iVOD / 15864

Field Value
IVOD_ID 15864
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/15864
日期 2024-05-01
會議資料.會議代碼 委員會-11-1-20-11
會議資料.會議代碼:str 第11屆第1會期財政委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第11次全體委員會議
影片種類 Full
開始時間 2024-05-01T08:31:18+08:00
結束時間 2024-05-01T13:15:00+08:00
影片長度 04:43:42
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b41997f390c3528e648a477557a3c475ae17401902c909943be8d109af184be4ab15bad31e570b245ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-05-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第11次全體委員會議(事由:邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質薪資」進行專題報告,並備質詢。)
委員名稱 完整會議
委員發言時間 08:31:18 - 13:15:00
transcript.pyannote[0].speaker SPEAKER_05
transcript.pyannote[0].start 1900.84784375
transcript.pyannote[0].end 1901.48909375
transcript.pyannote[1].speaker SPEAKER_13
transcript.pyannote[1].start 1903.17659375
transcript.pyannote[1].end 1906.45034375
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 1906.72034375
transcript.pyannote[2].end 1909.53846875
transcript.pyannote[3].speaker SPEAKER_27
transcript.pyannote[3].start 1909.53846875
transcript.pyannote[3].end 1909.55534375
transcript.pyannote[4].speaker SPEAKER_13
transcript.pyannote[4].start 1909.90971875
transcript.pyannote[4].end 1914.19596875
transcript.pyannote[5].speaker SPEAKER_27
transcript.pyannote[5].start 1914.85409375
transcript.pyannote[5].end 1938.90096875
transcript.pyannote[6].speaker SPEAKER_27
transcript.pyannote[6].start 1939.52534375
transcript.pyannote[6].end 1941.93846875
transcript.pyannote[7].speaker SPEAKER_27
transcript.pyannote[7].start 1942.52909375
transcript.pyannote[7].end 1949.32971875
transcript.pyannote[8].speaker SPEAKER_27
transcript.pyannote[8].start 1949.46471875
transcript.pyannote[8].end 1952.36721875
transcript.pyannote[9].speaker SPEAKER_27
transcript.pyannote[9].start 1952.78909375
transcript.pyannote[9].end 1957.41284375
transcript.pyannote[10].speaker SPEAKER_27
transcript.pyannote[10].start 1958.13846875
transcript.pyannote[10].end 1987.83846875
transcript.pyannote[11].speaker SPEAKER_27
transcript.pyannote[11].start 1988.29409375
transcript.pyannote[11].end 1992.93471875
transcript.pyannote[12].speaker SPEAKER_27
transcript.pyannote[12].start 1994.16659375
transcript.pyannote[12].end 2023.78221875
transcript.pyannote[13].speaker SPEAKER_13
transcript.pyannote[13].start 2025.89159375
transcript.pyannote[13].end 2031.74721875
transcript.pyannote[14].speaker SPEAKER_27
transcript.pyannote[14].start 2032.74284375
transcript.pyannote[14].end 2049.36471875
transcript.pyannote[15].speaker SPEAKER_13
transcript.pyannote[15].start 2051.13659375
transcript.pyannote[15].end 2058.22409375
transcript.pyannote[16].speaker SPEAKER_13
transcript.pyannote[16].start 2062.40909375
transcript.pyannote[16].end 2066.15534375
transcript.pyannote[17].speaker SPEAKER_13
transcript.pyannote[17].start 2068.07909375
transcript.pyannote[17].end 2071.23471875
transcript.pyannote[18].speaker SPEAKER_13
transcript.pyannote[18].start 2073.52971875
transcript.pyannote[18].end 2076.65159375
transcript.pyannote[19].speaker SPEAKER_13
transcript.pyannote[19].start 2078.74409375
transcript.pyannote[19].end 2080.98846875
transcript.pyannote[20].speaker SPEAKER_13
transcript.pyannote[20].start 2082.91221875
transcript.pyannote[20].end 2084.02596875
transcript.pyannote[21].speaker SPEAKER_13
transcript.pyannote[21].start 2085.46034375
transcript.pyannote[21].end 2086.62471875
transcript.pyannote[22].speaker SPEAKER_13
transcript.pyannote[22].start 2087.70471875
transcript.pyannote[22].end 2088.54846875
transcript.pyannote[23].speaker SPEAKER_13
transcript.pyannote[23].start 2089.27409375
transcript.pyannote[23].end 2090.10096875
transcript.pyannote[24].speaker SPEAKER_13
transcript.pyannote[24].start 2091.19784375
transcript.pyannote[24].end 2092.42971875
transcript.pyannote[25].speaker SPEAKER_13
transcript.pyannote[25].start 2094.40409375
transcript.pyannote[25].end 2096.05784375
transcript.pyannote[26].speaker SPEAKER_13
transcript.pyannote[26].start 2099.34846875
transcript.pyannote[26].end 2101.20471875
transcript.pyannote[27].speaker SPEAKER_13
transcript.pyannote[27].start 2103.36471875
transcript.pyannote[27].end 2104.66409375
transcript.pyannote[28].speaker SPEAKER_13
transcript.pyannote[28].start 2106.53721875
transcript.pyannote[28].end 2108.59596875
transcript.pyannote[29].speaker SPEAKER_13
transcript.pyannote[29].start 2110.06409375
transcript.pyannote[29].end 2112.08909375
transcript.pyannote[30].speaker SPEAKER_13
transcript.pyannote[30].start 2113.47284375
transcript.pyannote[30].end 2114.48534375
transcript.pyannote[31].speaker SPEAKER_13
transcript.pyannote[31].start 2115.98721875
transcript.pyannote[31].end 2117.57346875
transcript.pyannote[32].speaker SPEAKER_13
transcript.pyannote[32].start 2119.68284375
transcript.pyannote[32].end 2120.29034375
transcript.pyannote[33].speaker SPEAKER_13
transcript.pyannote[33].start 2121.82596875
transcript.pyannote[33].end 2122.90596875
transcript.pyannote[34].speaker SPEAKER_13
transcript.pyannote[34].start 2123.22659375
transcript.pyannote[34].end 2124.81284375
transcript.pyannote[35].speaker SPEAKER_13
transcript.pyannote[35].start 2126.44971875
transcript.pyannote[35].end 2128.33971875
transcript.pyannote[36].speaker SPEAKER_13
transcript.pyannote[36].start 2131.41096875
transcript.pyannote[36].end 2132.52471875
transcript.pyannote[37].speaker SPEAKER_13
transcript.pyannote[37].start 2133.82409375
transcript.pyannote[37].end 2135.84909375
transcript.pyannote[38].speaker SPEAKER_13
transcript.pyannote[38].start 2141.14784375
transcript.pyannote[38].end 2144.43846875
transcript.pyannote[39].speaker SPEAKER_13
transcript.pyannote[39].start 2146.66596875
transcript.pyannote[39].end 2148.48846875
transcript.pyannote[40].speaker SPEAKER_13
transcript.pyannote[40].start 2150.05784375
transcript.pyannote[40].end 2152.11659375
transcript.pyannote[41].speaker SPEAKER_13
transcript.pyannote[41].start 2152.52159375
transcript.pyannote[41].end 2159.55846875
transcript.pyannote[42].speaker SPEAKER_13
transcript.pyannote[42].start 2161.11096875
transcript.pyannote[42].end 2163.64221875
transcript.pyannote[43].speaker SPEAKER_13
transcript.pyannote[43].start 2164.01346875
transcript.pyannote[43].end 2186.96346875
transcript.pyannote[44].speaker SPEAKER_13
transcript.pyannote[44].start 2191.57034375
transcript.pyannote[44].end 2194.57409375
transcript.pyannote[45].speaker SPEAKER_14
transcript.pyannote[45].start 2193.69659375
transcript.pyannote[45].end 2194.10159375
transcript.pyannote[46].speaker SPEAKER_14
transcript.pyannote[46].start 2194.74284375
transcript.pyannote[46].end 2312.81721875
transcript.pyannote[47].speaker SPEAKER_14
transcript.pyannote[47].start 2313.39096875
transcript.pyannote[47].end 2353.94159375
transcript.pyannote[48].speaker SPEAKER_14
transcript.pyannote[48].start 2354.41409375
transcript.pyannote[48].end 2388.75471875
transcript.pyannote[49].speaker SPEAKER_14
transcript.pyannote[49].start 2389.51409375
transcript.pyannote[49].end 2501.46284375
transcript.pyannote[50].speaker SPEAKER_14
transcript.pyannote[50].start 2501.69909375
transcript.pyannote[50].end 2536.41096875
transcript.pyannote[51].speaker SPEAKER_14
transcript.pyannote[51].start 2537.01846875
transcript.pyannote[51].end 2546.33346875
transcript.pyannote[52].speaker SPEAKER_14
transcript.pyannote[52].start 2546.78909375
transcript.pyannote[52].end 2555.56409375
transcript.pyannote[53].speaker SPEAKER_14
transcript.pyannote[53].start 2556.03659375
transcript.pyannote[53].end 2575.47659375
transcript.pyannote[54].speaker SPEAKER_14
transcript.pyannote[54].start 2575.81409375
transcript.pyannote[54].end 2583.72846875
transcript.pyannote[55].speaker SPEAKER_14
transcript.pyannote[55].start 2584.11659375
transcript.pyannote[55].end 2587.47471875
transcript.pyannote[56].speaker SPEAKER_14
transcript.pyannote[56].start 2587.62659375
transcript.pyannote[56].end 2588.01471875
transcript.pyannote[57].speaker SPEAKER_14
transcript.pyannote[57].start 2588.57159375
transcript.pyannote[57].end 2591.23784375
transcript.pyannote[58].speaker SPEAKER_13
transcript.pyannote[58].start 2592.04784375
transcript.pyannote[58].end 2595.86159375
transcript.pyannote[59].speaker SPEAKER_28
transcript.pyannote[59].start 2607.31971875
transcript.pyannote[59].end 2610.20534375
transcript.pyannote[60].speaker SPEAKER_28
transcript.pyannote[60].start 2611.09971875
transcript.pyannote[60].end 2646.52034375
transcript.pyannote[61].speaker SPEAKER_28
transcript.pyannote[61].start 2647.34721875
transcript.pyannote[61].end 2667.37784375
transcript.pyannote[62].speaker SPEAKER_28
transcript.pyannote[62].start 2667.81659375
transcript.pyannote[62].end 2707.99596875
transcript.pyannote[63].speaker SPEAKER_28
transcript.pyannote[63].start 2709.09284375
transcript.pyannote[63].end 2756.22471875
transcript.pyannote[64].speaker SPEAKER_28
transcript.pyannote[64].start 2756.81534375
transcript.pyannote[64].end 2779.36034375
transcript.pyannote[65].speaker SPEAKER_28
transcript.pyannote[65].start 2779.79909375
transcript.pyannote[65].end 2820.55221875
transcript.pyannote[66].speaker SPEAKER_28
transcript.pyannote[66].start 2821.31159375
transcript.pyannote[66].end 2897.36721875
transcript.pyannote[67].speaker SPEAKER_28
transcript.pyannote[67].start 2898.93659375
transcript.pyannote[67].end 2920.97534375
transcript.pyannote[68].speaker SPEAKER_28
transcript.pyannote[68].start 2921.56596875
transcript.pyannote[68].end 2946.92909375
transcript.pyannote[69].speaker SPEAKER_28
transcript.pyannote[69].start 2947.18221875
transcript.pyannote[69].end 2965.39034375
transcript.pyannote[70].speaker SPEAKER_13
transcript.pyannote[70].start 2965.59284375
transcript.pyannote[70].end 2969.42346875
transcript.pyannote[71].speaker SPEAKER_13
transcript.pyannote[71].start 2969.52471875
transcript.pyannote[71].end 2972.12346875
transcript.pyannote[72].speaker SPEAKER_13
transcript.pyannote[72].start 2972.73096875
transcript.pyannote[72].end 2973.54096875
transcript.pyannote[73].speaker SPEAKER_18
transcript.pyannote[73].start 2979.16034375
transcript.pyannote[73].end 3043.92659375
transcript.pyannote[74].speaker SPEAKER_18
transcript.pyannote[74].start 3044.31471875
transcript.pyannote[74].end 3063.16409375
transcript.pyannote[75].speaker SPEAKER_18
transcript.pyannote[75].start 3064.07534375
transcript.pyannote[75].end 3099.10784375
transcript.pyannote[76].speaker SPEAKER_18
transcript.pyannote[76].start 3099.41159375
transcript.pyannote[76].end 3105.40221875
transcript.pyannote[77].speaker SPEAKER_18
transcript.pyannote[77].start 3105.58784375
transcript.pyannote[77].end 3139.79346875
transcript.pyannote[78].speaker SPEAKER_18
transcript.pyannote[78].start 3140.26596875
transcript.pyannote[78].end 3160.19534375
transcript.pyannote[79].speaker SPEAKER_18
transcript.pyannote[79].start 3160.54971875
transcript.pyannote[79].end 3176.46284375
transcript.pyannote[80].speaker SPEAKER_18
transcript.pyannote[80].start 3176.83409375
transcript.pyannote[80].end 3181.82909375
transcript.pyannote[81].speaker SPEAKER_18
transcript.pyannote[81].start 3182.21721875
transcript.pyannote[81].end 3191.44784375
transcript.pyannote[82].speaker SPEAKER_18
transcript.pyannote[82].start 3191.80221875
transcript.pyannote[82].end 3195.56534375
transcript.pyannote[83].speaker SPEAKER_18
transcript.pyannote[83].start 3195.86909375
transcript.pyannote[83].end 3198.55221875
transcript.pyannote[84].speaker SPEAKER_18
transcript.pyannote[84].start 3198.83909375
transcript.pyannote[84].end 3204.91409375
transcript.pyannote[85].speaker SPEAKER_18
transcript.pyannote[85].start 3205.42034375
transcript.pyannote[85].end 3210.60096875
transcript.pyannote[86].speaker SPEAKER_18
transcript.pyannote[86].start 3210.97221875
transcript.pyannote[86].end 3228.62346875
transcript.pyannote[87].speaker SPEAKER_18
transcript.pyannote[87].start 3228.97784375
transcript.pyannote[87].end 3241.27971875
transcript.pyannote[88].speaker SPEAKER_18
transcript.pyannote[88].start 3243.08534375
transcript.pyannote[88].end 3291.46596875
transcript.pyannote[89].speaker SPEAKER_18
transcript.pyannote[89].start 3292.20846875
transcript.pyannote[89].end 3301.97909375
transcript.pyannote[90].speaker SPEAKER_18
transcript.pyannote[90].start 3302.40096875
transcript.pyannote[90].end 3304.05471875
transcript.pyannote[91].speaker SPEAKER_18
transcript.pyannote[91].start 3304.57784375
transcript.pyannote[91].end 3307.86846875
transcript.pyannote[92].speaker SPEAKER_18
transcript.pyannote[92].start 3308.13846875
transcript.pyannote[92].end 3308.79659375
transcript.pyannote[93].speaker SPEAKER_18
transcript.pyannote[93].start 3308.96534375
transcript.pyannote[93].end 3320.23784375
transcript.pyannote[94].speaker SPEAKER_18
transcript.pyannote[94].start 3320.57534375
transcript.pyannote[94].end 3336.37034375
transcript.pyannote[95].speaker SPEAKER_18
transcript.pyannote[95].start 3336.74159375
transcript.pyannote[95].end 3367.85909375
transcript.pyannote[96].speaker SPEAKER_18
transcript.pyannote[96].start 3368.21346875
transcript.pyannote[96].end 3374.06909375
transcript.pyannote[97].speaker SPEAKER_18
transcript.pyannote[97].start 3374.17034375
transcript.pyannote[97].end 3386.82659375
transcript.pyannote[98].speaker SPEAKER_18
transcript.pyannote[98].start 3387.02909375
transcript.pyannote[98].end 3415.41284375
transcript.pyannote[99].speaker SPEAKER_18
transcript.pyannote[99].start 3416.49284375
transcript.pyannote[99].end 3446.71596875
transcript.pyannote[100].speaker SPEAKER_13
transcript.pyannote[100].start 3447.77909375
transcript.pyannote[100].end 3453.04409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 3460.41846875
transcript.pyannote[101].end 3462.94971875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 3463.03409375
transcript.pyannote[102].end 3468.46784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 3468.92346875
transcript.pyannote[103].end 3472.82159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 3473.19284375
transcript.pyannote[104].end 3476.11221875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 3476.93909375
transcript.pyannote[105].end 3482.38971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 3482.89596875
transcript.pyannote[106].end 3486.10221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 3486.35534375
transcript.pyannote[107].end 3489.32534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 3489.76409375
transcript.pyannote[108].end 3491.63721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 3492.16034375
transcript.pyannote[109].end 3496.34534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 3496.98659375
transcript.pyannote[110].end 3500.96909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 3501.35721875
transcript.pyannote[111].end 3506.40284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 3507.49971875
transcript.pyannote[112].end 3515.54909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 3515.95409375
transcript.pyannote[113].end 3517.97909375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 3518.29971875
transcript.pyannote[114].end 3520.45971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 3520.84784375
transcript.pyannote[115].end 3524.74596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 3525.50534375
transcript.pyannote[116].end 3531.22596875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 3531.25971875
transcript.pyannote[117].end 3533.62221875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 3534.28034375
transcript.pyannote[118].end 3540.01784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 3540.87846875
transcript.pyannote[119].end 3546.48096875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 3547.69596875
transcript.pyannote[120].end 3550.05846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 3550.39596875
transcript.pyannote[121].end 3550.83471875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 3551.27346875
transcript.pyannote[122].end 3554.81721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 3555.35721875
transcript.pyannote[123].end 3560.31846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 3561.29721875
transcript.pyannote[124].end 3563.62596875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 3563.89596875
transcript.pyannote[125].end 3574.24034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 3574.67909375
transcript.pyannote[126].end 3578.00346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 3578.49284375
transcript.pyannote[127].end 3584.24721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 3584.50034375
transcript.pyannote[128].end 3589.03971875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 3589.74846875
transcript.pyannote[129].end 3600.24471875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 3600.46409375
transcript.pyannote[130].end 3610.97721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 3611.39909375
transcript.pyannote[131].end 3613.94721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 3614.62221875
transcript.pyannote[132].end 3618.11534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 3618.57096875
transcript.pyannote[133].end 3624.35909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 3624.39284375
transcript.pyannote[134].end 3626.56971875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 3627.71721875
transcript.pyannote[135].end 3631.04159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 3632.15534375
transcript.pyannote[136].end 3636.05346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 3636.52596875
transcript.pyannote[137].end 3639.71534375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 3639.81659375
transcript.pyannote[138].end 3643.91721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 3644.42346875
transcript.pyannote[139].end 3645.25034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 3645.41909375
transcript.pyannote[140].end 3650.80221875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 3651.08909375
transcript.pyannote[141].end 3651.10596875
transcript.pyannote[142].speaker SPEAKER_13
transcript.pyannote[142].start 3651.10596875
transcript.pyannote[142].end 3654.56534375
transcript.pyannote[143].speaker SPEAKER_13
transcript.pyannote[143].start 3655.51034375
transcript.pyannote[143].end 3656.86034375
transcript.pyannote[144].speaker SPEAKER_29
transcript.pyannote[144].start 3668.06534375
transcript.pyannote[144].end 3670.71471875
transcript.pyannote[145].speaker SPEAKER_29
transcript.pyannote[145].start 3671.00159375
transcript.pyannote[145].end 3688.82159375
transcript.pyannote[146].speaker SPEAKER_29
transcript.pyannote[146].start 3688.93971875
transcript.pyannote[146].end 3691.67346875
transcript.pyannote[147].speaker SPEAKER_29
transcript.pyannote[147].start 3692.01096875
transcript.pyannote[147].end 3693.85034375
transcript.pyannote[148].speaker SPEAKER_29
transcript.pyannote[148].start 3694.42409375
transcript.pyannote[148].end 3695.03159375
transcript.pyannote[149].speaker SPEAKER_29
transcript.pyannote[149].start 3695.13284375
transcript.pyannote[149].end 3696.87096875
transcript.pyannote[150].speaker SPEAKER_29
transcript.pyannote[150].start 3696.92159375
transcript.pyannote[150].end 3699.08159375
transcript.pyannote[151].speaker SPEAKER_29
transcript.pyannote[151].start 3699.36846875
transcript.pyannote[151].end 3700.61721875
transcript.pyannote[152].speaker SPEAKER_29
transcript.pyannote[152].start 3701.29221875
transcript.pyannote[152].end 3701.61284375
transcript.pyannote[153].speaker SPEAKER_29
transcript.pyannote[153].start 3702.15284375
transcript.pyannote[153].end 3703.82346875
transcript.pyannote[154].speaker SPEAKER_29
transcript.pyannote[154].start 3705.03846875
transcript.pyannote[154].end 3705.66284375
transcript.pyannote[155].speaker SPEAKER_29
transcript.pyannote[155].start 3705.89909375
transcript.pyannote[155].end 3707.19846875
transcript.pyannote[156].speaker SPEAKER_29
transcript.pyannote[156].start 3707.73846875
transcript.pyannote[156].end 3713.00346875
transcript.pyannote[157].speaker SPEAKER_29
transcript.pyannote[157].start 3713.23971875
transcript.pyannote[157].end 3714.42096875
transcript.pyannote[158].speaker SPEAKER_29
transcript.pyannote[158].start 3714.92721875
transcript.pyannote[158].end 3724.37721875
transcript.pyannote[159].speaker SPEAKER_29
transcript.pyannote[159].start 3725.22096875
transcript.pyannote[159].end 3733.20284375
transcript.pyannote[160].speaker SPEAKER_29
transcript.pyannote[160].start 3733.67534375
transcript.pyannote[160].end 3734.21534375
transcript.pyannote[161].speaker SPEAKER_29
transcript.pyannote[161].start 3734.40096875
transcript.pyannote[161].end 3737.33721875
transcript.pyannote[162].speaker SPEAKER_29
transcript.pyannote[162].start 3737.67471875
transcript.pyannote[162].end 3741.04971875
transcript.pyannote[163].speaker SPEAKER_29
transcript.pyannote[163].start 3741.35346875
transcript.pyannote[163].end 3745.15034375
transcript.pyannote[164].speaker SPEAKER_29
transcript.pyannote[164].start 3745.45409375
transcript.pyannote[164].end 3747.90096875
transcript.pyannote[165].speaker SPEAKER_29
transcript.pyannote[165].start 3748.72784375
transcript.pyannote[165].end 3752.98034375
transcript.pyannote[166].speaker SPEAKER_29
transcript.pyannote[166].start 3753.11534375
transcript.pyannote[166].end 3755.69721875
transcript.pyannote[167].speaker SPEAKER_29
transcript.pyannote[167].start 3756.38909375
transcript.pyannote[167].end 3761.08034375
transcript.pyannote[168].speaker SPEAKER_29
transcript.pyannote[168].start 3761.41784375
transcript.pyannote[168].end 3762.41346875
transcript.pyannote[169].speaker SPEAKER_29
transcript.pyannote[169].start 3762.78471875
transcript.pyannote[169].end 3766.24409375
transcript.pyannote[170].speaker SPEAKER_29
transcript.pyannote[170].start 3767.25659375
transcript.pyannote[170].end 3767.52659375
transcript.pyannote[171].speaker SPEAKER_29
transcript.pyannote[171].start 3767.84721875
transcript.pyannote[171].end 3769.80471875
transcript.pyannote[172].speaker SPEAKER_29
transcript.pyannote[172].start 3770.91846875
transcript.pyannote[172].end 3772.74096875
transcript.pyannote[173].speaker SPEAKER_29
transcript.pyannote[173].start 3773.07846875
transcript.pyannote[173].end 3773.56784375
transcript.pyannote[174].speaker SPEAKER_29
transcript.pyannote[174].start 3773.75346875
transcript.pyannote[174].end 3775.10346875
transcript.pyannote[175].speaker SPEAKER_29
transcript.pyannote[175].start 3775.44096875
transcript.pyannote[175].end 3776.65596875
transcript.pyannote[176].speaker SPEAKER_29
transcript.pyannote[176].start 3777.09471875
transcript.pyannote[176].end 3779.79471875
transcript.pyannote[177].speaker SPEAKER_29
transcript.pyannote[177].start 3780.28409375
transcript.pyannote[177].end 3780.95909375
transcript.pyannote[178].speaker SPEAKER_29
transcript.pyannote[178].start 3781.11096875
transcript.pyannote[178].end 3796.29846875
transcript.pyannote[179].speaker SPEAKER_29
transcript.pyannote[179].start 3796.70346875
transcript.pyannote[179].end 3801.56346875
transcript.pyannote[180].speaker SPEAKER_29
transcript.pyannote[180].start 3801.90096875
transcript.pyannote[180].end 3806.57534375
transcript.pyannote[181].speaker SPEAKER_29
transcript.pyannote[181].start 3807.18284375
transcript.pyannote[181].end 3807.60471875
transcript.pyannote[182].speaker SPEAKER_29
transcript.pyannote[182].start 3808.36409375
transcript.pyannote[182].end 3808.95471875
transcript.pyannote[183].speaker SPEAKER_29
transcript.pyannote[183].start 3809.35971875
transcript.pyannote[183].end 3811.08096875
transcript.pyannote[184].speaker SPEAKER_29
transcript.pyannote[184].start 3811.90784375
transcript.pyannote[184].end 3812.78534375
transcript.pyannote[185].speaker SPEAKER_29
transcript.pyannote[185].start 3813.35909375
transcript.pyannote[185].end 3815.01284375
transcript.pyannote[186].speaker SPEAKER_29
transcript.pyannote[186].start 3815.24909375
transcript.pyannote[186].end 3817.03784375
transcript.pyannote[187].speaker SPEAKER_29
transcript.pyannote[187].start 3818.16846875
transcript.pyannote[187].end 3823.58534375
transcript.pyannote[188].speaker SPEAKER_29
transcript.pyannote[188].start 3823.78784375
transcript.pyannote[188].end 3838.13159375
transcript.pyannote[189].speaker SPEAKER_29
transcript.pyannote[189].start 3838.75596875
transcript.pyannote[189].end 3844.91534375
transcript.pyannote[190].speaker SPEAKER_29
transcript.pyannote[190].start 3845.26971875
transcript.pyannote[190].end 3850.29846875
transcript.pyannote[191].speaker SPEAKER_29
transcript.pyannote[191].start 3850.88909375
transcript.pyannote[191].end 3852.32346875
transcript.pyannote[192].speaker SPEAKER_29
transcript.pyannote[192].start 3852.59346875
transcript.pyannote[192].end 3860.10284375
transcript.pyannote[193].speaker SPEAKER_29
transcript.pyannote[193].start 3860.32221875
transcript.pyannote[193].end 3864.47346875
transcript.pyannote[194].speaker SPEAKER_29
transcript.pyannote[194].start 3864.86159375
transcript.pyannote[194].end 3866.04284375
transcript.pyannote[195].speaker SPEAKER_29
transcript.pyannote[195].start 3866.38034375
transcript.pyannote[195].end 3867.61221875
transcript.pyannote[196].speaker SPEAKER_29
transcript.pyannote[196].start 3868.00034375
transcript.pyannote[196].end 3870.95346875
transcript.pyannote[197].speaker SPEAKER_29
transcript.pyannote[197].start 3871.25721875
transcript.pyannote[197].end 3872.28659375
transcript.pyannote[198].speaker SPEAKER_29
transcript.pyannote[198].start 3872.97846875
transcript.pyannote[198].end 3873.88971875
transcript.pyannote[199].speaker SPEAKER_29
transcript.pyannote[199].start 3874.24409375
transcript.pyannote[199].end 3876.01596875
transcript.pyannote[200].speaker SPEAKER_29
transcript.pyannote[200].start 3876.40409375
transcript.pyannote[200].end 3879.18846875
transcript.pyannote[201].speaker SPEAKER_29
transcript.pyannote[201].start 3879.25596875
transcript.pyannote[201].end 3884.04846875
transcript.pyannote[202].speaker SPEAKER_29
transcript.pyannote[202].start 3884.13284375
transcript.pyannote[202].end 3888.95909375
transcript.pyannote[203].speaker SPEAKER_29
transcript.pyannote[203].start 3889.36409375
transcript.pyannote[203].end 3904.78784375
transcript.pyannote[204].speaker SPEAKER_29
transcript.pyannote[204].start 3905.15909375
transcript.pyannote[204].end 3908.95596875
transcript.pyannote[205].speaker SPEAKER_29
transcript.pyannote[205].start 3909.22596875
transcript.pyannote[205].end 3911.04846875
transcript.pyannote[206].speaker SPEAKER_29
transcript.pyannote[206].start 3911.23409375
transcript.pyannote[206].end 3912.41534375
transcript.pyannote[207].speaker SPEAKER_29
transcript.pyannote[207].start 3912.85409375
transcript.pyannote[207].end 3914.06909375
transcript.pyannote[208].speaker SPEAKER_29
transcript.pyannote[208].start 3914.20409375
transcript.pyannote[208].end 3916.54971875
transcript.pyannote[209].speaker SPEAKER_29
transcript.pyannote[209].start 3917.00534375
transcript.pyannote[209].end 3924.95346875
transcript.pyannote[210].speaker SPEAKER_29
transcript.pyannote[210].start 3925.34159375
transcript.pyannote[210].end 3928.26096875
transcript.pyannote[211].speaker SPEAKER_29
transcript.pyannote[211].start 3928.61534375
transcript.pyannote[211].end 3929.23971875
transcript.pyannote[212].speaker SPEAKER_29
transcript.pyannote[212].start 3929.25659375
transcript.pyannote[212].end 3931.34909375
transcript.pyannote[213].speaker SPEAKER_29
transcript.pyannote[213].start 3931.80471875
transcript.pyannote[213].end 3933.03659375
transcript.pyannote[214].speaker SPEAKER_29
transcript.pyannote[214].start 3933.07034375
transcript.pyannote[214].end 3935.28096875
transcript.pyannote[215].speaker SPEAKER_29
transcript.pyannote[215].start 3935.78721875
transcript.pyannote[215].end 3941.03534375
transcript.pyannote[216].speaker SPEAKER_13
transcript.pyannote[216].start 3941.22096875
transcript.pyannote[216].end 3957.57284375
transcript.pyannote[217].speaker SPEAKER_23
transcript.pyannote[217].start 3967.79909375
transcript.pyannote[217].end 3968.92971875
transcript.pyannote[218].speaker SPEAKER_23
transcript.pyannote[218].start 3969.40221875
transcript.pyannote[218].end 3971.78159375
transcript.pyannote[219].speaker SPEAKER_23
transcript.pyannote[219].start 3972.18659375
transcript.pyannote[219].end 3973.80659375
transcript.pyannote[220].speaker SPEAKER_23
transcript.pyannote[220].start 3974.39721875
transcript.pyannote[220].end 3975.20721875
transcript.pyannote[221].speaker SPEAKER_20
transcript.pyannote[221].start 3980.69159375
transcript.pyannote[221].end 3981.09659375
transcript.pyannote[222].speaker SPEAKER_23
transcript.pyannote[222].start 3981.09659375
transcript.pyannote[222].end 3981.11346875
transcript.pyannote[223].speaker SPEAKER_23
transcript.pyannote[223].start 3981.46784375
transcript.pyannote[223].end 3983.69534375
transcript.pyannote[224].speaker SPEAKER_23
transcript.pyannote[224].start 3983.93159375
transcript.pyannote[224].end 3993.78659375
transcript.pyannote[225].speaker SPEAKER_23
transcript.pyannote[225].start 3994.09034375
transcript.pyannote[225].end 3994.68096875
transcript.pyannote[226].speaker SPEAKER_23
transcript.pyannote[226].start 3994.88346875
transcript.pyannote[226].end 4001.04284375
transcript.pyannote[227].speaker SPEAKER_23
transcript.pyannote[227].start 4001.11034375
transcript.pyannote[227].end 4001.86971875
transcript.pyannote[228].speaker SPEAKER_23
transcript.pyannote[228].start 4003.35471875
transcript.pyannote[228].end 4004.35034375
transcript.pyannote[229].speaker SPEAKER_23
transcript.pyannote[229].start 4004.77221875
transcript.pyannote[229].end 4010.02034375
transcript.pyannote[230].speaker SPEAKER_23
transcript.pyannote[230].start 4010.17221875
transcript.pyannote[230].end 4011.21846875
transcript.pyannote[231].speaker SPEAKER_23
transcript.pyannote[231].start 4011.65721875
transcript.pyannote[231].end 4012.97346875
transcript.pyannote[232].speaker SPEAKER_14
transcript.pyannote[232].start 4012.97346875
transcript.pyannote[232].end 4022.35596875
transcript.pyannote[233].speaker SPEAKER_23
transcript.pyannote[233].start 4021.61346875
transcript.pyannote[233].end 4021.96784375
transcript.pyannote[234].speaker SPEAKER_14
transcript.pyannote[234].start 4022.69346875
transcript.pyannote[234].end 4031.67096875
transcript.pyannote[235].speaker SPEAKER_14
transcript.pyannote[235].start 4032.00846875
transcript.pyannote[235].end 4049.44034375
transcript.pyannote[236].speaker SPEAKER_23
transcript.pyannote[236].start 4049.22096875
transcript.pyannote[236].end 4049.42346875
transcript.pyannote[237].speaker SPEAKER_23
transcript.pyannote[237].start 4049.44034375
transcript.pyannote[237].end 4049.45721875
transcript.pyannote[238].speaker SPEAKER_14
transcript.pyannote[238].start 4049.45721875
transcript.pyannote[238].end 4049.49096875
transcript.pyannote[239].speaker SPEAKER_23
transcript.pyannote[239].start 4049.49096875
transcript.pyannote[239].end 4050.25034375
transcript.pyannote[240].speaker SPEAKER_14
transcript.pyannote[240].start 4050.25034375
transcript.pyannote[240].end 4069.13346875
transcript.pyannote[241].speaker SPEAKER_23
transcript.pyannote[241].start 4055.02596875
transcript.pyannote[241].end 4056.25784375
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 4056.25784375
transcript.pyannote[242].end 4056.27471875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 4057.37159375
transcript.pyannote[243].end 4057.65846875
transcript.pyannote[244].speaker SPEAKER_23
transcript.pyannote[244].start 4057.65846875
transcript.pyannote[244].end 4057.81034375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 4057.81034375
transcript.pyannote[245].end 4057.96221875
transcript.pyannote[246].speaker SPEAKER_23
transcript.pyannote[246].start 4068.59346875
transcript.pyannote[246].end 4087.74659375
transcript.pyannote[247].speaker SPEAKER_14
transcript.pyannote[247].start 4073.40284375
transcript.pyannote[247].end 4074.09471875
transcript.pyannote[248].speaker SPEAKER_14
transcript.pyannote[248].start 4074.71909375
transcript.pyannote[248].end 4074.92159375
transcript.pyannote[249].speaker SPEAKER_14
transcript.pyannote[249].start 4086.43034375
transcript.pyannote[249].end 4086.44721875
transcript.pyannote[250].speaker SPEAKER_23
transcript.pyannote[250].start 4088.10096875
transcript.pyannote[250].end 4089.11346875
transcript.pyannote[251].speaker SPEAKER_14
transcript.pyannote[251].start 4088.37096875
transcript.pyannote[251].end 4095.20534375
transcript.pyannote[252].speaker SPEAKER_23
transcript.pyannote[252].start 4093.88909375
transcript.pyannote[252].end 4094.37846875
transcript.pyannote[253].speaker SPEAKER_23
transcript.pyannote[253].start 4094.74971875
transcript.pyannote[253].end 4097.60159375
transcript.pyannote[254].speaker SPEAKER_23
transcript.pyannote[254].start 4097.70284375
transcript.pyannote[254].end 4102.44471875
transcript.pyannote[255].speaker SPEAKER_14
transcript.pyannote[255].start 4101.66846875
transcript.pyannote[255].end 4117.93596875
transcript.pyannote[256].speaker SPEAKER_23
transcript.pyannote[256].start 4107.89534375
transcript.pyannote[256].end 4108.40159375
transcript.pyannote[257].speaker SPEAKER_23
transcript.pyannote[257].start 4118.54346875
transcript.pyannote[257].end 4119.50534375
transcript.pyannote[258].speaker SPEAKER_23
transcript.pyannote[258].start 4119.74159375
transcript.pyannote[258].end 4133.24159375
transcript.pyannote[259].speaker SPEAKER_14
transcript.pyannote[259].start 4132.53284375
transcript.pyannote[259].end 4146.62346875
transcript.pyannote[260].speaker SPEAKER_23
transcript.pyannote[260].start 4142.06721875
transcript.pyannote[260].end 4143.24846875
transcript.pyannote[261].speaker SPEAKER_23
transcript.pyannote[261].start 4143.26534375
transcript.pyannote[261].end 4143.75471875
transcript.pyannote[262].speaker SPEAKER_23
transcript.pyannote[262].start 4144.68284375
transcript.pyannote[262].end 4145.54346875
transcript.pyannote[263].speaker SPEAKER_23
transcript.pyannote[263].start 4146.62346875
transcript.pyannote[263].end 4152.86721875
transcript.pyannote[264].speaker SPEAKER_23
transcript.pyannote[264].start 4153.13721875
transcript.pyannote[264].end 4169.57346875
transcript.pyannote[265].speaker SPEAKER_23
transcript.pyannote[265].start 4169.80971875
transcript.pyannote[265].end 4170.61971875
transcript.pyannote[266].speaker SPEAKER_23
transcript.pyannote[266].start 4171.00784375
transcript.pyannote[266].end 4177.97721875
transcript.pyannote[267].speaker SPEAKER_14
transcript.pyannote[267].start 4176.99846875
transcript.pyannote[267].end 4177.06596875
transcript.pyannote[268].speaker SPEAKER_14
transcript.pyannote[268].start 4177.11659375
transcript.pyannote[268].end 4177.30221875
transcript.pyannote[269].speaker SPEAKER_14
transcript.pyannote[269].start 4177.97721875
transcript.pyannote[269].end 4193.26596875
transcript.pyannote[270].speaker SPEAKER_23
transcript.pyannote[270].start 4193.26596875
transcript.pyannote[270].end 4199.96534375
transcript.pyannote[271].speaker SPEAKER_23
transcript.pyannote[271].start 4200.43784375
transcript.pyannote[271].end 4206.96846875
transcript.pyannote[272].speaker SPEAKER_14
transcript.pyannote[272].start 4205.97284375
transcript.pyannote[272].end 4206.41159375
transcript.pyannote[273].speaker SPEAKER_14
transcript.pyannote[273].start 4206.96846875
transcript.pyannote[273].end 4211.79471875
transcript.pyannote[274].speaker SPEAKER_23
transcript.pyannote[274].start 4211.79471875
transcript.pyannote[274].end 4212.14909375
transcript.pyannote[275].speaker SPEAKER_23
transcript.pyannote[275].start 4212.53721875
transcript.pyannote[275].end 4214.08971875
transcript.pyannote[276].speaker SPEAKER_23
transcript.pyannote[276].start 4214.66346875
transcript.pyannote[276].end 4217.49846875
transcript.pyannote[277].speaker SPEAKER_23
transcript.pyannote[277].start 4218.35909375
transcript.pyannote[277].end 4239.72284375
transcript.pyannote[278].speaker SPEAKER_20
transcript.pyannote[278].start 4220.21534375
transcript.pyannote[278].end 4220.77221875
transcript.pyannote[279].speaker SPEAKER_20
transcript.pyannote[279].start 4221.63284375
transcript.pyannote[279].end 4221.97034375
transcript.pyannote[280].speaker SPEAKER_14
transcript.pyannote[280].start 4239.46971875
transcript.pyannote[280].end 4239.79034375
transcript.pyannote[281].speaker SPEAKER_23
transcript.pyannote[281].start 4239.79034375
transcript.pyannote[281].end 4239.97596875
transcript.pyannote[282].speaker SPEAKER_14
transcript.pyannote[282].start 4239.97596875
transcript.pyannote[282].end 4244.86971875
transcript.pyannote[283].speaker SPEAKER_23
transcript.pyannote[283].start 4240.41471875
transcript.pyannote[283].end 4240.46534375
transcript.pyannote[284].speaker SPEAKER_23
transcript.pyannote[284].start 4244.86971875
transcript.pyannote[284].end 4244.93721875
transcript.pyannote[285].speaker SPEAKER_14
transcript.pyannote[285].start 4244.93721875
transcript.pyannote[285].end 4245.74721875
transcript.pyannote[286].speaker SPEAKER_23
transcript.pyannote[286].start 4245.74721875
transcript.pyannote[286].end 4245.78096875
transcript.pyannote[287].speaker SPEAKER_23
transcript.pyannote[287].start 4246.37159375
transcript.pyannote[287].end 4247.08034375
transcript.pyannote[288].speaker SPEAKER_23
transcript.pyannote[288].start 4247.56971875
transcript.pyannote[288].end 4281.08346875
transcript.pyannote[289].speaker SPEAKER_23
transcript.pyannote[289].start 4281.40409375
transcript.pyannote[289].end 4285.45409375
transcript.pyannote[290].speaker SPEAKER_14
transcript.pyannote[290].start 4285.45409375
transcript.pyannote[290].end 4285.52159375
transcript.pyannote[291].speaker SPEAKER_23
transcript.pyannote[291].start 4285.52159375
transcript.pyannote[291].end 4295.12346875
transcript.pyannote[292].speaker SPEAKER_14
transcript.pyannote[292].start 4286.07846875
transcript.pyannote[292].end 4286.78721875
transcript.pyannote[293].speaker SPEAKER_14
transcript.pyannote[293].start 4295.14034375
transcript.pyannote[293].end 4313.63534375
transcript.pyannote[294].speaker SPEAKER_23
transcript.pyannote[294].start 4312.15034375
transcript.pyannote[294].end 4313.44971875
transcript.pyannote[295].speaker SPEAKER_23
transcript.pyannote[295].start 4313.95596875
transcript.pyannote[295].end 4317.43221875
transcript.pyannote[296].speaker SPEAKER_23
transcript.pyannote[296].start 4317.80346875
transcript.pyannote[296].end 4328.97471875
transcript.pyannote[297].speaker SPEAKER_25
transcript.pyannote[297].start 4323.70971875
transcript.pyannote[297].end 4323.74346875
transcript.pyannote[298].speaker SPEAKER_14
transcript.pyannote[298].start 4328.97471875
transcript.pyannote[298].end 4335.37034375
transcript.pyannote[299].speaker SPEAKER_23
transcript.pyannote[299].start 4335.60659375
transcript.pyannote[299].end 4339.01534375
transcript.pyannote[300].speaker SPEAKER_14
transcript.pyannote[300].start 4338.55971875
transcript.pyannote[300].end 4357.03784375
transcript.pyannote[301].speaker SPEAKER_23
transcript.pyannote[301].start 4357.03784375
transcript.pyannote[301].end 4357.59471875
transcript.pyannote[302].speaker SPEAKER_14
transcript.pyannote[302].start 4357.59471875
transcript.pyannote[302].end 4357.76346875
transcript.pyannote[303].speaker SPEAKER_23
transcript.pyannote[303].start 4357.76346875
transcript.pyannote[303].end 4363.58534375
transcript.pyannote[304].speaker SPEAKER_23
transcript.pyannote[304].start 4363.88909375
transcript.pyannote[304].end 4371.80346875
transcript.pyannote[305].speaker SPEAKER_23
transcript.pyannote[305].start 4372.00596875
transcript.pyannote[305].end 4391.09159375
transcript.pyannote[306].speaker SPEAKER_23
transcript.pyannote[306].start 4391.49659375
transcript.pyannote[306].end 4397.97659375
transcript.pyannote[307].speaker SPEAKER_14
transcript.pyannote[307].start 4397.97659375
transcript.pyannote[307].end 4439.32034375
transcript.pyannote[308].speaker SPEAKER_23
transcript.pyannote[308].start 4439.32034375
transcript.pyannote[308].end 4455.33471875
transcript.pyannote[309].speaker SPEAKER_14
transcript.pyannote[309].start 4455.33471875
transcript.pyannote[309].end 4455.45284375
transcript.pyannote[310].speaker SPEAKER_14
transcript.pyannote[310].start 4455.73971875
transcript.pyannote[310].end 4455.79034375
transcript.pyannote[311].speaker SPEAKER_23
transcript.pyannote[311].start 4455.79034375
transcript.pyannote[311].end 4455.97596875
transcript.pyannote[312].speaker SPEAKER_14
transcript.pyannote[312].start 4455.97596875
transcript.pyannote[312].end 4473.10409375
transcript.pyannote[313].speaker SPEAKER_14
transcript.pyannote[313].start 4473.71159375
transcript.pyannote[313].end 4485.81096875
transcript.pyannote[314].speaker SPEAKER_23
transcript.pyannote[314].start 4483.00971875
transcript.pyannote[314].end 4483.39784375
transcript.pyannote[315].speaker SPEAKER_23
transcript.pyannote[315].start 4485.74346875
transcript.pyannote[315].end 4486.30034375
transcript.pyannote[316].speaker SPEAKER_23
transcript.pyannote[316].start 4486.65471875
transcript.pyannote[316].end 4522.75034375
transcript.pyannote[317].speaker SPEAKER_14
transcript.pyannote[317].start 4487.54909375
transcript.pyannote[317].end 4487.66721875
transcript.pyannote[318].speaker SPEAKER_23
transcript.pyannote[318].start 4523.00346875
transcript.pyannote[318].end 4531.55909375
transcript.pyannote[319].speaker SPEAKER_23
transcript.pyannote[319].start 4532.03159375
transcript.pyannote[319].end 4534.15784375
transcript.pyannote[320].speaker SPEAKER_14
transcript.pyannote[320].start 4534.15784375
transcript.pyannote[320].end 4534.44471875
transcript.pyannote[321].speaker SPEAKER_23
transcript.pyannote[321].start 4534.44471875
transcript.pyannote[321].end 4534.96784375
transcript.pyannote[322].speaker SPEAKER_14
transcript.pyannote[322].start 4534.96784375
transcript.pyannote[322].end 4577.10471875
transcript.pyannote[323].speaker SPEAKER_25
transcript.pyannote[323].start 4545.17721875
transcript.pyannote[323].end 4545.37971875
transcript.pyannote[324].speaker SPEAKER_23
transcript.pyannote[324].start 4545.37971875
transcript.pyannote[324].end 4545.46409375
transcript.pyannote[325].speaker SPEAKER_23
transcript.pyannote[325].start 4575.78846875
transcript.pyannote[325].end 4576.76721875
transcript.pyannote[326].speaker SPEAKER_23
transcript.pyannote[326].start 4577.42534375
transcript.pyannote[326].end 4591.07721875
transcript.pyannote[327].speaker SPEAKER_14
transcript.pyannote[327].start 4590.03096875
transcript.pyannote[327].end 4608.98159375
transcript.pyannote[328].speaker SPEAKER_14
transcript.pyannote[328].start 4609.11659375
transcript.pyannote[328].end 4616.03534375
transcript.pyannote[329].speaker SPEAKER_23
transcript.pyannote[329].start 4614.73596875
transcript.pyannote[329].end 4614.92159375
transcript.pyannote[330].speaker SPEAKER_23
transcript.pyannote[330].start 4616.03534375
transcript.pyannote[330].end 4651.55721875
transcript.pyannote[331].speaker SPEAKER_14
transcript.pyannote[331].start 4616.23784375
transcript.pyannote[331].end 4616.67659375
transcript.pyannote[332].speaker SPEAKER_14
transcript.pyannote[332].start 4651.48971875
transcript.pyannote[332].end 4651.54034375
transcript.pyannote[333].speaker SPEAKER_14
transcript.pyannote[333].start 4651.55721875
transcript.pyannote[333].end 4677.35909375
transcript.pyannote[334].speaker SPEAKER_23
transcript.pyannote[334].start 4663.82534375
transcript.pyannote[334].end 4664.44971875
transcript.pyannote[335].speaker SPEAKER_23
transcript.pyannote[335].start 4665.10784375
transcript.pyannote[335].end 4666.20471875
transcript.pyannote[336].speaker SPEAKER_14
transcript.pyannote[336].start 4677.56159375
transcript.pyannote[336].end 4695.88784375
transcript.pyannote[337].speaker SPEAKER_25
transcript.pyannote[337].start 4692.42846875
transcript.pyannote[337].end 4692.86721875
transcript.pyannote[338].speaker SPEAKER_23
transcript.pyannote[338].start 4695.88784375
transcript.pyannote[338].end 4696.81596875
transcript.pyannote[339].speaker SPEAKER_23
transcript.pyannote[339].start 4697.27159375
transcript.pyannote[339].end 4700.12346875
transcript.pyannote[340].speaker SPEAKER_23
transcript.pyannote[340].start 4700.62971875
transcript.pyannote[340].end 4701.50721875
transcript.pyannote[341].speaker SPEAKER_23
transcript.pyannote[341].start 4701.67596875
transcript.pyannote[341].end 4712.66159375
transcript.pyannote[342].speaker SPEAKER_14
transcript.pyannote[342].start 4712.66159375
transcript.pyannote[342].end 4712.72909375
transcript.pyannote[343].speaker SPEAKER_23
transcript.pyannote[343].start 4712.72909375
transcript.pyannote[343].end 4712.81346875
transcript.pyannote[344].speaker SPEAKER_23
transcript.pyannote[344].start 4712.84721875
transcript.pyannote[344].end 4713.97784375
transcript.pyannote[345].speaker SPEAKER_14
transcript.pyannote[345].start 4713.97784375
transcript.pyannote[345].end 4721.48721875
transcript.pyannote[346].speaker SPEAKER_13
transcript.pyannote[346].start 4721.38596875
transcript.pyannote[346].end 4725.73971875
transcript.pyannote[347].speaker SPEAKER_17
transcript.pyannote[347].start 4746.76596875
transcript.pyannote[347].end 4747.94721875
transcript.pyannote[348].speaker SPEAKER_17
transcript.pyannote[348].start 4748.60534375
transcript.pyannote[348].end 4749.38159375
transcript.pyannote[349].speaker SPEAKER_17
transcript.pyannote[349].start 4749.78659375
transcript.pyannote[349].end 4751.00159375
transcript.pyannote[350].speaker SPEAKER_13
transcript.pyannote[350].start 4751.25471875
transcript.pyannote[350].end 4752.46971875
transcript.pyannote[351].speaker SPEAKER_17
transcript.pyannote[351].start 4755.76034375
transcript.pyannote[351].end 4758.07221875
transcript.pyannote[352].speaker SPEAKER_17
transcript.pyannote[352].start 4758.61221875
transcript.pyannote[352].end 4760.06346875
transcript.pyannote[353].speaker SPEAKER_17
transcript.pyannote[353].start 4760.35034375
transcript.pyannote[353].end 4760.94096875
transcript.pyannote[354].speaker SPEAKER_17
transcript.pyannote[354].start 4761.49784375
transcript.pyannote[354].end 4766.30721875
transcript.pyannote[355].speaker SPEAKER_17
transcript.pyannote[355].start 4766.84721875
transcript.pyannote[355].end 4771.97721875
transcript.pyannote[356].speaker SPEAKER_17
transcript.pyannote[356].start 4773.27659375
transcript.pyannote[356].end 4774.54221875
transcript.pyannote[357].speaker SPEAKER_17
transcript.pyannote[357].start 4775.26784375
transcript.pyannote[357].end 4776.92159375
transcript.pyannote[358].speaker SPEAKER_17
transcript.pyannote[358].start 4778.22096875
transcript.pyannote[358].end 4783.40159375
transcript.pyannote[359].speaker SPEAKER_17
transcript.pyannote[359].start 4784.04284375
transcript.pyannote[359].end 4785.46034375
transcript.pyannote[360].speaker SPEAKER_17
transcript.pyannote[360].start 4786.13534375
transcript.pyannote[360].end 4788.66659375
transcript.pyannote[361].speaker SPEAKER_17
transcript.pyannote[361].start 4789.24034375
transcript.pyannote[361].end 4792.83471875
transcript.pyannote[362].speaker SPEAKER_17
transcript.pyannote[362].start 4793.22284375
transcript.pyannote[362].end 4797.08721875
transcript.pyannote[363].speaker SPEAKER_17
transcript.pyannote[363].start 4797.55971875
transcript.pyannote[363].end 4801.71096875
transcript.pyannote[364].speaker SPEAKER_17
transcript.pyannote[364].start 4801.93034375
transcript.pyannote[364].end 4806.92534375
transcript.pyannote[365].speaker SPEAKER_17
transcript.pyannote[365].start 4807.80284375
transcript.pyannote[365].end 4809.18659375
transcript.pyannote[366].speaker SPEAKER_17
transcript.pyannote[366].start 4810.41846875
transcript.pyannote[366].end 4810.82346875
transcript.pyannote[367].speaker SPEAKER_17
transcript.pyannote[367].start 4811.07659375
transcript.pyannote[367].end 4811.86971875
transcript.pyannote[368].speaker SPEAKER_17
transcript.pyannote[368].start 4812.86534375
transcript.pyannote[368].end 4814.28284375
transcript.pyannote[369].speaker SPEAKER_17
transcript.pyannote[369].start 4814.83971875
transcript.pyannote[369].end 4816.03784375
transcript.pyannote[370].speaker SPEAKER_17
transcript.pyannote[370].start 4816.32471875
transcript.pyannote[370].end 4817.03346875
transcript.pyannote[371].speaker SPEAKER_17
transcript.pyannote[371].start 4817.35409375
transcript.pyannote[371].end 4818.45096875
transcript.pyannote[372].speaker SPEAKER_17
transcript.pyannote[372].start 4819.05846875
transcript.pyannote[372].end 4820.86409375
transcript.pyannote[373].speaker SPEAKER_17
transcript.pyannote[373].start 4820.98221875
transcript.pyannote[373].end 4821.10034375
transcript.pyannote[374].speaker SPEAKER_20
transcript.pyannote[374].start 4821.10034375
transcript.pyannote[374].end 4821.18471875
transcript.pyannote[375].speaker SPEAKER_17
transcript.pyannote[375].start 4821.18471875
transcript.pyannote[375].end 4828.22159375
transcript.pyannote[376].speaker SPEAKER_14
transcript.pyannote[376].start 4821.45471875
transcript.pyannote[376].end 4821.50534375
transcript.pyannote[377].speaker SPEAKER_20
transcript.pyannote[377].start 4821.50534375
transcript.pyannote[377].end 4821.79221875
transcript.pyannote[378].speaker SPEAKER_31
transcript.pyannote[378].start 4821.79221875
transcript.pyannote[378].end 4821.82596875
transcript.pyannote[379].speaker SPEAKER_14
transcript.pyannote[379].start 4828.69409375
transcript.pyannote[379].end 4887.16596875
transcript.pyannote[380].speaker SPEAKER_17
transcript.pyannote[380].start 4887.16596875
transcript.pyannote[380].end 4887.23346875
transcript.pyannote[381].speaker SPEAKER_14
transcript.pyannote[381].start 4887.23346875
transcript.pyannote[381].end 4887.28409375
transcript.pyannote[382].speaker SPEAKER_17
transcript.pyannote[382].start 4887.28409375
transcript.pyannote[382].end 4887.85784375
transcript.pyannote[383].speaker SPEAKER_14
transcript.pyannote[383].start 4887.85784375
transcript.pyannote[383].end 4888.39784375
transcript.pyannote[384].speaker SPEAKER_17
transcript.pyannote[384].start 4888.39784375
transcript.pyannote[384].end 4888.41471875
transcript.pyannote[385].speaker SPEAKER_14
transcript.pyannote[385].start 4888.41471875
transcript.pyannote[385].end 4888.81971875
transcript.pyannote[386].speaker SPEAKER_17
transcript.pyannote[386].start 4888.81971875
transcript.pyannote[386].end 4892.54909375
transcript.pyannote[387].speaker SPEAKER_17
transcript.pyannote[387].start 4893.39284375
transcript.pyannote[387].end 4894.42221875
transcript.pyannote[388].speaker SPEAKER_17
transcript.pyannote[388].start 4894.82721875
transcript.pyannote[388].end 4897.96596875
transcript.pyannote[389].speaker SPEAKER_14
transcript.pyannote[389].start 4897.96596875
transcript.pyannote[389].end 4930.06221875
transcript.pyannote[390].speaker SPEAKER_25
transcript.pyannote[390].start 4905.71159375
transcript.pyannote[390].end 4906.04909375
transcript.pyannote[391].speaker SPEAKER_17
transcript.pyannote[391].start 4906.04909375
transcript.pyannote[391].end 4906.09971875
transcript.pyannote[392].speaker SPEAKER_23
transcript.pyannote[392].start 4912.41096875
transcript.pyannote[392].end 4912.76534375
transcript.pyannote[393].speaker SPEAKER_17
transcript.pyannote[393].start 4925.05034375
transcript.pyannote[393].end 4925.77596875
transcript.pyannote[394].speaker SPEAKER_17
transcript.pyannote[394].start 4929.92721875
transcript.pyannote[394].end 4935.83346875
transcript.pyannote[395].speaker SPEAKER_20
transcript.pyannote[395].start 4936.39034375
transcript.pyannote[395].end 4936.69409375
transcript.pyannote[396].speaker SPEAKER_17
transcript.pyannote[396].start 4936.69409375
transcript.pyannote[396].end 4938.88784375
transcript.pyannote[397].speaker SPEAKER_14
transcript.pyannote[397].start 4936.94721875
transcript.pyannote[397].end 4937.47034375
transcript.pyannote[398].speaker SPEAKER_17
transcript.pyannote[398].start 4939.69784375
transcript.pyannote[398].end 4943.00534375
transcript.pyannote[399].speaker SPEAKER_14
transcript.pyannote[399].start 4939.83284375
transcript.pyannote[399].end 4942.17846875
transcript.pyannote[400].speaker SPEAKER_14
transcript.pyannote[400].start 4943.56221875
transcript.pyannote[400].end 4943.61284375
transcript.pyannote[401].speaker SPEAKER_17
transcript.pyannote[401].start 4943.61284375
transcript.pyannote[401].end 4945.40159375
transcript.pyannote[402].speaker SPEAKER_14
transcript.pyannote[402].start 4944.54096875
transcript.pyannote[402].end 4944.92909375
transcript.pyannote[403].speaker SPEAKER_14
transcript.pyannote[403].start 4945.40159375
transcript.pyannote[403].end 4945.43534375
transcript.pyannote[404].speaker SPEAKER_17
transcript.pyannote[404].start 4945.43534375
transcript.pyannote[404].end 4945.53659375
transcript.pyannote[405].speaker SPEAKER_17
transcript.pyannote[405].start 4945.63784375
transcript.pyannote[405].end 4947.42659375
transcript.pyannote[406].speaker SPEAKER_17
transcript.pyannote[406].start 4948.18596875
transcript.pyannote[406].end 4949.04659375
transcript.pyannote[407].speaker SPEAKER_17
transcript.pyannote[407].start 4949.18159375
transcript.pyannote[407].end 4953.28221875
transcript.pyannote[408].speaker SPEAKER_20
transcript.pyannote[408].start 4953.41721875
transcript.pyannote[408].end 4953.83909375
transcript.pyannote[409].speaker SPEAKER_17
transcript.pyannote[409].start 4953.94034375
transcript.pyannote[409].end 4966.84971875
transcript.pyannote[410].speaker SPEAKER_17
transcript.pyannote[410].start 4967.10284375
transcript.pyannote[410].end 4967.89596875
transcript.pyannote[411].speaker SPEAKER_17
transcript.pyannote[411].start 4968.14909375
transcript.pyannote[411].end 4971.64221875
transcript.pyannote[412].speaker SPEAKER_17
transcript.pyannote[412].start 4971.76034375
transcript.pyannote[412].end 4973.22846875
transcript.pyannote[413].speaker SPEAKER_17
transcript.pyannote[413].start 4973.73471875
transcript.pyannote[413].end 4974.69659375
transcript.pyannote[414].speaker SPEAKER_17
transcript.pyannote[414].start 4975.79346875
transcript.pyannote[414].end 4978.62846875
transcript.pyannote[415].speaker SPEAKER_17
transcript.pyannote[415].start 4979.38784375
transcript.pyannote[415].end 4982.76284375
transcript.pyannote[416].speaker SPEAKER_20
transcript.pyannote[416].start 4983.01596875
transcript.pyannote[416].end 4983.11721875
transcript.pyannote[417].speaker SPEAKER_17
transcript.pyannote[417].start 4983.31971875
transcript.pyannote[417].end 4986.52596875
transcript.pyannote[418].speaker SPEAKER_17
transcript.pyannote[418].start 4987.47096875
transcript.pyannote[418].end 4988.87159375
transcript.pyannote[419].speaker SPEAKER_17
transcript.pyannote[419].start 4989.42846875
transcript.pyannote[419].end 4995.92534375
transcript.pyannote[420].speaker SPEAKER_20
transcript.pyannote[420].start 4996.14471875
transcript.pyannote[420].end 4996.51596875
transcript.pyannote[421].speaker SPEAKER_17
transcript.pyannote[421].start 4996.51596875
transcript.pyannote[421].end 4998.32159375
transcript.pyannote[422].speaker SPEAKER_17
transcript.pyannote[422].start 4999.68846875
transcript.pyannote[422].end 5000.39721875
transcript.pyannote[423].speaker SPEAKER_17
transcript.pyannote[423].start 5001.03846875
transcript.pyannote[423].end 5002.30409375
transcript.pyannote[424].speaker SPEAKER_17
transcript.pyannote[424].start 5003.31659375
transcript.pyannote[424].end 5005.51034375
transcript.pyannote[425].speaker SPEAKER_17
transcript.pyannote[425].start 5006.92784375
transcript.pyannote[425].end 5007.95721875
transcript.pyannote[426].speaker SPEAKER_17
transcript.pyannote[426].start 5008.41284375
transcript.pyannote[426].end 5008.96971875
transcript.pyannote[427].speaker SPEAKER_17
transcript.pyannote[427].start 5009.61096875
transcript.pyannote[427].end 5010.28596875
transcript.pyannote[428].speaker SPEAKER_17
transcript.pyannote[428].start 5010.62346875
transcript.pyannote[428].end 5011.85534375
transcript.pyannote[429].speaker SPEAKER_17
transcript.pyannote[429].start 5012.07471875
transcript.pyannote[429].end 5014.58909375
transcript.pyannote[430].speaker SPEAKER_14
transcript.pyannote[430].start 5015.04471875
transcript.pyannote[430].end 5024.03909375
transcript.pyannote[431].speaker SPEAKER_17
transcript.pyannote[431].start 5024.03909375
transcript.pyannote[431].end 5024.49471875
transcript.pyannote[432].speaker SPEAKER_14
transcript.pyannote[432].start 5024.88284375
transcript.pyannote[432].end 5024.96721875
transcript.pyannote[433].speaker SPEAKER_17
transcript.pyannote[433].start 5024.96721875
transcript.pyannote[433].end 5028.25784375
transcript.pyannote[434].speaker SPEAKER_20
transcript.pyannote[434].start 5025.15284375
transcript.pyannote[434].end 5025.16971875
transcript.pyannote[435].speaker SPEAKER_20
transcript.pyannote[435].start 5028.25784375
transcript.pyannote[435].end 5028.71346875
transcript.pyannote[436].speaker SPEAKER_17
transcript.pyannote[436].start 5028.73034375
transcript.pyannote[436].end 5036.10471875
transcript.pyannote[437].speaker SPEAKER_20
transcript.pyannote[437].start 5033.06721875
transcript.pyannote[437].end 5033.35409375
transcript.pyannote[438].speaker SPEAKER_17
transcript.pyannote[438].start 5036.35784375
transcript.pyannote[438].end 5038.97346875
transcript.pyannote[439].speaker SPEAKER_17
transcript.pyannote[439].start 5039.29409375
transcript.pyannote[439].end 5039.91846875
transcript.pyannote[440].speaker SPEAKER_17
transcript.pyannote[440].start 5040.81284375
transcript.pyannote[440].end 5043.22596875
transcript.pyannote[441].speaker SPEAKER_17
transcript.pyannote[441].start 5043.85034375
transcript.pyannote[441].end 5045.75721875
transcript.pyannote[442].speaker SPEAKER_17
transcript.pyannote[442].start 5046.56721875
transcript.pyannote[442].end 5049.03096875
transcript.pyannote[443].speaker SPEAKER_17
transcript.pyannote[443].start 5049.70596875
transcript.pyannote[443].end 5051.66346875
transcript.pyannote[444].speaker SPEAKER_17
transcript.pyannote[444].start 5052.32159375
transcript.pyannote[444].end 5053.03034375
transcript.pyannote[445].speaker SPEAKER_20
transcript.pyannote[445].start 5053.38471875
transcript.pyannote[445].end 5053.70534375
transcript.pyannote[446].speaker SPEAKER_17
transcript.pyannote[446].start 5053.70534375
transcript.pyannote[446].end 5055.32534375
transcript.pyannote[447].speaker SPEAKER_17
transcript.pyannote[447].start 5055.96659375
transcript.pyannote[447].end 5058.05909375
transcript.pyannote[448].speaker SPEAKER_17
transcript.pyannote[448].start 5058.34596875
transcript.pyannote[448].end 5060.75909375
transcript.pyannote[449].speaker SPEAKER_17
transcript.pyannote[449].start 5060.96159375
transcript.pyannote[449].end 5064.08346875
transcript.pyannote[450].speaker SPEAKER_20
transcript.pyannote[450].start 5064.42096875
transcript.pyannote[450].end 5064.80909375
transcript.pyannote[451].speaker SPEAKER_17
transcript.pyannote[451].start 5064.80909375
transcript.pyannote[451].end 5065.63596875
transcript.pyannote[452].speaker SPEAKER_17
transcript.pyannote[452].start 5065.87221875
transcript.pyannote[452].end 5070.91784375
transcript.pyannote[453].speaker SPEAKER_14
transcript.pyannote[453].start 5071.27221875
transcript.pyannote[453].end 5082.07221875
transcript.pyannote[454].speaker SPEAKER_14
transcript.pyannote[454].start 5082.44346875
transcript.pyannote[454].end 5083.03409375
transcript.pyannote[455].speaker SPEAKER_17
transcript.pyannote[455].start 5083.03409375
transcript.pyannote[455].end 5086.69596875
transcript.pyannote[456].speaker SPEAKER_14
transcript.pyannote[456].start 5086.30784375
transcript.pyannote[456].end 5087.08409375
transcript.pyannote[457].speaker SPEAKER_17
transcript.pyannote[457].start 5087.08409375
transcript.pyannote[457].end 5093.59784375
transcript.pyannote[458].speaker SPEAKER_17
transcript.pyannote[458].start 5094.25596875
transcript.pyannote[458].end 5097.68159375
transcript.pyannote[459].speaker SPEAKER_17
transcript.pyannote[459].start 5097.83346875
transcript.pyannote[459].end 5099.23409375
transcript.pyannote[460].speaker SPEAKER_17
transcript.pyannote[460].start 5099.53784375
transcript.pyannote[460].end 5106.47346875
transcript.pyannote[461].speaker SPEAKER_17
transcript.pyannote[461].start 5106.60846875
transcript.pyannote[461].end 5111.26596875
transcript.pyannote[462].speaker SPEAKER_17
transcript.pyannote[462].start 5111.85659375
transcript.pyannote[462].end 5113.47659375
transcript.pyannote[463].speaker SPEAKER_25
transcript.pyannote[463].start 5113.71284375
transcript.pyannote[463].end 5113.84784375
transcript.pyannote[464].speaker SPEAKER_17
transcript.pyannote[464].start 5113.84784375
transcript.pyannote[464].end 5114.97846875
transcript.pyannote[465].speaker SPEAKER_25
transcript.pyannote[465].start 5113.86471875
transcript.pyannote[465].end 5113.96596875
transcript.pyannote[466].speaker SPEAKER_14
transcript.pyannote[466].start 5113.96596875
transcript.pyannote[466].end 5114.06721875
transcript.pyannote[467].speaker SPEAKER_14
transcript.pyannote[467].start 5114.97846875
transcript.pyannote[467].end 5115.50159375
transcript.pyannote[468].speaker SPEAKER_14
transcript.pyannote[468].start 5116.34534375
transcript.pyannote[468].end 5121.81284375
transcript.pyannote[469].speaker SPEAKER_17
transcript.pyannote[469].start 5122.79159375
transcript.pyannote[469].end 5130.25034375
transcript.pyannote[470].speaker SPEAKER_17
transcript.pyannote[470].start 5136.52784375
transcript.pyannote[470].end 5136.96659375
transcript.pyannote[471].speaker SPEAKER_08
transcript.pyannote[471].start 5137.35471875
transcript.pyannote[471].end 5137.92846875
transcript.pyannote[472].speaker SPEAKER_17
transcript.pyannote[472].start 5138.26596875
transcript.pyannote[472].end 5140.76346875
transcript.pyannote[473].speaker SPEAKER_17
transcript.pyannote[473].start 5141.57346875
transcript.pyannote[473].end 5143.32846875
transcript.pyannote[474].speaker SPEAKER_17
transcript.pyannote[474].start 5143.93596875
transcript.pyannote[474].end 5144.81346875
transcript.pyannote[475].speaker SPEAKER_18
transcript.pyannote[475].start 5145.58971875
transcript.pyannote[475].end 5145.65721875
transcript.pyannote[476].speaker SPEAKER_18
transcript.pyannote[476].start 5145.92721875
transcript.pyannote[476].end 5148.82971875
transcript.pyannote[477].speaker SPEAKER_17
transcript.pyannote[477].start 5148.96471875
transcript.pyannote[477].end 5150.93909375
transcript.pyannote[478].speaker SPEAKER_17
transcript.pyannote[478].start 5151.19221875
transcript.pyannote[478].end 5153.70659375
transcript.pyannote[479].speaker SPEAKER_17
transcript.pyannote[479].start 5154.95534375
transcript.pyannote[479].end 5155.41096875
transcript.pyannote[480].speaker SPEAKER_17
transcript.pyannote[480].start 5155.74846875
transcript.pyannote[480].end 5158.56659375
transcript.pyannote[481].speaker SPEAKER_17
transcript.pyannote[481].start 5159.29221875
transcript.pyannote[481].end 5160.16971875
transcript.pyannote[482].speaker SPEAKER_17
transcript.pyannote[482].start 5160.60846875
transcript.pyannote[482].end 5162.24534375
transcript.pyannote[483].speaker SPEAKER_17
transcript.pyannote[483].start 5162.88659375
transcript.pyannote[483].end 5163.34221875
transcript.pyannote[484].speaker SPEAKER_17
transcript.pyannote[484].start 5163.96659375
transcript.pyannote[484].end 5164.81034375
transcript.pyannote[485].speaker SPEAKER_28
transcript.pyannote[485].start 5164.96221875
transcript.pyannote[485].end 5178.74909375
transcript.pyannote[486].speaker SPEAKER_17
transcript.pyannote[486].start 5179.44096875
transcript.pyannote[486].end 5180.60534375
transcript.pyannote[487].speaker SPEAKER_17
transcript.pyannote[487].start 5181.07784375
transcript.pyannote[487].end 5183.13659375
transcript.pyannote[488].speaker SPEAKER_17
transcript.pyannote[488].start 5183.44034375
transcript.pyannote[488].end 5185.49909375
transcript.pyannote[489].speaker SPEAKER_17
transcript.pyannote[489].start 5186.00534375
transcript.pyannote[489].end 5188.19909375
transcript.pyannote[490].speaker SPEAKER_28
transcript.pyannote[490].start 5188.30034375
transcript.pyannote[490].end 5188.65471875
transcript.pyannote[491].speaker SPEAKER_17
transcript.pyannote[491].start 5189.14409375
transcript.pyannote[491].end 5195.11784375
transcript.pyannote[492].speaker SPEAKER_17
transcript.pyannote[492].start 5195.69159375
transcript.pyannote[492].end 5197.96971875
transcript.pyannote[493].speaker SPEAKER_17
transcript.pyannote[493].start 5199.08346875
transcript.pyannote[493].end 5200.04534375
transcript.pyannote[494].speaker SPEAKER_17
transcript.pyannote[494].start 5200.41659375
transcript.pyannote[494].end 5201.59784375
transcript.pyannote[495].speaker SPEAKER_17
transcript.pyannote[495].start 5202.39096875
transcript.pyannote[495].end 5203.77471875
transcript.pyannote[496].speaker SPEAKER_17
transcript.pyannote[496].start 5203.80846875
transcript.pyannote[496].end 5203.82534375
transcript.pyannote[497].speaker SPEAKER_08
transcript.pyannote[497].start 5203.82534375
transcript.pyannote[497].end 5204.16284375
transcript.pyannote[498].speaker SPEAKER_17
transcript.pyannote[498].start 5204.61846875
transcript.pyannote[498].end 5215.11471875
transcript.pyannote[499].speaker SPEAKER_08
transcript.pyannote[499].start 5210.57534375
transcript.pyannote[499].end 5210.64284375
transcript.pyannote[500].speaker SPEAKER_28
transcript.pyannote[500].start 5210.64284375
transcript.pyannote[500].end 5211.25034375
transcript.pyannote[501].speaker SPEAKER_25
transcript.pyannote[501].start 5211.25034375
transcript.pyannote[501].end 5211.31784375
transcript.pyannote[502].speaker SPEAKER_28
transcript.pyannote[502].start 5215.57034375
transcript.pyannote[502].end 5237.99721875
transcript.pyannote[503].speaker SPEAKER_17
transcript.pyannote[503].start 5237.65971875
transcript.pyannote[503].end 5237.96346875
transcript.pyannote[504].speaker SPEAKER_17
transcript.pyannote[504].start 5237.99721875
transcript.pyannote[504].end 5238.13221875
transcript.pyannote[505].speaker SPEAKER_25
transcript.pyannote[505].start 5238.13221875
transcript.pyannote[505].end 5238.14909375
transcript.pyannote[506].speaker SPEAKER_17
transcript.pyannote[506].start 5238.14909375
transcript.pyannote[506].end 5238.21659375
transcript.pyannote[507].speaker SPEAKER_25
transcript.pyannote[507].start 5238.21659375
transcript.pyannote[507].end 5238.28409375
transcript.pyannote[508].speaker SPEAKER_28
transcript.pyannote[508].start 5238.28409375
transcript.pyannote[508].end 5238.31784375
transcript.pyannote[509].speaker SPEAKER_25
transcript.pyannote[509].start 5238.31784375
transcript.pyannote[509].end 5238.33471875
transcript.pyannote[510].speaker SPEAKER_28
transcript.pyannote[510].start 5238.33471875
transcript.pyannote[510].end 5238.79034375
transcript.pyannote[511].speaker SPEAKER_25
transcript.pyannote[511].start 5238.79034375
transcript.pyannote[511].end 5238.80721875
transcript.pyannote[512].speaker SPEAKER_17
transcript.pyannote[512].start 5238.92534375
transcript.pyannote[512].end 5243.51534375
transcript.pyannote[513].speaker SPEAKER_17
transcript.pyannote[513].start 5243.93721875
transcript.pyannote[513].end 5245.03409375
transcript.pyannote[514].speaker SPEAKER_17
transcript.pyannote[514].start 5245.20284375
transcript.pyannote[514].end 5247.04221875
transcript.pyannote[515].speaker SPEAKER_17
transcript.pyannote[515].start 5247.58221875
transcript.pyannote[515].end 5249.67471875
transcript.pyannote[516].speaker SPEAKER_17
transcript.pyannote[516].start 5249.99534375
transcript.pyannote[516].end 5254.28159375
transcript.pyannote[517].speaker SPEAKER_17
transcript.pyannote[517].start 5254.80471875
transcript.pyannote[517].end 5257.99409375
transcript.pyannote[518].speaker SPEAKER_28
transcript.pyannote[518].start 5258.16284375
transcript.pyannote[518].end 5261.06534375
transcript.pyannote[519].speaker SPEAKER_17
transcript.pyannote[519].start 5261.87534375
transcript.pyannote[519].end 5263.22534375
transcript.pyannote[520].speaker SPEAKER_17
transcript.pyannote[520].start 5263.84971875
transcript.pyannote[520].end 5264.99721875
transcript.pyannote[521].speaker SPEAKER_18
transcript.pyannote[521].start 5266.07721875
transcript.pyannote[521].end 5266.33034375
transcript.pyannote[522].speaker SPEAKER_18
transcript.pyannote[522].start 5267.05596875
transcript.pyannote[522].end 5289.41534375
transcript.pyannote[523].speaker SPEAKER_25
transcript.pyannote[523].start 5277.21471875
transcript.pyannote[523].end 5277.23159375
transcript.pyannote[524].speaker SPEAKER_17
transcript.pyannote[524].start 5277.23159375
transcript.pyannote[524].end 5278.61534375
transcript.pyannote[525].speaker SPEAKER_17
transcript.pyannote[525].start 5278.64909375
transcript.pyannote[525].end 5278.66596875
transcript.pyannote[526].speaker SPEAKER_17
transcript.pyannote[526].start 5278.68284375
transcript.pyannote[526].end 5279.56034375
transcript.pyannote[527].speaker SPEAKER_17
transcript.pyannote[527].start 5289.06096875
transcript.pyannote[527].end 5290.09034375
transcript.pyannote[528].speaker SPEAKER_21
transcript.pyannote[528].start 5291.91284375
transcript.pyannote[528].end 5299.64159375
transcript.pyannote[529].speaker SPEAKER_17
transcript.pyannote[529].start 5298.84846875
transcript.pyannote[529].end 5303.67471875
transcript.pyannote[530].speaker SPEAKER_21
transcript.pyannote[530].start 5301.83534375
transcript.pyannote[530].end 5302.35846875
transcript.pyannote[531].speaker SPEAKER_21
transcript.pyannote[531].start 5304.13034375
transcript.pyannote[531].end 5323.45221875
transcript.pyannote[532].speaker SPEAKER_17
transcript.pyannote[532].start 5323.45221875
transcript.pyannote[532].end 5326.06784375
transcript.pyannote[533].speaker SPEAKER_21
transcript.pyannote[533].start 5326.06784375
transcript.pyannote[533].end 5326.23659375
transcript.pyannote[534].speaker SPEAKER_17
transcript.pyannote[534].start 5326.23659375
transcript.pyannote[534].end 5326.27034375
transcript.pyannote[535].speaker SPEAKER_21
transcript.pyannote[535].start 5326.27034375
transcript.pyannote[535].end 5326.28721875
transcript.pyannote[536].speaker SPEAKER_17
transcript.pyannote[536].start 5326.28721875
transcript.pyannote[536].end 5326.37159375
transcript.pyannote[537].speaker SPEAKER_21
transcript.pyannote[537].start 5327.11409375
transcript.pyannote[537].end 5330.62409375
transcript.pyannote[538].speaker SPEAKER_21
transcript.pyannote[538].start 5330.69159375
transcript.pyannote[538].end 5334.33659375
transcript.pyannote[539].speaker SPEAKER_01
transcript.pyannote[539].start 5331.99096875
transcript.pyannote[539].end 5332.22721875
transcript.pyannote[540].speaker SPEAKER_01
transcript.pyannote[540].start 5332.27784375
transcript.pyannote[540].end 5333.27346875
transcript.pyannote[541].speaker SPEAKER_21
transcript.pyannote[541].start 5334.60659375
transcript.pyannote[541].end 5335.33221875
transcript.pyannote[542].speaker SPEAKER_13
transcript.pyannote[542].start 5335.45034375
transcript.pyannote[542].end 5340.76596875
transcript.pyannote[543].speaker SPEAKER_21
transcript.pyannote[543].start 5339.31471875
transcript.pyannote[543].end 5339.36534375
transcript.pyannote[544].speaker SPEAKER_28
transcript.pyannote[544].start 5339.36534375
transcript.pyannote[544].end 5340.02346875
transcript.pyannote[545].speaker SPEAKER_08
transcript.pyannote[545].start 5340.02346875
transcript.pyannote[545].end 5340.10784375
transcript.pyannote[546].speaker SPEAKER_28
transcript.pyannote[546].start 5340.10784375
transcript.pyannote[546].end 5340.15846875
transcript.pyannote[547].speaker SPEAKER_13
transcript.pyannote[547].start 5341.28909375
transcript.pyannote[547].end 5345.52471875
transcript.pyannote[548].speaker SPEAKER_28
transcript.pyannote[548].start 5343.29721875
transcript.pyannote[548].end 5358.92346875
transcript.pyannote[549].speaker SPEAKER_17
transcript.pyannote[549].start 5357.26971875
transcript.pyannote[549].end 5358.90659375
transcript.pyannote[550].speaker SPEAKER_17
transcript.pyannote[550].start 5358.92346875
transcript.pyannote[550].end 5359.36221875
transcript.pyannote[551].speaker SPEAKER_28
transcript.pyannote[551].start 5359.36221875
transcript.pyannote[551].end 5360.71221875
transcript.pyannote[552].speaker SPEAKER_17
transcript.pyannote[552].start 5360.17221875
transcript.pyannote[552].end 5362.53471875
transcript.pyannote[553].speaker SPEAKER_28
transcript.pyannote[553].start 5362.87221875
transcript.pyannote[553].end 5363.17596875
transcript.pyannote[554].speaker SPEAKER_28
transcript.pyannote[554].start 5363.47971875
transcript.pyannote[554].end 5366.17971875
transcript.pyannote[555].speaker SPEAKER_17
transcript.pyannote[555].start 5366.09534375
transcript.pyannote[555].end 5375.03909375
transcript.pyannote[556].speaker SPEAKER_28
transcript.pyannote[556].start 5375.03909375
transcript.pyannote[556].end 5385.21471875
transcript.pyannote[557].speaker SPEAKER_28
transcript.pyannote[557].start 5385.33284375
transcript.pyannote[557].end 5385.38346875
transcript.pyannote[558].speaker SPEAKER_17
transcript.pyannote[558].start 5385.38346875
transcript.pyannote[558].end 5390.86784375
transcript.pyannote[559].speaker SPEAKER_28
transcript.pyannote[559].start 5385.63659375
transcript.pyannote[559].end 5386.32846875
transcript.pyannote[560].speaker SPEAKER_28
transcript.pyannote[560].start 5391.10409375
transcript.pyannote[560].end 5391.25596875
transcript.pyannote[561].speaker SPEAKER_25
transcript.pyannote[561].start 5391.25596875
transcript.pyannote[561].end 5391.27284375
transcript.pyannote[562].speaker SPEAKER_17
transcript.pyannote[562].start 5391.27284375
transcript.pyannote[562].end 5401.78596875
transcript.pyannote[563].speaker SPEAKER_17
transcript.pyannote[563].start 5401.83659375
transcript.pyannote[563].end 5403.35534375
transcript.pyannote[564].speaker SPEAKER_17
transcript.pyannote[564].start 5404.46909375
transcript.pyannote[564].end 5405.73471875
transcript.pyannote[565].speaker SPEAKER_17
transcript.pyannote[565].start 5406.03846875
transcript.pyannote[565].end 5411.40471875
transcript.pyannote[566].speaker SPEAKER_17
transcript.pyannote[566].start 5412.04596875
transcript.pyannote[566].end 5413.56471875
transcript.pyannote[567].speaker SPEAKER_28
transcript.pyannote[567].start 5414.22284375
transcript.pyannote[567].end 5414.86409375
transcript.pyannote[568].speaker SPEAKER_17
transcript.pyannote[568].start 5414.56034375
transcript.pyannote[568].end 5417.61471875
transcript.pyannote[569].speaker SPEAKER_17
transcript.pyannote[569].start 5418.32346875
transcript.pyannote[569].end 5422.10346875
transcript.pyannote[570].speaker SPEAKER_17
transcript.pyannote[570].start 5422.20471875
transcript.pyannote[570].end 5423.50409375
transcript.pyannote[571].speaker SPEAKER_17
transcript.pyannote[571].start 5424.09471875
transcript.pyannote[571].end 5425.71471875
transcript.pyannote[572].speaker SPEAKER_17
transcript.pyannote[572].start 5426.13659375
transcript.pyannote[572].end 5427.87471875
transcript.pyannote[573].speaker SPEAKER_17
transcript.pyannote[573].start 5428.39784375
transcript.pyannote[573].end 5429.96721875
transcript.pyannote[574].speaker SPEAKER_17
transcript.pyannote[574].start 5430.64221875
transcript.pyannote[574].end 5433.17346875
transcript.pyannote[575].speaker SPEAKER_17
transcript.pyannote[575].start 5433.76409375
transcript.pyannote[575].end 5436.64971875
transcript.pyannote[576].speaker SPEAKER_17
transcript.pyannote[576].start 5437.45971875
transcript.pyannote[576].end 5437.84784375
transcript.pyannote[577].speaker SPEAKER_17
transcript.pyannote[577].start 5438.33721875
transcript.pyannote[577].end 5442.35346875
transcript.pyannote[578].speaker SPEAKER_17
transcript.pyannote[578].start 5442.70784375
transcript.pyannote[578].end 5447.48346875
transcript.pyannote[579].speaker SPEAKER_17
transcript.pyannote[579].start 5448.96846875
transcript.pyannote[579].end 5450.18346875
transcript.pyannote[580].speaker SPEAKER_17
transcript.pyannote[580].start 5450.63909375
transcript.pyannote[580].end 5452.14096875
transcript.pyannote[581].speaker SPEAKER_17
transcript.pyannote[581].start 5453.76096875
transcript.pyannote[581].end 5458.65471875
transcript.pyannote[582].speaker SPEAKER_17
transcript.pyannote[582].start 5460.08909375
transcript.pyannote[582].end 5461.75971875
transcript.pyannote[583].speaker SPEAKER_17
transcript.pyannote[583].start 5463.05909375
transcript.pyannote[583].end 5468.39159375
transcript.pyannote[584].speaker SPEAKER_17
transcript.pyannote[584].start 5469.11721875
transcript.pyannote[584].end 5470.50096875
transcript.pyannote[585].speaker SPEAKER_17
transcript.pyannote[585].start 5471.27721875
transcript.pyannote[585].end 5472.03659375
transcript.pyannote[586].speaker SPEAKER_17
transcript.pyannote[586].start 5472.25596875
transcript.pyannote[586].end 5475.00659375
transcript.pyannote[587].speaker SPEAKER_17
transcript.pyannote[587].start 5475.93471875
transcript.pyannote[587].end 5477.03159375
transcript.pyannote[588].speaker SPEAKER_17
transcript.pyannote[588].start 5477.40284375
transcript.pyannote[588].end 5480.37284375
transcript.pyannote[589].speaker SPEAKER_17
transcript.pyannote[589].start 5481.18284375
transcript.pyannote[589].end 5483.91659375
transcript.pyannote[590].speaker SPEAKER_13
transcript.pyannote[590].start 5482.75221875
transcript.pyannote[590].end 5483.17409375
transcript.pyannote[591].speaker SPEAKER_28
transcript.pyannote[591].start 5483.17409375
transcript.pyannote[591].end 5483.20784375
transcript.pyannote[592].speaker SPEAKER_13
transcript.pyannote[592].start 5483.66346875
transcript.pyannote[592].end 5483.86596875
transcript.pyannote[593].speaker SPEAKER_13
transcript.pyannote[593].start 5483.91659375
transcript.pyannote[593].end 5491.18971875
transcript.pyannote[594].speaker SPEAKER_31
transcript.pyannote[594].start 5503.99784375
transcript.pyannote[594].end 5505.17909375
transcript.pyannote[595].speaker SPEAKER_31
transcript.pyannote[595].start 5505.43221875
transcript.pyannote[595].end 5506.52909375
transcript.pyannote[596].speaker SPEAKER_31
transcript.pyannote[596].start 5507.10284375
transcript.pyannote[596].end 5510.88284375
transcript.pyannote[597].speaker SPEAKER_31
transcript.pyannote[597].start 5511.37221875
transcript.pyannote[597].end 5512.18221875
transcript.pyannote[598].speaker SPEAKER_31
transcript.pyannote[598].start 5512.58721875
transcript.pyannote[598].end 5513.22846875
transcript.pyannote[599].speaker SPEAKER_31
transcript.pyannote[599].start 5513.51534375
transcript.pyannote[599].end 5514.61221875
transcript.pyannote[600].speaker SPEAKER_13
transcript.pyannote[600].start 5513.66721875
transcript.pyannote[600].end 5513.97096875
transcript.pyannote[601].speaker SPEAKER_13
transcript.pyannote[601].start 5515.13534375
transcript.pyannote[601].end 5515.18596875
transcript.pyannote[602].speaker SPEAKER_31
transcript.pyannote[602].start 5515.18596875
transcript.pyannote[602].end 5515.57409375
transcript.pyannote[603].speaker SPEAKER_13
transcript.pyannote[603].start 5515.57409375
transcript.pyannote[603].end 5515.60784375
transcript.pyannote[604].speaker SPEAKER_31
transcript.pyannote[604].start 5515.60784375
transcript.pyannote[604].end 5515.64159375
transcript.pyannote[605].speaker SPEAKER_13
transcript.pyannote[605].start 5515.64159375
transcript.pyannote[605].end 5515.65846875
transcript.pyannote[606].speaker SPEAKER_31
transcript.pyannote[606].start 5515.65846875
transcript.pyannote[606].end 5515.69221875
transcript.pyannote[607].speaker SPEAKER_13
transcript.pyannote[607].start 5515.69221875
transcript.pyannote[607].end 5515.75971875
transcript.pyannote[608].speaker SPEAKER_31
transcript.pyannote[608].start 5515.75971875
transcript.pyannote[608].end 5515.82721875
transcript.pyannote[609].speaker SPEAKER_31
transcript.pyannote[609].start 5518.49346875
transcript.pyannote[609].end 5519.50596875
transcript.pyannote[610].speaker SPEAKER_31
transcript.pyannote[610].start 5520.41721875
transcript.pyannote[610].end 5523.33659375
transcript.pyannote[611].speaker SPEAKER_31
transcript.pyannote[611].start 5525.14221875
transcript.pyannote[611].end 5526.47534375
transcript.pyannote[612].speaker SPEAKER_31
transcript.pyannote[612].start 5526.89721875
transcript.pyannote[612].end 5527.67346875
transcript.pyannote[613].speaker SPEAKER_31
transcript.pyannote[613].start 5528.51721875
transcript.pyannote[613].end 5530.54221875
transcript.pyannote[614].speaker SPEAKER_31
transcript.pyannote[614].start 5531.13284375
transcript.pyannote[614].end 5534.59221875
transcript.pyannote[615].speaker SPEAKER_31
transcript.pyannote[615].start 5535.41909375
transcript.pyannote[615].end 5538.25409375
transcript.pyannote[616].speaker SPEAKER_31
transcript.pyannote[616].start 5538.57471875
transcript.pyannote[616].end 5539.65471875
transcript.pyannote[617].speaker SPEAKER_31
transcript.pyannote[617].start 5540.16096875
transcript.pyannote[617].end 5541.96659375
transcript.pyannote[618].speaker SPEAKER_31
transcript.pyannote[618].start 5542.30409375
transcript.pyannote[618].end 5543.56971875
transcript.pyannote[619].speaker SPEAKER_31
transcript.pyannote[619].start 5544.02534375
transcript.pyannote[619].end 5547.28221875
transcript.pyannote[620].speaker SPEAKER_31
transcript.pyannote[620].start 5548.04159375
transcript.pyannote[620].end 5551.68659375
transcript.pyannote[621].speaker SPEAKER_31
transcript.pyannote[621].start 5552.24346875
transcript.pyannote[621].end 5555.33159375
transcript.pyannote[622].speaker SPEAKER_31
transcript.pyannote[622].start 5555.63534375
transcript.pyannote[622].end 5557.50846875
transcript.pyannote[623].speaker SPEAKER_31
transcript.pyannote[623].start 5557.82909375
transcript.pyannote[623].end 5560.25909375
transcript.pyannote[624].speaker SPEAKER_31
transcript.pyannote[624].start 5560.59659375
transcript.pyannote[624].end 5567.27909375
transcript.pyannote[625].speaker SPEAKER_31
transcript.pyannote[625].start 5567.76846875
transcript.pyannote[625].end 5573.89409375
transcript.pyannote[626].speaker SPEAKER_14
transcript.pyannote[626].start 5573.89409375
transcript.pyannote[626].end 5595.96659375
transcript.pyannote[627].speaker SPEAKER_31
transcript.pyannote[627].start 5573.94471875
transcript.pyannote[627].end 5574.45096875
transcript.pyannote[628].speaker SPEAKER_31
transcript.pyannote[628].start 5576.17221875
transcript.pyannote[628].end 5576.66159375
transcript.pyannote[629].speaker SPEAKER_31
transcript.pyannote[629].start 5578.29846875
transcript.pyannote[629].end 5579.00721875
transcript.pyannote[630].speaker SPEAKER_31
transcript.pyannote[630].start 5583.78284375
transcript.pyannote[630].end 5585.20034375
transcript.pyannote[631].speaker SPEAKER_31
transcript.pyannote[631].start 5588.72721875
transcript.pyannote[631].end 5588.92971875
transcript.pyannote[632].speaker SPEAKER_25
transcript.pyannote[632].start 5588.99721875
transcript.pyannote[632].end 5589.01409375
transcript.pyannote[633].speaker SPEAKER_31
transcript.pyannote[633].start 5589.01409375
transcript.pyannote[633].end 5590.88721875
transcript.pyannote[634].speaker SPEAKER_31
transcript.pyannote[634].start 5593.75596875
transcript.pyannote[634].end 5608.89284375
transcript.pyannote[635].speaker SPEAKER_31
transcript.pyannote[635].start 5609.98971875
transcript.pyannote[635].end 5611.40721875
transcript.pyannote[636].speaker SPEAKER_31
transcript.pyannote[636].start 5611.77846875
transcript.pyannote[636].end 5615.32221875
transcript.pyannote[637].speaker SPEAKER_31
transcript.pyannote[637].start 5616.13221875
transcript.pyannote[637].end 5618.25846875
transcript.pyannote[638].speaker SPEAKER_31
transcript.pyannote[638].start 5618.51159375
transcript.pyannote[638].end 5618.83221875
transcript.pyannote[639].speaker SPEAKER_31
transcript.pyannote[639].start 5620.11471875
transcript.pyannote[639].end 5620.65471875
transcript.pyannote[640].speaker SPEAKER_31
transcript.pyannote[640].start 5620.89096875
transcript.pyannote[640].end 5622.10596875
transcript.pyannote[641].speaker SPEAKER_31
transcript.pyannote[641].start 5622.76409375
transcript.pyannote[641].end 5623.75971875
transcript.pyannote[642].speaker SPEAKER_31
transcript.pyannote[642].start 5623.94534375
transcript.pyannote[642].end 5624.50221875
transcript.pyannote[643].speaker SPEAKER_31
transcript.pyannote[643].start 5625.27846875
transcript.pyannote[643].end 5626.83096875
transcript.pyannote[644].speaker SPEAKER_31
transcript.pyannote[644].start 5627.67471875
transcript.pyannote[644].end 5628.31596875
transcript.pyannote[645].speaker SPEAKER_31
transcript.pyannote[645].start 5628.53534375
transcript.pyannote[645].end 5629.41284375
transcript.pyannote[646].speaker SPEAKER_31
transcript.pyannote[646].start 5629.85159375
transcript.pyannote[646].end 5631.45471875
transcript.pyannote[647].speaker SPEAKER_31
transcript.pyannote[647].start 5631.67409375
transcript.pyannote[647].end 5632.45034375
transcript.pyannote[648].speaker SPEAKER_14
transcript.pyannote[648].start 5632.45034375
transcript.pyannote[648].end 5632.46721875
transcript.pyannote[649].speaker SPEAKER_31
transcript.pyannote[649].start 5633.76659375
transcript.pyannote[649].end 5633.96909375
transcript.pyannote[650].speaker SPEAKER_14
transcript.pyannote[650].start 5633.96909375
transcript.pyannote[650].end 5634.49221875
transcript.pyannote[651].speaker SPEAKER_14
transcript.pyannote[651].start 5634.61034375
transcript.pyannote[651].end 5635.06596875
transcript.pyannote[652].speaker SPEAKER_14
transcript.pyannote[652].start 5635.48784375
transcript.pyannote[652].end 5644.31346875
transcript.pyannote[653].speaker SPEAKER_15
transcript.pyannote[653].start 5640.61784375
transcript.pyannote[653].end 5642.84534375
transcript.pyannote[654].speaker SPEAKER_14
transcript.pyannote[654].start 5644.92096875
transcript.pyannote[654].end 5649.03846875
transcript.pyannote[655].speaker SPEAKER_31
transcript.pyannote[655].start 5649.03846875
transcript.pyannote[655].end 5650.06784375
transcript.pyannote[656].speaker SPEAKER_14
transcript.pyannote[656].start 5650.06784375
transcript.pyannote[656].end 5650.89471875
transcript.pyannote[657].speaker SPEAKER_31
transcript.pyannote[657].start 5650.25346875
transcript.pyannote[657].end 5650.77659375
transcript.pyannote[658].speaker SPEAKER_31
transcript.pyannote[658].start 5650.89471875
transcript.pyannote[658].end 5651.43471875
transcript.pyannote[659].speaker SPEAKER_14
transcript.pyannote[659].start 5651.80596875
transcript.pyannote[659].end 5651.82284375
transcript.pyannote[660].speaker SPEAKER_31
transcript.pyannote[660].start 5651.82284375
transcript.pyannote[660].end 5652.27846875
transcript.pyannote[661].speaker SPEAKER_31
transcript.pyannote[661].start 5652.31221875
transcript.pyannote[661].end 5652.34596875
transcript.pyannote[662].speaker SPEAKER_14
transcript.pyannote[662].start 5652.34596875
transcript.pyannote[662].end 5652.36284375
transcript.pyannote[663].speaker SPEAKER_31
transcript.pyannote[663].start 5652.36284375
transcript.pyannote[663].end 5652.37971875
transcript.pyannote[664].speaker SPEAKER_14
transcript.pyannote[664].start 5652.37971875
transcript.pyannote[664].end 5652.39659375
transcript.pyannote[665].speaker SPEAKER_31
transcript.pyannote[665].start 5652.39659375
transcript.pyannote[665].end 5654.97846875
transcript.pyannote[666].speaker SPEAKER_14
transcript.pyannote[666].start 5654.97846875
transcript.pyannote[666].end 5683.02471875
transcript.pyannote[667].speaker SPEAKER_31
transcript.pyannote[667].start 5657.47596875
transcript.pyannote[667].end 5657.72909375
transcript.pyannote[668].speaker SPEAKER_19
transcript.pyannote[668].start 5657.72909375
transcript.pyannote[668].end 5658.40409375
transcript.pyannote[669].speaker SPEAKER_31
transcript.pyannote[669].start 5658.40409375
transcript.pyannote[669].end 5658.43784375
transcript.pyannote[670].speaker SPEAKER_31
transcript.pyannote[670].start 5668.69784375
transcript.pyannote[670].end 5670.26721875
transcript.pyannote[671].speaker SPEAKER_31
transcript.pyannote[671].start 5683.02471875
transcript.pyannote[671].end 5690.34846875
transcript.pyannote[672].speaker SPEAKER_14
transcript.pyannote[672].start 5688.82971875
transcript.pyannote[672].end 5707.25721875
transcript.pyannote[673].speaker SPEAKER_31
transcript.pyannote[673].start 5694.80346875
transcript.pyannote[673].end 5695.37721875
transcript.pyannote[674].speaker SPEAKER_31
transcript.pyannote[674].start 5697.46971875
transcript.pyannote[674].end 5700.45659375
transcript.pyannote[675].speaker SPEAKER_31
transcript.pyannote[675].start 5703.19034375
transcript.pyannote[675].end 5704.32096875
transcript.pyannote[676].speaker SPEAKER_31
transcript.pyannote[676].start 5704.86096875
transcript.pyannote[676].end 5704.96221875
transcript.pyannote[677].speaker SPEAKER_14
transcript.pyannote[677].start 5707.67909375
transcript.pyannote[677].end 5726.07284375
transcript.pyannote[678].speaker SPEAKER_31
transcript.pyannote[678].start 5708.03346875
transcript.pyannote[678].end 5710.68284375
transcript.pyannote[679].speaker SPEAKER_31
transcript.pyannote[679].start 5721.07784375
transcript.pyannote[679].end 5723.08596875
transcript.pyannote[680].speaker SPEAKER_31
transcript.pyannote[680].start 5724.01409375
transcript.pyannote[680].end 5724.40221875
transcript.pyannote[681].speaker SPEAKER_31
transcript.pyannote[681].start 5725.14471875
transcript.pyannote[681].end 5725.93784375
transcript.pyannote[682].speaker SPEAKER_14
transcript.pyannote[682].start 5726.30909375
transcript.pyannote[682].end 5728.58721875
transcript.pyannote[683].speaker SPEAKER_31
transcript.pyannote[683].start 5726.79846875
transcript.pyannote[683].end 5727.55784375
transcript.pyannote[684].speaker SPEAKER_14
transcript.pyannote[684].start 5728.85721875
transcript.pyannote[684].end 5735.47221875
transcript.pyannote[685].speaker SPEAKER_31
transcript.pyannote[685].start 5729.78534375
transcript.pyannote[685].end 5732.45159375
transcript.pyannote[686].speaker SPEAKER_31
transcript.pyannote[686].start 5733.86909375
transcript.pyannote[686].end 5734.34159375
transcript.pyannote[687].speaker SPEAKER_31
transcript.pyannote[687].start 5735.47221875
transcript.pyannote[687].end 5742.96471875
transcript.pyannote[688].speaker SPEAKER_14
transcript.pyannote[688].start 5735.50596875
transcript.pyannote[688].end 5737.41284375
transcript.pyannote[689].speaker SPEAKER_14
transcript.pyannote[689].start 5742.96471875
transcript.pyannote[689].end 5744.38221875
transcript.pyannote[690].speaker SPEAKER_31
transcript.pyannote[690].start 5744.38221875
transcript.pyannote[690].end 5744.58471875
transcript.pyannote[691].speaker SPEAKER_14
transcript.pyannote[691].start 5744.58471875
transcript.pyannote[691].end 5756.02596875
transcript.pyannote[692].speaker SPEAKER_31
transcript.pyannote[692].start 5746.44096875
transcript.pyannote[692].end 5747.23409375
transcript.pyannote[693].speaker SPEAKER_31
transcript.pyannote[693].start 5756.02596875
transcript.pyannote[693].end 5760.31221875
transcript.pyannote[694].speaker SPEAKER_31
transcript.pyannote[694].start 5760.44721875
transcript.pyannote[694].end 5761.40909375
transcript.pyannote[695].speaker SPEAKER_31
transcript.pyannote[695].start 5762.08409375
transcript.pyannote[695].end 5775.07784375
transcript.pyannote[696].speaker SPEAKER_20
transcript.pyannote[696].start 5774.68971875
transcript.pyannote[696].end 5775.17909375
transcript.pyannote[697].speaker SPEAKER_31
transcript.pyannote[697].start 5775.17909375
transcript.pyannote[697].end 5777.96346875
transcript.pyannote[698].speaker SPEAKER_14
transcript.pyannote[698].start 5777.96346875
transcript.pyannote[698].end 5794.68659375
transcript.pyannote[699].speaker SPEAKER_31
transcript.pyannote[699].start 5785.77659375
transcript.pyannote[699].end 5786.14784375
transcript.pyannote[700].speaker SPEAKER_14
transcript.pyannote[700].start 5794.97346875
transcript.pyannote[700].end 5795.02409375
transcript.pyannote[701].speaker SPEAKER_31
transcript.pyannote[701].start 5795.02409375
transcript.pyannote[701].end 5797.87596875
transcript.pyannote[702].speaker SPEAKER_31
transcript.pyannote[702].start 5798.63534375
transcript.pyannote[702].end 5801.23409375
transcript.pyannote[703].speaker SPEAKER_31
transcript.pyannote[703].start 5802.09471875
transcript.pyannote[703].end 5804.23784375
transcript.pyannote[704].speaker SPEAKER_31
transcript.pyannote[704].start 5805.33471875
transcript.pyannote[704].end 5806.97159375
transcript.pyannote[705].speaker SPEAKER_14
transcript.pyannote[705].start 5806.97159375
transcript.pyannote[705].end 5809.01346875
transcript.pyannote[706].speaker SPEAKER_14
transcript.pyannote[706].start 5809.41846875
transcript.pyannote[706].end 5832.33471875
transcript.pyannote[707].speaker SPEAKER_31
transcript.pyannote[707].start 5814.34596875
transcript.pyannote[707].end 5814.80159375
transcript.pyannote[708].speaker SPEAKER_31
transcript.pyannote[708].start 5817.24846875
transcript.pyannote[708].end 5818.71659375
transcript.pyannote[709].speaker SPEAKER_31
transcript.pyannote[709].start 5819.96534375
transcript.pyannote[709].end 5820.37034375
transcript.pyannote[710].speaker SPEAKER_31
transcript.pyannote[710].start 5830.44471875
transcript.pyannote[710].end 5830.73159375
transcript.pyannote[711].speaker SPEAKER_31
transcript.pyannote[711].start 5830.93409375
transcript.pyannote[711].end 5831.59221875
transcript.pyannote[712].speaker SPEAKER_14
transcript.pyannote[712].start 5832.80721875
transcript.pyannote[712].end 5840.01284375
transcript.pyannote[713].speaker SPEAKER_31
transcript.pyannote[713].start 5838.93284375
transcript.pyannote[713].end 5842.57784375
transcript.pyannote[714].speaker SPEAKER_31
transcript.pyannote[714].start 5843.52284375
transcript.pyannote[714].end 5846.44221875
transcript.pyannote[715].speaker SPEAKER_31
transcript.pyannote[715].start 5846.69534375
transcript.pyannote[715].end 5854.40721875
transcript.pyannote[716].speaker SPEAKER_31
transcript.pyannote[716].start 5855.01471875
transcript.pyannote[716].end 5866.67534375
transcript.pyannote[717].speaker SPEAKER_31
transcript.pyannote[717].start 5866.91159375
transcript.pyannote[717].end 5867.40096875
transcript.pyannote[718].speaker SPEAKER_31
transcript.pyannote[718].start 5867.50221875
transcript.pyannote[718].end 5868.71721875
transcript.pyannote[719].speaker SPEAKER_31
transcript.pyannote[719].start 5869.02096875
transcript.pyannote[719].end 5869.89846875
transcript.pyannote[720].speaker SPEAKER_31
transcript.pyannote[720].start 5870.33721875
transcript.pyannote[720].end 5871.80534375
transcript.pyannote[721].speaker SPEAKER_31
transcript.pyannote[721].start 5872.61534375
transcript.pyannote[721].end 5873.57721875
transcript.pyannote[722].speaker SPEAKER_31
transcript.pyannote[722].start 5874.06659375
transcript.pyannote[722].end 5876.00721875
transcript.pyannote[723].speaker SPEAKER_31
transcript.pyannote[723].start 5877.37409375
transcript.pyannote[723].end 5877.86346875
transcript.pyannote[724].speaker SPEAKER_31
transcript.pyannote[724].start 5878.77471875
transcript.pyannote[724].end 5879.29784375
transcript.pyannote[725].speaker SPEAKER_31
transcript.pyannote[725].start 5880.46221875
transcript.pyannote[725].end 5881.06971875
transcript.pyannote[726].speaker SPEAKER_31
transcript.pyannote[726].start 5882.41971875
transcript.pyannote[726].end 5882.95971875
transcript.pyannote[727].speaker SPEAKER_31
transcript.pyannote[727].start 5883.58409375
transcript.pyannote[727].end 5883.97221875
transcript.pyannote[728].speaker SPEAKER_14
transcript.pyannote[728].start 5883.97221875
transcript.pyannote[728].end 5884.42784375
transcript.pyannote[729].speaker SPEAKER_14
transcript.pyannote[729].start 5885.01846875
transcript.pyannote[729].end 5925.80534375
transcript.pyannote[730].speaker SPEAKER_31
transcript.pyannote[730].start 5904.28971875
transcript.pyannote[730].end 5908.79534375
transcript.pyannote[731].speaker SPEAKER_31
transcript.pyannote[731].start 5915.12346875
transcript.pyannote[731].end 5916.27096875
transcript.pyannote[732].speaker SPEAKER_31
transcript.pyannote[732].start 5918.90346875
transcript.pyannote[732].end 5920.43909375
transcript.pyannote[733].speaker SPEAKER_31
transcript.pyannote[733].start 5921.33346875
transcript.pyannote[733].end 5921.70471875
transcript.pyannote[734].speaker SPEAKER_31
transcript.pyannote[734].start 5923.10534375
transcript.pyannote[734].end 5923.96596875
transcript.pyannote[735].speaker SPEAKER_14
transcript.pyannote[735].start 5925.97409375
transcript.pyannote[735].end 5950.03784375
transcript.pyannote[736].speaker SPEAKER_31
transcript.pyannote[736].start 5927.00346875
transcript.pyannote[736].end 5927.76284375
transcript.pyannote[737].speaker SPEAKER_15
transcript.pyannote[737].start 5937.36471875
transcript.pyannote[737].end 5938.47846875
transcript.pyannote[738].speaker SPEAKER_15
transcript.pyannote[738].start 5939.55846875
transcript.pyannote[738].end 5941.85346875
transcript.pyannote[739].speaker SPEAKER_31
transcript.pyannote[739].start 5947.82721875
transcript.pyannote[739].end 5948.46846875
transcript.pyannote[740].speaker SPEAKER_31
transcript.pyannote[740].start 5948.92409375
transcript.pyannote[740].end 5949.75096875
transcript.pyannote[741].speaker SPEAKER_31
transcript.pyannote[741].start 5950.03784375
transcript.pyannote[741].end 5961.02346875
transcript.pyannote[742].speaker SPEAKER_14
transcript.pyannote[742].start 5951.01659375
transcript.pyannote[742].end 5951.43846875
transcript.pyannote[743].speaker SPEAKER_14
transcript.pyannote[743].start 5958.88034375
transcript.pyannote[743].end 5959.67346875
transcript.pyannote[744].speaker SPEAKER_14
transcript.pyannote[744].start 5961.02346875
transcript.pyannote[744].end 5962.23846875
transcript.pyannote[745].speaker SPEAKER_31
transcript.pyannote[745].start 5962.23846875
transcript.pyannote[745].end 5963.21721875
transcript.pyannote[746].speaker SPEAKER_14
transcript.pyannote[746].start 5962.25534375
transcript.pyannote[746].end 5983.06221875
transcript.pyannote[747].speaker SPEAKER_31
transcript.pyannote[747].start 5973.03846875
transcript.pyannote[747].end 5976.26159375
transcript.pyannote[748].speaker SPEAKER_31
transcript.pyannote[748].start 5978.79284375
transcript.pyannote[748].end 5979.72096875
transcript.pyannote[749].speaker SPEAKER_31
transcript.pyannote[749].start 5980.68284375
transcript.pyannote[749].end 5994.48659375
transcript.pyannote[750].speaker SPEAKER_14
transcript.pyannote[750].start 5983.16346875
transcript.pyannote[750].end 5984.85096875
transcript.pyannote[751].speaker SPEAKER_14
transcript.pyannote[751].start 5990.20034375
transcript.pyannote[751].end 5992.15784375
transcript.pyannote[752].speaker SPEAKER_14
transcript.pyannote[752].start 5992.78221875
transcript.pyannote[752].end 5996.24159375
transcript.pyannote[753].speaker SPEAKER_31
transcript.pyannote[753].start 5996.24159375
transcript.pyannote[753].end 5996.69721875
transcript.pyannote[754].speaker SPEAKER_14
transcript.pyannote[754].start 5996.69721875
transcript.pyannote[754].end 5996.71409375
transcript.pyannote[755].speaker SPEAKER_31
transcript.pyannote[755].start 5996.71409375
transcript.pyannote[755].end 5996.73096875
transcript.pyannote[756].speaker SPEAKER_14
transcript.pyannote[756].start 5996.98409375
transcript.pyannote[756].end 5997.01784375
transcript.pyannote[757].speaker SPEAKER_31
transcript.pyannote[757].start 5997.01784375
transcript.pyannote[757].end 5999.71784375
transcript.pyannote[758].speaker SPEAKER_31
transcript.pyannote[758].start 6000.19034375
transcript.pyannote[758].end 6003.12659375
transcript.pyannote[759].speaker SPEAKER_14
transcript.pyannote[759].start 6000.25784375
transcript.pyannote[759].end 6000.86534375
transcript.pyannote[760].speaker SPEAKER_14
transcript.pyannote[760].start 6001.05096875
transcript.pyannote[760].end 6015.02346875
transcript.pyannote[761].speaker SPEAKER_31
transcript.pyannote[761].start 6003.90284375
transcript.pyannote[761].end 6005.26971875
transcript.pyannote[762].speaker SPEAKER_31
transcript.pyannote[762].start 6015.02346875
transcript.pyannote[762].end 6019.63034375
transcript.pyannote[763].speaker SPEAKER_31
transcript.pyannote[763].start 6020.55846875
transcript.pyannote[763].end 6022.14471875
transcript.pyannote[764].speaker SPEAKER_31
transcript.pyannote[764].start 6022.29659375
transcript.pyannote[764].end 6023.71409375
transcript.pyannote[765].speaker SPEAKER_12
transcript.pyannote[765].start 6023.96721875
transcript.pyannote[765].end 6025.45221875
transcript.pyannote[766].speaker SPEAKER_31
transcript.pyannote[766].start 6024.81096875
transcript.pyannote[766].end 6025.84034375
transcript.pyannote[767].speaker SPEAKER_31
transcript.pyannote[767].start 6025.97534375
transcript.pyannote[767].end 6026.70096875
transcript.pyannote[768].speaker SPEAKER_12
transcript.pyannote[768].start 6026.70096875
transcript.pyannote[768].end 6026.86971875
transcript.pyannote[769].speaker SPEAKER_31
transcript.pyannote[769].start 6027.96659375
transcript.pyannote[769].end 6028.28721875
transcript.pyannote[770].speaker SPEAKER_31
transcript.pyannote[770].start 6029.55284375
transcript.pyannote[770].end 6031.81409375
transcript.pyannote[771].speaker SPEAKER_31
transcript.pyannote[771].start 6032.21909375
transcript.pyannote[771].end 6033.70409375
transcript.pyannote[772].speaker SPEAKER_31
transcript.pyannote[772].start 6035.23971875
transcript.pyannote[772].end 6035.69534375
transcript.pyannote[773].speaker SPEAKER_31
transcript.pyannote[773].start 6036.91034375
transcript.pyannote[773].end 6038.09159375
transcript.pyannote[774].speaker SPEAKER_31
transcript.pyannote[774].start 6038.85096875
transcript.pyannote[774].end 6040.74096875
transcript.pyannote[775].speaker SPEAKER_31
transcript.pyannote[775].start 6042.00659375
transcript.pyannote[775].end 6044.65596875
transcript.pyannote[776].speaker SPEAKER_31
transcript.pyannote[776].start 6044.97659375
transcript.pyannote[776].end 6047.03534375
transcript.pyannote[777].speaker SPEAKER_31
transcript.pyannote[777].start 6047.38971875
transcript.pyannote[777].end 6048.30096875
transcript.pyannote[778].speaker SPEAKER_31
transcript.pyannote[778].start 6048.90846875
transcript.pyannote[778].end 6049.49909375
transcript.pyannote[779].speaker SPEAKER_31
transcript.pyannote[779].start 6049.73534375
transcript.pyannote[779].end 6050.32596875
transcript.pyannote[780].speaker SPEAKER_31
transcript.pyannote[780].start 6050.61284375
transcript.pyannote[780].end 6051.22034375
transcript.pyannote[781].speaker SPEAKER_31
transcript.pyannote[781].start 6052.08096875
transcript.pyannote[781].end 6054.73034375
transcript.pyannote[782].speaker SPEAKER_31
transcript.pyannote[782].start 6056.35034375
transcript.pyannote[782].end 6061.39596875
transcript.pyannote[783].speaker SPEAKER_28
transcript.pyannote[783].start 6056.65409375
transcript.pyannote[783].end 6058.81409375
transcript.pyannote[784].speaker SPEAKER_31
transcript.pyannote[784].start 6061.85159375
transcript.pyannote[784].end 6062.32409375
transcript.pyannote[785].speaker SPEAKER_31
transcript.pyannote[785].start 6062.45909375
transcript.pyannote[785].end 6070.03596875
transcript.pyannote[786].speaker SPEAKER_31
transcript.pyannote[786].start 6070.64346875
transcript.pyannote[786].end 6073.63034375
transcript.pyannote[787].speaker SPEAKER_31
transcript.pyannote[787].start 6074.10284375
transcript.pyannote[787].end 6077.86596875
transcript.pyannote[788].speaker SPEAKER_28
transcript.pyannote[788].start 6078.00096875
transcript.pyannote[788].end 6079.11471875
transcript.pyannote[789].speaker SPEAKER_31
transcript.pyannote[789].start 6078.54096875
transcript.pyannote[789].end 6083.89034375
transcript.pyannote[790].speaker SPEAKER_31
transcript.pyannote[790].start 6084.16034375
transcript.pyannote[790].end 6087.87284375
transcript.pyannote[791].speaker SPEAKER_31
transcript.pyannote[791].start 6088.42971875
transcript.pyannote[791].end 6089.07096875
transcript.pyannote[792].speaker SPEAKER_31
transcript.pyannote[792].start 6089.45909375
transcript.pyannote[792].end 6091.43346875
transcript.pyannote[793].speaker SPEAKER_31
transcript.pyannote[793].start 6092.00721875
transcript.pyannote[793].end 6095.51721875
transcript.pyannote[794].speaker SPEAKER_28
transcript.pyannote[794].start 6095.66909375
transcript.pyannote[794].end 6104.22471875
transcript.pyannote[795].speaker SPEAKER_31
transcript.pyannote[795].start 6096.59721875
transcript.pyannote[795].end 6097.71096875
transcript.pyannote[796].speaker SPEAKER_31
transcript.pyannote[796].start 6102.46971875
transcript.pyannote[796].end 6104.83221875
transcript.pyannote[797].speaker SPEAKER_31
transcript.pyannote[797].start 6105.84471875
transcript.pyannote[797].end 6109.20284375
transcript.pyannote[798].speaker SPEAKER_28
transcript.pyannote[798].start 6109.50659375
transcript.pyannote[798].end 6110.24909375
transcript.pyannote[799].speaker SPEAKER_31
transcript.pyannote[799].start 6110.50221875
transcript.pyannote[799].end 6111.41346875
transcript.pyannote[800].speaker SPEAKER_31
transcript.pyannote[800].start 6111.71721875
transcript.pyannote[800].end 6111.93659375
transcript.pyannote[801].speaker SPEAKER_28
transcript.pyannote[801].start 6111.93659375
transcript.pyannote[801].end 6112.86471875
transcript.pyannote[802].speaker SPEAKER_31
transcript.pyannote[802].start 6112.47659375
transcript.pyannote[802].end 6112.71284375
transcript.pyannote[803].speaker SPEAKER_28
transcript.pyannote[803].start 6112.99971875
transcript.pyannote[803].end 6113.25284375
transcript.pyannote[804].speaker SPEAKER_28
transcript.pyannote[804].start 6113.28659375
transcript.pyannote[804].end 6115.66596875
transcript.pyannote[805].speaker SPEAKER_31
transcript.pyannote[805].start 6115.66596875
transcript.pyannote[805].end 6117.03284375
transcript.pyannote[806].speaker SPEAKER_28
transcript.pyannote[806].start 6117.42096875
transcript.pyannote[806].end 6126.22971875
transcript.pyannote[807].speaker SPEAKER_31
transcript.pyannote[807].start 6118.02846875
transcript.pyannote[807].end 6118.28159375
transcript.pyannote[808].speaker SPEAKER_31
transcript.pyannote[808].start 6122.28096875
transcript.pyannote[808].end 6123.07409375
transcript.pyannote[809].speaker SPEAKER_31
transcript.pyannote[809].start 6125.47034375
transcript.pyannote[809].end 6126.16221875
transcript.pyannote[810].speaker SPEAKER_31
transcript.pyannote[810].start 6126.22971875
transcript.pyannote[810].end 6127.78221875
transcript.pyannote[811].speaker SPEAKER_31
transcript.pyannote[811].start 6127.93409375
transcript.pyannote[811].end 6140.53971875
transcript.pyannote[812].speaker SPEAKER_25
transcript.pyannote[812].start 6135.10596875
transcript.pyannote[812].end 6135.44346875
transcript.pyannote[813].speaker SPEAKER_28
transcript.pyannote[813].start 6140.53971875
transcript.pyannote[813].end 6154.86659375
transcript.pyannote[814].speaker SPEAKER_25
transcript.pyannote[814].start 6151.30596875
transcript.pyannote[814].end 6151.33971875
transcript.pyannote[815].speaker SPEAKER_31
transcript.pyannote[815].start 6151.33971875
transcript.pyannote[815].end 6152.03159375
transcript.pyannote[816].speaker SPEAKER_28
transcript.pyannote[816].start 6154.98471875
transcript.pyannote[816].end 6157.36409375
transcript.pyannote[817].speaker SPEAKER_31
transcript.pyannote[817].start 6155.38971875
transcript.pyannote[817].end 6155.50784375
transcript.pyannote[818].speaker SPEAKER_31
transcript.pyannote[818].start 6155.62596875
transcript.pyannote[818].end 6156.94221875
transcript.pyannote[819].speaker SPEAKER_31
transcript.pyannote[819].start 6157.36409375
transcript.pyannote[819].end 6157.38096875
transcript.pyannote[820].speaker SPEAKER_28
transcript.pyannote[820].start 6157.73534375
transcript.pyannote[820].end 6158.96721875
transcript.pyannote[821].speaker SPEAKER_31
transcript.pyannote[821].start 6158.96721875
transcript.pyannote[821].end 6159.77721875
transcript.pyannote[822].speaker SPEAKER_28
transcript.pyannote[822].start 6161.12721875
transcript.pyannote[822].end 6161.31284375
transcript.pyannote[823].speaker SPEAKER_20
transcript.pyannote[823].start 6161.31284375
transcript.pyannote[823].end 6161.34659375
transcript.pyannote[824].speaker SPEAKER_31
transcript.pyannote[824].start 6161.97096875
transcript.pyannote[824].end 6164.33346875
transcript.pyannote[825].speaker SPEAKER_31
transcript.pyannote[825].start 6164.83971875
transcript.pyannote[825].end 6170.32409375
transcript.pyannote[826].speaker SPEAKER_28
transcript.pyannote[826].start 6168.38346875
transcript.pyannote[826].end 6176.98971875
transcript.pyannote[827].speaker SPEAKER_31
transcript.pyannote[827].start 6176.61846875
transcript.pyannote[827].end 6176.90534375
transcript.pyannote[828].speaker SPEAKER_31
transcript.pyannote[828].start 6176.98971875
transcript.pyannote[828].end 6177.05721875
transcript.pyannote[829].speaker SPEAKER_28
transcript.pyannote[829].start 6177.05721875
transcript.pyannote[829].end 6177.47909375
transcript.pyannote[830].speaker SPEAKER_31
transcript.pyannote[830].start 6177.47909375
transcript.pyannote[830].end 6177.76596875
transcript.pyannote[831].speaker SPEAKER_28
transcript.pyannote[831].start 6177.76596875
transcript.pyannote[831].end 6177.85034375
transcript.pyannote[832].speaker SPEAKER_31
transcript.pyannote[832].start 6177.85034375
transcript.pyannote[832].end 6177.88409375
transcript.pyannote[833].speaker SPEAKER_28
transcript.pyannote[833].start 6177.88409375
transcript.pyannote[833].end 6183.70596875
transcript.pyannote[834].speaker SPEAKER_31
transcript.pyannote[834].start 6178.03596875
transcript.pyannote[834].end 6180.31409375
transcript.pyannote[835].speaker SPEAKER_31
transcript.pyannote[835].start 6181.64721875
transcript.pyannote[835].end 6183.77346875
transcript.pyannote[836].speaker SPEAKER_28
transcript.pyannote[836].start 6183.77346875
transcript.pyannote[836].end 6183.90846875
transcript.pyannote[837].speaker SPEAKER_12
transcript.pyannote[837].start 6183.99284375
transcript.pyannote[837].end 6184.09409375
transcript.pyannote[838].speaker SPEAKER_31
transcript.pyannote[838].start 6184.09409375
transcript.pyannote[838].end 6187.78971875
transcript.pyannote[839].speaker SPEAKER_28
transcript.pyannote[839].start 6184.14471875
transcript.pyannote[839].end 6185.73096875
transcript.pyannote[840].speaker SPEAKER_12
transcript.pyannote[840].start 6187.78971875
transcript.pyannote[840].end 6188.70096875
transcript.pyannote[841].speaker SPEAKER_31
transcript.pyannote[841].start 6189.40971875
transcript.pyannote[841].end 6190.84409375
transcript.pyannote[842].speaker SPEAKER_31
transcript.pyannote[842].start 6191.40096875
transcript.pyannote[842].end 6194.62409375
transcript.pyannote[843].speaker SPEAKER_31
transcript.pyannote[843].start 6195.06284375
transcript.pyannote[843].end 6197.18909375
transcript.pyannote[844].speaker SPEAKER_31
transcript.pyannote[844].start 6197.57721875
transcript.pyannote[844].end 6199.78784375
transcript.pyannote[845].speaker SPEAKER_31
transcript.pyannote[845].start 6201.72846875
transcript.pyannote[845].end 6202.20096875
transcript.pyannote[846].speaker SPEAKER_31
transcript.pyannote[846].start 6203.50034375
transcript.pyannote[846].end 6206.52096875
transcript.pyannote[847].speaker SPEAKER_31
transcript.pyannote[847].start 6206.84159375
transcript.pyannote[847].end 6210.31784375
transcript.pyannote[848].speaker SPEAKER_31
transcript.pyannote[848].start 6210.68909375
transcript.pyannote[848].end 6218.46846875
transcript.pyannote[849].speaker SPEAKER_31
transcript.pyannote[849].start 6219.16034375
transcript.pyannote[849].end 6219.68346875
transcript.pyannote[850].speaker SPEAKER_31
transcript.pyannote[850].start 6219.81846875
transcript.pyannote[850].end 6223.29471875
transcript.pyannote[851].speaker SPEAKER_31
transcript.pyannote[851].start 6223.41284375
transcript.pyannote[851].end 6224.84721875
transcript.pyannote[852].speaker SPEAKER_18
transcript.pyannote[852].start 6225.03284375
transcript.pyannote[852].end 6226.53471875
transcript.pyannote[853].speaker SPEAKER_31
transcript.pyannote[853].start 6226.43346875
transcript.pyannote[853].end 6226.97346875
transcript.pyannote[854].speaker SPEAKER_18
transcript.pyannote[854].start 6226.55159375
transcript.pyannote[854].end 6226.80471875
transcript.pyannote[855].speaker SPEAKER_18
transcript.pyannote[855].start 6226.97346875
transcript.pyannote[855].end 6227.51346875
transcript.pyannote[856].speaker SPEAKER_31
transcript.pyannote[856].start 6227.64846875
transcript.pyannote[856].end 6230.51721875
transcript.pyannote[857].speaker SPEAKER_31
transcript.pyannote[857].start 6231.29346875
transcript.pyannote[857].end 6234.26346875
transcript.pyannote[858].speaker SPEAKER_31
transcript.pyannote[858].start 6234.65159375
transcript.pyannote[858].end 6236.22096875
transcript.pyannote[859].speaker SPEAKER_31
transcript.pyannote[859].start 6236.52471875
transcript.pyannote[859].end 6238.53284375
transcript.pyannote[860].speaker SPEAKER_31
transcript.pyannote[860].start 6239.32596875
transcript.pyannote[860].end 6239.95034375
transcript.pyannote[861].speaker SPEAKER_31
transcript.pyannote[861].start 6240.74346875
transcript.pyannote[861].end 6241.16534375
transcript.pyannote[862].speaker SPEAKER_31
transcript.pyannote[862].start 6241.68846875
transcript.pyannote[862].end 6242.41409375
transcript.pyannote[863].speaker SPEAKER_31
transcript.pyannote[863].start 6243.37596875
transcript.pyannote[863].end 6244.06784375
transcript.pyannote[864].speaker SPEAKER_31
transcript.pyannote[864].start 6244.33784375
transcript.pyannote[864].end 6244.77659375
transcript.pyannote[865].speaker SPEAKER_31
transcript.pyannote[865].start 6245.67096875
transcript.pyannote[865].end 6246.88596875
transcript.pyannote[866].speaker SPEAKER_31
transcript.pyannote[866].start 6247.84784375
transcript.pyannote[866].end 6249.34971875
transcript.pyannote[867].speaker SPEAKER_18
transcript.pyannote[867].start 6249.34971875
transcript.pyannote[867].end 6249.38346875
transcript.pyannote[868].speaker SPEAKER_18
transcript.pyannote[868].start 6249.43409375
transcript.pyannote[868].end 6249.45096875
transcript.pyannote[869].speaker SPEAKER_31
transcript.pyannote[869].start 6249.45096875
transcript.pyannote[869].end 6249.90659375
transcript.pyannote[870].speaker SPEAKER_18
transcript.pyannote[870].start 6249.90659375
transcript.pyannote[870].end 6249.94034375
transcript.pyannote[871].speaker SPEAKER_31
transcript.pyannote[871].start 6250.26096875
transcript.pyannote[871].end 6250.29471875
transcript.pyannote[872].speaker SPEAKER_18
transcript.pyannote[872].start 6250.29471875
transcript.pyannote[872].end 6250.61534375
transcript.pyannote[873].speaker SPEAKER_18
transcript.pyannote[873].start 6250.80096875
transcript.pyannote[873].end 6256.30221875
transcript.pyannote[874].speaker SPEAKER_31
transcript.pyannote[874].start 6252.77534375
transcript.pyannote[874].end 6253.75409375
transcript.pyannote[875].speaker SPEAKER_31
transcript.pyannote[875].start 6256.30221875
transcript.pyannote[875].end 6258.02346875
transcript.pyannote[876].speaker SPEAKER_18
transcript.pyannote[876].start 6257.07846875
transcript.pyannote[876].end 6257.53409375
transcript.pyannote[877].speaker SPEAKER_31
transcript.pyannote[877].start 6258.46221875
transcript.pyannote[877].end 6259.35659375
transcript.pyannote[878].speaker SPEAKER_31
transcript.pyannote[878].start 6259.59284375
transcript.pyannote[878].end 6260.09909375
transcript.pyannote[879].speaker SPEAKER_31
transcript.pyannote[879].start 6260.35221875
transcript.pyannote[879].end 6260.95971875
transcript.pyannote[880].speaker SPEAKER_31
transcript.pyannote[880].start 6261.48284375
transcript.pyannote[880].end 6261.55034375
transcript.pyannote[881].speaker SPEAKER_31
transcript.pyannote[881].start 6262.00596875
transcript.pyannote[881].end 6263.67659375
transcript.pyannote[882].speaker SPEAKER_01
transcript.pyannote[882].start 6263.67659375
transcript.pyannote[882].end 6264.25034375
transcript.pyannote[883].speaker SPEAKER_31
transcript.pyannote[883].start 6264.25034375
transcript.pyannote[883].end 6264.36846875
transcript.pyannote[884].speaker SPEAKER_31
transcript.pyannote[884].start 6264.75659375
transcript.pyannote[884].end 6265.95471875
transcript.pyannote[885].speaker SPEAKER_31
transcript.pyannote[885].start 6266.27534375
transcript.pyannote[885].end 6268.24971875
transcript.pyannote[886].speaker SPEAKER_01
transcript.pyannote[886].start 6268.89096875
transcript.pyannote[886].end 6269.11034375
transcript.pyannote[887].speaker SPEAKER_31
transcript.pyannote[887].start 6269.80221875
transcript.pyannote[887].end 6270.96659375
transcript.pyannote[888].speaker SPEAKER_01
transcript.pyannote[888].start 6271.16909375
transcript.pyannote[888].end 6271.35471875
transcript.pyannote[889].speaker SPEAKER_31
transcript.pyannote[889].start 6272.16471875
transcript.pyannote[889].end 6273.81846875
transcript.pyannote[890].speaker SPEAKER_31
transcript.pyannote[890].start 6274.18971875
transcript.pyannote[890].end 6275.28659375
transcript.pyannote[891].speaker SPEAKER_01
transcript.pyannote[891].start 6275.53971875
transcript.pyannote[891].end 6282.84659375
transcript.pyannote[892].speaker SPEAKER_31
transcript.pyannote[892].start 6283.69034375
transcript.pyannote[892].end 6286.98096875
transcript.pyannote[893].speaker SPEAKER_01
transcript.pyannote[893].start 6288.29721875
transcript.pyannote[893].end 6288.93846875
transcript.pyannote[894].speaker SPEAKER_01
transcript.pyannote[894].start 6289.76534375
transcript.pyannote[894].end 6296.68409375
transcript.pyannote[895].speaker SPEAKER_31
transcript.pyannote[895].start 6289.86659375
transcript.pyannote[895].end 6290.25471875
transcript.pyannote[896].speaker SPEAKER_31
transcript.pyannote[896].start 6296.21159375
transcript.pyannote[896].end 6296.90346875
transcript.pyannote[897].speaker SPEAKER_31
transcript.pyannote[897].start 6296.92034375
transcript.pyannote[897].end 6300.83534375
transcript.pyannote[898].speaker SPEAKER_01
transcript.pyannote[898].start 6302.03346875
transcript.pyannote[898].end 6302.97846875
transcript.pyannote[899].speaker SPEAKER_31
transcript.pyannote[899].start 6302.97846875
transcript.pyannote[899].end 6303.02909375
transcript.pyannote[900].speaker SPEAKER_01
transcript.pyannote[900].start 6303.02909375
transcript.pyannote[900].end 6303.13034375
transcript.pyannote[901].speaker SPEAKER_31
transcript.pyannote[901].start 6303.13034375
transcript.pyannote[901].end 6303.14721875
transcript.pyannote[902].speaker SPEAKER_01
transcript.pyannote[902].start 6303.14721875
transcript.pyannote[902].end 6303.24846875
transcript.pyannote[903].speaker SPEAKER_31
transcript.pyannote[903].start 6303.24846875
transcript.pyannote[903].end 6308.49659375
transcript.pyannote[904].speaker SPEAKER_31
transcript.pyannote[904].start 6309.03659375
transcript.pyannote[904].end 6310.87596875
transcript.pyannote[905].speaker SPEAKER_28
transcript.pyannote[905].start 6311.70284375
transcript.pyannote[905].end 6315.61784375
transcript.pyannote[906].speaker SPEAKER_31
transcript.pyannote[906].start 6313.84596875
transcript.pyannote[906].end 6315.66846875
transcript.pyannote[907].speaker SPEAKER_31
transcript.pyannote[907].start 6316.09034375
transcript.pyannote[907].end 6319.27971875
transcript.pyannote[908].speaker SPEAKER_28
transcript.pyannote[908].start 6319.65096875
transcript.pyannote[908].end 6322.87409375
transcript.pyannote[909].speaker SPEAKER_31
transcript.pyannote[909].start 6321.54096875
transcript.pyannote[909].end 6325.96221875
transcript.pyannote[910].speaker SPEAKER_28
transcript.pyannote[910].start 6325.33784375
transcript.pyannote[910].end 6329.82659375
transcript.pyannote[911].speaker SPEAKER_13
transcript.pyannote[911].start 6325.96221875
transcript.pyannote[911].end 6326.56971875
transcript.pyannote[912].speaker SPEAKER_31
transcript.pyannote[912].start 6326.56971875
transcript.pyannote[912].end 6327.02534375
transcript.pyannote[913].speaker SPEAKER_13
transcript.pyannote[913].start 6327.02534375
transcript.pyannote[913].end 6328.32471875
transcript.pyannote[914].speaker SPEAKER_13
transcript.pyannote[914].start 6329.59034375
transcript.pyannote[914].end 6335.64846875
transcript.pyannote[915].speaker SPEAKER_07
transcript.pyannote[915].start 6342.22971875
transcript.pyannote[915].end 6344.13659375
transcript.pyannote[916].speaker SPEAKER_13
transcript.pyannote[916].start 6345.30096875
transcript.pyannote[916].end 6345.92534375
transcript.pyannote[917].speaker SPEAKER_07
transcript.pyannote[917].start 6350.26221875
transcript.pyannote[917].end 6351.47721875
transcript.pyannote[918].speaker SPEAKER_07
transcript.pyannote[918].start 6352.00034375
transcript.pyannote[918].end 6354.81846875
transcript.pyannote[919].speaker SPEAKER_14
transcript.pyannote[919].start 6353.16471875
transcript.pyannote[919].end 6358.49721875
transcript.pyannote[920].speaker SPEAKER_07
transcript.pyannote[920].start 6358.49721875
transcript.pyannote[920].end 6358.98659375
transcript.pyannote[921].speaker SPEAKER_07
transcript.pyannote[921].start 6359.83034375
transcript.pyannote[921].end 6367.71096875
transcript.pyannote[922].speaker SPEAKER_14
transcript.pyannote[922].start 6363.91409375
transcript.pyannote[922].end 6365.46659375
transcript.pyannote[923].speaker SPEAKER_03
transcript.pyannote[923].start 6367.86284375
transcript.pyannote[923].end 6367.89659375
transcript.pyannote[924].speaker SPEAKER_14
transcript.pyannote[924].start 6367.89659375
transcript.pyannote[924].end 6368.14971875
transcript.pyannote[925].speaker SPEAKER_07
transcript.pyannote[925].start 6368.25096875
transcript.pyannote[925].end 6370.90034375
transcript.pyannote[926].speaker SPEAKER_14
transcript.pyannote[926].start 6371.20409375
transcript.pyannote[926].end 6372.48659375
transcript.pyannote[927].speaker SPEAKER_14
transcript.pyannote[927].start 6372.68909375
transcript.pyannote[927].end 6379.67534375
transcript.pyannote[928].speaker SPEAKER_07
transcript.pyannote[928].start 6378.83159375
transcript.pyannote[928].end 6386.86409375
transcript.pyannote[929].speaker SPEAKER_16
transcript.pyannote[929].start 6384.56909375
transcript.pyannote[929].end 6385.09221875
transcript.pyannote[930].speaker SPEAKER_16
transcript.pyannote[930].start 6385.22721875
transcript.pyannote[930].end 6385.24409375
transcript.pyannote[931].speaker SPEAKER_16
transcript.pyannote[931].start 6386.45909375
transcript.pyannote[931].end 6386.84721875
transcript.pyannote[932].speaker SPEAKER_16
transcript.pyannote[932].start 6386.86409375
transcript.pyannote[932].end 6389.37846875
transcript.pyannote[933].speaker SPEAKER_07
transcript.pyannote[933].start 6387.74159375
transcript.pyannote[933].end 6396.75284375
transcript.pyannote[934].speaker SPEAKER_16
transcript.pyannote[934].start 6394.05284375
transcript.pyannote[934].end 6395.13284375
transcript.pyannote[935].speaker SPEAKER_16
transcript.pyannote[935].start 6396.24659375
transcript.pyannote[935].end 6397.51221875
transcript.pyannote[936].speaker SPEAKER_07
transcript.pyannote[936].start 6397.51221875
transcript.pyannote[936].end 6402.45659375
transcript.pyannote[937].speaker SPEAKER_07
transcript.pyannote[937].start 6402.72659375
transcript.pyannote[937].end 6405.86534375
transcript.pyannote[938].speaker SPEAKER_14
transcript.pyannote[938].start 6406.37159375
transcript.pyannote[938].end 6409.83096875
transcript.pyannote[939].speaker SPEAKER_07
transcript.pyannote[939].start 6409.40909375
transcript.pyannote[939].end 6415.43346875
transcript.pyannote[940].speaker SPEAKER_14
transcript.pyannote[940].start 6413.72909375
transcript.pyannote[940].end 6416.46284375
transcript.pyannote[941].speaker SPEAKER_07
transcript.pyannote[941].start 6417.77909375
transcript.pyannote[941].end 6423.97221875
transcript.pyannote[942].speaker SPEAKER_15
transcript.pyannote[942].start 6423.76971875
transcript.pyannote[942].end 6423.78659375
transcript.pyannote[943].speaker SPEAKER_14
transcript.pyannote[943].start 6423.78659375
transcript.pyannote[943].end 6424.46159375
transcript.pyannote[944].speaker SPEAKER_07
transcript.pyannote[944].start 6424.46159375
transcript.pyannote[944].end 6426.84096875
transcript.pyannote[945].speaker SPEAKER_14
transcript.pyannote[945].start 6426.84096875
transcript.pyannote[945].end 6438.70409375
transcript.pyannote[946].speaker SPEAKER_07
transcript.pyannote[946].start 6432.81471875
transcript.pyannote[946].end 6434.24909375
transcript.pyannote[947].speaker SPEAKER_25
transcript.pyannote[947].start 6434.24909375
transcript.pyannote[947].end 6434.41784375
transcript.pyannote[948].speaker SPEAKER_07
transcript.pyannote[948].start 6434.41784375
transcript.pyannote[948].end 6434.45159375
transcript.pyannote[949].speaker SPEAKER_25
transcript.pyannote[949].start 6438.18096875
transcript.pyannote[949].end 6438.55221875
transcript.pyannote[950].speaker SPEAKER_07
transcript.pyannote[950].start 6438.55221875
transcript.pyannote[950].end 6438.63659375
transcript.pyannote[951].speaker SPEAKER_25
transcript.pyannote[951].start 6438.63659375
transcript.pyannote[951].end 6439.96971875
transcript.pyannote[952].speaker SPEAKER_14
transcript.pyannote[952].start 6439.04159375
transcript.pyannote[952].end 6448.08659375
transcript.pyannote[953].speaker SPEAKER_07
transcript.pyannote[953].start 6439.96971875
transcript.pyannote[953].end 6441.25221875
transcript.pyannote[954].speaker SPEAKER_07
transcript.pyannote[954].start 6448.08659375
transcript.pyannote[954].end 6458.54909375
transcript.pyannote[955].speaker SPEAKER_07
transcript.pyannote[955].start 6459.00471875
transcript.pyannote[955].end 6465.60284375
transcript.pyannote[956].speaker SPEAKER_14
transcript.pyannote[956].start 6460.79346875
transcript.pyannote[956].end 6470.61471875
transcript.pyannote[957].speaker SPEAKER_07
transcript.pyannote[957].start 6469.80471875
transcript.pyannote[957].end 6471.69471875
transcript.pyannote[958].speaker SPEAKER_07
transcript.pyannote[958].start 6471.88034375
transcript.pyannote[958].end 6477.66846875
transcript.pyannote[959].speaker SPEAKER_26
transcript.pyannote[959].start 6477.09471875
transcript.pyannote[959].end 6477.63471875
transcript.pyannote[960].speaker SPEAKER_26
transcript.pyannote[960].start 6477.66846875
transcript.pyannote[960].end 6477.75284375
transcript.pyannote[961].speaker SPEAKER_07
transcript.pyannote[961].start 6478.15784375
transcript.pyannote[961].end 6501.96846875
transcript.pyannote[962].speaker SPEAKER_26
transcript.pyannote[962].start 6496.92284375
transcript.pyannote[962].end 6497.80034375
transcript.pyannote[963].speaker SPEAKER_07
transcript.pyannote[963].start 6502.35659375
transcript.pyannote[963].end 6507.28409375
transcript.pyannote[964].speaker SPEAKER_07
transcript.pyannote[964].start 6507.87471875
transcript.pyannote[964].end 6513.71346875
transcript.pyannote[965].speaker SPEAKER_14
transcript.pyannote[965].start 6513.71346875
transcript.pyannote[965].end 6536.71409375
transcript.pyannote[966].speaker SPEAKER_20
transcript.pyannote[966].start 6523.90596875
transcript.pyannote[966].end 6524.34471875
transcript.pyannote[967].speaker SPEAKER_07
transcript.pyannote[967].start 6535.95471875
transcript.pyannote[967].end 6540.83159375
transcript.pyannote[968].speaker SPEAKER_14
transcript.pyannote[968].start 6539.83596875
transcript.pyannote[968].end 6573.78846875
transcript.pyannote[969].speaker SPEAKER_07
transcript.pyannote[969].start 6572.43846875
transcript.pyannote[969].end 6606.30659375
transcript.pyannote[970].speaker SPEAKER_26
transcript.pyannote[970].start 6585.76971875
transcript.pyannote[970].end 6586.54596875
transcript.pyannote[971].speaker SPEAKER_26
transcript.pyannote[971].start 6598.03784375
transcript.pyannote[971].end 6598.13909375
transcript.pyannote[972].speaker SPEAKER_26
transcript.pyannote[972].start 6600.14721875
transcript.pyannote[972].end 6601.24409375
transcript.pyannote[973].speaker SPEAKER_26
transcript.pyannote[973].start 6606.30659375
transcript.pyannote[973].end 6606.57659375
transcript.pyannote[974].speaker SPEAKER_07
transcript.pyannote[974].start 6606.57659375
transcript.pyannote[974].end 6622.20284375
transcript.pyannote[975].speaker SPEAKER_14
transcript.pyannote[975].start 6622.91159375
transcript.pyannote[975].end 6625.67909375
transcript.pyannote[976].speaker SPEAKER_07
transcript.pyannote[976].start 6626.86034375
transcript.pyannote[976].end 6626.94471875
transcript.pyannote[977].speaker SPEAKER_14
transcript.pyannote[977].start 6626.94471875
transcript.pyannote[977].end 6627.28221875
transcript.pyannote[978].speaker SPEAKER_07
transcript.pyannote[978].start 6627.13034375
transcript.pyannote[978].end 6639.78659375
transcript.pyannote[979].speaker SPEAKER_14
transcript.pyannote[979].start 6628.41284375
transcript.pyannote[979].end 6628.86846875
transcript.pyannote[980].speaker SPEAKER_14
transcript.pyannote[980].start 6640.59659375
transcript.pyannote[980].end 6650.60346875
transcript.pyannote[981].speaker SPEAKER_07
transcript.pyannote[981].start 6648.94971875
transcript.pyannote[981].end 6650.72159375
transcript.pyannote[982].speaker SPEAKER_07
transcript.pyannote[982].start 6650.97471875
transcript.pyannote[982].end 6659.68221875
transcript.pyannote[983].speaker SPEAKER_14
transcript.pyannote[983].start 6659.68221875
transcript.pyannote[983].end 6671.52846875
transcript.pyannote[984].speaker SPEAKER_07
transcript.pyannote[984].start 6665.03159375
transcript.pyannote[984].end 6665.72346875
transcript.pyannote[985].speaker SPEAKER_07
transcript.pyannote[985].start 6668.69346875
transcript.pyannote[985].end 6670.22909375
transcript.pyannote[986].speaker SPEAKER_07
transcript.pyannote[986].start 6670.70159375
transcript.pyannote[986].end 6672.84471875
transcript.pyannote[987].speaker SPEAKER_14
transcript.pyannote[987].start 6672.84471875
transcript.pyannote[987].end 6673.28346875
transcript.pyannote[988].speaker SPEAKER_07
transcript.pyannote[988].start 6673.31721875
transcript.pyannote[988].end 6678.81846875
transcript.pyannote[989].speaker SPEAKER_14
transcript.pyannote[989].start 6677.85659375
transcript.pyannote[989].end 6677.87346875
transcript.pyannote[990].speaker SPEAKER_26
transcript.pyannote[990].start 6677.87346875
transcript.pyannote[990].end 6678.43034375
transcript.pyannote[991].speaker SPEAKER_07
transcript.pyannote[991].start 6679.15596875
transcript.pyannote[991].end 6679.71284375
transcript.pyannote[992].speaker SPEAKER_07
transcript.pyannote[992].start 6679.99971875
transcript.pyannote[992].end 6706.49346875
transcript.pyannote[993].speaker SPEAKER_01
transcript.pyannote[993].start 6685.51784375
transcript.pyannote[993].end 6685.99034375
transcript.pyannote[994].speaker SPEAKER_01
transcript.pyannote[994].start 6688.48784375
transcript.pyannote[994].end 6689.46659375
transcript.pyannote[995].speaker SPEAKER_00
transcript.pyannote[995].start 6689.46659375
transcript.pyannote[995].end 6689.48346875
transcript.pyannote[996].speaker SPEAKER_01
transcript.pyannote[996].start 6691.99784375
transcript.pyannote[996].end 6692.63909375
transcript.pyannote[997].speaker SPEAKER_25
transcript.pyannote[997].start 6692.63909375
transcript.pyannote[997].end 6692.65596875
transcript.pyannote[998].speaker SPEAKER_25
transcript.pyannote[998].start 6701.24534375
transcript.pyannote[998].end 6702.98346875
transcript.pyannote[999].speaker SPEAKER_15
transcript.pyannote[999].start 6702.98346875
transcript.pyannote[999].end 6703.00034375
transcript.pyannote[1000].speaker SPEAKER_25
transcript.pyannote[1000].start 6706.18971875
transcript.pyannote[1000].end 6706.20659375
transcript.pyannote[1001].speaker SPEAKER_15
transcript.pyannote[1001].start 6706.20659375
transcript.pyannote[1001].end 6706.61159375
transcript.pyannote[1002].speaker SPEAKER_07
transcript.pyannote[1002].start 6706.51034375
transcript.pyannote[1002].end 6721.98471875
transcript.pyannote[1003].speaker SPEAKER_07
transcript.pyannote[1003].start 6722.38971875
transcript.pyannote[1003].end 6726.15284375
transcript.pyannote[1004].speaker SPEAKER_07
transcript.pyannote[1004].start 6726.50721875
transcript.pyannote[1004].end 6735.18096875
transcript.pyannote[1005].speaker SPEAKER_15
transcript.pyannote[1005].start 6732.17721875
transcript.pyannote[1005].end 6734.03346875
transcript.pyannote[1006].speaker SPEAKER_14
transcript.pyannote[1006].start 6734.03346875
transcript.pyannote[1006].end 6734.45534375
transcript.pyannote[1007].speaker SPEAKER_14
transcript.pyannote[1007].start 6735.18096875
transcript.pyannote[1007].end 6735.19784375
transcript.pyannote[1008].speaker SPEAKER_07
transcript.pyannote[1008].start 6735.19784375
transcript.pyannote[1008].end 6735.53534375
transcript.pyannote[1009].speaker SPEAKER_14
transcript.pyannote[1009].start 6735.53534375
transcript.pyannote[1009].end 6748.37721875
transcript.pyannote[1010].speaker SPEAKER_14
transcript.pyannote[1010].start 6748.84971875
transcript.pyannote[1010].end 6749.03534375
transcript.pyannote[1011].speaker SPEAKER_07
transcript.pyannote[1011].start 6749.03534375
transcript.pyannote[1011].end 6751.76909375
transcript.pyannote[1012].speaker SPEAKER_07
transcript.pyannote[1012].start 6751.90409375
transcript.pyannote[1012].end 6756.29159375
transcript.pyannote[1013].speaker SPEAKER_07
transcript.pyannote[1013].start 6756.74721875
transcript.pyannote[1013].end 6770.01096875
transcript.pyannote[1014].speaker SPEAKER_20
transcript.pyannote[1014].start 6756.81471875
transcript.pyannote[1014].end 6757.92846875
transcript.pyannote[1015].speaker SPEAKER_25
transcript.pyannote[1015].start 6757.92846875
transcript.pyannote[1015].end 6757.94534375
transcript.pyannote[1016].speaker SPEAKER_20
transcript.pyannote[1016].start 6759.68346875
transcript.pyannote[1016].end 6760.15596875
transcript.pyannote[1017].speaker SPEAKER_07
transcript.pyannote[1017].start 6770.09534375
transcript.pyannote[1017].end 6785.02971875
transcript.pyannote[1018].speaker SPEAKER_07
transcript.pyannote[1018].start 6785.35034375
transcript.pyannote[1018].end 6793.45034375
transcript.pyannote[1019].speaker SPEAKER_14
transcript.pyannote[1019].start 6793.45034375
transcript.pyannote[1019].end 6800.75721875
transcript.pyannote[1020].speaker SPEAKER_07
transcript.pyannote[1020].start 6800.65596875
transcript.pyannote[1020].end 6801.04409375
transcript.pyannote[1021].speaker SPEAKER_07
transcript.pyannote[1021].start 6801.38159375
transcript.pyannote[1021].end 6809.31284375
transcript.pyannote[1022].speaker SPEAKER_15
transcript.pyannote[1022].start 6807.89534375
transcript.pyannote[1022].end 6808.84034375
transcript.pyannote[1023].speaker SPEAKER_15
transcript.pyannote[1023].start 6809.31284375
transcript.pyannote[1023].end 6810.54471875
transcript.pyannote[1024].speaker SPEAKER_07
transcript.pyannote[1024].start 6809.90346875
transcript.pyannote[1024].end 6822.32346875
transcript.pyannote[1025].speaker SPEAKER_07
transcript.pyannote[1025].start 6822.50909375
transcript.pyannote[1025].end 6825.74909375
transcript.pyannote[1026].speaker SPEAKER_07
transcript.pyannote[1026].start 6826.20471875
transcript.pyannote[1026].end 6829.84971875
transcript.pyannote[1027].speaker SPEAKER_14
transcript.pyannote[1027].start 6829.03971875
transcript.pyannote[1027].end 6849.93096875
transcript.pyannote[1028].speaker SPEAKER_07
transcript.pyannote[1028].start 6851.43284375
transcript.pyannote[1028].end 6916.95846875
transcript.pyannote[1029].speaker SPEAKER_20
transcript.pyannote[1029].start 6866.94096875
transcript.pyannote[1029].end 6868.37534375
transcript.pyannote[1030].speaker SPEAKER_00
transcript.pyannote[1030].start 6873.58971875
transcript.pyannote[1030].end 6873.60659375
transcript.pyannote[1031].speaker SPEAKER_20
transcript.pyannote[1031].start 6873.60659375
transcript.pyannote[1031].end 6873.97784375
transcript.pyannote[1032].speaker SPEAKER_00
transcript.pyannote[1032].start 6873.97784375
transcript.pyannote[1032].end 6874.12971875
transcript.pyannote[1033].speaker SPEAKER_07
transcript.pyannote[1033].start 6917.27909375
transcript.pyannote[1033].end 6923.65784375
transcript.pyannote[1034].speaker SPEAKER_14
transcript.pyannote[1034].start 6922.93221875
transcript.pyannote[1034].end 6934.03596875
transcript.pyannote[1035].speaker SPEAKER_07
transcript.pyannote[1035].start 6934.03596875
transcript.pyannote[1035].end 6987.32721875
transcript.pyannote[1036].speaker SPEAKER_07
transcript.pyannote[1036].start 6987.90096875
transcript.pyannote[1036].end 6989.03159375
transcript.pyannote[1037].speaker SPEAKER_07
transcript.pyannote[1037].start 6989.45346875
transcript.pyannote[1037].end 6996.94596875
transcript.pyannote[1038].speaker SPEAKER_06
transcript.pyannote[1038].start 6994.39784375
transcript.pyannote[1038].end 6994.43159375
transcript.pyannote[1039].speaker SPEAKER_07
transcript.pyannote[1039].start 6997.82346875
transcript.pyannote[1039].end 6998.48159375
transcript.pyannote[1040].speaker SPEAKER_07
transcript.pyannote[1040].start 6999.20721875
transcript.pyannote[1040].end 7000.16909375
transcript.pyannote[1041].speaker SPEAKER_07
transcript.pyannote[1041].start 7000.84409375
transcript.pyannote[1041].end 7004.16846875
transcript.pyannote[1042].speaker SPEAKER_07
transcript.pyannote[1042].start 7004.65784375
transcript.pyannote[1042].end 7005.72096875
transcript.pyannote[1043].speaker SPEAKER_07
transcript.pyannote[1043].start 7005.85596875
transcript.pyannote[1043].end 7031.06721875
transcript.pyannote[1044].speaker SPEAKER_07
transcript.pyannote[1044].start 7031.48909375
transcript.pyannote[1044].end 7049.15721875
transcript.pyannote[1045].speaker SPEAKER_07
transcript.pyannote[1045].start 7049.37659375
transcript.pyannote[1045].end 7057.62846875
transcript.pyannote[1046].speaker SPEAKER_07
transcript.pyannote[1046].start 7058.42159375
transcript.pyannote[1046].end 7061.71221875
transcript.pyannote[1047].speaker SPEAKER_14
transcript.pyannote[1047].start 7065.39096875
transcript.pyannote[1047].end 7079.61659375
transcript.pyannote[1048].speaker SPEAKER_14
transcript.pyannote[1048].start 7080.10596875
transcript.pyannote[1048].end 7082.87346875
transcript.pyannote[1049].speaker SPEAKER_07
transcript.pyannote[1049].start 7082.16471875
transcript.pyannote[1049].end 7082.97471875
transcript.pyannote[1050].speaker SPEAKER_14
transcript.pyannote[1050].start 7082.97471875
transcript.pyannote[1050].end 7083.09284375
transcript.pyannote[1051].speaker SPEAKER_07
transcript.pyannote[1051].start 7083.09284375
transcript.pyannote[1051].end 7083.12659375
transcript.pyannote[1052].speaker SPEAKER_14
transcript.pyannote[1052].start 7083.12659375
transcript.pyannote[1052].end 7083.17721875
transcript.pyannote[1053].speaker SPEAKER_07
transcript.pyannote[1053].start 7083.24471875
transcript.pyannote[1053].end 7095.58034375
transcript.pyannote[1054].speaker SPEAKER_14
transcript.pyannote[1054].start 7088.47596875
transcript.pyannote[1054].end 7089.84284375
transcript.pyannote[1055].speaker SPEAKER_14
transcript.pyannote[1055].start 7094.87159375
transcript.pyannote[1055].end 7094.98971875
transcript.pyannote[1056].speaker SPEAKER_14
transcript.pyannote[1056].start 7095.10784375
transcript.pyannote[1056].end 7095.51284375
transcript.pyannote[1057].speaker SPEAKER_14
transcript.pyannote[1057].start 7095.58034375
transcript.pyannote[1057].end 7104.97971875
transcript.pyannote[1058].speaker SPEAKER_07
transcript.pyannote[1058].start 7104.97971875
transcript.pyannote[1058].end 7118.95221875
transcript.pyannote[1059].speaker SPEAKER_07
transcript.pyannote[1059].start 7119.23909375
transcript.pyannote[1059].end 7136.40096875
transcript.pyannote[1060].speaker SPEAKER_25
transcript.pyannote[1060].start 7132.89096875
transcript.pyannote[1060].end 7132.94159375
transcript.pyannote[1061].speaker SPEAKER_14
transcript.pyannote[1061].start 7132.94159375
transcript.pyannote[1061].end 7135.74284375
transcript.pyannote[1062].speaker SPEAKER_07
transcript.pyannote[1062].start 7136.95784375
transcript.pyannote[1062].end 7137.85221875
transcript.pyannote[1063].speaker SPEAKER_14
transcript.pyannote[1063].start 7137.22784375
transcript.pyannote[1063].end 7139.33721875
transcript.pyannote[1064].speaker SPEAKER_07
transcript.pyannote[1064].start 7139.40471875
transcript.pyannote[1064].end 7144.18034375
transcript.pyannote[1065].speaker SPEAKER_05
transcript.pyannote[1065].start 7140.34971875
transcript.pyannote[1065].end 7140.99096875
transcript.pyannote[1066].speaker SPEAKER_05
transcript.pyannote[1066].start 7143.69096875
transcript.pyannote[1066].end 7147.60596875
transcript.pyannote[1067].speaker SPEAKER_12
transcript.pyannote[1067].start 7155.25034375
transcript.pyannote[1067].end 7160.76846875
transcript.pyannote[1068].speaker SPEAKER_15
transcript.pyannote[1068].start 7159.63784375
transcript.pyannote[1068].end 7160.71784375
transcript.pyannote[1069].speaker SPEAKER_03
transcript.pyannote[1069].start 7160.71784375
transcript.pyannote[1069].end 7160.73471875
transcript.pyannote[1070].speaker SPEAKER_12
transcript.pyannote[1070].start 7161.19034375
transcript.pyannote[1070].end 7163.48534375
transcript.pyannote[1071].speaker SPEAKER_15
transcript.pyannote[1071].start 7162.54034375
transcript.pyannote[1071].end 7162.82721875
transcript.pyannote[1072].speaker SPEAKER_12
transcript.pyannote[1072].start 7165.64534375
transcript.pyannote[1072].end 7166.97846875
transcript.pyannote[1073].speaker SPEAKER_05
transcript.pyannote[1073].start 7165.67909375
transcript.pyannote[1073].end 7167.51846875
transcript.pyannote[1074].speaker SPEAKER_13
transcript.pyannote[1074].start 7166.97846875
transcript.pyannote[1074].end 7168.14284375
transcript.pyannote[1075].speaker SPEAKER_12
transcript.pyannote[1075].start 7167.51846875
transcript.pyannote[1075].end 7167.58596875
transcript.pyannote[1076].speaker SPEAKER_12
transcript.pyannote[1076].start 7167.94034375
transcript.pyannote[1076].end 7167.95721875
transcript.pyannote[1077].speaker SPEAKER_05
transcript.pyannote[1077].start 7167.95721875
transcript.pyannote[1077].end 7169.10471875
transcript.pyannote[1078].speaker SPEAKER_13
transcript.pyannote[1078].start 7169.30721875
transcript.pyannote[1078].end 7169.83034375
transcript.pyannote[1079].speaker SPEAKER_13
transcript.pyannote[1079].start 7170.10034375
transcript.pyannote[1079].end 7170.77534375
transcript.pyannote[1080].speaker SPEAKER_13
transcript.pyannote[1080].start 7171.26471875
transcript.pyannote[1080].end 7185.97971875
transcript.pyannote[1081].speaker SPEAKER_29
transcript.pyannote[1081].start 7187.75159375
transcript.pyannote[1081].end 7188.19034375
transcript.pyannote[1082].speaker SPEAKER_29
transcript.pyannote[1082].start 7188.57846875
transcript.pyannote[1082].end 7194.21471875
transcript.pyannote[1083].speaker SPEAKER_29
transcript.pyannote[1083].start 7194.41721875
transcript.pyannote[1083].end 7196.37471875
transcript.pyannote[1084].speaker SPEAKER_13
transcript.pyannote[1084].start 7195.02471875
transcript.pyannote[1084].end 7199.31096875
transcript.pyannote[1085].speaker SPEAKER_29
transcript.pyannote[1085].start 7199.31096875
transcript.pyannote[1085].end 7199.58096875
transcript.pyannote[1086].speaker SPEAKER_13
transcript.pyannote[1086].start 7199.58096875
transcript.pyannote[1086].end 7199.83409375
transcript.pyannote[1087].speaker SPEAKER_29
transcript.pyannote[1087].start 7199.83409375
transcript.pyannote[1087].end 7204.67721875
transcript.pyannote[1088].speaker SPEAKER_13
transcript.pyannote[1088].start 7200.62721875
transcript.pyannote[1088].end 7200.84659375
transcript.pyannote[1089].speaker SPEAKER_13
transcript.pyannote[1089].start 7204.67721875
transcript.pyannote[1089].end 7207.88346875
transcript.pyannote[1090].speaker SPEAKER_29
transcript.pyannote[1090].start 7207.96784375
transcript.pyannote[1090].end 7213.04721875
transcript.pyannote[1091].speaker SPEAKER_13
transcript.pyannote[1091].start 7210.88721875
transcript.pyannote[1091].end 7212.94596875
transcript.pyannote[1092].speaker SPEAKER_29
transcript.pyannote[1092].start 7213.72221875
transcript.pyannote[1092].end 7215.96659375
transcript.pyannote[1093].speaker SPEAKER_13
transcript.pyannote[1093].start 7215.96659375
transcript.pyannote[1093].end 7216.03409375
transcript.pyannote[1094].speaker SPEAKER_29
transcript.pyannote[1094].start 7216.03409375
transcript.pyannote[1094].end 7216.96221875
transcript.pyannote[1095].speaker SPEAKER_13
transcript.pyannote[1095].start 7216.96221875
transcript.pyannote[1095].end 7217.02971875
transcript.pyannote[1096].speaker SPEAKER_29
transcript.pyannote[1096].start 7217.02971875
transcript.pyannote[1096].end 7217.83971875
transcript.pyannote[1097].speaker SPEAKER_13
transcript.pyannote[1097].start 7217.83971875
transcript.pyannote[1097].end 7221.02909375
transcript.pyannote[1098].speaker SPEAKER_29
transcript.pyannote[1098].start 7221.02909375
transcript.pyannote[1098].end 7226.31096875
transcript.pyannote[1099].speaker SPEAKER_13
transcript.pyannote[1099].start 7222.66596875
transcript.pyannote[1099].end 7223.00346875
transcript.pyannote[1100].speaker SPEAKER_13
transcript.pyannote[1100].start 7226.31096875
transcript.pyannote[1100].end 7227.69471875
transcript.pyannote[1101].speaker SPEAKER_29
transcript.pyannote[1101].start 7226.32784375
transcript.pyannote[1101].end 7227.17159375
transcript.pyannote[1102].speaker SPEAKER_29
transcript.pyannote[1102].start 7227.69471875
transcript.pyannote[1102].end 7227.82971875
transcript.pyannote[1103].speaker SPEAKER_13
transcript.pyannote[1103].start 7227.82971875
transcript.pyannote[1103].end 7237.80284375
transcript.pyannote[1104].speaker SPEAKER_13
transcript.pyannote[1104].start 7238.64659375
transcript.pyannote[1104].end 7239.91221875
transcript.pyannote[1105].speaker SPEAKER_13
transcript.pyannote[1105].start 7240.11471875
transcript.pyannote[1105].end 7246.30784375
transcript.pyannote[1106].speaker SPEAKER_13
transcript.pyannote[1106].start 7248.60284375
transcript.pyannote[1106].end 7250.27346875
transcript.pyannote[1107].speaker SPEAKER_13
transcript.pyannote[1107].start 7250.96534375
transcript.pyannote[1107].end 7251.43784375
transcript.pyannote[1108].speaker SPEAKER_29
transcript.pyannote[1108].start 7251.43784375
transcript.pyannote[1108].end 7251.45471875
transcript.pyannote[1109].speaker SPEAKER_13
transcript.pyannote[1109].start 7252.24784375
transcript.pyannote[1109].end 7253.83409375
transcript.pyannote[1110].speaker SPEAKER_29
transcript.pyannote[1110].start 7253.83409375
transcript.pyannote[1110].end 7253.86784375
transcript.pyannote[1111].speaker SPEAKER_13
transcript.pyannote[1111].start 7254.08721875
transcript.pyannote[1111].end 7254.13784375
transcript.pyannote[1112].speaker SPEAKER_29
transcript.pyannote[1112].start 7254.13784375
transcript.pyannote[1112].end 7254.17159375
transcript.pyannote[1113].speaker SPEAKER_13
transcript.pyannote[1113].start 7254.17159375
transcript.pyannote[1113].end 7254.40784375
transcript.pyannote[1114].speaker SPEAKER_29
transcript.pyannote[1114].start 7254.40784375
transcript.pyannote[1114].end 7254.42471875
transcript.pyannote[1115].speaker SPEAKER_13
transcript.pyannote[1115].start 7254.42471875
transcript.pyannote[1115].end 7254.44159375
transcript.pyannote[1116].speaker SPEAKER_29
transcript.pyannote[1116].start 7254.76221875
transcript.pyannote[1116].end 7255.50471875
transcript.pyannote[1117].speaker SPEAKER_29
transcript.pyannote[1117].start 7255.80846875
transcript.pyannote[1117].end 7263.79034375
transcript.pyannote[1118].speaker SPEAKER_29
transcript.pyannote[1118].start 7264.17846875
transcript.pyannote[1118].end 7270.13534375
transcript.pyannote[1119].speaker SPEAKER_13
transcript.pyannote[1119].start 7269.17346875
transcript.pyannote[1119].end 7274.03346875
transcript.pyannote[1120].speaker SPEAKER_29
transcript.pyannote[1120].start 7274.03346875
transcript.pyannote[1120].end 7293.86159375
transcript.pyannote[1121].speaker SPEAKER_13
transcript.pyannote[1121].start 7281.45846875
transcript.pyannote[1121].end 7282.18409375
transcript.pyannote[1122].speaker SPEAKER_13
transcript.pyannote[1122].start 7283.04471875
transcript.pyannote[1122].end 7284.29346875
transcript.pyannote[1123].speaker SPEAKER_13
transcript.pyannote[1123].start 7292.64659375
transcript.pyannote[1123].end 7293.84471875
transcript.pyannote[1124].speaker SPEAKER_13
transcript.pyannote[1124].start 7293.86159375
transcript.pyannote[1124].end 7296.02159375
transcript.pyannote[1125].speaker SPEAKER_29
transcript.pyannote[1125].start 7295.48159375
transcript.pyannote[1125].end 7297.08471875
transcript.pyannote[1126].speaker SPEAKER_13
transcript.pyannote[1126].start 7296.05534375
transcript.pyannote[1126].end 7296.07221875
transcript.pyannote[1127].speaker SPEAKER_13
transcript.pyannote[1127].start 7296.08909375
transcript.pyannote[1127].end 7296.34221875
transcript.pyannote[1128].speaker SPEAKER_13
transcript.pyannote[1128].start 7296.47721875
transcript.pyannote[1128].end 7301.05034375
transcript.pyannote[1129].speaker SPEAKER_29
transcript.pyannote[1129].start 7301.20221875
transcript.pyannote[1129].end 7305.50534375
transcript.pyannote[1130].speaker SPEAKER_13
transcript.pyannote[1130].start 7304.77971875
transcript.pyannote[1130].end 7305.47159375
transcript.pyannote[1131].speaker SPEAKER_13
transcript.pyannote[1131].start 7305.50534375
transcript.pyannote[1131].end 7305.62346875
transcript.pyannote[1132].speaker SPEAKER_29
transcript.pyannote[1132].start 7305.62346875
transcript.pyannote[1132].end 7305.65721875
transcript.pyannote[1133].speaker SPEAKER_13
transcript.pyannote[1133].start 7305.65721875
transcript.pyannote[1133].end 7306.48409375
transcript.pyannote[1134].speaker SPEAKER_29
transcript.pyannote[1134].start 7306.48409375
transcript.pyannote[1134].end 7306.77096875
transcript.pyannote[1135].speaker SPEAKER_13
transcript.pyannote[1135].start 7306.77096875
transcript.pyannote[1135].end 7324.91159375
transcript.pyannote[1136].speaker SPEAKER_29
transcript.pyannote[1136].start 7306.78784375
transcript.pyannote[1136].end 7307.64846875
transcript.pyannote[1137].speaker SPEAKER_29
transcript.pyannote[1137].start 7311.20909375
transcript.pyannote[1137].end 7311.69846875
transcript.pyannote[1138].speaker SPEAKER_19
transcript.pyannote[1138].start 7318.54971875
transcript.pyannote[1138].end 7319.12346875
transcript.pyannote[1139].speaker SPEAKER_13
transcript.pyannote[1139].start 7324.97909375
transcript.pyannote[1139].end 7324.99596875
transcript.pyannote[1140].speaker SPEAKER_22
transcript.pyannote[1140].start 7324.99596875
transcript.pyannote[1140].end 7325.28284375
transcript.pyannote[1141].speaker SPEAKER_13
transcript.pyannote[1141].start 7325.28284375
transcript.pyannote[1141].end 7332.18471875
transcript.pyannote[1142].speaker SPEAKER_14
transcript.pyannote[1142].start 7330.07534375
transcript.pyannote[1142].end 7330.51409375
transcript.pyannote[1143].speaker SPEAKER_14
transcript.pyannote[1143].start 7330.90221875
transcript.pyannote[1143].end 7335.64409375
transcript.pyannote[1144].speaker SPEAKER_13
transcript.pyannote[1144].start 7335.00284375
transcript.pyannote[1144].end 7336.58909375
transcript.pyannote[1145].speaker SPEAKER_14
transcript.pyannote[1145].start 7336.13346875
transcript.pyannote[1145].end 7339.77846875
transcript.pyannote[1146].speaker SPEAKER_13
transcript.pyannote[1146].start 7338.69846875
transcript.pyannote[1146].end 7339.12034375
transcript.pyannote[1147].speaker SPEAKER_13
transcript.pyannote[1147].start 7339.77846875
transcript.pyannote[1147].end 7356.19784375
transcript.pyannote[1148].speaker SPEAKER_14
transcript.pyannote[1148].start 7342.90034375
transcript.pyannote[1148].end 7344.58784375
transcript.pyannote[1149].speaker SPEAKER_25
transcript.pyannote[1149].start 7349.88659375
transcript.pyannote[1149].end 7349.93721875
transcript.pyannote[1150].speaker SPEAKER_25
transcript.pyannote[1150].start 7352.26596875
transcript.pyannote[1150].end 7352.56971875
transcript.pyannote[1151].speaker SPEAKER_25
transcript.pyannote[1151].start 7356.19784375
transcript.pyannote[1151].end 7356.21471875
transcript.pyannote[1152].speaker SPEAKER_13
transcript.pyannote[1152].start 7356.21471875
transcript.pyannote[1152].end 7356.23159375
transcript.pyannote[1153].speaker SPEAKER_25
transcript.pyannote[1153].start 7356.23159375
transcript.pyannote[1153].end 7356.36659375
transcript.pyannote[1154].speaker SPEAKER_13
transcript.pyannote[1154].start 7356.29909375
transcript.pyannote[1154].end 7358.93159375
transcript.pyannote[1155].speaker SPEAKER_14
transcript.pyannote[1155].start 7356.36659375
transcript.pyannote[1155].end 7358.00346875
transcript.pyannote[1156].speaker SPEAKER_14
transcript.pyannote[1156].start 7358.93159375
transcript.pyannote[1156].end 7358.94846875
transcript.pyannote[1157].speaker SPEAKER_13
transcript.pyannote[1157].start 7358.94846875
transcript.pyannote[1157].end 7359.04971875
transcript.pyannote[1158].speaker SPEAKER_13
transcript.pyannote[1158].start 7359.28596875
transcript.pyannote[1158].end 7368.66846875
transcript.pyannote[1159].speaker SPEAKER_13
transcript.pyannote[1159].start 7368.95534375
transcript.pyannote[1159].end 7386.52221875
transcript.pyannote[1160].speaker SPEAKER_13
transcript.pyannote[1160].start 7386.65721875
transcript.pyannote[1160].end 7388.66534375
transcript.pyannote[1161].speaker SPEAKER_13
transcript.pyannote[1161].start 7388.85096875
transcript.pyannote[1161].end 7393.49159375
transcript.pyannote[1162].speaker SPEAKER_14
transcript.pyannote[1162].start 7392.09096875
transcript.pyannote[1162].end 7400.25846875
transcript.pyannote[1163].speaker SPEAKER_13
transcript.pyannote[1163].start 7396.71471875
transcript.pyannote[1163].end 7397.64284375
transcript.pyannote[1164].speaker SPEAKER_13
transcript.pyannote[1164].start 7399.53284375
transcript.pyannote[1164].end 7400.98409375
transcript.pyannote[1165].speaker SPEAKER_14
transcript.pyannote[1165].start 7400.98409375
transcript.pyannote[1165].end 7401.11909375
transcript.pyannote[1166].speaker SPEAKER_14
transcript.pyannote[1166].start 7401.33846875
transcript.pyannote[1166].end 7403.58284375
transcript.pyannote[1167].speaker SPEAKER_13
transcript.pyannote[1167].start 7401.52409375
transcript.pyannote[1167].end 7402.19909375
transcript.pyannote[1168].speaker SPEAKER_13
transcript.pyannote[1168].start 7403.58284375
transcript.pyannote[1168].end 7403.97096875
transcript.pyannote[1169].speaker SPEAKER_14
transcript.pyannote[1169].start 7403.97096875
transcript.pyannote[1169].end 7404.03846875
transcript.pyannote[1170].speaker SPEAKER_13
transcript.pyannote[1170].start 7404.03846875
transcript.pyannote[1170].end 7404.64596875
transcript.pyannote[1171].speaker SPEAKER_13
transcript.pyannote[1171].start 7404.96659375
transcript.pyannote[1171].end 7404.98346875
transcript.pyannote[1172].speaker SPEAKER_14
transcript.pyannote[1172].start 7404.98346875
transcript.pyannote[1172].end 7405.28721875
transcript.pyannote[1173].speaker SPEAKER_13
transcript.pyannote[1173].start 7405.28721875
transcript.pyannote[1173].end 7405.69221875
transcript.pyannote[1174].speaker SPEAKER_13
transcript.pyannote[1174].start 7407.29534375
transcript.pyannote[1174].end 7415.05784375
transcript.pyannote[1175].speaker SPEAKER_14
transcript.pyannote[1175].start 7409.25284375
transcript.pyannote[1175].end 7410.36659375
transcript.pyannote[1176].speaker SPEAKER_19
transcript.pyannote[1176].start 7413.64034375
transcript.pyannote[1176].end 7413.65721875
transcript.pyannote[1177].speaker SPEAKER_14
transcript.pyannote[1177].start 7413.65721875
transcript.pyannote[1177].end 7415.02409375
transcript.pyannote[1178].speaker SPEAKER_14
transcript.pyannote[1178].start 7415.05784375
transcript.pyannote[1178].end 7416.96471875
transcript.pyannote[1179].speaker SPEAKER_13
transcript.pyannote[1179].start 7415.88471875
transcript.pyannote[1179].end 7419.96846875
transcript.pyannote[1180].speaker SPEAKER_14
transcript.pyannote[1180].start 7419.86721875
transcript.pyannote[1180].end 7421.95971875
transcript.pyannote[1181].speaker SPEAKER_08
transcript.pyannote[1181].start 7419.96846875
transcript.pyannote[1181].end 7420.33971875
transcript.pyannote[1182].speaker SPEAKER_08
transcript.pyannote[1182].start 7421.95971875
transcript.pyannote[1182].end 7431.81471875
transcript.pyannote[1183].speaker SPEAKER_14
transcript.pyannote[1183].start 7421.99346875
transcript.pyannote[1183].end 7422.12846875
transcript.pyannote[1184].speaker SPEAKER_13
transcript.pyannote[1184].start 7426.02659375
transcript.pyannote[1184].end 7426.75221875
transcript.pyannote[1185].speaker SPEAKER_13
transcript.pyannote[1185].start 7431.62909375
transcript.pyannote[1185].end 7461.81846875
transcript.pyannote[1186].speaker SPEAKER_08
transcript.pyannote[1186].start 7431.96659375
transcript.pyannote[1186].end 7433.01284375
transcript.pyannote[1187].speaker SPEAKER_08
transcript.pyannote[1187].start 7437.16409375
transcript.pyannote[1187].end 7437.51846875
transcript.pyannote[1188].speaker SPEAKER_08
transcript.pyannote[1188].start 7442.17596875
transcript.pyannote[1188].end 7442.61471875
transcript.pyannote[1189].speaker SPEAKER_13
transcript.pyannote[1189].start 7462.17284375
transcript.pyannote[1189].end 7463.53971875
transcript.pyannote[1190].speaker SPEAKER_13
transcript.pyannote[1190].start 7464.21471875
transcript.pyannote[1190].end 7464.75471875
transcript.pyannote[1191].speaker SPEAKER_13
transcript.pyannote[1191].start 7464.97409375
transcript.pyannote[1191].end 7520.66159375
transcript.pyannote[1192].speaker SPEAKER_13
transcript.pyannote[1192].start 7520.88096875
transcript.pyannote[1192].end 7543.76346875
transcript.pyannote[1193].speaker SPEAKER_13
transcript.pyannote[1193].start 7543.91534375
transcript.pyannote[1193].end 7555.98096875
transcript.pyannote[1194].speaker SPEAKER_13
transcript.pyannote[1194].start 7556.18346875
transcript.pyannote[1194].end 7568.19846875
transcript.pyannote[1195].speaker SPEAKER_13
transcript.pyannote[1195].start 7568.72159375
transcript.pyannote[1195].end 7575.70784375
transcript.pyannote[1196].speaker SPEAKER_13
transcript.pyannote[1196].start 7576.24784375
transcript.pyannote[1196].end 7578.01971875
transcript.pyannote[1197].speaker SPEAKER_13
transcript.pyannote[1197].start 7578.52596875
transcript.pyannote[1197].end 7592.73471875
transcript.pyannote[1198].speaker SPEAKER_13
transcript.pyannote[1198].start 7593.69659375
transcript.pyannote[1198].end 7621.97909375
transcript.pyannote[1199].speaker SPEAKER_13
transcript.pyannote[1199].start 7622.04659375
transcript.pyannote[1199].end 7632.74534375
transcript.pyannote[1200].speaker SPEAKER_13
transcript.pyannote[1200].start 7634.04471875
transcript.pyannote[1200].end 7635.27659375
transcript.pyannote[1201].speaker SPEAKER_13
transcript.pyannote[1201].start 7635.61409375
transcript.pyannote[1201].end 7636.15409375
transcript.pyannote[1202].speaker SPEAKER_13
transcript.pyannote[1202].start 7636.42409375
transcript.pyannote[1202].end 7644.50721875
transcript.pyannote[1203].speaker SPEAKER_13
transcript.pyannote[1203].start 7644.91221875
transcript.pyannote[1203].end 7649.11409375
transcript.pyannote[1204].speaker SPEAKER_13
transcript.pyannote[1204].start 7649.90721875
transcript.pyannote[1204].end 7650.73409375
transcript.pyannote[1205].speaker SPEAKER_13
transcript.pyannote[1205].start 7651.20659375
transcript.pyannote[1205].end 7652.28659375
transcript.pyannote[1206].speaker SPEAKER_13
transcript.pyannote[1206].start 7653.72096875
transcript.pyannote[1206].end 7654.54784375
transcript.pyannote[1207].speaker SPEAKER_13
transcript.pyannote[1207].start 7654.68284375
transcript.pyannote[1207].end 7656.70784375
transcript.pyannote[1208].speaker SPEAKER_13
transcript.pyannote[1208].start 7657.06221875
transcript.pyannote[1208].end 7657.46721875
transcript.pyannote[1209].speaker SPEAKER_13
transcript.pyannote[1209].start 7657.83846875
transcript.pyannote[1209].end 7658.26034375
transcript.pyannote[1210].speaker SPEAKER_13
transcript.pyannote[1210].start 7658.68221875
transcript.pyannote[1210].end 7660.62284375
transcript.pyannote[1211].speaker SPEAKER_18
transcript.pyannote[1211].start 7660.62284375
transcript.pyannote[1211].end 7660.65659375
transcript.pyannote[1212].speaker SPEAKER_22
transcript.pyannote[1212].start 7661.01096875
transcript.pyannote[1212].end 7661.17971875
transcript.pyannote[1213].speaker SPEAKER_13
transcript.pyannote[1213].start 7662.29346875
transcript.pyannote[1213].end 7662.31034375
transcript.pyannote[1214].speaker SPEAKER_18
transcript.pyannote[1214].start 7662.31034375
transcript.pyannote[1214].end 7669.46534375
transcript.pyannote[1215].speaker SPEAKER_13
transcript.pyannote[1215].start 7666.29284375
transcript.pyannote[1215].end 7667.10284375
transcript.pyannote[1216].speaker SPEAKER_19
transcript.pyannote[1216].start 7667.10284375
transcript.pyannote[1216].end 7667.18721875
transcript.pyannote[1217].speaker SPEAKER_13
transcript.pyannote[1217].start 7667.69346875
transcript.pyannote[1217].end 7670.07284375
transcript.pyannote[1218].speaker SPEAKER_18
transcript.pyannote[1218].start 7670.07284375
transcript.pyannote[1218].end 7670.64659375
transcript.pyannote[1219].speaker SPEAKER_13
transcript.pyannote[1219].start 7670.64659375
transcript.pyannote[1219].end 7670.71409375
transcript.pyannote[1220].speaker SPEAKER_18
transcript.pyannote[1220].start 7670.71409375
transcript.pyannote[1220].end 7670.96721875
transcript.pyannote[1221].speaker SPEAKER_13
transcript.pyannote[1221].start 7670.96721875
transcript.pyannote[1221].end 7671.06846875
transcript.pyannote[1222].speaker SPEAKER_18
transcript.pyannote[1222].start 7671.06846875
transcript.pyannote[1222].end 7671.13596875
transcript.pyannote[1223].speaker SPEAKER_13
transcript.pyannote[1223].start 7671.13596875
transcript.pyannote[1223].end 7671.33846875
transcript.pyannote[1224].speaker SPEAKER_18
transcript.pyannote[1224].start 7671.33846875
transcript.pyannote[1224].end 7671.57471875
transcript.pyannote[1225].speaker SPEAKER_18
transcript.pyannote[1225].start 7671.65909375
transcript.pyannote[1225].end 7675.89471875
transcript.pyannote[1226].speaker SPEAKER_13
transcript.pyannote[1226].start 7671.77721875
transcript.pyannote[1226].end 7672.01346875
transcript.pyannote[1227].speaker SPEAKER_13
transcript.pyannote[1227].start 7674.51096875
transcript.pyannote[1227].end 7677.41346875
transcript.pyannote[1228].speaker SPEAKER_18
transcript.pyannote[1228].start 7677.32909375
transcript.pyannote[1228].end 7680.33284375
transcript.pyannote[1229].speaker SPEAKER_13
transcript.pyannote[1229].start 7677.93659375
transcript.pyannote[1229].end 7678.29096875
transcript.pyannote[1230].speaker SPEAKER_18
transcript.pyannote[1230].start 7680.63659375
transcript.pyannote[1230].end 7687.72409375
transcript.pyannote[1231].speaker SPEAKER_13
transcript.pyannote[1231].start 7684.78784375
transcript.pyannote[1231].end 7690.49159375
transcript.pyannote[1232].speaker SPEAKER_18
transcript.pyannote[1232].start 7687.96034375
transcript.pyannote[1232].end 7688.23034375
transcript.pyannote[1233].speaker SPEAKER_18
transcript.pyannote[1233].start 7691.87534375
transcript.pyannote[1233].end 7698.38909375
transcript.pyannote[1234].speaker SPEAKER_13
transcript.pyannote[1234].start 7694.77784375
transcript.pyannote[1234].end 7695.46971875
transcript.pyannote[1235].speaker SPEAKER_18
transcript.pyannote[1235].start 7699.13159375
transcript.pyannote[1235].end 7702.03409375
transcript.pyannote[1236].speaker SPEAKER_18
transcript.pyannote[1236].start 7702.18596875
transcript.pyannote[1236].end 7703.80596875
transcript.pyannote[1237].speaker SPEAKER_18
transcript.pyannote[1237].start 7703.92409375
transcript.pyannote[1237].end 7705.83096875
transcript.pyannote[1238].speaker SPEAKER_18
transcript.pyannote[1238].start 7706.01659375
transcript.pyannote[1238].end 7708.09221875
transcript.pyannote[1239].speaker SPEAKER_13
transcript.pyannote[1239].start 7707.45096875
transcript.pyannote[1239].end 7708.07534375
transcript.pyannote[1240].speaker SPEAKER_13
transcript.pyannote[1240].start 7708.09221875
transcript.pyannote[1240].end 7708.15971875
transcript.pyannote[1241].speaker SPEAKER_18
transcript.pyannote[1241].start 7708.15971875
transcript.pyannote[1241].end 7708.37909375
transcript.pyannote[1242].speaker SPEAKER_13
transcript.pyannote[1242].start 7708.37909375
transcript.pyannote[1242].end 7711.99034375
transcript.pyannote[1243].speaker SPEAKER_18
transcript.pyannote[1243].start 7712.39534375
transcript.pyannote[1243].end 7713.61034375
transcript.pyannote[1244].speaker SPEAKER_13
transcript.pyannote[1244].start 7712.44596875
transcript.pyannote[1244].end 7712.78346875
transcript.pyannote[1245].speaker SPEAKER_13
transcript.pyannote[1245].start 7713.61034375
transcript.pyannote[1245].end 7715.65221875
transcript.pyannote[1246].speaker SPEAKER_13
transcript.pyannote[1246].start 7716.52971875
transcript.pyannote[1246].end 7717.15409375
transcript.pyannote[1247].speaker SPEAKER_29
transcript.pyannote[1247].start 7717.45784375
transcript.pyannote[1247].end 7724.73096875
transcript.pyannote[1248].speaker SPEAKER_13
transcript.pyannote[1248].start 7720.15784375
transcript.pyannote[1248].end 7720.51221875
transcript.pyannote[1249].speaker SPEAKER_29
transcript.pyannote[1249].start 7724.96721875
transcript.pyannote[1249].end 7725.47346875
transcript.pyannote[1250].speaker SPEAKER_29
transcript.pyannote[1250].start 7725.96284375
transcript.pyannote[1250].end 7729.18596875
transcript.pyannote[1251].speaker SPEAKER_08
transcript.pyannote[1251].start 7729.18596875
transcript.pyannote[1251].end 7729.25346875
transcript.pyannote[1252].speaker SPEAKER_29
transcript.pyannote[1252].start 7729.25346875
transcript.pyannote[1252].end 7729.27034375
transcript.pyannote[1253].speaker SPEAKER_08
transcript.pyannote[1253].start 7729.27034375
transcript.pyannote[1253].end 7729.52346875
transcript.pyannote[1254].speaker SPEAKER_29
transcript.pyannote[1254].start 7729.52346875
transcript.pyannote[1254].end 7729.60784375
transcript.pyannote[1255].speaker SPEAKER_08
transcript.pyannote[1255].start 7729.60784375
transcript.pyannote[1255].end 7729.65846875
transcript.pyannote[1256].speaker SPEAKER_29
transcript.pyannote[1256].start 7729.65846875
transcript.pyannote[1256].end 7729.77659375
transcript.pyannote[1257].speaker SPEAKER_08
transcript.pyannote[1257].start 7729.77659375
transcript.pyannote[1257].end 7729.84409375
transcript.pyannote[1258].speaker SPEAKER_29
transcript.pyannote[1258].start 7729.84409375
transcript.pyannote[1258].end 7735.36221875
transcript.pyannote[1259].speaker SPEAKER_08
transcript.pyannote[1259].start 7730.18159375
transcript.pyannote[1259].end 7730.60346875
transcript.pyannote[1260].speaker SPEAKER_13
transcript.pyannote[1260].start 7730.60346875
transcript.pyannote[1260].end 7730.62034375
transcript.pyannote[1261].speaker SPEAKER_13
transcript.pyannote[1261].start 7732.93221875
transcript.pyannote[1261].end 7741.15034375
transcript.pyannote[1262].speaker SPEAKER_29
transcript.pyannote[1262].start 7741.15034375
transcript.pyannote[1262].end 7741.75784375
transcript.pyannote[1263].speaker SPEAKER_13
transcript.pyannote[1263].start 7741.75784375
transcript.pyannote[1263].end 7741.79159375
transcript.pyannote[1264].speaker SPEAKER_29
transcript.pyannote[1264].start 7741.79159375
transcript.pyannote[1264].end 7741.85909375
transcript.pyannote[1265].speaker SPEAKER_13
transcript.pyannote[1265].start 7741.85909375
transcript.pyannote[1265].end 7741.94346875
transcript.pyannote[1266].speaker SPEAKER_29
transcript.pyannote[1266].start 7741.94346875
transcript.pyannote[1266].end 7742.24721875
transcript.pyannote[1267].speaker SPEAKER_13
transcript.pyannote[1267].start 7742.24721875
transcript.pyannote[1267].end 7742.65221875
transcript.pyannote[1268].speaker SPEAKER_29
transcript.pyannote[1268].start 7742.65221875
transcript.pyannote[1268].end 7742.68596875
transcript.pyannote[1269].speaker SPEAKER_13
transcript.pyannote[1269].start 7742.68596875
transcript.pyannote[1269].end 7742.73659375
transcript.pyannote[1270].speaker SPEAKER_29
transcript.pyannote[1270].start 7742.73659375
transcript.pyannote[1270].end 7742.77034375
transcript.pyannote[1271].speaker SPEAKER_13
transcript.pyannote[1271].start 7742.77034375
transcript.pyannote[1271].end 7746.31409375
transcript.pyannote[1272].speaker SPEAKER_29
transcript.pyannote[1272].start 7743.24284375
transcript.pyannote[1272].end 7743.59721875
transcript.pyannote[1273].speaker SPEAKER_29
transcript.pyannote[1273].start 7746.58409375
transcript.pyannote[1273].end 7751.41034375
transcript.pyannote[1274].speaker SPEAKER_13
transcript.pyannote[1274].start 7749.75659375
transcript.pyannote[1274].end 7756.50659375
transcript.pyannote[1275].speaker SPEAKER_29
transcript.pyannote[1275].start 7751.51159375
transcript.pyannote[1275].end 7751.61284375
transcript.pyannote[1276].speaker SPEAKER_29
transcript.pyannote[1276].start 7756.64159375
transcript.pyannote[1276].end 7757.92409375
transcript.pyannote[1277].speaker SPEAKER_13
transcript.pyannote[1277].start 7756.99596875
transcript.pyannote[1277].end 7757.63721875
transcript.pyannote[1278].speaker SPEAKER_13
transcript.pyannote[1278].start 7757.92409375
transcript.pyannote[1278].end 7764.64034375
transcript.pyannote[1279].speaker SPEAKER_29
transcript.pyannote[1279].start 7764.64034375
transcript.pyannote[1279].end 7765.60221875
transcript.pyannote[1280].speaker SPEAKER_29
transcript.pyannote[1280].start 7765.82159375
transcript.pyannote[1280].end 7768.01534375
transcript.pyannote[1281].speaker SPEAKER_13
transcript.pyannote[1281].start 7768.36971875
transcript.pyannote[1281].end 7770.64784375
transcript.pyannote[1282].speaker SPEAKER_29
transcript.pyannote[1282].start 7770.64784375
transcript.pyannote[1282].end 7771.12034375
transcript.pyannote[1283].speaker SPEAKER_13
transcript.pyannote[1283].start 7771.12034375
transcript.pyannote[1283].end 7776.01409375
transcript.pyannote[1284].speaker SPEAKER_13
transcript.pyannote[1284].start 7776.65534375
transcript.pyannote[1284].end 7779.74346875
transcript.pyannote[1285].speaker SPEAKER_13
transcript.pyannote[1285].start 7780.01346875
transcript.pyannote[1285].end 7783.45596875
transcript.pyannote[1286].speaker SPEAKER_13
transcript.pyannote[1286].start 7783.50659375
transcript.pyannote[1286].end 7803.63846875
transcript.pyannote[1287].speaker SPEAKER_22
transcript.pyannote[1287].start 7804.68471875
transcript.pyannote[1287].end 7804.80284375
transcript.pyannote[1288].speaker SPEAKER_22
transcript.pyannote[1288].start 7805.07284375
transcript.pyannote[1288].end 7807.13159375
transcript.pyannote[1289].speaker SPEAKER_13
transcript.pyannote[1289].start 7807.13159375
transcript.pyannote[1289].end 7807.45221875
transcript.pyannote[1290].speaker SPEAKER_22
transcript.pyannote[1290].start 7807.45221875
transcript.pyannote[1290].end 7807.48596875
transcript.pyannote[1291].speaker SPEAKER_13
transcript.pyannote[1291].start 7807.48596875
transcript.pyannote[1291].end 7807.50284375
transcript.pyannote[1292].speaker SPEAKER_22
transcript.pyannote[1292].start 7807.50284375
transcript.pyannote[1292].end 7808.71784375
transcript.pyannote[1293].speaker SPEAKER_22
transcript.pyannote[1293].start 7809.05534375
transcript.pyannote[1293].end 7809.83159375
transcript.pyannote[1294].speaker SPEAKER_22
transcript.pyannote[1294].start 7810.37159375
transcript.pyannote[1294].end 7812.12659375
transcript.pyannote[1295].speaker SPEAKER_13
transcript.pyannote[1295].start 7812.12659375
transcript.pyannote[1295].end 7837.20284375
transcript.pyannote[1296].speaker SPEAKER_13
transcript.pyannote[1296].start 7837.43909375
transcript.pyannote[1296].end 7848.01971875
transcript.pyannote[1297].speaker SPEAKER_13
transcript.pyannote[1297].start 7848.39096875
transcript.pyannote[1297].end 7851.22596875
transcript.pyannote[1298].speaker SPEAKER_22
transcript.pyannote[1298].start 7851.51284375
transcript.pyannote[1298].end 7857.67221875
transcript.pyannote[1299].speaker SPEAKER_22
transcript.pyannote[1299].start 7857.77346875
transcript.pyannote[1299].end 7858.21221875
transcript.pyannote[1300].speaker SPEAKER_13
transcript.pyannote[1300].start 7858.21221875
transcript.pyannote[1300].end 7859.84909375
transcript.pyannote[1301].speaker SPEAKER_22
transcript.pyannote[1301].start 7859.84909375
transcript.pyannote[1301].end 7859.86596875
transcript.pyannote[1302].speaker SPEAKER_13
transcript.pyannote[1302].start 7860.37221875
transcript.pyannote[1302].end 7861.03034375
transcript.pyannote[1303].speaker SPEAKER_24
transcript.pyannote[1303].start 7865.26596875
transcript.pyannote[1303].end 7865.43471875
transcript.pyannote[1304].speaker SPEAKER_24
transcript.pyannote[1304].start 7865.87346875
transcript.pyannote[1304].end 7866.29534375
transcript.pyannote[1305].speaker SPEAKER_24
transcript.pyannote[1305].start 7866.41346875
transcript.pyannote[1305].end 7869.34971875
transcript.pyannote[1306].speaker SPEAKER_24
transcript.pyannote[1306].start 7870.53096875
transcript.pyannote[1306].end 7872.70784375
transcript.pyannote[1307].speaker SPEAKER_05
transcript.pyannote[1307].start 7875.52596875
transcript.pyannote[1307].end 7876.43721875
transcript.pyannote[1308].speaker SPEAKER_05
transcript.pyannote[1308].start 7877.80409375
transcript.pyannote[1308].end 7883.69346875
transcript.pyannote[1309].speaker SPEAKER_12
transcript.pyannote[1309].start 7883.91284375
transcript.pyannote[1309].end 7886.84909375
transcript.pyannote[1310].speaker SPEAKER_05
transcript.pyannote[1310].start 7888.57034375
transcript.pyannote[1310].end 7888.94159375
transcript.pyannote[1311].speaker SPEAKER_05
transcript.pyannote[1311].start 7888.99221875
transcript.pyannote[1311].end 7889.00909375
transcript.pyannote[1312].speaker SPEAKER_05
transcript.pyannote[1312].start 7889.12721875
transcript.pyannote[1312].end 7890.56159375
transcript.pyannote[1313].speaker SPEAKER_05
transcript.pyannote[1313].start 7891.08471875
transcript.pyannote[1313].end 7891.57409375
transcript.pyannote[1314].speaker SPEAKER_05
transcript.pyannote[1314].start 7892.08034375
transcript.pyannote[1314].end 7898.15534375
transcript.pyannote[1315].speaker SPEAKER_05
transcript.pyannote[1315].start 7898.52659375
transcript.pyannote[1315].end 7902.32346875
transcript.pyannote[1316].speaker SPEAKER_05
transcript.pyannote[1316].start 7903.28534375
transcript.pyannote[1316].end 7909.03971875
transcript.pyannote[1317].speaker SPEAKER_05
transcript.pyannote[1317].start 7909.19159375
transcript.pyannote[1317].end 7913.52846875
transcript.pyannote[1318].speaker SPEAKER_05
transcript.pyannote[1318].start 7913.74784375
transcript.pyannote[1318].end 7915.45221875
transcript.pyannote[1319].speaker SPEAKER_05
transcript.pyannote[1319].start 7915.53659375
transcript.pyannote[1319].end 7916.26221875
transcript.pyannote[1320].speaker SPEAKER_05
transcript.pyannote[1320].start 7916.78534375
transcript.pyannote[1320].end 7930.75784375
transcript.pyannote[1321].speaker SPEAKER_05
transcript.pyannote[1321].start 7930.90971875
transcript.pyannote[1321].end 7933.40721875
transcript.pyannote[1322].speaker SPEAKER_05
transcript.pyannote[1322].start 7933.62659375
transcript.pyannote[1322].end 7937.54159375
transcript.pyannote[1323].speaker SPEAKER_05
transcript.pyannote[1323].start 7937.71034375
transcript.pyannote[1323].end 7954.36596875
transcript.pyannote[1324].speaker SPEAKER_05
transcript.pyannote[1324].start 7954.68659375
transcript.pyannote[1324].end 7973.83971875
transcript.pyannote[1325].speaker SPEAKER_05
transcript.pyannote[1325].start 7974.12659375
transcript.pyannote[1325].end 7980.16784375
transcript.pyannote[1326].speaker SPEAKER_14
transcript.pyannote[1326].start 7980.42096875
transcript.pyannote[1326].end 7983.62721875
transcript.pyannote[1327].speaker SPEAKER_14
transcript.pyannote[1327].start 7983.84659375
transcript.pyannote[1327].end 7987.98096875
transcript.pyannote[1328].speaker SPEAKER_25
transcript.pyannote[1328].start 7987.87971875
transcript.pyannote[1328].end 7988.18346875
transcript.pyannote[1329].speaker SPEAKER_14
transcript.pyannote[1329].start 7988.18346875
transcript.pyannote[1329].end 8022.81096875
transcript.pyannote[1330].speaker SPEAKER_10
transcript.pyannote[1330].start 8007.13409375
transcript.pyannote[1330].end 8007.15096875
transcript.pyannote[1331].speaker SPEAKER_25
transcript.pyannote[1331].start 8007.15096875
transcript.pyannote[1331].end 8007.16784375
transcript.pyannote[1332].speaker SPEAKER_10
transcript.pyannote[1332].start 8007.16784375
transcript.pyannote[1332].end 8007.18471875
transcript.pyannote[1333].speaker SPEAKER_05
transcript.pyannote[1333].start 8022.05159375
transcript.pyannote[1333].end 8034.26909375
transcript.pyannote[1334].speaker SPEAKER_14
transcript.pyannote[1334].start 8030.53971875
transcript.pyannote[1334].end 8030.92784375
transcript.pyannote[1335].speaker SPEAKER_14
transcript.pyannote[1335].start 8032.17659375
transcript.pyannote[1335].end 8059.02471875
transcript.pyannote[1336].speaker SPEAKER_05
transcript.pyannote[1336].start 8037.05346875
transcript.pyannote[1336].end 8037.45846875
transcript.pyannote[1337].speaker SPEAKER_05
transcript.pyannote[1337].start 8055.53159375
transcript.pyannote[1337].end 8055.58221875
transcript.pyannote[1338].speaker SPEAKER_05
transcript.pyannote[1338].start 8058.04596875
transcript.pyannote[1338].end 8058.40034375
transcript.pyannote[1339].speaker SPEAKER_05
transcript.pyannote[1339].start 8059.02471875
transcript.pyannote[1339].end 8075.29221875
transcript.pyannote[1340].speaker SPEAKER_25
transcript.pyannote[1340].start 8067.76596875
transcript.pyannote[1340].end 8068.23846875
transcript.pyannote[1341].speaker SPEAKER_26
transcript.pyannote[1341].start 8075.02221875
transcript.pyannote[1341].end 8075.08971875
transcript.pyannote[1342].speaker SPEAKER_05
transcript.pyannote[1342].start 8076.15284375
transcript.pyannote[1342].end 8080.48971875
transcript.pyannote[1343].speaker SPEAKER_05
transcript.pyannote[1343].start 8080.86096875
transcript.pyannote[1343].end 8111.35409375
transcript.pyannote[1344].speaker SPEAKER_05
transcript.pyannote[1344].start 8111.67471875
transcript.pyannote[1344].end 8111.69159375
transcript.pyannote[1345].speaker SPEAKER_26
transcript.pyannote[1345].start 8111.69159375
transcript.pyannote[1345].end 8111.86034375
transcript.pyannote[1346].speaker SPEAKER_05
transcript.pyannote[1346].start 8111.86034375
transcript.pyannote[1346].end 8115.96096875
transcript.pyannote[1347].speaker SPEAKER_05
transcript.pyannote[1347].start 8115.99471875
transcript.pyannote[1347].end 8122.99784375
transcript.pyannote[1348].speaker SPEAKER_05
transcript.pyannote[1348].start 8123.41971875
transcript.pyannote[1348].end 8125.73159375
transcript.pyannote[1349].speaker SPEAKER_05
transcript.pyannote[1349].start 8125.84971875
transcript.pyannote[1349].end 8130.18659375
transcript.pyannote[1350].speaker SPEAKER_05
transcript.pyannote[1350].start 8130.64221875
transcript.pyannote[1350].end 8138.21909375
transcript.pyannote[1351].speaker SPEAKER_26
transcript.pyannote[1351].start 8138.20221875
transcript.pyannote[1351].end 8138.74221875
transcript.pyannote[1352].speaker SPEAKER_05
transcript.pyannote[1352].start 8138.37096875
transcript.pyannote[1352].end 8142.96096875
transcript.pyannote[1353].speaker SPEAKER_05
transcript.pyannote[1353].start 8143.18034375
transcript.pyannote[1353].end 8154.94221875
transcript.pyannote[1354].speaker SPEAKER_14
transcript.pyannote[1354].start 8154.99284375
transcript.pyannote[1354].end 8201.66909375
transcript.pyannote[1355].speaker SPEAKER_16
transcript.pyannote[1355].start 8176.66034375
transcript.pyannote[1355].end 8176.96409375
transcript.pyannote[1356].speaker SPEAKER_05
transcript.pyannote[1356].start 8201.97284375
transcript.pyannote[1356].end 8207.64284375
transcript.pyannote[1357].speaker SPEAKER_14
transcript.pyannote[1357].start 8204.20034375
transcript.pyannote[1357].end 8205.09471875
transcript.pyannote[1358].speaker SPEAKER_05
transcript.pyannote[1358].start 8207.92971875
transcript.pyannote[1358].end 8240.09346875
transcript.pyannote[1359].speaker SPEAKER_29
transcript.pyannote[1359].start 8240.81909375
transcript.pyannote[1359].end 8240.92034375
transcript.pyannote[1360].speaker SPEAKER_29
transcript.pyannote[1360].start 8241.10596875
transcript.pyannote[1360].end 8245.13909375
transcript.pyannote[1361].speaker SPEAKER_29
transcript.pyannote[1361].start 8245.72971875
transcript.pyannote[1361].end 8249.71221875
transcript.pyannote[1362].speaker SPEAKER_29
transcript.pyannote[1362].start 8250.06659375
transcript.pyannote[1362].end 8255.07846875
transcript.pyannote[1363].speaker SPEAKER_29
transcript.pyannote[1363].start 8256.04034375
transcript.pyannote[1363].end 8260.15784375
transcript.pyannote[1364].speaker SPEAKER_29
transcript.pyannote[1364].start 8260.54596875
transcript.pyannote[1364].end 8262.11534375
transcript.pyannote[1365].speaker SPEAKER_29
transcript.pyannote[1365].start 8262.55409375
transcript.pyannote[1365].end 8268.03846875
transcript.pyannote[1366].speaker SPEAKER_05
transcript.pyannote[1366].start 8266.24971875
transcript.pyannote[1366].end 8293.21596875
transcript.pyannote[1367].speaker SPEAKER_29
transcript.pyannote[1367].start 8294.07659375
transcript.pyannote[1367].end 8302.12596875
transcript.pyannote[1368].speaker SPEAKER_05
transcript.pyannote[1368].start 8299.15596875
transcript.pyannote[1368].end 8319.49034375
transcript.pyannote[1369].speaker SPEAKER_05
transcript.pyannote[1369].start 8320.24971875
transcript.pyannote[1369].end 8324.02971875
transcript.pyannote[1370].speaker SPEAKER_05
transcript.pyannote[1370].start 8324.31659375
transcript.pyannote[1370].end 8357.83034375
transcript.pyannote[1371].speaker SPEAKER_05
transcript.pyannote[1371].start 8358.57284375
transcript.pyannote[1371].end 8358.58971875
transcript.pyannote[1372].speaker SPEAKER_18
transcript.pyannote[1372].start 8358.58971875
transcript.pyannote[1372].end 8386.83846875
transcript.pyannote[1373].speaker SPEAKER_05
transcript.pyannote[1373].start 8362.62284375
transcript.pyannote[1373].end 8363.06159375
transcript.pyannote[1374].speaker SPEAKER_25
transcript.pyannote[1374].start 8368.37721875
transcript.pyannote[1374].end 8368.57971875
transcript.pyannote[1375].speaker SPEAKER_05
transcript.pyannote[1375].start 8385.96096875
transcript.pyannote[1375].end 8390.80409375
transcript.pyannote[1376].speaker SPEAKER_05
transcript.pyannote[1376].start 8391.14159375
transcript.pyannote[1376].end 8406.70034375
transcript.pyannote[1377].speaker SPEAKER_05
transcript.pyannote[1377].start 8407.17284375
transcript.pyannote[1377].end 8418.61409375
transcript.pyannote[1378].speaker SPEAKER_05
transcript.pyannote[1378].start 8418.96846875
transcript.pyannote[1378].end 8421.66846875
transcript.pyannote[1379].speaker SPEAKER_05
transcript.pyannote[1379].start 8422.10721875
transcript.pyannote[1379].end 8433.02534375
transcript.pyannote[1380].speaker SPEAKER_05
transcript.pyannote[1380].start 8433.49784375
transcript.pyannote[1380].end 8438.25659375
transcript.pyannote[1381].speaker SPEAKER_18
transcript.pyannote[1381].start 8438.39159375
transcript.pyannote[1381].end 8464.31159375
transcript.pyannote[1382].speaker SPEAKER_05
transcript.pyannote[1382].start 8461.27409375
transcript.pyannote[1382].end 8467.46721875
transcript.pyannote[1383].speaker SPEAKER_26
transcript.pyannote[1383].start 8464.31159375
transcript.pyannote[1383].end 8464.36221875
transcript.pyannote[1384].speaker SPEAKER_18
transcript.pyannote[1384].start 8465.44221875
transcript.pyannote[1384].end 8465.69534375
transcript.pyannote[1385].speaker SPEAKER_26
transcript.pyannote[1385].start 8467.46721875
transcript.pyannote[1385].end 8467.51784375
transcript.pyannote[1386].speaker SPEAKER_05
transcript.pyannote[1386].start 8467.51784375
transcript.pyannote[1386].end 8488.64534375
transcript.pyannote[1387].speaker SPEAKER_05
transcript.pyannote[1387].start 8488.99971875
transcript.pyannote[1387].end 8490.87284375
transcript.pyannote[1388].speaker SPEAKER_05
transcript.pyannote[1388].start 8492.00346875
transcript.pyannote[1388].end 8515.62846875
transcript.pyannote[1389].speaker SPEAKER_18
transcript.pyannote[1389].start 8516.33721875
transcript.pyannote[1389].end 8538.40971875
transcript.pyannote[1390].speaker SPEAKER_26
transcript.pyannote[1390].start 8527.23846875
transcript.pyannote[1390].end 8527.25534375
transcript.pyannote[1391].speaker SPEAKER_26
transcript.pyannote[1391].start 8529.22971875
transcript.pyannote[1391].end 8530.39409375
transcript.pyannote[1392].speaker SPEAKER_00
transcript.pyannote[1392].start 8530.39409375
transcript.pyannote[1392].end 8530.46159375
transcript.pyannote[1393].speaker SPEAKER_05
transcript.pyannote[1393].start 8538.59534375
transcript.pyannote[1393].end 8578.60596875
transcript.pyannote[1394].speaker SPEAKER_05
transcript.pyannote[1394].start 8578.70721875
transcript.pyannote[1394].end 8585.54159375
transcript.pyannote[1395].speaker SPEAKER_05
transcript.pyannote[1395].start 8586.03096875
transcript.pyannote[1395].end 8586.60471875
transcript.pyannote[1396].speaker SPEAKER_13
transcript.pyannote[1396].start 8586.35159375
transcript.pyannote[1396].end 8594.29971875
transcript.pyannote[1397].speaker SPEAKER_26
transcript.pyannote[1397].start 8603.29409375
transcript.pyannote[1397].end 8603.49659375
transcript.pyannote[1398].speaker SPEAKER_30
transcript.pyannote[1398].start 8603.49659375
transcript.pyannote[1398].end 8605.15034375
transcript.pyannote[1399].speaker SPEAKER_30
transcript.pyannote[1399].start 8605.79159375
transcript.pyannote[1399].end 8607.64784375
transcript.pyannote[1400].speaker SPEAKER_30
transcript.pyannote[1400].start 8608.10346875
transcript.pyannote[1400].end 8610.83721875
transcript.pyannote[1401].speaker SPEAKER_30
transcript.pyannote[1401].start 8611.15784375
transcript.pyannote[1401].end 8612.62596875
transcript.pyannote[1402].speaker SPEAKER_13
transcript.pyannote[1402].start 8614.06034375
transcript.pyannote[1402].end 8615.35971875
transcript.pyannote[1403].speaker SPEAKER_30
transcript.pyannote[1403].start 8614.66784375
transcript.pyannote[1403].end 8617.55346875
transcript.pyannote[1404].speaker SPEAKER_13
transcript.pyannote[1404].start 8616.77721875
transcript.pyannote[1404].end 8617.62096875
transcript.pyannote[1405].speaker SPEAKER_13
transcript.pyannote[1405].start 8617.85721875
transcript.pyannote[1405].end 8618.88659375
transcript.pyannote[1406].speaker SPEAKER_28
transcript.pyannote[1406].start 8618.88659375
transcript.pyannote[1406].end 8618.90346875
transcript.pyannote[1407].speaker SPEAKER_30
transcript.pyannote[1407].start 8618.98784375
transcript.pyannote[1407].end 8619.30846875
transcript.pyannote[1408].speaker SPEAKER_30
transcript.pyannote[1408].start 8620.35471875
transcript.pyannote[1408].end 8621.43471875
transcript.pyannote[1409].speaker SPEAKER_30
transcript.pyannote[1409].start 8622.07596875
transcript.pyannote[1409].end 8622.46409375
transcript.pyannote[1410].speaker SPEAKER_28
transcript.pyannote[1410].start 8624.13471875
transcript.pyannote[1410].end 8624.69159375
transcript.pyannote[1411].speaker SPEAKER_30
transcript.pyannote[1411].start 8624.69159375
transcript.pyannote[1411].end 8624.70846875
transcript.pyannote[1412].speaker SPEAKER_30
transcript.pyannote[1412].start 8626.96971875
transcript.pyannote[1412].end 8628.43784375
transcript.pyannote[1413].speaker SPEAKER_30
transcript.pyannote[1413].start 8629.36596875
transcript.pyannote[1413].end 8630.02409375
transcript.pyannote[1414].speaker SPEAKER_30
transcript.pyannote[1414].start 8630.37846875
transcript.pyannote[1414].end 8631.88034375
transcript.pyannote[1415].speaker SPEAKER_30
transcript.pyannote[1415].start 8632.65659375
transcript.pyannote[1415].end 8634.39471875
transcript.pyannote[1416].speaker SPEAKER_30
transcript.pyannote[1416].start 8634.78284375
transcript.pyannote[1416].end 8637.97221875
transcript.pyannote[1417].speaker SPEAKER_30
transcript.pyannote[1417].start 8638.68096875
transcript.pyannote[1417].end 8643.69284375
transcript.pyannote[1418].speaker SPEAKER_30
transcript.pyannote[1418].start 8644.33409375
transcript.pyannote[1418].end 8664.19596875
transcript.pyannote[1419].speaker SPEAKER_30
transcript.pyannote[1419].start 8665.10721875
transcript.pyannote[1419].end 8667.04784375
transcript.pyannote[1420].speaker SPEAKER_30
transcript.pyannote[1420].start 8667.68909375
transcript.pyannote[1420].end 8676.61596875
transcript.pyannote[1421].speaker SPEAKER_30
transcript.pyannote[1421].start 8677.40909375
transcript.pyannote[1421].end 8681.45909375
transcript.pyannote[1422].speaker SPEAKER_30
transcript.pyannote[1422].start 8682.48846875
transcript.pyannote[1422].end 8683.45034375
transcript.pyannote[1423].speaker SPEAKER_30
transcript.pyannote[1423].start 8684.49659375
transcript.pyannote[1423].end 8687.66909375
transcript.pyannote[1424].speaker SPEAKER_30
transcript.pyannote[1424].start 8688.17534375
transcript.pyannote[1424].end 8691.58409375
transcript.pyannote[1425].speaker SPEAKER_30
transcript.pyannote[1425].start 8693.01846875
transcript.pyannote[1425].end 8694.50346875
transcript.pyannote[1426].speaker SPEAKER_30
transcript.pyannote[1426].start 8695.27971875
transcript.pyannote[1426].end 8696.14034375
transcript.pyannote[1427].speaker SPEAKER_30
transcript.pyannote[1427].start 8697.11909375
transcript.pyannote[1427].end 8698.92471875
transcript.pyannote[1428].speaker SPEAKER_30
transcript.pyannote[1428].start 8699.58284375
transcript.pyannote[1428].end 8700.78096875
transcript.pyannote[1429].speaker SPEAKER_30
transcript.pyannote[1429].start 8701.57409375
transcript.pyannote[1429].end 8706.58596875
transcript.pyannote[1430].speaker SPEAKER_30
transcript.pyannote[1430].start 8707.12596875
transcript.pyannote[1430].end 8710.75409375
transcript.pyannote[1431].speaker SPEAKER_30
transcript.pyannote[1431].start 8711.37846875
transcript.pyannote[1431].end 8712.08721875
transcript.pyannote[1432].speaker SPEAKER_30
transcript.pyannote[1432].start 8712.25596875
transcript.pyannote[1432].end 8713.18409375
transcript.pyannote[1433].speaker SPEAKER_30
transcript.pyannote[1433].start 8714.04471875
transcript.pyannote[1433].end 8715.02346875
transcript.pyannote[1434].speaker SPEAKER_30
transcript.pyannote[1434].start 8715.36096875
transcript.pyannote[1434].end 8715.90096875
transcript.pyannote[1435].speaker SPEAKER_30
transcript.pyannote[1435].start 8716.17096875
transcript.pyannote[1435].end 8716.60971875
transcript.pyannote[1436].speaker SPEAKER_30
transcript.pyannote[1436].start 8717.84159375
transcript.pyannote[1436].end 8720.89596875
transcript.pyannote[1437].speaker SPEAKER_30
transcript.pyannote[1437].start 8720.96346875
transcript.pyannote[1437].end 8722.65096875
transcript.pyannote[1438].speaker SPEAKER_30
transcript.pyannote[1438].start 8723.57909375
transcript.pyannote[1438].end 8730.88596875
transcript.pyannote[1439].speaker SPEAKER_30
transcript.pyannote[1439].start 8731.24034375
transcript.pyannote[1439].end 8736.48846875
transcript.pyannote[1440].speaker SPEAKER_30
transcript.pyannote[1440].start 8737.16346875
transcript.pyannote[1440].end 8740.50471875
transcript.pyannote[1441].speaker SPEAKER_30
transcript.pyannote[1441].start 8740.99409375
transcript.pyannote[1441].end 8741.93909375
transcript.pyannote[1442].speaker SPEAKER_30
transcript.pyannote[1442].start 8743.64346875
transcript.pyannote[1442].end 8744.11596875
transcript.pyannote[1443].speaker SPEAKER_30
transcript.pyannote[1443].start 8744.30159375
transcript.pyannote[1443].end 8747.69346875
transcript.pyannote[1444].speaker SPEAKER_14
transcript.pyannote[1444].start 8744.57159375
transcript.pyannote[1444].end 8744.74034375
transcript.pyannote[1445].speaker SPEAKER_14
transcript.pyannote[1445].start 8746.81596875
transcript.pyannote[1445].end 8773.12409375
transcript.pyannote[1446].speaker SPEAKER_14
transcript.pyannote[1446].start 8774.00159375
transcript.pyannote[1446].end 8775.03096875
transcript.pyannote[1447].speaker SPEAKER_30
transcript.pyannote[1447].start 8775.03096875
transcript.pyannote[1447].end 8780.65034375
transcript.pyannote[1448].speaker SPEAKER_16
transcript.pyannote[1448].start 8780.65034375
transcript.pyannote[1448].end 8780.93721875
transcript.pyannote[1449].speaker SPEAKER_30
transcript.pyannote[1449].start 8780.93721875
transcript.pyannote[1449].end 8788.49721875
transcript.pyannote[1450].speaker SPEAKER_16
transcript.pyannote[1450].start 8782.81034375
transcript.pyannote[1450].end 8783.48534375
transcript.pyannote[1451].speaker SPEAKER_14
transcript.pyannote[1451].start 8787.24846875
transcript.pyannote[1451].end 8804.42721875
transcript.pyannote[1452].speaker SPEAKER_30
transcript.pyannote[1452].start 8805.01784375
transcript.pyannote[1452].end 8805.16971875
transcript.pyannote[1453].speaker SPEAKER_30
transcript.pyannote[1453].start 8805.22034375
transcript.pyannote[1453].end 8805.23721875
transcript.pyannote[1454].speaker SPEAKER_30
transcript.pyannote[1454].start 8805.30471875
transcript.pyannote[1454].end 8818.92284375
transcript.pyannote[1455].speaker SPEAKER_30
transcript.pyannote[1455].start 8819.54721875
transcript.pyannote[1455].end 8819.98596875
transcript.pyannote[1456].speaker SPEAKER_30
transcript.pyannote[1456].start 8820.84659375
transcript.pyannote[1456].end 8825.82471875
transcript.pyannote[1457].speaker SPEAKER_30
transcript.pyannote[1457].start 8826.14534375
transcript.pyannote[1457].end 8832.11909375
transcript.pyannote[1458].speaker SPEAKER_30
transcript.pyannote[1458].start 8832.74346875
transcript.pyannote[1458].end 8834.54909375
transcript.pyannote[1459].speaker SPEAKER_30
transcript.pyannote[1459].start 8835.66284375
transcript.pyannote[1459].end 8836.79346875
transcript.pyannote[1460].speaker SPEAKER_30
transcript.pyannote[1460].start 8837.43471875
transcript.pyannote[1460].end 8841.60284375
transcript.pyannote[1461].speaker SPEAKER_14
transcript.pyannote[1461].start 8841.60284375
transcript.pyannote[1461].end 8841.67034375
transcript.pyannote[1462].speaker SPEAKER_30
transcript.pyannote[1462].start 8842.05846875
transcript.pyannote[1462].end 8842.09221875
transcript.pyannote[1463].speaker SPEAKER_14
transcript.pyannote[1463].start 8842.09221875
transcript.pyannote[1463].end 8843.72909375
transcript.pyannote[1464].speaker SPEAKER_14
transcript.pyannote[1464].start 8844.16784375
transcript.pyannote[1464].end 8874.42471875
transcript.pyannote[1465].speaker SPEAKER_30
transcript.pyannote[1465].start 8874.62721875
transcript.pyannote[1465].end 8879.47034375
transcript.pyannote[1466].speaker SPEAKER_30
transcript.pyannote[1466].start 8879.82471875
transcript.pyannote[1466].end 8889.10596875
transcript.pyannote[1467].speaker SPEAKER_30
transcript.pyannote[1467].start 8889.42659375
transcript.pyannote[1467].end 8897.30721875
transcript.pyannote[1468].speaker SPEAKER_25
transcript.pyannote[1468].start 8896.17659375
transcript.pyannote[1468].end 8897.25659375
transcript.pyannote[1469].speaker SPEAKER_30
transcript.pyannote[1469].start 8897.52659375
transcript.pyannote[1469].end 8898.50534375
transcript.pyannote[1470].speaker SPEAKER_30
transcript.pyannote[1470].start 8900.56409375
transcript.pyannote[1470].end 8901.98159375
transcript.pyannote[1471].speaker SPEAKER_30
transcript.pyannote[1471].start 8902.94346875
transcript.pyannote[1471].end 8903.73659375
transcript.pyannote[1472].speaker SPEAKER_30
transcript.pyannote[1472].start 8904.29346875
transcript.pyannote[1472].end 8906.11596875
transcript.pyannote[1473].speaker SPEAKER_30
transcript.pyannote[1473].start 8906.97659375
transcript.pyannote[1473].end 8908.83284375
transcript.pyannote[1474].speaker SPEAKER_30
transcript.pyannote[1474].start 8909.64284375
transcript.pyannote[1474].end 8910.36846875
transcript.pyannote[1475].speaker SPEAKER_30
transcript.pyannote[1475].start 8910.62159375
transcript.pyannote[1475].end 8914.18221875
transcript.pyannote[1476].speaker SPEAKER_30
transcript.pyannote[1476].start 8914.57034375
transcript.pyannote[1476].end 8924.57721875
transcript.pyannote[1477].speaker SPEAKER_30
transcript.pyannote[1477].start 8925.35346875
transcript.pyannote[1477].end 8926.21409375
transcript.pyannote[1478].speaker SPEAKER_30
transcript.pyannote[1478].start 8926.61909375
transcript.pyannote[1478].end 8928.91409375
transcript.pyannote[1479].speaker SPEAKER_30
transcript.pyannote[1479].start 8929.48784375
transcript.pyannote[1479].end 8929.94346875
transcript.pyannote[1480].speaker SPEAKER_30
transcript.pyannote[1480].start 8931.02346875
transcript.pyannote[1480].end 8931.88409375
transcript.pyannote[1481].speaker SPEAKER_30
transcript.pyannote[1481].start 8932.01909375
transcript.pyannote[1481].end 8933.35221875
transcript.pyannote[1482].speaker SPEAKER_30
transcript.pyannote[1482].start 8934.29721875
transcript.pyannote[1482].end 8936.23784375
transcript.pyannote[1483].speaker SPEAKER_30
transcript.pyannote[1483].start 8936.74409375
transcript.pyannote[1483].end 8941.06409375
transcript.pyannote[1484].speaker SPEAKER_30
transcript.pyannote[1484].start 8942.75159375
transcript.pyannote[1484].end 8948.11784375
transcript.pyannote[1485].speaker SPEAKER_30
transcript.pyannote[1485].start 8949.51846875
transcript.pyannote[1485].end 8951.44221875
transcript.pyannote[1486].speaker SPEAKER_30
transcript.pyannote[1486].start 8952.08346875
transcript.pyannote[1486].end 8957.44971875
transcript.pyannote[1487].speaker SPEAKER_30
transcript.pyannote[1487].start 8957.95596875
transcript.pyannote[1487].end 8958.44534375
transcript.pyannote[1488].speaker SPEAKER_30
transcript.pyannote[1488].start 8959.64346875
transcript.pyannote[1488].end 8969.36346875
transcript.pyannote[1489].speaker SPEAKER_30
transcript.pyannote[1489].start 8969.80221875
transcript.pyannote[1489].end 8970.56159375
transcript.pyannote[1490].speaker SPEAKER_30
transcript.pyannote[1490].start 8971.16909375
transcript.pyannote[1490].end 8972.04659375
transcript.pyannote[1491].speaker SPEAKER_30
transcript.pyannote[1491].start 8973.00846875
transcript.pyannote[1491].end 8975.72534375
transcript.pyannote[1492].speaker SPEAKER_30
transcript.pyannote[1492].start 8976.14721875
transcript.pyannote[1492].end 8979.64034375
transcript.pyannote[1493].speaker SPEAKER_30
transcript.pyannote[1493].start 8980.11284375
transcript.pyannote[1493].end 8982.66096875
transcript.pyannote[1494].speaker SPEAKER_30
transcript.pyannote[1494].start 8983.47096875
transcript.pyannote[1494].end 8987.45346875
transcript.pyannote[1495].speaker SPEAKER_30
transcript.pyannote[1495].start 8988.11159375
transcript.pyannote[1495].end 8990.06909375
transcript.pyannote[1496].speaker SPEAKER_30
transcript.pyannote[1496].start 8990.30534375
transcript.pyannote[1496].end 8991.30096875
transcript.pyannote[1497].speaker SPEAKER_30
transcript.pyannote[1497].start 8992.63409375
transcript.pyannote[1497].end 9000.02534375
transcript.pyannote[1498].speaker SPEAKER_30
transcript.pyannote[1498].start 9001.42596875
transcript.pyannote[1498].end 9003.50159375
transcript.pyannote[1499].speaker SPEAKER_30
transcript.pyannote[1499].start 9004.31159375
transcript.pyannote[1499].end 9007.26471875
transcript.pyannote[1500].speaker SPEAKER_30
transcript.pyannote[1500].start 9008.41221875
transcript.pyannote[1500].end 9009.22221875
transcript.pyannote[1501].speaker SPEAKER_30
transcript.pyannote[1501].start 9009.81284375
transcript.pyannote[1501].end 9014.89221875
transcript.pyannote[1502].speaker SPEAKER_30
transcript.pyannote[1502].start 9015.53346875
transcript.pyannote[1502].end 9023.49846875
transcript.pyannote[1503].speaker SPEAKER_30
transcript.pyannote[1503].start 9024.39284375
transcript.pyannote[1503].end 9026.48534375
transcript.pyannote[1504].speaker SPEAKER_30
transcript.pyannote[1504].start 9026.99159375
transcript.pyannote[1504].end 9028.88159375
transcript.pyannote[1505].speaker SPEAKER_30
transcript.pyannote[1505].start 9030.04596875
transcript.pyannote[1505].end 9039.34409375
transcript.pyannote[1506].speaker SPEAKER_30
transcript.pyannote[1506].start 9040.05284375
transcript.pyannote[1506].end 9040.60971875
transcript.pyannote[1507].speaker SPEAKER_30
transcript.pyannote[1507].start 9041.35221875
transcript.pyannote[1507].end 9048.99659375
transcript.pyannote[1508].speaker SPEAKER_30
transcript.pyannote[1508].start 9050.46471875
transcript.pyannote[1508].end 9051.34221875
transcript.pyannote[1509].speaker SPEAKER_30
transcript.pyannote[1509].start 9053.28284375
transcript.pyannote[1509].end 9061.63596875
transcript.pyannote[1510].speaker SPEAKER_30
transcript.pyannote[1510].start 9062.58096875
transcript.pyannote[1510].end 9073.53284375
transcript.pyannote[1511].speaker SPEAKER_30
transcript.pyannote[1511].start 9074.22471875
transcript.pyannote[1511].end 9076.24971875
transcript.pyannote[1512].speaker SPEAKER_30
transcript.pyannote[1512].start 9077.05971875
transcript.pyannote[1512].end 9079.06784375
transcript.pyannote[1513].speaker SPEAKER_30
transcript.pyannote[1513].start 9079.96221875
transcript.pyannote[1513].end 9080.87346875
transcript.pyannote[1514].speaker SPEAKER_30
transcript.pyannote[1514].start 9082.67909375
transcript.pyannote[1514].end 9083.43846875
transcript.pyannote[1515].speaker SPEAKER_30
transcript.pyannote[1515].start 9084.34971875
transcript.pyannote[1515].end 9085.44659375
transcript.pyannote[1516].speaker SPEAKER_30
transcript.pyannote[1516].start 9085.86846875
transcript.pyannote[1516].end 9086.99909375
transcript.pyannote[1517].speaker SPEAKER_30
transcript.pyannote[1517].start 9088.02846875
transcript.pyannote[1517].end 9088.90596875
transcript.pyannote[1518].speaker SPEAKER_30
transcript.pyannote[1518].start 9090.93096875
transcript.pyannote[1518].end 9099.89159375
transcript.pyannote[1519].speaker SPEAKER_25
transcript.pyannote[1519].start 9101.19096875
transcript.pyannote[1519].end 9101.30909375
transcript.pyannote[1520].speaker SPEAKER_30
transcript.pyannote[1520].start 9101.30909375
transcript.pyannote[1520].end 9102.70971875
transcript.pyannote[1521].speaker SPEAKER_25
transcript.pyannote[1521].start 9101.32596875
transcript.pyannote[1521].end 9101.64659375
transcript.pyannote[1522].speaker SPEAKER_30
transcript.pyannote[1522].start 9102.99659375
transcript.pyannote[1522].end 9103.46909375
transcript.pyannote[1523].speaker SPEAKER_30
transcript.pyannote[1523].start 9104.02596875
transcript.pyannote[1523].end 9104.97096875
transcript.pyannote[1524].speaker SPEAKER_30
transcript.pyannote[1524].start 9105.27471875
transcript.pyannote[1524].end 9105.74721875
transcript.pyannote[1525].speaker SPEAKER_30
transcript.pyannote[1525].start 9106.82721875
transcript.pyannote[1525].end 9108.22784375
transcript.pyannote[1526].speaker SPEAKER_30
transcript.pyannote[1526].start 9109.35846875
transcript.pyannote[1526].end 9110.33721875
transcript.pyannote[1527].speaker SPEAKER_30
transcript.pyannote[1527].start 9110.74221875
transcript.pyannote[1527].end 9111.73784375
transcript.pyannote[1528].speaker SPEAKER_30
transcript.pyannote[1528].start 9112.05846875
transcript.pyannote[1528].end 9119.53409375
transcript.pyannote[1529].speaker SPEAKER_28
transcript.pyannote[1529].start 9120.05721875
transcript.pyannote[1529].end 9120.69846875
transcript.pyannote[1530].speaker SPEAKER_30
transcript.pyannote[1530].start 9120.17534375
transcript.pyannote[1530].end 9120.90096875
transcript.pyannote[1531].speaker SPEAKER_28
transcript.pyannote[1531].start 9120.90096875
transcript.pyannote[1531].end 9137.59034375
transcript.pyannote[1532].speaker SPEAKER_30
transcript.pyannote[1532].start 9137.32034375
transcript.pyannote[1532].end 9141.28596875
transcript.pyannote[1533].speaker SPEAKER_28
transcript.pyannote[1533].start 9138.29909375
transcript.pyannote[1533].end 9139.58159375
transcript.pyannote[1534].speaker SPEAKER_30
transcript.pyannote[1534].start 9141.96096875
transcript.pyannote[1534].end 9147.54659375
transcript.pyannote[1535].speaker SPEAKER_30
transcript.pyannote[1535].start 9148.10346875
transcript.pyannote[1535].end 9150.56721875
transcript.pyannote[1536].speaker SPEAKER_14
transcript.pyannote[1536].start 9149.30159375
transcript.pyannote[1536].end 9149.33534375
transcript.pyannote[1537].speaker SPEAKER_28
transcript.pyannote[1537].start 9149.33534375
transcript.pyannote[1537].end 9150.53346875
transcript.pyannote[1538].speaker SPEAKER_28
transcript.pyannote[1538].start 9150.56721875
transcript.pyannote[1538].end 9150.58409375
transcript.pyannote[1539].speaker SPEAKER_30
transcript.pyannote[1539].start 9150.58409375
transcript.pyannote[1539].end 9150.60096875
transcript.pyannote[1540].speaker SPEAKER_28
transcript.pyannote[1540].start 9150.60096875
transcript.pyannote[1540].end 9150.63471875
transcript.pyannote[1541].speaker SPEAKER_30
transcript.pyannote[1541].start 9150.63471875
transcript.pyannote[1541].end 9150.78659375
transcript.pyannote[1542].speaker SPEAKER_28
transcript.pyannote[1542].start 9150.78659375
transcript.pyannote[1542].end 9150.85409375
transcript.pyannote[1543].speaker SPEAKER_30
transcript.pyannote[1543].start 9150.85409375
transcript.pyannote[1543].end 9150.92159375
transcript.pyannote[1544].speaker SPEAKER_28
transcript.pyannote[1544].start 9150.92159375
transcript.pyannote[1544].end 9189.27846875
transcript.pyannote[1545].speaker SPEAKER_04
transcript.pyannote[1545].start 9180.58784375
transcript.pyannote[1545].end 9181.38096875
transcript.pyannote[1546].speaker SPEAKER_31
transcript.pyannote[1546].start 9181.38096875
transcript.pyannote[1546].end 9181.43159375
transcript.pyannote[1547].speaker SPEAKER_30
transcript.pyannote[1547].start 9189.27846875
transcript.pyannote[1547].end 9192.58596875
transcript.pyannote[1548].speaker SPEAKER_30
transcript.pyannote[1548].start 9193.46346875
transcript.pyannote[1548].end 9200.31471875
transcript.pyannote[1549].speaker SPEAKER_30
transcript.pyannote[1549].start 9200.78721875
transcript.pyannote[1549].end 9202.40721875
transcript.pyannote[1550].speaker SPEAKER_30
transcript.pyannote[1550].start 9202.74471875
transcript.pyannote[1550].end 9203.47034375
transcript.pyannote[1551].speaker SPEAKER_30
transcript.pyannote[1551].start 9205.44471875
transcript.pyannote[1551].end 9216.56534375
transcript.pyannote[1552].speaker SPEAKER_30
transcript.pyannote[1552].start 9217.07159375
transcript.pyannote[1552].end 9219.41721875
transcript.pyannote[1553].speaker SPEAKER_30
transcript.pyannote[1553].start 9220.46346875
transcript.pyannote[1553].end 9224.02409375
transcript.pyannote[1554].speaker SPEAKER_30
transcript.pyannote[1554].start 9224.27721875
transcript.pyannote[1554].end 9225.94784375
transcript.pyannote[1555].speaker SPEAKER_30
transcript.pyannote[1555].start 9226.63971875
transcript.pyannote[1555].end 9235.36409375
transcript.pyannote[1556].speaker SPEAKER_30
transcript.pyannote[1556].start 9235.83659375
transcript.pyannote[1556].end 9239.85284375
transcript.pyannote[1557].speaker SPEAKER_30
transcript.pyannote[1557].start 9241.06784375
transcript.pyannote[1557].end 9241.84409375
transcript.pyannote[1558].speaker SPEAKER_26
transcript.pyannote[1558].start 9241.89471875
transcript.pyannote[1558].end 9242.19846875
transcript.pyannote[1559].speaker SPEAKER_30
transcript.pyannote[1559].start 9243.10971875
transcript.pyannote[1559].end 9243.83534375
transcript.pyannote[1560].speaker SPEAKER_30
transcript.pyannote[1560].start 9244.69596875
transcript.pyannote[1560].end 9247.02471875
transcript.pyannote[1561].speaker SPEAKER_30
transcript.pyannote[1561].start 9247.12596875
transcript.pyannote[1561].end 9248.32409375
transcript.pyannote[1562].speaker SPEAKER_30
transcript.pyannote[1562].start 9249.64034375
transcript.pyannote[1562].end 9253.47096875
transcript.pyannote[1563].speaker SPEAKER_30
transcript.pyannote[1563].start 9254.09534375
transcript.pyannote[1563].end 9255.44534375
transcript.pyannote[1564].speaker SPEAKER_30
transcript.pyannote[1564].start 9256.35659375
transcript.pyannote[1564].end 9256.93034375
transcript.pyannote[1565].speaker SPEAKER_30
transcript.pyannote[1565].start 9257.30159375
transcript.pyannote[1565].end 9261.43596875
transcript.pyannote[1566].speaker SPEAKER_30
transcript.pyannote[1566].start 9262.33034375
transcript.pyannote[1566].end 9267.71346875
transcript.pyannote[1567].speaker SPEAKER_30
transcript.pyannote[1567].start 9268.10159375
transcript.pyannote[1567].end 9270.54846875
transcript.pyannote[1568].speaker SPEAKER_30
transcript.pyannote[1568].start 9271.07159375
transcript.pyannote[1568].end 9272.70846875
transcript.pyannote[1569].speaker SPEAKER_30
transcript.pyannote[1569].start 9273.41721875
transcript.pyannote[1569].end 9277.21409375
transcript.pyannote[1570].speaker SPEAKER_30
transcript.pyannote[1570].start 9277.73721875
transcript.pyannote[1570].end 9281.55096875
transcript.pyannote[1571].speaker SPEAKER_30
transcript.pyannote[1571].start 9282.63096875
transcript.pyannote[1571].end 9283.03596875
transcript.pyannote[1572].speaker SPEAKER_30
transcript.pyannote[1572].start 9283.54221875
transcript.pyannote[1572].end 9284.40284375
transcript.pyannote[1573].speaker SPEAKER_30
transcript.pyannote[1573].start 9284.95971875
transcript.pyannote[1573].end 9287.62596875
transcript.pyannote[1574].speaker SPEAKER_30
transcript.pyannote[1574].start 9288.25034375
transcript.pyannote[1574].end 9297.97034375
transcript.pyannote[1575].speaker SPEAKER_28
transcript.pyannote[1575].start 9297.97034375
transcript.pyannote[1575].end 9318.55784375
transcript.pyannote[1576].speaker SPEAKER_30
transcript.pyannote[1576].start 9315.50346875
transcript.pyannote[1576].end 9316.88721875
transcript.pyannote[1577].speaker SPEAKER_30
transcript.pyannote[1577].start 9317.74784375
transcript.pyannote[1577].end 9327.11346875
transcript.pyannote[1578].speaker SPEAKER_28
transcript.pyannote[1578].start 9326.47221875
transcript.pyannote[1578].end 9330.01596875
transcript.pyannote[1579].speaker SPEAKER_30
transcript.pyannote[1579].start 9328.22721875
transcript.pyannote[1579].end 9328.75034375
transcript.pyannote[1580].speaker SPEAKER_30
transcript.pyannote[1580].start 9330.01596875
transcript.pyannote[1580].end 9334.06596875
transcript.pyannote[1581].speaker SPEAKER_30
transcript.pyannote[1581].start 9334.67346875
transcript.pyannote[1581].end 9336.63096875
transcript.pyannote[1582].speaker SPEAKER_28
transcript.pyannote[1582].start 9337.32284375
transcript.pyannote[1582].end 9338.75721875
transcript.pyannote[1583].speaker SPEAKER_30
transcript.pyannote[1583].start 9337.57596875
transcript.pyannote[1583].end 9341.77784375
transcript.pyannote[1584].speaker SPEAKER_30
transcript.pyannote[1584].start 9342.41909375
transcript.pyannote[1584].end 9343.26284375
transcript.pyannote[1585].speaker SPEAKER_30
transcript.pyannote[1585].start 9343.76909375
transcript.pyannote[1585].end 9364.20471875
transcript.pyannote[1586].speaker SPEAKER_30
transcript.pyannote[1586].start 9364.76159375
transcript.pyannote[1586].end 9371.79846875
transcript.pyannote[1587].speaker SPEAKER_28
transcript.pyannote[1587].start 9371.79846875
transcript.pyannote[1587].end 9376.42221875
transcript.pyannote[1588].speaker SPEAKER_30
transcript.pyannote[1588].start 9375.76409375
transcript.pyannote[1588].end 9377.45159375
transcript.pyannote[1589].speaker SPEAKER_30
transcript.pyannote[1589].start 9377.89034375
transcript.pyannote[1589].end 9390.14159375
transcript.pyannote[1590].speaker SPEAKER_28
transcript.pyannote[1590].start 9379.37534375
transcript.pyannote[1590].end 9379.67909375
transcript.pyannote[1591].speaker SPEAKER_28
transcript.pyannote[1591].start 9380.21909375
transcript.pyannote[1591].end 9380.59034375
transcript.pyannote[1592].speaker SPEAKER_28
transcript.pyannote[1592].start 9381.50159375
transcript.pyannote[1592].end 9381.61971875
transcript.pyannote[1593].speaker SPEAKER_13
transcript.pyannote[1593].start 9382.05846875
transcript.pyannote[1593].end 9382.09221875
transcript.pyannote[1594].speaker SPEAKER_28
transcript.pyannote[1594].start 9382.09221875
transcript.pyannote[1594].end 9382.39596875
transcript.pyannote[1595].speaker SPEAKER_30
transcript.pyannote[1595].start 9391.12034375
transcript.pyannote[1595].end 9403.05096875
transcript.pyannote[1596].speaker SPEAKER_30
transcript.pyannote[1596].start 9403.40534375
transcript.pyannote[1596].end 9411.38721875
transcript.pyannote[1597].speaker SPEAKER_25
transcript.pyannote[1597].start 9409.37909375
transcript.pyannote[1597].end 9409.44659375
transcript.pyannote[1598].speaker SPEAKER_28
transcript.pyannote[1598].start 9409.44659375
transcript.pyannote[1598].end 9411.31971875
transcript.pyannote[1599].speaker SPEAKER_30
transcript.pyannote[1599].start 9411.53909375
transcript.pyannote[1599].end 9415.26846875
transcript.pyannote[1600].speaker SPEAKER_30
transcript.pyannote[1600].start 9415.92659375
transcript.pyannote[1600].end 9416.51721875
transcript.pyannote[1601].speaker SPEAKER_28
transcript.pyannote[1601].start 9417.44534375
transcript.pyannote[1601].end 9418.54221875
transcript.pyannote[1602].speaker SPEAKER_13
transcript.pyannote[1602].start 9418.72784375
transcript.pyannote[1602].end 9423.40221875
transcript.pyannote[1603].speaker SPEAKER_09
transcript.pyannote[1603].start 9430.81034375
transcript.pyannote[1603].end 9432.64971875
transcript.pyannote[1604].speaker SPEAKER_09
transcript.pyannote[1604].start 9433.30784375
transcript.pyannote[1604].end 9435.07971875
transcript.pyannote[1605].speaker SPEAKER_13
transcript.pyannote[1605].start 9436.36221875
transcript.pyannote[1605].end 9437.08784375
transcript.pyannote[1606].speaker SPEAKER_09
transcript.pyannote[1606].start 9444.24284375
transcript.pyannote[1606].end 9445.03596875
transcript.pyannote[1607].speaker SPEAKER_09
transcript.pyannote[1607].start 9445.30596875
transcript.pyannote[1607].end 9451.27971875
transcript.pyannote[1608].speaker SPEAKER_09
transcript.pyannote[1608].start 9451.43159375
transcript.pyannote[1608].end 9455.07659375
transcript.pyannote[1609].speaker SPEAKER_09
transcript.pyannote[1609].start 9455.46471875
transcript.pyannote[1609].end 9459.66659375
transcript.pyannote[1610].speaker SPEAKER_09
transcript.pyannote[1610].start 9460.17284375
transcript.pyannote[1610].end 9463.32846875
transcript.pyannote[1611].speaker SPEAKER_09
transcript.pyannote[1611].start 9463.64909375
transcript.pyannote[1611].end 9464.71221875
transcript.pyannote[1612].speaker SPEAKER_09
transcript.pyannote[1612].start 9465.79221875
transcript.pyannote[1612].end 9470.70284375
transcript.pyannote[1613].speaker SPEAKER_25
transcript.pyannote[1613].start 9468.94784375
transcript.pyannote[1613].end 9469.20096875
transcript.pyannote[1614].speaker SPEAKER_29
transcript.pyannote[1614].start 9469.20096875
transcript.pyannote[1614].end 9469.21784375
transcript.pyannote[1615].speaker SPEAKER_09
transcript.pyannote[1615].start 9470.80409375
transcript.pyannote[1615].end 9496.08284375
transcript.pyannote[1616].speaker SPEAKER_09
transcript.pyannote[1616].start 9496.58909375
transcript.pyannote[1616].end 9497.01096875
transcript.pyannote[1617].speaker SPEAKER_09
transcript.pyannote[1617].start 9497.38221875
transcript.pyannote[1617].end 9499.89659375
transcript.pyannote[1618].speaker SPEAKER_29
transcript.pyannote[1618].start 9499.99784375
transcript.pyannote[1618].end 9501.06096875
transcript.pyannote[1619].speaker SPEAKER_29
transcript.pyannote[1619].start 9501.21284375
transcript.pyannote[1619].end 9501.63471875
transcript.pyannote[1620].speaker SPEAKER_09
transcript.pyannote[1620].start 9501.63471875
transcript.pyannote[1620].end 9501.68534375
transcript.pyannote[1621].speaker SPEAKER_29
transcript.pyannote[1621].start 9501.68534375
transcript.pyannote[1621].end 9501.76971875
transcript.pyannote[1622].speaker SPEAKER_09
transcript.pyannote[1622].start 9501.76971875
transcript.pyannote[1622].end 9501.78659375
transcript.pyannote[1623].speaker SPEAKER_09
transcript.pyannote[1623].start 9501.92159375
transcript.pyannote[1623].end 9503.62596875
transcript.pyannote[1624].speaker SPEAKER_29
transcript.pyannote[1624].start 9504.33471875
transcript.pyannote[1624].end 9505.54971875
transcript.pyannote[1625].speaker SPEAKER_29
transcript.pyannote[1625].start 9506.03909375
transcript.pyannote[1625].end 9511.99596875
transcript.pyannote[1626].speaker SPEAKER_09
transcript.pyannote[1626].start 9511.11846875
transcript.pyannote[1626].end 9511.47284375
transcript.pyannote[1627].speaker SPEAKER_29
transcript.pyannote[1627].start 9512.85659375
transcript.pyannote[1627].end 9515.47221875
transcript.pyannote[1628].speaker SPEAKER_29
transcript.pyannote[1628].start 9516.18096875
transcript.pyannote[1628].end 9517.48034375
transcript.pyannote[1629].speaker SPEAKER_29
transcript.pyannote[1629].start 9517.80096875
transcript.pyannote[1629].end 9518.96534375
transcript.pyannote[1630].speaker SPEAKER_29
transcript.pyannote[1630].start 9519.06659375
transcript.pyannote[1630].end 9520.72034375
transcript.pyannote[1631].speaker SPEAKER_29
transcript.pyannote[1631].start 9521.02409375
transcript.pyannote[1631].end 9523.26846875
transcript.pyannote[1632].speaker SPEAKER_25
transcript.pyannote[1632].start 9523.26846875
transcript.pyannote[1632].end 9523.30221875
transcript.pyannote[1633].speaker SPEAKER_29
transcript.pyannote[1633].start 9523.28534375
transcript.pyannote[1633].end 9524.09534375
transcript.pyannote[1634].speaker SPEAKER_25
transcript.pyannote[1634].start 9523.31909375
transcript.pyannote[1634].end 9523.43721875
transcript.pyannote[1635].speaker SPEAKER_29
transcript.pyannote[1635].start 9524.44971875
transcript.pyannote[1635].end 9526.33971875
transcript.pyannote[1636].speaker SPEAKER_29
transcript.pyannote[1636].start 9526.77846875
transcript.pyannote[1636].end 9527.52096875
transcript.pyannote[1637].speaker SPEAKER_29
transcript.pyannote[1637].start 9528.07784375
transcript.pyannote[1637].end 9528.97221875
transcript.pyannote[1638].speaker SPEAKER_09
transcript.pyannote[1638].start 9528.97221875
transcript.pyannote[1638].end 9536.80221875
transcript.pyannote[1639].speaker SPEAKER_29
transcript.pyannote[1639].start 9536.80221875
transcript.pyannote[1639].end 9537.00471875
transcript.pyannote[1640].speaker SPEAKER_09
transcript.pyannote[1640].start 9537.00471875
transcript.pyannote[1640].end 9539.36721875
transcript.pyannote[1641].speaker SPEAKER_29
transcript.pyannote[1641].start 9537.03846875
transcript.pyannote[1641].end 9537.10596875
transcript.pyannote[1642].speaker SPEAKER_09
transcript.pyannote[1642].start 9540.16034375
transcript.pyannote[1642].end 9542.10096875
transcript.pyannote[1643].speaker SPEAKER_29
transcript.pyannote[1643].start 9542.94471875
transcript.pyannote[1643].end 9549.54284375
transcript.pyannote[1644].speaker SPEAKER_09
transcript.pyannote[1644].start 9547.41659375
transcript.pyannote[1644].end 9547.75409375
transcript.pyannote[1645].speaker SPEAKER_29
transcript.pyannote[1645].start 9549.66096875
transcript.pyannote[1645].end 9556.86659375
transcript.pyannote[1646].speaker SPEAKER_29
transcript.pyannote[1646].start 9557.33909375
transcript.pyannote[1646].end 9558.01409375
transcript.pyannote[1647].speaker SPEAKER_29
transcript.pyannote[1647].start 9558.35159375
transcript.pyannote[1647].end 9562.55346875
transcript.pyannote[1648].speaker SPEAKER_29
transcript.pyannote[1648].start 9562.89096875
transcript.pyannote[1648].end 9565.96221875
transcript.pyannote[1649].speaker SPEAKER_29
transcript.pyannote[1649].start 9566.16471875
transcript.pyannote[1649].end 9573.97784375
transcript.pyannote[1650].speaker SPEAKER_09
transcript.pyannote[1650].start 9570.77159375
transcript.pyannote[1650].end 9571.21034375
transcript.pyannote[1651].speaker SPEAKER_09
transcript.pyannote[1651].start 9573.97784375
transcript.pyannote[1651].end 9582.92159375
transcript.pyannote[1652].speaker SPEAKER_09
transcript.pyannote[1652].start 9582.98909375
transcript.pyannote[1652].end 9585.50346875
transcript.pyannote[1653].speaker SPEAKER_25
transcript.pyannote[1653].start 9583.29284375
transcript.pyannote[1653].end 9583.61346875
transcript.pyannote[1654].speaker SPEAKER_13
transcript.pyannote[1654].start 9587.79846875
transcript.pyannote[1654].end 9588.79409375
transcript.pyannote[1655].speaker SPEAKER_09
transcript.pyannote[1655].start 9590.34659375
transcript.pyannote[1655].end 9591.10596875
transcript.pyannote[1656].speaker SPEAKER_09
transcript.pyannote[1656].start 9591.40971875
transcript.pyannote[1656].end 9592.16909375
transcript.pyannote[1657].speaker SPEAKER_09
transcript.pyannote[1657].start 9592.32096875
transcript.pyannote[1657].end 9594.80159375
transcript.pyannote[1658].speaker SPEAKER_09
transcript.pyannote[1658].start 9595.34159375
transcript.pyannote[1658].end 9597.90659375
transcript.pyannote[1659].speaker SPEAKER_09
transcript.pyannote[1659].start 9598.00784375
transcript.pyannote[1659].end 9599.18909375
transcript.pyannote[1660].speaker SPEAKER_09
transcript.pyannote[1660].start 9599.56034375
transcript.pyannote[1660].end 9600.42096875
transcript.pyannote[1661].speaker SPEAKER_09
transcript.pyannote[1661].start 9600.69096875
transcript.pyannote[1661].end 9602.68221875
transcript.pyannote[1662].speaker SPEAKER_09
transcript.pyannote[1662].start 9602.91846875
transcript.pyannote[1662].end 9603.88034375
transcript.pyannote[1663].speaker SPEAKER_09
transcript.pyannote[1663].start 9604.11659375
transcript.pyannote[1663].end 9605.44971875
transcript.pyannote[1664].speaker SPEAKER_09
transcript.pyannote[1664].start 9605.92221875
transcript.pyannote[1664].end 9606.49596875
transcript.pyannote[1665].speaker SPEAKER_14
transcript.pyannote[1665].start 9606.04034375
transcript.pyannote[1665].end 9611.64284375
transcript.pyannote[1666].speaker SPEAKER_09
transcript.pyannote[1666].start 9609.44909375
transcript.pyannote[1666].end 9610.24221875
transcript.pyannote[1667].speaker SPEAKER_14
transcript.pyannote[1667].start 9611.69346875
transcript.pyannote[1667].end 9630.22221875
transcript.pyannote[1668].speaker SPEAKER_14
transcript.pyannote[1668].start 9630.76221875
transcript.pyannote[1668].end 9632.04471875
transcript.pyannote[1669].speaker SPEAKER_14
transcript.pyannote[1669].start 9632.61846875
transcript.pyannote[1669].end 9637.42784375
transcript.pyannote[1670].speaker SPEAKER_14
transcript.pyannote[1670].start 9638.40659375
transcript.pyannote[1670].end 9639.43596875
transcript.pyannote[1671].speaker SPEAKER_14
transcript.pyannote[1671].start 9639.67221875
transcript.pyannote[1671].end 9640.97159375
transcript.pyannote[1672].speaker SPEAKER_09
transcript.pyannote[1672].start 9640.97159375
transcript.pyannote[1672].end 9666.95909375
transcript.pyannote[1673].speaker SPEAKER_25
transcript.pyannote[1673].start 9645.91596875
transcript.pyannote[1673].end 9646.59096875
transcript.pyannote[1674].speaker SPEAKER_25
transcript.pyannote[1674].start 9648.48096875
transcript.pyannote[1674].end 9648.76784375
transcript.pyannote[1675].speaker SPEAKER_09
transcript.pyannote[1675].start 9667.36409375
transcript.pyannote[1675].end 9670.51971875
transcript.pyannote[1676].speaker SPEAKER_14
transcript.pyannote[1676].start 9670.60409375
transcript.pyannote[1676].end 9670.85721875
transcript.pyannote[1677].speaker SPEAKER_09
transcript.pyannote[1677].start 9670.85721875
transcript.pyannote[1677].end 9671.02596875
transcript.pyannote[1678].speaker SPEAKER_14
transcript.pyannote[1678].start 9671.02596875
transcript.pyannote[1678].end 9687.15846875
transcript.pyannote[1679].speaker SPEAKER_14
transcript.pyannote[1679].start 9687.25971875
transcript.pyannote[1679].end 9704.03346875
transcript.pyannote[1680].speaker SPEAKER_15
transcript.pyannote[1680].start 9689.92596875
transcript.pyannote[1680].end 9689.95971875
transcript.pyannote[1681].speaker SPEAKER_09
transcript.pyannote[1681].start 9703.64534375
transcript.pyannote[1681].end 9703.66221875
transcript.pyannote[1682].speaker SPEAKER_20
transcript.pyannote[1682].start 9703.66221875
transcript.pyannote[1682].end 9704.15159375
transcript.pyannote[1683].speaker SPEAKER_09
transcript.pyannote[1683].start 9704.03346875
transcript.pyannote[1683].end 9704.05034375
transcript.pyannote[1684].speaker SPEAKER_14
transcript.pyannote[1684].start 9704.05034375
transcript.pyannote[1684].end 9704.77596875
transcript.pyannote[1685].speaker SPEAKER_09
transcript.pyannote[1685].start 9704.15159375
transcript.pyannote[1685].end 9704.28659375
transcript.pyannote[1686].speaker SPEAKER_09
transcript.pyannote[1686].start 9704.75909375
transcript.pyannote[1686].end 9706.14284375
transcript.pyannote[1687].speaker SPEAKER_20
transcript.pyannote[1687].start 9704.77596875
transcript.pyannote[1687].end 9705.11346875
transcript.pyannote[1688].speaker SPEAKER_20
transcript.pyannote[1688].start 9705.43409375
transcript.pyannote[1688].end 9706.85159375
transcript.pyannote[1689].speaker SPEAKER_09
transcript.pyannote[1689].start 9706.85159375
transcript.pyannote[1689].end 9722.03909375
transcript.pyannote[1690].speaker SPEAKER_14
transcript.pyannote[1690].start 9722.03909375
transcript.pyannote[1690].end 9722.46096875
transcript.pyannote[1691].speaker SPEAKER_09
transcript.pyannote[1691].start 9722.46096875
transcript.pyannote[1691].end 9722.49471875
transcript.pyannote[1692].speaker SPEAKER_09
transcript.pyannote[1692].start 9722.73096875
transcript.pyannote[1692].end 9722.79846875
transcript.pyannote[1693].speaker SPEAKER_14
transcript.pyannote[1693].start 9722.79846875
transcript.pyannote[1693].end 9737.22659375
transcript.pyannote[1694].speaker SPEAKER_09
transcript.pyannote[1694].start 9723.18659375
transcript.pyannote[1694].end 9723.87846875
transcript.pyannote[1695].speaker SPEAKER_00
transcript.pyannote[1695].start 9733.36221875
transcript.pyannote[1695].end 9733.69971875
transcript.pyannote[1696].speaker SPEAKER_14
transcript.pyannote[1696].start 9738.03659375
transcript.pyannote[1696].end 9738.96471875
transcript.pyannote[1697].speaker SPEAKER_09
transcript.pyannote[1697].start 9738.96471875
transcript.pyannote[1697].end 9744.92159375
transcript.pyannote[1698].speaker SPEAKER_14
transcript.pyannote[1698].start 9743.58846875
transcript.pyannote[1698].end 9754.99596875
transcript.pyannote[1699].speaker SPEAKER_09
transcript.pyannote[1699].start 9754.30409375
transcript.pyannote[1699].end 9762.35346875
transcript.pyannote[1700].speaker SPEAKER_14
transcript.pyannote[1700].start 9758.50596875
transcript.pyannote[1700].end 9758.70846875
transcript.pyannote[1701].speaker SPEAKER_14
transcript.pyannote[1701].start 9758.74221875
transcript.pyannote[1701].end 9758.92784375
transcript.pyannote[1702].speaker SPEAKER_14
transcript.pyannote[1702].start 9759.14721875
transcript.pyannote[1702].end 9759.26534375
transcript.pyannote[1703].speaker SPEAKER_20
transcript.pyannote[1703].start 9761.64471875
transcript.pyannote[1703].end 9762.57284375
transcript.pyannote[1704].speaker SPEAKER_09
transcript.pyannote[1704].start 9762.57284375
transcript.pyannote[1704].end 9763.68659375
transcript.pyannote[1705].speaker SPEAKER_09
transcript.pyannote[1705].start 9763.90596875
transcript.pyannote[1705].end 9765.34034375
transcript.pyannote[1706].speaker SPEAKER_20
transcript.pyannote[1706].start 9764.88471875
transcript.pyannote[1706].end 9766.11659375
transcript.pyannote[1707].speaker SPEAKER_09
transcript.pyannote[1707].start 9765.96471875
transcript.pyannote[1707].end 9767.93909375
transcript.pyannote[1708].speaker SPEAKER_09
transcript.pyannote[1708].start 9768.46221875
transcript.pyannote[1708].end 9769.69409375
transcript.pyannote[1709].speaker SPEAKER_09
transcript.pyannote[1709].start 9769.82909375
transcript.pyannote[1709].end 9777.25409375
transcript.pyannote[1710].speaker SPEAKER_14
transcript.pyannote[1710].start 9777.00096875
transcript.pyannote[1710].end 9802.58346875
transcript.pyannote[1711].speaker SPEAKER_25
transcript.pyannote[1711].start 9792.54284375
transcript.pyannote[1711].end 9792.74534375
transcript.pyannote[1712].speaker SPEAKER_09
transcript.pyannote[1712].start 9797.03159375
transcript.pyannote[1712].end 9797.48721875
transcript.pyannote[1713].speaker SPEAKER_09
transcript.pyannote[1713].start 9802.58346875
transcript.pyannote[1713].end 9820.25159375
transcript.pyannote[1714].speaker SPEAKER_09
transcript.pyannote[1714].start 9820.58909375
transcript.pyannote[1714].end 9824.89221875
transcript.pyannote[1715].speaker SPEAKER_09
transcript.pyannote[1715].start 9825.11159375
transcript.pyannote[1715].end 9828.79034375
transcript.pyannote[1716].speaker SPEAKER_09
transcript.pyannote[1716].start 9828.87471875
transcript.pyannote[1716].end 9831.54096875
transcript.pyannote[1717].speaker SPEAKER_09
transcript.pyannote[1717].start 9831.64221875
transcript.pyannote[1717].end 9833.29596875
transcript.pyannote[1718].speaker SPEAKER_14
transcript.pyannote[1718].start 9833.07659375
transcript.pyannote[1718].end 9846.30659375
transcript.pyannote[1719].speaker SPEAKER_14
transcript.pyannote[1719].start 9846.77909375
transcript.pyannote[1719].end 9850.74471875
transcript.pyannote[1720].speaker SPEAKER_25
transcript.pyannote[1720].start 9850.74471875
transcript.pyannote[1720].end 9850.82909375
transcript.pyannote[1721].speaker SPEAKER_14
transcript.pyannote[1721].start 9850.82909375
transcript.pyannote[1721].end 9870.99471875
transcript.pyannote[1722].speaker SPEAKER_25
transcript.pyannote[1722].start 9850.86284375
transcript.pyannote[1722].end 9850.93034375
transcript.pyannote[1723].speaker SPEAKER_14
transcript.pyannote[1723].start 9871.38284375
transcript.pyannote[1723].end 9876.96846875
transcript.pyannote[1724].speaker SPEAKER_09
transcript.pyannote[1724].start 9876.96846875
transcript.pyannote[1724].end 9887.78534375
transcript.pyannote[1725].speaker SPEAKER_14
transcript.pyannote[1725].start 9887.00909375
transcript.pyannote[1725].end 9890.60346875
transcript.pyannote[1726].speaker SPEAKER_09
transcript.pyannote[1726].start 9888.51096875
transcript.pyannote[1726].end 9889.00034375
transcript.pyannote[1727].speaker SPEAKER_09
transcript.pyannote[1727].start 9889.75971875
transcript.pyannote[1727].end 9891.09284375
transcript.pyannote[1728].speaker SPEAKER_14
transcript.pyannote[1728].start 9891.09284375
transcript.pyannote[1728].end 9893.64096875
transcript.pyannote[1729].speaker SPEAKER_14
transcript.pyannote[1729].start 9894.21471875
transcript.pyannote[1729].end 9894.23159375
transcript.pyannote[1730].speaker SPEAKER_09
transcript.pyannote[1730].start 9894.23159375
transcript.pyannote[1730].end 9902.44971875
transcript.pyannote[1731].speaker SPEAKER_09
transcript.pyannote[1731].start 9902.87159375
transcript.pyannote[1731].end 9906.36471875
transcript.pyannote[1732].speaker SPEAKER_09
transcript.pyannote[1732].start 9907.66409375
transcript.pyannote[1732].end 9910.68471875
transcript.pyannote[1733].speaker SPEAKER_09
transcript.pyannote[1733].start 9910.81971875
transcript.pyannote[1733].end 9914.04284375
transcript.pyannote[1734].speaker SPEAKER_28
transcript.pyannote[1734].start 9913.72221875
transcript.pyannote[1734].end 9914.36346875
transcript.pyannote[1735].speaker SPEAKER_09
transcript.pyannote[1735].start 9914.36346875
transcript.pyannote[1735].end 9927.71159375
transcript.pyannote[1736].speaker SPEAKER_22
transcript.pyannote[1736].start 9927.54284375
transcript.pyannote[1736].end 9928.60596875
transcript.pyannote[1737].speaker SPEAKER_09
transcript.pyannote[1737].start 9927.81284375
transcript.pyannote[1737].end 9929.31471875
transcript.pyannote[1738].speaker SPEAKER_09
transcript.pyannote[1738].start 9929.66909375
transcript.pyannote[1738].end 9941.24534375
transcript.pyannote[1739].speaker SPEAKER_22
transcript.pyannote[1739].start 9933.65159375
transcript.pyannote[1739].end 9934.83284375
transcript.pyannote[1740].speaker SPEAKER_00
transcript.pyannote[1740].start 9934.83284375
transcript.pyannote[1740].end 9934.90034375
transcript.pyannote[1741].speaker SPEAKER_00
transcript.pyannote[1741].start 9934.93409375
transcript.pyannote[1741].end 9934.96784375
transcript.pyannote[1742].speaker SPEAKER_25
transcript.pyannote[1742].start 9937.39784375
transcript.pyannote[1742].end 9937.43159375
transcript.pyannote[1743].speaker SPEAKER_00
transcript.pyannote[1743].start 9937.46534375
transcript.pyannote[1743].end 9937.48221875
transcript.pyannote[1744].speaker SPEAKER_25
transcript.pyannote[1744].start 9937.48221875
transcript.pyannote[1744].end 9937.51596875
transcript.pyannote[1745].speaker SPEAKER_28
transcript.pyannote[1745].start 9937.51596875
transcript.pyannote[1745].end 9937.65096875
transcript.pyannote[1746].speaker SPEAKER_09
transcript.pyannote[1746].start 9941.54909375
transcript.pyannote[1746].end 9955.09971875
transcript.pyannote[1747].speaker SPEAKER_28
transcript.pyannote[1747].start 9950.35784375
transcript.pyannote[1747].end 9950.54346875
transcript.pyannote[1748].speaker SPEAKER_28
transcript.pyannote[1748].start 9954.18846875
transcript.pyannote[1748].end 9954.98159375
transcript.pyannote[1749].speaker SPEAKER_09
transcript.pyannote[1749].start 9955.13346875
transcript.pyannote[1749].end 9955.26846875
transcript.pyannote[1750].speaker SPEAKER_28
transcript.pyannote[1750].start 9955.26846875
transcript.pyannote[1750].end 9955.38659375
transcript.pyannote[1751].speaker SPEAKER_09
transcript.pyannote[1751].start 9955.38659375
transcript.pyannote[1751].end 9955.45409375
transcript.pyannote[1752].speaker SPEAKER_09
transcript.pyannote[1752].start 9955.55534375
transcript.pyannote[1752].end 9956.80409375
transcript.pyannote[1753].speaker SPEAKER_28
transcript.pyannote[1753].start 9956.87159375
transcript.pyannote[1753].end 9958.44096875
transcript.pyannote[1754].speaker SPEAKER_09
transcript.pyannote[1754].start 9957.34409375
transcript.pyannote[1754].end 9957.58034375
transcript.pyannote[1755].speaker SPEAKER_09
transcript.pyannote[1755].start 9958.44096875
transcript.pyannote[1755].end 9968.26221875
transcript.pyannote[1756].speaker SPEAKER_28
transcript.pyannote[1756].start 9967.87409375
transcript.pyannote[1756].end 9969.27471875
transcript.pyannote[1757].speaker SPEAKER_09
transcript.pyannote[1757].start 9969.27471875
transcript.pyannote[1757].end 9969.29159375
transcript.pyannote[1758].speaker SPEAKER_28
transcript.pyannote[1758].start 9969.29159375
transcript.pyannote[1758].end 9969.32534375
transcript.pyannote[1759].speaker SPEAKER_09
transcript.pyannote[1759].start 9969.32534375
transcript.pyannote[1759].end 9974.18534375
transcript.pyannote[1760].speaker SPEAKER_09
transcript.pyannote[1760].start 9974.87721875
transcript.pyannote[1760].end 9977.71221875
transcript.pyannote[1761].speaker SPEAKER_28
transcript.pyannote[1761].start 9977.71221875
transcript.pyannote[1761].end 9977.94846875
transcript.pyannote[1762].speaker SPEAKER_09
transcript.pyannote[1762].start 9978.13409375
transcript.pyannote[1762].end 9979.78784375
transcript.pyannote[1763].speaker SPEAKER_09
transcript.pyannote[1763].start 9980.07471875
transcript.pyannote[1763].end 9988.83284375
transcript.pyannote[1764].speaker SPEAKER_28
transcript.pyannote[1764].start 9988.00596875
transcript.pyannote[1764].end 9988.34346875
transcript.pyannote[1765].speaker SPEAKER_09
transcript.pyannote[1765].start 9988.93409375
transcript.pyannote[1765].end 9996.07221875
transcript.pyannote[1766].speaker SPEAKER_09
transcript.pyannote[1766].start 9996.34221875
transcript.pyannote[1766].end 10002.99096875
transcript.pyannote[1767].speaker SPEAKER_28
transcript.pyannote[1767].start 10001.60721875
transcript.pyannote[1767].end 10002.04596875
transcript.pyannote[1768].speaker SPEAKER_28
transcript.pyannote[1768].start 10002.72096875
transcript.pyannote[1768].end 10037.66909375
transcript.pyannote[1769].speaker SPEAKER_09
transcript.pyannote[1769].start 10037.28096875
transcript.pyannote[1769].end 10043.06909375
transcript.pyannote[1770].speaker SPEAKER_09
transcript.pyannote[1770].start 10043.33909375
transcript.pyannote[1770].end 10043.89596875
transcript.pyannote[1771].speaker SPEAKER_09
transcript.pyannote[1771].start 10044.33471875
transcript.pyannote[1771].end 10049.90346875
transcript.pyannote[1772].speaker SPEAKER_09
transcript.pyannote[1772].start 10050.25784375
transcript.pyannote[1772].end 10054.37534375
transcript.pyannote[1773].speaker SPEAKER_09
transcript.pyannote[1773].start 10054.93221875
transcript.pyannote[1773].end 10056.68721875
transcript.pyannote[1774].speaker SPEAKER_28
transcript.pyannote[1774].start 10056.68721875
transcript.pyannote[1774].end 10067.65596875
transcript.pyannote[1775].speaker SPEAKER_09
transcript.pyannote[1775].start 10067.65596875
transcript.pyannote[1775].end 10069.39409375
transcript.pyannote[1776].speaker SPEAKER_09
transcript.pyannote[1776].start 10070.44034375
transcript.pyannote[1776].end 10070.99721875
transcript.pyannote[1777].speaker SPEAKER_09
transcript.pyannote[1777].start 10072.51596875
transcript.pyannote[1777].end 10074.05159375
transcript.pyannote[1778].speaker SPEAKER_09
transcript.pyannote[1778].start 10074.86159375
transcript.pyannote[1778].end 10080.49784375
transcript.pyannote[1779].speaker SPEAKER_28
transcript.pyannote[1779].start 10080.49784375
transcript.pyannote[1779].end 10080.53159375
transcript.pyannote[1780].speaker SPEAKER_09
transcript.pyannote[1780].start 10080.53159375
transcript.pyannote[1780].end 10080.59909375
transcript.pyannote[1781].speaker SPEAKER_28
transcript.pyannote[1781].start 10080.59909375
transcript.pyannote[1781].end 10080.66659375
transcript.pyannote[1782].speaker SPEAKER_09
transcript.pyannote[1782].start 10080.66659375
transcript.pyannote[1782].end 10080.71721875
transcript.pyannote[1783].speaker SPEAKER_28
transcript.pyannote[1783].start 10080.71721875
transcript.pyannote[1783].end 10080.75096875
transcript.pyannote[1784].speaker SPEAKER_09
transcript.pyannote[1784].start 10080.75096875
transcript.pyannote[1784].end 10080.86909375
transcript.pyannote[1785].speaker SPEAKER_28
transcript.pyannote[1785].start 10080.86909375
transcript.pyannote[1785].end 10090.18409375
transcript.pyannote[1786].speaker SPEAKER_09
transcript.pyannote[1786].start 10082.79284375
transcript.pyannote[1786].end 10082.97846875
transcript.pyannote[1787].speaker SPEAKER_09
transcript.pyannote[1787].start 10090.18409375
transcript.pyannote[1787].end 10098.03096875
transcript.pyannote[1788].speaker SPEAKER_28
transcript.pyannote[1788].start 10098.03096875
transcript.pyannote[1788].end 10099.46534375
transcript.pyannote[1789].speaker SPEAKER_09
transcript.pyannote[1789].start 10099.46534375
transcript.pyannote[1789].end 10099.63409375
transcript.pyannote[1790].speaker SPEAKER_28
transcript.pyannote[1790].start 10099.63409375
transcript.pyannote[1790].end 10105.45596875
transcript.pyannote[1791].speaker SPEAKER_09
transcript.pyannote[1791].start 10105.45596875
transcript.pyannote[1791].end 10110.02909375
transcript.pyannote[1792].speaker SPEAKER_28
transcript.pyannote[1792].start 10108.47659375
transcript.pyannote[1792].end 10108.81409375
transcript.pyannote[1793].speaker SPEAKER_28
transcript.pyannote[1793].start 10110.02909375
transcript.pyannote[1793].end 10110.97409375
transcript.pyannote[1794].speaker SPEAKER_09
transcript.pyannote[1794].start 10110.97409375
transcript.pyannote[1794].end 10111.02471875
transcript.pyannote[1795].speaker SPEAKER_28
transcript.pyannote[1795].start 10111.02471875
transcript.pyannote[1795].end 10114.53471875
transcript.pyannote[1796].speaker SPEAKER_28
transcript.pyannote[1796].start 10115.04096875
transcript.pyannote[1796].end 10120.15409375
transcript.pyannote[1797].speaker SPEAKER_09
transcript.pyannote[1797].start 10120.15409375
transcript.pyannote[1797].end 10122.98909375
transcript.pyannote[1798].speaker SPEAKER_28
transcript.pyannote[1798].start 10121.13284375
transcript.pyannote[1798].end 10122.97221875
transcript.pyannote[1799].speaker SPEAKER_13
transcript.pyannote[1799].start 10122.97221875
transcript.pyannote[1799].end 10125.77346875
transcript.pyannote[1800].speaker SPEAKER_13
transcript.pyannote[1800].start 10129.63784375
transcript.pyannote[1800].end 10131.25784375
transcript.pyannote[1801].speaker SPEAKER_13
transcript.pyannote[1801].start 10733.00346875
transcript.pyannote[1801].end 10735.65284375
transcript.pyannote[1802].speaker SPEAKER_32
transcript.pyannote[1802].start 10747.44846875
transcript.pyannote[1802].end 10750.16534375
transcript.pyannote[1803].speaker SPEAKER_13
transcript.pyannote[1803].start 10750.40159375
transcript.pyannote[1803].end 10751.04284375
transcript.pyannote[1804].speaker SPEAKER_32
transcript.pyannote[1804].start 10755.66659375
transcript.pyannote[1804].end 10756.94909375
transcript.pyannote[1805].speaker SPEAKER_32
transcript.pyannote[1805].start 10757.87721875
transcript.pyannote[1805].end 10767.24284375
transcript.pyannote[1806].speaker SPEAKER_20
transcript.pyannote[1806].start 10766.43284375
transcript.pyannote[1806].end 10767.81659375
transcript.pyannote[1807].speaker SPEAKER_32
transcript.pyannote[1807].start 10768.03596875
transcript.pyannote[1807].end 10790.80034375
transcript.pyannote[1808].speaker SPEAKER_32
transcript.pyannote[1808].start 10791.77909375
transcript.pyannote[1808].end 10798.41096875
transcript.pyannote[1809].speaker SPEAKER_32
transcript.pyannote[1809].start 10798.73159375
transcript.pyannote[1809].end 10800.72284375
transcript.pyannote[1810].speaker SPEAKER_14
transcript.pyannote[1810].start 10799.87909375
transcript.pyannote[1810].end 10802.32596875
transcript.pyannote[1811].speaker SPEAKER_32
transcript.pyannote[1811].start 10802.32596875
transcript.pyannote[1811].end 10804.78971875
transcript.pyannote[1812].speaker SPEAKER_14
transcript.pyannote[1812].start 10803.57471875
transcript.pyannote[1812].end 10804.30034375
transcript.pyannote[1813].speaker SPEAKER_32
transcript.pyannote[1813].start 10805.73471875
transcript.pyannote[1813].end 10806.52784375
transcript.pyannote[1814].speaker SPEAKER_32
transcript.pyannote[1814].start 10806.93284375
transcript.pyannote[1814].end 10819.58909375
transcript.pyannote[1815].speaker SPEAKER_32
transcript.pyannote[1815].start 10820.24721875
transcript.pyannote[1815].end 10825.10721875
transcript.pyannote[1816].speaker SPEAKER_32
transcript.pyannote[1816].start 10825.47846875
transcript.pyannote[1816].end 10829.10659375
transcript.pyannote[1817].speaker SPEAKER_32
transcript.pyannote[1817].start 10829.37659375
transcript.pyannote[1817].end 10831.45221875
transcript.pyannote[1818].speaker SPEAKER_32
transcript.pyannote[1818].start 10831.78971875
transcript.pyannote[1818].end 10840.17659375
transcript.pyannote[1819].speaker SPEAKER_32
transcript.pyannote[1819].start 10842.04971875
transcript.pyannote[1819].end 10846.35284375
transcript.pyannote[1820].speaker SPEAKER_32
transcript.pyannote[1820].start 10846.57221875
transcript.pyannote[1820].end 10849.52534375
transcript.pyannote[1821].speaker SPEAKER_32
transcript.pyannote[1821].start 10849.72784375
transcript.pyannote[1821].end 10857.81096875
transcript.pyannote[1822].speaker SPEAKER_32
transcript.pyannote[1822].start 10858.65471875
transcript.pyannote[1822].end 10864.08846875
transcript.pyannote[1823].speaker SPEAKER_32
transcript.pyannote[1823].start 10864.61159375
transcript.pyannote[1823].end 10869.53909375
transcript.pyannote[1824].speaker SPEAKER_32
transcript.pyannote[1824].start 10870.11284375
transcript.pyannote[1824].end 10882.46534375
transcript.pyannote[1825].speaker SPEAKER_14
transcript.pyannote[1825].start 10882.46534375
transcript.pyannote[1825].end 10897.38284375
transcript.pyannote[1826].speaker SPEAKER_14
transcript.pyannote[1826].start 10897.58534375
transcript.pyannote[1826].end 10909.68471875
transcript.pyannote[1827].speaker SPEAKER_32
transcript.pyannote[1827].start 10909.07721875
transcript.pyannote[1827].end 10911.84471875
transcript.pyannote[1828].speaker SPEAKER_14
transcript.pyannote[1828].start 10911.84471875
transcript.pyannote[1828].end 10925.26034375
transcript.pyannote[1829].speaker SPEAKER_32
transcript.pyannote[1829].start 10913.44784375
transcript.pyannote[1829].end 10919.42159375
transcript.pyannote[1830].speaker SPEAKER_32
transcript.pyannote[1830].start 10920.11346875
transcript.pyannote[1830].end 10936.06034375
transcript.pyannote[1831].speaker SPEAKER_14
transcript.pyannote[1831].start 10927.58909375
transcript.pyannote[1831].end 10932.09471875
transcript.pyannote[1832].speaker SPEAKER_14
transcript.pyannote[1832].start 10932.68534375
transcript.pyannote[1832].end 10955.61846875
transcript.pyannote[1833].speaker SPEAKER_32
transcript.pyannote[1833].start 10954.72409375
transcript.pyannote[1833].end 10973.32034375
transcript.pyannote[1834].speaker SPEAKER_14
transcript.pyannote[1834].start 10958.90909375
transcript.pyannote[1834].end 10959.21284375
transcript.pyannote[1835].speaker SPEAKER_14
transcript.pyannote[1835].start 10971.16034375
transcript.pyannote[1835].end 10976.79659375
transcript.pyannote[1836].speaker SPEAKER_32
transcript.pyannote[1836].start 10976.42534375
transcript.pyannote[1836].end 10984.00221875
transcript.pyannote[1837].speaker SPEAKER_32
transcript.pyannote[1837].start 10984.72784375
transcript.pyannote[1837].end 10985.72346875
transcript.pyannote[1838].speaker SPEAKER_32
transcript.pyannote[1838].start 10986.16221875
transcript.pyannote[1838].end 10986.60096875
transcript.pyannote[1839].speaker SPEAKER_32
transcript.pyannote[1839].start 10987.07346875
transcript.pyannote[1839].end 10988.40659375
transcript.pyannote[1840].speaker SPEAKER_32
transcript.pyannote[1840].start 10988.69346875
transcript.pyannote[1840].end 10990.63409375
transcript.pyannote[1841].speaker SPEAKER_14
transcript.pyannote[1841].start 10988.99721875
transcript.pyannote[1841].end 10992.69284375
transcript.pyannote[1842].speaker SPEAKER_32
transcript.pyannote[1842].start 10991.37659375
transcript.pyannote[1842].end 10992.96284375
transcript.pyannote[1843].speaker SPEAKER_14
transcript.pyannote[1843].start 10992.96284375
transcript.pyannote[1843].end 10993.03034375
transcript.pyannote[1844].speaker SPEAKER_32
transcript.pyannote[1844].start 10993.03034375
transcript.pyannote[1844].end 10993.89096875
transcript.pyannote[1845].speaker SPEAKER_14
transcript.pyannote[1845].start 10993.35096875
transcript.pyannote[1845].end 10993.75596875
transcript.pyannote[1846].speaker SPEAKER_32
transcript.pyannote[1846].start 10994.27909375
transcript.pyannote[1846].end 10994.86971875
transcript.pyannote[1847].speaker SPEAKER_32
transcript.pyannote[1847].start 10995.89909375
transcript.pyannote[1847].end 10996.62471875
transcript.pyannote[1848].speaker SPEAKER_32
transcript.pyannote[1848].start 10997.77221875
transcript.pyannote[1848].end 10998.66659375
transcript.pyannote[1849].speaker SPEAKER_32
transcript.pyannote[1849].start 11000.01659375
transcript.pyannote[1849].end 11000.37096875
transcript.pyannote[1850].speaker SPEAKER_32
transcript.pyannote[1850].start 11001.01221875
transcript.pyannote[1850].end 11003.44221875
transcript.pyannote[1851].speaker SPEAKER_13
transcript.pyannote[1851].start 11001.85596875
transcript.pyannote[1851].end 11002.17659375
transcript.pyannote[1852].speaker SPEAKER_32
transcript.pyannote[1852].start 11004.06659375
transcript.pyannote[1852].end 11005.65284375
transcript.pyannote[1853].speaker SPEAKER_32
transcript.pyannote[1853].start 11005.77096875
transcript.pyannote[1853].end 11007.69471875
transcript.pyannote[1854].speaker SPEAKER_13
transcript.pyannote[1854].start 11005.78784375
transcript.pyannote[1854].end 11007.76221875
transcript.pyannote[1855].speaker SPEAKER_13
transcript.pyannote[1855].start 11008.53846875
transcript.pyannote[1855].end 11009.56784375
transcript.pyannote[1856].speaker SPEAKER_32
transcript.pyannote[1856].start 11012.08221875
transcript.pyannote[1856].end 11013.97221875
transcript.pyannote[1857].speaker SPEAKER_13
transcript.pyannote[1857].start 11012.74034375
transcript.pyannote[1857].end 11013.43221875
transcript.pyannote[1858].speaker SPEAKER_32
transcript.pyannote[1858].start 11014.24221875
transcript.pyannote[1858].end 11014.86659375
transcript.pyannote[1859].speaker SPEAKER_32
transcript.pyannote[1859].start 11015.20409375
transcript.pyannote[1859].end 11016.80721875
transcript.pyannote[1860].speaker SPEAKER_16
transcript.pyannote[1860].start 11015.33909375
transcript.pyannote[1860].end 11015.35596875
transcript.pyannote[1861].speaker SPEAKER_16
transcript.pyannote[1861].start 11015.89596875
transcript.pyannote[1861].end 11018.17409375
transcript.pyannote[1862].speaker SPEAKER_16
transcript.pyannote[1862].start 11020.67159375
transcript.pyannote[1862].end 11021.09346875
transcript.pyannote[1863].speaker SPEAKER_32
transcript.pyannote[1863].start 11022.25784375
transcript.pyannote[1863].end 11022.67971875
transcript.pyannote[1864].speaker SPEAKER_32
transcript.pyannote[1864].start 11022.91596875
transcript.pyannote[1864].end 11024.13096875
transcript.pyannote[1865].speaker SPEAKER_32
transcript.pyannote[1865].start 11024.56971875
transcript.pyannote[1865].end 11026.72971875
transcript.pyannote[1866].speaker SPEAKER_32
transcript.pyannote[1866].start 11026.91534375
transcript.pyannote[1866].end 11039.58846875
transcript.pyannote[1867].speaker SPEAKER_28
transcript.pyannote[1867].start 11039.89221875
transcript.pyannote[1867].end 11041.96784375
transcript.pyannote[1868].speaker SPEAKER_28
transcript.pyannote[1868].start 11042.22096875
transcript.pyannote[1868].end 11066.87534375
transcript.pyannote[1869].speaker SPEAKER_32
transcript.pyannote[1869].start 11064.58034375
transcript.pyannote[1869].end 11069.03534375
transcript.pyannote[1870].speaker SPEAKER_28
transcript.pyannote[1870].start 11069.62596875
transcript.pyannote[1870].end 11076.30846875
transcript.pyannote[1871].speaker SPEAKER_32
transcript.pyannote[1871].start 11073.70971875
transcript.pyannote[1871].end 11077.20284375
transcript.pyannote[1872].speaker SPEAKER_28
transcript.pyannote[1872].start 11076.67971875
transcript.pyannote[1872].end 11079.68346875
transcript.pyannote[1873].speaker SPEAKER_32
transcript.pyannote[1873].start 11078.63721875
transcript.pyannote[1873].end 11081.38784375
transcript.pyannote[1874].speaker SPEAKER_28
transcript.pyannote[1874].start 11080.03784375
transcript.pyannote[1874].end 11080.15596875
transcript.pyannote[1875].speaker SPEAKER_28
transcript.pyannote[1875].start 11082.45096875
transcript.pyannote[1875].end 11083.75034375
transcript.pyannote[1876].speaker SPEAKER_32
transcript.pyannote[1876].start 11082.70409375
transcript.pyannote[1876].end 11088.22221875
transcript.pyannote[1877].speaker SPEAKER_28
transcript.pyannote[1877].start 11086.46721875
transcript.pyannote[1877].end 11086.66971875
transcript.pyannote[1878].speaker SPEAKER_28
transcript.pyannote[1878].start 11087.81721875
transcript.pyannote[1878].end 11090.26409375
transcript.pyannote[1879].speaker SPEAKER_32
transcript.pyannote[1879].start 11089.97721875
transcript.pyannote[1879].end 11103.44346875
transcript.pyannote[1880].speaker SPEAKER_32
transcript.pyannote[1880].start 11103.79784375
transcript.pyannote[1880].end 11106.75096875
transcript.pyannote[1881].speaker SPEAKER_32
transcript.pyannote[1881].start 11106.98721875
transcript.pyannote[1881].end 11110.10909375
transcript.pyannote[1882].speaker SPEAKER_32
transcript.pyannote[1882].start 11110.46346875
transcript.pyannote[1882].end 11111.02034375
transcript.pyannote[1883].speaker SPEAKER_25
transcript.pyannote[1883].start 11111.02034375
transcript.pyannote[1883].end 11112.20159375
transcript.pyannote[1884].speaker SPEAKER_32
transcript.pyannote[1884].start 11111.34096875
transcript.pyannote[1884].end 11114.93534375
transcript.pyannote[1885].speaker SPEAKER_32
transcript.pyannote[1885].start 11114.95221875
transcript.pyannote[1885].end 11177.76096875
transcript.pyannote[1886].speaker SPEAKER_25
transcript.pyannote[1886].start 11160.12659375
transcript.pyannote[1886].end 11160.48096875
transcript.pyannote[1887].speaker SPEAKER_00
transcript.pyannote[1887].start 11160.48096875
transcript.pyannote[1887].end 11160.51471875
transcript.pyannote[1888].speaker SPEAKER_25
transcript.pyannote[1888].start 11162.80971875
transcript.pyannote[1888].end 11163.16409375
transcript.pyannote[1889].speaker SPEAKER_28
transcript.pyannote[1889].start 11177.79471875
transcript.pyannote[1889].end 11195.32784375
transcript.pyannote[1890].speaker SPEAKER_32
transcript.pyannote[1890].start 11194.48409375
transcript.pyannote[1890].end 11200.93034375
transcript.pyannote[1891].speaker SPEAKER_32
transcript.pyannote[1891].start 11201.65596875
transcript.pyannote[1891].end 11202.22971875
transcript.pyannote[1892].speaker SPEAKER_13
transcript.pyannote[1892].start 11204.64284375
transcript.pyannote[1892].end 11206.39784375
transcript.pyannote[1893].speaker SPEAKER_32
transcript.pyannote[1893].start 11205.72284375
transcript.pyannote[1893].end 11206.14471875
transcript.pyannote[1894].speaker SPEAKER_13
transcript.pyannote[1894].start 11206.65096875
transcript.pyannote[1894].end 11206.83659375
transcript.pyannote[1895].speaker SPEAKER_32
transcript.pyannote[1895].start 11206.83659375
transcript.pyannote[1895].end 11208.74346875
transcript.pyannote[1896].speaker SPEAKER_32
transcript.pyannote[1896].start 11209.26659375
transcript.pyannote[1896].end 11211.42659375
transcript.pyannote[1897].speaker SPEAKER_32
transcript.pyannote[1897].start 11211.89909375
transcript.pyannote[1897].end 11212.64159375
transcript.pyannote[1898].speaker SPEAKER_32
transcript.pyannote[1898].start 11213.06346875
transcript.pyannote[1898].end 11213.63721875
transcript.pyannote[1899].speaker SPEAKER_32
transcript.pyannote[1899].start 11214.54846875
transcript.pyannote[1899].end 11217.33284375
transcript.pyannote[1900].speaker SPEAKER_32
transcript.pyannote[1900].start 11217.51846875
transcript.pyannote[1900].end 11243.23596875
transcript.pyannote[1901].speaker SPEAKER_32
transcript.pyannote[1901].start 11243.74221875
transcript.pyannote[1901].end 11248.02846875
transcript.pyannote[1902].speaker SPEAKER_32
transcript.pyannote[1902].start 11248.34909375
transcript.pyannote[1902].end 11254.12034375
transcript.pyannote[1903].speaker SPEAKER_32
transcript.pyannote[1903].start 11254.57596875
transcript.pyannote[1903].end 11257.24221875
transcript.pyannote[1904].speaker SPEAKER_00
transcript.pyannote[1904].start 11257.74846875
transcript.pyannote[1904].end 11272.78409375
transcript.pyannote[1905].speaker SPEAKER_00
transcript.pyannote[1905].start 11273.25659375
transcript.pyannote[1905].end 11275.87221875
transcript.pyannote[1906].speaker SPEAKER_00
transcript.pyannote[1906].start 11275.92284375
transcript.pyannote[1906].end 11280.88409375
transcript.pyannote[1907].speaker SPEAKER_00
transcript.pyannote[1907].start 11281.01909375
transcript.pyannote[1907].end 11286.57096875
transcript.pyannote[1908].speaker SPEAKER_32
transcript.pyannote[1908].start 11287.04346875
transcript.pyannote[1908].end 11326.41284375
transcript.pyannote[1909].speaker SPEAKER_32
transcript.pyannote[1909].start 11326.76721875
transcript.pyannote[1909].end 11353.12596875
transcript.pyannote[1910].speaker SPEAKER_32
transcript.pyannote[1910].start 11353.14284375
transcript.pyannote[1910].end 11371.73909375
transcript.pyannote[1911].speaker SPEAKER_32
transcript.pyannote[1911].start 11371.97534375
transcript.pyannote[1911].end 11384.39534375
transcript.pyannote[1912].speaker SPEAKER_32
transcript.pyannote[1912].start 11385.03659375
transcript.pyannote[1912].end 11386.57221875
transcript.pyannote[1913].speaker SPEAKER_32
transcript.pyannote[1913].start 11387.01096875
transcript.pyannote[1913].end 11387.66909375
transcript.pyannote[1914].speaker SPEAKER_32
transcript.pyannote[1914].start 11387.88846875
transcript.pyannote[1914].end 11450.05596875
transcript.pyannote[1915].speaker SPEAKER_32
transcript.pyannote[1915].start 11450.37659375
transcript.pyannote[1915].end 11452.70534375
transcript.pyannote[1916].speaker SPEAKER_13
transcript.pyannote[1916].start 11452.92471875
transcript.pyannote[1916].end 11456.13096875
transcript.pyannote[1917].speaker SPEAKER_06
transcript.pyannote[1917].start 11466.35721875
transcript.pyannote[1917].end 11468.83784375
transcript.pyannote[1918].speaker SPEAKER_06
transcript.pyannote[1918].start 11468.93909375
transcript.pyannote[1918].end 11470.50846875
transcript.pyannote[1919].speaker SPEAKER_13
transcript.pyannote[1919].start 11471.28471875
transcript.pyannote[1919].end 11472.51659375
transcript.pyannote[1920].speaker SPEAKER_06
transcript.pyannote[1920].start 11472.38159375
transcript.pyannote[1920].end 11473.32659375
transcript.pyannote[1921].speaker SPEAKER_06
transcript.pyannote[1921].start 11473.86659375
transcript.pyannote[1921].end 11475.28409375
transcript.pyannote[1922].speaker SPEAKER_13
transcript.pyannote[1922].start 11475.45284375
transcript.pyannote[1922].end 11476.14471875
transcript.pyannote[1923].speaker SPEAKER_14
transcript.pyannote[1923].start 11476.41471875
transcript.pyannote[1923].end 11476.90409375
transcript.pyannote[1924].speaker SPEAKER_06
transcript.pyannote[1924].start 11479.41846875
transcript.pyannote[1924].end 11479.99221875
transcript.pyannote[1925].speaker SPEAKER_06
transcript.pyannote[1925].start 11486.89409375
transcript.pyannote[1925].end 11487.31596875
transcript.pyannote[1926].speaker SPEAKER_06
transcript.pyannote[1926].start 11487.70409375
transcript.pyannote[1926].end 11492.80034375
transcript.pyannote[1927].speaker SPEAKER_06
transcript.pyannote[1927].start 11493.40784375
transcript.pyannote[1927].end 11494.21784375
transcript.pyannote[1928].speaker SPEAKER_06
transcript.pyannote[1928].start 11494.90971875
transcript.pyannote[1928].end 11497.47471875
transcript.pyannote[1929].speaker SPEAKER_06
transcript.pyannote[1929].start 11497.86284375
transcript.pyannote[1929].end 11498.53784375
transcript.pyannote[1930].speaker SPEAKER_06
transcript.pyannote[1930].start 11498.67284375
transcript.pyannote[1930].end 11499.73596875
transcript.pyannote[1931].speaker SPEAKER_06
transcript.pyannote[1931].start 11499.85409375
transcript.pyannote[1931].end 11501.57534375
transcript.pyannote[1932].speaker SPEAKER_06
transcript.pyannote[1932].start 11501.67659375
transcript.pyannote[1932].end 11504.61284375
transcript.pyannote[1933].speaker SPEAKER_06
transcript.pyannote[1933].start 11504.79846875
transcript.pyannote[1933].end 11513.13471875
transcript.pyannote[1934].speaker SPEAKER_06
transcript.pyannote[1934].start 11513.57346875
transcript.pyannote[1934].end 11519.26034375
transcript.pyannote[1935].speaker SPEAKER_06
transcript.pyannote[1935].start 11519.64846875
transcript.pyannote[1935].end 11525.20034375
transcript.pyannote[1936].speaker SPEAKER_06
transcript.pyannote[1936].start 11525.52096875
transcript.pyannote[1936].end 11528.54159375
transcript.pyannote[1937].speaker SPEAKER_06
transcript.pyannote[1937].start 11529.19971875
transcript.pyannote[1937].end 11529.97596875
transcript.pyannote[1938].speaker SPEAKER_06
transcript.pyannote[1938].start 11530.66784375
transcript.pyannote[1938].end 11532.74346875
transcript.pyannote[1939].speaker SPEAKER_06
transcript.pyannote[1939].start 11533.06409375
transcript.pyannote[1939].end 11535.61221875
transcript.pyannote[1940].speaker SPEAKER_06
transcript.pyannote[1940].start 11535.89909375
transcript.pyannote[1940].end 11538.36284375
transcript.pyannote[1941].speaker SPEAKER_06
transcript.pyannote[1941].start 11538.54846875
transcript.pyannote[1941].end 11539.86471875
transcript.pyannote[1942].speaker SPEAKER_06
transcript.pyannote[1942].start 11541.02909375
transcript.pyannote[1942].end 11542.29471875
transcript.pyannote[1943].speaker SPEAKER_06
transcript.pyannote[1943].start 11543.81346875
transcript.pyannote[1943].end 11545.39971875
transcript.pyannote[1944].speaker SPEAKER_06
transcript.pyannote[1944].start 11545.99034375
transcript.pyannote[1944].end 11549.12909375
transcript.pyannote[1945].speaker SPEAKER_29
transcript.pyannote[1945].start 11549.77034375
transcript.pyannote[1945].end 11555.30534375
transcript.pyannote[1946].speaker SPEAKER_29
transcript.pyannote[1946].start 11555.67659375
transcript.pyannote[1946].end 11558.22471875
transcript.pyannote[1947].speaker SPEAKER_06
transcript.pyannote[1947].start 11556.97596875
transcript.pyannote[1947].end 11559.55784375
transcript.pyannote[1948].speaker SPEAKER_06
transcript.pyannote[1948].start 11560.08096875
transcript.pyannote[1948].end 11571.45471875
transcript.pyannote[1949].speaker SPEAKER_29
transcript.pyannote[1949].start 11560.09784375
transcript.pyannote[1949].end 11560.63784375
transcript.pyannote[1950].speaker SPEAKER_01
transcript.pyannote[1950].start 11560.63784375
transcript.pyannote[1950].end 11560.67159375
transcript.pyannote[1951].speaker SPEAKER_06
transcript.pyannote[1951].start 11572.12971875
transcript.pyannote[1951].end 11575.18409375
transcript.pyannote[1952].speaker SPEAKER_06
transcript.pyannote[1952].start 11575.87596875
transcript.pyannote[1952].end 11578.37346875
transcript.pyannote[1953].speaker SPEAKER_06
transcript.pyannote[1953].start 11578.84596875
transcript.pyannote[1953].end 11582.92971875
transcript.pyannote[1954].speaker SPEAKER_06
transcript.pyannote[1954].start 11583.58784375
transcript.pyannote[1954].end 11589.27471875
transcript.pyannote[1955].speaker SPEAKER_06
transcript.pyannote[1955].start 11589.62909375
transcript.pyannote[1955].end 11593.62846875
transcript.pyannote[1956].speaker SPEAKER_20
transcript.pyannote[1956].start 11594.05034375
transcript.pyannote[1956].end 11594.42159375
transcript.pyannote[1957].speaker SPEAKER_06
transcript.pyannote[1957].start 11594.91096875
transcript.pyannote[1957].end 11595.46784375
transcript.pyannote[1958].speaker SPEAKER_06
transcript.pyannote[1958].start 11595.83909375
transcript.pyannote[1958].end 11599.75409375
transcript.pyannote[1959].speaker SPEAKER_06
transcript.pyannote[1959].start 11600.19284375
transcript.pyannote[1959].end 11608.46159375
transcript.pyannote[1960].speaker SPEAKER_06
transcript.pyannote[1960].start 11608.49534375
transcript.pyannote[1960].end 11609.50784375
transcript.pyannote[1961].speaker SPEAKER_29
transcript.pyannote[1961].start 11609.59221875
transcript.pyannote[1961].end 11613.27096875
transcript.pyannote[1962].speaker SPEAKER_29
transcript.pyannote[1962].start 11613.30471875
transcript.pyannote[1962].end 11613.32159375
transcript.pyannote[1963].speaker SPEAKER_06
transcript.pyannote[1963].start 11613.32159375
transcript.pyannote[1963].end 11617.20284375
transcript.pyannote[1964].speaker SPEAKER_29
transcript.pyannote[1964].start 11613.74346875
transcript.pyannote[1964].end 11614.13159375
transcript.pyannote[1965].speaker SPEAKER_06
transcript.pyannote[1965].start 11618.24909375
transcript.pyannote[1965].end 11618.26596875
transcript.pyannote[1966].speaker SPEAKER_29
transcript.pyannote[1966].start 11618.26596875
transcript.pyannote[1966].end 11618.46846875
transcript.pyannote[1967].speaker SPEAKER_06
transcript.pyannote[1967].start 11618.46846875
transcript.pyannote[1967].end 11619.70034375
transcript.pyannote[1968].speaker SPEAKER_29
transcript.pyannote[1968].start 11618.51909375
transcript.pyannote[1968].end 11618.92409375
transcript.pyannote[1969].speaker SPEAKER_06
transcript.pyannote[1969].start 11619.91971875
transcript.pyannote[1969].end 11624.13846875
transcript.pyannote[1970].speaker SPEAKER_29
transcript.pyannote[1970].start 11619.97034375
transcript.pyannote[1970].end 11621.03346875
transcript.pyannote[1971].speaker SPEAKER_06
transcript.pyannote[1971].start 11624.49284375
transcript.pyannote[1971].end 11624.91471875
transcript.pyannote[1972].speaker SPEAKER_29
transcript.pyannote[1972].start 11626.50096875
transcript.pyannote[1972].end 11634.09471875
transcript.pyannote[1973].speaker SPEAKER_06
transcript.pyannote[1973].start 11632.69409375
transcript.pyannote[1973].end 11638.16159375
transcript.pyannote[1974].speaker SPEAKER_29
transcript.pyannote[1974].start 11641.67159375
transcript.pyannote[1974].end 11643.83159375
transcript.pyannote[1975].speaker SPEAKER_29
transcript.pyannote[1975].start 11644.25346875
transcript.pyannote[1975].end 11648.26971875
transcript.pyannote[1976].speaker SPEAKER_06
transcript.pyannote[1976].start 11646.58221875
transcript.pyannote[1976].end 11648.23596875
transcript.pyannote[1977].speaker SPEAKER_06
transcript.pyannote[1977].start 11648.26971875
transcript.pyannote[1977].end 11648.28659375
transcript.pyannote[1978].speaker SPEAKER_06
transcript.pyannote[1978].start 11648.45534375
transcript.pyannote[1978].end 11655.49221875
transcript.pyannote[1979].speaker SPEAKER_06
transcript.pyannote[1979].start 11655.91409375
transcript.pyannote[1979].end 11659.03596875
transcript.pyannote[1980].speaker SPEAKER_06
transcript.pyannote[1980].start 11659.06971875
transcript.pyannote[1980].end 11660.14971875
transcript.pyannote[1981].speaker SPEAKER_06
transcript.pyannote[1981].start 11660.87534375
transcript.pyannote[1981].end 11664.09846875
transcript.pyannote[1982].speaker SPEAKER_06
transcript.pyannote[1982].start 11665.21221875
transcript.pyannote[1982].end 11665.76909375
transcript.pyannote[1983].speaker SPEAKER_06
transcript.pyannote[1983].start 11666.42721875
transcript.pyannote[1983].end 11674.24034375
transcript.pyannote[1984].speaker SPEAKER_06
transcript.pyannote[1984].start 11674.72971875
transcript.pyannote[1984].end 11682.07034375
transcript.pyannote[1985].speaker SPEAKER_06
transcript.pyannote[1985].start 11682.22221875
transcript.pyannote[1985].end 11689.93409375
transcript.pyannote[1986].speaker SPEAKER_14
transcript.pyannote[1986].start 11689.54596875
transcript.pyannote[1986].end 11695.36784375
transcript.pyannote[1987].speaker SPEAKER_06
transcript.pyannote[1987].start 11694.43971875
transcript.pyannote[1987].end 11699.83971875
transcript.pyannote[1988].speaker SPEAKER_26
transcript.pyannote[1988].start 11699.89034375
transcript.pyannote[1988].end 11700.17721875
transcript.pyannote[1989].speaker SPEAKER_06
transcript.pyannote[1989].start 11700.54846875
transcript.pyannote[1989].end 11706.11721875
transcript.pyannote[1990].speaker SPEAKER_06
transcript.pyannote[1990].start 11706.25221875
transcript.pyannote[1990].end 11710.74096875
transcript.pyannote[1991].speaker SPEAKER_06
transcript.pyannote[1991].start 11711.12909375
transcript.pyannote[1991].end 11712.52971875
transcript.pyannote[1992].speaker SPEAKER_14
transcript.pyannote[1992].start 11712.86721875
transcript.pyannote[1992].end 11714.41971875
transcript.pyannote[1993].speaker SPEAKER_06
transcript.pyannote[1993].start 11714.62221875
transcript.pyannote[1993].end 11716.78221875
transcript.pyannote[1994].speaker SPEAKER_06
transcript.pyannote[1994].start 11717.32221875
transcript.pyannote[1994].end 11718.48659375
transcript.pyannote[1995].speaker SPEAKER_14
transcript.pyannote[1995].start 11717.57534375
transcript.pyannote[1995].end 11717.64284375
transcript.pyannote[1996].speaker SPEAKER_14
transcript.pyannote[1996].start 11717.67659375
transcript.pyannote[1996].end 11717.69346875
transcript.pyannote[1997].speaker SPEAKER_14
transcript.pyannote[1997].start 11718.23346875
transcript.pyannote[1997].end 11718.26721875
transcript.pyannote[1998].speaker SPEAKER_14
transcript.pyannote[1998].start 11718.52034375
transcript.pyannote[1998].end 11725.42221875
transcript.pyannote[1999].speaker SPEAKER_06
transcript.pyannote[1999].start 11724.89909375
transcript.pyannote[1999].end 11749.43534375
transcript.pyannote[2000].speaker SPEAKER_14
transcript.pyannote[2000].start 11726.18159375
transcript.pyannote[2000].end 11726.68784375
transcript.pyannote[2001].speaker SPEAKER_14
transcript.pyannote[2001].start 11749.43534375
transcript.pyannote[2001].end 11754.41346875
transcript.pyannote[2002].speaker SPEAKER_06
transcript.pyannote[2002].start 11749.46909375
transcript.pyannote[2002].end 11749.51971875
transcript.pyannote[2003].speaker SPEAKER_06
transcript.pyannote[2003].start 11749.57034375
transcript.pyannote[2003].end 11750.73471875
transcript.pyannote[2004].speaker SPEAKER_06
transcript.pyannote[2004].start 11754.41346875
transcript.pyannote[2004].end 11774.49471875
transcript.pyannote[2005].speaker SPEAKER_14
transcript.pyannote[2005].start 11774.49471875
transcript.pyannote[2005].end 11786.76284375
transcript.pyannote[2006].speaker SPEAKER_06
transcript.pyannote[2006].start 11785.36221875
transcript.pyannote[2006].end 11789.95221875
transcript.pyannote[2007].speaker SPEAKER_06
transcript.pyannote[2007].start 11790.40784375
transcript.pyannote[2007].end 11803.51971875
transcript.pyannote[2008].speaker SPEAKER_06
transcript.pyannote[2008].start 11804.04284375
transcript.pyannote[2008].end 11810.38784375
transcript.pyannote[2009].speaker SPEAKER_06
transcript.pyannote[2009].start 11810.99534375
transcript.pyannote[2009].end 11816.02409375
transcript.pyannote[2010].speaker SPEAKER_06
transcript.pyannote[2010].start 11816.27721875
transcript.pyannote[2010].end 11820.00659375
transcript.pyannote[2011].speaker SPEAKER_14
transcript.pyannote[2011].start 11820.29346875
transcript.pyannote[2011].end 11822.57159375
transcript.pyannote[2012].speaker SPEAKER_06
transcript.pyannote[2012].start 11821.57596875
transcript.pyannote[2012].end 11822.82471875
transcript.pyannote[2013].speaker SPEAKER_14
transcript.pyannote[2013].start 11822.62221875
transcript.pyannote[2013].end 11822.65596875
transcript.pyannote[2014].speaker SPEAKER_14
transcript.pyannote[2014].start 11822.82471875
transcript.pyannote[2014].end 11827.14471875
transcript.pyannote[2015].speaker SPEAKER_06
transcript.pyannote[2015].start 11826.84096875
transcript.pyannote[2015].end 11829.52409375
transcript.pyannote[2016].speaker SPEAKER_14
transcript.pyannote[2016].start 11829.52409375
transcript.pyannote[2016].end 11835.22784375
transcript.pyannote[2017].speaker SPEAKER_06
transcript.pyannote[2017].start 11832.74721875
transcript.pyannote[2017].end 11833.27034375
transcript.pyannote[2018].speaker SPEAKER_06
transcript.pyannote[2018].start 11834.80596875
transcript.pyannote[2018].end 11840.86409375
transcript.pyannote[2019].speaker SPEAKER_14
transcript.pyannote[2019].start 11840.86409375
transcript.pyannote[2019].end 11844.93096875
transcript.pyannote[2020].speaker SPEAKER_06
transcript.pyannote[2020].start 11843.63159375
transcript.pyannote[2020].end 11846.55096875
transcript.pyannote[2021].speaker SPEAKER_14
transcript.pyannote[2021].start 11845.63971875
transcript.pyannote[2021].end 11849.72346875
transcript.pyannote[2022].speaker SPEAKER_06
transcript.pyannote[2022].start 11847.14159375
transcript.pyannote[2022].end 11847.32721875
transcript.pyannote[2023].speaker SPEAKER_06
transcript.pyannote[2023].start 11848.87971875
transcript.pyannote[2023].end 11852.52471875
transcript.pyannote[2024].speaker SPEAKER_14
transcript.pyannote[2024].start 11850.80346875
transcript.pyannote[2024].end 11854.19534375
transcript.pyannote[2025].speaker SPEAKER_06
transcript.pyannote[2025].start 11853.23346875
transcript.pyannote[2025].end 11854.81971875
transcript.pyannote[2026].speaker SPEAKER_06
transcript.pyannote[2026].start 11855.17409375
transcript.pyannote[2026].end 11860.42221875
transcript.pyannote[2027].speaker SPEAKER_29
transcript.pyannote[2027].start 11861.43471875
transcript.pyannote[2027].end 11869.55159375
transcript.pyannote[2028].speaker SPEAKER_06
transcript.pyannote[2028].start 11867.76284375
transcript.pyannote[2028].end 11878.02284375
transcript.pyannote[2029].speaker SPEAKER_06
transcript.pyannote[2029].start 11878.29284375
transcript.pyannote[2029].end 11882.68034375
transcript.pyannote[2030].speaker SPEAKER_29
transcript.pyannote[2030].start 11883.08534375
transcript.pyannote[2030].end 11894.03721875
transcript.pyannote[2031].speaker SPEAKER_06
transcript.pyannote[2031].start 11890.61159375
transcript.pyannote[2031].end 11892.56909375
transcript.pyannote[2032].speaker SPEAKER_06
transcript.pyannote[2032].start 11892.92346875
transcript.pyannote[2032].end 11907.06471875
transcript.pyannote[2033].speaker SPEAKER_29
transcript.pyannote[2033].start 11896.34909375
transcript.pyannote[2033].end 11896.38284375
transcript.pyannote[2034].speaker SPEAKER_29
transcript.pyannote[2034].start 11896.41659375
transcript.pyannote[2034].end 11896.82159375
transcript.pyannote[2035].speaker SPEAKER_06
transcript.pyannote[2035].start 11908.33034375
transcript.pyannote[2035].end 11911.89096875
transcript.pyannote[2036].speaker SPEAKER_14
transcript.pyannote[2036].start 11912.12721875
transcript.pyannote[2036].end 11921.20596875
transcript.pyannote[2037].speaker SPEAKER_06
transcript.pyannote[2037].start 11916.88596875
transcript.pyannote[2037].end 11919.82221875
transcript.pyannote[2038].speaker SPEAKER_06
transcript.pyannote[2038].start 11920.81784375
transcript.pyannote[2038].end 11923.14659375
transcript.pyannote[2039].speaker SPEAKER_14
transcript.pyannote[2039].start 11923.68659375
transcript.pyannote[2039].end 11934.73971875
transcript.pyannote[2040].speaker SPEAKER_06
transcript.pyannote[2040].start 11934.11534375
transcript.pyannote[2040].end 11938.60409375
transcript.pyannote[2041].speaker SPEAKER_14
transcript.pyannote[2041].start 11936.69721875
transcript.pyannote[2041].end 11941.08471875
transcript.pyannote[2042].speaker SPEAKER_06
transcript.pyannote[2042].start 11941.20284375
transcript.pyannote[2042].end 11954.55096875
transcript.pyannote[2043].speaker SPEAKER_06
transcript.pyannote[2043].start 11954.80409375
transcript.pyannote[2043].end 11958.58409375
transcript.pyannote[2044].speaker SPEAKER_06
transcript.pyannote[2044].start 11959.05659375
transcript.pyannote[2044].end 11968.20284375
transcript.pyannote[2045].speaker SPEAKER_06
transcript.pyannote[2045].start 11968.60784375
transcript.pyannote[2045].end 11973.56909375
transcript.pyannote[2046].speaker SPEAKER_14
transcript.pyannote[2046].start 11973.82221875
transcript.pyannote[2046].end 11979.91409375
transcript.pyannote[2047].speaker SPEAKER_06
transcript.pyannote[2047].start 11979.25596875
transcript.pyannote[2047].end 11981.16284375
transcript.pyannote[2048].speaker SPEAKER_14
transcript.pyannote[2048].start 11980.52159375
transcript.pyannote[2048].end 11986.90034375
transcript.pyannote[2049].speaker SPEAKER_06
transcript.pyannote[2049].start 11986.10721875
transcript.pyannote[2049].end 11998.25721875
transcript.pyannote[2050].speaker SPEAKER_06
transcript.pyannote[2050].start 11998.72971875
transcript.pyannote[2050].end 12000.75471875
transcript.pyannote[2051].speaker SPEAKER_06
transcript.pyannote[2051].start 12001.17659375
transcript.pyannote[2051].end 12018.38909375
transcript.pyannote[2052].speaker SPEAKER_28
transcript.pyannote[2052].start 12015.53721875
transcript.pyannote[2052].end 12015.89159375
transcript.pyannote[2053].speaker SPEAKER_28
transcript.pyannote[2053].start 12020.63346875
transcript.pyannote[2053].end 12030.74159375
transcript.pyannote[2054].speaker SPEAKER_28
transcript.pyannote[2054].start 12031.23096875
transcript.pyannote[2054].end 12032.12534375
transcript.pyannote[2055].speaker SPEAKER_06
transcript.pyannote[2055].start 12032.12534375
transcript.pyannote[2055].end 12051.88596875
transcript.pyannote[2056].speaker SPEAKER_25
transcript.pyannote[2056].start 12037.33971875
transcript.pyannote[2056].end 12038.09909375
transcript.pyannote[2057].speaker SPEAKER_28
transcript.pyannote[2057].start 12038.09909375
transcript.pyannote[2057].end 12038.11596875
transcript.pyannote[2058].speaker SPEAKER_25
transcript.pyannote[2058].start 12045.72659375
transcript.pyannote[2058].end 12046.38471875
transcript.pyannote[2059].speaker SPEAKER_06
transcript.pyannote[2059].start 12052.57784375
transcript.pyannote[2059].end 12078.04221875
transcript.pyannote[2060].speaker SPEAKER_28
transcript.pyannote[2060].start 12059.31096875
transcript.pyannote[2060].end 12059.64846875
transcript.pyannote[2061].speaker SPEAKER_28
transcript.pyannote[2061].start 12066.97221875
transcript.pyannote[2061].end 12067.79909375
transcript.pyannote[2062].speaker SPEAKER_28
transcript.pyannote[2062].start 12077.33346875
transcript.pyannote[2062].end 12089.68596875
transcript.pyannote[2063].speaker SPEAKER_06
transcript.pyannote[2063].start 12083.89784375
transcript.pyannote[2063].end 12084.40409375
transcript.pyannote[2064].speaker SPEAKER_06
transcript.pyannote[2064].start 12086.19284375
transcript.pyannote[2064].end 12088.33596875
transcript.pyannote[2065].speaker SPEAKER_06
transcript.pyannote[2065].start 12088.72409375
transcript.pyannote[2065].end 12090.51284375
transcript.pyannote[2066].speaker SPEAKER_06
transcript.pyannote[2066].start 12090.86721875
transcript.pyannote[2066].end 12112.43346875
transcript.pyannote[2067].speaker SPEAKER_01
transcript.pyannote[2067].start 12105.75096875
transcript.pyannote[2067].end 12106.35846875
transcript.pyannote[2068].speaker SPEAKER_06
transcript.pyannote[2068].start 12112.45034375
transcript.pyannote[2068].end 12112.60221875
transcript.pyannote[2069].speaker SPEAKER_06
transcript.pyannote[2069].start 12112.61909375
transcript.pyannote[2069].end 12124.92096875
transcript.pyannote[2070].speaker SPEAKER_28
transcript.pyannote[2070].start 12123.87471875
transcript.pyannote[2070].end 12125.03909375
transcript.pyannote[2071].speaker SPEAKER_13
transcript.pyannote[2071].start 12125.03909375
transcript.pyannote[2071].end 12126.27096875
transcript.pyannote[2072].speaker SPEAKER_28
transcript.pyannote[2072].start 12126.27096875
transcript.pyannote[2072].end 12126.97971875
transcript.pyannote[2073].speaker SPEAKER_13
transcript.pyannote[2073].start 12126.28784375
transcript.pyannote[2073].end 12127.01346875
transcript.pyannote[2074].speaker SPEAKER_28
transcript.pyannote[2074].start 12127.01346875
transcript.pyannote[2074].end 12127.26659375
transcript.pyannote[2075].speaker SPEAKER_13
transcript.pyannote[2075].start 12127.26659375
transcript.pyannote[2075].end 12127.30034375
transcript.pyannote[2076].speaker SPEAKER_28
transcript.pyannote[2076].start 12127.30034375
transcript.pyannote[2076].end 12127.43534375
transcript.pyannote[2077].speaker SPEAKER_13
transcript.pyannote[2077].start 12127.90784375
transcript.pyannote[2077].end 12136.22721875
transcript.pyannote[2078].speaker SPEAKER_03
transcript.pyannote[2078].start 12149.57534375
transcript.pyannote[2078].end 12150.26721875
transcript.pyannote[2079].speaker SPEAKER_03
transcript.pyannote[2079].start 12150.43596875
transcript.pyannote[2079].end 12152.03909375
transcript.pyannote[2080].speaker SPEAKER_13
transcript.pyannote[2080].start 12152.84909375
transcript.pyannote[2080].end 12154.24971875
transcript.pyannote[2081].speaker SPEAKER_03
transcript.pyannote[2081].start 12158.92409375
transcript.pyannote[2081].end 12168.40784375
transcript.pyannote[2082].speaker SPEAKER_03
transcript.pyannote[2082].start 12168.59346875
transcript.pyannote[2082].end 12169.38659375
transcript.pyannote[2083].speaker SPEAKER_03
transcript.pyannote[2083].start 12169.52159375
transcript.pyannote[2083].end 12170.66909375
transcript.pyannote[2084].speaker SPEAKER_03
transcript.pyannote[2084].start 12171.14159375
transcript.pyannote[2084].end 12173.89221875
transcript.pyannote[2085].speaker SPEAKER_03
transcript.pyannote[2085].start 12174.06096875
transcript.pyannote[2085].end 12192.50534375
transcript.pyannote[2086].speaker SPEAKER_14
transcript.pyannote[2086].start 12192.50534375
transcript.pyannote[2086].end 12221.81721875
transcript.pyannote[2087].speaker SPEAKER_03
transcript.pyannote[2087].start 12222.15471875
transcript.pyannote[2087].end 12223.82534375
transcript.pyannote[2088].speaker SPEAKER_03
transcript.pyannote[2088].start 12223.92659375
transcript.pyannote[2088].end 12228.19596875
transcript.pyannote[2089].speaker SPEAKER_14
transcript.pyannote[2089].start 12228.19596875
transcript.pyannote[2089].end 12237.54471875
transcript.pyannote[2090].speaker SPEAKER_03
transcript.pyannote[2090].start 12231.89159375
transcript.pyannote[2090].end 12233.52846875
transcript.pyannote[2091].speaker SPEAKER_03
transcript.pyannote[2091].start 12236.98784375
transcript.pyannote[2091].end 12241.24034375
transcript.pyannote[2092].speaker SPEAKER_14
transcript.pyannote[2092].start 12241.24034375
transcript.pyannote[2092].end 12241.78034375
transcript.pyannote[2093].speaker SPEAKER_03
transcript.pyannote[2093].start 12241.78034375
transcript.pyannote[2093].end 12241.84784375
transcript.pyannote[2094].speaker SPEAKER_14
transcript.pyannote[2094].start 12241.84784375
transcript.pyannote[2094].end 12241.86471875
transcript.pyannote[2095].speaker SPEAKER_03
transcript.pyannote[2095].start 12241.86471875
transcript.pyannote[2095].end 12245.57721875
transcript.pyannote[2096].speaker SPEAKER_14
transcript.pyannote[2096].start 12241.94909375
transcript.pyannote[2096].end 12243.06284375
transcript.pyannote[2097].speaker SPEAKER_14
transcript.pyannote[2097].start 12244.37909375
transcript.pyannote[2097].end 12258.41909375
transcript.pyannote[2098].speaker SPEAKER_03
transcript.pyannote[2098].start 12256.02284375
transcript.pyannote[2098].end 12256.15784375
transcript.pyannote[2099].speaker SPEAKER_03
transcript.pyannote[2099].start 12257.92971875
transcript.pyannote[2099].end 12261.99659375
transcript.pyannote[2100].speaker SPEAKER_03
transcript.pyannote[2100].start 12262.43534375
transcript.pyannote[2100].end 12273.97784375
transcript.pyannote[2101].speaker SPEAKER_26
transcript.pyannote[2101].start 12268.61159375
transcript.pyannote[2101].end 12268.86471875
transcript.pyannote[2102].speaker SPEAKER_14
transcript.pyannote[2102].start 12274.14659375
transcript.pyannote[2102].end 12301.53471875
transcript.pyannote[2103].speaker SPEAKER_03
transcript.pyannote[2103].start 12300.89346875
transcript.pyannote[2103].end 12310.02284375
transcript.pyannote[2104].speaker SPEAKER_14
transcript.pyannote[2104].start 12306.71534375
transcript.pyannote[2104].end 12307.35659375
transcript.pyannote[2105].speaker SPEAKER_03
transcript.pyannote[2105].start 12310.12409375
transcript.pyannote[2105].end 12310.14096875
transcript.pyannote[2106].speaker SPEAKER_14
transcript.pyannote[2106].start 12310.14096875
transcript.pyannote[2106].end 12318.32534375
transcript.pyannote[2107].speaker SPEAKER_03
transcript.pyannote[2107].start 12311.05221875
transcript.pyannote[2107].end 12311.71034375
transcript.pyannote[2108].speaker SPEAKER_03
transcript.pyannote[2108].start 12317.17784375
transcript.pyannote[2108].end 12317.51534375
transcript.pyannote[2109].speaker SPEAKER_03
transcript.pyannote[2109].start 12318.57846875
transcript.pyannote[2109].end 12333.64784375
transcript.pyannote[2110].speaker SPEAKER_03
transcript.pyannote[2110].start 12334.20471875
transcript.pyannote[2110].end 12340.22909375
transcript.pyannote[2111].speaker SPEAKER_03
transcript.pyannote[2111].start 12340.51596875
transcript.pyannote[2111].end 12344.66721875
transcript.pyannote[2112].speaker SPEAKER_03
transcript.pyannote[2112].start 12345.12284375
transcript.pyannote[2112].end 12364.14096875
transcript.pyannote[2113].speaker SPEAKER_03
transcript.pyannote[2113].start 12364.83284375
transcript.pyannote[2113].end 12366.03096875
transcript.pyannote[2114].speaker SPEAKER_03
transcript.pyannote[2114].start 12366.67221875
transcript.pyannote[2114].end 12367.31346875
transcript.pyannote[2115].speaker SPEAKER_03
transcript.pyannote[2115].start 12367.88721875
transcript.pyannote[2115].end 12379.96971875
transcript.pyannote[2116].speaker SPEAKER_14
transcript.pyannote[2116].start 12379.96971875
transcript.pyannote[2116].end 12381.64034375
transcript.pyannote[2117].speaker SPEAKER_14
transcript.pyannote[2117].start 12382.07909375
transcript.pyannote[2117].end 12414.00659375
transcript.pyannote[2118].speaker SPEAKER_14
transcript.pyannote[2118].start 12414.24284375
transcript.pyannote[2118].end 12427.55721875
transcript.pyannote[2119].speaker SPEAKER_03
transcript.pyannote[2119].start 12426.78096875
transcript.pyannote[2119].end 12430.40909375
transcript.pyannote[2120].speaker SPEAKER_14
transcript.pyannote[2120].start 12428.99159375
transcript.pyannote[2120].end 12449.20784375
transcript.pyannote[2121].speaker SPEAKER_03
transcript.pyannote[2121].start 12448.81971875
transcript.pyannote[2121].end 12449.14034375
transcript.pyannote[2122].speaker SPEAKER_03
transcript.pyannote[2122].start 12449.34284375
transcript.pyannote[2122].end 12463.77096875
transcript.pyannote[2123].speaker SPEAKER_13
transcript.pyannote[2123].start 12464.22659375
transcript.pyannote[2123].end 12465.82971875
transcript.pyannote[2124].speaker SPEAKER_03
transcript.pyannote[2124].start 12472.84971875
transcript.pyannote[2124].end 12485.35409375
transcript.pyannote[2125].speaker SPEAKER_00
transcript.pyannote[2125].start 12486.50159375
transcript.pyannote[2125].end 12496.44096875
transcript.pyannote[2126].speaker SPEAKER_00
transcript.pyannote[2126].start 12496.67721875
transcript.pyannote[2126].end 12501.03096875
transcript.pyannote[2127].speaker SPEAKER_00
transcript.pyannote[2127].start 12501.45284375
transcript.pyannote[2127].end 12505.82346875
transcript.pyannote[2128].speaker SPEAKER_03
transcript.pyannote[2128].start 12506.07659375
transcript.pyannote[2128].end 12509.24909375
transcript.pyannote[2129].speaker SPEAKER_03
transcript.pyannote[2129].start 12510.02534375
transcript.pyannote[2129].end 12510.39659375
transcript.pyannote[2130].speaker SPEAKER_03
transcript.pyannote[2130].start 12510.68346875
transcript.pyannote[2130].end 12522.78284375
transcript.pyannote[2131].speaker SPEAKER_00
transcript.pyannote[2131].start 12523.42409375
transcript.pyannote[2131].end 12536.77221875
transcript.pyannote[2132].speaker SPEAKER_00
transcript.pyannote[2132].start 12537.21096875
transcript.pyannote[2132].end 12543.67409375
transcript.pyannote[2133].speaker SPEAKER_00
transcript.pyannote[2133].start 12543.82596875
transcript.pyannote[2133].end 12552.39846875
transcript.pyannote[2134].speaker SPEAKER_00
transcript.pyannote[2134].start 12552.88784375
transcript.pyannote[2134].end 12573.71159375
transcript.pyannote[2135].speaker SPEAKER_03
transcript.pyannote[2135].start 12573.79596875
transcript.pyannote[2135].end 12578.72346875
transcript.pyannote[2136].speaker SPEAKER_03
transcript.pyannote[2136].start 12578.90909375
transcript.pyannote[2136].end 12592.86471875
transcript.pyannote[2137].speaker SPEAKER_03
transcript.pyannote[2137].start 12593.37096875
transcript.pyannote[2137].end 12601.72409375
transcript.pyannote[2138].speaker SPEAKER_03
transcript.pyannote[2138].start 12602.09534375
transcript.pyannote[2138].end 12664.02659375
transcript.pyannote[2139].speaker SPEAKER_03
transcript.pyannote[2139].start 12664.06034375
transcript.pyannote[2139].end 12664.07721875
transcript.pyannote[2140].speaker SPEAKER_03
transcript.pyannote[2140].start 12664.09409375
transcript.pyannote[2140].end 12673.69596875
transcript.pyannote[2141].speaker SPEAKER_29
transcript.pyannote[2141].start 12674.70846875
transcript.pyannote[2141].end 12677.91471875
transcript.pyannote[2142].speaker SPEAKER_29
transcript.pyannote[2142].start 12678.45471875
transcript.pyannote[2142].end 12694.73909375
transcript.pyannote[2143].speaker SPEAKER_03
transcript.pyannote[2143].start 12694.26659375
transcript.pyannote[2143].end 12715.81596875
transcript.pyannote[2144].speaker SPEAKER_03
transcript.pyannote[2144].start 12716.57534375
transcript.pyannote[2144].end 12731.66159375
transcript.pyannote[2145].speaker SPEAKER_03
transcript.pyannote[2145].start 12731.93159375
transcript.pyannote[2145].end 12734.20971875
transcript.pyannote[2146].speaker SPEAKER_03
transcript.pyannote[2146].start 12734.68221875
transcript.pyannote[2146].end 12736.09971875
transcript.pyannote[2147].speaker SPEAKER_03
transcript.pyannote[2147].start 12736.28534375
transcript.pyannote[2147].end 12738.02346875
transcript.pyannote[2148].speaker SPEAKER_03
transcript.pyannote[2148].start 12738.41159375
transcript.pyannote[2148].end 12742.61346875
transcript.pyannote[2149].speaker SPEAKER_03
transcript.pyannote[2149].start 12743.44034375
transcript.pyannote[2149].end 12745.93784375
transcript.pyannote[2150].speaker SPEAKER_03
transcript.pyannote[2150].start 12746.39346875
transcript.pyannote[2150].end 12762.77909375
transcript.pyannote[2151].speaker SPEAKER_00
transcript.pyannote[2151].start 12764.58471875
transcript.pyannote[2151].end 12784.78409375
transcript.pyannote[2152].speaker SPEAKER_03
transcript.pyannote[2152].start 12784.61534375
transcript.pyannote[2152].end 12787.88909375
transcript.pyannote[2153].speaker SPEAKER_00
transcript.pyannote[2153].start 12788.42909375
transcript.pyannote[2153].end 12797.03534375
transcript.pyannote[2154].speaker SPEAKER_03
transcript.pyannote[2154].start 12795.88784375
transcript.pyannote[2154].end 12796.00596875
transcript.pyannote[2155].speaker SPEAKER_03
transcript.pyannote[2155].start 12796.09034375
transcript.pyannote[2155].end 12796.10721875
transcript.pyannote[2156].speaker SPEAKER_03
transcript.pyannote[2156].start 12797.18721875
transcript.pyannote[2156].end 12801.38909375
transcript.pyannote[2157].speaker SPEAKER_03
transcript.pyannote[2157].start 12801.42284375
transcript.pyannote[2157].end 12801.49034375
transcript.pyannote[2158].speaker SPEAKER_03
transcript.pyannote[2158].start 12801.70971875
transcript.pyannote[2158].end 12804.34221875
transcript.pyannote[2159].speaker SPEAKER_03
transcript.pyannote[2159].start 12804.88221875
transcript.pyannote[2159].end 12805.79346875
transcript.pyannote[2160].speaker SPEAKER_03
transcript.pyannote[2160].start 12806.90721875
transcript.pyannote[2160].end 12807.44721875
transcript.pyannote[2161].speaker SPEAKER_03
transcript.pyannote[2161].start 12808.39221875
transcript.pyannote[2161].end 12809.21909375
transcript.pyannote[2162].speaker SPEAKER_03
transcript.pyannote[2162].start 12809.80971875
transcript.pyannote[2162].end 12818.43284375
transcript.pyannote[2163].speaker SPEAKER_18
transcript.pyannote[2163].start 12815.04096875
transcript.pyannote[2163].end 12815.15909375
transcript.pyannote[2164].speaker SPEAKER_18
transcript.pyannote[2164].start 12815.17596875
transcript.pyannote[2164].end 12815.27721875
transcript.pyannote[2165].speaker SPEAKER_03
transcript.pyannote[2165].start 12819.20909375
transcript.pyannote[2165].end 12820.57596875
transcript.pyannote[2166].speaker SPEAKER_18
transcript.pyannote[2166].start 12821.52096875
transcript.pyannote[2166].end 12829.13159375
transcript.pyannote[2167].speaker SPEAKER_03
transcript.pyannote[2167].start 12828.18659375
transcript.pyannote[2167].end 12835.99971875
transcript.pyannote[2168].speaker SPEAKER_18
transcript.pyannote[2168].start 12829.38471875
transcript.pyannote[2168].end 12829.90784375
transcript.pyannote[2169].speaker SPEAKER_18
transcript.pyannote[2169].start 12837.02909375
transcript.pyannote[2169].end 12845.51721875
transcript.pyannote[2170].speaker SPEAKER_03
transcript.pyannote[2170].start 12845.28096875
transcript.pyannote[2170].end 12846.24284375
transcript.pyannote[2171].speaker SPEAKER_03
transcript.pyannote[2171].start 12846.41159375
transcript.pyannote[2171].end 12847.62659375
transcript.pyannote[2172].speaker SPEAKER_03
transcript.pyannote[2172].start 12848.21721875
transcript.pyannote[2172].end 12862.93221875
transcript.pyannote[2173].speaker SPEAKER_18
transcript.pyannote[2173].start 12863.69159375
transcript.pyannote[2173].end 12880.27971875
transcript.pyannote[2174].speaker SPEAKER_16
transcript.pyannote[2174].start 12875.50409375
transcript.pyannote[2174].end 12876.12846875
transcript.pyannote[2175].speaker SPEAKER_18
transcript.pyannote[2175].start 12880.68471875
transcript.pyannote[2175].end 12895.41659375
transcript.pyannote[2176].speaker SPEAKER_00
transcript.pyannote[2176].start 12882.67596875
transcript.pyannote[2176].end 12882.81096875
transcript.pyannote[2177].speaker SPEAKER_16
transcript.pyannote[2177].start 12882.81096875
transcript.pyannote[2177].end 12883.45221875
transcript.pyannote[2178].speaker SPEAKER_17
transcript.pyannote[2178].start 12883.45221875
transcript.pyannote[2178].end 12883.46909375
transcript.pyannote[2179].speaker SPEAKER_00
transcript.pyannote[2179].start 12883.46909375
transcript.pyannote[2179].end 12883.57034375
transcript.pyannote[2180].speaker SPEAKER_17
transcript.pyannote[2180].start 12885.42659375
transcript.pyannote[2180].end 12885.96659375
transcript.pyannote[2181].speaker SPEAKER_00
transcript.pyannote[2181].start 12885.96659375
transcript.pyannote[2181].end 12886.15221875
transcript.pyannote[2182].speaker SPEAKER_00
transcript.pyannote[2182].start 12887.21534375
transcript.pyannote[2182].end 12888.19409375
transcript.pyannote[2183].speaker SPEAKER_03
transcript.pyannote[2183].start 12895.11284375
transcript.pyannote[2183].end 12895.33221875
transcript.pyannote[2184].speaker SPEAKER_03
transcript.pyannote[2184].start 12895.41659375
transcript.pyannote[2184].end 12916.22346875
transcript.pyannote[2185].speaker SPEAKER_03
transcript.pyannote[2185].start 12916.45971875
transcript.pyannote[2185].end 12922.53471875
transcript.pyannote[2186].speaker SPEAKER_03
transcript.pyannote[2186].start 12923.53034375
transcript.pyannote[2186].end 12925.90971875
transcript.pyannote[2187].speaker SPEAKER_03
transcript.pyannote[2187].start 12926.68596875
transcript.pyannote[2187].end 12928.00221875
transcript.pyannote[2188].speaker SPEAKER_03
transcript.pyannote[2188].start 12928.27221875
transcript.pyannote[2188].end 12941.35034375
transcript.pyannote[2189].speaker SPEAKER_03
transcript.pyannote[2189].start 12941.41784375
transcript.pyannote[2189].end 12958.02284375
transcript.pyannote[2190].speaker SPEAKER_18
transcript.pyannote[2190].start 12962.14034375
transcript.pyannote[2190].end 12970.89846875
transcript.pyannote[2191].speaker SPEAKER_03
transcript.pyannote[2191].start 12970.56096875
transcript.pyannote[2191].end 12977.29409375
transcript.pyannote[2192].speaker SPEAKER_13
transcript.pyannote[2192].start 12970.89846875
transcript.pyannote[2192].end 12970.91534375
transcript.pyannote[2193].speaker SPEAKER_13
transcript.pyannote[2193].start 12976.26471875
transcript.pyannote[2193].end 12979.89284375
transcript.pyannote[2194].speaker SPEAKER_11
transcript.pyannote[2194].start 12989.56221875
transcript.pyannote[2194].end 12993.17346875
transcript.pyannote[2195].speaker SPEAKER_11
transcript.pyannote[2195].start 12993.78096875
transcript.pyannote[2195].end 12994.54034375
transcript.pyannote[2196].speaker SPEAKER_11
transcript.pyannote[2196].start 12994.91159375
transcript.pyannote[2196].end 12995.70471875
transcript.pyannote[2197].speaker SPEAKER_11
transcript.pyannote[2197].start 12999.36659375
transcript.pyannote[2197].end 13000.14284375
transcript.pyannote[2198].speaker SPEAKER_11
transcript.pyannote[2198].start 13000.75034375
transcript.pyannote[2198].end 13002.99471875
transcript.pyannote[2199].speaker SPEAKER_11
transcript.pyannote[2199].start 13004.46284375
transcript.pyannote[2199].end 13005.57659375
transcript.pyannote[2200].speaker SPEAKER_11
transcript.pyannote[2200].start 13006.11659375
transcript.pyannote[2200].end 13007.70284375
transcript.pyannote[2201].speaker SPEAKER_11
transcript.pyannote[2201].start 13008.12471875
transcript.pyannote[2201].end 13008.91784375
transcript.pyannote[2202].speaker SPEAKER_11
transcript.pyannote[2202].start 13009.64346875
transcript.pyannote[2202].end 13011.21284375
transcript.pyannote[2203].speaker SPEAKER_11
transcript.pyannote[2203].start 13011.56721875
transcript.pyannote[2203].end 13012.83284375
transcript.pyannote[2204].speaker SPEAKER_11
transcript.pyannote[2204].start 13013.15346875
transcript.pyannote[2204].end 13014.06471875
transcript.pyannote[2205].speaker SPEAKER_11
transcript.pyannote[2205].start 13014.62159375
transcript.pyannote[2205].end 13015.49909375
transcript.pyannote[2206].speaker SPEAKER_11
transcript.pyannote[2206].start 13015.90409375
transcript.pyannote[2206].end 13017.60846875
transcript.pyannote[2207].speaker SPEAKER_11
transcript.pyannote[2207].start 13018.35096875
transcript.pyannote[2207].end 13018.97534375
transcript.pyannote[2208].speaker SPEAKER_11
transcript.pyannote[2208].start 13019.81909375
transcript.pyannote[2208].end 13021.16909375
transcript.pyannote[2209].speaker SPEAKER_11
transcript.pyannote[2209].start 13021.59096875
transcript.pyannote[2209].end 13022.18159375
transcript.pyannote[2210].speaker SPEAKER_11
transcript.pyannote[2210].start 13022.36721875
transcript.pyannote[2210].end 13024.15596875
transcript.pyannote[2211].speaker SPEAKER_11
transcript.pyannote[2211].start 13024.96596875
transcript.pyannote[2211].end 13025.60721875
transcript.pyannote[2212].speaker SPEAKER_11
transcript.pyannote[2212].start 13026.34971875
transcript.pyannote[2212].end 13028.10471875
transcript.pyannote[2213].speaker SPEAKER_11
transcript.pyannote[2213].start 13028.34096875
transcript.pyannote[2213].end 13029.52221875
transcript.pyannote[2214].speaker SPEAKER_11
transcript.pyannote[2214].start 13030.23096875
transcript.pyannote[2214].end 13031.34471875
transcript.pyannote[2215].speaker SPEAKER_11
transcript.pyannote[2215].start 13031.93534375
transcript.pyannote[2215].end 13035.73221875
transcript.pyannote[2216].speaker SPEAKER_14
transcript.pyannote[2216].start 13031.96909375
transcript.pyannote[2216].end 13032.50909375
transcript.pyannote[2217].speaker SPEAKER_14
transcript.pyannote[2217].start 13036.84596875
transcript.pyannote[2217].end 13040.10284375
transcript.pyannote[2218].speaker SPEAKER_11
transcript.pyannote[2218].start 13037.13284375
transcript.pyannote[2218].end 13037.58846875
transcript.pyannote[2219].speaker SPEAKER_14
transcript.pyannote[2219].start 13040.20409375
transcript.pyannote[2219].end 13043.96721875
transcript.pyannote[2220].speaker SPEAKER_11
transcript.pyannote[2220].start 13043.96721875
transcript.pyannote[2220].end 13049.14784375
transcript.pyannote[2221].speaker SPEAKER_11
transcript.pyannote[2221].start 13049.43471875
transcript.pyannote[2221].end 13052.10096875
transcript.pyannote[2222].speaker SPEAKER_11
transcript.pyannote[2222].start 13052.18534375
transcript.pyannote[2222].end 13053.07971875
transcript.pyannote[2223].speaker SPEAKER_11
transcript.pyannote[2223].start 13053.50159375
transcript.pyannote[2223].end 13054.80096875
transcript.pyannote[2224].speaker SPEAKER_11
transcript.pyannote[2224].start 13055.37471875
transcript.pyannote[2224].end 13055.69534375
transcript.pyannote[2225].speaker SPEAKER_11
transcript.pyannote[2225].start 13056.43784375
transcript.pyannote[2225].end 13057.45034375
transcript.pyannote[2226].speaker SPEAKER_11
transcript.pyannote[2226].start 13058.12534375
transcript.pyannote[2226].end 13065.53346875
transcript.pyannote[2227].speaker SPEAKER_11
transcript.pyannote[2227].start 13065.75284375
transcript.pyannote[2227].end 13067.20409375
transcript.pyannote[2228].speaker SPEAKER_11
transcript.pyannote[2228].start 13068.14909375
transcript.pyannote[2228].end 13069.38096875
transcript.pyannote[2229].speaker SPEAKER_11
transcript.pyannote[2229].start 13070.00534375
transcript.pyannote[2229].end 13071.23721875
transcript.pyannote[2230].speaker SPEAKER_11
transcript.pyannote[2230].start 13071.50721875
transcript.pyannote[2230].end 13072.36784375
transcript.pyannote[2231].speaker SPEAKER_11
transcript.pyannote[2231].start 13072.82346875
transcript.pyannote[2231].end 13074.20721875
transcript.pyannote[2232].speaker SPEAKER_11
transcript.pyannote[2232].start 13074.49409375
transcript.pyannote[2232].end 13076.56971875
transcript.pyannote[2233].speaker SPEAKER_14
transcript.pyannote[2233].start 13074.54471875
transcript.pyannote[2233].end 13075.96221875
transcript.pyannote[2234].speaker SPEAKER_00
transcript.pyannote[2234].start 13075.96221875
transcript.pyannote[2234].end 13076.40096875
transcript.pyannote[2235].speaker SPEAKER_11
transcript.pyannote[2235].start 13077.07596875
transcript.pyannote[2235].end 13077.83534375
transcript.pyannote[2236].speaker SPEAKER_11
transcript.pyannote[2236].start 13078.13909375
transcript.pyannote[2236].end 13079.87721875
transcript.pyannote[2237].speaker SPEAKER_11
transcript.pyannote[2237].start 13081.24409375
transcript.pyannote[2237].end 13082.50971875
transcript.pyannote[2238].speaker SPEAKER_11
transcript.pyannote[2238].start 13083.33659375
transcript.pyannote[2238].end 13084.41659375
transcript.pyannote[2239].speaker SPEAKER_11
transcript.pyannote[2239].start 13084.88909375
transcript.pyannote[2239].end 13087.03221875
transcript.pyannote[2240].speaker SPEAKER_14
transcript.pyannote[2240].start 13087.03221875
transcript.pyannote[2240].end 13087.31909375
transcript.pyannote[2241].speaker SPEAKER_11
transcript.pyannote[2241].start 13087.77471875
transcript.pyannote[2241].end 13087.79159375
transcript.pyannote[2242].speaker SPEAKER_14
transcript.pyannote[2242].start 13087.79159375
transcript.pyannote[2242].end 13107.97409375
transcript.pyannote[2243].speaker SPEAKER_11
transcript.pyannote[2243].start 13100.75159375
transcript.pyannote[2243].end 13101.25784375
transcript.pyannote[2244].speaker SPEAKER_11
transcript.pyannote[2244].start 13107.97409375
transcript.pyannote[2244].end 13109.62784375
transcript.pyannote[2245].speaker SPEAKER_11
transcript.pyannote[2245].start 13110.10034375
transcript.pyannote[2245].end 13110.77534375
transcript.pyannote[2246].speaker SPEAKER_11
transcript.pyannote[2246].start 13111.01159375
transcript.pyannote[2246].end 13115.68596875
transcript.pyannote[2247].speaker SPEAKER_11
transcript.pyannote[2247].start 13116.12471875
transcript.pyannote[2247].end 13122.48659375
transcript.pyannote[2248].speaker SPEAKER_14
transcript.pyannote[2248].start 13122.82409375
transcript.pyannote[2248].end 13122.84096875
transcript.pyannote[2249].speaker SPEAKER_11
transcript.pyannote[2249].start 13122.84096875
transcript.pyannote[2249].end 13124.03909375
transcript.pyannote[2250].speaker SPEAKER_14
transcript.pyannote[2250].start 13124.03909375
transcript.pyannote[2250].end 13153.40159375
transcript.pyannote[2251].speaker SPEAKER_14
transcript.pyannote[2251].start 13154.22846875
transcript.pyannote[2251].end 13155.44346875
transcript.pyannote[2252].speaker SPEAKER_11
transcript.pyannote[2252].start 13155.44346875
transcript.pyannote[2252].end 13155.52784375
transcript.pyannote[2253].speaker SPEAKER_11
transcript.pyannote[2253].start 13155.66284375
transcript.pyannote[2253].end 13155.69659375
transcript.pyannote[2254].speaker SPEAKER_14
transcript.pyannote[2254].start 13155.69659375
transcript.pyannote[2254].end 13155.73034375
transcript.pyannote[2255].speaker SPEAKER_11
transcript.pyannote[2255].start 13155.73034375
transcript.pyannote[2255].end 13155.79784375
transcript.pyannote[2256].speaker SPEAKER_14
transcript.pyannote[2256].start 13155.79784375
transcript.pyannote[2256].end 13155.96659375
transcript.pyannote[2257].speaker SPEAKER_11
transcript.pyannote[2257].start 13155.96659375
transcript.pyannote[2257].end 13156.86096875
transcript.pyannote[2258].speaker SPEAKER_14
transcript.pyannote[2258].start 13156.16909375
transcript.pyannote[2258].end 13158.16034375
transcript.pyannote[2259].speaker SPEAKER_11
transcript.pyannote[2259].start 13157.62034375
transcript.pyannote[2259].end 13160.62409375
transcript.pyannote[2260].speaker SPEAKER_11
transcript.pyannote[2260].start 13160.99534375
transcript.pyannote[2260].end 13170.02346875
transcript.pyannote[2261].speaker SPEAKER_14
transcript.pyannote[2261].start 13170.02346875
transcript.pyannote[2261].end 13170.04034375
transcript.pyannote[2262].speaker SPEAKER_11
transcript.pyannote[2262].start 13170.04034375
transcript.pyannote[2262].end 13170.24284375
transcript.pyannote[2263].speaker SPEAKER_14
transcript.pyannote[2263].start 13170.24284375
transcript.pyannote[2263].end 13175.84534375
transcript.pyannote[2264].speaker SPEAKER_14
transcript.pyannote[2264].start 13176.03096875
transcript.pyannote[2264].end 13188.29909375
transcript.pyannote[2265].speaker SPEAKER_11
transcript.pyannote[2265].start 13188.29909375
transcript.pyannote[2265].end 13188.31596875
transcript.pyannote[2266].speaker SPEAKER_14
transcript.pyannote[2266].start 13188.31596875
transcript.pyannote[2266].end 13188.33284375
transcript.pyannote[2267].speaker SPEAKER_14
transcript.pyannote[2267].start 13188.87284375
transcript.pyannote[2267].end 13188.97409375
transcript.pyannote[2268].speaker SPEAKER_11
transcript.pyannote[2268].start 13188.97409375
transcript.pyannote[2268].end 13190.17221875
transcript.pyannote[2269].speaker SPEAKER_11
transcript.pyannote[2269].start 13191.08346875
transcript.pyannote[2269].end 13191.69096875
transcript.pyannote[2270].speaker SPEAKER_11
transcript.pyannote[2270].start 13192.21409375
transcript.pyannote[2270].end 13194.32346875
transcript.pyannote[2271].speaker SPEAKER_11
transcript.pyannote[2271].start 13194.89721875
transcript.pyannote[2271].end 13196.48346875
transcript.pyannote[2272].speaker SPEAKER_11
transcript.pyannote[2272].start 13196.90534375
transcript.pyannote[2272].end 13198.37346875
transcript.pyannote[2273].speaker SPEAKER_11
transcript.pyannote[2273].start 13198.96409375
transcript.pyannote[2273].end 13201.09034375
transcript.pyannote[2274].speaker SPEAKER_11
transcript.pyannote[2274].start 13201.52909375
transcript.pyannote[2274].end 13203.43596875
transcript.pyannote[2275].speaker SPEAKER_11
transcript.pyannote[2275].start 13203.94221875
transcript.pyannote[2275].end 13207.08096875
transcript.pyannote[2276].speaker SPEAKER_11
transcript.pyannote[2276].start 13207.55346875
transcript.pyannote[2276].end 13208.88659375
transcript.pyannote[2277].speaker SPEAKER_11
transcript.pyannote[2277].start 13209.49409375
transcript.pyannote[2277].end 13210.91159375
transcript.pyannote[2278].speaker SPEAKER_11
transcript.pyannote[2278].start 13211.35034375
transcript.pyannote[2278].end 13215.02909375
transcript.pyannote[2279].speaker SPEAKER_29
transcript.pyannote[2279].start 13215.02909375
transcript.pyannote[2279].end 13215.07971875
transcript.pyannote[2280].speaker SPEAKER_11
transcript.pyannote[2280].start 13216.09221875
transcript.pyannote[2280].end 13216.10909375
transcript.pyannote[2281].speaker SPEAKER_29
transcript.pyannote[2281].start 13216.10909375
transcript.pyannote[2281].end 13229.89596875
transcript.pyannote[2282].speaker SPEAKER_25
transcript.pyannote[2282].start 13224.46221875
transcript.pyannote[2282].end 13224.47909375
transcript.pyannote[2283].speaker SPEAKER_11
transcript.pyannote[2283].start 13224.47909375
transcript.pyannote[2283].end 13225.71096875
transcript.pyannote[2284].speaker SPEAKER_11
transcript.pyannote[2284].start 13225.86284375
transcript.pyannote[2284].end 13226.25096875
transcript.pyannote[2285].speaker SPEAKER_29
transcript.pyannote[2285].start 13230.60471875
transcript.pyannote[2285].end 13235.97096875
transcript.pyannote[2286].speaker SPEAKER_11
transcript.pyannote[2286].start 13234.16534375
transcript.pyannote[2286].end 13234.46909375
transcript.pyannote[2287].speaker SPEAKER_11
transcript.pyannote[2287].start 13235.97096875
transcript.pyannote[2287].end 13243.02471875
transcript.pyannote[2288].speaker SPEAKER_29
transcript.pyannote[2288].start 13241.67471875
transcript.pyannote[2288].end 13242.46784375
transcript.pyannote[2289].speaker SPEAKER_29
transcript.pyannote[2289].start 13243.02471875
transcript.pyannote[2289].end 13243.12596875
transcript.pyannote[2290].speaker SPEAKER_11
transcript.pyannote[2290].start 13243.44659375
transcript.pyannote[2290].end 13243.48034375
transcript.pyannote[2291].speaker SPEAKER_29
transcript.pyannote[2291].start 13243.48034375
transcript.pyannote[2291].end 13244.89784375
transcript.pyannote[2292].speaker SPEAKER_29
transcript.pyannote[2292].start 13245.18471875
transcript.pyannote[2292].end 13247.14221875
transcript.pyannote[2293].speaker SPEAKER_29
transcript.pyannote[2293].start 13247.91846875
transcript.pyannote[2293].end 13255.90034375
transcript.pyannote[2294].speaker SPEAKER_11
transcript.pyannote[2294].start 13253.60534375
transcript.pyannote[2294].end 13254.01034375
transcript.pyannote[2295].speaker SPEAKER_11
transcript.pyannote[2295].start 13255.02284375
transcript.pyannote[2295].end 13258.83659375
transcript.pyannote[2296].speaker SPEAKER_29
transcript.pyannote[2296].start 13259.12346875
transcript.pyannote[2296].end 13259.14034375
transcript.pyannote[2297].speaker SPEAKER_11
transcript.pyannote[2297].start 13259.14034375
transcript.pyannote[2297].end 13265.41784375
transcript.pyannote[2298].speaker SPEAKER_29
transcript.pyannote[2298].start 13261.24971875
transcript.pyannote[2298].end 13261.60409375
transcript.pyannote[2299].speaker SPEAKER_29
transcript.pyannote[2299].start 13265.41784375
transcript.pyannote[2299].end 13265.45159375
transcript.pyannote[2300].speaker SPEAKER_11
transcript.pyannote[2300].start 13266.41346875
transcript.pyannote[2300].end 13266.43034375
transcript.pyannote[2301].speaker SPEAKER_29
transcript.pyannote[2301].start 13266.43034375
transcript.pyannote[2301].end 13274.49659375
transcript.pyannote[2302].speaker SPEAKER_11
transcript.pyannote[2302].start 13274.49659375
transcript.pyannote[2302].end 13274.64846875
transcript.pyannote[2303].speaker SPEAKER_29
transcript.pyannote[2303].start 13274.64846875
transcript.pyannote[2303].end 13275.96471875
transcript.pyannote[2304].speaker SPEAKER_11
transcript.pyannote[2304].start 13275.96471875
transcript.pyannote[2304].end 13286.79846875
transcript.pyannote[2305].speaker SPEAKER_29
transcript.pyannote[2305].start 13276.62284375
transcript.pyannote[2305].end 13276.69034375
transcript.pyannote[2306].speaker SPEAKER_25
transcript.pyannote[2306].start 13276.69034375
transcript.pyannote[2306].end 13276.97721875
transcript.pyannote[2307].speaker SPEAKER_29
transcript.pyannote[2307].start 13276.97721875
transcript.pyannote[2307].end 13277.33159375
transcript.pyannote[2308].speaker SPEAKER_11
transcript.pyannote[2308].start 13287.15284375
transcript.pyannote[2308].end 13290.47721875
transcript.pyannote[2309].speaker SPEAKER_11
transcript.pyannote[2309].start 13291.67534375
transcript.pyannote[2309].end 13295.11784375
transcript.pyannote[2310].speaker SPEAKER_29
transcript.pyannote[2310].start 13292.67096875
transcript.pyannote[2310].end 13293.70034375
transcript.pyannote[2311].speaker SPEAKER_11
transcript.pyannote[2311].start 13295.57346875
transcript.pyannote[2311].end 13300.23096875
transcript.pyannote[2312].speaker SPEAKER_11
transcript.pyannote[2312].start 13300.77096875
transcript.pyannote[2312].end 13307.89221875
transcript.pyannote[2313].speaker SPEAKER_11
transcript.pyannote[2313].start 13308.60096875
transcript.pyannote[2313].end 13315.62096875
transcript.pyannote[2314].speaker SPEAKER_29
transcript.pyannote[2314].start 13311.72284375
transcript.pyannote[2314].end 13312.97159375
transcript.pyannote[2315].speaker SPEAKER_00
transcript.pyannote[2315].start 13312.97159375
transcript.pyannote[2315].end 13313.27534375
transcript.pyannote[2316].speaker SPEAKER_11
transcript.pyannote[2316].start 13316.75159375
transcript.pyannote[2316].end 13317.34221875
transcript.pyannote[2317].speaker SPEAKER_11
transcript.pyannote[2317].start 13318.03409375
transcript.pyannote[2317].end 13318.54034375
transcript.pyannote[2318].speaker SPEAKER_11
transcript.pyannote[2318].start 13319.26596875
transcript.pyannote[2318].end 13320.26159375
transcript.pyannote[2319].speaker SPEAKER_11
transcript.pyannote[2319].start 13320.68346875
transcript.pyannote[2319].end 13322.70846875
transcript.pyannote[2320].speaker SPEAKER_11
transcript.pyannote[2320].start 13323.23159375
transcript.pyannote[2320].end 13325.30721875
transcript.pyannote[2321].speaker SPEAKER_11
transcript.pyannote[2321].start 13325.64471875
transcript.pyannote[2321].end 13326.35346875
transcript.pyannote[2322].speaker SPEAKER_11
transcript.pyannote[2322].start 13326.65721875
transcript.pyannote[2322].end 13329.03659375
transcript.pyannote[2323].speaker SPEAKER_14
transcript.pyannote[2323].start 13329.03659375
transcript.pyannote[2323].end 13330.42034375
transcript.pyannote[2324].speaker SPEAKER_14
transcript.pyannote[2324].start 13330.72409375
transcript.pyannote[2324].end 13337.96346875
transcript.pyannote[2325].speaker SPEAKER_11
transcript.pyannote[2325].start 13337.96346875
transcript.pyannote[2325].end 13338.62159375
transcript.pyannote[2326].speaker SPEAKER_14
transcript.pyannote[2326].start 13338.62159375
transcript.pyannote[2326].end 13338.97596875
transcript.pyannote[2327].speaker SPEAKER_11
transcript.pyannote[2327].start 13338.97596875
transcript.pyannote[2327].end 13340.25846875
transcript.pyannote[2328].speaker SPEAKER_14
transcript.pyannote[2328].start 13339.36409375
transcript.pyannote[2328].end 13340.25846875
transcript.pyannote[2329].speaker SPEAKER_20
transcript.pyannote[2329].start 13340.25846875
transcript.pyannote[2329].end 13340.78159375
transcript.pyannote[2330].speaker SPEAKER_14
transcript.pyannote[2330].start 13340.78159375
transcript.pyannote[2330].end 13341.23721875
transcript.pyannote[2331].speaker SPEAKER_11
transcript.pyannote[2331].start 13341.06846875
transcript.pyannote[2331].end 13344.98346875
transcript.pyannote[2332].speaker SPEAKER_14
transcript.pyannote[2332].start 13345.16909375
transcript.pyannote[2332].end 13347.32909375
transcript.pyannote[2333].speaker SPEAKER_11
transcript.pyannote[2333].start 13347.32909375
transcript.pyannote[2333].end 13348.35846875
transcript.pyannote[2334].speaker SPEAKER_14
transcript.pyannote[2334].start 13349.16846875
transcript.pyannote[2334].end 13352.96534375
transcript.pyannote[2335].speaker SPEAKER_11
transcript.pyannote[2335].start 13349.30346875
transcript.pyannote[2335].end 13353.99471875
transcript.pyannote[2336].speaker SPEAKER_14
transcript.pyannote[2336].start 13354.29846875
transcript.pyannote[2336].end 13354.58534375
transcript.pyannote[2337].speaker SPEAKER_20
transcript.pyannote[2337].start 13354.58534375
transcript.pyannote[2337].end 13354.60221875
transcript.pyannote[2338].speaker SPEAKER_11
transcript.pyannote[2338].start 13355.00721875
transcript.pyannote[2338].end 13365.46971875
transcript.pyannote[2339].speaker SPEAKER_14
transcript.pyannote[2339].start 13361.52096875
transcript.pyannote[2339].end 13362.11159375
transcript.pyannote[2340].speaker SPEAKER_14
transcript.pyannote[2340].start 13362.43221875
transcript.pyannote[2340].end 13362.88784375
transcript.pyannote[2341].speaker SPEAKER_14
transcript.pyannote[2341].start 13365.46971875
transcript.pyannote[2341].end 13369.11471875
transcript.pyannote[2342].speaker SPEAKER_11
transcript.pyannote[2342].start 13366.04346875
transcript.pyannote[2342].end 13375.25721875
transcript.pyannote[2343].speaker SPEAKER_14
transcript.pyannote[2343].start 13369.97534375
transcript.pyannote[2343].end 13370.56596875
transcript.pyannote[2344].speaker SPEAKER_11
transcript.pyannote[2344].start 13375.71284375
transcript.pyannote[2344].end 13378.29471875
transcript.pyannote[2345].speaker SPEAKER_11
transcript.pyannote[2345].start 13378.76721875
transcript.pyannote[2345].end 13384.48784375
transcript.pyannote[2346].speaker SPEAKER_11
transcript.pyannote[2346].start 13384.85909375
transcript.pyannote[2346].end 13387.74471875
transcript.pyannote[2347].speaker SPEAKER_11
transcript.pyannote[2347].start 13389.04409375
transcript.pyannote[2347].end 13396.58721875
transcript.pyannote[2348].speaker SPEAKER_16
transcript.pyannote[2348].start 13389.56721875
transcript.pyannote[2348].end 13389.97221875
transcript.pyannote[2349].speaker SPEAKER_00
transcript.pyannote[2349].start 13389.97221875
transcript.pyannote[2349].end 13390.02284375
transcript.pyannote[2350].speaker SPEAKER_11
transcript.pyannote[2350].start 13397.09346875
transcript.pyannote[2350].end 13398.81471875
transcript.pyannote[2351].speaker SPEAKER_11
transcript.pyannote[2351].start 13399.50659375
transcript.pyannote[2351].end 13400.82284375
transcript.pyannote[2352].speaker SPEAKER_11
transcript.pyannote[2352].start 13401.37971875
transcript.pyannote[2352].end 13401.91971875
transcript.pyannote[2353].speaker SPEAKER_11
transcript.pyannote[2353].start 13402.42596875
transcript.pyannote[2353].end 13403.10096875
transcript.pyannote[2354].speaker SPEAKER_11
transcript.pyannote[2354].start 13404.41721875
transcript.pyannote[2354].end 13405.53096875
transcript.pyannote[2355].speaker SPEAKER_11
transcript.pyannote[2355].start 13406.88096875
transcript.pyannote[2355].end 13408.31534375
transcript.pyannote[2356].speaker SPEAKER_11
transcript.pyannote[2356].start 13409.37846875
transcript.pyannote[2356].end 13411.60596875
transcript.pyannote[2357].speaker SPEAKER_11
transcript.pyannote[2357].start 13412.70284375
transcript.pyannote[2357].end 13413.29346875
transcript.pyannote[2358].speaker SPEAKER_11
transcript.pyannote[2358].start 13413.93471875
transcript.pyannote[2358].end 13416.22971875
transcript.pyannote[2359].speaker SPEAKER_11
transcript.pyannote[2359].start 13416.48284375
transcript.pyannote[2359].end 13420.38096875
transcript.pyannote[2360].speaker SPEAKER_11
transcript.pyannote[2360].start 13420.81971875
transcript.pyannote[2360].end 13422.22034375
transcript.pyannote[2361].speaker SPEAKER_11
transcript.pyannote[2361].start 13422.54096875
transcript.pyannote[2361].end 13423.30034375
transcript.pyannote[2362].speaker SPEAKER_11
transcript.pyannote[2362].start 13423.78971875
transcript.pyannote[2362].end 13426.28721875
transcript.pyannote[2363].speaker SPEAKER_11
transcript.pyannote[2363].start 13426.35471875
transcript.pyannote[2363].end 13431.94034375
transcript.pyannote[2364].speaker SPEAKER_11
transcript.pyannote[2364].start 13432.76721875
transcript.pyannote[2364].end 13434.13409375
transcript.pyannote[2365].speaker SPEAKER_11
transcript.pyannote[2365].start 13434.97784375
transcript.pyannote[2365].end 13435.82159375
transcript.pyannote[2366].speaker SPEAKER_11
transcript.pyannote[2366].start 13436.29409375
transcript.pyannote[2366].end 13437.35721875
transcript.pyannote[2367].speaker SPEAKER_11
transcript.pyannote[2367].start 13438.20096875
transcript.pyannote[2367].end 13440.44534375
transcript.pyannote[2368].speaker SPEAKER_11
transcript.pyannote[2368].start 13441.54221875
transcript.pyannote[2368].end 13442.26784375
transcript.pyannote[2369].speaker SPEAKER_11
transcript.pyannote[2369].start 13443.26346875
transcript.pyannote[2369].end 13445.11971875
transcript.pyannote[2370].speaker SPEAKER_11
transcript.pyannote[2370].start 13445.76096875
transcript.pyannote[2370].end 13449.08534375
transcript.pyannote[2371].speaker SPEAKER_11
transcript.pyannote[2371].start 13449.47346875
transcript.pyannote[2371].end 13453.06784375
transcript.pyannote[2372].speaker SPEAKER_11
transcript.pyannote[2372].start 13453.60784375
transcript.pyannote[2372].end 13455.78471875
transcript.pyannote[2373].speaker SPEAKER_11
transcript.pyannote[2373].start 13458.09659375
transcript.pyannote[2373].end 13458.48471875
transcript.pyannote[2374].speaker SPEAKER_11
transcript.pyannote[2374].start 13458.88971875
transcript.pyannote[2374].end 13460.50971875
transcript.pyannote[2375].speaker SPEAKER_11
transcript.pyannote[2375].start 13461.60659375
transcript.pyannote[2375].end 13462.39971875
transcript.pyannote[2376].speaker SPEAKER_11
transcript.pyannote[2376].start 13463.96909375
transcript.pyannote[2376].end 13465.69034375
transcript.pyannote[2377].speaker SPEAKER_11
transcript.pyannote[2377].start 13466.31471875
transcript.pyannote[2377].end 13467.32721875
transcript.pyannote[2378].speaker SPEAKER_11
transcript.pyannote[2378].start 13468.35659375
transcript.pyannote[2378].end 13469.20034375
transcript.pyannote[2379].speaker SPEAKER_11
transcript.pyannote[2379].start 13469.74034375
transcript.pyannote[2379].end 13471.86659375
transcript.pyannote[2380].speaker SPEAKER_11
transcript.pyannote[2380].start 13472.47409375
transcript.pyannote[2380].end 13478.49846875
transcript.pyannote[2381].speaker SPEAKER_14
transcript.pyannote[2381].start 13479.05534375
transcript.pyannote[2381].end 13483.44284375
transcript.pyannote[2382].speaker SPEAKER_14
transcript.pyannote[2382].start 13483.56096875
transcript.pyannote[2382].end 13484.64096875
transcript.pyannote[2383].speaker SPEAKER_11
transcript.pyannote[2383].start 13483.96596875
transcript.pyannote[2383].end 13485.53534375
transcript.pyannote[2384].speaker SPEAKER_14
transcript.pyannote[2384].start 13485.53534375
transcript.pyannote[2384].end 13489.75409375
transcript.pyannote[2385].speaker SPEAKER_11
transcript.pyannote[2385].start 13485.58596875
transcript.pyannote[2385].end 13485.61971875
transcript.pyannote[2386].speaker SPEAKER_11
transcript.pyannote[2386].start 13487.56034375
transcript.pyannote[2386].end 13496.45346875
transcript.pyannote[2387].speaker SPEAKER_11
transcript.pyannote[2387].start 13497.19596875
transcript.pyannote[2387].end 13507.11846875
transcript.pyannote[2388].speaker SPEAKER_11
transcript.pyannote[2388].start 13508.16471875
transcript.pyannote[2388].end 13515.99471875
transcript.pyannote[2389].speaker SPEAKER_11
transcript.pyannote[2389].start 13516.75409375
transcript.pyannote[2389].end 13519.43721875
transcript.pyannote[2390].speaker SPEAKER_11
transcript.pyannote[2390].start 13520.51721875
transcript.pyannote[2390].end 13521.56346875
transcript.pyannote[2391].speaker SPEAKER_11
transcript.pyannote[2391].start 13522.37346875
transcript.pyannote[2391].end 13523.20034375
transcript.pyannote[2392].speaker SPEAKER_11
transcript.pyannote[2392].start 13524.22971875
transcript.pyannote[2392].end 13525.37721875
transcript.pyannote[2393].speaker SPEAKER_11
transcript.pyannote[2393].start 13526.71034375
transcript.pyannote[2393].end 13527.84096875
transcript.pyannote[2394].speaker SPEAKER_11
transcript.pyannote[2394].start 13528.54971875
transcript.pyannote[2394].end 13530.03471875
transcript.pyannote[2395].speaker SPEAKER_11
transcript.pyannote[2395].start 13530.94596875
transcript.pyannote[2395].end 13531.68846875
transcript.pyannote[2396].speaker SPEAKER_11
transcript.pyannote[2396].start 13532.24534375
transcript.pyannote[2396].end 13533.15659375
transcript.pyannote[2397].speaker SPEAKER_11
transcript.pyannote[2397].start 13534.05096875
transcript.pyannote[2397].end 13542.57284375
transcript.pyannote[2398].speaker SPEAKER_14
transcript.pyannote[2398].start 13541.02034375
transcript.pyannote[2398].end 13564.99971875
transcript.pyannote[2399].speaker SPEAKER_11
transcript.pyannote[2399].start 13564.61159375
transcript.pyannote[2399].end 13564.98284375
transcript.pyannote[2400].speaker SPEAKER_11
transcript.pyannote[2400].start 13564.99971875
transcript.pyannote[2400].end 13565.25284375
transcript.pyannote[2401].speaker SPEAKER_14
transcript.pyannote[2401].start 13565.84346875
transcript.pyannote[2401].end 13565.86034375
transcript.pyannote[2402].speaker SPEAKER_11
transcript.pyannote[2402].start 13565.86034375
transcript.pyannote[2402].end 13571.41221875
transcript.pyannote[2403].speaker SPEAKER_14
transcript.pyannote[2403].start 13571.41221875
transcript.pyannote[2403].end 13575.44534375
transcript.pyannote[2404].speaker SPEAKER_11
transcript.pyannote[2404].start 13572.49221875
transcript.pyannote[2404].end 13575.32721875
transcript.pyannote[2405].speaker SPEAKER_11
transcript.pyannote[2405].start 13575.44534375
transcript.pyannote[2405].end 13577.08221875
transcript.pyannote[2406].speaker SPEAKER_14
transcript.pyannote[2406].start 13575.76596875
transcript.pyannote[2406].end 13577.70659375
transcript.pyannote[2407].speaker SPEAKER_11
transcript.pyannote[2407].start 13577.45346875
transcript.pyannote[2407].end 13579.44471875
transcript.pyannote[2408].speaker SPEAKER_11
transcript.pyannote[2408].start 13580.37284375
transcript.pyannote[2408].end 13581.46971875
transcript.pyannote[2409].speaker SPEAKER_11
transcript.pyannote[2409].start 13581.95909375
transcript.pyannote[2409].end 13584.38909375
transcript.pyannote[2410].speaker SPEAKER_11
transcript.pyannote[2410].start 13585.13159375
transcript.pyannote[2410].end 13586.24534375
transcript.pyannote[2411].speaker SPEAKER_11
transcript.pyannote[2411].start 13586.56596875
transcript.pyannote[2411].end 13588.13534375
transcript.pyannote[2412].speaker SPEAKER_11
transcript.pyannote[2412].start 13589.13096875
transcript.pyannote[2412].end 13597.02846875
transcript.pyannote[2413].speaker SPEAKER_14
transcript.pyannote[2413].start 13589.80596875
transcript.pyannote[2413].end 13590.09284375
transcript.pyannote[2414].speaker SPEAKER_14
transcript.pyannote[2414].start 13590.12659375
transcript.pyannote[2414].end 13590.16034375
transcript.pyannote[2415].speaker SPEAKER_14
transcript.pyannote[2415].start 13590.26159375
transcript.pyannote[2415].end 13590.34596875
transcript.pyannote[2416].speaker SPEAKER_14
transcript.pyannote[2416].start 13590.83534375
transcript.pyannote[2416].end 13592.84346875
transcript.pyannote[2417].speaker SPEAKER_14
transcript.pyannote[2417].start 13593.19784375
transcript.pyannote[2417].end 13593.99096875
transcript.pyannote[2418].speaker SPEAKER_11
transcript.pyannote[2418].start 13597.23096875
transcript.pyannote[2418].end 13598.02409375
transcript.pyannote[2419].speaker SPEAKER_11
transcript.pyannote[2419].start 13598.63159375
transcript.pyannote[2419].end 13600.69034375
transcript.pyannote[2420].speaker SPEAKER_11
transcript.pyannote[2420].start 13600.92659375
transcript.pyannote[2420].end 13602.47909375
transcript.pyannote[2421].speaker SPEAKER_11
transcript.pyannote[2421].start 13602.79971875
transcript.pyannote[2421].end 13609.07721875
transcript.pyannote[2422].speaker SPEAKER_11
transcript.pyannote[2422].start 13609.56659375
transcript.pyannote[2422].end 13613.90346875
transcript.pyannote[2423].speaker SPEAKER_11
transcript.pyannote[2423].start 13615.86096875
transcript.pyannote[2423].end 13618.30784375
transcript.pyannote[2424].speaker SPEAKER_11
transcript.pyannote[2424].start 13619.80971875
transcript.pyannote[2424].end 13620.87284375
transcript.pyannote[2425].speaker SPEAKER_11
transcript.pyannote[2425].start 13622.18909375
transcript.pyannote[2425].end 13630.82909375
transcript.pyannote[2426].speaker SPEAKER_14
transcript.pyannote[2426].start 13624.82159375
transcript.pyannote[2426].end 13626.96471875
transcript.pyannote[2427].speaker SPEAKER_19
transcript.pyannote[2427].start 13626.96471875
transcript.pyannote[2427].end 13627.04909375
transcript.pyannote[2428].speaker SPEAKER_14
transcript.pyannote[2428].start 13627.04909375
transcript.pyannote[2428].end 13627.06596875
transcript.pyannote[2429].speaker SPEAKER_20
transcript.pyannote[2429].start 13628.09534375
transcript.pyannote[2429].end 13628.11221875
transcript.pyannote[2430].speaker SPEAKER_19
transcript.pyannote[2430].start 13628.11221875
transcript.pyannote[2430].end 13628.46659375
transcript.pyannote[2431].speaker SPEAKER_20
transcript.pyannote[2431].start 13628.46659375
transcript.pyannote[2431].end 13628.51721875
transcript.pyannote[2432].speaker SPEAKER_11
transcript.pyannote[2432].start 13631.04846875
transcript.pyannote[2432].end 13633.46159375
transcript.pyannote[2433].speaker SPEAKER_11
transcript.pyannote[2433].start 13633.64721875
transcript.pyannote[2433].end 13635.41909375
transcript.pyannote[2434].speaker SPEAKER_11
transcript.pyannote[2434].start 13635.84096875
transcript.pyannote[2434].end 13637.19096875
transcript.pyannote[2435].speaker SPEAKER_11
transcript.pyannote[2435].start 13638.43971875
transcript.pyannote[2435].end 13639.30034375
transcript.pyannote[2436].speaker SPEAKER_11
transcript.pyannote[2436].start 13640.92034375
transcript.pyannote[2436].end 13642.52346875
transcript.pyannote[2437].speaker SPEAKER_11
transcript.pyannote[2437].start 13643.26596875
transcript.pyannote[2437].end 13645.61159375
transcript.pyannote[2438].speaker SPEAKER_11
transcript.pyannote[2438].start 13646.18534375
transcript.pyannote[2438].end 13650.48846875
transcript.pyannote[2439].speaker SPEAKER_11
transcript.pyannote[2439].start 13651.09596875
transcript.pyannote[2439].end 13654.87596875
transcript.pyannote[2440].speaker SPEAKER_11
transcript.pyannote[2440].start 13655.24721875
transcript.pyannote[2440].end 13657.44096875
transcript.pyannote[2441].speaker SPEAKER_11
transcript.pyannote[2441].start 13658.14971875
transcript.pyannote[2441].end 13661.87909375
transcript.pyannote[2442].speaker SPEAKER_11
transcript.pyannote[2442].start 13662.62159375
transcript.pyannote[2442].end 13664.25846875
transcript.pyannote[2443].speaker SPEAKER_11
transcript.pyannote[2443].start 13664.88284375
transcript.pyannote[2443].end 13669.21971875
transcript.pyannote[2444].speaker SPEAKER_14
transcript.pyannote[2444].start 13664.96721875
transcript.pyannote[2444].end 13665.01784375
transcript.pyannote[2445].speaker SPEAKER_20
transcript.pyannote[2445].start 13665.01784375
transcript.pyannote[2445].end 13665.03471875
transcript.pyannote[2446].speaker SPEAKER_14
transcript.pyannote[2446].start 13665.03471875
transcript.pyannote[2446].end 13667.54909375
transcript.pyannote[2447].speaker SPEAKER_20
transcript.pyannote[2447].start 13667.54909375
transcript.pyannote[2447].end 13667.78534375
transcript.pyannote[2448].speaker SPEAKER_14
transcript.pyannote[2448].start 13667.78534375
transcript.pyannote[2448].end 13667.97096875
transcript.pyannote[2449].speaker SPEAKER_20
transcript.pyannote[2449].start 13667.97096875
transcript.pyannote[2449].end 13668.03846875
transcript.pyannote[2450].speaker SPEAKER_14
transcript.pyannote[2450].start 13668.03846875
transcript.pyannote[2450].end 13668.96659375
transcript.pyannote[2451].speaker SPEAKER_20
transcript.pyannote[2451].start 13668.96659375
transcript.pyannote[2451].end 13669.35471875
transcript.pyannote[2452].speaker SPEAKER_14
transcript.pyannote[2452].start 13669.35471875
transcript.pyannote[2452].end 13669.42221875
transcript.pyannote[2453].speaker SPEAKER_20
transcript.pyannote[2453].start 13669.42221875
transcript.pyannote[2453].end 13669.87784375
transcript.pyannote[2454].speaker SPEAKER_14
transcript.pyannote[2454].start 13669.87784375
transcript.pyannote[2454].end 13669.92846875
transcript.pyannote[2455].speaker SPEAKER_11
transcript.pyannote[2455].start 13670.50221875
transcript.pyannote[2455].end 13680.93096875
transcript.pyannote[2456].speaker SPEAKER_14
transcript.pyannote[2456].start 13674.14721875
transcript.pyannote[2456].end 13680.54284375
transcript.pyannote[2457].speaker SPEAKER_11
transcript.pyannote[2457].start 13681.15034375
transcript.pyannote[2457].end 13692.25409375
transcript.pyannote[2458].speaker SPEAKER_14
transcript.pyannote[2458].start 13682.82096875
transcript.pyannote[2458].end 13683.47909375
transcript.pyannote[2459].speaker SPEAKER_14
transcript.pyannote[2459].start 13683.95159375
transcript.pyannote[2459].end 13685.28471875
transcript.pyannote[2460].speaker SPEAKER_11
transcript.pyannote[2460].start 13692.89534375
transcript.pyannote[2460].end 13693.84034375
transcript.pyannote[2461].speaker SPEAKER_11
transcript.pyannote[2461].start 13695.34221875
transcript.pyannote[2461].end 13696.20284375
transcript.pyannote[2462].speaker SPEAKER_11
transcript.pyannote[2462].start 13697.11409375
transcript.pyannote[2462].end 13697.51909375
transcript.pyannote[2463].speaker SPEAKER_11
transcript.pyannote[2463].start 13698.22784375
transcript.pyannote[2463].end 13698.80159375
transcript.pyannote[2464].speaker SPEAKER_11
transcript.pyannote[2464].start 13699.40909375
transcript.pyannote[2464].end 13700.38784375
transcript.pyannote[2465].speaker SPEAKER_11
transcript.pyannote[2465].start 13700.79284375
transcript.pyannote[2465].end 13701.67034375
transcript.pyannote[2466].speaker SPEAKER_11
transcript.pyannote[2466].start 13701.73784375
transcript.pyannote[2466].end 13702.17659375
transcript.pyannote[2467].speaker SPEAKER_11
transcript.pyannote[2467].start 13702.83471875
transcript.pyannote[2467].end 13703.83034375
transcript.pyannote[2468].speaker SPEAKER_11
transcript.pyannote[2468].start 13703.86409375
transcript.pyannote[2468].end 13703.94846875
transcript.pyannote[2469].speaker SPEAKER_13
transcript.pyannote[2469].start 13703.94846875
transcript.pyannote[2469].end 13704.23534375
transcript.pyannote[2470].speaker SPEAKER_11
transcript.pyannote[2470].start 13704.23534375
transcript.pyannote[2470].end 13704.30284375
transcript.pyannote[2471].speaker SPEAKER_13
transcript.pyannote[2471].start 13704.30284375
transcript.pyannote[2471].end 13704.33659375
transcript.pyannote[2472].speaker SPEAKER_13
transcript.pyannote[2472].start 13705.31534375
transcript.pyannote[2472].end 13710.19221875
transcript.pyannote[2473].speaker SPEAKER_16
transcript.pyannote[2473].start 13718.54534375
transcript.pyannote[2473].end 13721.36346875
transcript.pyannote[2474].speaker SPEAKER_16
transcript.pyannote[2474].start 13721.78534375
transcript.pyannote[2474].end 13723.82721875
transcript.pyannote[2475].speaker SPEAKER_16
transcript.pyannote[2475].start 13724.14784375
transcript.pyannote[2475].end 13724.72159375
transcript.pyannote[2476].speaker SPEAKER_16
transcript.pyannote[2476].start 13725.26159375
transcript.pyannote[2476].end 13726.00409375
transcript.pyannote[2477].speaker SPEAKER_16
transcript.pyannote[2477].start 13726.24034375
transcript.pyannote[2477].end 13727.10096875
transcript.pyannote[2478].speaker SPEAKER_16
transcript.pyannote[2478].start 13727.67471875
transcript.pyannote[2478].end 13728.43409375
transcript.pyannote[2479].speaker SPEAKER_28
transcript.pyannote[2479].start 13733.44596875
transcript.pyannote[2479].end 13733.46284375
transcript.pyannote[2480].speaker SPEAKER_16
transcript.pyannote[2480].start 13733.46284375
transcript.pyannote[2480].end 13733.58096875
transcript.pyannote[2481].speaker SPEAKER_28
transcript.pyannote[2481].start 13733.58096875
transcript.pyannote[2481].end 13733.61471875
transcript.pyannote[2482].speaker SPEAKER_16
transcript.pyannote[2482].start 13733.61471875
transcript.pyannote[2482].end 13734.17159375
transcript.pyannote[2483].speaker SPEAKER_16
transcript.pyannote[2483].start 13734.47534375
transcript.pyannote[2483].end 13735.45409375
transcript.pyannote[2484].speaker SPEAKER_16
transcript.pyannote[2484].start 13736.01096875
transcript.pyannote[2484].end 13746.32159375
transcript.pyannote[2485].speaker SPEAKER_16
transcript.pyannote[2485].start 13746.87846875
transcript.pyannote[2485].end 13759.41659375
transcript.pyannote[2486].speaker SPEAKER_00
transcript.pyannote[2486].start 13752.29534375
transcript.pyannote[2486].end 13752.48096875
transcript.pyannote[2487].speaker SPEAKER_16
transcript.pyannote[2487].start 13759.66971875
transcript.pyannote[2487].end 13761.03659375
transcript.pyannote[2488].speaker SPEAKER_16
transcript.pyannote[2488].start 13761.74534375
transcript.pyannote[2488].end 13775.04284375
transcript.pyannote[2489].speaker SPEAKER_16
transcript.pyannote[2489].start 13775.22846875
transcript.pyannote[2489].end 13779.26159375
transcript.pyannote[2490].speaker SPEAKER_28
transcript.pyannote[2490].start 13779.93659375
transcript.pyannote[2490].end 13784.49284375
transcript.pyannote[2491].speaker SPEAKER_28
transcript.pyannote[2491].start 13784.76284375
transcript.pyannote[2491].end 13840.39971875
transcript.pyannote[2492].speaker SPEAKER_00
transcript.pyannote[2492].start 13791.51284375
transcript.pyannote[2492].end 13791.58034375
transcript.pyannote[2493].speaker SPEAKER_09
transcript.pyannote[2493].start 13791.58034375
transcript.pyannote[2493].end 13791.96846875
transcript.pyannote[2494].speaker SPEAKER_00
transcript.pyannote[2494].start 13791.96846875
transcript.pyannote[2494].end 13792.03596875
transcript.pyannote[2495].speaker SPEAKER_25
transcript.pyannote[2495].start 13792.03596875
transcript.pyannote[2495].end 13793.35221875
transcript.pyannote[2496].speaker SPEAKER_00
transcript.pyannote[2496].start 13793.35221875
transcript.pyannote[2496].end 13793.62221875
transcript.pyannote[2497].speaker SPEAKER_25
transcript.pyannote[2497].start 13793.62221875
transcript.pyannote[2497].end 13793.85846875
transcript.pyannote[2498].speaker SPEAKER_00
transcript.pyannote[2498].start 13793.85846875
transcript.pyannote[2498].end 13793.87534375
transcript.pyannote[2499].speaker SPEAKER_25
transcript.pyannote[2499].start 13835.69159375
transcript.pyannote[2499].end 13835.72534375
transcript.pyannote[2500].speaker SPEAKER_16
transcript.pyannote[2500].start 13835.72534375
transcript.pyannote[2500].end 13835.89409375
transcript.pyannote[2501].speaker SPEAKER_16
transcript.pyannote[2501].start 13839.35346875
transcript.pyannote[2501].end 13839.62346875
transcript.pyannote[2502].speaker SPEAKER_16
transcript.pyannote[2502].start 13840.07909375
transcript.pyannote[2502].end 13841.05784375
transcript.pyannote[2503].speaker SPEAKER_16
transcript.pyannote[2503].start 13841.49659375
transcript.pyannote[2503].end 13842.27284375
transcript.pyannote[2504].speaker SPEAKER_16
transcript.pyannote[2504].start 13842.89721875
transcript.pyannote[2504].end 13847.06534375
transcript.pyannote[2505].speaker SPEAKER_16
transcript.pyannote[2505].start 13847.40284375
transcript.pyannote[2505].end 13849.90034375
transcript.pyannote[2506].speaker SPEAKER_16
transcript.pyannote[2506].start 13850.17034375
transcript.pyannote[2506].end 13855.85721875
transcript.pyannote[2507].speaker SPEAKER_16
transcript.pyannote[2507].start 13856.31284375
transcript.pyannote[2507].end 13861.35846875
transcript.pyannote[2508].speaker SPEAKER_28
transcript.pyannote[2508].start 13861.47659375
transcript.pyannote[2508].end 13867.95659375
transcript.pyannote[2509].speaker SPEAKER_16
transcript.pyannote[2509].start 13862.35409375
transcript.pyannote[2509].end 13863.21471875
transcript.pyannote[2510].speaker SPEAKER_16
transcript.pyannote[2510].start 13866.10034375
transcript.pyannote[2510].end 13867.45034375
transcript.pyannote[2511].speaker SPEAKER_16
transcript.pyannote[2511].start 13867.95659375
transcript.pyannote[2511].end 13869.55971875
transcript.pyannote[2512].speaker SPEAKER_28
transcript.pyannote[2512].start 13867.97346875
transcript.pyannote[2512].end 13868.15909375
transcript.pyannote[2513].speaker SPEAKER_28
transcript.pyannote[2513].start 13869.23909375
transcript.pyannote[2513].end 13908.37221875
transcript.pyannote[2514].speaker SPEAKER_16
transcript.pyannote[2514].start 13908.03471875
transcript.pyannote[2514].end 13910.61659375
transcript.pyannote[2515].speaker SPEAKER_28
transcript.pyannote[2515].start 13909.26659375
transcript.pyannote[2515].end 13913.68784375
transcript.pyannote[2516].speaker SPEAKER_16
transcript.pyannote[2516].start 13912.03409375
transcript.pyannote[2516].end 13912.28721875
transcript.pyannote[2517].speaker SPEAKER_16
transcript.pyannote[2517].start 13914.31221875
transcript.pyannote[2517].end 13929.85409375
transcript.pyannote[2518].speaker SPEAKER_16
transcript.pyannote[2518].start 13930.34346875
transcript.pyannote[2518].end 13934.37659375
transcript.pyannote[2519].speaker SPEAKER_16
transcript.pyannote[2519].start 13935.03471875
transcript.pyannote[2519].end 13936.57034375
transcript.pyannote[2520].speaker SPEAKER_16
transcript.pyannote[2520].start 13936.72221875
transcript.pyannote[2520].end 13938.46034375
transcript.pyannote[2521].speaker SPEAKER_16
transcript.pyannote[2521].start 13938.49409375
transcript.pyannote[2521].end 13943.32034375
transcript.pyannote[2522].speaker SPEAKER_16
transcript.pyannote[2522].start 13943.60721875
transcript.pyannote[2522].end 13946.98221875
transcript.pyannote[2523].speaker SPEAKER_16
transcript.pyannote[2523].start 13947.13409375
transcript.pyannote[2523].end 13948.19721875
transcript.pyannote[2524].speaker SPEAKER_16
transcript.pyannote[2524].start 13948.85534375
transcript.pyannote[2524].end 13950.64409375
transcript.pyannote[2525].speaker SPEAKER_16
transcript.pyannote[2525].start 13950.89721875
transcript.pyannote[2525].end 13952.16284375
transcript.pyannote[2526].speaker SPEAKER_16
transcript.pyannote[2526].start 13952.51721875
transcript.pyannote[2526].end 13954.32284375
transcript.pyannote[2527].speaker SPEAKER_28
transcript.pyannote[2527].start 13954.74471875
transcript.pyannote[2527].end 13971.45096875
transcript.pyannote[2528].speaker SPEAKER_28
transcript.pyannote[2528].start 13971.67034375
transcript.pyannote[2528].end 13982.06534375
transcript.pyannote[2529].speaker SPEAKER_16
transcript.pyannote[2529].start 13981.22159375
transcript.pyannote[2529].end 13986.84096875
transcript.pyannote[2530].speaker SPEAKER_28
transcript.pyannote[2530].start 13987.09409375
transcript.pyannote[2530].end 14004.34034375
transcript.pyannote[2531].speaker SPEAKER_16
transcript.pyannote[2531].start 14003.07471875
transcript.pyannote[2531].end 14008.12034375
transcript.pyannote[2532].speaker SPEAKER_28
transcript.pyannote[2532].start 14008.12034375
transcript.pyannote[2532].end 14008.33971875
transcript.pyannote[2533].speaker SPEAKER_16
transcript.pyannote[2533].start 14008.33971875
transcript.pyannote[2533].end 14008.55909375
transcript.pyannote[2534].speaker SPEAKER_28
transcript.pyannote[2534].start 14008.55909375
transcript.pyannote[2534].end 14035.44096875
transcript.pyannote[2535].speaker SPEAKER_16
transcript.pyannote[2535].start 14008.79534375
transcript.pyannote[2535].end 14009.23409375
transcript.pyannote[2536].speaker SPEAKER_16
transcript.pyannote[2536].start 14035.54221875
transcript.pyannote[2536].end 14040.04784375
transcript.pyannote[2537].speaker SPEAKER_28
transcript.pyannote[2537].start 14036.94284375
transcript.pyannote[2537].end 14036.97659375
transcript.pyannote[2538].speaker SPEAKER_16
transcript.pyannote[2538].start 14040.30096875
transcript.pyannote[2538].end 14044.01346875
transcript.pyannote[2539].speaker SPEAKER_16
transcript.pyannote[2539].start 14044.14846875
transcript.pyannote[2539].end 14045.36346875
transcript.pyannote[2540].speaker SPEAKER_26
transcript.pyannote[2540].start 14044.45221875
transcript.pyannote[2540].end 14044.51971875
transcript.pyannote[2541].speaker SPEAKER_16
transcript.pyannote[2541].start 14045.71784375
transcript.pyannote[2541].end 14046.37596875
transcript.pyannote[2542].speaker SPEAKER_16
transcript.pyannote[2542].start 14046.73034375
transcript.pyannote[2542].end 14047.35471875
transcript.pyannote[2543].speaker SPEAKER_16
transcript.pyannote[2543].start 14047.69221875
transcript.pyannote[2543].end 14051.30346875
transcript.pyannote[2544].speaker SPEAKER_16
transcript.pyannote[2544].start 14051.48909375
transcript.pyannote[2544].end 14052.94034375
transcript.pyannote[2545].speaker SPEAKER_16
transcript.pyannote[2545].start 14053.29471875
transcript.pyannote[2545].end 14057.27721875
transcript.pyannote[2546].speaker SPEAKER_16
transcript.pyannote[2546].start 14057.74971875
transcript.pyannote[2546].end 14059.11659375
transcript.pyannote[2547].speaker SPEAKER_16
transcript.pyannote[2547].start 14059.97721875
transcript.pyannote[2547].end 14060.85471875
transcript.pyannote[2548].speaker SPEAKER_16
transcript.pyannote[2548].start 14061.19221875
transcript.pyannote[2548].end 14062.25534375
transcript.pyannote[2549].speaker SPEAKER_16
transcript.pyannote[2549].start 14062.72784375
transcript.pyannote[2549].end 14064.26346875
transcript.pyannote[2550].speaker SPEAKER_16
transcript.pyannote[2550].start 14064.53346875
transcript.pyannote[2550].end 14067.84096875
transcript.pyannote[2551].speaker SPEAKER_16
transcript.pyannote[2551].start 14068.16159375
transcript.pyannote[2551].end 14077.37534375
transcript.pyannote[2552].speaker SPEAKER_28
transcript.pyannote[2552].start 14070.18659375
transcript.pyannote[2552].end 14070.54096875
transcript.pyannote[2553].speaker SPEAKER_25
transcript.pyannote[2553].start 14070.54096875
transcript.pyannote[2553].end 14070.55784375
transcript.pyannote[2554].speaker SPEAKER_28
transcript.pyannote[2554].start 14077.37534375
transcript.pyannote[2554].end 14084.61471875
transcript.pyannote[2555].speaker SPEAKER_28
transcript.pyannote[2555].start 14084.88471875
transcript.pyannote[2555].end 14091.26346875
transcript.pyannote[2556].speaker SPEAKER_16
transcript.pyannote[2556].start 14087.68596875
transcript.pyannote[2556].end 14087.93909375
transcript.pyannote[2557].speaker SPEAKER_28
transcript.pyannote[2557].start 14091.71909375
transcript.pyannote[2557].end 14094.36846875
transcript.pyannote[2558].speaker SPEAKER_16
transcript.pyannote[2558].start 14091.76971875
transcript.pyannote[2558].end 14094.70596875
transcript.pyannote[2559].speaker SPEAKER_16
transcript.pyannote[2559].start 14094.85784375
transcript.pyannote[2559].end 14096.69721875
transcript.pyannote[2560].speaker SPEAKER_16
transcript.pyannote[2560].start 14098.13159375
transcript.pyannote[2560].end 14101.05096875
transcript.pyannote[2561].speaker SPEAKER_29
transcript.pyannote[2561].start 14106.01221875
transcript.pyannote[2561].end 14107.27784375
transcript.pyannote[2562].speaker SPEAKER_16
transcript.pyannote[2562].start 14106.34971875
transcript.pyannote[2562].end 14108.25659375
transcript.pyannote[2563].speaker SPEAKER_16
transcript.pyannote[2563].start 14108.44221875
transcript.pyannote[2563].end 14136.94409375
transcript.pyannote[2564].speaker SPEAKER_16
transcript.pyannote[2564].start 14137.07909375
transcript.pyannote[2564].end 14152.67159375
transcript.pyannote[2565].speaker SPEAKER_16
transcript.pyannote[2565].start 14152.77284375
transcript.pyannote[2565].end 14153.65034375
transcript.pyannote[2566].speaker SPEAKER_16
transcript.pyannote[2566].start 14154.02159375
transcript.pyannote[2566].end 14154.62909375
transcript.pyannote[2567].speaker SPEAKER_16
transcript.pyannote[2567].start 14154.71346875
transcript.pyannote[2567].end 14157.80159375
transcript.pyannote[2568].speaker SPEAKER_16
transcript.pyannote[2568].start 14158.05471875
transcript.pyannote[2568].end 14171.41971875
transcript.pyannote[2569].speaker SPEAKER_16
transcript.pyannote[2569].start 14171.70659375
transcript.pyannote[2569].end 14172.85409375
transcript.pyannote[2570].speaker SPEAKER_16
transcript.pyannote[2570].start 14173.44471875
transcript.pyannote[2570].end 14174.25471875
transcript.pyannote[2571].speaker SPEAKER_16
transcript.pyannote[2571].start 14174.52471875
transcript.pyannote[2571].end 14174.72721875
transcript.pyannote[2572].speaker SPEAKER_16
transcript.pyannote[2572].start 14175.23346875
transcript.pyannote[2572].end 14180.16096875
transcript.pyannote[2573].speaker SPEAKER_16
transcript.pyannote[2573].start 14180.39721875
transcript.pyannote[2573].end 14180.70096875
transcript.pyannote[2574].speaker SPEAKER_16
transcript.pyannote[2574].start 14181.00471875
transcript.pyannote[2574].end 14189.00346875
transcript.pyannote[2575].speaker SPEAKER_16
transcript.pyannote[2575].start 14189.40846875
transcript.pyannote[2575].end 14189.81346875
transcript.pyannote[2576].speaker SPEAKER_16
transcript.pyannote[2576].start 14190.30284375
transcript.pyannote[2576].end 14192.54721875
transcript.pyannote[2577].speaker SPEAKER_16
transcript.pyannote[2577].start 14192.93534375
transcript.pyannote[2577].end 14194.36971875
transcript.pyannote[2578].speaker SPEAKER_16
transcript.pyannote[2578].start 14194.40346875
transcript.pyannote[2578].end 14197.17096875
transcript.pyannote[2579].speaker SPEAKER_16
transcript.pyannote[2579].start 14197.52534375
transcript.pyannote[2579].end 14198.16659375
transcript.pyannote[2580].speaker SPEAKER_29
transcript.pyannote[2580].start 14198.45346875
transcript.pyannote[2580].end 14249.09534375
transcript.pyannote[2581].speaker SPEAKER_29
transcript.pyannote[2581].start 14249.17971875
transcript.pyannote[2581].end 14251.37346875
transcript.pyannote[2582].speaker SPEAKER_29
transcript.pyannote[2582].start 14251.62659375
transcript.pyannote[2582].end 14252.87534375
transcript.pyannote[2583].speaker SPEAKER_29
transcript.pyannote[2583].start 14253.16221875
transcript.pyannote[2583].end 14256.26721875
transcript.pyannote[2584].speaker SPEAKER_29
transcript.pyannote[2584].start 14256.45284375
transcript.pyannote[2584].end 14260.16534375
transcript.pyannote[2585].speaker SPEAKER_29
transcript.pyannote[2585].start 14260.51971875
transcript.pyannote[2585].end 14262.76409375
transcript.pyannote[2586].speaker SPEAKER_16
transcript.pyannote[2586].start 14262.12284375
transcript.pyannote[2586].end 14262.98346875
transcript.pyannote[2587].speaker SPEAKER_29
transcript.pyannote[2587].start 14262.98346875
transcript.pyannote[2587].end 14263.65846875
transcript.pyannote[2588].speaker SPEAKER_16
transcript.pyannote[2588].start 14263.65846875
transcript.pyannote[2588].end 14278.49159375
transcript.pyannote[2589].speaker SPEAKER_16
transcript.pyannote[2589].start 14278.98096875
transcript.pyannote[2589].end 14286.05159375
transcript.pyannote[2590].speaker SPEAKER_16
transcript.pyannote[2590].start 14286.25409375
transcript.pyannote[2590].end 14287.30034375
transcript.pyannote[2591].speaker SPEAKER_16
transcript.pyannote[2591].start 14287.53659375
transcript.pyannote[2591].end 14288.49846875
transcript.pyannote[2592].speaker SPEAKER_16
transcript.pyannote[2592].start 14289.03846875
transcript.pyannote[2592].end 14306.92596875
transcript.pyannote[2593].speaker SPEAKER_16
transcript.pyannote[2593].start 14307.66846875
transcript.pyannote[2593].end 14309.27159375
transcript.pyannote[2594].speaker SPEAKER_16
transcript.pyannote[2594].start 14310.01409375
transcript.pyannote[2594].end 14318.29971875
transcript.pyannote[2595].speaker SPEAKER_16
transcript.pyannote[2595].start 14318.62034375
transcript.pyannote[2595].end 14326.02846875
transcript.pyannote[2596].speaker SPEAKER_29
transcript.pyannote[2596].start 14326.02846875
transcript.pyannote[2596].end 14340.23721875
transcript.pyannote[2597].speaker SPEAKER_29
transcript.pyannote[2597].start 14340.62534375
transcript.pyannote[2597].end 14357.65221875
transcript.pyannote[2598].speaker SPEAKER_16
transcript.pyannote[2598].start 14358.69846875
transcript.pyannote[2598].end 14363.27159375
transcript.pyannote[2599].speaker SPEAKER_16
transcript.pyannote[2599].start 14363.37284375
transcript.pyannote[2599].end 14383.15034375
transcript.pyannote[2600].speaker SPEAKER_00
transcript.pyannote[2600].start 14368.85721875
transcript.pyannote[2600].end 14369.02596875
transcript.pyannote[2601].speaker SPEAKER_25
transcript.pyannote[2601].start 14369.02596875
transcript.pyannote[2601].end 14369.90346875
transcript.pyannote[2602].speaker SPEAKER_00
transcript.pyannote[2602].start 14369.90346875
transcript.pyannote[2602].end 14370.03846875
transcript.pyannote[2603].speaker SPEAKER_16
transcript.pyannote[2603].start 14383.67346875
transcript.pyannote[2603].end 14390.69346875
transcript.pyannote[2604].speaker SPEAKER_29
transcript.pyannote[2604].start 14389.98471875
transcript.pyannote[2604].end 14390.67659375
transcript.pyannote[2605].speaker SPEAKER_29
transcript.pyannote[2605].start 14390.69346875
transcript.pyannote[2605].end 14391.28409375
transcript.pyannote[2606].speaker SPEAKER_16
transcript.pyannote[2606].start 14391.53721875
transcript.pyannote[2606].end 14391.55409375
transcript.pyannote[2607].speaker SPEAKER_13
transcript.pyannote[2607].start 14391.55409375
transcript.pyannote[2607].end 14396.49846875
transcript.pyannote[2608].speaker SPEAKER_19
transcript.pyannote[2608].start 14408.68221875
transcript.pyannote[2608].end 14410.45409375
transcript.pyannote[2609].speaker SPEAKER_13
transcript.pyannote[2609].start 14410.89284375
transcript.pyannote[2609].end 14410.90971875
transcript.pyannote[2610].speaker SPEAKER_19
transcript.pyannote[2610].start 14410.90971875
transcript.pyannote[2610].end 14410.94346875
transcript.pyannote[2611].speaker SPEAKER_13
transcript.pyannote[2611].start 14410.94346875
transcript.pyannote[2611].end 14411.24721875
transcript.pyannote[2612].speaker SPEAKER_19
transcript.pyannote[2612].start 14411.24721875
transcript.pyannote[2612].end 14411.51721875
transcript.pyannote[2613].speaker SPEAKER_20
transcript.pyannote[2613].start 14416.96784375
transcript.pyannote[2613].end 14417.42346875
transcript.pyannote[2614].speaker SPEAKER_19
transcript.pyannote[2614].start 14420.84909375
transcript.pyannote[2614].end 14422.21596875
transcript.pyannote[2615].speaker SPEAKER_19
transcript.pyannote[2615].start 14422.72221875
transcript.pyannote[2615].end 14423.21159375
transcript.pyannote[2616].speaker SPEAKER_19
transcript.pyannote[2616].start 14423.44784375
transcript.pyannote[2616].end 14426.58659375
transcript.pyannote[2617].speaker SPEAKER_20
transcript.pyannote[2617].start 14426.80596875
transcript.pyannote[2617].end 14427.19409375
transcript.pyannote[2618].speaker SPEAKER_19
transcript.pyannote[2618].start 14427.19409375
transcript.pyannote[2618].end 14436.76221875
transcript.pyannote[2619].speaker SPEAKER_19
transcript.pyannote[2619].start 14437.23471875
transcript.pyannote[2619].end 14445.45284375
transcript.pyannote[2620].speaker SPEAKER_19
transcript.pyannote[2620].start 14445.99284375
transcript.pyannote[2620].end 14447.10659375
transcript.pyannote[2621].speaker SPEAKER_19
transcript.pyannote[2621].start 14447.39346875
transcript.pyannote[2621].end 14455.93221875
transcript.pyannote[2622].speaker SPEAKER_19
transcript.pyannote[2622].start 14456.26971875
transcript.pyannote[2622].end 14459.34096875
transcript.pyannote[2623].speaker SPEAKER_19
transcript.pyannote[2623].start 14460.04971875
transcript.pyannote[2623].end 14466.78284375
transcript.pyannote[2624].speaker SPEAKER_19
transcript.pyannote[2624].start 14466.95159375
transcript.pyannote[2624].end 14469.09471875
transcript.pyannote[2625].speaker SPEAKER_19
transcript.pyannote[2625].start 14469.53346875
transcript.pyannote[2625].end 14470.05659375
transcript.pyannote[2626].speaker SPEAKER_19
transcript.pyannote[2626].start 14470.68096875
transcript.pyannote[2626].end 14472.75659375
transcript.pyannote[2627].speaker SPEAKER_19
transcript.pyannote[2627].start 14472.87471875
transcript.pyannote[2627].end 14473.71846875
transcript.pyannote[2628].speaker SPEAKER_19
transcript.pyannote[2628].start 14474.73096875
transcript.pyannote[2628].end 14481.48096875
transcript.pyannote[2629].speaker SPEAKER_19
transcript.pyannote[2629].start 14482.03784375
transcript.pyannote[2629].end 14483.05034375
transcript.pyannote[2630].speaker SPEAKER_14
transcript.pyannote[2630].start 14483.05034375
transcript.pyannote[2630].end 14483.21909375
transcript.pyannote[2631].speaker SPEAKER_19
transcript.pyannote[2631].start 14483.21909375
transcript.pyannote[2631].end 14484.97409375
transcript.pyannote[2632].speaker SPEAKER_14
transcript.pyannote[2632].start 14484.97409375
transcript.pyannote[2632].end 14485.02471875
transcript.pyannote[2633].speaker SPEAKER_19
transcript.pyannote[2633].start 14485.02471875
transcript.pyannote[2633].end 14485.96971875
transcript.pyannote[2634].speaker SPEAKER_14
transcript.pyannote[2634].start 14485.96971875
transcript.pyannote[2634].end 14486.12159375
transcript.pyannote[2635].speaker SPEAKER_19
transcript.pyannote[2635].start 14486.12159375
transcript.pyannote[2635].end 14487.97784375
transcript.pyannote[2636].speaker SPEAKER_14
transcript.pyannote[2636].start 14486.56034375
transcript.pyannote[2636].end 14487.35346875
transcript.pyannote[2637].speaker SPEAKER_14
transcript.pyannote[2637].start 14487.97784375
transcript.pyannote[2637].end 14490.00284375
transcript.pyannote[2638].speaker SPEAKER_19
transcript.pyannote[2638].start 14490.00284375
transcript.pyannote[2638].end 14490.86346875
transcript.pyannote[2639].speaker SPEAKER_14
transcript.pyannote[2639].start 14490.07034375
transcript.pyannote[2639].end 14490.77909375
transcript.pyannote[2640].speaker SPEAKER_14
transcript.pyannote[2640].start 14490.86346875
transcript.pyannote[2640].end 14491.03221875
transcript.pyannote[2641].speaker SPEAKER_19
transcript.pyannote[2641].start 14491.03221875
transcript.pyannote[2641].end 14504.80221875
transcript.pyannote[2642].speaker SPEAKER_14
transcript.pyannote[2642].start 14496.83721875
transcript.pyannote[2642].end 14497.93409375
transcript.pyannote[2643].speaker SPEAKER_14
transcript.pyannote[2643].start 14498.15346875
transcript.pyannote[2643].end 14498.86221875
transcript.pyannote[2644].speaker SPEAKER_14
transcript.pyannote[2644].start 14502.79409375
transcript.pyannote[2644].end 14511.19784375
transcript.pyannote[2645].speaker SPEAKER_19
transcript.pyannote[2645].start 14510.53971875
transcript.pyannote[2645].end 14519.33159375
transcript.pyannote[2646].speaker SPEAKER_14
transcript.pyannote[2646].start 14519.33159375
transcript.pyannote[2646].end 14519.34846875
transcript.pyannote[2647].speaker SPEAKER_19
transcript.pyannote[2647].start 14519.34846875
transcript.pyannote[2647].end 14519.97284375
transcript.pyannote[2648].speaker SPEAKER_14
transcript.pyannote[2648].start 14519.97284375
transcript.pyannote[2648].end 14534.38409375
transcript.pyannote[2649].speaker SPEAKER_25
transcript.pyannote[2649].start 14532.76409375
transcript.pyannote[2649].end 14532.88221875
transcript.pyannote[2650].speaker SPEAKER_14
transcript.pyannote[2650].start 14534.80596875
transcript.pyannote[2650].end 14535.63284375
transcript.pyannote[2651].speaker SPEAKER_19
transcript.pyannote[2651].start 14535.63284375
transcript.pyannote[2651].end 14535.64971875
transcript.pyannote[2652].speaker SPEAKER_14
transcript.pyannote[2652].start 14537.25284375
transcript.pyannote[2652].end 14537.26971875
transcript.pyannote[2653].speaker SPEAKER_19
transcript.pyannote[2653].start 14537.26971875
transcript.pyannote[2653].end 14546.58471875
transcript.pyannote[2654].speaker SPEAKER_14
transcript.pyannote[2654].start 14539.78409375
transcript.pyannote[2654].end 14540.69534375
transcript.pyannote[2655].speaker SPEAKER_14
transcript.pyannote[2655].start 14540.77971875
transcript.pyannote[2655].end 14541.15096875
transcript.pyannote[2656].speaker SPEAKER_14
transcript.pyannote[2656].start 14545.53846875
transcript.pyannote[2656].end 14546.56784375
transcript.pyannote[2657].speaker SPEAKER_14
transcript.pyannote[2657].start 14546.58471875
transcript.pyannote[2657].end 14549.14971875
transcript.pyannote[2658].speaker SPEAKER_14
transcript.pyannote[2658].start 14549.70659375
transcript.pyannote[2658].end 14554.87034375
transcript.pyannote[2659].speaker SPEAKER_16
transcript.pyannote[2659].start 14555.93346875
transcript.pyannote[2659].end 14558.19471875
transcript.pyannote[2660].speaker SPEAKER_14
transcript.pyannote[2660].start 14558.61659375
transcript.pyannote[2660].end 14570.10846875
transcript.pyannote[2661].speaker SPEAKER_19
transcript.pyannote[2661].start 14570.10846875
transcript.pyannote[2661].end 14570.24346875
transcript.pyannote[2662].speaker SPEAKER_14
transcript.pyannote[2662].start 14570.47971875
transcript.pyannote[2662].end 14570.91846875
transcript.pyannote[2663].speaker SPEAKER_19
transcript.pyannote[2663].start 14570.91846875
transcript.pyannote[2663].end 14570.93534375
transcript.pyannote[2664].speaker SPEAKER_14
transcript.pyannote[2664].start 14571.28971875
transcript.pyannote[2664].end 14571.34034375
transcript.pyannote[2665].speaker SPEAKER_19
transcript.pyannote[2665].start 14571.34034375
transcript.pyannote[2665].end 14597.96909375
transcript.pyannote[2666].speaker SPEAKER_00
transcript.pyannote[2666].start 14587.03409375
transcript.pyannote[2666].end 14589.37971875
transcript.pyannote[2667].speaker SPEAKER_00
transcript.pyannote[2667].start 14592.99096875
transcript.pyannote[2667].end 14593.02471875
transcript.pyannote[2668].speaker SPEAKER_14
transcript.pyannote[2668].start 14593.02471875
transcript.pyannote[2668].end 14593.93596875
transcript.pyannote[2669].speaker SPEAKER_14
transcript.pyannote[2669].start 14595.62346875
transcript.pyannote[2669].end 14595.99471875
transcript.pyannote[2670].speaker SPEAKER_14
transcript.pyannote[2670].start 14597.96909375
transcript.pyannote[2670].end 14608.92096875
transcript.pyannote[2671].speaker SPEAKER_14
transcript.pyannote[2671].start 14609.66346875
transcript.pyannote[2671].end 14611.41846875
transcript.pyannote[2672].speaker SPEAKER_14
transcript.pyannote[2672].start 14611.60409375
transcript.pyannote[2672].end 14616.61596875
transcript.pyannote[2673].speaker SPEAKER_14
transcript.pyannote[2673].start 14617.24034375
transcript.pyannote[2673].end 14620.90221875
transcript.pyannote[2674].speaker SPEAKER_19
transcript.pyannote[2674].start 14618.82659375
transcript.pyannote[2674].end 14624.58096875
transcript.pyannote[2675].speaker SPEAKER_14
transcript.pyannote[2675].start 14622.97784375
transcript.pyannote[2675].end 14624.95221875
transcript.pyannote[2676].speaker SPEAKER_19
transcript.pyannote[2676].start 14624.95221875
transcript.pyannote[2676].end 14624.96909375
transcript.pyannote[2677].speaker SPEAKER_14
transcript.pyannote[2677].start 14624.96909375
transcript.pyannote[2677].end 14625.15471875
transcript.pyannote[2678].speaker SPEAKER_19
transcript.pyannote[2678].start 14625.15471875
transcript.pyannote[2678].end 14625.45846875
transcript.pyannote[2679].speaker SPEAKER_14
transcript.pyannote[2679].start 14625.45846875
transcript.pyannote[2679].end 14634.01409375
transcript.pyannote[2680].speaker SPEAKER_19
transcript.pyannote[2680].start 14634.01409375
transcript.pyannote[2680].end 14634.65534375
transcript.pyannote[2681].speaker SPEAKER_14
transcript.pyannote[2681].start 14635.11096875
transcript.pyannote[2681].end 14635.16159375
transcript.pyannote[2682].speaker SPEAKER_19
transcript.pyannote[2682].start 14635.16159375
transcript.pyannote[2682].end 14644.96596875
transcript.pyannote[2683].speaker SPEAKER_14
transcript.pyannote[2683].start 14638.72221875
transcript.pyannote[2683].end 14639.31284375
transcript.pyannote[2684].speaker SPEAKER_25
transcript.pyannote[2684].start 14645.13471875
transcript.pyannote[2684].end 14645.45534375
transcript.pyannote[2685].speaker SPEAKER_19
transcript.pyannote[2685].start 14645.77596875
transcript.pyannote[2685].end 14650.39971875
transcript.pyannote[2686].speaker SPEAKER_19
transcript.pyannote[2686].start 14650.61909375
transcript.pyannote[2686].end 14657.85846875
transcript.pyannote[2687].speaker SPEAKER_19
transcript.pyannote[2687].start 14658.14534375
transcript.pyannote[2687].end 14658.63471875
transcript.pyannote[2688].speaker SPEAKER_19
transcript.pyannote[2688].start 14659.15784375
transcript.pyannote[2688].end 14664.43971875
transcript.pyannote[2689].speaker SPEAKER_19
transcript.pyannote[2689].start 14665.51971875
transcript.pyannote[2689].end 14670.49784375
transcript.pyannote[2690].speaker SPEAKER_14
transcript.pyannote[2690].start 14667.62909375
transcript.pyannote[2690].end 14683.03596875
transcript.pyannote[2691].speaker SPEAKER_19
transcript.pyannote[2691].start 14670.95346875
transcript.pyannote[2691].end 14671.72971875
transcript.pyannote[2692].speaker SPEAKER_19
transcript.pyannote[2692].start 14683.03596875
transcript.pyannote[2692].end 14692.97534375
transcript.pyannote[2693].speaker SPEAKER_14
transcript.pyannote[2693].start 14689.27971875
transcript.pyannote[2693].end 14689.87034375
transcript.pyannote[2694].speaker SPEAKER_14
transcript.pyannote[2694].start 14690.78159375
transcript.pyannote[2694].end 14692.67159375
transcript.pyannote[2695].speaker SPEAKER_14
transcript.pyannote[2695].start 14692.97534375
transcript.pyannote[2695].end 14698.69596875
transcript.pyannote[2696].speaker SPEAKER_19
transcript.pyannote[2696].start 14694.25784375
transcript.pyannote[2696].end 14694.46034375
transcript.pyannote[2697].speaker SPEAKER_14
transcript.pyannote[2697].start 14699.30346875
transcript.pyannote[2697].end 14704.83846875
transcript.pyannote[2698].speaker SPEAKER_14
transcript.pyannote[2698].start 14706.12096875
transcript.pyannote[2698].end 14706.15471875
transcript.pyannote[2699].speaker SPEAKER_19
transcript.pyannote[2699].start 14706.15471875
transcript.pyannote[2699].end 14707.21784375
transcript.pyannote[2700].speaker SPEAKER_19
transcript.pyannote[2700].start 14707.85909375
transcript.pyannote[2700].end 14708.17971875
transcript.pyannote[2701].speaker SPEAKER_19
transcript.pyannote[2701].start 14708.33159375
transcript.pyannote[2701].end 14709.15846875
transcript.pyannote[2702].speaker SPEAKER_19
transcript.pyannote[2702].start 14709.17534375
transcript.pyannote[2702].end 14710.01909375
transcript.pyannote[2703].speaker SPEAKER_19
transcript.pyannote[2703].start 14710.62659375
transcript.pyannote[2703].end 14714.96346875
transcript.pyannote[2704].speaker SPEAKER_14
transcript.pyannote[2704].start 14714.96346875
transcript.pyannote[2704].end 14723.02971875
transcript.pyannote[2705].speaker SPEAKER_19
transcript.pyannote[2705].start 14723.02971875
transcript.pyannote[2705].end 14724.49784375
transcript.pyannote[2706].speaker SPEAKER_19
transcript.pyannote[2706].start 14724.93659375
transcript.pyannote[2706].end 14738.70659375
transcript.pyannote[2707].speaker SPEAKER_19
transcript.pyannote[2707].start 14739.73596875
transcript.pyannote[2707].end 14749.30409375
transcript.pyannote[2708].speaker SPEAKER_19
transcript.pyannote[2708].start 14749.89471875
transcript.pyannote[2708].end 14753.97846875
transcript.pyannote[2709].speaker SPEAKER_14
transcript.pyannote[2709].start 14753.97846875
transcript.pyannote[2709].end 14763.71534375
transcript.pyannote[2710].speaker SPEAKER_14
transcript.pyannote[2710].start 14764.05284375
transcript.pyannote[2710].end 14764.06971875
transcript.pyannote[2711].speaker SPEAKER_19
transcript.pyannote[2711].start 14764.06971875
transcript.pyannote[2711].end 14769.97596875
transcript.pyannote[2712].speaker SPEAKER_19
transcript.pyannote[2712].start 14770.16159375
transcript.pyannote[2712].end 14775.51096875
transcript.pyannote[2713].speaker SPEAKER_19
transcript.pyannote[2713].start 14775.74721875
transcript.pyannote[2713].end 14777.92409375
transcript.pyannote[2714].speaker SPEAKER_19
transcript.pyannote[2714].start 14778.21096875
transcript.pyannote[2714].end 14781.23159375
transcript.pyannote[2715].speaker SPEAKER_19
transcript.pyannote[2715].start 14781.92346875
transcript.pyannote[2715].end 14783.45909375
transcript.pyannote[2716].speaker SPEAKER_19
transcript.pyannote[2716].start 14783.94846875
transcript.pyannote[2716].end 14789.51721875
transcript.pyannote[2717].speaker SPEAKER_00
transcript.pyannote[2717].start 14784.26909375
transcript.pyannote[2717].end 14784.40409375
transcript.pyannote[2718].speaker SPEAKER_30
transcript.pyannote[2718].start 14784.40409375
transcript.pyannote[2718].end 14784.67409375
transcript.pyannote[2719].speaker SPEAKER_14
transcript.pyannote[2719].start 14789.51721875
transcript.pyannote[2719].end 14789.87159375
transcript.pyannote[2720].speaker SPEAKER_19
transcript.pyannote[2720].start 14789.87159375
transcript.pyannote[2720].end 14789.97284375
transcript.pyannote[2721].speaker SPEAKER_14
transcript.pyannote[2721].start 14789.97284375
transcript.pyannote[2721].end 14820.39846875
transcript.pyannote[2722].speaker SPEAKER_20
transcript.pyannote[2722].start 14796.57096875
transcript.pyannote[2722].end 14797.06034375
transcript.pyannote[2723].speaker SPEAKER_19
transcript.pyannote[2723].start 14798.03909375
transcript.pyannote[2723].end 14798.07284375
transcript.pyannote[2724].speaker SPEAKER_20
transcript.pyannote[2724].start 14798.07284375
transcript.pyannote[2724].end 14799.03471875
transcript.pyannote[2725].speaker SPEAKER_19
transcript.pyannote[2725].start 14799.03471875
transcript.pyannote[2725].end 14799.96284375
transcript.pyannote[2726].speaker SPEAKER_20
transcript.pyannote[2726].start 14799.96284375
transcript.pyannote[2726].end 14800.03034375
transcript.pyannote[2727].speaker SPEAKER_19
transcript.pyannote[2727].start 14800.03034375
transcript.pyannote[2727].end 14800.97534375
transcript.pyannote[2728].speaker SPEAKER_20
transcript.pyannote[2728].start 14800.97534375
transcript.pyannote[2728].end 14801.43096875
transcript.pyannote[2729].speaker SPEAKER_19
transcript.pyannote[2729].start 14821.25909375
transcript.pyannote[2729].end 14821.79909375
transcript.pyannote[2730].speaker SPEAKER_14
transcript.pyannote[2730].start 14821.79909375
transcript.pyannote[2730].end 14823.04784375
transcript.pyannote[2731].speaker SPEAKER_19
transcript.pyannote[2731].start 14823.04784375
transcript.pyannote[2731].end 14832.39659375
transcript.pyannote[2732].speaker SPEAKER_14
transcript.pyannote[2732].start 14823.13221875
transcript.pyannote[2732].end 14824.63409375
transcript.pyannote[2733].speaker SPEAKER_12
transcript.pyannote[2733].start 14829.12284375
transcript.pyannote[2733].end 14832.29534375
transcript.pyannote[2734].speaker SPEAKER_12
transcript.pyannote[2734].start 14832.97034375
transcript.pyannote[2734].end 14833.24034375
transcript.pyannote[2735].speaker SPEAKER_19
transcript.pyannote[2735].start 14833.44284375
transcript.pyannote[2735].end 14848.20846875
transcript.pyannote[2736].speaker SPEAKER_12
transcript.pyannote[2736].start 14836.21034375
transcript.pyannote[2736].end 14836.58159375
transcript.pyannote[2737].speaker SPEAKER_12
transcript.pyannote[2737].start 14838.77534375
transcript.pyannote[2737].end 14839.18034375
transcript.pyannote[2738].speaker SPEAKER_08
transcript.pyannote[2738].start 14839.18034375
transcript.pyannote[2738].end 14839.24784375
transcript.pyannote[2739].speaker SPEAKER_13
transcript.pyannote[2739].start 14840.05784375
transcript.pyannote[2739].end 14840.12534375
transcript.pyannote[2740].speaker SPEAKER_12
transcript.pyannote[2740].start 14840.12534375
transcript.pyannote[2740].end 14841.20534375
transcript.pyannote[2741].speaker SPEAKER_08
transcript.pyannote[2741].start 14841.20534375
transcript.pyannote[2741].end 14845.18784375
transcript.pyannote[2742].speaker SPEAKER_19
transcript.pyannote[2742].start 14848.47846875
transcript.pyannote[2742].end 14848.95096875
transcript.pyannote[2743].speaker SPEAKER_19
transcript.pyannote[2743].start 14849.27159375
transcript.pyannote[2743].end 14850.01409375
transcript.pyannote[2744].speaker SPEAKER_19
transcript.pyannote[2744].start 14850.31784375
transcript.pyannote[2744].end 14851.61721875
transcript.pyannote[2745].speaker SPEAKER_19
transcript.pyannote[2745].start 14852.29221875
transcript.pyannote[2745].end 14855.02596875
transcript.pyannote[2746].speaker SPEAKER_19
transcript.pyannote[2746].start 14855.12721875
transcript.pyannote[2746].end 14857.54034375
transcript.pyannote[2747].speaker SPEAKER_13
transcript.pyannote[2747].start 14857.10159375
transcript.pyannote[2747].end 14857.47284375
transcript.pyannote[2748].speaker SPEAKER_13
transcript.pyannote[2748].start 14857.54034375
transcript.pyannote[2748].end 14861.84346875
transcript.pyannote[2749].speaker SPEAKER_02
transcript.pyannote[2749].start 14874.65159375
transcript.pyannote[2749].end 14877.45284375
transcript.pyannote[2750].speaker SPEAKER_13
transcript.pyannote[2750].start 14877.84096875
transcript.pyannote[2750].end 14878.73534375
transcript.pyannote[2751].speaker SPEAKER_02
transcript.pyannote[2751].start 14887.10534375
transcript.pyannote[2751].end 14898.24284375
transcript.pyannote[2752].speaker SPEAKER_02
transcript.pyannote[2752].start 14898.71534375
transcript.pyannote[2752].end 14915.20221875
transcript.pyannote[2753].speaker SPEAKER_02
transcript.pyannote[2753].start 14915.91096875
transcript.pyannote[2753].end 14919.85971875
transcript.pyannote[2754].speaker SPEAKER_02
transcript.pyannote[2754].start 14920.24784375
transcript.pyannote[2754].end 14926.25534375
transcript.pyannote[2755].speaker SPEAKER_02
transcript.pyannote[2755].start 14926.94721875
transcript.pyannote[2755].end 14938.35471875
transcript.pyannote[2756].speaker SPEAKER_02
transcript.pyannote[2756].start 14938.69221875
transcript.pyannote[2756].end 14939.94096875
transcript.pyannote[2757].speaker SPEAKER_02
transcript.pyannote[2757].start 14940.19409375
transcript.pyannote[2757].end 14942.37096875
transcript.pyannote[2758].speaker SPEAKER_02
transcript.pyannote[2758].start 14942.91096875
transcript.pyannote[2758].end 14966.21534375
transcript.pyannote[2759].speaker SPEAKER_02
transcript.pyannote[2759].start 14966.85659375
transcript.pyannote[2759].end 14969.84346875
transcript.pyannote[2760].speaker SPEAKER_02
transcript.pyannote[2760].start 14970.33284375
transcript.pyannote[2760].end 14976.88034375
transcript.pyannote[2761].speaker SPEAKER_15
transcript.pyannote[2761].start 14976.88034375
transcript.pyannote[2761].end 14976.93096875
transcript.pyannote[2762].speaker SPEAKER_02
transcript.pyannote[2762].start 14977.40346875
transcript.pyannote[2762].end 14977.42034375
transcript.pyannote[2763].speaker SPEAKER_15
transcript.pyannote[2763].start 14977.42034375
transcript.pyannote[2763].end 14989.03034375
transcript.pyannote[2764].speaker SPEAKER_00
transcript.pyannote[2764].start 14981.03159375
transcript.pyannote[2764].end 14981.36909375
transcript.pyannote[2765].speaker SPEAKER_00
transcript.pyannote[2765].start 14981.60534375
transcript.pyannote[2765].end 14981.65596875
transcript.pyannote[2766].speaker SPEAKER_02
transcript.pyannote[2766].start 14981.65596875
transcript.pyannote[2766].end 14983.98471875
transcript.pyannote[2767].speaker SPEAKER_14
transcript.pyannote[2767].start 14986.12784375
transcript.pyannote[2767].end 14986.78596875
transcript.pyannote[2768].speaker SPEAKER_14
transcript.pyannote[2768].start 14989.03034375
transcript.pyannote[2768].end 14998.00784375
transcript.pyannote[2769].speaker SPEAKER_15
transcript.pyannote[2769].start 14991.05534375
transcript.pyannote[2769].end 14991.96659375
transcript.pyannote[2770].speaker SPEAKER_02
transcript.pyannote[2770].start 14991.96659375
transcript.pyannote[2770].end 14992.13534375
transcript.pyannote[2771].speaker SPEAKER_15
transcript.pyannote[2771].start 14992.13534375
transcript.pyannote[2771].end 14992.21971875
transcript.pyannote[2772].speaker SPEAKER_02
transcript.pyannote[2772].start 14994.36284375
transcript.pyannote[2772].end 14994.90284375
transcript.pyannote[2773].speaker SPEAKER_02
transcript.pyannote[2773].start 14998.00784375
transcript.pyannote[2773].end 14998.66596875
transcript.pyannote[2774].speaker SPEAKER_02
transcript.pyannote[2774].start 14999.05409375
transcript.pyannote[2774].end 15001.97346875
transcript.pyannote[2775].speaker SPEAKER_14
transcript.pyannote[2775].start 15001.97346875
transcript.pyannote[2775].end 15002.02409375
transcript.pyannote[2776].speaker SPEAKER_02
transcript.pyannote[2776].start 15002.02409375
transcript.pyannote[2776].end 15002.07471875
transcript.pyannote[2777].speaker SPEAKER_14
transcript.pyannote[2777].start 15002.07471875
transcript.pyannote[2777].end 15002.17596875
transcript.pyannote[2778].speaker SPEAKER_02
transcript.pyannote[2778].start 15002.17596875
transcript.pyannote[2778].end 15012.97596875
transcript.pyannote[2779].speaker SPEAKER_14
transcript.pyannote[2779].start 15002.19284375
transcript.pyannote[2779].end 15004.58909375
transcript.pyannote[2780].speaker SPEAKER_14
transcript.pyannote[2780].start 15009.49971875
transcript.pyannote[2780].end 15010.86659375
transcript.pyannote[2781].speaker SPEAKER_14
transcript.pyannote[2781].start 15011.18721875
transcript.pyannote[2781].end 15019.03409375
transcript.pyannote[2782].speaker SPEAKER_02
transcript.pyannote[2782].start 15019.03409375
transcript.pyannote[2782].end 15025.81784375
transcript.pyannote[2783].speaker SPEAKER_02
transcript.pyannote[2783].start 15026.30721875
transcript.pyannote[2783].end 15042.16971875
transcript.pyannote[2784].speaker SPEAKER_15
transcript.pyannote[2784].start 15026.45909375
transcript.pyannote[2784].end 15027.21846875
transcript.pyannote[2785].speaker SPEAKER_19
transcript.pyannote[2785].start 15027.21846875
transcript.pyannote[2785].end 15029.39534375
transcript.pyannote[2786].speaker SPEAKER_02
transcript.pyannote[2786].start 15042.33846875
transcript.pyannote[2786].end 15043.60409375
transcript.pyannote[2787].speaker SPEAKER_14
transcript.pyannote[2787].start 15043.70534375
transcript.pyannote[2787].end 15059.60159375
transcript.pyannote[2788].speaker SPEAKER_02
transcript.pyannote[2788].start 15059.21346875
transcript.pyannote[2788].end 15062.68971875
transcript.pyannote[2789].speaker SPEAKER_02
transcript.pyannote[2789].start 15062.94284375
transcript.pyannote[2789].end 15072.27471875
transcript.pyannote[2790].speaker SPEAKER_25
transcript.pyannote[2790].start 15067.46534375
transcript.pyannote[2790].end 15068.05596875
transcript.pyannote[2791].speaker SPEAKER_25
transcript.pyannote[2791].start 15070.09784375
transcript.pyannote[2791].end 15071.19471875
transcript.pyannote[2792].speaker SPEAKER_02
transcript.pyannote[2792].start 15072.39284375
transcript.pyannote[2792].end 15074.53596875
transcript.pyannote[2793].speaker SPEAKER_13
transcript.pyannote[2793].start 15076.02096875
transcript.pyannote[2793].end 15076.86471875
transcript.pyannote[2794].speaker SPEAKER_13
transcript.pyannote[2794].start 15077.05034375
transcript.pyannote[2794].end 15078.04596875
transcript.pyannote[2795].speaker SPEAKER_02
transcript.pyannote[2795].start 15081.82596875
transcript.pyannote[2795].end 15089.01471875
transcript.pyannote[2796].speaker SPEAKER_02
transcript.pyannote[2796].start 15089.65596875
transcript.pyannote[2796].end 15090.90471875
transcript.pyannote[2797].speaker SPEAKER_26
transcript.pyannote[2797].start 15090.90471875
transcript.pyannote[2797].end 15091.25909375
transcript.pyannote[2798].speaker SPEAKER_02
transcript.pyannote[2798].start 15091.15784375
transcript.pyannote[2798].end 15092.05221875
transcript.pyannote[2799].speaker SPEAKER_02
transcript.pyannote[2799].start 15092.06909375
transcript.pyannote[2799].end 15094.76909375
transcript.pyannote[2800].speaker SPEAKER_02
transcript.pyannote[2800].start 15095.07284375
transcript.pyannote[2800].end 15096.81096875
transcript.pyannote[2801].speaker SPEAKER_02
transcript.pyannote[2801].start 15096.96284375
transcript.pyannote[2801].end 15101.08034375
transcript.pyannote[2802].speaker SPEAKER_02
transcript.pyannote[2802].start 15101.95784375
transcript.pyannote[2802].end 15107.64471875
transcript.pyannote[2803].speaker SPEAKER_25
transcript.pyannote[2803].start 15108.69096875
transcript.pyannote[2803].end 15109.09596875
transcript.pyannote[2804].speaker SPEAKER_02
transcript.pyannote[2804].start 15108.75846875
transcript.pyannote[2804].end 15116.67284375
transcript.pyannote[2805].speaker SPEAKER_02
transcript.pyannote[2805].start 15117.01034375
transcript.pyannote[2805].end 15122.56221875
transcript.pyannote[2806].speaker SPEAKER_28
transcript.pyannote[2806].start 15123.57471875
transcript.pyannote[2806].end 15133.59846875
transcript.pyannote[2807].speaker SPEAKER_02
transcript.pyannote[2807].start 15132.48471875
transcript.pyannote[2807].end 15138.69471875
transcript.pyannote[2808].speaker SPEAKER_28
transcript.pyannote[2808].start 15137.59784375
transcript.pyannote[2808].end 15143.75721875
transcript.pyannote[2809].speaker SPEAKER_02
transcript.pyannote[2809].start 15140.28096875
transcript.pyannote[2809].end 15141.73221875
transcript.pyannote[2810].speaker SPEAKER_02
transcript.pyannote[2810].start 15143.01471875
transcript.pyannote[2810].end 15159.77159375
transcript.pyannote[2811].speaker SPEAKER_31
transcript.pyannote[2811].start 15159.77159375
transcript.pyannote[2811].end 15160.90221875
transcript.pyannote[2812].speaker SPEAKER_02
transcript.pyannote[2812].start 15160.32846875
transcript.pyannote[2812].end 15173.17034375
transcript.pyannote[2813].speaker SPEAKER_31
transcript.pyannote[2813].start 15161.76284375
transcript.pyannote[2813].end 15162.10034375
transcript.pyannote[2814].speaker SPEAKER_28
transcript.pyannote[2814].start 15173.17034375
transcript.pyannote[2814].end 15176.96721875
transcript.pyannote[2815].speaker SPEAKER_02
transcript.pyannote[2815].start 15173.74409375
transcript.pyannote[2815].end 15174.95909375
transcript.pyannote[2816].speaker SPEAKER_02
transcript.pyannote[2816].start 15176.81534375
transcript.pyannote[2816].end 15179.71784375
transcript.pyannote[2817].speaker SPEAKER_02
transcript.pyannote[2817].start 15179.86971875
transcript.pyannote[2817].end 15183.53159375
transcript.pyannote[2818].speaker SPEAKER_28
transcript.pyannote[2818].start 15183.53159375
transcript.pyannote[2818].end 15185.30346875
transcript.pyannote[2819].speaker SPEAKER_02
transcript.pyannote[2819].start 15185.30346875
transcript.pyannote[2819].end 15185.99534375
transcript.pyannote[2820].speaker SPEAKER_28
transcript.pyannote[2820].start 15185.38784375
transcript.pyannote[2820].end 15186.02909375
transcript.pyannote[2821].speaker SPEAKER_02
transcript.pyannote[2821].start 15186.02909375
transcript.pyannote[2821].end 15186.04596875
transcript.pyannote[2822].speaker SPEAKER_28
transcript.pyannote[2822].start 15186.04596875
transcript.pyannote[2822].end 15186.97409375
transcript.pyannote[2823].speaker SPEAKER_02
transcript.pyannote[2823].start 15186.97409375
transcript.pyannote[2823].end 15187.02471875
transcript.pyannote[2824].speaker SPEAKER_28
transcript.pyannote[2824].start 15187.02471875
transcript.pyannote[2824].end 15187.07534375
transcript.pyannote[2825].speaker SPEAKER_02
transcript.pyannote[2825].start 15187.07534375
transcript.pyannote[2825].end 15190.43346875
transcript.pyannote[2826].speaker SPEAKER_28
transcript.pyannote[2826].start 15187.10909375
transcript.pyannote[2826].end 15187.41284375
transcript.pyannote[2827].speaker SPEAKER_28
transcript.pyannote[2827].start 15189.31971875
transcript.pyannote[2827].end 15190.21409375
transcript.pyannote[2828].speaker SPEAKER_28
transcript.pyannote[2828].start 15190.43346875
transcript.pyannote[2828].end 15191.98596875
transcript.pyannote[2829].speaker SPEAKER_02
transcript.pyannote[2829].start 15191.58096875
transcript.pyannote[2829].end 15192.79596875
transcript.pyannote[2830].speaker SPEAKER_02
transcript.pyannote[2830].start 15193.25159375
transcript.pyannote[2830].end 15194.14596875
transcript.pyannote[2831].speaker SPEAKER_02
transcript.pyannote[2831].start 15194.51721875
transcript.pyannote[2831].end 15196.30596875
transcript.pyannote[2832].speaker SPEAKER_28
transcript.pyannote[2832].start 15196.13721875
transcript.pyannote[2832].end 15196.94721875
transcript.pyannote[2833].speaker SPEAKER_02
transcript.pyannote[2833].start 15196.52534375
transcript.pyannote[2833].end 15197.99346875
transcript.pyannote[2834].speaker SPEAKER_02
transcript.pyannote[2834].start 15198.65159375
transcript.pyannote[2834].end 15210.81846875
transcript.pyannote[2835].speaker SPEAKER_02
transcript.pyannote[2835].start 15211.12221875
transcript.pyannote[2835].end 15223.17096875
transcript.pyannote[2836].speaker SPEAKER_02
transcript.pyannote[2836].start 15223.84596875
transcript.pyannote[2836].end 15225.14534375
transcript.pyannote[2837].speaker SPEAKER_02
transcript.pyannote[2837].start 15225.73596875
transcript.pyannote[2837].end 15227.57534375
transcript.pyannote[2838].speaker SPEAKER_02
transcript.pyannote[2838].start 15228.04784375
transcript.pyannote[2838].end 15235.25346875
transcript.pyannote[2839].speaker SPEAKER_02
transcript.pyannote[2839].start 15235.59096875
transcript.pyannote[2839].end 15238.03784375
transcript.pyannote[2840].speaker SPEAKER_02
transcript.pyannote[2840].start 15238.20659375
transcript.pyannote[2840].end 15241.29471875
transcript.pyannote[2841].speaker SPEAKER_02
transcript.pyannote[2841].start 15241.54784375
transcript.pyannote[2841].end 15242.05409375
transcript.pyannote[2842].speaker SPEAKER_29
transcript.pyannote[2842].start 15242.49284375
transcript.pyannote[2842].end 15256.81971875
transcript.pyannote[2843].speaker SPEAKER_25
transcript.pyannote[2843].start 15251.58846875
transcript.pyannote[2843].end 15252.34784375
transcript.pyannote[2844].speaker SPEAKER_29
transcript.pyannote[2844].start 15256.87034375
transcript.pyannote[2844].end 15268.05846875
transcript.pyannote[2845].speaker SPEAKER_02
transcript.pyannote[2845].start 15266.59034375
transcript.pyannote[2845].end 15266.80971875
transcript.pyannote[2846].speaker SPEAKER_02
transcript.pyannote[2846].start 15266.99534375
transcript.pyannote[2846].end 15272.73284375
transcript.pyannote[2847].speaker SPEAKER_29
transcript.pyannote[2847].start 15268.59846875
transcript.pyannote[2847].end 15269.37471875
transcript.pyannote[2848].speaker SPEAKER_02
transcript.pyannote[2848].start 15273.13784375
transcript.pyannote[2848].end 15280.37721875
transcript.pyannote[2849].speaker SPEAKER_26
transcript.pyannote[2849].start 15275.04471875
transcript.pyannote[2849].end 15275.17971875
transcript.pyannote[2850].speaker SPEAKER_26
transcript.pyannote[2850].start 15275.23034375
transcript.pyannote[2850].end 15275.24721875
transcript.pyannote[2851].speaker SPEAKER_02
transcript.pyannote[2851].start 15280.95096875
transcript.pyannote[2851].end 15282.63846875
transcript.pyannote[2852].speaker SPEAKER_26
transcript.pyannote[2852].start 15282.63846875
transcript.pyannote[2852].end 15283.04346875
transcript.pyannote[2853].speaker SPEAKER_02
transcript.pyannote[2853].start 15282.77346875
transcript.pyannote[2853].end 15292.30784375
transcript.pyannote[2854].speaker SPEAKER_29
transcript.pyannote[2854].start 15290.46846875
transcript.pyannote[2854].end 15290.50221875
transcript.pyannote[2855].speaker SPEAKER_29
transcript.pyannote[2855].start 15290.55284375
transcript.pyannote[2855].end 15290.65409375
transcript.pyannote[2856].speaker SPEAKER_26
transcript.pyannote[2856].start 15290.65409375
transcript.pyannote[2856].end 15292.29096875
transcript.pyannote[2857].speaker SPEAKER_26
transcript.pyannote[2857].start 15292.30784375
transcript.pyannote[2857].end 15292.91534375
transcript.pyannote[2858].speaker SPEAKER_02
transcript.pyannote[2858].start 15292.76346875
transcript.pyannote[2858].end 15299.15909375
transcript.pyannote[2859].speaker SPEAKER_29
transcript.pyannote[2859].start 15292.91534375
transcript.pyannote[2859].end 15292.96596875
transcript.pyannote[2860].speaker SPEAKER_26
transcript.pyannote[2860].start 15292.96596875
transcript.pyannote[2860].end 15293.11784375
transcript.pyannote[2861].speaker SPEAKER_29
transcript.pyannote[2861].start 15293.11784375
transcript.pyannote[2861].end 15293.20221875
transcript.pyannote[2862].speaker SPEAKER_02
transcript.pyannote[2862].start 15299.78346875
transcript.pyannote[2862].end 15301.25159375
transcript.pyannote[2863].speaker SPEAKER_29
transcript.pyannote[2863].start 15301.25159375
transcript.pyannote[2863].end 15303.29346875
transcript.pyannote[2864].speaker SPEAKER_02
transcript.pyannote[2864].start 15302.09534375
transcript.pyannote[2864].end 15312.22034375
transcript.pyannote[2865].speaker SPEAKER_29
transcript.pyannote[2865].start 15308.01846875
transcript.pyannote[2865].end 15308.23784375
transcript.pyannote[2866].speaker SPEAKER_15
transcript.pyannote[2866].start 15308.23784375
transcript.pyannote[2866].end 15308.32221875
transcript.pyannote[2867].speaker SPEAKER_02
transcript.pyannote[2867].start 15312.43971875
transcript.pyannote[2867].end 15316.52346875
transcript.pyannote[2868].speaker SPEAKER_29
transcript.pyannote[2868].start 15316.64159375
transcript.pyannote[2868].end 15318.16034375
transcript.pyannote[2869].speaker SPEAKER_13
transcript.pyannote[2869].start 15317.29971875
transcript.pyannote[2869].end 15321.21471875
transcript.pyannote[2870].speaker SPEAKER_10
transcript.pyannote[2870].start 15338.79846875
transcript.pyannote[2870].end 15343.06784375
transcript.pyannote[2871].speaker SPEAKER_10
transcript.pyannote[2871].start 15343.13534375
transcript.pyannote[2871].end 15346.64534375
transcript.pyannote[2872].speaker SPEAKER_14
transcript.pyannote[2872].start 15345.56534375
transcript.pyannote[2872].end 15345.61596875
transcript.pyannote[2873].speaker SPEAKER_12
transcript.pyannote[2873].start 15345.61596875
transcript.pyannote[2873].end 15346.03784375
transcript.pyannote[2874].speaker SPEAKER_14
transcript.pyannote[2874].start 15346.03784375
transcript.pyannote[2874].end 15346.05471875
transcript.pyannote[2875].speaker SPEAKER_12
transcript.pyannote[2875].start 15346.05471875
transcript.pyannote[2875].end 15346.17284375
transcript.pyannote[2876].speaker SPEAKER_12
transcript.pyannote[2876].start 15346.64534375
transcript.pyannote[2876].end 15346.67909375
transcript.pyannote[2877].speaker SPEAKER_14
transcript.pyannote[2877].start 15348.26534375
transcript.pyannote[2877].end 15349.44659375
transcript.pyannote[2878].speaker SPEAKER_10
transcript.pyannote[2878].start 15348.82221875
transcript.pyannote[2878].end 15349.68284375
transcript.pyannote[2879].speaker SPEAKER_14
transcript.pyannote[2879].start 15349.68284375
transcript.pyannote[2879].end 15350.27346875
transcript.pyannote[2880].speaker SPEAKER_10
transcript.pyannote[2880].start 15349.75034375
transcript.pyannote[2880].end 15350.00346875
transcript.pyannote[2881].speaker SPEAKER_14
transcript.pyannote[2881].start 15350.69534375
transcript.pyannote[2881].end 15353.98596875
transcript.pyannote[2882].speaker SPEAKER_10
transcript.pyannote[2882].start 15354.00284375
transcript.pyannote[2882].end 15354.72846875
transcript.pyannote[2883].speaker SPEAKER_10
transcript.pyannote[2883].start 15355.33596875
transcript.pyannote[2883].end 15360.07784375
transcript.pyannote[2884].speaker SPEAKER_10
transcript.pyannote[2884].start 15360.51659375
transcript.pyannote[2884].end 15360.90471875
transcript.pyannote[2885].speaker SPEAKER_10
transcript.pyannote[2885].start 15361.19159375
transcript.pyannote[2885].end 15361.84971875
transcript.pyannote[2886].speaker SPEAKER_10
transcript.pyannote[2886].start 15362.44034375
transcript.pyannote[2886].end 15368.41409375
transcript.pyannote[2887].speaker SPEAKER_10
transcript.pyannote[2887].start 15369.17346875
transcript.pyannote[2887].end 15373.44284375
transcript.pyannote[2888].speaker SPEAKER_10
transcript.pyannote[2888].start 15374.15159375
transcript.pyannote[2888].end 15376.36221875
transcript.pyannote[2889].speaker SPEAKER_10
transcript.pyannote[2889].start 15377.34096875
transcript.pyannote[2889].end 15379.78784375
transcript.pyannote[2890].speaker SPEAKER_10
transcript.pyannote[2890].start 15380.37846875
transcript.pyannote[2890].end 15381.91409375
transcript.pyannote[2891].speaker SPEAKER_10
transcript.pyannote[2891].start 15382.70721875
transcript.pyannote[2891].end 15388.93409375
transcript.pyannote[2892].speaker SPEAKER_14
transcript.pyannote[2892].start 15387.71909375
transcript.pyannote[2892].end 15404.27346875
transcript.pyannote[2893].speaker SPEAKER_20
transcript.pyannote[2893].start 15404.27346875
transcript.pyannote[2893].end 15404.61096875
transcript.pyannote[2894].speaker SPEAKER_14
transcript.pyannote[2894].start 15404.61096875
transcript.pyannote[2894].end 15429.53534375
transcript.pyannote[2895].speaker SPEAKER_14
transcript.pyannote[2895].start 15429.77159375
transcript.pyannote[2895].end 15430.64909375
transcript.pyannote[2896].speaker SPEAKER_14
transcript.pyannote[2896].start 15430.98659375
transcript.pyannote[2896].end 15431.96534375
transcript.pyannote[2897].speaker SPEAKER_10
transcript.pyannote[2897].start 15431.96534375
transcript.pyannote[2897].end 15435.12096875
transcript.pyannote[2898].speaker SPEAKER_10
transcript.pyannote[2898].start 15436.33596875
transcript.pyannote[2898].end 15438.63096875
transcript.pyannote[2899].speaker SPEAKER_10
transcript.pyannote[2899].start 15439.40721875
transcript.pyannote[2899].end 15440.85846875
transcript.pyannote[2900].speaker SPEAKER_10
transcript.pyannote[2900].start 15441.41534375
transcript.pyannote[2900].end 15445.51596875
transcript.pyannote[2901].speaker SPEAKER_10
transcript.pyannote[2901].start 15446.29221875
transcript.pyannote[2901].end 15447.22034375
transcript.pyannote[2902].speaker SPEAKER_10
transcript.pyannote[2902].start 15447.89534375
transcript.pyannote[2902].end 15450.93284375
transcript.pyannote[2903].speaker SPEAKER_10
transcript.pyannote[2903].start 15451.57409375
transcript.pyannote[2903].end 15452.94096875
transcript.pyannote[2904].speaker SPEAKER_10
transcript.pyannote[2904].start 15453.64971875
transcript.pyannote[2904].end 15454.66221875
transcript.pyannote[2905].speaker SPEAKER_10
transcript.pyannote[2905].start 15455.69159375
transcript.pyannote[2905].end 15456.53534375
transcript.pyannote[2906].speaker SPEAKER_10
transcript.pyannote[2906].start 15457.10909375
transcript.pyannote[2906].end 15458.34096875
transcript.pyannote[2907].speaker SPEAKER_10
transcript.pyannote[2907].start 15458.79659375
transcript.pyannote[2907].end 15459.89346875
transcript.pyannote[2908].speaker SPEAKER_10
transcript.pyannote[2908].start 15460.75409375
transcript.pyannote[2908].end 15462.32346875
transcript.pyannote[2909].speaker SPEAKER_10
transcript.pyannote[2909].start 15463.08284375
transcript.pyannote[2909].end 15464.77034375
transcript.pyannote[2910].speaker SPEAKER_10
transcript.pyannote[2910].start 15465.39471875
transcript.pyannote[2910].end 15466.57596875
transcript.pyannote[2911].speaker SPEAKER_10
transcript.pyannote[2911].start 15467.40284375
transcript.pyannote[2911].end 15467.70659375
transcript.pyannote[2912].speaker SPEAKER_10
transcript.pyannote[2912].start 15468.14534375
transcript.pyannote[2912].end 15468.61784375
transcript.pyannote[2913].speaker SPEAKER_10
transcript.pyannote[2913].start 15469.15784375
transcript.pyannote[2913].end 15471.75659375
transcript.pyannote[2914].speaker SPEAKER_10
transcript.pyannote[2914].start 15472.38096875
transcript.pyannote[2914].end 15473.05596875
transcript.pyannote[2915].speaker SPEAKER_10
transcript.pyannote[2915].start 15474.23721875
transcript.pyannote[2915].end 15475.46909375
transcript.pyannote[2916].speaker SPEAKER_10
transcript.pyannote[2916].start 15475.97534375
transcript.pyannote[2916].end 15479.33346875
transcript.pyannote[2917].speaker SPEAKER_10
transcript.pyannote[2917].start 15479.89034375
transcript.pyannote[2917].end 15485.54346875
transcript.pyannote[2918].speaker SPEAKER_10
transcript.pyannote[2918].start 15485.62784375
transcript.pyannote[2918].end 15488.17596875
transcript.pyannote[2919].speaker SPEAKER_10
transcript.pyannote[2919].start 15488.63159375
transcript.pyannote[2919].end 15499.81971875
transcript.pyannote[2920].speaker SPEAKER_10
transcript.pyannote[2920].start 15500.41034375
transcript.pyannote[2920].end 15503.48159375
transcript.pyannote[2921].speaker SPEAKER_10
transcript.pyannote[2921].start 15503.65034375
transcript.pyannote[2921].end 15504.69659375
transcript.pyannote[2922].speaker SPEAKER_10
transcript.pyannote[2922].start 15505.11846875
transcript.pyannote[2922].end 15506.09721875
transcript.pyannote[2923].speaker SPEAKER_10
transcript.pyannote[2923].start 15506.92409375
transcript.pyannote[2923].end 15508.89846875
transcript.pyannote[2924].speaker SPEAKER_10
transcript.pyannote[2924].start 15508.99971875
transcript.pyannote[2924].end 15509.92784375
transcript.pyannote[2925].speaker SPEAKER_10
transcript.pyannote[2925].start 15510.34971875
transcript.pyannote[2925].end 15511.71659375
transcript.pyannote[2926].speaker SPEAKER_10
transcript.pyannote[2926].start 15512.54346875
transcript.pyannote[2926].end 15514.70346875
transcript.pyannote[2927].speaker SPEAKER_10
transcript.pyannote[2927].start 15515.74971875
transcript.pyannote[2927].end 15516.49221875
transcript.pyannote[2928].speaker SPEAKER_14
transcript.pyannote[2928].start 15516.49221875
transcript.pyannote[2928].end 15516.72846875
transcript.pyannote[2929].speaker SPEAKER_10
transcript.pyannote[2929].start 15516.72846875
transcript.pyannote[2929].end 15518.02784375
transcript.pyannote[2930].speaker SPEAKER_14
transcript.pyannote[2930].start 15518.02784375
transcript.pyannote[2930].end 15518.50034375
transcript.pyannote[2931].speaker SPEAKER_14
transcript.pyannote[2931].start 15518.71971875
transcript.pyannote[2931].end 15547.96409375
transcript.pyannote[2932].speaker SPEAKER_10
transcript.pyannote[2932].start 15547.96409375
transcript.pyannote[2932].end 15548.04846875
transcript.pyannote[2933].speaker SPEAKER_14
transcript.pyannote[2933].start 15548.45346875
transcript.pyannote[2933].end 15548.48721875
transcript.pyannote[2934].speaker SPEAKER_10
transcript.pyannote[2934].start 15548.48721875
transcript.pyannote[2934].end 15556.73909375
transcript.pyannote[2935].speaker SPEAKER_25
transcript.pyannote[2935].start 15554.12346875
transcript.pyannote[2935].end 15554.37659375
transcript.pyannote[2936].speaker SPEAKER_10
transcript.pyannote[2936].start 15558.17346875
transcript.pyannote[2936].end 15560.33346875
transcript.pyannote[2937].speaker SPEAKER_10
transcript.pyannote[2937].start 15560.87346875
transcript.pyannote[2937].end 15561.81846875
transcript.pyannote[2938].speaker SPEAKER_10
transcript.pyannote[2938].start 15562.10534375
transcript.pyannote[2938].end 15562.69596875
transcript.pyannote[2939].speaker SPEAKER_00
transcript.pyannote[2939].start 15563.40471875
transcript.pyannote[2939].end 15575.97659375
transcript.pyannote[2940].speaker SPEAKER_10
transcript.pyannote[2940].start 15571.09971875
transcript.pyannote[2940].end 15571.58909375
transcript.pyannote[2941].speaker SPEAKER_10
transcript.pyannote[2941].start 15574.30596875
transcript.pyannote[2941].end 15575.53784375
transcript.pyannote[2942].speaker SPEAKER_10
transcript.pyannote[2942].start 15575.97659375
transcript.pyannote[2942].end 15578.64284375
transcript.pyannote[2943].speaker SPEAKER_10
transcript.pyannote[2943].start 15578.65971875
transcript.pyannote[2943].end 15579.03096875
transcript.pyannote[2944].speaker SPEAKER_00
transcript.pyannote[2944].start 15579.26721875
transcript.pyannote[2944].end 15584.09346875
transcript.pyannote[2945].speaker SPEAKER_10
transcript.pyannote[2945].start 15582.57471875
transcript.pyannote[2945].end 15582.96284375
transcript.pyannote[2946].speaker SPEAKER_10
transcript.pyannote[2946].start 15583.41846875
transcript.pyannote[2946].end 15584.58284375
transcript.pyannote[2947].speaker SPEAKER_10
transcript.pyannote[2947].start 15585.17346875
transcript.pyannote[2947].end 15586.43909375
transcript.pyannote[2948].speaker SPEAKER_10
transcript.pyannote[2948].start 15588.24471875
transcript.pyannote[2948].end 15593.37471875
transcript.pyannote[2949].speaker SPEAKER_10
transcript.pyannote[2949].start 15594.33659375
transcript.pyannote[2949].end 15595.06221875
transcript.pyannote[2950].speaker SPEAKER_10
transcript.pyannote[2950].start 15595.51784375
transcript.pyannote[2950].end 15602.85846875
transcript.pyannote[2951].speaker SPEAKER_10
transcript.pyannote[2951].start 15603.63471875
transcript.pyannote[2951].end 15604.00596875
transcript.pyannote[2952].speaker SPEAKER_10
transcript.pyannote[2952].start 15604.54596875
transcript.pyannote[2952].end 15606.40221875
transcript.pyannote[2953].speaker SPEAKER_10
transcript.pyannote[2953].start 15607.46534375
transcript.pyannote[2953].end 15608.95034375
transcript.pyannote[2954].speaker SPEAKER_10
transcript.pyannote[2954].start 15609.79409375
transcript.pyannote[2954].end 15610.75596875
transcript.pyannote[2955].speaker SPEAKER_10
transcript.pyannote[2955].start 15611.09346875
transcript.pyannote[2955].end 15613.15221875
transcript.pyannote[2956].speaker SPEAKER_10
transcript.pyannote[2956].start 15613.84409375
transcript.pyannote[2956].end 15615.21096875
transcript.pyannote[2957].speaker SPEAKER_10
transcript.pyannote[2957].start 15615.61596875
transcript.pyannote[2957].end 15615.86909375
transcript.pyannote[2958].speaker SPEAKER_10
transcript.pyannote[2958].start 15617.10096875
transcript.pyannote[2958].end 15618.24846875
transcript.pyannote[2959].speaker SPEAKER_10
transcript.pyannote[2959].start 15618.80534375
transcript.pyannote[2959].end 15619.95284375
transcript.pyannote[2960].speaker SPEAKER_10
transcript.pyannote[2960].start 15620.45909375
transcript.pyannote[2960].end 15621.55596875
transcript.pyannote[2961].speaker SPEAKER_10
transcript.pyannote[2961].start 15621.97784375
transcript.pyannote[2961].end 15625.03221875
transcript.pyannote[2962].speaker SPEAKER_10
transcript.pyannote[2962].start 15625.79159375
transcript.pyannote[2962].end 15626.36534375
transcript.pyannote[2963].speaker SPEAKER_10
transcript.pyannote[2963].start 15626.60159375
transcript.pyannote[2963].end 15630.55034375
transcript.pyannote[2964].speaker SPEAKER_10
transcript.pyannote[2964].start 15631.46159375
transcript.pyannote[2964].end 15634.53284375
transcript.pyannote[2965].speaker SPEAKER_10
transcript.pyannote[2965].start 15635.44409375
transcript.pyannote[2965].end 15636.47346875
transcript.pyannote[2966].speaker SPEAKER_10
transcript.pyannote[2966].start 15637.30034375
transcript.pyannote[2966].end 15639.08909375
transcript.pyannote[2967].speaker SPEAKER_10
transcript.pyannote[2967].start 15640.01721875
transcript.pyannote[2967].end 15643.51034375
transcript.pyannote[2968].speaker SPEAKER_10
transcript.pyannote[2968].start 15644.57346875
transcript.pyannote[2968].end 15645.26534375
transcript.pyannote[2969].speaker SPEAKER_10
transcript.pyannote[2969].start 15646.05846875
transcript.pyannote[2969].end 15647.64471875
transcript.pyannote[2970].speaker SPEAKER_10
transcript.pyannote[2970].start 15649.12971875
transcript.pyannote[2970].end 15650.51346875
transcript.pyannote[2971].speaker SPEAKER_10
transcript.pyannote[2971].start 15651.61034375
transcript.pyannote[2971].end 15655.12034375
transcript.pyannote[2972].speaker SPEAKER_10
transcript.pyannote[2972].start 15655.22159375
transcript.pyannote[2972].end 15658.10721875
transcript.pyannote[2973].speaker SPEAKER_10
transcript.pyannote[2973].start 15658.29284375
transcript.pyannote[2973].end 15659.50784375
transcript.pyannote[2974].speaker SPEAKER_10
transcript.pyannote[2974].start 15659.86221875
transcript.pyannote[2974].end 15661.80284375
transcript.pyannote[2975].speaker SPEAKER_10
transcript.pyannote[2975].start 15662.52846875
transcript.pyannote[2975].end 15666.08909375
transcript.pyannote[2976].speaker SPEAKER_14
transcript.pyannote[2976].start 15666.08909375
transcript.pyannote[2976].end 15666.15659375
transcript.pyannote[2977].speaker SPEAKER_14
transcript.pyannote[2977].start 15666.37596875
transcript.pyannote[2977].end 15666.39284375
transcript.pyannote[2978].speaker SPEAKER_10
transcript.pyannote[2978].start 15666.39284375
transcript.pyannote[2978].end 15668.33346875
transcript.pyannote[2979].speaker SPEAKER_14
transcript.pyannote[2979].start 15666.54471875
transcript.pyannote[2979].end 15681.83346875
transcript.pyannote[2980].speaker SPEAKER_10
transcript.pyannote[2980].start 15674.88096875
transcript.pyannote[2980].end 15678.98159375
transcript.pyannote[2981].speaker SPEAKER_10
transcript.pyannote[2981].start 15680.87159375
transcript.pyannote[2981].end 15682.89659375
transcript.pyannote[2982].speaker SPEAKER_10
transcript.pyannote[2982].start 15683.43659375
transcript.pyannote[2982].end 15687.14909375
transcript.pyannote[2983].speaker SPEAKER_10
transcript.pyannote[2983].start 15687.23346875
transcript.pyannote[2983].end 15687.30096875
transcript.pyannote[2984].speaker SPEAKER_14
transcript.pyannote[2984].start 15687.30096875
transcript.pyannote[2984].end 15687.35159375
transcript.pyannote[2985].speaker SPEAKER_20
transcript.pyannote[2985].start 15687.35159375
transcript.pyannote[2985].end 15687.40221875
transcript.pyannote[2986].speaker SPEAKER_14
transcript.pyannote[2986].start 15687.40221875
transcript.pyannote[2986].end 15703.97346875
transcript.pyannote[2987].speaker SPEAKER_10
transcript.pyannote[2987].start 15687.43596875
transcript.pyannote[2987].end 15690.25409375
transcript.pyannote[2988].speaker SPEAKER_10
transcript.pyannote[2988].start 15701.29034375
transcript.pyannote[2988].end 15702.87659375
transcript.pyannote[2989].speaker SPEAKER_10
transcript.pyannote[2989].start 15703.97346875
transcript.pyannote[2989].end 15704.32784375
transcript.pyannote[2990].speaker SPEAKER_14
transcript.pyannote[2990].start 15704.32784375
transcript.pyannote[2990].end 15704.96909375
transcript.pyannote[2991].speaker SPEAKER_10
transcript.pyannote[2991].start 15704.96909375
transcript.pyannote[2991].end 15706.45409375
transcript.pyannote[2992].speaker SPEAKER_10
transcript.pyannote[2992].start 15706.92659375
transcript.pyannote[2992].end 15707.23034375
transcript.pyannote[2993].speaker SPEAKER_10
transcript.pyannote[2993].start 15708.74909375
transcript.pyannote[2993].end 15712.10721875
transcript.pyannote[2994].speaker SPEAKER_10
transcript.pyannote[2994].start 15712.73159375
transcript.pyannote[2994].end 15713.03534375
transcript.pyannote[2995].speaker SPEAKER_10
transcript.pyannote[2995].start 15713.50784375
transcript.pyannote[2995].end 15714.09846875
transcript.pyannote[2996].speaker SPEAKER_10
transcript.pyannote[2996].start 15714.63846875
transcript.pyannote[2996].end 15715.66784375
transcript.pyannote[2997].speaker SPEAKER_10
transcript.pyannote[2997].start 15716.19096875
transcript.pyannote[2997].end 15718.03034375
transcript.pyannote[2998].speaker SPEAKER_10
transcript.pyannote[2998].start 15718.53659375
transcript.pyannote[2998].end 15718.90784375
transcript.pyannote[2999].speaker SPEAKER_10
transcript.pyannote[2999].start 15719.59971875
transcript.pyannote[2999].end 15720.17346875
transcript.pyannote[3000].speaker SPEAKER_10
transcript.pyannote[3000].start 15721.00034375
transcript.pyannote[3000].end 15723.17721875
transcript.pyannote[3001].speaker SPEAKER_10
transcript.pyannote[3001].start 15723.86909375
transcript.pyannote[3001].end 15727.53096875
transcript.pyannote[3002].speaker SPEAKER_10
transcript.pyannote[3002].start 15727.90221875
transcript.pyannote[3002].end 15734.29784375
transcript.pyannote[3003].speaker SPEAKER_10
transcript.pyannote[3003].start 15734.66909375
transcript.pyannote[3003].end 15739.51221875
transcript.pyannote[3004].speaker SPEAKER_10
transcript.pyannote[3004].start 15739.79909375
transcript.pyannote[3004].end 15739.96784375
transcript.pyannote[3005].speaker SPEAKER_16
transcript.pyannote[3005].start 15739.96784375
transcript.pyannote[3005].end 15744.37221875
transcript.pyannote[3006].speaker SPEAKER_10
transcript.pyannote[3006].start 15740.47409375
transcript.pyannote[3006].end 15751.76346875
transcript.pyannote[3007].speaker SPEAKER_10
transcript.pyannote[3007].start 15752.69159375
transcript.pyannote[3007].end 15758.93534375
transcript.pyannote[3008].speaker SPEAKER_10
transcript.pyannote[3008].start 15759.98159375
transcript.pyannote[3008].end 15765.02721875
transcript.pyannote[3009].speaker SPEAKER_14
transcript.pyannote[3009].start 15764.70659375
transcript.pyannote[3009].end 15764.77409375
transcript.pyannote[3010].speaker SPEAKER_14
transcript.pyannote[3010].start 15765.02721875
transcript.pyannote[3010].end 15770.17409375
transcript.pyannote[3011].speaker SPEAKER_12
transcript.pyannote[3011].start 15770.17409375
transcript.pyannote[3011].end 15770.25846875
transcript.pyannote[3012].speaker SPEAKER_10
transcript.pyannote[3012].start 15770.25846875
transcript.pyannote[3012].end 15770.88284375
transcript.pyannote[3013].speaker SPEAKER_14
transcript.pyannote[3013].start 15770.42721875
transcript.pyannote[3013].end 15775.91159375
transcript.pyannote[3014].speaker SPEAKER_12
transcript.pyannote[3014].start 15770.88284375
transcript.pyannote[3014].end 15771.08534375
transcript.pyannote[3015].speaker SPEAKER_12
transcript.pyannote[3015].start 15771.96284375
transcript.pyannote[3015].end 15772.03034375
transcript.pyannote[3016].speaker SPEAKER_10
transcript.pyannote[3016].start 15772.03034375
transcript.pyannote[3016].end 15772.97534375
transcript.pyannote[3017].speaker SPEAKER_12
transcript.pyannote[3017].start 15772.97534375
transcript.pyannote[3017].end 15772.99221875
transcript.pyannote[3018].speaker SPEAKER_10
transcript.pyannote[3018].start 15772.99221875
transcript.pyannote[3018].end 15773.00909375
transcript.pyannote[3019].speaker SPEAKER_12
transcript.pyannote[3019].start 15774.03846875
transcript.pyannote[3019].end 15774.05534375
transcript.pyannote[3020].speaker SPEAKER_10
transcript.pyannote[3020].start 15774.05534375
transcript.pyannote[3020].end 15774.52784375
transcript.pyannote[3021].speaker SPEAKER_14
transcript.pyannote[3021].start 15776.06346875
transcript.pyannote[3021].end 15776.08034375
transcript.pyannote[3022].speaker SPEAKER_10
transcript.pyannote[3022].start 15776.08034375
transcript.pyannote[3022].end 15777.00846875
transcript.pyannote[3023].speaker SPEAKER_14
transcript.pyannote[3023].start 15776.23221875
transcript.pyannote[3023].end 15776.24909375
transcript.pyannote[3024].speaker SPEAKER_13
transcript.pyannote[3024].start 15776.24909375
transcript.pyannote[3024].end 15777.49784375
transcript.pyannote[3025].speaker SPEAKER_10
transcript.pyannote[3025].start 15777.49784375
transcript.pyannote[3025].end 15781.37909375
transcript.pyannote[3026].speaker SPEAKER_10
transcript.pyannote[3026].start 15782.23971875
transcript.pyannote[3026].end 15782.91471875
transcript.pyannote[3027].speaker SPEAKER_10
transcript.pyannote[3027].start 15783.21846875
transcript.pyannote[3027].end 15784.45034375
transcript.pyannote[3028].speaker SPEAKER_10
transcript.pyannote[3028].start 15784.93971875
transcript.pyannote[3028].end 15795.90846875
transcript.pyannote[3029].speaker SPEAKER_19
transcript.pyannote[3029].start 15791.18346875
transcript.pyannote[3029].end 15791.33534375
transcript.pyannote[3030].speaker SPEAKER_10
transcript.pyannote[3030].start 15796.12784375
transcript.pyannote[3030].end 15796.17846875
transcript.pyannote[3031].speaker SPEAKER_14
transcript.pyannote[3031].start 15796.17846875
transcript.pyannote[3031].end 15796.46534375
transcript.pyannote[3032].speaker SPEAKER_10
transcript.pyannote[3032].start 15796.46534375
transcript.pyannote[3032].end 15796.71846875
transcript.pyannote[3033].speaker SPEAKER_14
transcript.pyannote[3033].start 15796.48221875
transcript.pyannote[3033].end 15796.56659375
transcript.pyannote[3034].speaker SPEAKER_14
transcript.pyannote[3034].start 15796.71846875
transcript.pyannote[3034].end 15799.67159375
transcript.pyannote[3035].speaker SPEAKER_10
transcript.pyannote[3035].start 15799.13159375
transcript.pyannote[3035].end 15799.55346875
transcript.pyannote[3036].speaker SPEAKER_14
transcript.pyannote[3036].start 15800.17784375
transcript.pyannote[3036].end 15801.96659375
transcript.pyannote[3037].speaker SPEAKER_10
transcript.pyannote[3037].start 15800.71784375
transcript.pyannote[3037].end 15800.78534375
transcript.pyannote[3038].speaker SPEAKER_10
transcript.pyannote[3038].start 15801.47721875
transcript.pyannote[3038].end 15805.03784375
transcript.pyannote[3039].speaker SPEAKER_13
transcript.pyannote[3039].start 15801.96659375
transcript.pyannote[3039].end 15805.47659375
transcript.pyannote[3040].speaker SPEAKER_10
transcript.pyannote[3040].start 15805.47659375
transcript.pyannote[3040].end 15809.23971875
transcript.pyannote[3041].speaker SPEAKER_13
transcript.pyannote[3041].start 15807.50159375
transcript.pyannote[3041].end 15807.61971875
transcript.pyannote[3042].speaker SPEAKER_10
transcript.pyannote[3042].start 15809.74596875
transcript.pyannote[3042].end 15812.32784375
transcript.pyannote[3043].speaker SPEAKER_10
transcript.pyannote[3043].start 15815.11221875
transcript.pyannote[3043].end 15816.54659375
transcript.pyannote[3044].speaker SPEAKER_22
transcript.pyannote[3044].start 15816.73221875
transcript.pyannote[3044].end 15816.95159375
transcript.pyannote[3045].speaker SPEAKER_10
transcript.pyannote[3045].start 15817.37346875
transcript.pyannote[3045].end 15817.79534375
transcript.pyannote[3046].speaker SPEAKER_22
transcript.pyannote[3046].start 15817.79534375
transcript.pyannote[3046].end 15818.03159375
transcript.pyannote[3047].speaker SPEAKER_10
transcript.pyannote[3047].start 15817.84596875
transcript.pyannote[3047].end 15817.91346875
transcript.pyannote[3048].speaker SPEAKER_13
transcript.pyannote[3048].start 15818.03159375
transcript.pyannote[3048].end 15820.71471875
transcript.pyannote[3049].speaker SPEAKER_10
transcript.pyannote[3049].start 15818.25096875
transcript.pyannote[3049].end 15822.53721875
transcript.pyannote[3050].speaker SPEAKER_13
transcript.pyannote[3050].start 15822.52034375
transcript.pyannote[3050].end 15824.56221875
transcript.pyannote[3051].speaker SPEAKER_10
transcript.pyannote[3051].start 15823.65096875
transcript.pyannote[3051].end 15823.75221875
transcript.pyannote[3052].speaker SPEAKER_10
transcript.pyannote[3052].start 15824.02221875
transcript.pyannote[3052].end 15825.40596875
transcript.pyannote[3053].speaker SPEAKER_14
transcript.pyannote[3053].start 15824.56221875
transcript.pyannote[3053].end 15824.57909375
transcript.pyannote[3054].speaker SPEAKER_13
transcript.pyannote[3054].start 15825.40596875
transcript.pyannote[3054].end 15829.91159375
transcript.pyannote[3055].speaker SPEAKER_10
transcript.pyannote[3055].start 15825.43971875
transcript.pyannote[3055].end 15825.94596875
transcript.pyannote[3056].speaker SPEAKER_04
transcript.pyannote[3056].start 15836.52659375
transcript.pyannote[3056].end 15839.24346875
transcript.pyannote[3057].speaker SPEAKER_25
transcript.pyannote[3057].start 15847.37721875
transcript.pyannote[3057].end 15847.68096875
transcript.pyannote[3058].speaker SPEAKER_04
transcript.pyannote[3058].start 15847.63034375
transcript.pyannote[3058].end 15863.99909375
transcript.pyannote[3059].speaker SPEAKER_04
transcript.pyannote[3059].start 15864.06659375
transcript.pyannote[3059].end 15866.96909375
transcript.pyannote[3060].speaker SPEAKER_04
transcript.pyannote[3060].start 15867.74534375
transcript.pyannote[3060].end 15871.99784375
transcript.pyannote[3061].speaker SPEAKER_29
transcript.pyannote[3061].start 15873.26346875
transcript.pyannote[3061].end 15874.52909375
transcript.pyannote[3062].speaker SPEAKER_29
transcript.pyannote[3062].start 15874.84971875
transcript.pyannote[3062].end 15887.65784375
transcript.pyannote[3063].speaker SPEAKER_04
transcript.pyannote[3063].start 15876.87471875
transcript.pyannote[3063].end 15877.75221875
transcript.pyannote[3064].speaker SPEAKER_04
transcript.pyannote[3064].start 15884.48534375
transcript.pyannote[3064].end 15884.70471875
transcript.pyannote[3065].speaker SPEAKER_04
transcript.pyannote[3065].start 15886.91534375
transcript.pyannote[3065].end 15888.83909375
transcript.pyannote[3066].speaker SPEAKER_29
transcript.pyannote[3066].start 15888.83909375
transcript.pyannote[3066].end 15894.20534375
transcript.pyannote[3067].speaker SPEAKER_04
transcript.pyannote[3067].start 15893.51346875
transcript.pyannote[3067].end 15894.13784375
transcript.pyannote[3068].speaker SPEAKER_04
transcript.pyannote[3068].start 15894.20534375
transcript.pyannote[3068].end 15894.22221875
transcript.pyannote[3069].speaker SPEAKER_29
transcript.pyannote[3069].start 15894.22221875
transcript.pyannote[3069].end 15895.84221875
transcript.pyannote[3070].speaker SPEAKER_04
transcript.pyannote[3070].start 15895.84221875
transcript.pyannote[3070].end 15898.72784375
transcript.pyannote[3071].speaker SPEAKER_29
transcript.pyannote[3071].start 15898.86284375
transcript.pyannote[3071].end 15900.14534375
transcript.pyannote[3072].speaker SPEAKER_29
transcript.pyannote[3072].start 15900.90471875
transcript.pyannote[3072].end 15905.54534375
transcript.pyannote[3073].speaker SPEAKER_04
transcript.pyannote[3073].start 15905.14034375
transcript.pyannote[3073].end 15909.74721875
transcript.pyannote[3074].speaker SPEAKER_04
transcript.pyannote[3074].start 15909.86534375
transcript.pyannote[3074].end 15910.94534375
transcript.pyannote[3075].speaker SPEAKER_04
transcript.pyannote[3075].start 15911.19846875
transcript.pyannote[3075].end 15911.87346875
transcript.pyannote[3076].speaker SPEAKER_04
transcript.pyannote[3076].start 15912.00846875
transcript.pyannote[3076].end 15913.83096875
transcript.pyannote[3077].speaker SPEAKER_04
transcript.pyannote[3077].start 15914.35409375
transcript.pyannote[3077].end 15915.56909375
transcript.pyannote[3078].speaker SPEAKER_11
transcript.pyannote[3078].start 15915.09659375
transcript.pyannote[3078].end 15915.73784375
transcript.pyannote[3079].speaker SPEAKER_04
transcript.pyannote[3079].start 15916.66596875
transcript.pyannote[3079].end 15920.51346875
transcript.pyannote[3080].speaker SPEAKER_04
transcript.pyannote[3080].start 15922.16721875
transcript.pyannote[3080].end 15923.26409375
transcript.pyannote[3081].speaker SPEAKER_29
transcript.pyannote[3081].start 15924.61409375
transcript.pyannote[3081].end 15926.80784375
transcript.pyannote[3082].speaker SPEAKER_29
transcript.pyannote[3082].start 15927.07784375
transcript.pyannote[3082].end 15930.35159375
transcript.pyannote[3083].speaker SPEAKER_04
transcript.pyannote[3083].start 15930.45284375
transcript.pyannote[3083].end 15942.34971875
transcript.pyannote[3084].speaker SPEAKER_29
transcript.pyannote[3084].start 15931.49909375
transcript.pyannote[3084].end 15931.80284375
transcript.pyannote[3085].speaker SPEAKER_04
transcript.pyannote[3085].start 15942.63659375
transcript.pyannote[3085].end 15943.80096875
transcript.pyannote[3086].speaker SPEAKER_29
transcript.pyannote[3086].start 15943.98659375
transcript.pyannote[3086].end 15952.27221875
transcript.pyannote[3087].speaker SPEAKER_04
transcript.pyannote[3087].start 15950.80409375
transcript.pyannote[3087].end 15963.73034375
transcript.pyannote[3088].speaker SPEAKER_04
transcript.pyannote[3088].start 15963.91596875
transcript.pyannote[3088].end 15965.94096875
transcript.pyannote[3089].speaker SPEAKER_04
transcript.pyannote[3089].start 15966.14346875
transcript.pyannote[3089].end 15971.03721875
transcript.pyannote[3090].speaker SPEAKER_04
transcript.pyannote[3090].start 15971.30721875
transcript.pyannote[3090].end 15996.02909375
transcript.pyannote[3091].speaker SPEAKER_04
transcript.pyannote[3091].start 15996.65346875
transcript.pyannote[3091].end 15997.26096875
transcript.pyannote[3092].speaker SPEAKER_04
transcript.pyannote[3092].start 15998.13846875
transcript.pyannote[3092].end 15999.84284375
transcript.pyannote[3093].speaker SPEAKER_04
transcript.pyannote[3093].start 16000.70346875
transcript.pyannote[3093].end 16002.08721875
transcript.pyannote[3094].speaker SPEAKER_29
transcript.pyannote[3094].start 16002.08721875
transcript.pyannote[3094].end 16002.49221875
transcript.pyannote[3095].speaker SPEAKER_04
transcript.pyannote[3095].start 16002.86346875
transcript.pyannote[3095].end 16003.26846875
transcript.pyannote[3096].speaker SPEAKER_04
transcript.pyannote[3096].start 16003.55534375
transcript.pyannote[3096].end 16008.02721875
transcript.pyannote[3097].speaker SPEAKER_04
transcript.pyannote[3097].start 16008.21284375
transcript.pyannote[3097].end 16011.01409375
transcript.pyannote[3098].speaker SPEAKER_04
transcript.pyannote[3098].start 16012.02659375
transcript.pyannote[3098].end 16013.64659375
transcript.pyannote[3099].speaker SPEAKER_29
transcript.pyannote[3099].start 16013.96721875
transcript.pyannote[3099].end 16014.69284375
transcript.pyannote[3100].speaker SPEAKER_04
transcript.pyannote[3100].start 16014.52409375
transcript.pyannote[3100].end 16015.36784375
transcript.pyannote[3101].speaker SPEAKER_29
transcript.pyannote[3101].start 16016.46471875
transcript.pyannote[3101].end 16023.99096875
transcript.pyannote[3102].speaker SPEAKER_04
transcript.pyannote[3102].start 16021.83096875
transcript.pyannote[3102].end 16027.18034375
transcript.pyannote[3103].speaker SPEAKER_04
transcript.pyannote[3103].start 16027.39971875
transcript.pyannote[3103].end 16029.47534375
transcript.pyannote[3104].speaker SPEAKER_04
transcript.pyannote[3104].start 16029.76221875
transcript.pyannote[3104].end 16033.32284375
transcript.pyannote[3105].speaker SPEAKER_26
transcript.pyannote[3105].start 16033.25534375
transcript.pyannote[3105].end 16033.52534375
transcript.pyannote[3106].speaker SPEAKER_04
transcript.pyannote[3106].start 16033.33971875
transcript.pyannote[3106].end 16035.76971875
transcript.pyannote[3107].speaker SPEAKER_04
transcript.pyannote[3107].start 16036.29284375
transcript.pyannote[3107].end 16040.88284375
transcript.pyannote[3108].speaker SPEAKER_04
transcript.pyannote[3108].start 16041.37221875
transcript.pyannote[3108].end 16044.94971875
transcript.pyannote[3109].speaker SPEAKER_04
transcript.pyannote[3109].start 16045.74284375
transcript.pyannote[3109].end 16055.27721875
transcript.pyannote[3110].speaker SPEAKER_04
transcript.pyannote[3110].start 16055.90159375
transcript.pyannote[3110].end 16059.37784375
transcript.pyannote[3111].speaker SPEAKER_04
transcript.pyannote[3111].start 16061.06534375
transcript.pyannote[3111].end 16070.34659375
transcript.pyannote[3112].speaker SPEAKER_29
transcript.pyannote[3112].start 16062.63471875
transcript.pyannote[3112].end 16062.88784375
transcript.pyannote[3113].speaker SPEAKER_26
transcript.pyannote[3113].start 16062.88784375
transcript.pyannote[3113].end 16062.97221875
transcript.pyannote[3114].speaker SPEAKER_04
transcript.pyannote[3114].start 16071.20721875
transcript.pyannote[3114].end 16072.79346875
transcript.pyannote[3115].speaker SPEAKER_04
transcript.pyannote[3115].start 16073.24909375
transcript.pyannote[3115].end 16074.51471875
transcript.pyannote[3116].speaker SPEAKER_29
transcript.pyannote[3116].start 16075.37534375
transcript.pyannote[3116].end 16077.56909375
transcript.pyannote[3117].speaker SPEAKER_29
transcript.pyannote[3117].start 16077.90659375
transcript.pyannote[3117].end 16081.01159375
transcript.pyannote[3118].speaker SPEAKER_04
transcript.pyannote[3118].start 16080.10034375
transcript.pyannote[3118].end 16081.14659375
transcript.pyannote[3119].speaker SPEAKER_29
transcript.pyannote[3119].start 16081.14659375
transcript.pyannote[3119].end 16081.19721875
transcript.pyannote[3120].speaker SPEAKER_04
transcript.pyannote[3120].start 16081.19721875
transcript.pyannote[3120].end 16081.21409375
transcript.pyannote[3121].speaker SPEAKER_29
transcript.pyannote[3121].start 16081.21409375
transcript.pyannote[3121].end 16081.97346875
transcript.pyannote[3122].speaker SPEAKER_04
transcript.pyannote[3122].start 16081.77096875
transcript.pyannote[3122].end 16081.93971875
transcript.pyannote[3123].speaker SPEAKER_04
transcript.pyannote[3123].start 16081.97346875
transcript.pyannote[3123].end 16082.02409375
transcript.pyannote[3124].speaker SPEAKER_29
transcript.pyannote[3124].start 16082.02409375
transcript.pyannote[3124].end 16082.78346875
transcript.pyannote[3125].speaker SPEAKER_04
transcript.pyannote[3125].start 16082.09159375
transcript.pyannote[3125].end 16093.09409375
transcript.pyannote[3126].speaker SPEAKER_04
transcript.pyannote[3126].start 16094.19096875
transcript.pyannote[3126].end 16099.01721875
transcript.pyannote[3127].speaker SPEAKER_29
transcript.pyannote[3127].start 16099.94534375
transcript.pyannote[3127].end 16099.97909375
transcript.pyannote[3128].speaker SPEAKER_04
transcript.pyannote[3128].start 16099.97909375
transcript.pyannote[3128].end 16100.80596875
transcript.pyannote[3129].speaker SPEAKER_29
transcript.pyannote[3129].start 16099.99596875
transcript.pyannote[3129].end 16103.48909375
transcript.pyannote[3130].speaker SPEAKER_04
transcript.pyannote[3130].start 16103.11784375
transcript.pyannote[3130].end 16107.84284375
transcript.pyannote[3131].speaker SPEAKER_04
transcript.pyannote[3131].start 16107.97784375
transcript.pyannote[3131].end 16110.27284375
transcript.pyannote[3132].speaker SPEAKER_04
transcript.pyannote[3132].start 16112.46659375
transcript.pyannote[3132].end 16112.82096875
transcript.pyannote[3133].speaker SPEAKER_04
transcript.pyannote[3133].start 16113.44534375
transcript.pyannote[3133].end 16118.11971875
transcript.pyannote[3134].speaker SPEAKER_04
transcript.pyannote[3134].start 16118.49096875
transcript.pyannote[3134].end 16122.59159375
transcript.pyannote[3135].speaker SPEAKER_04
transcript.pyannote[3135].start 16122.97971875
transcript.pyannote[3135].end 16125.64596875
transcript.pyannote[3136].speaker SPEAKER_04
transcript.pyannote[3136].start 16126.18596875
transcript.pyannote[3136].end 16128.31221875
transcript.pyannote[3137].speaker SPEAKER_29
transcript.pyannote[3137].start 16126.50659375
transcript.pyannote[3137].end 16129.25721875
transcript.pyannote[3138].speaker SPEAKER_04
transcript.pyannote[3138].start 16128.86909375
transcript.pyannote[3138].end 16149.27096875
transcript.pyannote[3139].speaker SPEAKER_04
transcript.pyannote[3139].start 16149.94596875
transcript.pyannote[3139].end 16151.29596875
transcript.pyannote[3140].speaker SPEAKER_04
transcript.pyannote[3140].start 16152.74721875
transcript.pyannote[3140].end 16153.87784375
transcript.pyannote[3141].speaker SPEAKER_04
transcript.pyannote[3141].start 16154.09721875
transcript.pyannote[3141].end 16154.95784375
transcript.pyannote[3142].speaker SPEAKER_04
transcript.pyannote[3142].start 16155.46409375
transcript.pyannote[3142].end 16156.52721875
transcript.pyannote[3143].speaker SPEAKER_04
transcript.pyannote[3143].start 16157.32034375
transcript.pyannote[3143].end 16158.14721875
transcript.pyannote[3144].speaker SPEAKER_29
transcript.pyannote[3144].start 16158.99096875
transcript.pyannote[3144].end 16167.09096875
transcript.pyannote[3145].speaker SPEAKER_04
transcript.pyannote[3145].start 16162.53471875
transcript.pyannote[3145].end 16162.87221875
transcript.pyannote[3146].speaker SPEAKER_04
transcript.pyannote[3146].start 16164.50909375
transcript.pyannote[3146].end 16173.68909375
transcript.pyannote[3147].speaker SPEAKER_29
transcript.pyannote[3147].start 16167.49596875
transcript.pyannote[3147].end 16167.98534375
transcript.pyannote[3148].speaker SPEAKER_29
transcript.pyannote[3148].start 16173.68909375
transcript.pyannote[3148].end 16175.08971875
transcript.pyannote[3149].speaker SPEAKER_04
transcript.pyannote[3149].start 16174.53284375
transcript.pyannote[3149].end 16182.49784375
transcript.pyannote[3150].speaker SPEAKER_29
transcript.pyannote[3150].start 16181.40096875
transcript.pyannote[3150].end 16188.40409375
transcript.pyannote[3151].speaker SPEAKER_04
transcript.pyannote[3151].start 16186.49721875
transcript.pyannote[3151].end 16202.61284375
transcript.pyannote[3152].speaker SPEAKER_04
transcript.pyannote[3152].start 16202.93346875
transcript.pyannote[3152].end 16208.43471875
transcript.pyannote[3153].speaker SPEAKER_29
transcript.pyannote[3153].start 16207.05096875
transcript.pyannote[3153].end 16207.13534375
transcript.pyannote[3154].speaker SPEAKER_29
transcript.pyannote[3154].start 16208.43471875
transcript.pyannote[3154].end 16208.46846875
transcript.pyannote[3155].speaker SPEAKER_04
transcript.pyannote[3155].start 16208.78909375
transcript.pyannote[3155].end 16209.39659375
transcript.pyannote[3156].speaker SPEAKER_29
transcript.pyannote[3156].start 16209.39659375
transcript.pyannote[3156].end 16211.21909375
transcript.pyannote[3157].speaker SPEAKER_04
transcript.pyannote[3157].start 16210.51034375
transcript.pyannote[3157].end 16222.40721875
transcript.pyannote[3158].speaker SPEAKER_29
transcript.pyannote[3158].start 16213.05846875
transcript.pyannote[3158].end 16214.66159375
transcript.pyannote[3159].speaker SPEAKER_29
transcript.pyannote[3159].start 16223.23409375
transcript.pyannote[3159].end 16223.28471875
transcript.pyannote[3160].speaker SPEAKER_04
transcript.pyannote[3160].start 16223.28471875
transcript.pyannote[3160].end 16223.68971875
transcript.pyannote[3161].speaker SPEAKER_29
transcript.pyannote[3161].start 16225.46159375
transcript.pyannote[3161].end 16226.89596875
transcript.pyannote[3162].speaker SPEAKER_04
transcript.pyannote[3162].start 16226.00159375
transcript.pyannote[3162].end 16227.30096875
transcript.pyannote[3163].speaker SPEAKER_29
transcript.pyannote[3163].start 16227.30096875
transcript.pyannote[3163].end 16229.03909375
transcript.pyannote[3164].speaker SPEAKER_04
transcript.pyannote[3164].start 16228.60034375
transcript.pyannote[3164].end 16230.91221875
transcript.pyannote[3165].speaker SPEAKER_29
transcript.pyannote[3165].start 16231.24971875
transcript.pyannote[3165].end 16231.35096875
transcript.pyannote[3166].speaker SPEAKER_04
transcript.pyannote[3166].start 16231.58721875
transcript.pyannote[3166].end 16232.09346875
transcript.pyannote[3167].speaker SPEAKER_29
transcript.pyannote[3167].start 16232.09346875
transcript.pyannote[3167].end 16232.12721875
transcript.pyannote[3168].speaker SPEAKER_29
transcript.pyannote[3168].start 16232.19471875
transcript.pyannote[3168].end 16236.63284375
transcript.pyannote[3169].speaker SPEAKER_04
transcript.pyannote[3169].start 16233.42659375
transcript.pyannote[3169].end 16239.68721875
transcript.pyannote[3170].speaker SPEAKER_29
transcript.pyannote[3170].start 16238.42159375
transcript.pyannote[3170].end 16240.59846875
transcript.pyannote[3171].speaker SPEAKER_04
transcript.pyannote[3171].start 16240.46346875
transcript.pyannote[3171].end 16245.64409375
transcript.pyannote[3172].speaker SPEAKER_29
transcript.pyannote[3172].start 16246.40346875
transcript.pyannote[3172].end 16248.91784375
transcript.pyannote[3173].speaker SPEAKER_04
transcript.pyannote[3173].start 16247.12909375
transcript.pyannote[3173].end 16255.04346875
transcript.pyannote[3174].speaker SPEAKER_04
transcript.pyannote[3174].start 16255.44846875
transcript.pyannote[3174].end 16259.27909375
transcript.pyannote[3175].speaker SPEAKER_29
transcript.pyannote[3175].start 16256.91659375
transcript.pyannote[3175].end 16258.53659375
transcript.pyannote[3176].speaker SPEAKER_29
transcript.pyannote[3176].start 16259.61659375
transcript.pyannote[3176].end 16262.60346875
transcript.pyannote[3177].speaker SPEAKER_04
transcript.pyannote[3177].start 16261.33784375
transcript.pyannote[3177].end 16263.37971875
transcript.pyannote[3178].speaker SPEAKER_04
transcript.pyannote[3178].start 16263.76784375
transcript.pyannote[3178].end 16266.70409375
transcript.pyannote[3179].speaker SPEAKER_29
transcript.pyannote[3179].start 16267.64909375
transcript.pyannote[3179].end 16273.11659375
transcript.pyannote[3180].speaker SPEAKER_04
transcript.pyannote[3180].start 16270.31534375
transcript.pyannote[3180].end 16273.01534375
transcript.pyannote[3181].speaker SPEAKER_04
transcript.pyannote[3181].start 16273.47096875
transcript.pyannote[3181].end 16273.99409375
transcript.pyannote[3182].speaker SPEAKER_29
transcript.pyannote[3182].start 16273.99409375
transcript.pyannote[3182].end 16274.36534375
transcript.pyannote[3183].speaker SPEAKER_04
transcript.pyannote[3183].start 16274.04471875
transcript.pyannote[3183].end 16286.63346875
transcript.pyannote[3184].speaker SPEAKER_04
transcript.pyannote[3184].start 16286.97096875
transcript.pyannote[3184].end 16287.59534375
transcript.pyannote[3185].speaker SPEAKER_04
transcript.pyannote[3185].start 16287.66284375
transcript.pyannote[3185].end 16289.16471875
transcript.pyannote[3186].speaker SPEAKER_04
transcript.pyannote[3186].start 16289.41784375
transcript.pyannote[3186].end 16292.96159375
transcript.pyannote[3187].speaker SPEAKER_29
transcript.pyannote[3187].start 16293.02909375
transcript.pyannote[3187].end 16293.46784375
transcript.pyannote[3188].speaker SPEAKER_04
transcript.pyannote[3188].start 16293.61971875
transcript.pyannote[3188].end 16318.27409375
transcript.pyannote[3189].speaker SPEAKER_26
transcript.pyannote[3189].start 16305.07784375
transcript.pyannote[3189].end 16305.44909375
transcript.pyannote[3190].speaker SPEAKER_00
transcript.pyannote[3190].start 16316.65409375
transcript.pyannote[3190].end 16316.67096875
transcript.pyannote[3191].speaker SPEAKER_31
transcript.pyannote[3191].start 16316.67096875
transcript.pyannote[3191].end 16317.12659375
transcript.pyannote[3192].speaker SPEAKER_26
transcript.pyannote[3192].start 16317.12659375
transcript.pyannote[3192].end 16317.27846875
transcript.pyannote[3193].speaker SPEAKER_31
transcript.pyannote[3193].start 16317.27846875
transcript.pyannote[3193].end 16317.34596875
transcript.pyannote[3194].speaker SPEAKER_00
transcript.pyannote[3194].start 16317.34596875
transcript.pyannote[3194].end 16317.36284375
transcript.pyannote[3195].speaker SPEAKER_04
transcript.pyannote[3195].start 16318.61159375
transcript.pyannote[3195].end 16320.18096875
transcript.pyannote[3196].speaker SPEAKER_04
transcript.pyannote[3196].start 16320.46784375
transcript.pyannote[3196].end 16323.20159375
transcript.pyannote[3197].speaker SPEAKER_04
transcript.pyannote[3197].start 16323.43784375
transcript.pyannote[3197].end 16330.44096875
transcript.pyannote[3198].speaker SPEAKER_28
transcript.pyannote[3198].start 16330.94721875
transcript.pyannote[3198].end 16343.28284375
transcript.pyannote[3199].speaker SPEAKER_28
transcript.pyannote[3199].start 16343.31659375
transcript.pyannote[3199].end 16343.36721875
transcript.pyannote[3200].speaker SPEAKER_28
transcript.pyannote[3200].start 16343.46846875
transcript.pyannote[3200].end 16349.12159375
transcript.pyannote[3201].speaker SPEAKER_04
transcript.pyannote[3201].start 16346.84346875
transcript.pyannote[3201].end 16351.33221875
transcript.pyannote[3202].speaker SPEAKER_28
transcript.pyannote[3202].start 16351.33221875
transcript.pyannote[3202].end 16354.62284375
transcript.pyannote[3203].speaker SPEAKER_04
transcript.pyannote[3203].start 16354.50471875
transcript.pyannote[3203].end 16356.78284375
transcript.pyannote[3204].speaker SPEAKER_04
transcript.pyannote[3204].start 16357.01909375
transcript.pyannote[3204].end 16378.21409375
transcript.pyannote[3205].speaker SPEAKER_28
transcript.pyannote[3205].start 16359.39846875
transcript.pyannote[3205].end 16359.78659375
transcript.pyannote[3206].speaker SPEAKER_00
transcript.pyannote[3206].start 16359.78659375
transcript.pyannote[3206].end 16359.80346875
transcript.pyannote[3207].speaker SPEAKER_00
transcript.pyannote[3207].start 16363.09409375
transcript.pyannote[3207].end 16364.42721875
transcript.pyannote[3208].speaker SPEAKER_04
transcript.pyannote[3208].start 16378.78784375
transcript.pyannote[3208].end 16383.93471875
transcript.pyannote[3209].speaker SPEAKER_02
transcript.pyannote[3209].start 16380.23909375
transcript.pyannote[3209].end 16380.32346875
transcript.pyannote[3210].speaker SPEAKER_28
transcript.pyannote[3210].start 16380.32346875
transcript.pyannote[3210].end 16380.64409375
transcript.pyannote[3211].speaker SPEAKER_02
transcript.pyannote[3211].start 16380.64409375
transcript.pyannote[3211].end 16380.69471875
transcript.pyannote[3212].speaker SPEAKER_04
transcript.pyannote[3212].start 16384.13721875
transcript.pyannote[3212].end 16385.33534375
transcript.pyannote[3213].speaker SPEAKER_28
transcript.pyannote[3213].start 16385.57159375
transcript.pyannote[3213].end 16395.47721875
transcript.pyannote[3214].speaker SPEAKER_04
transcript.pyannote[3214].start 16389.85784375
transcript.pyannote[3214].end 16390.63409375
transcript.pyannote[3215].speaker SPEAKER_04
transcript.pyannote[3215].start 16391.79846875
transcript.pyannote[3215].end 16392.69284375
transcript.pyannote[3216].speaker SPEAKER_04
transcript.pyannote[3216].start 16394.98784375
transcript.pyannote[3216].end 16404.25221875
transcript.pyannote[3217].speaker SPEAKER_28
transcript.pyannote[3217].start 16399.93221875
transcript.pyannote[3217].end 16402.26096875
transcript.pyannote[3218].speaker SPEAKER_28
transcript.pyannote[3218].start 16404.25221875
transcript.pyannote[3218].end 16404.28596875
transcript.pyannote[3219].speaker SPEAKER_04
transcript.pyannote[3219].start 16404.28596875
transcript.pyannote[3219].end 16404.31971875
transcript.pyannote[3220].speaker SPEAKER_28
transcript.pyannote[3220].start 16404.31971875
transcript.pyannote[3220].end 16404.53909375
transcript.pyannote[3221].speaker SPEAKER_04
transcript.pyannote[3221].start 16404.37034375
transcript.pyannote[3221].end 16407.03659375
transcript.pyannote[3222].speaker SPEAKER_28
transcript.pyannote[3222].start 16407.03659375
transcript.pyannote[3222].end 16413.38159375
transcript.pyannote[3223].speaker SPEAKER_04
transcript.pyannote[3223].start 16410.14159375
transcript.pyannote[3223].end 16415.11971875
transcript.pyannote[3224].speaker SPEAKER_28
transcript.pyannote[3224].start 16415.20409375
transcript.pyannote[3224].end 16418.57909375
transcript.pyannote[3225].speaker SPEAKER_04
transcript.pyannote[3225].start 16415.49096875
transcript.pyannote[3225].end 16419.16971875
transcript.pyannote[3226].speaker SPEAKER_04
transcript.pyannote[3226].start 16419.42284375
transcript.pyannote[3226].end 16421.32971875
transcript.pyannote[3227].speaker SPEAKER_16
transcript.pyannote[3227].start 16421.93721875
transcript.pyannote[3227].end 16422.39284375
transcript.pyannote[3228].speaker SPEAKER_04
transcript.pyannote[3228].start 16422.39284375
transcript.pyannote[3228].end 16424.06346875
transcript.pyannote[3229].speaker SPEAKER_16
transcript.pyannote[3229].start 16424.68784375
transcript.pyannote[3229].end 16425.48096875
transcript.pyannote[3230].speaker SPEAKER_04
transcript.pyannote[3230].start 16424.80596875
transcript.pyannote[3230].end 16425.37971875
transcript.pyannote[3231].speaker SPEAKER_04
transcript.pyannote[3231].start 16425.48096875
transcript.pyannote[3231].end 16427.06721875
transcript.pyannote[3232].speaker SPEAKER_16
transcript.pyannote[3232].start 16425.93659375
transcript.pyannote[3232].end 16426.39221875
transcript.pyannote[3233].speaker SPEAKER_08
transcript.pyannote[3233].start 16426.39221875
transcript.pyannote[3233].end 16426.40909375
transcript.pyannote[3234].speaker SPEAKER_04
transcript.pyannote[3234].start 16427.48909375
transcript.pyannote[3234].end 16428.11346875
transcript.pyannote[3235].speaker SPEAKER_04
transcript.pyannote[3235].start 16429.31159375
transcript.pyannote[3235].end 16430.39159375
transcript.pyannote[3236].speaker SPEAKER_04
transcript.pyannote[3236].start 16431.33659375
transcript.pyannote[3236].end 16438.69409375
transcript.pyannote[3237].speaker SPEAKER_07
transcript.pyannote[3237].start 16438.89659375
transcript.pyannote[3237].end 16439.20034375
transcript.pyannote[3238].speaker SPEAKER_04
transcript.pyannote[3238].start 16439.20034375
transcript.pyannote[3238].end 16441.64721875
transcript.pyannote[3239].speaker SPEAKER_04
transcript.pyannote[3239].start 16442.17034375
transcript.pyannote[3239].end 16444.70159375
transcript.pyannote[3240].speaker SPEAKER_14
transcript.pyannote[3240].start 16444.70159375
transcript.pyannote[3240].end 16445.08971875
transcript.pyannote[3241].speaker SPEAKER_04
transcript.pyannote[3241].start 16445.08971875
transcript.pyannote[3241].end 16445.10659375
transcript.pyannote[3242].speaker SPEAKER_14
transcript.pyannote[3242].start 16445.10659375
transcript.pyannote[3242].end 16445.89971875
transcript.pyannote[3243].speaker SPEAKER_04
transcript.pyannote[3243].start 16445.12346875
transcript.pyannote[3243].end 16445.39346875
transcript.pyannote[3244].speaker SPEAKER_04
transcript.pyannote[3244].start 16445.89971875
transcript.pyannote[3244].end 16446.08534375
transcript.pyannote[3245].speaker SPEAKER_14
transcript.pyannote[3245].start 16446.08534375
transcript.pyannote[3245].end 16448.61659375
transcript.pyannote[3246].speaker SPEAKER_04
transcript.pyannote[3246].start 16447.89096875
transcript.pyannote[3246].end 16455.60284375
transcript.pyannote[3247].speaker SPEAKER_14
transcript.pyannote[3247].start 16451.48534375
transcript.pyannote[3247].end 16451.85659375
transcript.pyannote[3248].speaker SPEAKER_04
transcript.pyannote[3248].start 16456.15971875
transcript.pyannote[3248].end 16461.67784375
transcript.pyannote[3249].speaker SPEAKER_04
transcript.pyannote[3249].start 16462.03221875
transcript.pyannote[3249].end 16472.19096875
transcript.pyannote[3250].speaker SPEAKER_04
transcript.pyannote[3250].start 16472.51159375
transcript.pyannote[3250].end 16475.71784375
transcript.pyannote[3251].speaker SPEAKER_14
transcript.pyannote[3251].start 16475.11034375
transcript.pyannote[3251].end 16478.40096875
transcript.pyannote[3252].speaker SPEAKER_04
transcript.pyannote[3252].start 16477.65846875
transcript.pyannote[3252].end 16479.97034375
transcript.pyannote[3253].speaker SPEAKER_14
transcript.pyannote[3253].start 16479.97034375
transcript.pyannote[3253].end 16489.99409375
transcript.pyannote[3254].speaker SPEAKER_04
transcript.pyannote[3254].start 16483.64909375
transcript.pyannote[3254].end 16484.84721875
transcript.pyannote[3255].speaker SPEAKER_04
transcript.pyannote[3255].start 16487.66534375
transcript.pyannote[3255].end 16487.83409375
transcript.pyannote[3256].speaker SPEAKER_04
transcript.pyannote[3256].start 16488.86346875
transcript.pyannote[3256].end 16492.54221875
transcript.pyannote[3257].speaker SPEAKER_04
transcript.pyannote[3257].start 16492.64346875
transcript.pyannote[3257].end 16495.02284375
transcript.pyannote[3258].speaker SPEAKER_04
transcript.pyannote[3258].start 16495.52909375
transcript.pyannote[3258].end 16497.06471875
transcript.pyannote[3259].speaker SPEAKER_14
transcript.pyannote[3259].start 16496.01846875
transcript.pyannote[3259].end 16497.53721875
transcript.pyannote[3260].speaker SPEAKER_14
transcript.pyannote[3260].start 16497.63846875
transcript.pyannote[3260].end 16501.51971875
transcript.pyannote[3261].speaker SPEAKER_04
transcript.pyannote[3261].start 16500.47346875
transcript.pyannote[3261].end 16503.05534375
transcript.pyannote[3262].speaker SPEAKER_04
transcript.pyannote[3262].start 16504.48971875
transcript.pyannote[3262].end 16505.33346875
transcript.pyannote[3263].speaker SPEAKER_04
transcript.pyannote[3263].start 16506.61596875
transcript.pyannote[3263].end 16507.39221875
transcript.pyannote[3264].speaker SPEAKER_04
transcript.pyannote[3264].start 16510.71659375
transcript.pyannote[3264].end 16512.13409375
transcript.pyannote[3265].speaker SPEAKER_04
transcript.pyannote[3265].start 16512.40409375
transcript.pyannote[3265].end 16514.02409375
transcript.pyannote[3266].speaker SPEAKER_13
transcript.pyannote[3266].start 16515.61034375
transcript.pyannote[3266].end 16518.41159375
transcript.pyannote[3267].speaker SPEAKER_04
transcript.pyannote[3267].start 16517.85471875
transcript.pyannote[3267].end 16521.49971875
transcript.pyannote[3268].speaker SPEAKER_04
transcript.pyannote[3268].start 16521.65159375
transcript.pyannote[3268].end 16521.98909375
transcript.pyannote[3269].speaker SPEAKER_13
transcript.pyannote[3269].start 16521.98909375
transcript.pyannote[3269].end 16522.32659375
transcript.pyannote[3270].speaker SPEAKER_14
transcript.pyannote[3270].start 16522.32659375
transcript.pyannote[3270].end 16522.34346875
transcript.pyannote[3271].speaker SPEAKER_13
transcript.pyannote[3271].start 16522.74846875
transcript.pyannote[3271].end 16523.03534375
transcript.pyannote[3272].speaker SPEAKER_14
transcript.pyannote[3272].start 16523.03534375
transcript.pyannote[3272].end 16523.05221875
transcript.pyannote[3273].speaker SPEAKER_13
transcript.pyannote[3273].start 16523.05221875
transcript.pyannote[3273].end 16523.23784375
transcript.pyannote[3274].speaker SPEAKER_13
transcript.pyannote[3274].start 16523.40659375
transcript.pyannote[3274].end 16523.47409375
transcript.pyannote[3275].speaker SPEAKER_14
transcript.pyannote[3275].start 16523.47409375
transcript.pyannote[3275].end 16523.77784375
transcript.pyannote[3276].speaker SPEAKER_13
transcript.pyannote[3276].start 16523.77784375
transcript.pyannote[3276].end 16523.81159375
transcript.pyannote[3277].speaker SPEAKER_14
transcript.pyannote[3277].start 16524.50346875
transcript.pyannote[3277].end 16531.15221875
transcript.pyannote[3278].speaker SPEAKER_04
transcript.pyannote[3278].start 16530.98346875
transcript.pyannote[3278].end 16536.36659375
transcript.pyannote[3279].speaker SPEAKER_14
transcript.pyannote[3279].start 16536.36659375
transcript.pyannote[3279].end 16545.32721875
transcript.pyannote[3280].speaker SPEAKER_13
transcript.pyannote[3280].start 16541.95221875
transcript.pyannote[3280].end 16543.04909375
transcript.pyannote[3281].speaker SPEAKER_13
transcript.pyannote[3281].start 16544.31471875
transcript.pyannote[3281].end 16544.75346875
transcript.pyannote[3282].speaker SPEAKER_13
transcript.pyannote[3282].start 16544.93909375
transcript.pyannote[3282].end 16547.87534375
transcript.pyannote[3283].speaker SPEAKER_04
transcript.pyannote[3283].start 16545.32721875
transcript.pyannote[3283].end 16547.20034375
transcript.pyannote[3284].speaker SPEAKER_13
transcript.pyannote[3284].start 16548.78659375
transcript.pyannote[3284].end 16551.43596875
transcript.pyannote[3285].speaker SPEAKER_21
transcript.pyannote[3285].start 16558.27034375
transcript.pyannote[3285].end 16561.98284375
transcript.pyannote[3286].speaker SPEAKER_13
transcript.pyannote[3286].start 16562.01659375
transcript.pyannote[3286].end 16563.41721875
transcript.pyannote[3287].speaker SPEAKER_13
transcript.pyannote[3287].start 16568.54721875
transcript.pyannote[3287].end 16568.58096875
transcript.pyannote[3288].speaker SPEAKER_25
transcript.pyannote[3288].start 16568.58096875
transcript.pyannote[3288].end 16568.73284375
transcript.pyannote[3289].speaker SPEAKER_21
transcript.pyannote[3289].start 16568.71596875
transcript.pyannote[3289].end 16588.34159375
transcript.pyannote[3290].speaker SPEAKER_13
transcript.pyannote[3290].start 16568.73284375
transcript.pyannote[3290].end 16568.96909375
transcript.pyannote[3291].speaker SPEAKER_25
transcript.pyannote[3291].start 16568.96909375
transcript.pyannote[3291].end 16569.77909375
transcript.pyannote[3292].speaker SPEAKER_13
transcript.pyannote[3292].start 16569.77909375
transcript.pyannote[3292].end 16569.81284375
transcript.pyannote[3293].speaker SPEAKER_26
transcript.pyannote[3293].start 16578.62159375
transcript.pyannote[3293].end 16579.00971875
transcript.pyannote[3294].speaker SPEAKER_26
transcript.pyannote[3294].start 16588.30784375
transcript.pyannote[3294].end 16588.66221875
transcript.pyannote[3295].speaker SPEAKER_21
transcript.pyannote[3295].start 16588.52721875
transcript.pyannote[3295].end 16627.33971875
transcript.pyannote[3296].speaker SPEAKER_26
transcript.pyannote[3296].start 16593.67409375
transcript.pyannote[3296].end 16593.70784375
transcript.pyannote[3297].speaker SPEAKER_26
transcript.pyannote[3297].start 16593.72471875
transcript.pyannote[3297].end 16593.91034375
transcript.pyannote[3298].speaker SPEAKER_00
transcript.pyannote[3298].start 16605.77346875
transcript.pyannote[3298].end 16605.80721875
transcript.pyannote[3299].speaker SPEAKER_25
transcript.pyannote[3299].start 16605.80721875
transcript.pyannote[3299].end 16605.97596875
transcript.pyannote[3300].speaker SPEAKER_00
transcript.pyannote[3300].start 16605.97596875
transcript.pyannote[3300].end 16606.22909375
transcript.pyannote[3301].speaker SPEAKER_26
transcript.pyannote[3301].start 16610.19471875
transcript.pyannote[3301].end 16610.41409375
transcript.pyannote[3302].speaker SPEAKER_28
transcript.pyannote[3302].start 16627.44096875
transcript.pyannote[3302].end 16645.14284375
transcript.pyannote[3303].speaker SPEAKER_21
transcript.pyannote[3303].start 16630.56284375
transcript.pyannote[3303].end 16631.91284375
transcript.pyannote[3304].speaker SPEAKER_21
transcript.pyannote[3304].start 16639.25346875
transcript.pyannote[3304].end 16639.59096875
transcript.pyannote[3305].speaker SPEAKER_28
transcript.pyannote[3305].start 16645.59846875
transcript.pyannote[3305].end 16665.71346875
transcript.pyannote[3306].speaker SPEAKER_00
transcript.pyannote[3306].start 16651.70721875
transcript.pyannote[3306].end 16651.74096875
transcript.pyannote[3307].speaker SPEAKER_25
transcript.pyannote[3307].start 16651.74096875
transcript.pyannote[3307].end 16651.97721875
transcript.pyannote[3308].speaker SPEAKER_00
transcript.pyannote[3308].start 16651.97721875
transcript.pyannote[3308].end 16652.14596875
transcript.pyannote[3309].speaker SPEAKER_21
transcript.pyannote[3309].start 16659.57096875
transcript.pyannote[3309].end 16660.00971875
transcript.pyannote[3310].speaker SPEAKER_21
transcript.pyannote[3310].start 16663.09784375
transcript.pyannote[3310].end 16714.07721875
transcript.pyannote[3311].speaker SPEAKER_28
transcript.pyannote[3311].start 16666.81034375
transcript.pyannote[3311].end 16667.56971875
transcript.pyannote[3312].speaker SPEAKER_28
transcript.pyannote[3312].start 16670.72534375
transcript.pyannote[3312].end 16671.14721875
transcript.pyannote[3313].speaker SPEAKER_00
transcript.pyannote[3313].start 16697.06721875
transcript.pyannote[3313].end 16697.53971875
transcript.pyannote[3314].speaker SPEAKER_28
transcript.pyannote[3314].start 16707.90096875
transcript.pyannote[3314].end 16708.69409375
transcript.pyannote[3315].speaker SPEAKER_28
transcript.pyannote[3315].start 16714.07721875
transcript.pyannote[3315].end 16728.53909375
transcript.pyannote[3316].speaker SPEAKER_21
transcript.pyannote[3316].start 16727.15534375
transcript.pyannote[3316].end 16727.64471875
transcript.pyannote[3317].speaker SPEAKER_21
transcript.pyannote[3317].start 16727.83034375
transcript.pyannote[3317].end 16730.07471875
transcript.pyannote[3318].speaker SPEAKER_28
transcript.pyannote[3318].start 16729.66971875
transcript.pyannote[3318].end 16733.28096875
transcript.pyannote[3319].speaker SPEAKER_21
transcript.pyannote[3319].start 16732.04909375
transcript.pyannote[3319].end 16737.55034375
transcript.pyannote[3320].speaker SPEAKER_28
transcript.pyannote[3320].start 16737.55034375
transcript.pyannote[3320].end 16752.45096875
transcript.pyannote[3321].speaker SPEAKER_10
transcript.pyannote[3321].start 16745.46471875
transcript.pyannote[3321].end 16745.83596875
transcript.pyannote[3322].speaker SPEAKER_21
transcript.pyannote[3322].start 16745.83596875
transcript.pyannote[3322].end 16745.85284375
transcript.pyannote[3323].speaker SPEAKER_26
transcript.pyannote[3323].start 16752.02909375
transcript.pyannote[3323].end 16752.43409375
transcript.pyannote[3324].speaker SPEAKER_26
transcript.pyannote[3324].start 16752.45096875
transcript.pyannote[3324].end 16753.14284375
transcript.pyannote[3325].speaker SPEAKER_28
transcript.pyannote[3325].start 16752.58596875
transcript.pyannote[3325].end 16775.41784375
transcript.pyannote[3326].speaker SPEAKER_27
transcript.pyannote[3326].start 16763.82471875
transcript.pyannote[3326].end 16764.41534375
transcript.pyannote[3327].speaker SPEAKER_00
transcript.pyannote[3327].start 16764.41534375
transcript.pyannote[3327].end 16764.44909375
transcript.pyannote[3328].speaker SPEAKER_21
transcript.pyannote[3328].start 16772.75159375
transcript.pyannote[3328].end 16773.25784375
transcript.pyannote[3329].speaker SPEAKER_21
transcript.pyannote[3329].start 16774.35471875
transcript.pyannote[3329].end 16774.52346875
transcript.pyannote[3330].speaker SPEAKER_21
transcript.pyannote[3330].start 16774.77659375
transcript.pyannote[3330].end 16774.87784375
transcript.pyannote[3331].speaker SPEAKER_21
transcript.pyannote[3331].start 16775.26596875
transcript.pyannote[3331].end 16789.87971875
transcript.pyannote[3332].speaker SPEAKER_28
transcript.pyannote[3332].start 16779.83909375
transcript.pyannote[3332].end 16780.46346875
transcript.pyannote[3333].speaker SPEAKER_28
transcript.pyannote[3333].start 16783.72034375
transcript.pyannote[3333].end 16784.86784375
transcript.pyannote[3334].speaker SPEAKER_28
transcript.pyannote[3334].start 16788.39471875
transcript.pyannote[3334].end 16791.80346875
transcript.pyannote[3335].speaker SPEAKER_21
transcript.pyannote[3335].start 16791.55034375
transcript.pyannote[3335].end 16853.14409375
transcript.pyannote[3336].speaker SPEAKER_29
transcript.pyannote[3336].start 16853.22846875
transcript.pyannote[3336].end 16881.51096875
transcript.pyannote[3337].speaker SPEAKER_08
transcript.pyannote[3337].start 16866.55971875
transcript.pyannote[3337].end 16867.06596875
transcript.pyannote[3338].speaker SPEAKER_25
transcript.pyannote[3338].start 16879.33409375
transcript.pyannote[3338].end 16879.70534375
transcript.pyannote[3339].speaker SPEAKER_29
transcript.pyannote[3339].start 16881.96659375
transcript.pyannote[3339].end 16900.84971875
transcript.pyannote[3340].speaker SPEAKER_00
transcript.pyannote[3340].start 16886.38784375
transcript.pyannote[3340].end 16887.07971875
transcript.pyannote[3341].speaker SPEAKER_00
transcript.pyannote[3341].start 16890.94409375
transcript.pyannote[3341].end 16890.99471875
transcript.pyannote[3342].speaker SPEAKER_09
transcript.pyannote[3342].start 16890.99471875
transcript.pyannote[3342].end 16891.38284375
transcript.pyannote[3343].speaker SPEAKER_21
transcript.pyannote[3343].start 16899.44909375
transcript.pyannote[3343].end 16955.77784375
transcript.pyannote[3344].speaker SPEAKER_13
transcript.pyannote[3344].start 16955.77784375
transcript.pyannote[3344].end 16964.92409375
transcript.pyannote[3345].speaker SPEAKER_21
transcript.pyannote[3345].start 16955.99721875
transcript.pyannote[3345].end 16957.14471875
transcript.pyannote[3346].speaker SPEAKER_13
transcript.pyannote[3346].start 16965.21096875
transcript.pyannote[3346].end 16984.87034375
transcript.pyannote[3347].speaker SPEAKER_13
transcript.pyannote[3347].start 16985.15721875
transcript.pyannote[3347].end 16986.77721875
transcript.pyannote[3348].speaker SPEAKER_13
transcript.pyannote[3348].start 16987.72221875
transcript.pyannote[3348].end 16997.52659375
transcript.pyannote[3349].speaker SPEAKER_13
transcript.pyannote[3349].start 16998.28596875
transcript.pyannote[3349].end 17007.19596875
transcript.pyannote[3350].speaker SPEAKER_13
transcript.pyannote[3350].start 17007.58409375
transcript.pyannote[3350].end 17020.29096875
transcript.pyannote[3351].speaker SPEAKER_13
transcript.pyannote[3351].start 17020.71284375
transcript.pyannote[3351].end 17021.94471875
transcript.pyannote[3352].speaker SPEAKER_25
transcript.pyannote[3352].start 17060.35221875
transcript.pyannote[3352].end 17060.52096875
transcript.whisperx[0].start 1903.2
transcript.whisperx[0].end 1913.879
transcript.whisperx[0].text 好,我們請主任秘書報告出席委員人數報告委員會出席委員移除法定人數好,主席宣布現在開始開會請議事人員宣布上次會議意思
transcript.whisperx[1].start 1914.915
transcript.whisperx[1].end 1937.982
transcript.whisperx[1].text 立法院第11屆第1會期財政委員會第10次全體委員會議.事由.時間中華民國113年4月22日星期一9時1分至13時21分.地點清仙樓九樓大禮堂.出席委員林德福等14人.列席委員黃國昌等14人.列席官員財政部部長莊翠穎.經濟監督管理委員會主任委員黃天牧等.主席羅昭君的名才報事項.先讀上次會議事錄.決定議事錄確定
transcript.whisperx[2].start 1939.782
transcript.whisperx[2].end 1954.95
transcript.whisperx[2].text 討論事項,依審查娛樂稅法6案,依本院委員徐富鬼等17人、委員陳秀寶等18人、委員羅賓才等19人、委員王世堅等23人,分別擬拒娛樂稅法第二條及第五條挑援修正草案等4案,本院委員黃傑等19人、委員羅賓才等16人,分別擬廢止娛樂稅法等2案。
transcript.whisperx[3].start 1958.511
transcript.whisperx[3].end 1978.405
transcript.whisperx[3].text 審查保險法三案本院委員羅明財等17人拟據保險法第146條知事條文修正草案本院委員蔡宇宜等19人委員王洪威等16人分別拟據保險法第177條條文修正草案等二案審查人民情願有關娛樂稅法三案中華民國高爾夫協會為懲請廢除高爾夫娛樂稅請願文書案中華民國高爾夫球場事業協定會為請加速檢討娛樂稅法廢除高爾夫項目請願文書案
transcript.whisperx[4].start 1988.372
transcript.whisperx[4].end 1992.428
transcript.whisperx[4].text 社團法的中華民國表演藝術協會 會建議修正娛樂社法勤務人數案
transcript.whisperx[5].start 1994.449
transcript.whisperx[5].end 2021.086
transcript.whisperx[5].text 討論事項個案合併詢答。經委員王世堅、徐富鬼、羅明才、王洪威說明提案要旨。財政部部長莊翠雲及經濟建築管理委員會主任委員黃天沐回應委員法律提案後。藉由委員林德甫等事件提出質詢。均經財政部部長莊翠雲等予以說明及答覆。決議予以說明及答覆。詢答完畢。二、委員質詢未及答覆或請補充資訊。請相關部會於一周內予以說明答覆。委員力要求期限者從其鎖定。三、討論事項個案均另經歷則及
transcript.whisperx[6].start 2025.899
transcript.whisperx[6].end 2046.252
transcript.whisperx[6].text 好 因為現場的這個委員人數還不夠我想請議事人宣讀今日的議程邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部國家發展委員會、勞動部就.如何改善受僱人員報酬占 GDP 比重偏低現象.導引企業與勞工共享獲利.提升我國勞工實質薪資.進行專題報告.並備質詢。.宣傳並
transcript.whisperx[7].start 2051.175
transcript.whisperx[7].end 2076.192
transcript.whisperx[7].text 好,我們原來介紹在場的這個委員官員首先介紹我們資深的委員吳秉瑞吳委員我們行政院主計總處主計長朱澤民、朱仙我們綜合統計處我們蔡玉泰、蔡處長我們國事普查處我們潘玲欣、潘處長
transcript.whisperx[8].start 2079.163
transcript.whisperx[8].end 2101.012
transcript.whisperx[8].text 財政部阮清華政務次長陳柏成署長宋秀琳署長彭英偉署長鄭國基署長謝明峰副主任經濟部林全能常務次長許嘉琳副司長黃偉傑副處長
transcript.whisperx[9].start 2107.167
transcript.whisperx[9].end 2131.656
transcript.whisperx[9].text 陳文辰經濟參事陳佩麗副署長吳嘉穎副署長劉雅娟副署長國家發展委員會副主任時刻和時間人力發展處謝佳儀處長邱麗婷專委勞動部許傳聖政務次長
transcript.whisperx[10].start 2141.155
transcript.whisperx[10].end 2159.104
transcript.whisperx[10].text 我們勞動條件及就業平等師黃偉生黃市長我們中緊急副署長好那以上官員介紹到這邊那我們現場的這一個委員已經到達法定人數請問各位委員對上次的議事錄有異議
transcript.whisperx[11].start 2161.558
transcript.whisperx[11].end 2185.828
transcript.whisperx[11].text 沒有異議意思錄確定今日的議程安排邀請行政院主計處朱主計長、財政部莊部長、經濟部、國家發展委員會及勞動部就如何改善受僱人員報酬占 GDP 比重偏低現象.導引企業與勞工共享獲利.提升我國勞工實質薪資.進行專題報告現在我們就請行政院主計處朱主計長進行專題報告
transcript.whisperx[12].start 2191.95
transcript.whisperx[12].end 2210.862
transcript.whisperx[12].text 請掌握重點,朱主席是,主席各位委員你是先針對貴委員貴導是有關提升我國勞工實質薪資請提出專題報告如下因為第一個是說我們的一個國內GDP的分配面的結構因為GDP分配面
transcript.whisperx[13].start 2214.083
transcript.whisperx[13].end 2237.295
transcript.whisperx[13].text 可以考量是有生產及進口稅就是主要是關稅、貨物稅、營業稅等以及固定資本消耗準備這個是責救以及受僱人員報酬是薪資以及營業營餘的不過我在這邊跟各位報告因為我們的營業營餘有包括自營、就業者就是所謂的一般
transcript.whisperx[14].start 2238.315
transcript.whisperx[14].end 2265.517
transcript.whisperx[14].text 就是說在家自營作業的附加價值的困難所以他很難區分說哪一個是勞動或資本那我們按照一般國民所投的一個統計是把它歸入在營業營餘所以說這個營業營餘裡面有包括自營作業者的一個報酬有那個第二頁裡面的那個表一我們可以看到目前他們的一個分配是這個是
transcript.whisperx[15].start 2266.898
transcript.whisperx[15].end 2288.648
transcript.whisperx[15].text 是說GDP就分配面來看因為GDP有生產面有分配面而受僱人員報酬都維持在百分之最近幾年都是在百分之四十三四左右跟早期的七十年代的所謂百分之四十九受僱人員報酬有下降而營業盈餘這個是怎麼樣
transcript.whisperx[16].start 2291.349
transcript.whisperx[16].end 2312.161
transcript.whisperx[16].text 是有大概上升了3、4個百分點固定資產消耗準備是所謂的折舊生產期進口稅到大概都維持著百分之五在左右不過我在這邊必須跟各位報告那個所謂的像表二的話我們就可以看到所謂的受僱人員報酬比較
transcript.whisperx[17].start 2313.444
transcript.whisperx[17].end 2334.328
transcript.whisperx[17].text 比重比較高的行業它的每人的薪資不一定低我們可以看到這個表號裡面電子零組件的製造業因為它是一個資本密集的報酬資本密集的一個行業所以在資本的報酬所占的比重比較低所以它涉及的報酬是只有25.4%可是相對的比起來全國的工業是41%或者是38.4%
transcript.whisperx[18].start 2344.331
transcript.whisperx[18].end 2370.191
transcript.whisperx[18].text 這個電子零組件它的分配面的分配是比較少可是它的個人的薪資是反而比較高我們可以看到每人每月的平均薪資大概有近10萬塊錢那另外一個像住室節餐飲業因為它是一個勞動密集的行業所以它勞動報酬的分配的比例比較高所以我們可以看到有這個裡面它是這個
transcript.whisperx[19].start 2372.773
transcript.whisperx[19].end 2388.408
transcript.whisperx[19].text 分配面的薪資分配面是有62.5可是它的一個平均每一個人的薪資反而是36.1也就是在這邊跟各位報告一下就是說分配比例比較高
transcript.whisperx[20].start 2389.554
transcript.whisperx[20].end 2411.677
transcript.whisperx[20].text 低的他的薪水不一定低或是高分配比例比較高的他的薪水也不一定高這個是跟各位要報告說明的接著目前因為這個受僱人的報酬占GPT比重的一個原因主要看第4頁他有些是
transcript.whisperx[21].start 2412.197
transcript.whisperx[21].end 2429.496
transcript.whisperx[21].text 是跟產業的透心有關是因為製造業它的涉股報酬比服務業高這個大家都很清楚第二個是那個製造業我們的一個占GDP的比例因為在前些時候在前些年的時候
transcript.whisperx[22].start 2430.657
transcript.whisperx[22].end 2456.009
transcript.whisperx[22].text 因為我們產業外移是這個時候國內的薪資比重比較低但是最近兩年到最近幾年到那我們又開始產業又回來所以製造業比較高的他的薪資就比較高另外一個跟生產模式有關係因為像有些行業到有些行業到他是像他的那個
transcript.whisperx[23].start 2457.458
transcript.whisperx[23].end 2484.565
transcript.whisperx[23].text 接單、研發、規劃、運籌都是在國內可是它的生產是在國外所以是說它國內的員工薪水高可是它的那個生產行為不在那個台灣那個是像有些企業尤其在那個生產基地是在國外的在中國大陸或者在東南亞的它的生產、研發、運籌這個都
transcript.whisperx[24].start 2486.866
transcript.whisperx[24].end 2499
transcript.whisperx[24].text 就是規劃這個接單研發規劃運酬在國內所以他的這些員工比較多可是他在國內的員工比較少所以他的那個在國內的那個薪資
transcript.whisperx[25].start 2502.704
transcript.whisperx[25].end 2529.32
transcript.whisperx[25].text 每一個人的薪資高可是整個分配面的薪資比例就比較低另外一個是跟就業的型態有關係因為我們大概自營就業這個是有高達130萬人那在這個我剛才有提到我們這個自營就業我們都是把它根據國民所得的統計我們根據國基金的管理都是我們把它分配在營業營業裡面
transcript.whisperx[26].start 2532.462
transcript.whisperx[26].end 2550.565
transcript.whisperx[26].text 接著我們可以看到那個是第6頁我們可以看到平均薪資的總薪資的增加率我們是怎麼樣過年度都有一些差異最近大家都提
transcript.whisperx[27].start 2552.466
transcript.whisperx[27].end 2573.34
transcript.whisperx[27].text 總薪資的一個成長率有比較低甚至有些年度是負的不過我必須在這邊跟各位報告一下也就是第7月的倒數第二行這個是怎麼樣這個112年到7月獲利不佳員工平均總薪資是僅增加0.7
transcript.whisperx[28].start 2575.922
transcript.whisperx[28].end 2595.605
transcript.whisperx[28].text 扣除物價以後的實質總薪資是負的但是我們在今年的二月份的實質總薪資已經轉為正成長以上跟各位委員報告 敬請各位委員執政 謝謝好 謝謝朱主計長的報告 緊接著我們請財政部我們阮次長
transcript.whisperx[29].start 2607.389
transcript.whisperx[29].end 2624.123
transcript.whisperx[29].text 主席、各位委員先進、大家早安今天陳貴文會邀請就如何改善受僱人員報酬占 GDP 比重偏低現象.導引企業與勞工共享獲利.提升我國勞工實質薪資.進行專題報告.並備質詢以下請就近年為鼓勵企業為員工加薪、流產難財及減輕受薪民眾
transcript.whisperx[30].start 2634.531
transcript.whisperx[30].end 2645.518
transcript.whisperx[30].text 租稅負擔的各項租稅措施提出報告.進行解釋要第一鼓勵企業為員工加薪、流產、攬產的租稅誘因依照現行的所謂稅法規定企業為了
transcript.whisperx[31].start 2647.907
transcript.whisperx[31].end 2663.545
transcript.whisperx[31].text 員工加薪的薪資費用.可以認列為相關的費用.何時反映企業成本.減輕所得稅負.另外為鼓勵企業為基層員工.加薪105年.修正中小企業發展條例36條之後.
transcript.whisperx[32].start 2668.11
transcript.whisperx[32].end 2691.833
transcript.whisperx[32].text 對於中小企業在經濟景氣指數達到一定的情形之下為本國極限基層員工加薪金額得案130%至當年度營利事業所得額中減除該項租借優惠將於今年的5月19日實行屆滿為鼓勵中小企業為基層員工加薪協助中企業留用人才
transcript.whisperx[33].start 2693.355
transcript.whisperx[33].end 2704.171
transcript.whisperx[33].text 經濟部已經會同本部研議中小企業租稅優惠的修正草案其中為提高中小企業為基層人工加薪的誘因刪除相關啟動的門檻並將基層的
transcript.whisperx[34].start 2709.638
transcript.whisperx[34].end 2738.481
transcript.whisperx[34].text 員工加薪的薪資費用加成減除率由130%提高到150%及延長施行10年該修正草案經行政院於本月4月18日還請大院審議希望能夠進一步鼓勵企業為員工來加薪導引企業跟勞工共享獲利第三個為協助公司留住
transcript.whisperx[35].start 2739.582
transcript.whisperx[35].end 2752.759
transcript.whisperx[35].text 優秀人才並鼓勵員工參與公司經營分享營運成果產業創新條例第19條的相關規定提供員工獎酬股票可以選擇按照取得試價或實際轉賬價格兩者折一來課稅
transcript.whisperx[36].start 2759.475
transcript.whisperx[36].end 2780.519
transcript.whisperx[36].text 財政部重視壽星民眾的權益,今年以採行相關的減輕壽星民眾租稅負擔措施,包括條高綜合所得稅扣除額度及基本生活所需的費用,減輕薪資所得者租稅的負擔。本部今年
transcript.whisperx[37].start 2781.195
transcript.whisperx[37].end 2790.021
transcript.whisperx[37].text 推動多項所得稅優化措施.包括107年度實施所得稅制優化方案.大幅度調高4項扣除額的金額.108年度增列長期照顧特別扣除額.113年度調高
transcript.whisperx[38].start 2798.607
transcript.whisperx[38].end 2819.878
transcript.whisperx[38].text 右扣跟房屋租金的特別扣除額。另外,為了因應物價上漲公告條高,106年、111年還有113年度的適用免稅額標準扣除額,新知所得及身心障礙特別扣除額可以減輕受薪民眾的租稅負擔。
transcript.whisperx[39].start 2821.363
transcript.whisperx[39].end 2842.53
transcript.whisperx[39].text 為了保障納稅者家戶基本生活所需的費用不受到課稅的權利依照納稅者權益保護法的相關規定公告112年度每年基本生活費用為20.2萬元比上一年度增加6000元預估受益的戶數是達到235萬戶
transcript.whisperx[40].start 2847.031
transcript.whisperx[40].end 2857.699
transcript.whisperx[40].text 以112年度為例.單身的薪資所得者連所得42.3萬元以下.雙薪家庭連所得84.6萬元以下.雙薪四口家庭.連所得在127萬元以下.都可以免納所得稅.有助提升勞工實際薪資
transcript.whisperx[41].start 2873.571
transcript.whisperx[41].end 2893.03
transcript.whisperx[41].text 調高員工伙食費免納入員工薪資所得課稅,為了合理反映用餐消費物價變動的影響,減輕相關負擔。將員工的伙食費免列入薪資所得的額度調高為每月3千元,並從112年1月起開始試用。
transcript.whisperx[42].start 2900.014
transcript.whisperx[42].end 2919.345
transcript.whisperx[42].text 員工自提的勞工退休金免稅優惠部分為落實照顧瘦薪階層退休人員的社會政策勞工在每月工資的60%範圍內自願提繳退休金不需要計入提繳連續薪資所的課稅
transcript.whisperx[43].start 2922.178
transcript.whisperx[43].end 2945.432
transcript.whisperx[43].text 為提高中小企業為員工加薪的誘因提升基層員工的實際薪資水準本部配合經濟部主管政策目的及產業需求提供相關的租稅優惠及提供多項的租稅措施來減輕相關民眾的租稅負擔本部將根據配合政府的政策跟社會經濟環境的發展
transcript.whisperx[44].start 2947.313
transcript.whisperx[44].end 2971.679
transcript.whisperx[44].text 在兼顧財政收入租稅公平及稅政簡化等原則事實檢討各項規定的合理性及推動各項租稅改革措施來符合社會期待營造友善的負稅環境以上報告 敬請各位委員指教謝謝好 謝謝阮次長的專題報告接著我們請經濟部我們林昶志學人先生的進行專題報告請講一點
transcript.whisperx[45].start 2979.275
transcript.whisperx[45].end 3006.808
transcript.whisperx[45].text 主席、各位委員以下經濟部就如何改善受僱人員報酬占GDP比重偏低現象提出專題報告首先就受僱人員報酬的概況進行說明經濟成長的成果可以分配到受僱人員的報酬營業營與資本設備固定資本消耗以及生產及進口稅額等四個面向臺灣受僱人員報酬占GDP比重於79年達到51.1%
transcript.whisperx[46].start 3008.829
transcript.whisperx[46].end 3028.479
transcript.whisperx[46].text 之後隨我國產業結構逐步轉型資本密集產業.企業攤體施設備折舊金而增加.固定資本消耗比重上揚.壓縮受僱人員報酬的占比.但在政府持續提高基本工資.調升軍公教人員薪資.及鼓勵企業跟進加薪等措施下.
transcript.whisperx[47].start 3029.279
transcript.whisperx[47].end 3032.344
transcript.whisperx[47].text 111 年受僱人員報酬持續增加 5.8%.帶動受僱人員報酬占 GDP 比重由 110 年的 43.1%.回升至 43.9%.增加 0.8%.
transcript.whisperx[48].start 3044.423
transcript.whisperx[48].end 3049.289
transcript.whisperx[48].text 此外,由於臺灣中小企業比例高達98%,111年1,142萬人的就業人口當中,其中僱主、自營作業者等人數占比約15%,其所得並未記錄受僱人員報酬,而是記錄營業盈餘
transcript.whisperx[49].start 3064.125
transcript.whisperx[49].end 3078.221
transcript.whisperx[49].text 影響受僱人員報酬的占比.另與經濟結構相近的雅齡相比.台灣受僱人員報酬占GDP比重.優於新加坡.劣低於韓國.新加坡長期維持在4成左右.低於台灣.111年更
transcript.whisperx[50].start 3080.063
transcript.whisperx[50].end 3102.595
transcript.whisperx[50].text 降至35.2%是由統計以來最低韓國在疫情期間營業營業與成長停滯近年調高基本工資在企業獲利減少下受僱人員報酬占比相對變高二就薪資的概況進行說明112年臺灣全體受僱員工每人每月總薪資平均約為58,420元
transcript.whisperx[51].start 3105.737
transcript.whisperx[51].end 3110.92
transcript.whisperx[51].text 而年增大約0.65%,近8年平均成長2.23%,其中製造業為62,492元,近8年平均每年成長2.99%,高於整體平均。以電子零組件
transcript.whisperx[52].start 3122.246
transcript.whisperx[52].end 3139.466
transcript.whisperx[52].text 業薪資九萬四千六百九十元.平均成長4.96%最高.凸顯臺灣高科技產業的實力.一百一十二年受俄烏戰爭.僵持以哈衝突持續等地緣歧視影響.全球通膨升溫.各國實質薪資成長多受.
transcript.whisperx[53].start 3140.507
transcript.whisperx[53].end 3152.233
transcript.whisperx[53].text 一致我國112年實質總薪資在考量物價因素後轉為副成長1.79%日本及韓國一分別連減1.95%以及1.09%且連續兩年副成長顯示在全球景氣緩緩及通膨壓力下壓縮實質金資的成長空間三就因應對策來進行說明首先我們協助產業提升附加價值創造高值就業的機會
transcript.whisperx[54].start 3169.201
transcript.whisperx[54].end 3190.499
transcript.whisperx[54].text 第一個,我們應用臺灣半導體產業的優勢﹐發展高負價價值的產業﹐這包括臺灣半導體產業的供應鏈的能量的發展﹐我們發展高負價價值的產業﹐推動石化業者及機械業者投入半導體的材料﹐以及半導體的設備的自主化﹐來創造更多高薪的就業機會﹐
transcript.whisperx[55].start 3192.22
transcript.whisperx[55].end 3217.752
transcript.whisperx[55].text 加速傳統產業及中小企業升級轉型首先我們運用醫後特別預算﹐擴大提供輔導、補助及人培﹐加強協助產業低碳化跟智慧化的轉型協助重點中小型傳統產業﹐如基礎製品、食品、紡織、塑像膠等運用雲端數位科技提升營運效率及數位程度﹐加速智慧化轉型的
transcript.whisperx[56].start 3218.512
transcript.whisperx[56].end 3241.01
transcript.whisperx[56].text 推動工作,三,透過專家輔導與資金的補助導引9人以下製造業運用數位化工具及節能減排做法升級轉型以加持員工多元的技能穩定就業及薪資的狀況第四,協助運用科技及商業模式創新加速轉型提升企業獲利的能力
transcript.whisperx[57].start 3243.117
transcript.whisperx[57].end 3267.823
transcript.whisperx[57].text 另外,我們運用政策優惠的工具鼓勵中小企業為員工加薪首先,我們優化中小企業加薪抵減租稅優惠的措施為提升企業加薪的意願經濟部提出中小企業發展條例修正草案並以函請大院來審議草案規劃刪除經濟景氣指數達一定情形之啟動門檻同時提高薪資費用加成減除率到150%
transcript.whisperx[58].start 3269.583
transcript.whisperx[58].end 3291.175
transcript.whisperx[58].text 適用薪資換偶也將配合修法域擴大至6.2萬元.並納入竹林滾動的調整機制.讓更多的基層員工來受惠.提供企業加薪的誘因我們部裡面提供相關的補助計畫.為企業加薪的企業來做加分的項目.包括我們中小
transcript.whisperx[59].start 3292.407
transcript.whisperx[59].end 3304.875
transcript.whisperx[59].text 我們經濟部中小型企業的一個創新研發計畫以及建構零售暨服務業數據共享、創新服務及服務業創新研發補助等等。第三,我們吸引關鍵的臺外資企業來臺,創造優質的工作
transcript.whisperx[60].start 3309.178
transcript.whisperx[60].end 3333.03
transcript.whisperx[60].text 機會:去年橋外資的金額創16年第三高:包括美商、微軟、Google、庫蓬、新加坡、星展銀行等外商:投資臺灣超過112.5億美元。第二:以半導體產業為例:持續獲得國際知名的企業:包括荷蘭商艾斯摩爾、日商東京威力科創公司:以及德商默克集團等相繼宣布加碼投資臺灣:足強化臺灣半導體產業的供應:
transcript.whisperx[61].start 3336.892
transcript.whisperx[61].end 3349.537
transcript.whisperx[61].text 令的任性之外.並創造許多高薪的工作機會。第三.我們投資臺灣三大方案至108年實施以來.促成指標大廠移回高階產線.完善發展國內的上下游的產業鏈.以吸引1472家企業.投資超過2.2兆元.預估對
transcript.whisperx[62].start 3359.221
transcript.whisperx[62].end 3385.982
transcript.whisperx[62].text 這個就業的機會會創造逾15.1萬個本國的就業機會第四提升員工專業的技能來創造加薪的條件首先我們105年開始辦理產業人才能力鑑定也就是IPAS這樣的考試透過業界正面的迴響據統計IPAS考試獲證者初步求職成功率高達9成以上相較勞動部職業類別的薪資調查結果IPAS出任平均薪資
transcript.whisperx[63].start 3387.143
transcript.whisperx[63].end 3413.716
transcript.whisperx[63].text 比一般的出任人員高出 10% 以上。第二,針對商業服務數位轉型及國際拓展之人才需求﹐辦理中高階領導人才的課程﹐培養數位轉型營運及國際拓展之人才專業知識技能。三,中小企業網路大學的辦理提供資訊科技、財務溶通及行銷、流通等逾 800 門的線上課程﹐協助中小企業從業人員提升職場的競爭力。
transcript.whisperx[64].start 3416.53
transcript.whisperx[64].end 3438.152
transcript.whisperx[64].text 最後要跟各位委員來報告.中小企業吸納臺灣八省的就業.為提高中小企業加薪的誘因.留住人才.經濟部推動中小企業.發展條例修法.優化加薪費用減除租稅優惠的措施.以達成鼓勵中小企業.加薪留用人才的目標.禁判委員予以支持.同時經濟部也持續.
transcript.whisperx[65].start 3439.252
transcript.whisperx[65].end 3444.797
transcript.whisperx[65].text 協助產業提升競爭力加速朝向高值化方向發展營造有力加薪的產業發展環境以上報告謝謝
transcript.whisperx[66].start 3460.441
transcript.whisperx[66].end 3475.871
transcript.whisperx[66].text 主席、各位委員、女士先生、大家早安。陳文貴委員會邀請就如何改善受僱人員報酬占 GDP 比重偏低現象.導引企業與勞工共享獲利.提升我國勞工實質薪資專題.本會請報告如下.敬請各位委員先進指教
transcript.whisperx[67].start 3476.972
transcript.whisperx[67].end 3505.953
transcript.whisperx[67].text 我國收入人員報酬占 GDP 相較其他國家為低.主要受到我國產業特性及就業型態影響.包括製造業受僱報酬占 GDP 比重較服務業低.我國製造業因生產活動及強化競爭力所需.朝自動化與資本密集發展.致折舊比重較高且需保有較高盈餘.因應不確定風險.加上產線作業僱用移工情形相對服務業高.致製造業受僱報酬占 GDP 比重較服務業為低.此為各國普遍現象.
transcript.whisperx[68].start 3507.723
transcript.whisperx[68].end 3524.52
transcript.whisperx[68].text 我國製造業GDP占比快速提升近年因廠商積極擴增國內製造製造業GDP占比顯著提升且擴大與先進國家之間的差距由於製造業受僱報酬占比相對服務業為低至整體受僱報酬占比亦相對偏低
transcript.whisperx[69].start 3525.561
transcript.whisperx[69].end 3541.953
transcript.whisperx[69].text 在就業形態方面,我國雇主、自營作業者、無酬家屬工作者等非受僱就業人數占比,相對其他先進工業國為高。此類就業者所得的紀錄營業盈餘估占 GDP 比重約 5.8%,未與受僱報酬合併為勞動報酬觀察占 GDP 比重,與其他國家差距應可縮小。
transcript.whisperx[70].start 3547.745
transcript.whisperx[70].end 3558.119
transcript.whisperx[70].text 在我國提升薪資的相關做法第一,持續調漲基本工資制定最低工資法為保障入職勞工基本生活所需政府已連續8次調漲基本工資
transcript.whisperx[71].start 3561.525
transcript.whisperx[71].end 3588.623
transcript.whisperx[71].text 此外政府亦提升最低工資審議機制法律位階勞工募資訂資最低工資法已於今年實施未來最低工資的調整將更透明更公開更合理審議制度將更加健全讓勞工有更完善的保障第二透過各項法規措施促進企業將成長果實分享員工那如同剛才之前各部位的報告我這邊就先略過
transcript.whisperx[72].start 3590.244
transcript.whisperx[72].end 3613.741
transcript.whisperx[72].text 至於在推動產業轉型升級的部分創造高薪就業機會政府持續推動六大核心戰略產業及投資臺灣三大方案創造高薪優質就業機會經濟部、財政部等修正產創條例及所得稅法等法令有利於企業提升競爭力改善所得分配令經濟部亦以修正公司法
transcript.whisperx[73].start 3614.676
transcript.whisperx[73].end 3630.558
transcript.whisperx[73].text 放寬員工獎酬工具.發放對象.並強化企業與員工共享獲益.透過各項措施.政府積極營造.促進薪資成長的良性制度及環境.讓全民共享經濟發展成果政府將持續透過調整最低工資
transcript.whisperx[74].start 3632.202
transcript.whisperx[74].end 3650.299
transcript.whisperx[74].text 促進企業薪資透明化.推動各項法規鼓勵企業分潤.推動產業發展創造高薪就業機會等做法.營造促進薪資成長的良心制度與環境.讓全民共享經濟發展成果.未來也將創造更加公平且有尊嚴的勞動環境繼續努力.以上報告進行各位委員先進指教謝謝
transcript.whisperx[75].start 3668.089
transcript.whisperx[75].end 3696.549
transcript.whisperx[75].text 主席、各位委員、理事先生、大家好今天會委員會安排如何改善受僱人員報酬占 GDP 比重偏低的現象導引企業與勞工共享獲利提升我國勞工實質薪資專題報告本部應邀列席說明並聆聽各位委員之教育、自感榮幸以下緊究定期檢討最低工資強化工會協商能力促進招募職缺薪資透明
transcript.whisperx[76].start 3697.129
transcript.whisperx[76].end 3703.358
transcript.whisperx[76].text 及推動相關就業方案等方向進行說明。一、定期檢討最低工資
transcript.whisperx[77].start 3705.22
transcript.whisperx[77].end 3719.323
transcript.whisperx[77].text 為保障基層員工的權益自蔡總統上任以來政府每年監討基本工資且逐年調漲每月基本工資調整8次由新台幣2萬08元提升至2萬7470元總條幅約37.3%那時薪調整9次由120元提升至183元總條幅達52.5%
transcript.whisperx[78].start 3733.746
transcript.whisperx[78].end 3744.253
transcript.whisperx[78].text 另外,最低工資法已在今年上路實施,接續基本工資保障基層勞工的經濟生活本部將於第三季召開最低工資審議會,審慎決定最低工資的數額
transcript.whisperx[79].start 3748.752
transcript.whisperx[79].end 3769.34
transcript.whisperx[79].text 我國今年基本工資採溫和穩健方式調整.也帶動整體平均薪資成長.而本部向來認同經濟成長的果實應由勞資雙方分享.我們更呼籲僱主適度為所有員工加薪.以利留財二、強化工位協商實力
transcript.whisperx[80].start 3771.33
transcript.whisperx[80].end 3793.837
transcript.whisperx[80].text 為強化公會的協商實力本部持續透過培訓、集體協商人員、領聘專家入場輔導、勞資協商嚴定團體協商有關行政指引及提供簽訂團體協約、獎勵措施等多元的行政作為促使勞資雙方簽訂團體協約以增進勞工福祉並穩定勞資關係目前已有諸多公會僱主
transcript.whisperx[81].start 3799.179
transcript.whisperx[81].end 3815.857
transcript.whisperx[81].text 透過團體協商.將條薪或年終分紅獎金等利潤分享條款.納入團體協約中.三.促進招募職缺薪資透明化.為促進薪資資訊的透明化.牢固雙方資訊的對稱.
transcript.whisperx[82].start 3818.22
transcript.whisperx[82].end 3834.293
transcript.whisperx[82].text 以107年修正公布《就業服務法》第5條第二項第6款之規定規範僱主、招募或僱用員工只缺資經常性薪資未達4萬元者應公開揭示或告知其薪資範圍如有違反將處6萬元以上、30萬元以下的罰款
transcript.whisperx[83].start 3839.541
transcript.whisperx[83].end 3853.26
transcript.whisperx[83].text 推動投資青年就業方案.亦後改善缺工.擴大就業方案推動投資青年就業方案第二期關注青年薪資問題為協助青年就業本部在112年到115年會根據推動
transcript.whisperx[84].start 3856.324
transcript.whisperx[84].end 3871.61
transcript.whisperx[84].text 投資青年就業方案第二期.對焦青年就業、薪資等五大議題.推動大專青年的育拼計畫.鼓勵重點產業提供技術職缺.育拼青年進行工作崗位的訓練.提供獎勵金
transcript.whisperx[85].start 3873.03
transcript.whisperx[85].end 3886.278
transcript.whisperx[85].text 鼓勵青年取得重點產業的證照.87年具備.爭取薪資之優勢.方案預計協助共80萬名青年就業.專科以上畢業生.畢業一年後提繳工資於115年提升至4.2萬元.
transcript.whisperx[86].start 3889.42
transcript.whisperx[86].end 3908.699
transcript.whisperx[86].text 那我們在112年已經協助21.2萬名的青年就業那專科以上應屆畢業生一年之後的勞退提繳工資已經至111年的3.9萬元提升到112年的4.1萬元第二我們持續推動疫後改善缺工擴大就業方案
transcript.whisperx[87].start 3909.552
transcript.whisperx[87].end 3930.677
transcript.whisperx[87].text 設定專案職缺與合理薪資為舒緩易後基層產業人力缺工問題本部自112年5月到113年6月事辦推動《易後改善缺工擴大就業方案》透過我們跨部會合作會商機制設定專案職缺合理薪資條件
transcript.whisperx[88].start 3931.977
transcript.whisperx[88].end 3940.504
transcript.whisperx[88].text 辦理專案媒合跟提供勞工就業的一個獎勵以上報告進行各位委員指教並祝主席各位委員身體健康萬事如意謝謝
transcript.whisperx[89].start 3968.407
transcript.whisperx[89].end 3973.471
transcript.whisperx[89].text 謝謝主席與會各列席機關的首長是不是請那個朱主計長有請朱主計長
transcript.whisperx[90].start 3981.513
transcript.whisperx[90].end 3986.877
transcript.whisperx[90].text 主席長你好主席長我請教因為這個勞動部有公布數據就是2023年這個職場新鮮人的薪資平均數為3.5萬年增2.9%但是民眾
transcript.whisperx[91].start 4003.67
transcript.whisperx[91].end 4020.888
transcript.whisperx[91].text 講實在話是很無感啦那實質薪資是不是都被通膨整個吃掉您的看法勒跟那個委員報告一下我沒有看到勞動部的那個統計因為我們沒有分什麼叫新鮮人就是剛入職的新鮮人因為齁
transcript.whisperx[92].start 4025.573
transcript.whisperx[92].end 4048.015
transcript.whisperx[92].text 那個我跟委員報告一下因為一般平均數都會比中位數高平均數會比中位數高所以用平均數的話就會大概會有很多人說我比平均數低所以在我們的統計上我們都有所謂的中位數的統計我們大概是每年都有中位數的統計
transcript.whisperx[93].start 4049.096
transcript.whisperx[93].end 4074.554
transcript.whisperx[93].text 所以說你是以中位數為主對中位數也許是就是中間嘛就是一半的人在那個中間對所以說是用平均數的話我可以跟委員報告平均數中位數大概只有平均數的百分之七十幾中位數是比較低所以說你認為中位數是比較合理是不是中位數的比較也許比較合理但是講實在話雖然說
transcript.whisperx[94].start 4076.756
transcript.whisperx[94].end 4095.975
transcript.whisperx[94].text 新鮮人他的薪資統計說有達到3萬5但是他們是無感的那你無感當然3萬5的話如果是按照這個比例中位數大概可能不到3萬塊因為他們無感是不是給通膨
transcript.whisperx[95].start 4099.819
transcript.whisperx[95].end 4103.743
transcript.whisperx[95].text 現在我們的物價上漲率最近幾個月是在有往下跌的狀態現在比較高的是那個所謂我們擔心油價因為油價減的時候大概80塊現在都在90塊上下徘徊
transcript.whisperx[96].start 4118.601
transcript.whisperx[96].end 4138.348
transcript.whisperx[96].text 所以說齁那個主計長你認為說這個目前整個通膨下降那應該還不至於這個讓這些新鮮人無感是不是你的看法這個是因為新鮮人有時候有些的那個是那個
transcript.whisperx[97].start 4139.668
transcript.whisperx[97].end 4140.469
transcript.whisperx[97].text 財政部副主席
transcript.whisperx[98].start 4159.319
transcript.whisperx[98].end 4185.299
transcript.whisperx[98].text 回歸在員工的薪水上面那這部分你認為到底這些就是獲利的這些企業有沒有做到應該要把他獲利的部分提撥給員工來作為對那個委員的一個共享是很好那我們也希望企業能夠往這方面做大家共同來努力
transcript.whisperx[99].start 4185.959
transcript.whisperx[99].end 4186.92
transcript.whisperx[99].text 主計長澤民
transcript.whisperx[100].start 4214.74
transcript.whisperx[100].end 4217.214
transcript.whisperx[100].text 我認為那個本來你企業賺錢就是要
transcript.whisperx[101].start 4218.402
transcript.whisperx[101].end 4218.822
transcript.whisperx[101].text 主計總處朱主計長
transcript.whisperx[102].start 4246.431
transcript.whisperx[102].end 4261.518
transcript.whisperx[102].text 因為主計總處和國際貨幣基金 IMF 現在都上調臺灣今年的經濟成長率的預測值但是 IMF 也提到最主要的風險是中國大陸房地產長期的低迷
transcript.whisperx[103].start 4263.099
transcript.whisperx[103].end 4276.052
transcript.whisperx[103].text 需求將受到壓抑.通說也會延續.其他考驗.包括日益擴大的財政赤字.以及美中貿易關係的風險.我請問主計長.你認為中國風險.對台灣經濟的影響.大不大
transcript.whisperx[104].start 4281.737
transcript.whisperx[104].end 4281.757
transcript.whisperx[104].text 韓國瑜
transcript.whisperx[105].start 4311.397
transcript.whisperx[105].end 4315.678
transcript.whisperx[105].text 這也是說我們前幾年的一個鼓勵台商回台是一個很正確的措施
transcript.whisperx[106].start 4335.923
transcript.whisperx[106].end 4361.303
transcript.whisperx[106].text 就是只有鼓勵他回來其他沒有什麼更好的政策對我們這都他們也透過適當的那個管道像那個說像相關的陸委會啦或者是跟他們說當他們台商有的權益應該是給予說依法他們的法來做我們來爭取主計長因為世界經濟論壇WDF特別會議主席
transcript.whisperx[107].start 4363.985
transcript.whisperx[107].end 4390.19
transcript.whisperx[107].text 不倫得對於全球經濟展望.發出警報.表示全球債務比例.已攀升到1820年代以來.從未見過的水準.並提出以開發經濟體.以面臨停滯性的通膨風險.呼籲各國採取正確財政措施.以避免全球陷入低成長的困境.我請問主計長
transcript.whisperx[108].start 4391.59
transcript.whisperx[108].end 4416.031
transcript.whisperx[108].text WEF主席布倫德的兩項警示你認為臺灣要怎麼去因應呢?跟那個委員報告一下這也是我們最近向財政部跟主計總處就努力說讓債務降低我們的債務已經從那個105年我們開始的百分之三十幾降到目前只有百分之二十六點幾所以我們就是
transcript.whisperx[109].start 4416.425
transcript.whisperx[109].end 4416.445
transcript.whisperx[109].text 主計長
transcript.whisperx[110].start 4440.206
transcript.whisperx[110].end 4454.821
transcript.whisperx[110].text 因為臺灣這幾年的物價上漲都已經讓很多民眾怨聲載道那假如事情預測成真請問經濟復甦力道是不是也會逐漸的打折扣甚至於轉向經濟衰退會不會
transcript.whisperx[111].start 4455.782
transcript.whisperx[111].end 4472.018
transcript.whisperx[111].text 我跟委員報告一下我們的一個物價上漲率相對於其他國家來講是委員也非常清楚是說是相對比較低的雖然我們最近幾年有上漲而且最近我們又開始說有下緩的趨勢
transcript.whisperx[112].start 4473.78
transcript.whisperx[112].end 4496.156
transcript.whisperx[112].text 所以說你認為應該影響不大就是說我們是相對其他國家是比較好的但是我們還是要注意就是我剛才所講的那一個油價的影響那個 主計長今天委員會要討論這個改善受僱人員報酬占GDP比重偏低的現象並引導企業與勞工共享
transcript.whisperx[113].start 4496.916
transcript.whisperx[113].end 4521.768
transcript.whisperx[113].text 來提升勞工實質的薪資其實這個議題在去年10月25號就討論過那對於貧富差距創10年薪高、薪資調整追不上物價的上漲那主計長一直強調透過社福的政策預算來增加的必要性並且強調外界不要污名化社會福利支出是最大的傻逼那我請問主計長
transcript.whisperx[114].start 4523.209
transcript.whisperx[114].end 4548.741
transcript.whisperx[114].text 社福預算的增加.對貧富差距縮小.你認為政府目前推動執行的成效.多數民眾都願意認同嗎對,跟那個委員報告一下這個是雖然問題是一樣可是我們今天主席弄這個題目是一個很好的題目大家這個方面還是要繼續努力的那個我可以跟各位講我們的社福占我們的
transcript.whisperx[115].start 4549.901
transcript.whisperx[115].end 4576.912
transcript.whisperx[115].text 總預算26%因為我們雖然尊重市場制度但某些弱勢的話它在市場運作之下它是仍然沒有能夠得到適當的生活水準在這個我們必須去說受扶的一些措施仍然繼續必要所以像我們提高最低工資或者是租金補貼或者是其他的長照這一類的東西我們努力的方向
transcript.whisperx[116].start 4577.512
transcript.whisperx[116].end 4606.225
transcript.whisperx[116].text 主計長要是多數民眾都能夠認同那為什麼這個民怨會不斷如果無法認同那你認為是不是政府的社福政策做得不夠還是社福政策只能治標沒有辦法治本我跟各位講我們的社福的經費一年現在已經超過那個是在總預算裡面已經我剛才講的大概超過四分之一大概有七千多億的也許我們有適當的財源的話我們可以有更努力的方向
transcript.whisperx[117].start 4607.585
transcript.whisperx[117].end 4630.832
transcript.whisperx[117].text 請各位不要誤這個是什麼都對社福的去亂貼說什麼最後一個議題主計長前天主計總處公布國戶統計與家庭財富的分配這個統計時隔30年統計結果和上次有很大的不同那就是30年前台灣前20%最富有的家庭資產
transcript.whisperx[118].start 4632.012
transcript.whisperx[118].end 4651.37
transcript.whisperx[118].text 事後20%最貧窮家庭資產的16倍30年後現在兩者資產差距擴大到66倍那我請問主計長貧富差距擴大是不是資本主義國家追進下所產生的必要之惡?你的看法勒?
transcript.whisperx[119].start 4651.99
transcript.whisperx[119].end 4676.087
transcript.whisperx[119].text 這個是原因之一不過我必須講一般在做比較的時候沒有把最高的百分之二十跟最低的百分之二十在做比較只有台灣喜歡比較我跟委員報告一下因為有些國家它的最低的那一層是負的那個最高的一層跟一個負的比較是沒有意義的所以國外的比較都是用所謂的說
transcript.whisperx[120].start 4677.608
transcript.whisperx[120].end 4678.889
transcript.whisperx[120].text 因為屏幕差距創新高政府似乎採取
transcript.whisperx[121].start 4700.706
transcript.whisperx[121].end 4721.802
transcript.whisperx[121].text 一手調高社會福利預算一手稅制改革的模式希望能夠緩衝那主計長在某種程度上政府似乎是採用貧富再分配的政策那個貧富再分配要慎重因為那個是否則是很偏向那個共產主義謝謝謝謝林委員的質詢請接著我們請吳秉樂委員質詢
transcript.whisperx[122].start 4746.826
transcript.whisperx[122].end 4771.493
transcript.whisperx[122].text 主席麻煩請主組長主組長辛苦了辛苦了這麼多年現在要跟你請教這是我個人的觀點你覺得今天這個題目如何改善受僱人員報酬占GDP比重偏低現象
transcript.whisperx[123].start 4773.66
transcript.whisperx[123].end 4783.057
transcript.whisperx[123].text 這個題目這樣子寫就是把受僱人員報酬占GDP比重偏低現象變成是一個肯定句
transcript.whisperx[124].start 4784.367
transcript.whisperx[124].end 4811.601
transcript.whisperx[124].text 接下來就是說受僱人員他的報酬跟GDP的比較從剛剛各部會的報告裡面感覺那不是截然的關係啊他是有諸多變量的因素統計的方法不一樣都會造成這個狀況比如說製造業我舉個例子如果你用台積電來講台積電這麼大的員工這麼大的企業他的每年盈餘是這麼的高
transcript.whisperx[125].start 4812.898
transcript.whisperx[125].end 4828.067
transcript.whisperx[125].text 那他的授薪、薪水當然就是在裡面比例是相當低跟整個佔比來講的話那問題是台積電的員工每一個員工的薪水是那麼的高是全台灣最高的幾乎是全台灣最高的
transcript.whisperx[126].start 4828.992
transcript.whisperx[126].end 4851.812
transcript.whisperx[126].text 對 那個委員剛才講到那個重點是很重要就是我們在主計總處的報告在尤其那個第二頁第三頁那個表以及那個第四頁到第七頁的那個內容我們已經針對這個委員的一個意見就是說要看產業的透性這個是就全國的資料可能就是說
transcript.whisperx[127].start 4852.672
transcript.whisperx[127].end 4872.78
transcript.whisperx[127].text 會有這種現象可是個別行業就是您剛才講的像那個電子零組件他的薪資分配2T的那個比例就是說他們薪資分配的那個占那個他的產值的比例大概只有25.4%可是他的薪水卻是接近10萬塊
transcript.whisperx[128].start 4873.66
transcript.whisperx[128].end 4873.86
transcript.whisperx[128].text 主席
transcript.whisperx[129].start 4893.425
transcript.whisperx[129].end 4912.32
transcript.whisperx[129].text 在比較的嗎?都用受僱人員的報酬占GDP的比重嗎?這個是國民所得統計的一個概念那要看薪資的話還是要看每人的薪資所以不要用這個比例不是應該是在說國民所得占GDP的比重應該是這樣說嘛這個是因為在
transcript.whisperx[130].start 4915.723
transcript.whisperx[130].end 4938.718
transcript.whisperx[130].text 在國民所著統計上有生產面跟那個消費面也有一個所謂的一個分配面那個分配面是兩個不同的所以不能夠把各種觀念混在一起然後說這個是怎麼樣同一個問題一直談一直談一直談最後就得出一個結論我們台灣的新製所的占GDP太低了就得出這樣一個標籤化的結果嘛
transcript.whisperx[131].start 4940.221
transcript.whisperx[131].end 4958.876
transcript.whisperx[131].text 所以我覺得這個議題不能夠這樣談啦是的 尊重委員的意見好 再來 第二個是剛剛有人 前面的委員談到說中國現在經濟環境非常的糟糕這大家都知道是的那台灣當然會受到很大的影響因為台灣現在對中國港澳出口還佔30點多對
transcript.whisperx[132].start 4961.058
transcript.whisperx[132].end 4986.199
transcript.whisperx[132].text 那當然已經大幅下降了從40快將近5成降到大概3成左右可是中國現在發生的現象如果依照這個YouTube上面的這些博主在講全中國現在一個最大的運動叫做RUNRUN就是英文的RUN的翻譯所以中國人都在逃啊都在跑啊有錢人也在跑
transcript.whisperx[133].start 4987.663
transcript.whisperx[133].end 5014.495
transcript.whisperx[133].text 一般的人也在跑還要非法入境從南美洲走中美洲從墨西哥然後再偷渡到美國去這樣的人數一直在增加所以從以前那些人就講中國這個地方不是一個合理照我們經濟遊戲模式負擔風險的地方他非經濟因素的風險太多了
transcript.whisperx[134].start 5015.423
transcript.whisperx[134].end 5037.653
transcript.whisperx[134].text 對,這我同意委員的觀點,因為他是一個比較管制,管制的話就是他的經濟韌性不強硬把他拉高那政治,他的政治可以干涉一切嘛,政治可以凌駕於一切的規則嘛,所以那個地方如果要去,我們一再講說要風險致富啦就像我們以前有講說,你投資有賺有賠,啊你自己要評估,詳細評估風險
transcript.whisperx[135].start 5041.054
transcript.whisperx[135].end 5055.147
transcript.whisperx[135].text 總不能賺到錢的時候說自己很厲害賠到錢都是政府要負責任台商靠自己的聰明才智評估這些風險走全世界很了不起其實很多台商也在跑了
transcript.whisperx[136].start 5056.024
transcript.whisperx[136].end 5070.569
transcript.whisperx[136].text 也都在轉移生產基地嘛有很多回來台灣的、貴於返鄉的也有到東南亞去的也有到別的國家去投資的嘛是的所以真正的答案是在這裡面千萬不能說中國的經濟失敗又要台灣政府負責啊
transcript.whisperx[137].start 5071.471
transcript.whisperx[137].end 5091.127
transcript.whisperx[137].text 跟那個委員報告一下有些人說我們非常依賴中國的市場事實上我們輸到中國有很多是中間產品中間產品是人家依賴我們我們中間產品去那邊他做末端的加工然後從他那邊出口嘛那一個部分占比光是電子業絕大多數都是這樣嘛那一個也是為什麼
transcript.whisperx[138].start 5094.329
transcript.whisperx[138].end 5121.559
transcript.whisperx[138].text 中國一直想要搞我們的鬼想要來對付我們結果他在這一方面沒有辦法像農產品這樣處理的原因因為只有農產品不是終端他們可以不需要台灣的農產品他如果有本事把台灣的電子產品禁掉看看看看那經濟會變成什麼樣子最好台灣的經濟人家都不要用所以我們要一直保持領先的地位就是說不要被替代
transcript.whisperx[139].start 5123.067
transcript.whisperx[139].end 5124.428
transcript.whisperx[139].text 中小企業發展條例,立法到現在有多少年?
transcript.whisperx[140].start 5146.525
transcript.whisperx[140].end 5158.305
transcript.whisperx[140].text 一百零五年實施到現在就一百零五年實施到現在在徵僱本國籍員工的部分部長、財政部次長、阮次長你回答
transcript.whisperx[141].start 5159.352
transcript.whisperx[141].end 5164.195
transcript.whisperx[141].text 適用了四五年的時間適用的人數才八千多人影響的稅額才減免了八千萬
transcript.whisperx[142].start 5189.312
transcript.whisperx[142].end 5215.155
transcript.whisperx[142].text 立這個法叫立法院立這個法通過了四五年你的檢討出來的減稅額度是這樣所以你這個中小企業發展條例為了延長十年門檻有一些拿掉了對好然後金額提高了到150%對你預估會造成什麼樣的結果會不會跟我們解說一下會產生什麼樣的效應能夠製造出多少的效果
transcript.whisperx[143].start 5216.116
transcript.whisperx[143].end 5236.777
transcript.whisperx[143].text 應該是這樣子,我們現在那個就是加成的比例如果從130%提高150%它的效果等於是說它的投資抵減率是10%10%的話就跟產創條例我們一般大企業的這個研發的投資抵減是一樣的所以我預估是應該是會有好轉的現象
transcript.whisperx[144].start 5239.019
transcript.whisperx[144].end 5259.506
transcript.whisperx[144].text 好轉是一個形容詞我要你預估會有達到怎麼樣的效果我的意思是說你會適用到多少人當然不是詳細的數字你的估值你會影響到多少的稅額你講一個數字出來嘛好轉的現象那還是還是署長你要補充這個我是不是請經濟部來因為他有稅室評估好那經濟部次長你次長你評估一下
transcript.whisperx[145].start 5267.553
transcript.whisperx[145].end 5288.803
transcript.whisperx[145].text 稅制評估的一個詳細我待會請我們那個中華企業所副長說明那基本上我們有分析就是說有比較樂觀的狀況有比較這個保守的狀況去分析請說明趕快說明那這個影響的那個這個加速在樂觀的狀況10年大概會超過這個上萬家以上這樣的加速那至於比較細節的部分我請我們副長這邊來說明
transcript.whisperx[146].start 5292.461
transcript.whisperx[146].end 5303.178
transcript.whisperx[146].text 報告委員,這個在過去加薪子啟動過一次因為當時有門檻,就是景氣必須要反転我現在跟你講說你這個延長之後10年,你的評估是怎樣?
transcript.whisperx[147].start 5304.195
transcript.whisperx[147].end 5325.996
transcript.whisperx[147].text 在未來的話我們就是每年會是207家然後所以10年年年都可以來進行所以跟之前只有一年66位的話算起來大概會有3010年內跟過去的10年大概會有30幾倍的成長30幾倍啊所以10年可以減免多少稅
transcript.whisperx[148].start 5327.256
transcript.whisperx[148].end 5352.866
transcript.whisperx[148].text 財政部要準備好一點好不好不要讓委員在那邊等待時間人家要來財政委員會準備你要準備好啊這樣子我現在因為本來這個是經濟部的推估那我現在是這樣就是如果是都推估的話
transcript.whisperx[149].start 5353.886
transcript.whisperx[149].end 5374.78
transcript.whisperx[149].text 那麼大概是1.51億1.51億10年1.51億對那就平均一年減免了1500萬對對不對目前的推估是這樣阿一年減1500萬那如果占全國所有的GDP的多少薪資多少那比九牛一毛還不如阿
transcript.whisperx[150].start 5375.44
transcript.whisperx[150].end 5402.288
transcript.whisperx[150].text 對我跟委員補充報告剛才我講的是因為他有不同的評估方法我現在講的另外一個評估方法是大概7.83億就算7.83億10年7.83億就是一年減免了7千多萬因為今天這個題目要為受薪受僱人增加薪水所以我們立一個法延長一個法來幫忙要讓他們減稅
transcript.whisperx[151].start 5404.7
transcript.whisperx[151].end 5417.137
transcript.whisperx[151].text 結果獲得了利益全體的企業符合這個規定一年全國才減免7000多萬這個誰要跟你玩啊所以我是意思是說你們這個方案
transcript.whisperx[152].start 5418.859
transcript.whisperx[152].end 5447.289
transcript.whisperx[152].text 經濟部過去做了四五年你也不檢討成效這麼差今年提出這個方案要我們延長你十年效果也是這麼糟糕這個能夠達到今天題目的目的如何引導企業與勞工共享獲利你一年打算高估用七千多萬的租稅利益來引導企業跟勞工共享全部獲利
transcript.whisperx[153].start 5449.485
transcript.whisperx[153].end 5474.346
transcript.whisperx[153].text 臺灣的企業一年的收入是多少啊?占GDP是多少啊?你們拿一個是什麼東西啊?拿秋毫要修比一座山啊?這個我覺得你們要好好的思考你們今天提出這個案實質你給你了解喔?絕對達不到效果的啦在我來看就算有效果也是不知道萬分之零點幾
transcript.whisperx[154].start 5475.987
transcript.whisperx[154].end 5490.762
transcript.whisperx[154].text 拿這麼一年七千多萬的稅金打算要去做這件事情加油啦好不好好謝謝謝謝委員好謝謝吳秉銳的質詢啊簡直是九牛一奈米啊來那個請那個我們賴世保委員質詢
transcript.whisperx[155].start 5504.526
transcript.whisperx[155].end 5514.057
transcript.whisperx[155].text 謝謝主席以及各位先進有請主計長還有財政部的阮次長財政部的負稅署長來吧阮次幾位總管好喔首先我認為今天題目訂的非常好
transcript.whisperx[156].start 5525.185
transcript.whisperx[156].end 5551.396
transcript.whisperx[156].text 本來就應該討論了本來就應該也可以討論受僱人員的薪資占GDP的比重這題目當然可以談了跟國民所得是另外一件事對不對 主計長 對嗎對 我尊重大陸對嗎 這個沒問題了來 主計長 我問你的一件事情是你有提到 有一段話我仔細讀你的報告裡面
transcript.whisperx[157].start 5552.296
transcript.whisperx[157].end 5563.529
transcript.whisperx[157].text 你說110年上市貴公司財報.電子零組件.營業率大增63%.人事費用也成長28%.受僱報酬反而降0.9.
transcript.whisperx[158].start 5567.954
transcript.whisperx[158].end 5574.256
transcript.whisperx[158].text 這怎麼回事啊 生意很多 賺錢很多 結果薪水砍下來 怎麼回事沒有沒有 他沒有砍下來 因為是他沒有特別去砍啦 那個我就必須說明一下他還是下降 他是比例下降 他是薪水還是漲的啦
transcript.whisperx[159].start 5593.822
transcript.whisperx[159].end 5607.328
transcript.whisperx[159].text 你直接讀一讀,你連文章寫的都很奇怪,有這個情況?你現在讀到你的感覺是,這個電子業的老闆都很慣老闆、惡老闆他賺錢賺那麼多,營業額這麼大,結果員工砍薪水耶!你看那成...四股的報酬占,放在那邊久,你這個窩點有問題啦!我今天不會跟你吵這個,跟你看一下,來!
transcript.whisperx[160].start 5620.165
transcript.whisperx[160].end 5632.31
transcript.whisperx[160].text 你剛這是根據你們的報告請你看一下看一下這個表這個表我辛苦這是你的表是我的對你的你的這是你做的吧
transcript.whisperx[161].start 5633.806
transcript.whisperx[161].end 5641.815
transcript.whisperx[161].text 這個你們的?這個你們的?不是財政部的?這個你們的?這個我已經不是你們的資料?我再看大家感謝我認真看你們的資料,不然你的資料沒辦法看我,我還要看你呢?來!
transcript.whisperx[162].start 5652.487
transcript.whisperx[162].end 5674.785
transcript.whisperx[162].text 有共鳴你80年做一次110年做一次30年才做一次對不對那個不是我做的而且那一次做我憑良心講那一次做的話是並不是一個很成功的他們很努力所以80年是亂亂做的那一次不是亂做那一次是調查調查要看被調查人的
transcript.whisperx[163].start 5675.185
transcript.whisperx[163].end 5699.805
transcript.whisperx[163].text 那一個配合度這一次我們是用大數據不是去問出來的是用大數據這一次是我朱正平做得比較準上一次怕誰做得不準這樣就對了你是這個意思嗎你是這個意思嗎你是這個意思嗎不是這個意思委員是加了太多的形容詞這是沒有形容詞的你的意思這個是我的講說因為是做調查
transcript.whisperx[164].start 5708.053
transcript.whisperx[164].end 5721.306
transcript.whisperx[164].text 委員的家庭人家問到委員說林東有多少財產你自己的很清楚林夫人的你大概也都不是很清楚每個都一樣那個是調查
transcript.whisperx[165].start 5726.951
transcript.whisperx[165].end 5747.24
transcript.whisperx[165].text 這次就是用大數據的資料對嘛 那我講的沒有錯啊用大數據的資料是身體的資料這個是來 請問這是你當主計長的時候做的嘛對嘛 啊我的團隊是什麼時候做的啊這是我朱正平做的以前做的不錯 打捏的對啊有缺點 您解釋出來有什麼問題我跟您解釋 謝謝不然機會沒機會了 快點
transcript.whisperx[166].start 5755.123
transcript.whisperx[166].end 5780.587
transcript.whisperx[166].text 沒有 你也不必過度解讀你這樣你對我的批評我不接受啦齁因為你read your lips看你的嘴巴講的話就是這樣子過去不是調查的可能有人不知道所以呢就舔一舔不準這次大書記撈比較準這跟著你講的話啊對對嘛所以就是朱成敏任內比較準以前不是朱成敏內比較準這個是代表統計的一個進步
transcript.whisperx[167].start 5784.088
transcript.whisperx[167].end 5784.929
transcript.whisperx[167].text 80年現在110年房地產1480萬
transcript.whisperx[168].start 5805.692
transcript.whisperx[168].end 5832.119
transcript.whisperx[168].text 先問一下以後能不能改成10年做一次可以嗎那個也許我們那個看未來的主計長可以不可以啦30年太久啦對10年太久30年太久啦10年太久10年那個5年那個我們要衡量因為那個要各單位的配合如果按照你講大數據的話齁老實講每年都可以做
transcript.whisperx[169].start 5832.959
transcript.whisperx[169].end 5838.265
transcript.whisperx[169].text 不過不可以因為有些資料會是那個收集會牽連到一個很簡單的角度
transcript.whisperx[170].start 5843.607
transcript.whisperx[170].end 5871.723
transcript.whisperx[170].text 房地產現在是1480萬對金融性的資產3809萬對減掉金融事務負債233把他減掉114年淨時A加B減息等於低就是5000多萬那個是最高的百分之二十對最高百分之二十五千多萬結果最低的是77萬所以這裡面來看的話這很清楚看得到了
transcript.whisperx[171].start 5872.663
transcript.whisperx[171].end 5880.719
transcript.whisperx[171].text 很清楚看得到有錢人怎麼有錢股票基金房地產
transcript.whisperx[172].start 5882.758
transcript.whisperx[172].end 5906.604
transcript.whisperx[172].text 這裡面看就是這樣啊!看就是這樣啊!跟那個委員報告一下,林委員提的這個問題很好,但是我也要...總算講我好了!我跟委員講,這也是告訴我們那個最低的百分之二十啊,您看到他的金融負債有四百零五億,他的那些...四百零五萬啦!四百零五萬啦!沒有億啦!四百零五萬啦!
transcript.whisperx[173].start 5908.965
transcript.whisperx[173].end 5911.067
transcript.whisperx[173].text 所以我們就是民管委所講的理財要謹慎
transcript.whisperx[174].start 5926.121
transcript.whisperx[174].end 5926.501
transcript.whisperx[174].text 主計長,你有沒有想到
transcript.whisperx[175].start 5953.247
transcript.whisperx[175].end 5970.364
transcript.whisperx[175].text 這是窮人要借錢過日子有錢人借錢炒股票炒房沒有可能金融性資產也很多你看到最低百分之二十金融性資產有兩百多萬所以負債405那為什麼負債405
transcript.whisperx[176].start 5977.051
transcript.whisperx[176].end 5977.531
transcript.whisperx[176].text 主席主席
transcript.whisperx[177].start 5997.128
transcript.whisperx[177].end 6017.655
transcript.whisperx[177].text 他不是說財務操作啦,你還說財務操作這個數字就告訴人家一半而已啦我跟你講最低百分之二十他的資產只有增加3.8歐倍他的負債卻增加16倍所以要謹慎理財,謝謝你跟他說理財,借錢過日子你沒想到好啦好啦,你下去,你請你下去
transcript.whisperx[178].start 6021.636
transcript.whisperx[178].end 6040.676
transcript.whisperx[178].text 請你就座休息一下主席長機會不多啦 謝謝機會已經很多了 給你這麼多時間呢口口會 口口會 口口會來 市長跟署長啊從剛才的表已經看得到了
transcript.whisperx[179].start 6042.626
transcript.whisperx[179].end 6054.582
transcript.whisperx[179].text 這個社會投資要降低中產的焦慮其實我們就可以看嘛股票、基金、房地產我們的房地產持有稅太低了
transcript.whisperx[180].start 6056.397
transcript.whisperx[180].end 6077.698
transcript.whisperx[180].text 但是現在我們的斟酌稅沒有課我們增加稅裡面所以我們的你看美國動機的斟酌稅要30幾%這個當然今天不是我要講的重點我要講的重點就是在於說房地產的持有稅其實美國房子它那個持有稅大概一年一趴的
transcript.whisperx[181].start 6078.058
transcript.whisperx[181].end 6104.448
transcript.whisperx[181].text 了解了解我們一年房屋跟地價稅昨天那個節目沈副雄還講他的房子大概五千多萬結果的房屋稅一萬多地價稅也從一萬多不到三萬他自己都覺得說稅太少了稅太少了是 報告委員我們現在我們現在也開始就是注意到這個問題了所以我們也提出房屋稅你有沒有準備想要課持有稅
transcript.whisperx[182].start 6105.888
transcript.whisperx[182].end 6108.873
transcript.whisperx[182].text 通知十有歲,不是土豪稅喔!十有歲沒有課!對,十有歲。十有歲!
transcript.whisperx[183].start 6112.297
transcript.whisperx[183].end 6140.232
transcript.whisperx[183].text 房屋稅就是房屋稅嘛房屋稅2.0嘛房屋稅很低啊我覺得是這樣包委員我覺得我們現在已經在改革啦我覺得改革一定要循序漸進啦那我就問你啦有沒有可能靠一個婦人稅把最有錢的超過一百億以上的反正一百億以上的每年繳一千萬給國庫我們長照需要錢健保需要錢太多需要錢有沒有可能乾脆靠一個婦人稅
transcript.whisperx[184].start 6141.032
transcript.whisperx[184].end 6161.544
transcript.whisperx[184].text 對﹖
transcript.whisperx[185].start 6161.954
transcript.whisperx[185].end 6164.156
transcript.whisperx[185].text 中小企業加薪條例那個經濟部可以過來幫忙一下喔
transcript.whisperx[186].start 6189.691
transcript.whisperx[186].end 6199.308
transcript.whisperx[186].text 這個沒有我今天是完全完全呼籲我們主席英明特意的排案你排了案我都給你鼓掌鼓掌好幾聲雖然你們通黨立委不認同我認同這個
transcript.whisperx[187].start 6203.547
transcript.whisperx[187].end 6229.633
transcript.whisperx[187].text 中小企業條例130%那個次長啊次長你等一下那個受署長要聽一聽啊主要就是你們前面那個框框太多啊又要那個CPI到達多少啦又失業率到多少才給他改成通通沒有附帶條件只要你加薪我就給你乘150可以嗎現在就是這樣調整要這樣子150還不夠啦本期的天是200啦
transcript.whisperx[188].start 6231.425
transcript.whisperx[188].end 6246.748
transcript.whisperx[188].text 給他兩百啊,那個又贏才有,剛才委員已經罵得要命,就是條例把定是幾千萬,要一件,要一件,就是我先講喔,我有提案,兩百,所有條件全部拿掉,
transcript.whisperx[189].start 6247.944
transcript.whisperx[189].end 6270.816
transcript.whisperx[189].text 所有條件全部拿掉好不好我們條件都已經放寬那至於至於那個底檢的部分我們尊重委員的那個最後一個小問題那個署長啊你署長你給清楚欸要報稅今天開始報稅對不對你們一定要叫人家填房子是租的自用有沒有對必填喔必填喔對
transcript.whisperx[190].start 6272.362
transcript.whisperx[190].end 6298.642
transcript.whisperx[190].text 這個是要來查房東的稅是不是這是要了解一下納稅人本身現在的狀況然後如果租的話他可以報租金支出扣除你某種程度就查房東的稅了喔難怪人家就不要停其實應該是說課稅資料有多元的用途啦但絕對不是只有單一位的查稅但是可以同時無法同時查稅 對吧
transcript.whisperx[191].start 6302.065
transcript.whisperx[191].end 6310.877
transcript.whisperx[191].text 看到時候怎麼去運用就是你的回答就是了好啦好啦至少最後問你一個聽說你要去宮古房屋了是吧
transcript.whisperx[192].start 6311.761
transcript.whisperx[192].end 6335.168
transcript.whisperx[192].text 沒有聽說,沒有聽說,我沒辦法回答這個問題你是國安基金的擦板手,你走了又從辦公室擦板手我聽到聲音說要把你調去購股沒有聽說,沒有聽說,我沒辦法回答這個問題謝謝委員關憲謝謝耐斯堡委員的質詢,也謝謝耐斯堡委員的肯定接著我們請李燕秀文質詢
transcript.whisperx[193].start 6342.273
transcript.whisperx[193].end 6342.433
transcript.whisperx[193].text 主席
transcript.whisperx[194].start 6359.878
transcript.whisperx[194].end 6380.545
transcript.whisperx[194].text 我相信你一定可以好好規劃你的退休生活做一些自己想做的事情主席長你是北漂到台北來對不對你是北漂到台北來工作的對不對我58歲就在台北工作了我出家離走我知道你在台南白河的竹門國小
transcript.whisperx[195].start 6384.486
transcript.whisperx[195].end 6405.382
transcript.whisperx[195].text 國中、高中都在台南嘛,對不對?那你是大學之後才念政大,才睡戲,然後念研究所,然後就漂流在台北工作,對不對?所以你很幸運,也很努力工作8年之後,在台北市就買了一間房子嘛,對不對?
transcript.whisperx[196].start 6406.463
transcript.whisperx[196].end 6422.637
transcript.whisperx[196].text 沒有,我看看我是什麼時候買的我看到你的報稅的資料我自己都忘記了,謝謝委員提醒你自己有一個房子,72年沒一個房子你也很念舊72年買的房子到現在還在
transcript.whisperx[197].start 6425.319
transcript.whisperx[197].end 6447.434
transcript.whisperx[197].text 當時買一瓶多少錢你還記得嗎一瓶大概十萬多塊在大安路現在舊房子都他們有人都要跟我出十萬塊所以要跟我出八十幾萬謝謝現在大概八十幾萬了當時買的時候你年輕的時候我跟賴委員主席是同樣的故鄉的都是努力向上的人謝謝
transcript.whisperx[198].start 6450.656
transcript.whisperx[198].end 6476.193
transcript.whisperx[198].text 當時那個年代你們那個年代年輕人只要努力向上都有機會賺到錢然後也有機會打造你的夢想完成你的夢想買一間房子現在從當時買10萬塊現在一坪賺到80幾萬努力去兼課賺付貸款謝謝也有付貸款好那我們現在年輕人努力工作8年也付貸款會不會有同樣的結果我們等一下來看謝謝
transcript.whisperx[199].start 6479.214
transcript.whisperx[199].end 6504.42
transcript.whisperx[199].text 我們來看下一張主計長我要跟你討論其實並不是風花雪月因為我對於數字因為我大學念的也是經濟系所以對於數字其實我有一定的想法跟敏感度所以主計長我們昨天公布了整個家庭財富分配的狀況剛才你也回答賴委員家庭財富分配的統計狀況30年前跟30年後
transcript.whisperx[200].start 6507.961
transcript.whisperx[200].end 6521.826
transcript.whisperx[200].text 我們看到這個數據你有什麼感想為什麼突然在這兩三年你會想做這件事情因為我們有所得的調查有所得的分配所得的分配是一個流量但是我們的存量一直缺乏這個那我們跟像我跟
transcript.whisperx[201].start 6524.767
transcript.whisperx[201].end 6547.615
transcript.whisperx[201].text 更新中研院的租賃醫院是我們都值得來他也鼓勵我做所以我是希望我在這個八年之內把它當成一個使命來做所以我必須那你看到這個數字的結果你的感想你的結論是什麼我的意思是說我們有努力的空間可是我們相對其他國家我們是比較平均的不過我必須跟委員報告
transcript.whisperx[202].start 6548.135
transcript.whisperx[202].end 6571.557
transcript.whisperx[202].text 在使用這個資料的時候要特別注意就像我剛才所講的我30多年前的房子是用一坪10萬塊買那個40幾坪是400多萬我現在住在裡面它都是值3000多萬可是我房子愈租愈舊所以我財富有400多萬增加到3000多萬所以使用這個數字要特別注意 謝謝
transcript.whisperx[203].start 6572.498
transcript.whisperx[203].end 6575.061
transcript.whisperx[203].text 謝謝主席講其實我們要凸顯的就是其實有幾個問題看到這個數據其實前面20%的家庭累積的財富平均是5133萬最底端20%他是只有77萬所以財富的差距高達66.9倍
transcript.whisperx[204].start 6594.301
transcript.whisperx[204].end 6620.991
transcript.whisperx[204].text 這個66.9倍其實也凸顯出家庭的這個貧富差距其實上是非常高的那我也關注到我們的潘處長其實做這個普查其實也非常的辛苦但是潘處長昨天也講過說30年前不少南部的人北漂工作自產如果留在南部的話房地產啊發展區域不同財富就會有不同的差距他是不是拿你來當作model來講這個結論
transcript.whisperx[205].start 6624.099
transcript.whisperx[205].end 6646.908
transcript.whisperx[205].text 昨天分析這個數字的時候他講到說很多人北漂所以過去有自產我就突然就直接想到主計長你的案例所以他是用你來做案例嗎沒有啦這個是我的案例給他用也無所謂因為我剛才講說我以前的房子叫400萬現在叫3000多萬我還是住在主計長
transcript.whisperx[206].start 6651.03
transcript.whisperx[206].end 6678.271
transcript.whisperx[206].text 那如果這樣講的話那你要怪當時沒有北漂的人沒有在台北買房子的人或沒有投資股票的人都吃虧囉不是這個意思啦個人的不一樣啊我的同學裡面甚至我學生裡面他們都比我有錢啊主計長我要講的是你從事公務人員吼無論你在哪個階段你這一輩子幾乎大多數的時間都是公務人員其實公務人員
transcript.whisperx[207].start 6680.132
transcript.whisperx[207].end 6700.487
transcript.whisperx[207].text 做財稅也好資源分配的合理性也好包括昭緯今天排這個法案也好其實去年費鴻泰昭緯也排過同樣的法案就是說我覺得財富分配的公平正義是政府每一個單位大家共同的責任不是說我有機會我選擇到台北來
transcript.whisperx[208].start 6703.809
transcript.whisperx[208].end 6721.622
transcript.whisperx[208].text 那我覺得每一個年輕人都應該可以有他的夢想選擇他喜歡的工作選擇他喜歡住在哪裡的哪一個環境我們現在台灣的經濟已經發展到失溫的成長政府在說現在經濟很好但是大多數的
transcript.whisperx[209].start 6722.803
transcript.whisperx[209].end 6747.797
transcript.whisperx[209].text 現在還在工作從20歲到40歲的很多人是沒有感的是無感的所以我才會說我們現在經濟成長陷入失溫成長特別是年輕人的相對剝奪感越來越高委員的用心很好所以我們才要有財富分配而且每幾年要做一次不必每年做因為財富是一個存量存量在短期間不會變化很大謝謝
transcript.whisperx[210].start 6748.948
transcript.whisperx[210].end 6768.938
transcript.whisperx[210].text 所以主計長這個讓年輕人打造一個更好的台灣夢我覺得是我們每一個人的責任賴清德也說要讓台灣打造成一個適合做夢、悠然過日子的地方但是以今天財富分配的狀況
transcript.whisperx[211].start 6770.279
transcript.whisperx[211].end 6792.813
transcript.whisperx[211].text 年輕人還能說有台灣夢嗎?說台灣我們資源的分配的狀況不合理性我覺得要打造現在年輕人要打造像你那個年代86年、80年就可以買房子我覺得恐怕是很困難的這個是我今天看到最近你們做的這個數據報告研究報告出來我的結論
transcript.whisperx[212].start 6793.533
transcript.whisperx[212].end 6821.693
transcript.whisperx[212].text 我同意委員的觀點所以我們要繼續做這些統計資料讓委員或者政府官員作為一個決策的參考但是主計長未來這個決策參考剛才賴委員有講我覺得30年做一次是真的有點久我們不會展明應該合理的做一次啦然後剛才你回答這個賴氏寶委員說這個他們可能投資錯誤其實主計長你有機會退休之後到各個家庭平常家庭去看看
transcript.whisperx[213].start 6822.674
transcript.whisperx[213].end 6847.708
transcript.whisperx[213].text 不要說理財分配他們可能連理財根本沒有錢去做理財啦我要直接告訴你這件事情我跟那個委員報告一下因為我剛才錄了一下有很多人落入到最低的百分之五因為他是資產減掉負債他資產高也負債也高他負債高就是代表說你要去銀行借錢你沒有資產人家也不會借給你所以他就是什麼財務槓桿操作過度謝謝
transcript.whisperx[214].start 6851.499
transcript.whisperx[214].end 6860.041
transcript.whisperx[214].text 主席長財務槓桿操作在有錢人跟沒有錢人的做法是完全不一樣財務槓桿沒錢人只能借錢去過生活沒有所謂來做財務槓桿的空間主席長我第二個問題還是要回歸到今天的主題雖然時間剩下的有限
transcript.whisperx[215].start 6874.865
transcript.whisperx[215].end 6903.544
transcript.whisperx[215].text 我看到無論是國發會或經濟部的報告都說我們現在受僱人員的分配比較少的原因最主要是因為僱主或自營業的人呢占了15%這是經濟部的報告沒有納入沒有記錄這個營業盈餘所以我們受僱人員的報酬比有受影響國發會的報告也是如此但是主計處的報告就比較完整他說
transcript.whisperx[216].start 6904.605
transcript.whisperx[216].end 6932.834
transcript.whisperx[216].text 因為我們的雇主也好為領籌勞的家屬跟自營業者所創造的附加價值我們很難去區分他到底是來自於勞動或資本所以主計長你認同經濟部跟國發會的報告還是你覺得你的報告比較完整他的那個內容講的並沒有錯那我們只是說因為這個事是什麼很難區分所以在國際線的慣例都均
transcript.whisperx[217].start 6933.254
transcript.whisperx[217].end 6950.947
transcript.whisperx[217].text 但是主計長我覺得齁這個是一份報告各自解讀啦同樣的報告無論是今天的召委排了過去國民黨的召委費洪泰也排了可見我們對於受僱人員的薪資經濟的紅利沒有合理的分配給所有的勞工
transcript.whisperx[218].start 6952.148
transcript.whisperx[218].end 6975.341
transcript.whisperx[218].text 朝野黨派的委員都對於這件事情是覺得非常嚴重也覺得值得重視的所以各單位無論是主計處、經濟部、國發會在這件事情上就不能只拿一個數據來告訴我們說這個是數字沒有計算很完整那你們拍拍屁股什麼都不做去年類似同樣專案報告排了一次今年又排一次
transcript.whisperx[219].start 6976.081
transcript.whisperx[219].end 7003.929
transcript.whisperx[219].text 但是如果在這個位置上你們有能力可以做決策可以做更好的支援分配或我們的企業轉型我們沒有做任何事情的話那我覺得臺灣的勞工也好受僱人員的這個永遠沒有辦法享受到所謂的經濟紅利所以我在這邊我只叫主計長出來我覺得你的報告回答
transcript.whisperx[220].start 7005.943
transcript.whisperx[220].end 7030.656
transcript.whisperx[220].text 我認為比較遺憾的是如果經濟部跟國發會只是拿一個數字來搪塞說這個是因為我們的計算沒有把所謂的家裡的其他成員其他的顧存成員納入所謂的報酬的話那我覺得我們永遠沒有辦法改善現在我們受僱人員分配過低的
transcript.whisperx[221].start 7031.556
transcript.whisperx[221].end 7055.553
transcript.whisperx[221].text 一個主要的原因更何況過去10年來我們受僱人員薪資比事實上是逐年逐年降低你不要跟我拿過去其他的比例說我們過去長期我們台灣的這個自僱的員工也好受僱的員工也好長期有這樣子的狀態那個結構長期都是如此但是我們在GDP占比受僱人員卻是過去10年來的新低
transcript.whisperx[222].start 7058.496
transcript.whisperx[222].end 7080.972
transcript.whisperx[222].text 主計長你同意我的說法我們跟自己比就知道了嘛我們勞工的那個比例現在是因為少子化勞工比例是往慢慢的往下的趨勢的話這個比例將來仍然可能會有這種現象因為他就業人數變少了謝謝他不是事業主計長
transcript.whisperx[223].start 7083.314
transcript.whisperx[223].end 7104.566
transcript.whisperx[223].text 人數少跟受僱人員跟受僱人員薪資占比這是兩件事情勞工少但是我們要強調的是受僱人員就是說我們的勞工其實沒有分配到經濟同理所以剛才委員說很關心的我們要利用各種重分配的政策讓他能夠弱勢的人能夠得到更多的
transcript.whisperx[224].start 7104.966
transcript.whisperx[224].end 7114.357
transcript.whisperx[224].text 但是如果從經濟部跟國發會今天回答的報告還在搪塞找幾個理由來美化這些數字來去強調這個數字其實不夠準確的話那我覺得受僱人員永遠就是
transcript.whisperx[225].start 7120.103
transcript.whisperx[225].end 7146.434
transcript.whisperx[225].text 在最低的頂端我們永遠沒有辦法有機會把質詢人拉高跟南韓來比南韓的經濟成長率還沒有台灣的好過去但是他們受僱人員GDP占比比台灣好太多我想這個數字央行剛好打你們的理你好好看一看央行不會打臉我了謝謝打臉國發會跟經濟部請大家好好看一下謝謝燕秀委員接著請郭國文委員質詢
transcript.whisperx[226].start 7155.748
transcript.whisperx[226].end 7163.125
transcript.whisperx[226].text 謝謝主席那有請朱局長還有許政次然後林次長
transcript.whisperx[227].start 7165.82
transcript.whisperx[227].end 7177.403
transcript.whisperx[227].text 我先請教勞動部的許正次許正次請許正次我先請教您許正次今天是五一勞動節我們一起在勞動節繼續勞動然後我們為勞動者今天也是為勞動者而勞動我想請問一下明年我們勞動節還會不會在這邊勞動
transcript.whisperx[228].start 7188.954
transcript.whisperx[228].end 7212.788
transcript.whisperx[228].text 謝謝委員的關心,那我想有關於五一勞動節放假的事情,行政院有這個一個...所以明年會不會嘛,我就借助教育你,你估計你明年會不會來這邊勞動?跟國委員報告,我想站在勞動部的立場,我們想勞工的福利當然越多越好啦你希望明年五一勞動節就不要勞動?我想站在勞動部的立場,我們希望這個是...全國都一致放假,那明年呢?
transcript.whisperx[229].start 7213.949
transcript.whisperx[229].end 7237.55
transcript.whisperx[229].text 這個我們會跟院裡面來繼續這個太保守了你就說你希望就好但是院還是要做決定嘛好不好是不是這樣意思但我想說正在勞動部立場勞工的福利是希望明年就開始如果有機會的話啦好那如果我就請問你一下齁最近本院有一位牛委員提一個案子說適用期三個月
transcript.whisperx[230].start 7238.737
transcript.whisperx[230].end 7246.048
transcript.whisperx[230].text 新資打八折那如果基本工資兩萬七的話那打起來連22K都不到我請問一下徐市長贊成這樣的提案嗎
transcript.whisperx[231].start 7248.892
transcript.whisperx[231].end 7274.398
transcript.whisperx[231].text 這是中國大陸的版本欸是不是那這是台灣要比照中國欸你的看法怎麼樣謝謝委員關心我想基本工資定在那個地方那以後是最低工資啦這當然是有一個標準在那個地方每一個這個受僱者他基本上就是至少要有這個最低工資的一個保障對但是他說試用期如果姑且不論基本工資的話試用期要打八折你同不同意不我想
transcript.whisperx[232].start 7275.218
transcript.whisperx[232].end 7300.652
transcript.whisperx[232].text 這個部分對勞工的權益是有影響影響?什麼影響?定毛影響?往下拉是不是?當然是這樣子啊當然是這樣子所以你是反對還是贊成?我想站在勞動部的立場我們這個是沒辦法這樣子說他僱用期那僱用期有很多老闆會用這個名義就是一直僱用循環性的僱用就會變成有這樣子的惡性的一個方式就是3加333就一直僱用下去一直適用下去對不對?
transcript.whisperx[233].start 7301.432
transcript.whisperx[233].end 7324.059
transcript.whisperx[233].text 我想我們這個要很慎重避免說有這樣子的一個負擔效應會導致低新化的可能避免再次這樣提案嘛對不對好那次長你先稍微休息一下我就教於那個主計長主計長您今天的這個財務調查報告本席跟你肯定但是那個我想你們那個潘處長在這邊嘛你剛剛有說10年太久
transcript.whisperx[234].start 7325.579
transcript.whisperx[234].end 7348.13
transcript.whisperx[234].text 有委員說10年太久那我問一下實務上你們認為幾年潘處長能不能給主計長一個建議大概幾年可以做一次最快的話因為那個是跟他無關應該是由政務官來講那你來回答因為在我認為大概4年4年就可以了那以後我們盡量以4年為例一起好不好4年一起來做一個財富調查那另外一個部分
transcript.whisperx[235].start 7349.23
transcript.whisperx[235].end 7364.356
transcript.whisperx[235].text 主席長,其實今天的這個數字,占GDP的占比,這個數字我是來自於央行的統計數字這個是我們來引用我們的沒有沒有,待會我再說這個是引用你的,那另外有央行的我待會再說,不用急
transcript.whisperx[236].start 7364.616
transcript.whisperx[236].end 7367.219
transcript.whisperx[236].text 有一個聯合國的數字人類發展指數超越日韓這是在2021年的時候然後你們去推估出來因為我們不是聯合國會員國那今年他又公佈了
transcript.whisperx[237].start 7379.713
transcript.whisperx[237].end 7405.369
transcript.whisperx[237].text 在2021年的時候呢那時候我們19名你預估是超過日本22名韓國26名吼那是依照博民總收入來計算的那為什麼今年公布你們沒有再次公布呢你們沒有再次推估呢我們要根據他們的公布以後我們再去看看他們的內容他們已經公布了我們再來做我們會去努力來主計長他們已經公布了他們已經公布了所以我們會去那短期內多久可以把它推估出來
transcript.whisperx[238].start 7407.899
transcript.whisperx[238].end 7431.341
transcript.whisperx[238].text 網路上已經有了我們已經網路上有網路上有你跟我們說一下那個在那個貧富差距的部分我們有沒有改善來來來請處長這時候要請不是政務官來回答了來這個事實結果不能有事實結果怎麼樣這基本上HDI的部分我們就依照他們的做法我們現在排行是上升還下降我印象中好像這一次最新的是有下降
transcript.whisperx[239].start 7431.721
transcript.whisperx[239].end 7432.162
transcript.whisperx[239].text 央行的數字在下一個圖表
transcript.whisperx[240].start 7450.101
transcript.whisperx[240].end 7463.175
transcript.whisperx[240].text 養老的數字就是說台灣受僱者的GDP占比是43.9然後從日本、韓國跟美國相對比較人家都超過52%那營業額的部分的GDP我們的占比
transcript.whisperx[241].start 7465.946
transcript.whisperx[241].end 7484.763
transcript.whisperx[241].text 這個34.4你看日本成13.1南韓22日本、美國24.6也就是說我們確實是偏高因為GDP並不是一個共同的成果嘛你剛剛在解釋當中有個別的行業比如說個案這個我個人都同意啊我相信你都說真的但是大家還是談整體的嘛GDP是共同的成果嘛
transcript.whisperx[242].start 7485.143
transcript.whisperx[242].end 7509.855
transcript.whisperx[242].text 所以在這共同的成果的情況底下薪資是最關鍵的嘛那薪資最關鍵的情況底下那個許次長我讓你看一下我們過去8年的基本工資的努力加上往前推我用10年間來算好了總共是32.6%但是總薪資的數字依照主計數的數據大概是25.9%但是中位數的部分呢其實才16點
transcript.whisperx[243].start 7512.397
transcript.whisperx[243].end 7530.667
transcript.whisperx[243].text 總體而言這數字上就這樣比較這樣比較基本工資是政府唯一可以使用的政策工具我可以理解但是它有足底墊高的效用但是足底墊高的效用其實都是相對低所得低薪的一個所得者在勞動市場裡頭分工的
transcript.whisperx[244].start 7531.147
transcript.whisperx[244].end 7553.693
transcript.whisperx[244].text 那過往勞動部發了很多時間包括你今天所做的也就是說青年如果進入勞動市場也就是outside如果進入insider的部分你們做了很多努力可是問題是出在哪裡出在insider也就是說現階段的勞動者他現階段的薪資普遍上框出兩種類型的人來看一下30到39歲這些人
transcript.whisperx[245].start 7556.794
transcript.whisperx[245].end 7575.48
transcript.whisperx[245].text 這一個增加的幅度最少還有包括大專院校研究所的部分簡單的講根據勞動部的統計我們的基本工資直接受益勞工簡單的講大概20%但是薪資停滯實質薪資負成長最嚴重的就是基本工資以上還有中位數以下的這群人
transcript.whisperx[246].start 7576.38
transcript.whisperx[246].end 7592.463
transcript.whisperx[246].text 市長我希望啊我們要認真看待這一個薪資的問題啊這個薪資的問題我說實在的勞保我們還有公務預算可以補貼短期內沒有問題可是低薪啊卻是長期以來受僱者的痛
transcript.whisperx[247].start 7593.992
transcript.whisperx[247].end 7608.363
transcript.whisperx[247].text 這個是現實的問題所以說這個現實的問題我們要去面對這些包括中小企業壯年世代這些大專學生畢業之後他沒有感受到政府對他的一個照顧或favor嘛
transcript.whisperx[248].start 7608.903
transcript.whisperx[248].end 7632.246
transcript.whisperx[248].text 所以我意思是說接下來你們要去處理這一塊經濟部林全仁市長剛剛吳秉立委員講到你們的方案實在是宏偉大都嚇壞了你現階段的部分的150%這個是用加薪抵稅的概念我做一個直接建議你能不能跟勞動部做一個直接的建議
transcript.whisperx[249].start 7634.093
transcript.whisperx[249].end 7660.502
transcript.whisperx[249].text 就直接補助啦什麼就中位數以下還有基本工資以上這一群人政府沒有照顧到的只要你雇主加薪你加薪一部分減稅對不對你只要加一千我給你五百有沒有可能一比一的方式用加薪專案有沒有可能要不要研究看看是從那一個那個那個有盈餘的企業開始有沒有可能
transcript.whisperx[250].start 7663.333
transcript.whisperx[250].end 7690.192
transcript.whisperx[250].text 委員的想法是租稅加上這個補助可能會引導大家更願意去加薪這樣子才有效果那我想委員的分析應該有他的一個這個那你的看法呢?我們事實上對這個補助的部分我剛有提到說我們有很多的給企業的發展補助那是另外的啊你不要做每個加分的這個作用我要跟你談未來的這個方案啦你的看法怎麼樣?
transcript.whisperx[251].start 7692.049
transcript.whisperx[251].end 7714.549
transcript.whisperx[251].text 我想這個部分可能也要看看勞動部的想法我就是要問你跟勞動部你先講啊不要浪費我時間我覺得租稅跟補助同樣有一樣效果不一樣的效果但是同時加起來不是更好嗎你同不同意啊我問你你反對嗎當然這種加成的效果應該會存在那你認為要不要去研究一下可以做研究好可以做研究市長來許市長來
transcript.whisperx[252].start 7716.567
transcript.whisperx[252].end 7717.027
transcript.whisperx[252].text 你的看法呢?
transcript.whisperx[253].start 7747.107
transcript.whisperx[253].end 7775.819
transcript.whisperx[253].text 對 剛剛委員提議我們當然這個部分可以做一個這樣子的一個用一個專案好不好用一個加薪專案我用一個Range給你你評估起來大概多少人我這算出這個人數大概350萬人啦好不好好好研究一下好不好就五一勞動節嘛我看你們勞動部今天有沒有送給勞工什麼大禮啊你至少Promise這件事情嘛我們可以回來把這個委員的意見來納入研究好 納入研究一個月給本席答覆哈可以嗎可以可以好 接下來那個市長你慢點走我覺得接下來最近很多人都談到假期
transcript.whisperx[254].start 7776.847
transcript.whisperx[254].end 7803.514
transcript.whisperx[254].text 這個假期專家市長在這邊啦黃市長在這邊啦我現在看到了大家有在談婚假、商假還有包括照顧假這個我總結跟大家來講這是家屬假就是跟家屬有相關的單位成為一家人你要照顧家人勞工者你在勞動市場之外時間要照顧家人的時候這是家屬假這個家屬假喔老實講喔公務人員跟勞工不應該一國兩制啦那我請問一下黃市長我們這個勞工的假期都多久沒有休了
transcript.whisperx[255].start 7805.198
transcript.whisperx[255].end 7823.458
transcript.whisperx[255].text 有相當的時間了應該超過30年而已超過10年了超過10年而已嗎那因為它最近有一些比較小型的修正小型的修改那不算啦我看主要的應該有的都超過30年了啦主要的價別應該主要超過30年我請勞動部好好去研擬一下
transcript.whisperx[256].start 7824.539
transcript.whisperx[256].end 7851.105
transcript.whisperx[256].text 勞工跟公務人員基本上都受僱只是受僱的國家是部門跟公部門不一樣而已勞動都是同樣的尊嚴不應該有一國兩制應該比照辦理應該假期應該就一樣另外家屬都一樣啊家庭的價值怎麼會不一樣呢對不對商價也應該要一樣婚價也應該都要一樣才對嘛那同樣的照顧家應該給薪的就應該給薪嘛麻煩勞動部從這部分來進行努力研究看看好不好
transcript.whisperx[257].start 7851.567
transcript.whisperx[257].end 7858.869
transcript.whisperx[257].text 是,我們待會跟相關的團體一起來動容討論好,麻煩你喔,那一個月好不好?可以嗎?可以市長,謝謝市長,謝謝主席,謝謝額,額,額,額,額,額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額額�
transcript.whisperx[258].start 7877.847
transcript.whisperx[258].end 7901.866
transcript.whisperx[258].text 有請主計長還有我們的經濟部次長還有我們的勞動部次長主計長、經濟部次長、勞動部次長請主計長謝謝我想這個我們台南張了你很大的一個光你真的是我們的台南之光那今天就是如何改善受僱人員的一個
transcript.whisperx[259].start 7903.325
transcript.whisperx[259].end 7930.452
transcript.whisperx[259].text 那個受僱人員的一個報占比GDP 的比重偏低的一個現狀那就是說怎麼樣創造勞工跟我們的企業雙贏那針對的這個問題我想前面很多委員都問了很多了主計長就是說在GDP 中受僱人員的薪資的一個占比其實逐年的在降低當然它有很多原因就除了少子化以外
transcript.whisperx[260].start 7931.252
transcript.whisperx[260].end 7953.06
transcript.whisperx[260].text 還有就是說在整個薪資的一個平衡不平衡那我覺得不正常的一個變動的原因在你看來會是什麼樣的一個狀況現在給你那個在這個螢幕上面看到了這一個是疫情期間那我們看到了就是說有很多就是這個
transcript.whisperx[261].start 7962.163
transcript.whisperx[261].end 7979.947
transcript.whisperx[261].text 政府如何提升就是企業的一個加薪的一個意願這個當然是非常重要可是企業要提高這個加薪的意願當然我們政府必須要有很大的一個誘因那我不曉得主計長你針對的就是說這樣子的一個有沒有你個人的一個看法
transcript.whisperx[262].start 7980.727
transcript.whisperx[262].end 8000.376
transcript.whisperx[262].text 對,跟那個委員報告,謝謝那個主席委員,我也提供資料,因為我們都台南人都很注重這個事情,跟那個委員報告一下,這個受僱人員報酬啊,我必須跟委員報告一下,世界各國都有,受僱人員報酬的比例下降,世界各國都有這個趨勢,因為
transcript.whisperx[263].start 8002.017
transcript.whisperx[263].end 8021.747
transcript.whisperx[263].text 所以一個報酬的話是要說資本報酬多少勞工報酬多少因為隨著經濟發展那個資本的累積越多所以那個資本的報酬就是像鼓勵那一類的就會比例越多這個是沒有辦法這個世界各國都有趨勢我們是比其他國家比較起來
transcript.whisperx[264].start 8022.667
transcript.whisperx[264].end 8042.997
transcript.whisperx[264].text 主計長你的說法就是說其實這個薪資的重新再分配其實就是在有錢人這30%的部分其實已經再分配到其他的比較大的一個企業下降這種下降趨勢是世界各國的趨勢的那我們就要利用過長措施去把它這個不要把這個下緩的趨勢能夠減緩
transcript.whisperx[265].start 8046.338
transcript.whisperx[265].end 8074.887
transcript.whisperx[265].text 最低工資:或者是說社會福利的措施:讓他的口:薪資隨而下降:他的口支配所都能夠增加:這也是執政黨最近幾年的奴隸是 主席長我想大家就是每一個如果像你講的這樣子的一個通盤是全世界性的屏幕的鹹酥也是全世界性的那實際的總薪資其實大家明顯都在下降可是最苦的就是這些基層的老百姓除了這個
transcript.whisperx[266].start 8076.608
transcript.whisperx[266].end 8079.931
transcript.whisperx[266].text 三大行業不管是在工業及服務業還是在工業及服務業就是說你們把它分為就是實心它的所得裡頭算
transcript.whisperx[267].start 8096.969
transcript.whisperx[267].end 8122.81
transcript.whisperx[267].text 是5萬多可是他的基本薪資還是最初的一個基本薪資還是停留在2萬7千多塊那為什麼服務業是呈現這麼多的一個下降的一個趨勢那我們再看到下一頁民眾的薪資的一個漲幅跟不上CPI的一個漲幅那實際的薪資變薄了這實際的薪資變薄了當然我們看到解決的一個方式就是說你要
transcript.whisperx[268].start 8123.45
transcript.whisperx[268].end 8136.425
transcript.whisperx[268].text 議制這個CPI的增加的速度那最直接就是提供勞工的一個薪資在下一頁那主計長我想在這裡請教你薪水增加最多的本來就是高薪的這個30%的一個民眾
transcript.whisperx[269].start 8138.487
transcript.whisperx[269].end 8154.711
transcript.whisperx[269].text 那薪水沒有占的是在真正需要的一個民眾裡頭那你怎麼樣就是說去看待就是這個分配不均的一個現狀有沒有提供一個更直接更好的一個方法可以快速的來解決呢
transcript.whisperx[270].start 8155.051
transcript.whisperx[270].end 8180.488
transcript.whisperx[270].text 跟那個委員報告一下對於真正弱勢的就像你這邊講的D1、D2這邊有可能是要那個所謂的那個最低工資的處理到另外一個就是說對於中間的這一群人我們是說因為薪資就是等於他的那個生產力的一個報酬那我們要讓他生產力能夠提高就是也許他
transcript.whisperx[271].start 8181.068
transcript.whisperx[271].end 8201.019
transcript.whisperx[271].text 這是我們要給予像勞動部目前有做了很多職業的訓練讓他能夠適應的社會的變化能夠適應的環境能夠使他的生產力提高企業就會會雇用他然後這個是一個原因另外一個就是所謂的社會福利措施謝謝
transcript.whisperx[272].start 8202.028
transcript.whisperx[272].end 8227.005
transcript.whisperx[272].text 好 社會福利措施做得更好謝謝主計長我想接著是不是請教勞動部勞動部次長我想這個主計長講得非常的清楚了如何增加就是本國本國的一個勞工的一個薪資的一個增加有沒有機會我們的外勞的基本薪資跟本勞的基本薪資他是脫鉤的那有沒有機會就是說我們的
transcript.whisperx[273].start 8227.705
transcript.whisperx[273].end 8229.707
transcript.whisperx[273].text 有關於第一個問題其實這個問題是應該是這樣講這個國際上面針對這個同工同酬這個部分是國際勞工組織一個很基本的標準那
transcript.whisperx[274].start 8256.072
transcript.whisperx[274].end 8283.194
transcript.whisperx[274].text 我想這個問題其實台灣也討論很久大致上意思是說我們要跟國際上的這個要一樣的標準尤其現在各國都在徵詢這個事實上我們的這個外籍移工的薪資的標準是不是跟其他國家有沒有這個一致性你們應該很清楚那相對的就是說為什麼有很多外籍的一個移工他們其實他們不選擇來台灣
transcript.whisperx[275].start 8284.795
transcript.whisperx[275].end 8292.534
transcript.whisperx[275].text 不是因為薪水不好是因為被剝削掉了非常多那有沒有機會去改善我想你們已經看出問題了
transcript.whisperx[276].start 8294.284
transcript.whisperx[276].end 8319.331
transcript.whisperx[276].text 跟委員報告若是第二個問題有關於這個外勞在臺灣有所謂的重建費因為我們需要勞工嘛你這個勞工就是說如果你的外勞的薪資跟本勞的一個薪資是脫鉤的時候那事實上我們本勞會就是因為少子化了就是本勞他其實就是說在這個上班的這個醫院上其實會越來越低為什麼?時間沒到錢嘛
transcript.whisperx[277].start 8322.771
transcript.whisperx[277].end 8345.079
transcript.whisperx[277].text 因為被分掉了他的工作機會也被分掉了然後還有他種種的福利也不見了其實我想好謝謝那個次長我想在這裡請教我們經濟部次長我想這個我們整個去中化的這一波的一個浪潮中那我們看到了很多很多就是這個我們的台商他們把
transcript.whisperx[278].start 8346.499
transcript.whisperx[278].end 8347.24
transcript.whisperx[278].text 委員會主席
transcript.whisperx[279].start 8358.738
transcript.whisperx[279].end 8385.106
transcript.whisperx[279].text 我想剛剛我的報告裡面有提到我們有這個投資台灣三大方案那這幾年來事實上我們已經這個促進了將近2.2兆的一個投資回到台灣來有大概1400多家的一個企業進來我想這個就是在吸引說大家在提高這個生產韌性在全球佈局的時候也回到台灣來那當然我們希望回到台灣來是附加價值高的是比較高階的製造的一個部分回到台灣來做相關的一個生產這樣才能夠創造更高的價值
transcript.whisperx[280].start 8386.766
transcript.whisperx[280].end 8406.189
transcript.whisperx[280].text 我想護高價值高的一個行業回到台灣這個是我們一個目標 非常的一個正確可是相對的就是說在現在在我們台灣本土的很多的一個公司工廠他們其實搶到了訂單也有單子可是問題就是說他的工人是不夠的
transcript.whisperx[281].start 8407.233
transcript.whisperx[281].end 8432.767
transcript.whisperx[281].text 他的工人是不夠的這個在早期2000年的時候我們整體的一個外移我們把我們的這個傳統的一個產業我們移到中國去了移到東南亞去了那事實上這個工廠出去了勞工變窮了因為勞工沒有薪水了勞工沒有工作做了可是老闆變有錢了那相對的現階段我們其實是有單子沒有工人啊
transcript.whisperx[282].start 8433.564
transcript.whisperx[282].end 8460.694
transcript.whisperx[282].text 那你們有沒有想到說有更好的一個方式可以來解決這些問題呢我想這個部分可以從兩個面向來跟委員做報告一個面向我跟委員報告事實上這幾年我們就在提升我們的一個製造業的一個所謂智慧製造的能力也就是說在同樣的這個勞力底下它可以生產更多的一個這個訂單事實上這幾年我們那個智慧製造也就是說更自動化的一個情形增加了很多企業
transcript.whisperx[283].start 8461.474
transcript.whisperx[283].end 8490.627
transcript.whisperx[283].text 在勞力在不增加的情況之下現在甚至連AI的一個就是設備都進來了我跟你講所有的老闆他不會捨不得就是說對自己自己的工廠自己的公司下去投資現在重要的就是說你的工人他的工人是不夠的啊那有沒有什麼更好的一個誘因像有一個租稅的優惠的一個租稅的方式然後讓他們有辦法就是說把讓利給工人啊
transcript.whisperx[284].start 8492.382
transcript.whisperx[284].end 8514.96
transcript.whisperx[284].text 給勞工的勞工的一個薪資你們有沒有想過這樣的一個問題你看你在這個2023年中小企業的白皮書裡頭你說加速要突破突破163萬人的一個創新高可是事實上就是加薪減稅的一個優惠每年申請的不到100家為什麼會這麼懸殊呢當然是我們的條件太嚴苛了
transcript.whisperx[285].start 8516.517
transcript.whisperx[285].end 8538.118
transcript.whisperx[285].text 是 我剛剛我們有很多的委員也就教過這個部分就是現行的那個中小企業加薪的那個抵檢確實是條件太嚴苛了我們現在把它做一個放寬就不用受限那麼多的一個門檻這個是我們在努力對 我們現在就已經提出法案已經送到大院這邊來做審議那這個把原來的那些門檻都把它給放寬掉這樣子
transcript.whisperx[286].start 8539.499
transcript.whisperx[286].end 8563.917
transcript.whisperx[286].text 好,謝謝,謝謝次長那在這裡本席要求經濟部跟互稅署合作就是分析現行的加熱的一個減稅的優惠的一個申請業者的具體營運的一個規模那依照不同的一個規模的業者提出新的一個租稅的一個方案那也評估是不是現在這個新聘僱還有徵聘的一個租稅的優惠之外還可以禁用
transcript.whisperx[287].start 8564.497
transcript.whisperx[287].end 8564.838
transcript.whisperx[287].text 請一個院內提出書面報告
transcript.whisperx[288].start 8586.121
transcript.whisperx[288].end 8590.364
transcript.whisperx[288].text 我們待會在李昆成委員質詢之後休息10分鐘請接著我們請王世堅委員質詢謝謝主席我請我們主計處長跟財政部卵次長宋署長關稅署
transcript.whisperx[289].start 8614.827
transcript.whisperx[289].end 8631.457
transcript.whisperx[289].text 負稅署 副稅署 宋署長 阮次長 宋署長您好委員好三位好我們今天
transcript.whisperx[290].start 8632.694
transcript.whisperx[290].end 8648.507
transcript.whisperx[290].text 主要的主題要來探討平負差距嚴重惡化那也謝謝主計處總算我們等了30年又來了這一份30年前的報告跟30年之後的調查
transcript.whisperx[291].start 8649.648
transcript.whisperx[291].end 8660.971
transcript.whisperx[291].text 那麼30年前我們前20%的家庭財富所得1306萬當時候20%的所得78萬差距16.8倍30年之後我們前20%的財富所得5133萬後20%的財富所得
transcript.whisperx[292].start 8677.455
transcript.whisperx[292].end 8699.702
transcript.whisperx[292].text 沒有增加反而倒減一萬元七十七萬這個差距從16.8倍一下子惡化到66.9倍66.9倍有錢的財富高所得的前20%
transcript.whisperx[293].start 8701.636
transcript.whisperx[293].end 8714.124
transcript.whisperx[293].text 跟後28差距66.9倍這是非常大非常嚴重的問題我先請教主計處長
transcript.whisperx[294].start 8718.038
transcript.whisperx[294].end 8741.11
transcript.whisperx[294].text 這是30年來才公布這麼一次所以是不是未來我們應該縮短這個期限應該每幾年就應該公布一次讓各部會知所警惕趕快找出什麼樣的方式來說斷我們社會財富的分配所以那個
transcript.whisperx[295].start 8744.4
transcript.whisperx[295].end 8772.893
transcript.whisperx[295].text 處長你有沒有認為應該是怎麼樣我是認為說這個不該30年才公布一次因為現在的那個調查的技術以及那個大數據的發展不必像以前那麼一個一個去調查那我們可以利用大數據來做那我們這一次做的就是利用大數據那我覺得委員講的剛才非常對是我們會定期做那個定期不會說30年才做一次
transcript.whisperx[296].start 8774.819
transcript.whisperx[296].end 8799.866
transcript.whisperx[296].text 謝謝你這個答覆所以那你認為應該因為現在既然有大數據來調查統計非常容易嘛所以你認為是不是應該定期那你看應該沒幾年一次我跟委員報告一下因為這個存量的資料不會變化很大流量的話就是所得分配我們每年都在做這種財富分配因為工程很浩大
transcript.whisperx[297].start 8805.672
transcript.whisperx[297].end 8815.943
transcript.whisperx[297].text 其實這裡面有些數字其實我覺得是多講了啦說平均啊大家的平均每個家庭的財富是1638萬但是啊各位
transcript.whisperx[298].start 8820.925
transcript.whisperx[298].end 8836.535
transcript.whisperx[298].text 我們有七成的家庭根本沒有達到平均數所以這一千六百三十八萬的平均家戶財富這句話白說的就對了講假的啦
transcript.whisperx[299].start 8837.489
transcript.whisperx[299].end 8862.197
transcript.whisperx[299].text 沒有用嘛七成的家庭沒有達到這個平均數對因為一般來講啊平均數都會比中位數高所以我們也會有所謂的中位數的一個資料這個是因為我們這個財富啊跟委員報告一下是扣掉負債有些人啊他的一個是怎麼樣銀行啊他
transcript.whisperx[300].start 8863.397
transcript.whisperx[300].end 8889.924
transcript.whisperx[300].text 就是我剛才講的財務槓桿超得過大所以他有資產很高但是負債也很高結果會落入到最低的百分之二十謝謝那個謝謝處長我剛這句話是講給你旁邊這兩位聽的啦我不是針對你齁你很老實你把這些數字很據實的那公布出來這是對的齁好那
transcript.whisperx[301].start 8890.717
transcript.whisperx[301].end 8897.702
transcript.whisperx[301].text 那個朱處長你先請回朱主計長你先請回你先請回那個這個我問一下財政部財政部你們大概這先前我們有負人稅嘛
transcript.whisperx[302].start 8909.71
transcript.whisperx[302].end 8924.063
transcript.whisperx[302].text 那麼你們在民國107年你們就把這個富人稅刪除掉了你們那時候就是短短的一句話說為了留財攬財吸引投資就這麼一句話結果你就把這個富人稅刪掉了那
transcript.whisperx[303].start 8931.352
transcript.whisperx[303].end 8958.069
transcript.whisperx[303].text 剛才經濟部那個次長經濟部一向比較天馬行空他要說這個是為了提高生產韌性生產韌性我倒不知道啦我倒知道你們財政部很韌性你想刪就刪你要討好富人你就這麼韌性的就這樣一句話你就刪了好嗎
transcript.whisperx[304].start 8959.713
transcript.whisperx[304].end 8981.272
transcript.whisperx[304].text 真的你說為了流財攬財吸引投資我就看了這個你們打的這個稅金的所得報告裡面這些你說啊你說有大概股利所得增加678億元可是你如果真的把實質
transcript.whisperx[305].start 8983.55
transcript.whisperx[305].end 9007.112
transcript.whisperx[305].text 鼓勵所得增加678億元你真的去看真正的所得名單都是這些高持股者就是這一些上市櫃營運公司他們本來的擁有者啊你流財攬財在什麼地方我沒有看到任何實質的關聯所以
transcript.whisperx[306].start 9008.462
transcript.whisperx[306].end 9023.269
transcript.whisperx[306].text 我認為你導是應該從你2023年實質總薪資這是七年來頭一次的負成長欸實質總薪資的負成長這才是真的不是這樣嗎然後平均總薪資也是呈現下滑
transcript.whisperx[307].start 9030.377
transcript.whisperx[307].end 9048.951
transcript.whisperx[307].text 這才是真的要關注的問題所以我看不出你們講的那個說鼓勵啊這個所得增加678億這個跟你刪除富人稅什麼直接關係然後現在是工時越來越高薪資越來越低啦那也是
transcript.whisperx[308].start 9053.705
transcript.whisperx[308].end 9064.132
transcript.whisperx[308].text 這個主計總處人家他們有做了這個啦受僱員工每月總工時110年166.7小時111 167.3小時112年到現在是168.3小時工時成長實質薪資所得下降這才是真正的現狀啊那我看你們
transcript.whisperx[309].start 9082.725
transcript.whisperx[309].end 9108.003
transcript.whisperx[309].text 就是我那天也講啊你們部長他就是認為國產稅收這個實質價牢牢的他要守住就對了只對富人減稅其他你休想碰好啊我剛剛就講啊你在當你在
transcript.whisperx[310].start 9110.026
transcript.whisperx[310].end 9119.112
transcript.whisperx[310].text 刪除婦人稅的時候你沒有說財政部當時沒有說要有替代財源才可以免除這個稅金有嗎
transcript.whisperx[311].start 9120.197
transcript.whisperx[311].end 9145.662
transcript.whisperx[311].text 沒有啊我跟委員報告齁是不是可以讓我簡單說明一下我們就是當時那個中華所得稅的稅率45%降到40%當時的確是考慮到當時的就是流財攬財跟促進經濟發展那我現在問你了你要取消這一條稅說每年啊每年大概100億光那三年298億
transcript.whisperx[312].start 9148.403
transcript.whisperx[312].end 9171.304
transcript.whisperx[312].text 報告委員我是不是可以說明一下雖然是剛開始減的時候當然一定會有稅損但是呢如果跟106年跟110年來比較的話我們的薪資所得是增加的6千多億那麼總所得是增加7千多億那麼就稅收來講的話呢
transcript.whisperx[313].start 9172.585
transcript.whisperx[313].end 9173.165
transcript.whisperx[313].text 經濟發展的果實都被極少數
transcript.whisperx[314].start 9193.65
transcript.whisperx[314].end 9202.137
transcript.whisperx[314].text 這些財團富人他們瓜分掉了嘛不是嗎從這幾個數字裡面我剛剛在講我說你要取消富人稅過去啊我們好幾位委員包括我多次談這個不合時宜的稅制太多啦娛樂稅、印花稅、汽機車的貨物稅汽車關稅等等這一些
transcript.whisperx[315].start 9220.503
transcript.whisperx[315].end 9221.103
transcript.whisperx[315].text 我剛剛光講這幾樣喔光娛樂稅
transcript.whisperx[316].start 9249.67
transcript.whisperx[316].end 9251.995
transcript.whisperx[316].text 一年最高才18億這個印花稅就先不講印花稅比較高
transcript.whisperx[317].start 9256.394
transcript.whisperx[317].end 9281.04
transcript.whisperx[317].text 五十億我就講汽機車的貨物稅四十七億那困擾我們許多生頭小民的還有保健品關稅這個二十六億這三項加起來啊汽機車貨物稅跟娛樂稅跟保養品這些加起來才九十億結果你免除了富人稅一年就免除了一百億
transcript.whisperx[318].start 9282.691
transcript.whisperx[318].end 9293.164
transcript.whisperx[318].text 你們大剌剌的這6年來免除了600億結果你偏要跟深頭小民計較你偏要說我剛講的這個汽機車貨物稅我講的這個娛樂稅你們說要找到替代財源
transcript.whisperx[319].start 9298.7
transcript.whisperx[319].end 9323.81
transcript.whisperx[319].text 報告委員我是不是可以讓我簡單說明一下雖然是我們當時的稅率是45%降到40%但是我們那時候有提出的是配套方案就是所謂的就是我們優化所的稅制方案所以是提高了相關的四大扣除優化的結果優化的結果只是讓窮人更窮富人更富
transcript.whisperx[320].start 9324.39
transcript.whisperx[320].end 9333.742
transcript.whisperx[320].text 這個就是今天主計處給我們的結論嗎不會啦 不會啦事實上很多人是因為這樣的一個改革你這個態度就是不對什麼叫不會那主計總處今天這個調查出來的結論你怎麼解釋
transcript.whisperx[321].start 9339.477
transcript.whisperx[321].end 9361.977
transcript.whisperx[321].text 我認為維京從稅制稅賦上面趕快來做調整我認為加薪減稅加薪減稅的第一步財政部你聽好就是要取消失業率的限制因為你所謂的加薪減稅的方式到現在這麼多年只有實施一次原因是為什麼你說要連續
transcript.whisperx[322].start 9364.864
transcript.whisperx[322].end 9389.807
transcript.whisperx[322].text 六個月失業率達到3.78%以上那坦白講這麼多年下來就只有一次而已這個修正草案全部都刪除了啦我實在因為沒時間那個趙先生我再念三個數字三件事情一提三分之二的勞工領不到平均薪資中等薪資者十年來沒有加薪那
transcript.whisperx[323].start 9391.178
transcript.whisperx[323].end 9416.433
transcript.whisperx[323].text 最重要的一點公司的營收表現好像有經濟是成長可是經濟成長的果實是極少數富人他們瓜分掉這一點你站在財政部站在負稅署長你責無旁貸你要去想辦法你不要動不動跟經濟部一個樣講一些天馬行空的可不可以
transcript.whisperx[324].start 9417.955
transcript.whisperx[324].end 9423.337
transcript.whisperx[324].text 謝謝委員指教謝謝王世堅委員的質詢緊接著我們請李昆成委員質詢謝謝主席我先請勞動部的次長有請許次長
transcript.whisperx[325].start 9444.441
transcript.whisperx[325].end 9462.656
transcript.whisperx[325].text 市長那先謝謝主席在今天五一勞動節安排這麼有意義的題目那我先問一下市長那這個我看昨天有國民黨的立委開記者會我先問一下在我們勞基法裡面有沒有所謂的適用期這個詞彙或者說適用期的這個法條
transcript.whisperx[326].start 9466.631
transcript.whisperx[326].end 9491.064
transcript.whisperx[326].text 現在已經修掉沒有這個沒有適用期嘛那所以我昨天有看到有這個國民黨立法委員說要把勞工的適用期法制化而且在適用期的薪水呢不得低於應聘工資的80%那當然就很多人就引起反彈啦那就變成說你同工不同酬啦那本來沒有這個適用期那結果你適用期三個月而且呢薪資打八折
transcript.whisperx[327].start 9491.924
transcript.whisperx[327].end 9515.306
transcript.whisperx[327].text 未來公司應聘新人的時候先幫你打八折再說部長你昨天直播這個新聞市長昨天直播這個新聞是我看到了那你覺得怎麼樣我想這個是之前我們現在新的法令就是因為這樣子有後遺症所以已經把這個拿掉了所以現在又往回頭路這個部分有什麼樣的後遺症
transcript.whisperx[328].start 9516.603
transcript.whisperx[328].end 9541.923
transcript.whisperx[328].text 這可能就變成說因為僱主他可能有一點有專法律漏洞的可能性或者是說這個工資有可能因為這樣子反而下降所以就是算是新進員工進去的話這個沒有適用期第一個嘛就是這個勞資當你有相關的一些契約的規定那也沒有所謂的薪資打折的事情吧所以應該有無反勞基法的規定吧
transcript.whisperx[329].start 9543.001
transcript.whisperx[329].end 9561.543
transcript.whisperx[329].text 我們勞動部是定一個現在是基本工資以後是最低工資在這個之上但我們會尊重他勞僱雙方的一個協議同樣的工作的話新晉能源就打八折這個對新晉能源公平嗎基本上我們是有一個基本工資跟最低工資在這個地方
transcript.whisperx[330].start 9561.783
transcript.whisperx[330].end 9562.123
transcript.whisperx[330].text 主席主席長
transcript.whisperx[331].start 9590.39
transcript.whisperx[331].end 9615.055
transcript.whisperx[331].text 主計長好 主計長辛苦了昨天看到你們發布的新聞稿說第1季的GDP成長率增加到6.51%主計長看到這個數字高不高興?當然高興 這個比我們原來的預期高比原來預期高的原因在哪裡?
transcript.whisperx[332].start 9615.695
transcript.whisperx[332].end 9616.016
transcript.whisperx[332].text 本來預期是多少?
transcript.whisperx[333].start 9640.02
transcript.whisperx[333].end 9666.132
transcript.whisperx[333].text 5.9現在變6.51就是比預期增加的大概0.59個百分點那請教一下主計長如果是按照這個你們在2月底的一個經濟成長率的一個預估預估是今年的全年經濟成長率大概是3.43那如果說按照這個第一季的經濟的這個成長率有高達6.51那您要不要再預測一下
transcript.whisperx[334].start 9667.773
transcript.whisperx[334].end 9675.995
transcript.whisperx[334].text 整年度的經濟成長率會不會再做調整對,我們五月份會有一個新的預估如果這樣子是0.59的話相當於年的話大概是0.15增加0.14那我們原來是3.43
transcript.whisperx[335].start 9692.14
transcript.whisperx[335].end 9696.826
transcript.whisperx[335].text 所以會變成3.5G可是這個是根據原來的預估那我們五月底會有一個新的預估但是趨勢是成長的就對了對對對所以這個主計長對於這個
transcript.whisperx[336].start 9710.461
transcript.whisperx[336].end 9726.727
transcript.whisperx[336].text 臺灣這個今年度的經濟成長率是有信心的謹慎樂觀謝謝謹慎樂觀我昨天看到你們新聞稿上面寫說國內景氣已慢慢轉好但復甦力道和緩這個主講怎麼看對這種是我經過修改
transcript.whisperx[337].start 9728.147
transcript.whisperx[337].end 9731.149
transcript.whisperx[337].text 我剛才講的我們估計3.57也是有依據的
transcript.whisperx[338].start 9754.887
transcript.whisperx[338].end 9765.117
transcript.whisperx[338].text 你們當然主計處的這個每個數據都有依據啦但是這個修辭上面這個學問就很大了因為景氣轉好這個是事實嘛對不對但是呢復甦力道和緩
transcript.whisperx[339].start 9768.736
transcript.whisperx[339].end 9785.132
transcript.whisperx[339].text 這個就是你你你給的這一個的這一個欸怎麼講勒你不希望給下面的主計長太大的壓力就對了對跟那個委員報告一下齁我們的那個有一個很好的現象大家沒有看到我們的出口增加
transcript.whisperx[340].start 9785.732
transcript.whisperx[340].end 9786.552
transcript.whisperx[340].text 本期再請教一下主計長
transcript.whisperx[341].start 9812.285
transcript.whisperx[341].end 9819.413
transcript.whisperx[341].text 從我國GDP分片面的結構來看我們從最早70年開始看到這個111年受僱人員的報酬本來是占49.3%但是到了111年下降到43.9%但是企業營運其實是有增加的
transcript.whisperx[342].start 9831.727
transcript.whisperx[342].end 9845.946
transcript.whisperx[342].text 那主席想怎麼看這個數字呢?這個我必須講這個是因為我們的那個因為那個營業盈餘是對資本的報酬受僱人員是對勞動的報酬那我們的資本從另外一個
transcript.whisperx[343].start 9846.952
transcript.whisperx[343].end 9853.76
transcript.whisperx[343].text 那個方向來看我們資本密集度越來越高所以我們的那個是什麼營業盈餘會一個增加同樣的因為有資本的報酬有勞動的報酬勞動的報酬因為那個是什麼
transcript.whisperx[344].start 9862.649
transcript.whisperx[344].end 9874.701
transcript.whisperx[344].text 表示我們不再是一個勞動密集的產業所以這個比重下跌是一個會是說還可以被認同的世界各國的趨勢都有這個現象主計長你有專業的看法但是我是認為說
transcript.whisperx[345].start 9880.667
transcript.whisperx[345].end 9901.994
transcript.whisperx[345].text 會不會是因為企業盈餘沒有把企業的盈餘分潤到員工這可能也是原因之一這也是原因之一你剛才都沒有提到這一點剛才主席也有提到這一點所以現在就提到說我們這個中小企業發展條例要做修改這個要請財政部次長過來我們這個中小企業發展條例要做修改對不對
transcript.whisperx[346].start 9907.691
transcript.whisperx[346].end 9927.275
transcript.whisperx[346].text 那也是這個有這個加薪減稅的這個主軸那我看了這個你們的這個中小企業發展條例的修改那其中有一項就是第一個其實剛剛這個王思堅我有提到不過你們應該有做修改就是這個景氣啟動門檻有把它刪除掉這個有把它刪除掉
transcript.whisperx[347].start 9929.916
transcript.whisperx[347].end 9952.773
transcript.whisperx[347].text 過去還有說失業率要連續6個月高於3.78%所以過去10年其實才兩個年度有所以把它刪除掉了那現在就是說有關於這個加薪的這部分這個徵雇員工薪資費用百分之130得自當年度盈利事業所得中減除那現在這個加成的減除率提高到150%就對了
transcript.whisperx[348].start 9955.675
transcript.whisperx[348].end 9956.216
transcript.whisperx[348].text 基層員工薪資的適用範疇從5萬元調高到6.2萬元
transcript.whisperx[349].start 9979.168
transcript.whisperx[349].end 9995.783
transcript.whisperx[349].text 請教一下這個條例是到5月19號就是到519嘛那現在如果說是要延長的話是要延長10年就對了延長10年那延長10年的話那現在這一個因為行政院本已經是同意了嘛對不對那你們除了這個之外勒
transcript.whisperx[350].start 9996.443
transcript.whisperx[350].end 10023.686
transcript.whisperx[350].text 你們除了這個之外還有沒有什麼加薪減稅的你們覺得是還有其他的方法來做的我跟委員報告事實上我們現在就是我們的經濟發展朝向資本密集跟技術密集那所以我想就是說就全球各地來講大概基本上都是大概所得分配都有一些扭曲就比較就是有一些有一些這個有些比較好一些比較弱的情況
transcript.whisperx[351].start 10024.932
transcript.whisperx[351].end 10040.463
transcript.whisperx[351].text 那我們現在的做法是怎麼做呢我們就是第一個我們就是希望能夠透過剛才講的租稅的減免所以減免讓這個鼓勵民間的業者能夠加薪那就是說齁你們之前齁這一個中小企業發展條例齁
transcript.whisperx[352].start 10041.448
transcript.whisperx[352].end 10041.968
transcript.whisperx[352].text 那如果薪資呢?
transcript.whisperx[353].start 10073.149
transcript.whisperx[353].end 10094.923
transcript.whisperx[353].text 心智的部分呢?有可能因為這樣子這個減稅之後調薪大概是多少?有沒有這個數字?大概15億多啦我們目前根據經濟部目前的評估的話大概一年大概增加15億多啦那如果說這個到中小企業的勞工的手上勒?有算過嗎?
transcript.whisperx[354].start 10096.704
transcript.whisperx[354].end 10121.832
transcript.whisperx[354].text 就算我就是會增加15億多增加15億多是全部的嘛對對那個別的話那就看每一個職位都不一樣那可是因為現在519就到齊了啊那這個是禮拜明天在經濟委員會就會討論這個案子那這樣來得及嗎在就明天討論我想明天看有沒有結論如果有結論的話就根據那個結論來處理好謝謝主計長謝謝委員謝謝主席謝謝李昆山委員的質詢我們休息10分鐘
transcript.whisperx[355].start 10130.07
transcript.whisperx[355].end 10130.311
transcript.whisperx[355].text 主席
transcript.whisperx[356].start 10733.015
transcript.whisperx[356].end 10735.397
transcript.whisperx[356].text 好 我們繼續開會 接著我們請王洪威委員質詢好 謝謝主席 我先請我們的主計長有請主計長好 主計長 早
transcript.whisperx[357].start 10757.935
transcript.whisperx[357].end 10776.597
transcript.whisperx[357].text 主席我之前就是請問您就是我們要在4月底公布我們的家庭財富那個所得的這個差距那麼我當時呢我還太低估了我說時隔30年會不會超過20倍啊你說還在計算那時候我就想說一定
transcript.whisperx[358].start 10777.137
transcript.whisperx[358].end 10778.938
transcript.whisperx[358].text 這是我們做的這是你們做的圖片做得很好
transcript.whisperx[359].start 10805.782
transcript.whisperx[359].end 10818.993
transcript.whisperx[359].text 但是這裡面其實充分的說明我們的貧富差距是如此之大而且絕大部分的家庭事實上他們都在金字塔的底層
transcript.whisperx[360].start 10820.307
transcript.whisperx[360].end 10839.872
transcript.whisperx[360].text 我們的平均數家庭財富的平均數是1638萬結果有七成的家庭根本沒有達到所以就可以看到整個的金字塔這個在金字塔上端的財富他們實際上真的掌握台灣真的主要的財富我們看一下下一頁
transcript.whisperx[361].start 10842.076
transcript.whisperx[361].end 10856.288
transcript.whisperx[361].text 我們可以看到整個前20%的家庭他們的家庭財富是超過5000萬而後20%的家庭財富是77萬我覺得他們的占比事實上讓大家覺得更為驚訝
transcript.whisperx[362].start 10859.09
transcript.whisperx[362].end 10881.625
transcript.whisperx[362].text 後20%家庭占總體財富連1%都不到然後前20%占台灣總體財富超過6成所以請教一下主計長你那天也講這是你一個使命當你看到這樣的一個數字一個這樣的結果的時候你自己有沒有覺得非常驚訝
transcript.whisperx[363].start 10883.587
transcript.whisperx[363].end 10897.243
transcript.whisperx[363].text 我沒有驚訝因為我們這個數目跟其他國家比較起來是其他國家我甚至講您這個表上所謂的後百分之一就是一的那個在德國是負的
transcript.whisperx[364].start 10897.703
transcript.whisperx[364].end 10899.565
transcript.whisperx[364].text 所以主計長我們比爛就是了你覺得這樣子的結果很OK?
transcript.whisperx[365].start 10919.602
transcript.whisperx[365].end 10924.969
transcript.whisperx[365].text 一般的人沒有這個最高最低級最高級的這個一般高級的百分比我們沒有說很OK我們後百分之二十家庭他的財富可以再少一點他們已經很多了是這個意思嗎
transcript.whisperx[366].start 10936.545
transcript.whisperx[366].end 10962.547
transcript.whisperx[366].text 比國外的那一個高一般國外都是只公佈前百分之二十沒有最高跟最低在比較因為我剛才講最低如果是負的話或者是一塊錢的話就會說差距就根本不能比所以他根本沒有在最高跟最低在比較我們跟我們自己比嘛我們30年前16.8倍當時大家就覺得說這個差距已經非常非常的明顯
transcript.whisperx[367].start 10963.668
transcript.whisperx[367].end 10983.596
transcript.whisperx[367].text 現在呢差了66.9倍然後我們說沒關係啦我們比美國啦我們比澳洲啦沒有什麼關係我沒有說沒有什麼關係這個是拿一個資料出來給大家參考這不是參考這是我們的說明我們的貧富差距差距如此之大參考什麼
transcript.whisperx[368].start 10984.976
transcript.whisperx[368].end 10989.278
transcript.whisperx[368].text 有請院次、林次、施副主委
transcript.whisperx[369].start 11012.13
transcript.whisperx[369].end 11017.992
transcript.whisperx[369].text 主計長我們有請你回去喔主席我要請主計長回去嗎那主計長請旁邊稍候一下喔你好好我先請財政部在這個數字出來之後我們看到一些學者專家認為臺灣的財富差距之所以這個貧富差距拉大主要是稅制的問題那請問一下次長你同意嗎
transcript.whisperx[370].start 11040.518
transcript.whisperx[370].end 11068.858
transcript.whisperx[370].text 我跟委員報告雖然是說這個就是說這個財富分配有擴大但是就納稅來講我們現在其實繳稅還是高所得繳稅比如說我們現在中和所得稅佔最高的佔40%的大概百分之0.86但是它繳的稅佔了大概將近四成五大部分來自於什麼所得呢
transcript.whisperx[371].start 11071.037
transcript.whisperx[371].end 11079.6
transcript.whisperx[371].text 這個所得當然各種所得都有嘛有薪資所得也有鼓勵所得我現在所得上沒有這個資料我們會沒有資料你來這邊沒有資料
transcript.whisperx[372].start 11083.69
transcript.whisperx[372].end 11102.642
transcript.whisperx[372].text 這個組織很多人都滾瓜爛熟了我們才七成來自於我們薪資所得我是不是請那個宋處長來跟你說不用講啦我都知道大概七成的來自於薪資所得所以在我們很多學者專家認為今天要讓我們的貧富渣聚能夠拉平有兩種
transcript.whisperx[373].start 11104.383
transcript.whisperx[373].end 11124.07
transcript.whisperx[373].text 兩種手段一種就是稅制另外一種手段事實上就是社會福利對不對對這是一般學者在家都會認為有這兩種手段但是呢社會福利是一種比較屬於我的一個用補助的方式但是我們在稅制上我們不可諱言的
transcript.whisperx[374].start 11124.71
transcript.whisperx[374].end 11147.095
transcript.whisperx[374].text 在我們所得稅裡面對資本所得科稅太少而對薪資一般的上班族科稅太重因為我們主要的所得稅的稅源來自於我們的薪資所得所以在這樣的一個很多人會認為說我們在稅制上是不是可以做一些改變比如說有人會提到這個應該要不要附贈證所稅的問題當然我個人對於因為我們過去每一次
transcript.whisperx[375].start 11154.497
transcript.whisperx[375].end 11176.052
transcript.whisperx[375].text 去科證所稅其實最後都無疾而終它在技術上或它在政治上的效應太大但是我們能不能夠在整個的綜合所得稅裡面不要這麼完全的仰賴薪資所得這個事上是可以去改善可以檢討的不能嗎?
transcript.whisperx[376].start 11177.893
transcript.whisperx[376].end 11198.54
transcript.whisperx[376].text 我跟委員報告我們雖然新生所得是佔了大概七成就所得的佔七成但是他的納稅他佔比大概51%到55%左右所以其他的還是基本上還是其他的高所得其他的所得在繳稅稅制事上是可以其實我們確實還是可以去檢討來時間暫停一下我請國發會的副主委
transcript.whisperx[377].start 11204.676
transcript.whisperx[377].end 11206.998
transcript.whisperx[377].text 看到這個數字現在全台灣的貧富差距這麼大然後
transcript.whisperx[378].start 11214.625
transcript.whisperx[378].end 11243.077
transcript.whisperx[378].text 我們的財富如此的集中那麼救國發會的角色來說有沒有辦法可以再做些什麼政策上的修正跟改變讓我們的貧富差距不會像國外我們去比國外國外這個就是不對啊所以才會造成以前華爾街不就這樣子嗎百分之一的人有百分之九十九的財富我們要像這樣子嗎所以剛剛主計長的說法我完全沒有辦法接受啊
transcript.whisperx[379].start 11243.797
transcript.whisperx[379].end 11248.484
transcript.whisperx[379].text 時間有限對國發會來說在我們要去解決或者改善我們家庭貧富差距我們還有些什麼手段
transcript.whisperx[380].start 11257.896
transcript.whisperx[380].end 11286.152
transcript.whisperx[380].text 各位委員包括如同委員剛所提到的在主總的這次的調查是財富的調查那平常是我們所得面那所得面如同剛委員所提到的在政府移轉的收入就是社福的政策或是移轉支出的部分租稅的政策去做調整之外剛才所提到的我們的所得結構有盈利所得、資本所得跟薪資所得那事實上在學界的一些討論和政策討論資本利的基本上包含它在交易或是持有的部分的確在稅制上面是可以做討論的
transcript.whisperx[381].start 11287.093
transcript.whisperx[381].end 11305.08
transcript.whisperx[381].text 我覺得就是我們現在的稅子真的太完全集中在一些薪資所得好,然後我們看下一頁這個其實就是我們今天這個專題報告的一個重點也就是我們在受僱人員的報酬占在 GDP 的比例因為我們就是認為他偏低
transcript.whisperx[382].start 11305.76
transcript.whisperx[382].end 11325.929
transcript.whisperx[382].text 那所以也事實上使得我們的很多的年輕人使得我們很多原來他們是以薪資以受僱者為主的家庭他沒有去觸及一些資本利得他沒有去玩股票他沒有錢去買房而這些族群他要去累積財富他就非常的困難
transcript.whisperx[383].start 11326.909
transcript.whisperx[383].end 11352.477
transcript.whisperx[383].text 所以就變成臺灣怎麼樣呢跟國外養錢滾錢錢滾錢很容易但是你用勞力所得去累積你的財富就非常的困難你就會落在後段班而你完全沒有辦法養工所以這就是我們今天的報告裡面為什麼希望能夠做一些改善對於薪資所得者對受僱者能不能再多照顧一些好來看下一頁
transcript.whisperx[384].start 11353.357
transcript.whisperx[384].end 11371.148
transcript.whisperx[384].text 其實今天還有一個訊息就是我們說一直希望能夠提高工資但是我們大學畢業生每四人就有一個人是領基本工資而且即便他已經做一年了還是有很多人他的薪水還在領基本工資
transcript.whisperx[385].start 11372.128
transcript.whisperx[385].end 11384.101
transcript.whisperx[385].text 所以他如何去累積財富呢這才是說我們今天為什麼要有這樣的一個專題報告而這樣的趨勢就會變成很多年輕人變成什麼呢躺平族
transcript.whisperx[386].start 11385.097
transcript.whisperx[386].end 11412.686
transcript.whisperx[386].text 我沒有辦法再努力了我也不敢去結婚我也沒有辦法去生小孩我也不會買房子我甚至連車子都沒有辦法買就像那個什麼就像日本一樣台灣也越來越多會變成這樣所以為什麼今天我要特別提到我肯定主計處時隔30年願意做一個財富調查報告但是我完全不肯定剛才主計長的態度說這不過是參考而已參考什麼
transcript.whisperx[387].start 11413.266
transcript.whisperx[387].end 11434.248
transcript.whisperx[387].text 如果只是請你就說看看而已那有什麼好做的呢這叫做什麼使命呢所以我才希望我們各部會能把這個調查跟我們今天的報告做一個連結我剛就在講如果今天我們對於資本利得我們在整個的稅制上沒有辦法去做一些改變
transcript.whisperx[388].start 11436.049
transcript.whisperx[388].end 11451.995
transcript.whisperx[388].text 臺灣變成一個錢滾錢、錢賺錢的時代那麼我們如何今天是五一勞動節今天就是五一勞動節我們對於廣大的勞工他用心之所得他是受僱人員我們是對他們不起的好不好請你們真的正視這兩個問題謝謝王偉偉的質詢請接著我們請黃珊珊委員質詢
transcript.whisperx[389].start 11466.821
transcript.whisperx[389].end 11471.508
transcript.whisperx[389].text 主席,我想請主席長,還有勞動部次長,財政部次長,徐卓發會副主委是
transcript.whisperx[390].start 11487.849
transcript.whisperx[390].end 11505.415
transcript.whisperx[390].text 主席長我想今天是勞動節那我給大家看一個12年前的一個新聞12年前的4月30號也就是12年前那時候是國民黨執政當時的民主進入黨的立法院黨團開了一個記者會說5月1號勞動節臺灣的勞工越忙越窮長工時低工資過勞死
transcript.whisperx[391].start 11513.718
transcript.whisperx[391].end 11539.07
transcript.whisperx[391].text 要求動漲電價、調漲基本工資、降低工時、落實勞工檢查十二年過去了我們現在在立法院講的話跟十二年前差不多只是勿換心儀換了一個黨執政這八年狀況依舊如此立法院依舊在要求動漲電價、調漲基本工資、降低工時、落實勞動檢查次長、勞動部
transcript.whisperx[392].start 11543.854
transcript.whisperx[392].end 11571.215
transcript.whisperx[392].text 今天要對勞工說些什麼?這12年過去的這些問題為什麼還繼續存在?好,謝謝黃偉遠的質詢。我想,針對基本工資或是最低工資,這8年來其實我們有不斷的上去。你們做了很多努力,但是你們滿意嗎?因為12年前比起來,你看看喔,100年度實質經常性薪資較99年度增加15塊,所以被罵到翻掉。同樣的,我今天要問的是,
transcript.whisperx[393].start 11572.156
transcript.whisperx[393].end 11578.283
transcript.whisperx[393].text 台電從4月起電價調漲了11%高鐵便當漲了10%黑松沙士漲了25%物價起漲然後主計總處這邊的CPI2月份預估1.85已經調升到2.03經濟成長率目前大概預估是3.43對吧主計長對
transcript.whisperx[394].start 11594.983
transcript.whisperx[394].end 11616.938
transcript.whisperx[394].text 所以基本工資法已經通過了4月份要針對這個做個評估報告請問勞動部次長你們報告如何基本工資法實施之後對於經濟跟就業狀況的影響報告出來了嗎我們現在已經請學者專家都已經整理好了已經整理好了狀況怎樣你要在這邊回答我啊不是整理好啊
transcript.whisperx[395].start 11618.794
transcript.whisperx[395].end 11637.585
transcript.whisperx[395].text 基本工資對於實施的就業狀況有沒有提升有沒有影響沒有我們現在這個基本工資改為最低工資那最低工資的部分呢我們會找學者專家組成一個你現在要告訴我你4月份報告已經出來了今天是5月1號啦你的報告還沒看過嗎
transcript.whisperx[396].start 11641.755
transcript.whisperx[396].end 11647.079
transcript.whisperx[396].text 今天是勞動節你要怎麼樣給勞工一個答案第二個主計長剛剛講的這些東西前面很多委員都在討論所以目前為止現在看起來我們公佈的新鮮人的
transcript.whisperx[397].start 11665.27
transcript.whisperx[397].end 11666.491
transcript.whisperx[397].text 主計長這是事實吧?
transcript.whisperx[398].start 11684.588
transcript.whisperx[398].end 11691.616
transcript.whisperx[398].text 大學畢業生出社會第一件事情有四分之一的人領基本工資是嗎?沒有這是出任人員的薪資統計結果大概就是職場新鮮人啦
transcript.whisperx[399].start 11701.971
transcript.whisperx[399].end 11716.189
transcript.whisperx[399].text 專科或大學畢業生的薪資中位數目前是3萬也就是說有一半的大學畢業生薪水是低於3萬塊的目前為止是不是這樣?大概是這個數字跟12年前有什麼兩樣?
transcript.whisperx[400].start 11719.133
transcript.whisperx[400].end 11732.361
transcript.whisperx[400].text 我必須跟那個委員報告一下我們的基本工資這幾年是每年幾乎有調漲每年都有調漲但是新鮮人的薪水還是一樣啊主計長你調漲沒錯啊但是整體薪資沒有漲再講一次主計總處2月19號公布的薪資統計全體的受僱員工所有的勞工
transcript.whisperx[401].start 11738.744
transcript.whisperx[401].end 11745.769
transcript.whisperx[401].text 替除物價因素後.去年的實際的經常性薪資只有41334元.年減0.05%.也就是連三年的負成長對吧可是今年二月已經變成正成長了
transcript.whisperx[402].start 11754.594
transcript.whisperx[402].end 11754.815
transcript.whisperx[402].text 各位,剛剛講的
transcript.whisperx[403].start 11770.374
transcript.whisperx[403].end 11788.426
transcript.whisperx[403].text 對,我們基本公司在調漲,但是我們的實質薪資相對的在減少我必須跟委員報告一下,最近8年來我們的實質總薪資是增加了4000多塊,相對於前面一個8年,只有增加了9塊所以我現在只跟你比啊,102年啊,也就是說剛剛講的
transcript.whisperx[404].start 11790.527
transcript.whisperx[404].end 11796.49
transcript.whisperx[404].text 蔡英文總統上任的109年的實質薪資是41437塊到112年倒退到41334塊其實是減少了103塊剛剛講12年前民主進步黨因為只增加15塊把當時的執政黨罵翻現在12年後我們的薪資還到在109年到112年減少了103塊
transcript.whisperx[405].start 11820.662
transcript.whisperx[405].end 11840.668
transcript.whisperx[405].text 這是值得驕傲的嗎?我們的經常性薪資8年是有增加啦有現在跟你講109年到112年對因為你取的那一段是剛好是下跌的我們是取8年比較長的如果109年到112年我們不斷的在調漲然後又下降了那是怎麼回事呢?
transcript.whisperx[406].start 11841.248
transcript.whisperx[406].end 11859.424
transcript.whisperx[406].text 對,那個是物價的上漲因為物價吃掉了薪水是因為貨物戰爭那個物價但是長期的話我都知道你要講什麼因為是勞動節大家不要再掩住自己的眼睛了來,勞動部市長你要怎麼回應這樣的狀況
transcript.whisperx[407].start 11861.599
transcript.whisperx[407].end 11881.934
transcript.whisperx[407].text 我想我們勞動部有提出很多鼓勵青年加值計畫包括鼓勵他去考政法今天是勞動節大家希望的是看到實質薪資不斷的調漲最後一個問題接下去明年我們有沒有可能基本薪資有機會調漲3%因為GDP明年的預估大概是3%
transcript.whisperx[408].start 11883.3
transcript.whisperx[408].end 11906.387
transcript.whisperx[408].text 跟法院報告因為現在是變成最低工資那最低工資我們會有一個審議委員會會考量諸多的因素包括物價也考量經濟成長這兩個是臺灣重要的事情薪資很重要不是只是12年前講的話12年後我們坐在這裡講的意外是一樣的話接下來我想問一下請主計長
transcript.whisperx[409].start 11908.796
transcript.whisperx[409].end 11923.07
transcript.whisperx[409].text 這個新的主計長陳淑芝也是您推薦的嗎那個是我跟委員報告一下蔡總統認識她比我認識她還近她不必我推薦她不必我推薦她不必我推薦她的主張你應該很了解吧
transcript.whisperx[410].start 11925.018
transcript.whisperx[410].end 11937.987
transcript.whisperx[410].text 我當然他是從這個20幾歲就當主計人員到65歲退休是更正苗紅的主計人員來這邊就是更重要就是說他會確認你的工作他是一個很適當的主計長的人選謝謝
transcript.whisperx[411].start 11941.249
transcript.whisperx[411].end 11958.296
transcript.whisperx[411].text 我同意啊就是新的主計長他曾經在民國97年寫了一個碩士論文他原來也是台南市的主計長然後在台南他的確也把台南的債務降債減少百億也達到了領取債這是一件好事
transcript.whisperx[412].start 11959.136
transcript.whisperx[412].end 11978.371
transcript.whisperx[412].text 那主計長你自己在學界的時候曾經也說過我們政府的財政垂直不均然後希望能夠把所得稅、貨物稅提供適當的比例給地方這是在朱主計長你以前的主張對吧那個我跟委員報告一下現在的財化法那個分配比例是我當時候
transcript.whisperx[413].start 11979.312
transcript.whisperx[413].end 11996.39
transcript.whisperx[413].text 您已經改善很多了對接受財政部委託財政部也採用了部分的意見我看到很榮幸所以主計長我想你看陳淑芝在97年說的很清楚因為地方政府都有一樣的痛財化法要盡快修法1999年到現在我們其實每次闖關每次都沒有過
transcript.whisperx[414].start 12001.515
transcript.whisperx[414].end 12017.686
transcript.whisperx[414].text 陳淑芝主計長提出要修財化法賴清德總統在台南市長任內也主張要修財化法我想請問一下接下來的行政院有沒有要修財化法還是您要卸任了所以你不知道那接下來的財政部次長要不要回答我這個問題
transcript.whisperx[415].start 12021.243
transcript.whisperx[415].end 12048.612
transcript.whisperx[415].text 財化法是一個非常政治化的問題那我在想說財化法這一部分我想基本上我現在就跟您說我們民眾黨已經提出來了我相信各黨團都會提出來而且這件事情財化法的版本在蔡英文總統八年任期內沒有提出一個版本是令我比較遺憾的因為至少在每一個政黨在歷年來
transcript.whisperx[416].start 12049.232
transcript.whisperx[416].end 12075.361
transcript.whisperx[416].text 一年來從87年到101年大家都爭取過很多可是過去8年沒有主張過我只想知道財政部接下去對於財政收支劃分法有沒有想法有沒有未來的規劃因為部長會留任部長接下去他必須要統籌全國財政的分配這個部分是不是
transcript.whisperx[417].start 12076.261
transcript.whisperx[417].end 12105.322
transcript.whisperx[417].text 財政部要給我們一個初步的回答基本上是這樣子我們財劃法是這樣子基本上也要考慮到中央的財政的問題當然另外也要兼顧到地方的財政來我現在就念97年主計長他的主張他說財劃法要進行修法確立地方實質財源只增不減的原則要擴大中央統籌分配稅款的規模包括剛剛主計長朱主計長之前的主張貨物稅、所得稅應該提撥一定的比例給地方
transcript.whisperx[418].start 12105.822
transcript.whisperx[418].end 12107.803
transcript.whisperx[418].text 財政部長翠雲、經濟部長澤民、財政部長翠雲、經濟部長澤民、財政部長澤民
transcript.whisperx[419].start 12127.958
transcript.whisperx[419].end 12129.298
transcript.whisperx[419].text 主席好,有請主席總長有請朱主席長
transcript.whisperx[420].start 12159.179
transcript.whisperx[420].end 12182.053
transcript.whisperx[420].text 主計長您好在勞動節的前夕我們看到主計總處就公布了家庭財富分配統計讓我們知道原來臺灣貧富的差距竟然高達67倍引起很大的一個討論所以在這邊還是要再一次的請教主計長
transcript.whisperx[421].start 12183.354
transcript.whisperx[421].end 12210.67
transcript.whisperx[421].text 就是30年前的這個調查跟30年之後做這個調查在統計方式上有沒有什麼差異差異很大因為那個80年做的一個調查是用那個實際去問卷的調查那個是有時候會那個當時被問的人不知道或者說有所可能有所隱瞞那我們這一次做的是用大數據的資料是像
transcript.whisperx[422].start 12210.93
transcript.whisperx[422].end 12211.53
transcript.whisperx[422].text 像那個財產就是利用財產黨那個負債就是用銀行的一個負債是實際的數字謝謝
transcript.whisperx[423].start 12222.196
transcript.whisperx[423].end 12246.596
transcript.whisperx[423].text 那所以這一份資料,調查統計的結果,其實是很有用的一個資料數據嗎?對,是一個很老的,它不是調查,我跟委員吧,是用大數據,不是問卷,是用大數據的分析出來的。所以是說30年前可能是用加護調查、問卷調查,那30年之後是用大數據,什麼資料都撈得出來。對,所以說那個各項的,
transcript.whisperx[424].start 12248.217
transcript.whisperx[424].end 12256.279
transcript.whisperx[424].text 請教一下主計長因為間隔30年兩種不同的統計方式那照理說我們應該是要一年一年的做嘛那這個樣的一個調查的結果他是有辦法做推估的嗎
transcript.whisperx[425].start 12274.805
transcript.whisperx[425].end 12291.144
transcript.whisperx[425].text 這個是我可以跟那個委員報告一下因為這個存量的統計那個是像所得是每年的一個資料那可以每年這個存量的統計在短期內不會變化很大我個人認為四年做一次是一個蠻恰當的
transcript.whisperx[426].start 12292.526
transcript.whisperx[426].end 12317.583
transcript.whisperx[426].text 所以未來建議4年做一次對的那要看未來的行政院的看法以及未來主計長的一個看法那顯然就是主計長您把這件事情視為是很重要應該做的事所以未來您建議如何要善用這些資料做出好的政策這個是可以給各部會做各項政策的參考這個是
transcript.whisperx[427].start 12319.084
transcript.whisperx[427].end 12330.833
transcript.whisperx[427].text 那我請教一下因為我們其實是很想得知這個當中變化的原因就我剛剛講的時隔30年才做很難推估那我請教像有人說這個遺產稅的稅率
transcript.whisperx[428].start 12334.315
transcript.whisperx[428].end 12335.636
transcript.whisperx[428].text 委員會主席
transcript.whisperx[429].start 12364.895
transcript.whisperx[429].end 12365.175
transcript.whisperx[429].text 全中央民國
transcript.whisperx[430].start 12382.122
transcript.whisperx[430].end 12406.04
transcript.whisperx[430].text 交貨財、遺產、證與稅的只有我在大的裡面只有我遺產、證與稅要不要課稅在國際間在隨界就有很大的爭論在那個在美國有時候換了政黨他的那個是什麼有些人主張不課有些人主張課那個早期那個50%的時候是根本沒有多少人講那最近變成10%到20%那個您講的2017年以後那也是財政部
transcript.whisperx[431].start 12412.845
transcript.whisperx[431].end 12417.547
transcript.whisperx[431].text 我接受財政部有部分採用我的意見是用這個方式所以說變成10到20%就是採用一個比較中庸的一個方式因為財富的一個對財富的因為它已經消費已經課了
transcript.whisperx[432].start 12437.056
transcript.whisperx[432].end 12437.896
transcript.whisperx[432].text 師傅主委、許次長
transcript.whisperx[433].start 12473.241
transcript.whisperx[433].end 12483.313
transcript.whisperx[433].text 請教國發會副主委我們今天談缺工缺工缺工大家都覺得很辛苦那請教您您認為這個缺工是暫時的還是會未來持續發生
transcript.whisperx[434].start 12486.71
transcript.whisperx[434].end 12507.466
transcript.whisperx[434].text 各位委員報告我們在目前每年會有兩次的那個主計總處的統計會有一個短期的缺工統計大概規模大概都是21萬、22萬但是台灣未來因為少子化、少子女化跟高齡化我們在勞動力上面的數量的確是會有結構性的一個缺工是,所以您也認為會趨向常態化
transcript.whisperx[435].start 12511.584
transcript.whisperx[435].end 12522.49
transcript.whisperx[435].text 在這個部分如果我們的出生率是持續低迷然後您說未來缺工也會常態化勞動人口下降那國發會到底提出的解方是什麼
transcript.whisperx[436].start 12523.739
transcript.whisperx[436].end 12548.531
transcript.whisperx[436].text 跟委員報告一下大概分成兩個部分一個是針對於國內的勞動力的一個轉變包含我們勞動力的競爭力跟素質包含結合數位的轉型讓我們的勞動生產力可以提高那另外國內還有一部分是我們如何把我們的勞動產業率拉高那以及我們的一些重要領域的就業這是在國內的部分但是有一個目前從2021年開始國發會跟相關的部會大概有五個部會
transcript.whisperx[437].start 12553.193
transcript.whisperx[437].end 12573.443
transcript.whisperx[437].text 奉行政院的指示我們有一個人口及移民政策的專案所以我們針對於外國的高階白領還有我們在國內的藍領移工如何升格成中階的勞動力就是外國人才的人力的一個策略現在已經在進行已經進行了兩三年
transcript.whisperx[438].start 12574.463
transcript.whisperx[438].end 12592.553
transcript.whisperx[438].text 因為我們的人口喊2300萬已經喊很久了啦將近20年那過去從2000萬然後一直走到現在2300萬那在這個當中其實人口的結構呢我們來看一下
transcript.whisperx[439].start 12593.453
transcript.whisperx[439].end 12614.143
transcript.whisperx[439].text 我們根據勞動部的統計,截至去年底,移工是已經到達75.3萬人了。那麼我們原住民的話來對比,我們目前原住民是58.9萬,也就是說移工人數呢,遠遠的高過於臺灣原住民的總人口數。
transcript.whisperx[440].start 12615.143
transcript.whisperx[440].end 12643.42
transcript.whisperx[440].text 那就是說你在街上你碰到移工的機率比碰到原住民還高的意思那新住民人口的取得身份證的也已經超過65萬人所以這些年其實臺灣的整個人口的結構變化算是非常的大但是我們始終就是要來關心我們到底我們的工作機會在哪裡我們的薪資所得是否可以提高那我們看到像這個住宿餐飲業
transcript.whisperx[441].start 12644.881
transcript.whisperx[441].end 12673.093
transcript.whisperx[441].text 他的缺工率是達到7.99那我不知道勞動部是不是有其他的解法當然你剛才有講包括如何提高我們的一個生產能力等等但是缺工率跟大量解雇的案件其實是一樣並進的都就是到底這個大量解雇是員工的主動離開還是企業關門被迫的被動離開請教一下我們的勞動部
transcript.whisperx[442].start 12675.538
transcript.whisperx[442].end 12694.605
transcript.whisperx[442].text 謝謝委員的這個提問我想大量解雇大部分的原因是因為企業企業他在經營上面可能有他的特別考量像這次花蓮地震我們就接到有好幾個飯店他要這個大量解雇他的員工類似這樣的情形是以他的這個企業經營的所以
transcript.whisperx[443].start 12695.725
transcript.whisperx[443].end 12715.418
transcript.whisperx[443].text 市長您認為這個大量解雇有時候不只是員工主動離開因為薪資條件環境不滿意也有可能是企業被迫關門離開是不是那我是要了解的原因是說因為我們看到104的人力銀行就是我們的職缺越來越多
transcript.whisperx[444].start 12716.619
transcript.whisperx[444].end 12742.394
transcript.whisperx[444].text 但是呢就是找不到人而且這個職缺還創歷史新高就是找不到人那當然大家都會說到底是薪資不吸引我們的勞工還是工作的內容不吸引我講一句實在話啦連我找助理我都好難找我也在檢討為什麼我找不到助理所以這個部分我看到國發會也在示警嘛
transcript.whisperx[445].start 12743.567
transcript.whisperx[445].end 12761.72
transcript.whisperx[445].text 推估2070年的工作人口他會占我們的總人口數的比例會低於五成低於五成這個代表著我們的勞動力會越來越辛苦我們的缺工也越來越辛苦那國發會再請教一下除了市井有沒有什麼積極作為
transcript.whisperx[446].start 12764.622
transcript.whisperx[446].end 12765.403
transcript.whisperx[446].text 這些政策都提出好多年了,有用嗎?
transcript.whisperx[447].start 12788.602
transcript.whisperx[447].end 12803.148
transcript.whisperx[447].text 目前為止,如果是針對於外國人才的攬財,包含白領、橋外生跟在台灣的藍領移工的升級,其實目前績效還不錯。好,那我再請教一下經濟部跟財政部因為時間的關係,抱歉。我想要請教一下經濟部,次長好。
transcript.whisperx[448].start 12808.507
transcript.whisperx[448].end 12835.78
transcript.whisperx[448].text 今天我們的經濟委員會正在審查中小企業發展條例的加薪減稅方案我想請教一下次長目前台灣中小企業到底有多少員工數我今天報告提到說有一千一百四十二萬一千一百四十二萬我的報告裡面有一千一百四十二萬那請教那提出這個加薪減稅就是過去有加薪的勞工到底有多少
transcript.whisperx[449].start 12837.402
transcript.whisperx[449].end 12862.667
transcript.whisperx[449].text 過去的這個實施因為它有限制所以加薪勞工並不多應該大概不到3000人這樣子所以嘛不到3000人總共有913萬的就業人口那中小企業您剛剛說1000多嘛那好今天如果說新制你預估你預估會有多少能夠加薪的員工
transcript.whisperx[450].start 12863.735
transcript.whisperx[450].end 12879.48
transcript.whisperx[450].text 我想這個新制是會展.如果通過大院的審查之後.會展現10年這10年每年我們大概平均預估.會有高的預估跟低的預估如果說低的話每年大概有將近4000多人
transcript.whisperx[451].start 12880.9
transcript.whisperx[451].end 12896.297
transcript.whisperx[451].text 有大概一萬多人這是對年輕的徵雇的部分還有另外一個部分是加薪的人數如果低估是大概五千多人那高估的話高估的一個樂觀情況是九萬三千多人我其實是要問
transcript.whisperx[452].start 12897.718
transcript.whisperx[452].end 12922.063
transcript.whisperx[452].text 因為我在3月20號的質詢我有請財政部就是要提出一個加薪減稅如何把它的稅制優化協助的報告結果我看到回覆這麼說他說適用擴大書省的中小企業家有62萬家然後自己也說他說較無意願配合因為已經享有清稅的效果自己都回答說
transcript.whisperx[453].start 12923.584
transcript.whisperx[453].end 12945.139
transcript.whisperx[453].text 教務意願配合那我就不懂了那這樣子怎麼辦呢我是在想我們講所謂的租屋補助租屋補助也喊很多年了那效果都不好直到最近好一點為什麼因為可以給老闆房東比較好的一個稅制也不會增加他的壓力負擔
transcript.whisperx[454].start 12946.4
transcript.whisperx[454].end 12957.693
transcript.whisperx[454].text 那我們要講的是說應該是要去想這種好的方法去幫助員工加薪因為既然減稅沒得減啊那你就直接加薪補助可以嗎
transcript.whisperx[455].start 12962.785
transcript.whisperx[455].end 12977.255
transcript.whisperx[455].text 我們提出的方案是希望透過減稅的方式來處理那如果要直接補助可能要有更嚴謹的一個評估分析才可以那我希望再做一下評估分析齁我們還是要聽聽看各位的報告好不好好謝謝大家謝謝吳林華委員的質詢請接著我們請羅文明財委員質詢
transcript.whisperx[456].start 12989.585
transcript.whisperx[456].end 13018.77
transcript.whisperx[456].text 主席各位很出列習慣大家好主席可否請主計長朱主計長請主計長你好現在是五月一號五一五一勞工穿新衣可是今天的勞工朋友還有年輕人啊很辛苦啊在今天啊買新衣服穿的不多啊因為啊
transcript.whisperx[457].start 13020.238
transcript.whisperx[457].end 13035.607
transcript.whisperx[457].text 軟囊修設因為手邊沒閒錢啊主計長你應該是最後有始有終啊在這艘船上你要繼續努力啊
transcript.whisperx[458].start 13038.095
transcript.whisperx[458].end 13057.217
transcript.whisperx[458].text 我已經不會在政府這一個單位這艘船上我是在中華民國這一個島上在這艘你我共同的船上每個人都要繼續努力雖然主計長已經是快要畢業了人之將至
transcript.whisperx[459].start 13058.194
transcript.whisperx[459].end 13087.119
transcript.whisperx[459].text 其言也善那個是送到殯儀館的啦你不要用對話我是說這個位置即將到一個話句點的時刻你應該多講一點正面的講一些良心話本席一直關心年輕人低薪的問題請問一下主計長現在年輕人啊薪水有沒有高於三萬五的
transcript.whisperx[460].start 13088.07
transcript.whisperx[460].end 13114.983
transcript.whisperx[460].text 我們的經常薪資平均大概是所謂的4萬多塊經常薪資那林剛才講的3萬5那個新剛畢業的人是平均沒有那麼多那是不是主計長中華民國很有錢對我們應該多多照顧年輕人
transcript.whisperx[461].start 13116.204
transcript.whisperx[461].end 13135.712
transcript.whisperx[461].text 低於平均線3萬5以下的是不是可以來申請你一點補助啊那個是他如果符合低收入戶的話就是可以的要符合那個一定的一個條件而且我們也有很多的一些措施像那個租金補貼啊
transcript.whisperx[462].start 13136.872
transcript.whisperx[462].end 13159.91
transcript.whisperx[462].text 像那個綏帶啊,我們最近都有很多的一個措施讓年輕人避免綏帶的壓力以及那個所謂的房屋租金的一個壓力那個還不濟急啦有啦,那個每個月都發的,不過還不濟急很多的青年
transcript.whisperx[463].start 13161.109
transcript.whisperx[463].end 13162.89
transcript.whisperx[463].text 勞工部是哪一位?勞動部有請許市長
transcript.whisperx[464].start 13191.101
transcript.whisperx[464].end 13214.859
transcript.whisperx[464].text 許次長那主計長也請你留步齁因為你是老陳福記事實上你可以指導幫助很多年輕人的齁我繼續討論你就可以講兩句話了齁那請問許次長請問啊外勞啊他最低薪資一般大概在台灣可以領多少
transcript.whisperx[465].start 13216.842
transcript.whisperx[465].end 13229.544
transcript.whisperx[465].text 謝謝羅委員拜託有好多種如果是我們所謂的廠工、製造業那依照我們目前規定的基本工資廠工至少要在基本工資以上多少
transcript.whisperx[466].start 13230.683
transcript.whisperx[466].end 13246.87
transcript.whisperx[466].text 目前基本工資以上的話是兩萬七千四百七十兩萬七千多請問長照的這些外勞一個月領多少長照的部分就以目前是兩萬左右多少兩萬左右長照兩萬可以請得到
transcript.whisperx[467].start 13248.207
transcript.whisperx[467].end 13276.037
transcript.whisperx[467].text 長照有分兩種,一個是在機構工作那也要基本工資,如果是在家庭幫傭看護的,那個部分是兩萬出頭一點家裡的話是兩萬多,多多少?大概兩萬一、兩萬二長照的部分,外勞是領多少?以機構嗎?機構大概基本工資以上,兩萬七千四百七十元以上市長啊,你吃米不知道米多少
transcript.whisperx[468].start 13277.25
transcript.whisperx[468].end 13289.893
transcript.whisperx[468].text 不要說有的沒的啦,你去醫院問問看,你要挺一個臨時的長照,沒六萬沒八萬,你要請什麼人?那是本國的啦本國的,好,那你請外勞的不用五萬嗎?
transcript.whisperx[469].start 13291.727
transcript.whisperx[469].end 13294.448
transcript.whisperx[469].text 你承不承認本席剛講的是比較貼近市場面對吧齁所以
transcript.whisperx[470].start 13319.298
transcript.whisperx[470].end 13348.059
transcript.whisperx[470].text 那個接著回過來就是換主計長了事實上連外勞啊可能每一個月都是領4萬5、領5萬、6萬以上那個我跟委員報告你講的那個可能是外配不是外勞謝謝外勞啦在醫院裡面幫忙看護的幫忙24小時在醫院照顧健康的對那很多都是外配謝謝好啦不管啦齁
transcript.whisperx[471].start 13351.076
transcript.whisperx[471].end 13372.492
transcript.whisperx[471].text 這個重點是要提醒主計長連外勞都領五萬了你為什麼讓中華民國我們的年輕人、青年人只有領三萬五有的還領不到所以本席在這裡就一直奉勸你你就最後一段路了嘛你就講講實際的心裡話
transcript.whisperx[472].start 13375.794
transcript.whisperx[472].end 13402.888
transcript.whisperx[472].text 拜託你幫幫年輕人嘛如果年輕朋友領不到3萬5的國家補助嘛國家支持啊國家要挺身而出照顧他們啊主計長能不能幫幫這些年輕人啊對也許委員現在年輕人我覺得將心比心啊如果我是這些年輕人喔我每天起來的話就是四個字
transcript.whisperx[473].start 13404.531
transcript.whisperx[473].end 13431.242
transcript.whisperx[473].text 希望跟絕望因為我在幹下去啊沒有什麼好做只好做UBER啊主計長做UBER跑單一個月可以領多少錢現在大概會有3、4萬以上謝謝吃米不知道米多少青菜比較認真、早餐最少也7萬有的拼到底齁暗示也拼、立示也拼差不多要10幾萬啦
transcript.whisperx[474].start 13432.813
transcript.whisperx[474].end 13462.16
transcript.whisperx[474].text 所以這造成說沒辦法啦為了生活不是為了理想啊因為沒有理想啊只是在這種困難的環境中自我安慰然後努力生存希望可以掙得比外勞多一點點的薪水看護的起碼都六萬七萬啊所以年輕人是沒有希望的啊所以我希望
transcript.whisperx[475].start 13463.988
transcript.whisperx[475].end 13478.317
transcript.whisperx[475].text 我們所有的相關單位政府機關平心而論現在的貧富懸殊啊已經擴大到歷史新高主計長貧富懸殊最高數跟最低數差多少
transcript.whisperx[476].start 13479.473
transcript.whisperx[476].end 13506.729
transcript.whisperx[476].text 那個我剛才講說那個最高最低級比沒有恰67倍那個並不很恰當因為67倍的意思就是主計長跟你沒關係因為你不是最底層的那67分之一每個人每個年輕人比較辛苦弱勢的只能寄望寄生上游不斷的往上攀爬
transcript.whisperx[477].start 13508.463
transcript.whisperx[477].end 13532.892
transcript.whisperx[477].text 問題沒有人像你那麼好啊你有公務機關啊你退休還有退休金啊你退薪還有退休人國家會養你啊這年輕人手無寸鐵啊人為刀齒我為魚肉所以本席建議啊今年度的預算優先照顧年輕人今年的所有的預算
transcript.whisperx[478].start 13534.093
transcript.whisperx[478].end 13548.115
transcript.whisperx[478].text 大力、大幅度來照顧年輕人,特別有小孩的年輕人。但請教我們最近的預算就是像委員所做的那個樣子,我們的那個是怎麼樣?
transcript.whisperx[479].start 13549.778
transcript.whisperx[479].end 13576.677
transcript.whisperx[479].text 就是說青年有誰誰代而且有房租補貼而且有小孩的每一個人五千塊我們就是像委員所講的已經在照顧那個東西那個都是以前過去八年以前沒有的謝謝難道你要我在這邊好好的感謝你謝主隆恩嗎沒有啦我們是如果你做得好因為那個是納稅人我們應該做得好年輕人就不會亂談了啦
transcript.whisperx[480].start 13580.404
transcript.whisperx[480].end 13587.95
transcript.whisperx[480].text 你做得好啊年輕人就不會痛哭流淚啊你做得好啊大家就拿箱來跟你拜啊
transcript.whisperx[481].start 13589.401
transcript.whisperx[481].end 13613.691
transcript.whisperx[481].text 問題你做好了嗎?年輕人的薪資在目前的情況起碼你要五萬起跳啊主計長以現在的經濟水平現在政府的照顧什麼時候能讓年輕人臺灣的年輕人可以稍微緩緩至少一個月領五萬塊以上什麼時候做得到?那個未來的人會做得到
transcript.whisperx[482].start 13619.861
transcript.whisperx[482].end 13642.27
transcript.whisperx[482].text 做不到請下台其實國家有很多的政策工具啊我下台很快了啦我這兩個多禮拜就下台了啦委員所以你做不到要下台啊對啊我下台啊政府有那麼多的單位那麼多的錢該用不用我上上禮拜
transcript.whisperx[483].start 13643.311
transcript.whisperx[483].end 13663.284
transcript.whisperx[483].text 報一條給你們批判保險法146條知識修正以後從國外引進來的資金有6兆多你也可以要求這6兆多優先怎麼樣的方式來照顧年輕人啊你們碰到財團
transcript.whisperx[484].start 13664.929
transcript.whisperx[484].end 13693.633
transcript.whisperx[484].text 碰到大企業家通通轉彎六兆多回來你為什麼不主張歡迎你們回來百分之十的概念全部優先照顧年輕人這個你可以提的啊那個不是政府的錢不能夠花給民眾你可以移政稅增加百分之二十、百分之五十全部照顧年輕人啊你們都不做啊
transcript.whisperx[485].start 13695.59
transcript.whisperx[485].end 13703.253
transcript.whisperx[485].text 該做不做所以主計長不做的結果最後就是要下台一鞠躬謝謝
transcript.whisperx[486].start 13718.824
transcript.whisperx[486].end 13727.989
transcript.whisperx[486].text 主席各位立席委員各位官員大家好主席我想請財政部阮政次阮次請
transcript.whisperx[487].start 13733.696
transcript.whisperx[487].end 13760.664
transcript.whisperx[487].text 委員好次長好本期先在這裡先向我們今天是勞工勞動節我們向所有的勞工致敬包括我們立法院所有的助理秘書那我想請教我們次長5月1號今天就是報稅了報稅季財政部在4月25號已經開始激發這些稅額的試算通知那112年度有四大
transcript.whisperx[488].start 13761.864
transcript.whisperx[488].end 13777.179
transcript.whisperx[488].text 四大新規定,包括民法、成年、年齡下修到18歲、每年基本生活費調高至20.2萬、CFC制度首度申報、救治房屋、受訪所得等等。請市長簡單說明
transcript.whisperx[489].start 13780.741
transcript.whisperx[489].end 13800.569
transcript.whisperx[489].text 我們今年的中國首席集團申報集團申報大概有很多的一些調整主要有四項,就是剛才委員也都提出來了就是說我們民法根據民法規定成年的年齡下修到18歲所以除非是他有這個
transcript.whisperx[490].start 13802.049
transcript.whisperx[490].end 13821.464
transcript.whisperx[490].text 無某身能力或者是說身心障礙或是就學那要不然的話這樣獨立申報這是第一個第二個呢在引進CFC也就是國外受控的這個企業那就是說它符合規定的它有一定的門檻規定如果符合規定不管它有沒有決議分配它就是要申報進來要申報納稅
transcript.whisperx[491].start 13823.966
transcript.whisperx[491].end 13824.306
transcript.whisperx[491].text 主席主席
transcript.whisperx[492].start 13843.304
transcript.whisperx[492].end 13861.102
transcript.whisperx[492].text 今年中所稅申報件數會比去年增加有機會到670萬件營所稅以年增3%來估計可能會落在109萬件我想請教次長說可不可以在這邊告訴大家今年營所稅會成長多少金額多少
transcript.whisperx[493].start 13861.842
transcript.whisperx[493].end 13877.451
transcript.whisperx[493].text 跟委員報告,現在目前還在,今天還開始申報,所以我們還能到,基本上這樣子,我現在初步的這樣跟委員報告,就是說這樣去年的我們的上市櫃的,它的獲利是減少27%點多的,
transcript.whisperx[494].start 13880.212
transcript.whisperx[494].end 13908.3
transcript.whisperx[494].text 另外去年的經濟成長率是降到1.31所以我們預估營所稅應該會略為往下修至於綜合所得稅那一部分綜合所得稅那一部分也是一樣因為上市櫃的公司營運比較差所以它分配到的股利也相對比較少但是它薪資上其實是往上拉的所以基本上我們估大概也是略為綜所稅會成長
transcript.whisperx[495].start 13915.642
transcript.whisperx[495].end 13933.009
transcript.whisperx[495].text 其實稅收是政府的最大財源,超過八成全部都是稅收那2021年的實際總決算數超過2.38兆那稅收的部分就2.003兆元,是最大的項目高達占國家總收入的84%
transcript.whisperx[496].start 13935.231
transcript.whisperx[496].end 13941.499
transcript.whisperx[496].text 政府在111年稅收超增最後一個人發6000元連續三年的超增總額超過1.28兆元
transcript.whisperx[497].start 13949.088
transcript.whisperx[497].end 13970.803
transcript.whisperx[497].text 三年超過1.28兆那這是什麼狀況你可不可以告訴我為什麼會超出那麼多我跟委員報告我們在預算編列的時候是會考慮到很多因素比如像經濟生長率啊或者國內外的經濟情勢或者是說時針的情形跟稅務特性或者是說有一些像有些修法的一些成果那
transcript.whisperx[498].start 13973.727
transcript.whisperx[498].end 13986.141
transcript.whisperx[498].text 預算編了以後到執行會有一段落差或大概一年多的落差所以在這個期間會有一些變化超增是經濟大幅度的成長或者是說我們稅制本身有問題
transcript.whisperx[499].start 13987.522
transcript.whisperx[499].end 14015.679
transcript.whisperx[499].text 不是稅制的問題是因為估算的問題我覺得各國都有面臨同樣的問題因為在編列到執行的階段會有很大的變化所以那時候就是說實證數會比預算數超過比較多所以就是一開始就低估了所以變成超增那這個是行政疏失是不是不是因為這個東西這個東西其實我們都是依法克萃有時候就是很多東西真的很難去預估
transcript.whisperx[500].start 14017.02
transcript.whisperx[500].end 14033.177
transcript.whisperx[500].text 但是我跟委員報告我們現在已經成立了就是估測的專案小組那也希望這個建立一個稅收的估算的模型希望能夠越來越準但是我在想就是說絕對不會有說人民吃緊或者政府緊吃這種狀況不會發生這種情況
transcript.whisperx[501].start 14035.8
transcript.whisperx[501].end 14058.78
transcript.whisperx[501].text 這是現況這是現況已經產生的現況現在剛剛我們很多委員提到現在的貧富差距66.9倍嚇死人了所以現在政府超收我們也知道連續三年超徵那麼多1.28兆元那對於我們現在最關心的我們的勞工朋友我們所有的這些我們比較
transcript.whisperx[502].start 14059.921
transcript.whisperx[502].end 14062.123
transcript.whisperx[502].text 跟委員報告不至於發生這種事因為為什麼呢?因為我們這些就是說時增數超過預算數的
transcript.whisperx[503].start 14084.966
transcript.whisperx[503].end 14092.873
transcript.whisperx[503].text 那這些東西呢,基本上如果跟特別預算加起來的話,基本上還是赤字啦。好啦,謝謝次長,謝謝次長。次長請回。好,謝謝。接著請勞動部,勞動部我們的許次長。
transcript.whisperx[504].start 14106.979
transcript.whisperx[504].end 14122.919
transcript.whisperx[504].text 許市長我國GDP的分配結構是由受僱人員報酬、營業營餘還有固定薪資消耗、生產及進口稅等四項組成受僱人員報酬就是多數民眾的勞務收入
transcript.whisperx[505].start 14125.081
transcript.whisperx[505].end 14142.305
transcript.whisperx[505].text 勞務成果營業營餘就是企業放在口袋的錢從過去10年以來的趨勢可以看到受僱人員報酬占GDP比重持續下降在2022年低到只剩下43.9%企業營餘占GDP的34.4%
transcript.whisperx[506].start 14149.387
transcript.whisperx[506].end 14174.074
transcript.whisperx[506].text 臺灣企業越來越有錢但是勞工越來越窮低薪、窮忙、貧困差距擴大我們蔡總統說過說勞工是他心中最軟的一塊但是心中最軟的一塊在做最硬的工作勞工的付出跟回報實際上就不成正比
transcript.whisperx[507].start 14175.287
transcript.whisperx[507].end 14197.947
transcript.whisperx[507].text 那現在大家都是血汗勞工、廉價勞工臺灣就變成是最低薪資做最多事情然後還要負最多責任每個月可能還會被扣一些莫名其妙的錢所以臺灣勞工普遍的工作環境的現況就是這樣那高工時低薪水這種狀況要如何改變如何改善
transcript.whisperx[508].start 14199.448
transcript.whisperx[508].end 14221.888
transcript.whisperx[508].text 謝謝顏委員我想跟委員報告蔡總統8年之內有不斷提高基本工資包括月薪跟時薪我們都大幅度的提高我們勞動部也有推出很多的方案讓我們的員工特別是青年員工可以透過勞工部的加值計畫包括說他是進修他取得各種的證照提升他個人的這個他相關的勞動的條件之後
transcript.whisperx[509].start 14225.771
transcript.whisperx[509].end 14226.271
transcript.whisperx[509].text 委員會主席
transcript.whisperx[510].start 14247.056
transcript.whisperx[510].end 14247.736
transcript.whisperx[510].text 臺灣是一個過勞之島根據勞動部的統計2022年臺灣受僱者平均每年工時
transcript.whisperx[511].start 14274.821
transcript.whisperx[511].end 14304.821
transcript.whisperx[511].text 韓國1904
transcript.whisperx[512].start 14305.263
transcript.whisperx[512].end 14308.715
transcript.whisperx[512].text 副成長請教次長調整基本薪資
transcript.whisperx[513].start 14310.066
transcript.whisperx[513].end 14337.703
transcript.whisperx[513].text 有條跟沒條一樣啊工時那麼多然後薪資那麼低那調整基本薪資是不是因應這個物價上漲那這個會不會陷入一個所謂的薪資價格螺旋上漲這是一個很不好的現象是不是這樣子我跟委員報告我們臺灣勞工的工作薪資目前一週大概41點多小時這跟國際的標準其實相差不大
transcript.whisperx[514].start 14338.403
transcript.whisperx[514].end 14357.443
transcript.whisperx[514].text 至於所謂的基本工資現在變成最低工資我們今年會召集委員會來討論把相關的因素都納進來包括剛剛委員講的物價調整指數或是其他相關的因素都會進來希望給勞工一個最基本的生活保障這我想是勞動部的責任
transcript.whisperx[515].start 14358.975
transcript.whisperx[515].end 14382.5
transcript.whisperx[515].text 市長,民用薪資持續增加,但是實質反倒是衰退,都是衰退的,所以我們不應該跟人民玩這種數字遊戲。國民最關心的就是薪資,一定要增加民眾的收入,讓他們的生活得以受到一個保障,那才不會影響到整體社會的穩定跟發展。
transcript.whisperx[516].start 14384.42
transcript.whisperx[516].end 14385.2
transcript.whisperx[516].text 主席謝謝麻煩請主計長有請主計長
transcript.whisperx[517].start 14420.902
transcript.whisperx[517].end 14444.202
transcript.whisperx[517].text 好,主計長好。主計長,就離開這個主計總處的一個職務啊,也是辛苦啊,過去8年。那可能最後一次質詢你,但我還是想說既然要離開了,真的可以好好的針對現況,給台灣社會一個真實的狀況,那也點出問題,我們期待說政府可以一次再繼續來解決問題啊。
transcript.whisperx[518].start 14446.052
transcript.whisperx[518].end 14473.307
transcript.whisperx[518].text 今天特別召委這邊有講是說改善受僱人員報酬占GDP占比偏低的一個情況確實在你的報告裡面我們受僱人員的報酬是逐步的降低是越來越低那越來越低的一個情況你這邊也講到是說這個貧富差距標破66.9倍結果你有講到說最高最低比沒有意義
transcript.whisperx[519].start 14474.758
transcript.whisperx[519].end 14481.285
transcript.whisperx[519].text 那一樣啊本席先講啊那最高最低的薪資平均其實也沒有意義啊
transcript.whisperx[520].start 14482.316
transcript.whisperx[520].end 14511.096
transcript.whisperx[520].text 是不是對不是沒有意義啦他是一個參考的價值是新已經在放假了是不是沒有沒有啦我們會你剛講對還不對我的意思是說薪資那個會有那個有意義嗎對是有意義的最高跟最低比現在差了66.9倍沒有我的意思是薪資是流量這個是財富是存量兩個意見意思是不一樣的那好嘛
transcript.whisperx[521].start 14511.516
transcript.whisperx[521].end 14535.084
transcript.whisperx[521].text 那我講的是說您之前公佈也公佈了說全體受僱人員的月薪總資啊平均是多少?月薪的總薪資是大概目前是大概五萬八千多塊嘛對五萬八千塊啊,兼長薪資是四萬五千多塊那你五萬八千多塊有意義嗎?
transcript.whisperx[522].start 14537.304
transcript.whisperx[522].end 14550.969
transcript.whisperx[522].text 當然有啊 那個是一個平均數啊平均數那很多人就馬上就自首啊說抱歉啊我們拉低了全台灣的月薪平均啊那個是所以我們每年都會公佈一次中位數中位數是多少中位數現在是
transcript.whisperx[523].start 14556.03
transcript.whisperx[523].end 14583.797
transcript.whisperx[523].text 年薪差不多到60這個是這個一年的中位數大概是60萬相對於這個是每個月大概是5萬塊中位數那一個是個總薪資謝謝是嗎是所以是不是其實我們偏低我們受僱人員很多的受僱人員其實他的薪資普遍來講還是偏低他那個低到是說他沒有政府宣傳的那麼的好
transcript.whisperx[524].start 14584.677
transcript.whisperx[524].end 14605.901
transcript.whisperx[524].text 我們沒有宣傳我們的公布沒有宣傳嗎?我們每一次聽到民進黨政府都講說哇股市上萬點多久了現在台灣經濟最好的狀況讓大家覺得說好像每個人都賺錢只有我沒賺錢那個是講股市我們的薪資我們是每個月公布我們也沒有說什麼去說什麼宣傳主計總處指咒
transcript.whisperx[525].start 14612.101
transcript.whisperx[525].end 14632.812
transcript.whisperx[525].text 這個是什麼統計資料給大家參考的我們不做宣傳謝謝我們不做宣傳可是你們的資料拿出來都會讓大家覺得是說這就有誤導嫌疑啊就會讓大家覺得是說美化數字啊我們沒有美化數字我們把實際的數字公佈出來我要美化數字我前天就不會公佈財財富分配謝謝
transcript.whisperx[526].start 14635.202
transcript.whisperx[526].end 14662.915
transcript.whisperx[526].text 所以這還公布財富分配還是得證是不是很得意喔我沒有說得證我是覺得要有這一個資料讓大家好做決策謝謝同意啊本席同意啊所以說為什麼這是30年才出來這樣的一個資料在未來有講是說4年做一次是不是我希望這個樣子但是有新的團隊的決策那不應該更滾動檢討嗎你是4年一次是認為是說要幫這個
transcript.whisperx[527].start 14665.818
transcript.whisperx[527].end 14683.383
transcript.whisperx[527].text 執政的執政黨打分數是不是用這樣的一個數字來去不是幫執政黨打分數那是你一次啊我們做統計指示說把適當的允當的資料顯示出來我們主計你也知道具有獨立性把它做一個數字公佈沒錯啊
transcript.whisperx[528].start 14683.723
transcript.whisperx[528].end 14704.259
transcript.whisperx[528].text 我就是認為說主計有獨立性,主計應該專業,主計應該客觀,主計應該不分任何黨派,如期如實的公佈數字我們的統計人員他也沒有任何政黨傾向,只有全部主計總處一萬多個人裡面只有兩個是政務官,其他都不是,謝謝
transcript.whisperx[529].start 14706.178
transcript.whisperx[529].end 14724.043
transcript.whisperx[529].text 所以主計長你剛有講那未來如果說這樣的一個數字你說4年可以公佈是不是希望希望因為那個有幾年公佈由新的團隊來決定我希望這4年公佈一次好那最後本市也要問就是說
transcript.whisperx[530].start 14725.063
transcript.whisperx[530].end 14738.334
transcript.whisperx[530].text 其實去年立法院有進行類似的專案報告也是一樣在去年的10月底也有說受僱人員報酬占GDP比例創新低貧富差距10年新高
transcript.whisperx[531].start 14740.993
transcript.whisperx[531].end 14763.142
transcript.whisperx[531].text 當時也有提到說很多人認為是說應該要做加薪減稅但這個政策經濟部2016年就已經提出來了但這10年過去了還是沒有做一個改善那個我覺得我跟委員報告一下政策是由各部會來做所以這個是要加薪要減稅應該是相關部會來表示意見比較恰當
transcript.whisperx[532].start 14764.783
transcript.whisperx[532].end 14781.005
transcript.whisperx[532].text 主計長本期最後只想要請教就你這邊要離開之前你來客觀公允以主計長的身份最後要離開講一下到底我們現在臺灣面臨受僱人員薪資占GDP的比例
transcript.whisperx[533].start 14782.02
transcript.whisperx[533].end 14806.882
transcript.whisperx[533].text 持續的往下低啊對那個你又講是說財富重分配是要很謹慎考慮啊那這樣解方是什麼對那個我跟各位講一下我們尊重原則上我們要尊重市場制度沒有解方對不是但是要對於弱勢的族群對於弱勢的族群要給予一個是什麼政策上的一個照顧
transcript.whisperx[534].start 14807.502
transcript.whisperx[534].end 14807.822
transcript.whisperx[534].text 洪委員快點
transcript.whisperx[535].start 14834.064
transcript.whisperx[535].end 14858.8
transcript.whisperx[535].text 謝謝我們早晚已經站起來說勞動節但是因為這個是公務人員不受勞保的保障但是我們不要為難我們的同仁同意啦我不要為難所有同仁所以還是一樣祝大家勞動節快樂但是真的主計長我們未來一樣還是台灣人民秉持著良心好好的發出你的能夠建言的建言謝謝謝謝黃孟台委員的質詢緊接著我們請楊瓊英委員質詢
transcript.whisperx[536].start 14874.911
transcript.whisperx[536].end 14876.879
transcript.whisperx[536].text 謝主席本席想邀請主計長有請主計長
transcript.whisperx[537].start 14887.67
transcript.whisperx[537].end 14914.693
transcript.whisperx[537].text 主席長好我想近十年我國的這個經濟成長率呢那在2021年的時候GDP它是創了紀錄6.53但是人民的貧窮感是越來越深人民的貧窮感越來越深在這樣的情況之下物價的一個衝擊上漲的衝擊實質薪資它是甩不開的一個負成長
transcript.whisperx[538].start 14915.994
transcript.whisperx[538].end 14940.954
transcript.whisperx[538].text 那造成了可分配的所得呢 減少之外我看了主計總處你三個薪資的這個指標呢我們也發現個人所得的差距以及經常性薪資占比勞務這個報酬的占的這個GDP比重他是降到歷史新低他降到了43.03
transcript.whisperx[539].start 14942.975
transcript.whisperx[539].end 14969.022
transcript.whisperx[539].text 那你的營業銀額呢?占了36.53,它是歷史新高2016年的時候我們受僱人員的報酬占比,GDP比重是44.09你的營業銀額占比是35.06可見你的主要分配都器重在企業導致我們忽略了勞工的失衡狀態
transcript.whisperx[540].start 14970.402
transcript.whisperx[540].end 14998.091
transcript.whisperx[540].text 我又聽到昨天說我們第一季的平均值薪資八萬多人民都非常的嘩然那個是我跟妳講那個是總經過了大家說是因為包括年終所以如果這樣子的一個宣示沒有沒有那個是外界的他們講你覺得這樣好嗎我們也有公佈金長薪資只是大家沒有引用而已我們也有公佈金長薪所以主計長
transcript.whisperx[541].start 14999.131
transcript.whisperx[541].end 15025.797
transcript.whisperx[541].text 大家對於數字非常的敏感如果這美化數字連年終獎金都把它包括進來說每一個人的平均薪資八萬多每一個人都昏倒了只是有些人一定要挑那個數字來罵主計總處不是要罵主計總處而是告訴你人民對於數字他非常的敏感因為人民痛苦啊
transcript.whisperx[542].start 15026.377
transcript.whisperx[542].end 15042.896
transcript.whisperx[542].text 主計長 針對於目前我們勞工實質薪資的成長它追不上產業所產生出來的一個成長失衡越來越嚴重那你認為我們要怎麼應對
transcript.whisperx[543].start 15043.997
transcript.whisperx[543].end 15065.749
transcript.whisperx[543].text 跟那個委員報告一下就是我剛才所講的我們尊重市場支柱但對於弱勢族群的話應該是給予他的薪資像最低工資啦像給予他夠像社會福利的一個補助啦所以也是我們你把那個方案給本席好不好落差越來越大我們要怎麼樣的能力可以好好生活你們去盤點一下
transcript.whisperx[544].start 15067.37
transcript.whisperx[544].end 15068.191
transcript.whisperx[544].text 我們速發布的111政府專屬的短碼簡訊平台
transcript.whisperx[545].start 15089.707
transcript.whisperx[545].end 15092.709
transcript.whisperx[545].text 你認為目前的狀態還是叫我們人民說你最好打電話向國書局確認你有沒有被詐騙的風險
transcript.whisperx[546].start 15108.852
transcript.whisperx[546].end 15122.381
transcript.whisperx[546].text 那你本來是為了方便有了這個平台但是我們仍舊叫人家說你要打電話問問看他是不是詐騙的那是不是對這個平台沒有信心呢我們要怎麼樣去加強讓人民也便利
transcript.whisperx[547].start 15123.818
transcript.whisperx[547].end 15134.243
transcript.whisperx[547].text 跟委員報告這個這個平台這個簡訊平台其實就是政府的確定是政府的平台了沒有說還要再去求證有啊你們都會叫人家說你還是打個電話確認是不是真的還是有很多人這樣說我想是個案啦有什麼個案很多
transcript.whisperx[548].start 15143.067
transcript.whisperx[548].end 15167.581
transcript.whisperx[548].text 我主要告訴你這個就是說政府速發部有這個平台你們也搭上去那要讓民眾真正能夠安心我們很多的依化這是必要走的但是我是請你們說本席請你們說你再去宣導你要怎麼樣認證因為大家接到電話簡訊會怕是假的那你是不是你們可以製造怎麼樣的認證讓民眾在這一通簡訊接到的時候正確
transcript.whisperx[549].start 15172.023
transcript.whisperx[549].end 15197.117
transcript.whisperx[549].text 就是我們政府的是是是這個很重要啊這個我們會加強宣導這個我們會加強宣導對不對你除了加強宣導你也要去制定啊讓民眾可以辨識清楚這是政府告訴我的是是是謝謝委員提醒好不好你們去研討好不好不要讓連民眾接到的我還要去打電話真的假的好不好第一個辨識要去清楚第二個多宣導好不好最後一個勞動部
transcript.whisperx[550].start 15198.938
transcript.whisperx[550].end 15221.428
transcript.whisperx[550].text 4月28日是國際工商日聽到這個數字都很難過我們去年每平均1.2億天就有一個勞工的職災因為今天五一勞動節當神仙每10個人就有2.7人是因為重大職災而死亡在這樣子的情況之下日本他是1.5人英國0.8
transcript.whisperx[551].start 15223.889
transcript.whisperx[551].end 15241.815
transcript.whisperx[551].text 荷蘭是0.3所以在這邊本席要請教臺灣的職災發生的這樣的情況我們勞動部要怎麼樣職安屬的一個落實它的形塑職安文化你那個形塑職安文化是非常的重要請教
transcript.whisperx[552].start 15243.46
transcript.whisperx[552].end 15266.268
transcript.whisperx[552].text 謝謝楊委員,楊委員這個非常關心這個臺灣紫災的事情我們勞動部也是將心比心自己的家人發生這個事情都很難過所以我們要設定一個10年的臺灣勞災減半計畫我們希望特別是嚴重的像這個營造業占的紫災的一半以上那我們的營造業在他的這個高工吊掛一定要嚴格執行
transcript.whisperx[553].start 15267.568
transcript.whisperx[553].end 15291.969
transcript.whisperx[553].text 因為時間的關係我要尊重主席所以勞動部請你跟相關的產業去討論他們的困難點在哪裡你們該當要唆訊要怎麼樣協助把這個數字降下來我們也希望在勞動節的今天可以送給我們勞工一個安全的職場安全的工作的一個環境跟能力
transcript.whisperx[554].start 15292.85
transcript.whisperx[554].end 15293.15
transcript.whisperx[554].text 請鄭天才委員質詢
transcript.whisperx[555].start 15339
transcript.whisperx[555].end 15342.622
transcript.whisperx[555].text 主席、各位委員,請主計長還有國發會的師傅主委主計長好,辛苦了
transcript.whisperx[556].start 15350.782
transcript.whisperx[556].end 15371.574
transcript.whisperx[556].text 不會啦,看到委員很高興謝謝這個今年啊這個0403地震很快的陳院長在4月4號就到花蓮視察災情當天就宣布主計總處已經撥了3億請問一下這個主計長
transcript.whisperx[557].start 15377.369
transcript.whisperx[557].end 15403.999
transcript.whisperx[557].text 到現在為止已經快滿一個月了這個主計總處現在已經除了這3億之外還沒有撥幾個那個跟那個委員報告一下那個3億在當天早上下午4月3號下午5點鐘以前我們就跟財政部一起努力就撥到臺灣銀行花年昏朗的戶頭只是他們那一天不上班過天又放假
transcript.whisperx[558].start 15405.179
transcript.whisperx[558].end 15425.035
transcript.whisperx[558].text 所以事實上我們當天就撥下去這個錢以後要撥多少是他們要把那個是怎麼樣需求多少已經用了多少而且這個是花蓮縣政府也有所謂的災害準備金大概4億再加上3億他們所需要的只要有報上來
transcript.whisperx[559].start 15426.036
transcript.whisperx[559].end 15440.185
transcript.whisperx[559].text 我們的經過審核以後我們就會繼續補,謝謝好,所以現在只播了3億嗎?對好好,我們看25年前25年前的民國88年的9月21號的921震災主計總處當時叫主計處那時候是委主計長這個你的前輩
transcript.whisperx[560].start 15456.229
transcript.whisperx[560].end 15472.827
transcript.whisperx[560].text 當時在9月22號一開始先撥了4億然後緊接著一看到災情又再增加這個臺東縣政府、南投縣政府又再增加一直到
transcript.whisperx[561].start 15474.521
transcript.whisperx[561].end 15495.446
transcript.whisperx[561].text 當天第二天總共增加到撥款53億當然25年前的物價指數各方面53億是非常非常大要跟現在的這個53億是有差很多所以這個部分這個是主動我是建議這個主計總處主動來協助
transcript.whisperx[562].start 15500.467
transcript.whisperx[562].end 15514.176
transcript.whisperx[562].text 那我請教一下這個主計長,這個現在啊,到底我們因為副院長開了幾次會議嘛,後來現在我也開了很多次會議
transcript.whisperx[563].start 15516.099
transcript.whisperx[563].end 15532.571
transcript.whisperx[563].text 現在到底準備了多少錢我們是有匡列大概是兩百多億有匡列兩百多億那個兩百多億我們將來也許說在明天就可能成立一個方案有國發會提案來報告
transcript.whisperx[564].start 15534.552
transcript.whisperx[564].end 15536.673
transcript.whisperx[564].text 師傅主委剛剛主計長有提到國發會這個很有默契就馬上就請你
transcript.whisperx[565].start 15558.228
transcript.whisperx[565].end 15558.808
transcript.whisperx[565].text 主席主席長
transcript.whisperx[566].start 15588.911
transcript.whisperx[566].end 15614.331
transcript.whisperx[566].text 這個因為現在花蓮縣政府的公務人員都很忙都非常忙所以為什麼當初九二一會主動播就是因為很忙對我知道我知道所以這個部分我又舉一個例子莫拉克颱風風災災禍重建的特別條例這是民國98年
transcript.whisperx[567].start 15617.148
transcript.whisperx[567].end 15624.834
transcript.whisperx[567].text 8月20日88峰災一樣當天撥很多錢我就不再細數了為了這個訂特別條例行政院8月20日8月20日就把經過行政院會通過送到立法院這個特別條例
transcript.whisperx[568].start 15644.619
transcript.whisperx[568].end 15668.956
transcript.whisperx[568].text 我們看非常非常快立法院馬上就審查8月28號就公布施行所以不到一個月的時間所以這個部分都是我們過去都很有經驗結果這次的經驗好像倒退了我們有時候就那個
transcript.whisperx[569].start 15669.976
transcript.whisperx[569].end 15698.104
transcript.whisperx[569].text 特別條例做預算的編列的話要有數據資料那我們也希望也希望也要有那個數據資料因為你有數據資料你才能夠編列預算怎麼會有數據我剛剛講了八八風災八月八號喔八月二十八號那是條例喔條例是沒有數據啦他那個是條例並沒有預算那我們這一次到明天要公布的
transcript.whisperx[570].start 15698.844
transcript.whisperx[570].end 15704.865
transcript.whisperx[570].text 當然你現在是根據災害防救法57條可以用第二一倍金可以用災害準備金然後災害防救法第58條
transcript.whisperx[571].start 15723.928
transcript.whisperx[571].end 15751.642
transcript.whisperx[571].text 然後你也可以依依算法第83條重大災害的時候就可以提出特別預算所以這個部分我只是建議這個我們的主計處的公務員因為主計長很忙啊不會不會不會這個人民的事情我會擺在第一位既然講了兩百億還是兩百五十億現在都媒體報導趕快付諸實施好不好
transcript.whisperx[572].start 15752.745
transcript.whisperx[572].end 15776.845
transcript.whisperx[572].text 我們現在就已經在做了而不是說要通過特別條例再做我知道現在法律已經周全了因為之前的案例所以才會有需修改所以不必特別條例才來做也不必要變特別預算才做我們現在就可以做明天只是通過一個方案 謝謝我的意思是說已經比以前是要立法
transcript.whisperx[573].start 15783.342
transcript.whisperx[573].end 15808.803
transcript.whisperx[573].text 以前要立法然後立法的那麼快我現在是不用立法我剛剛有講了災害防救法有了預算法83條也有了所以還要加快預算法83條要特別條例要特別預算要要要這個是怎麼要特別預算我知道我知道所以既然災害準備金夠
transcript.whisperx[574].start 15809.79
transcript.whisperx[574].end 15810.21
transcript.whisperx[574].text 主席請勞動部的次長
transcript.whisperx[575].start 15847.689
transcript.whisperx[575].end 15871.685
transcript.whisperx[575].text 市長好今天五一勞動節因為政府機關也沒有放假就讓這些很多勞工朋友職員都要跟著我們一起來工作一起來上班實際上是很辛苦這個假的事情可能你們要好好考慮全國可能要一致這樣才比較方便那我想請問你這個勞工節我們當然要特別講這個勞工權益的議題什麼叫做基本工資部長
transcript.whisperx[576].start 15874.986
transcript.whisperx[576].end 15899.716
transcript.whisperx[576].text 向基本工資應改為最低工資當時基本工資希望說依照我們社會各種的因素綜合考量之後一個勞工在領這樣子的薪水他可以基本上現在多少錢現在我們調到兩萬七千四百七十元兩萬二七四七零那你知道什麼叫第一佳績嗎基本的第一佳績大概就是
transcript.whisperx[577].start 15900.996
transcript.whisperx[577].end 15920.303
transcript.whisperx[577].text 在離島或是比較偏遠的地方,他工作的關係給他一些鼓勵對,因為這個地理環境,比如台灣要調過去特別辛苦,所以又給一點第一家局那你覺得,市長財政部也上來一下,這個基本工資第一家局跟基本工資,基本工資是不是應該把第一家局算進去?是內涵還外加?
transcript.whisperx[578].start 15924.876
transcript.whisperx[578].end 15943.292
transcript.whisperx[578].text 我跟陳委員報告就是他這個第一佳績是列為工資的一部分列為工資的那算不算是你說最低算不算最低工資算不算進去就是說比如說我給你一萬塊然後再一個理由因為你在離島所以再給你一萬七然後就算有符合最低工資你說最低工資嗎
transcript.whisperx[579].start 15944.333
transcript.whisperx[579].end 15961.106
transcript.whisperx[579].text 對,我跟陳委員報告這個就是說在算基本工資後他會把他的地域佳績算進來是他工資的一份那所以如果沒有地域佳績員如果同樣一個工作像那天我們在這裡問財政部嘛他同樣一個工作如果在外島調過來我說外島是指台灣啦台灣島調過來啦調到金門島來跟這個金門本島來講的話那因為離島是外島調過來才有嘛台灣島調到金門島才有
transcript.whisperx[580].start 15971.394
transcript.whisperx[580].end 15999.697
transcript.whisperx[580].text 那所以說假設有一個人比如你們兩位次長齁那你是本來就在金門所以你就要領 假設你們都領最低工資領兩萬七嘛那我們財政部的次長是在台灣他從台灣調到金門來的那他說他的他應該領兩萬七那他是含他的離島一萬一萬的加給好了所以他應該是領一萬就對了他的工資就是一萬就對了然後再加上一萬一萬七再加上一萬這樣可以嗎你們的基本就會不一樣喔
transcript.whisperx[581].start 16000.731
transcript.whisperx[581].end 16015.013
transcript.whisperx[581].text 你女朋友的我還說什麼吧是是對不對所以他應該是領一萬一萬七然後再將外島的家籍就地域家籍一萬就兩萬七那以後他調回台灣他不就領一萬七女朋友的我在說什麼嗎是不我想那你給我給你
transcript.whisperx[582].start 16017.039
transcript.whisperx[582].end 16044.759
transcript.whisperx[582].text 我想跟陳委員報告這個有關於基本工資當時我們各種的計算方式沒有我們現在叫最低工資我們要把它講最低工資應該是兩萬七嘛兩萬七千多啦沒錯嘛你看看我們金門縣這是政府單位喔公營事業作業員的工資喔這還是金門縣合給行政院的你看那個這種就是作業員啦所以從第一級到第36級你們這個第一級的最低的工資才一萬四千六百啊
transcript.whisperx[583].start 16046.08
transcript.whisperx[583].end 16059.087
transcript.whisperx[583].text 這樣也能準嗎?勞動部你沒有意見嗎?到了17級都還是26,880到了18級以上才是27,650啊我們金門這個很多作業員啊1到36都有啊你知道我在說什麼嗎?所以在金門縣政府的那些公營事業作業員他們的基本工資是也有一萬四的啦也有兩萬一的啦阿你有合法嗎?政府單位帶頭違法
transcript.whisperx[584].start 16075.404
transcript.whisperx[584].end 16092.896
transcript.whisperx[584].text 我跟陳委員報告他這個部分還要再加上他的這個剛剛講的就是你說那個離島佳績嗎對 已經超出了所以這個作業如果今天調到台灣去原來假設他是我們隨便舉他第10集好了兩萬一千五百一十啦兩百八十個新臨兩萬一千五百一他調到台灣去以後他就領兩萬一千五百一喔
transcript.whisperx[585].start 16094.244
transcript.whisperx[585].end 16110.101
transcript.whisperx[585].text 因為他到金門加了一萬才會變三萬一啊舉例那他以後掉到台灣他就領兩萬一喔這樣合不合法一樣他還是要在基本工資以上所以他掉到台灣去掉到台灣倒來啊就變成兩萬一再加上六千那好他再掉回來呢
transcript.whisperx[586].start 16113.506
transcript.whisperx[586].end 16125.412
transcript.whisperx[586].text 他掉下來就變成兩萬七再掉回來再加一萬就三萬七所以要鼓勵金門的這個這個作業員天掉到台灣來先把他符合基本沒有離島家籍的最低工資他再掉回來再加上離島家籍
transcript.whisperx[587].start 16126.843
transcript.whisperx[587].end 16148.592
transcript.whisperx[587].text 你聽得懂這個荒謬處嗎因為我為什麼請財政部市長站在這裡因為有些公營事業單位啦不過你們都有符合啦所以沒有這個問題我是要讓這一樣是方工股銀行也在金門嘛他們是都有符合啦我們金門這個作業員這個沒有符合而且還送到你們合訂喔送到你們行政院來這個你們勞動部到底有沒有重視勞工權益啊金門的這個作業員
transcript.whisperx[588].start 16152.776
transcript.whisperx[588].end 16180.656
transcript.whisperx[588].text 沒有符合最低工資欸有領兩萬一的欸 縣政府的我知道那個成員對這議題非常關心那之前我們會轉給金門縣政府不是 主管單位金門縣政府是發錢的以後那個任何一個單位如果不符合最低工資我們來這邊質詢你也說我們轉給那個公司讓他來問你們是主管單位啊不符合最低工資不是你們要去糾局啊或是去要求嗎
transcript.whisperx[589].start 16182.517
transcript.whisperx[589].end 16208.183
transcript.whisperx[589].text 以目前的基本公司的算法他加上地域佳績所以任何一個公司在金門那我們講清楚任何一個公司在金門以後就是說我請人的話就是兩萬塊再加上因為現在離島價大概是九千算一萬好了以後我請人就是我發的公告就是減一萬兩萬七一萬七我真人一萬七然後說但是我沒有外島佳績離島佳績再多給你一萬塊這樣可以就對了以後這樣公告可以喔
transcript.whisperx[590].start 16208.843
transcript.whisperx[590].end 16221.479
transcript.whisperx[590].text 公告一定要在基本形式下沒有這就是這樣子嘛你剛說這樣子可以的我要知道你的標準我不是說這樣子可以就是以後我招人我那一家民營企業任何企業在金門的在離島的我說我給薪水就是一萬七但是我們另外再給你離島加給一萬塊可以喔
transcript.whisperx[591].start 16226.233
transcript.whisperx[591].end 16245.067
transcript.whisperx[591].text 您了解我在說什麼嗎?我可以理解現在就是說可以這樣子喔?可以這樣子喔?你告訴我可以就好不然可以嗎?你要招人的時候對對我招人我就講清楚嘛以後我的工資就是給1萬7另外給李立導這是違反我們基本工資的規則1萬就符合2萬7嘛所以以後到金門區的廠商記者就是反正用1萬7起跳這樣是不是?
transcript.whisperx[592].start 16246.448
transcript.whisperx[592].end 16265.401
transcript.whisperx[592].text 我想這個部分就是這樣子嗎?因為有的公司是台灣本島也有分行金門也有分行那以後調回台灣去再另外給就對了你聽得懂我在說什麼吧?我可以理解你這個事情什麼時候幫我檢討一下?是我想我會把把第一佳績排除在基本工資的計算之外你兩週內給我檢討好嗎?
transcript.whisperx[593].start 16267.894
transcript.whisperx[593].end 16292.688
transcript.whisperx[593].text 這部分我們請相關委員來研究研究看看好不好這樣不符合最低工資嘛對不對換第一概念的目的是幹嘛因為就是說那裡辛苦所以你調過去特別給你嘛那你把它算在基本公司那跟有的公司一樣啊有的公司很不注重勞動權益都這樣子啊給你講這個ABCD加一加就有這麼多錢對不對你們勞動部不能做這種示範嘛對尤其在政府部門不能這樣做好嗎是的
transcript.whisperx[594].start 16294.21
transcript.whisperx[594].end 16306.02
transcript.whisperx[594].text 好 謝謝來那個財政部那個逐序那個投資特別扣除額的部分以前是全部69年全部免稅78年12萬現在大概現在是27萬現在進入這個升息和高通膨這個都沒有檢討那以前你看門檻基本工資以嚴基本工資就最低是8800現在27000那現在的話這個整個物價通膨很嚴重
transcript.whisperx[595].start 16318.672
transcript.whisperx[595].end 16319.633
transcript.whisperx[595].text 目前的儲蓄投資特別扣除的是27萬
transcript.whisperx[596].start 16335.713
transcript.whisperx[596].end 16356.222
transcript.whisperx[596].text 如果按照目前的一年期的定期存款利率1.715來算的話換算的話大概他的存款大概是一千差不多一千六百萬對一千多萬我們說的是靠利息收入來過活的人嘛但是相對來講他的資歷比一般人高很多我們要說這個免稅一千多萬
transcript.whisperx[597].start 16357.142
transcript.whisperx[597].end 16378.012
transcript.whisperx[597].text 退休事實上也是不夠用嘛那有人沒有在退休沒有生存沒有沒有在謀生的這個能力嘛但是靠那個有人比較保守嘛就是靠這樣子難道你鼓勵他當你有1000多還不錯很多鼓勵他再投這個ETF啊投什麼這樣風險也很高嘛有人就是比較穩健的嘛因為這的確是一些退休的一些軍工叫錢很少啊
transcript.whisperx[598].start 16378.832
transcript.whisperx[598].end 16398.684
transcript.whisperx[598].text 你們這個部分是不是可以檢討一下因為畢竟整個有沒有整個已經70幾年了很多年了也應該可以檢討啊這部分我們當然會帶回去了研究一下好嗎當然基本上我是覺得還是要考慮到恆平性當然你要考慮恆平性但你要考慮整個時空環境改變
transcript.whisperx[599].start 16399.344
transcript.whisperx[599].end 16427.942
transcript.whisperx[599].text 市公環境改變物價也改變當初的最低工資也改變所有事情都應該要思考一下好嗎但是他跟一般的民眾就是比較弱勢的還是他的資歷還是好很多啦你整個整個兩個禮拜內給我一個報告好嗎一個月好一個月好好一個月好謝謝主計長那個我們對不起主計長主計長時間不是吧剩30秒剩下40秒等一下走路的時間要扣掉
transcript.whisperx[600].start 16429.363
transcript.whisperx[600].end 16455.08
transcript.whisperx[600].text 我要請問你來來我上次一直問你金門財力調整喔到520齁之前這個我希望齁你看人家內政部林右昌部長對不對要退以前里長一個半月的年終獎金對不對體察民意那個要內政部提出來我現在不再講這個我在問你的事情我只是舉例給你聽不用急你們的主計總處的陳富堅副主計長喔
transcript.whisperx[601].start 16456.221
transcript.whisperx[601].end 16482.518
transcript.whisperx[601].text 在這個我們金門縣有開一個首長會議有在說金門的財力分級的問題那張景森政委也覺得金門的財力分為這個第三級是不合理的張政委有找你們副主計長陳慧娟來開會你知道這件事吧我當然知道他有叫我們好好研究我們一定會好好研究一定會好好研究那在520之前研究出來可以嗎不然你都要那個退休那個是我
transcript.whisperx[602].start 16483.839
transcript.whisperx[602].end 16507.079
transcript.whisperx[602].text 今天還有20天我會交代下一任的主計長他會好好的研究這樣為德不足啊林右昌要下任前都把1萬5這個1.5個月連中獎都弄出來了那個是由我要我同意他才可以喊那個所以你還不同意來來來問一下你不同意對不對那你同意嗎那你同意嗎
transcript.whisperx[603].start 16510.762
transcript.whisperx[603].end 16510.782
transcript.whisperx[603].text 陳委員
transcript.whisperx[604].start 16524.617
transcript.whisperx[604].end 16525.398
transcript.whisperx[604].text 接著請黃秀芳委員質詢
transcript.whisperx[605].start 16558.623
transcript.whisperx[605].end 16563.2
transcript.whisperx[605].text 謝謝主席我們請財政部次長跟勞動部次長要請阮次跟徐次
transcript.whisperx[606].start 16568.758
transcript.whisperx[606].end 16587.734
transcript.whisperx[606].text 市長好市長我先就過去30年我們受僱人員的這個報酬占GDP比重是緩步在下滑那我想請教就是說我們一般人會覺得最近台灣這幾年的這個經濟果實應該是蠻豐碩的可是大部分的國民是無感
transcript.whisperx[607].start 16588.615
transcript.whisperx[607].end 16611.393
transcript.whisperx[607].text 那我們也看到說股市上兩萬點可是民眾還是無感那我想請教說因為大家會覺得說好像是在特定的產業可能這個經濟的這個果實好像是在特定的產業那一般的中小企業或者是傳統產業其實整個經濟不是那麼的那麼的好啦那我想請教就是說
transcript.whisperx[608].start 16613.294
transcript.whisperx[608].end 16626.877
transcript.whisperx[608].text 第一個我們在財政部這邊在這幾年有一個中小企業的加薪抵稅那這個加薪抵稅我想請教就是說在這幾年當中這個成果到底是怎樣
transcript.whisperx[609].start 16627.952
transcript.whisperx[609].end 16644.125
transcript.whisperx[609].text 成果當然不是很好,我覺得有幾點原因,第一個可能它有一些限制,就是有一些門檻的限制第二個可能是它中小企業它的結構的問題
transcript.whisperx[610].start 16645.663
transcript.whisperx[610].end 16652.965
transcript.whisperx[610].text 因為62%基本上都是擴達書審另外25%是獨自合夥本來就是不用繳稅其他的是有結算申報但是稅負平均大概5萬多市長你剛剛講了幾個問題其中一個可能就是要書審
transcript.whisperx[611].start 16670.69
transcript.whisperx[611].end 16695.104
transcript.whisperx[611].text 可能就是說這些中小企業他們也會擔心我今天如果申請這個加薪抵稅的話那你們這邊會不會是擴大疏省嚴加疏省那可能就在那個稅就是可能他可能又要補稅或要繳更多的稅所以我是不是可以請教我們的次長針對這一部分怎麼樣去鼓勵我們的中小企業來運用
transcript.whisperx[612].start 16696.585
transcript.whisperx[612].end 16713.758
transcript.whisperx[612].text 我們這個加薪抵稅這樣的一個我們認為說這個可能對我們一般的勞工可能會比較好可是好像實際的這個成果不是那麼的好所以是不是可以針對你們現在目前遇到的問題然後可以做一些改善
transcript.whisperx[613].start 16714.178
transcript.whisperx[613].end 16714.698
transcript.whisperx[613].text 所以他就會擔心啊
transcript.whisperx[614].start 16729.864
transcript.whisperx[614].end 16746.168
transcript.whisperx[614].text 所以他基本現在就是這樣做所以是因為這樣子所以才會造成這個你會覺得說成效不彰嗎?我們會合理來課除非是比如說被檢舉或者是說他申報錯誤或者是說他案件很複雜這種才會去抽查那基本上就是照申報核定
transcript.whisperx[615].start 16752.731
transcript.whisperx[615].end 16773.511
transcript.whisperx[615].text 所以我們要來如果是說這個中小企業發展條例新的規定通過以後我們會責成我們的國稅局會充分來宣導就是讓他們不要因為說怕變成不是疏寸的就變成好像被查稅或什麼之類我們會盡量來宣導
transcript.whisperx[616].start 16775.353
transcript.whisperx[616].end 16789.588
transcript.whisperx[616].text 我希望能夠既然有提出這樣子一個加薪抵稅的這樣的一個制度那當然就是你們要廣為宣傳那一般中小企業擔心的問題我覺得你們應該也要去解決接下來我想請教這個勞動部次長
transcript.whisperx[617].start 16796.615
transcript.whisperx[617].end 16812.827
transcript.whisperx[617].text 我們現在目前就是說在113年的這個最低工資月薪是27470那勞動部在去年6月也有公布就是出任人員可能是剛剛這個出任人員的這個薪資平均是34000
transcript.whisperx[618].start 16814.728
transcript.whisperx[618].end 16833.134
transcript.whisperx[618].text 其中有四分之一是新鮮人一般的新鮮人領的最低工資那剛剛我有特別提到就是說我們的這個中小企業我們希望說能夠提出來這個政策加薪抵稅的這個政策當然我們也希望就是說勞動部
transcript.whisperx[619].start 16834.474
transcript.whisperx[619].end 16852.76
transcript.whisperx[619].text 不只是勞動部跟財政部我們應該是要一起把這個我們目前一般民眾覺得說我們台灣這個低薪的這個問題能夠解決這個應該是要跨部會去解決啦所以我希望說勞動部針對這部分你是不是可以說明一下你們未來要怎麼做
transcript.whisperx[620].start 16854.5
transcript.whisperx[620].end 16881.051
transcript.whisperx[620].text 好 謝謝黃議員非常關心這個青年有些部分他的起薪比較低的問題那我們現在幾個方案包括說未來徵才如果說是低於這個3萬5他必須要有些說明這個部分我們在這個政策上面已經開始執行另外我們也鼓勵說這個青年本身他可以加持他自己的這個比如說他去鼓勵他多考各種證照增加他雇用的比例
transcript.whisperx[621].start 16882.031
transcript.whisperx[621].end 16883.152
transcript.whisperx[621].text 中小企業得到政府支持
transcript.whisperx[622].start 16900.744
transcript.whisperx[622].end 16918.314
transcript.whisperx[622].text 我想講的今天是五一勞動節那全台灣有1142萬的勞工那其中有六成就業他們可能都是往這個服務業那服務業我們知道說一般的服務業傳統服務業其實薪資是偏低的
transcript.whisperx[623].start 16919.074
transcript.whisperx[623].end 16943.352
transcript.whisperx[623].text 那這個剛剛有提到大學的畢業生有九成也是往這個服務業這方面去走所以我們希望就是說政府針對我們所有社會新鮮人的這個低薪的這個議題我覺得應該是要跨部會去解決那再來就是說我們這個受僱人員報酬占GDP比重是
transcript.whisperx[624].start 16944.173
transcript.whisperx[624].end 16972.114
transcript.whisperx[624].text 主念下滑其實我覺得這個應該也要去解決的齁經濟的這個果實經濟豐碩的這個果實應該是企業主跟所有的勞工一起分享的啦好不好好我們一起來鼓勵謝謝謝謝黃雄煌委員質詢緊接著請何欣淳委員何欣淳委員何欣淳委員不在謝亦鳳委員謝亦鳳委員謝亦鳳委員謝亦鳳委員不在鄭志前委員鄭志前委員鄭志前委員不在游皓游皓游皓游皓委員不在賴玉珍委員賴玉珍委員賴玉珍委員不在
transcript.whisperx[625].start 16972.694
transcript.whisperx[625].end 16974.875
transcript.whisperx[625].text 今天登記發言委員均與詢答完畢本次會議做如下決定一、報告及詢答完畢二、委員諮詢及
transcript.whisperx[626].start 16987.785
transcript.whisperx[626].end 17006.651
transcript.whisperx[626].text 委員質詢為其答覆或請補充資訊,請相關部會於一周內以書面答覆,委員另有要求期限從其所定。委員陳冠廷所提書面質詢,列入紀錄刊登公報,並請相關部會以書面答覆。
transcript.whisperx[627].start 17007.731
transcript.whisperx[627].end 17021.237
transcript.whisperx[627].text 本次會議議程已進行完畢,堂友不在場委員補題書面質詢,一併列入紀錄,刊登公報,並請議事人員協志處理。散會。祝大家勞動節快樂!
transcript.whisperx[628].start 17036.105
transcript.whisperx[628].end 17036.585
transcript.whisperx[628].text 法定人數不足