
transcript.pyannote[40].end 189.84096875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 190.48221875
transcript.pyannote[41].end 197.26596875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 197.83971875
transcript.pyannote[42].end 201.63659375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 201.63659375
transcript.pyannote[43].end 201.68721875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 201.68721875
transcript.pyannote[44].end 201.72096875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 201.72096875
transcript.pyannote[45].end 201.94034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 201.94034375
transcript.pyannote[46].end 201.95721875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 201.95721875
transcript.pyannote[47].end 201.99096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 201.99096875
transcript.pyannote[48].end 202.02471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 202.02471875
transcript.pyannote[49].end 202.24409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 202.24409375
transcript.pyannote[50].end 202.26096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 202.78409375
transcript.pyannote[51].end 202.81784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 202.88534375
transcript.pyannote[52].end 206.00721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 203.54346875
transcript.pyannote[53].end 203.83034375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 206.12534375
transcript.pyannote[54].end 213.93846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 212.52096875
transcript.pyannote[55].end 215.98034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 216.25034375
transcript.pyannote[56].end 225.91971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 225.91971875
transcript.pyannote[57].end 225.93659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 225.93659375
transcript.pyannote[58].end 225.97034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 226.81409375
transcript.pyannote[59].end 226.96596875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 226.96596875
transcript.pyannote[60].end 227.67471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 227.67471875
transcript.pyannote[61].end 227.70846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 227.99534375
transcript.pyannote[62].end 228.01221875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 228.01221875
transcript.pyannote[63].end 232.19721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 232.56846875
transcript.pyannote[64].end 236.04471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 236.34846875
transcript.pyannote[65].end 242.42346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 242.74409375
transcript.pyannote[66].end 245.07284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 245.54534375
transcript.pyannote[67].end 252.61596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 253.37534375
transcript.pyannote[68].end 254.13471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 254.32034375
transcript.pyannote[69].end 254.40471875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 254.92784375
transcript.pyannote[70].end 269.20409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 259.58534375
transcript.pyannote[71].end 260.04096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 265.59284375
transcript.pyannote[72].end 265.67721875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 267.92159375
transcript.pyannote[73].end 280.79721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 274.82346875
transcript.pyannote[74].end 274.95846875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 280.91534375
transcript.pyannote[75].end 285.62346875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 280.94909375
transcript.pyannote[76].end 281.38784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 283.29471875
transcript.pyannote[77].end 288.03659375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 285.69096875
transcript.pyannote[78].end 285.87659375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 287.51346875
transcript.pyannote[79].end 288.44159375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 288.35721875
transcript.pyannote[80].end 288.37409375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 288.39096875
transcript.pyannote[81].end 292.03596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 292.03596875
transcript.pyannote[82].end 292.28909375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 293.30159375
transcript.pyannote[83].end 293.99346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 295.09034375
transcript.pyannote[84].end 295.71471875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 296.71034375
transcript.pyannote[85].end 298.81971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 298.87034375
transcript.pyannote[86].end 300.86159375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 301.23284375
transcript.pyannote[87].end 302.76846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 303.00471875
transcript.pyannote[88].end 307.56096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 307.79721875
transcript.pyannote[89].end 309.16409375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 309.72096875
transcript.pyannote[90].end 312.74159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 313.65284375
transcript.pyannote[91].end 314.80034375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 315.18846875
transcript.pyannote[92].end 317.73659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 318.20909375
transcript.pyannote[93].end 321.88784375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 321.39846875
transcript.pyannote[94].end 325.00971875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 325.75221875
transcript.pyannote[95].end 327.60846875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 327.76034375
transcript.pyannote[96].end 329.56596875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 330.13971875
transcript.pyannote[97].end 333.70034375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 333.75096875
transcript.pyannote[98].end 348.06096875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 348.04409375
transcript.pyannote[99].end 349.14096875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 348.11159375
transcript.pyannote[100].end 348.12846875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 348.80346875
transcript.pyannote[101].end 350.96346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 350.03534375
transcript.pyannote[102].end 351.28409375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 351.28409375
transcript.pyannote[103].end 351.31784375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 351.36846875
transcript.pyannote[104].end 358.35471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 356.43096875
transcript.pyannote[105].end 360.36284375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 360.95346875
transcript.pyannote[106].end 361.86471875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 362.28659375
transcript.pyannote[107].end 364.88534375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 364.73346875
transcript.pyannote[108].end 364.95284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 364.95284375
transcript.pyannote[109].end 364.96971875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 365.37471875
transcript.pyannote[110].end 370.18409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 370.06596875
transcript.pyannote[111].end 370.40346875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 370.40346875
transcript.pyannote[112].end 372.96846875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 371.88846875
transcript.pyannote[113].end 374.74034375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 374.16659375
transcript.pyannote[114].end 393.37034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 390.29909375
transcript.pyannote[115].end 390.70409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 390.94034375
transcript.pyannote[116].end 390.99096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 391.19346875
transcript.pyannote[117].end 391.31159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 391.31159375
transcript.pyannote[118].end 391.32846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 391.32846875
transcript.pyannote[119].end 391.37909375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 391.37909375
transcript.pyannote[120].end 394.01159375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 394.23096875
transcript.pyannote[121].end 402.04409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 402.46596875
transcript.pyannote[122].end 407.19096875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 406.58346875
transcript.pyannote[123].end 407.49471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 407.49471875
transcript.pyannote[124].end 407.51159375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 409.09784375
transcript.pyannote[125].end 409.40159375
transcript.whisperx[0].start 16.235
transcript.whisperx[0].end 22.877
transcript.whisperx[0].text 好謝謝主席有請林次長跟國會高副主委好請林次長高副主委
transcript.whisperx[1].start 28.186
transcript.whisperx[1].end 42.803
transcript.whisperx[1].text 這個保險 保險業有很多的資金它沒有受到相關的規定沒有辦法有效在投入新創產業甚至在國內相關的投資表率比較少大部分都是國外 國外也有很多匯兌損失
transcript.whisperx[2].start 45.226
transcript.whisperx[2].end 58.044
transcript.whisperx[2].text 所以怎麼樣能夠充分運用這個保險的這些資金啊特別導入這個新創事業這部分這個國發會或者是經濟部有沒有具體看法
transcript.whisperx[3].start 60.027
transcript.whisperx[3].end 80.012
transcript.whisperx[3].text 報告委員其實我們保險業要投入到新創大概是從VC或PE那VC這一塊其實我們國發基金我們其實有匡列給不同的部會其實今年增加了兩個百億基金一個是AI一個是特定產業
transcript.whisperx[4].start 81.672
transcript.whisperx[4].end 106.666
transcript.whisperx[4].text 對 特定產業那還有一般性的產業就是我們長期已經匡列給中小企業處還有一些製造業策略性製造業跟策略性服務業這已經有基本上有蠻多年了那意思就是然後還有我們還有綠色成長基金這也是綠色的新創我的問題是說以目前的這個金額來看我們有30兆的保險資金但是只有351頭是國內創投
transcript.whisperx[5].start 108.567
transcript.whisperx[5].end 137.475
transcript.whisperx[5].text 跟國外的水準是差很遠的所以你怎麼用制度性用政策把這些國保險業的資金能夠提高能夠到一千億投資到卓恩創投市場嗎是所以我們其實因為我們因為基本上我們還是要借重VC或PE嘛那VC這一塊我們除了鼓勵保險業因為保險業有很多它自己是我認為它會保守啦對就因為你政策太保守你沒有辦法去開放
transcript.whisperx[6].start 137.975
transcript.whisperx[6].end 163.333
transcript.whisperx[6].text 如果開放他只能去投資國外的這些債券所以我們這次產創條例裡面有增加對於這個VC這一塊我是針對保險業基金所以這部分很可惜因為資金那麼多就沒辦法好好地使用我想委員有提醒我們到時候再來跟經管會看看就是有什麼獎勵的措施這個要用在新創啦第二個問題請教就是說
transcript.whisperx[7].start 165.755
transcript.whisperx[7].end 189.625
transcript.whisperx[7].text 我們這個對新創的這個定義啊那國安會是你用創業天使投資方案是未滿五年那如果按照經濟部中計署這個新創事業的利潤是未滿八年那最後的版本願版是用國安會的版本那請教次長你用五年還是八年比較好你看八年是最多的加速啊
transcript.whisperx[8].start 190.683
transcript.whisperx[8].end 196.907
transcript.whisperx[8].text 5到8年新創的家屬是最多將近快2600家是所有新創族群裡面最大的比例
transcript.whisperx[9].start 198.081
transcript.whisperx[9].end 225.761
transcript.whisperx[9].text 所以五年對他們而言沒有實際的幫助跟委員報告因為我們這是要做投資鼓勵他去做投資新創所以我們是從投資面去看所以我們那時候才會引用那個國發會的五年你自己做技術也有新創事業認定對啊那後面就是新創因為他後面八年一般來講是比較趨於穩定成熟那我們是鼓勵他再投在比較前面所以八年能不能接受
transcript.whisperx[10].start 228.055
transcript.whisperx[10].end 252.498
transcript.whisperx[10].text 你用日本的英國的經驗來看日本是未滿五年 還有未滿十年它有不同的新創標準所以我折衷八年我覺得是可行 可以去思考的業界也這樣期待這個部分我希望如果下午要審查這個法案的時候我們希望能夠用這個版本 折衷版本我想國會應該也可以同意吧
transcript.whisperx[11].start 253.43
transcript.whisperx[11].end 280.256
transcript.whisperx[11].text 那個高副主委因為基本上VC的出廠就會到8年就會出廠所以就變成說5到8年就是就像市長說的說的是比較成熟期的那我們這個立法的本領應該是鼓勵你那時候制定是兩年對不對那個新創產業的環境有很大的變化你的存活率是很低的你那個必須對他們支持的年限要增加
transcript.whisperx[12].start 280.996
transcript.whisperx[12].end 291.549
transcript.whisperx[12].text 所以這次已經調整到五年了啦就是可能 不過立法的本地啦不過兩三年之後 要修法 要變成八年所以一步到位 我覺得比較好第三點來 下一頁這個
transcript.whisperx[13].start 296.755
transcript.whisperx[13].end 324.753
transcript.whisperx[13].text 投資門檻 投資門檻的部分我當然我的修正版本是個人銀行是維持50萬那如果是創投的就是法人的股東的話可以到300萬這部分這個高副主委或者是林市長您的看法怎麼樣這個我們會請那個因為這個我們內部我們跟財政部有在去討論如果是法人的話其實我們現在有很多那是要理事長來回答是不是才是理事長
transcript.whisperx[14].start 325.816
transcript.whisperx[14].end 350.523
transcript.whisperx[14].text 如果增加一個法人到300萬這個可以嗎?報告委員因為法人現在其實他們已經很多優惠了那還有這個投資的所得不用記錄所得課稅然後他如果處分的話還有證券交易所得免稅那因為我們又另外我們現在營利世界所得稅的稅率其實是大概只有20%而且實質有效稅率只有14%所以你們還是覺得所以我們是覺得法人部分
transcript.whisperx[15].start 351.583
transcript.whisperx[15].end 369.534
transcript.whisperx[15].text 對 法院部門似乎不需要再額外給他這個多餘的獎勵因為他事實上已經足夠了另外這個抵檢的上限個人的話如果到800萬對稅會不會有什麼影響因為我們現在已經這次我們修正也把那個300萬提高到500萬了
transcript.whisperx[16].start 370.515
transcript.whisperx[16].end 385.547
transcript.whisperx[16].text 那其實也是有呼應狀況的500萬是重點產業不是說有但是因為畢竟因為大家委員也知道因為真正如果把金額提高真正適用享受到這個租稅優惠的就是所得非常高的人
transcript.whisperx[17].start 386.209
transcript.whisperx[17].end 406.305
transcript.whisperx[17].text 那他的所得 因為我們一般所得稅率最高是10%如果你現在提高 對 就對他來講 節稅的效益太大對稅會不會有影響會有影響啊因為租稅馬上 個人的所得稅負馬上就降低而且降低的幅度是相對比較大的沒關係 其他問題我們下午在主角審查的時候 我們再來討論好 謝謝委員 謝謝好